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2 Abbreviations and Acronyms 
AAA Amino acid analysis 

AED Atomic emission detector 

AQC 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate 

BSTFA N,O-bis-(trimethylsilyl)-trifluoroacetamide  

CE Collision energy 

CE Capillary electrophoresis 

CoA Coenzyme A 

CUR Curtain gas 

CXP Collision cell exit potential 

đ Mean difference 

DABS-Cl Dimethylamino-azobenzenesulfonyl chloride 

DC Direct current 

DP Declustering potential 

FID Flame ionization detector 

ECD Electron capture detector 

EI Electron impact ionization 

EIC Extracted ion chromatogram 

ELCD Electrolytic hall conductivity detector 

EOF Electroosmotic flow 

EP Entrance potential 

ESI Electrospray ionization 

FDA Food and drug administration 

FITC Fluorescein isothiocyanate 

FPD Flame photometric detector 

FMOC-Cl 9-fluorenylmethylchloroformate 

GC Gas chromatography 

HFB 2,2,3,3,4,4,4-heptafluorobutanol 

HILIC Hydrophilic interaction liquid chromatography 

HPLC High-performance liquid chromatography 
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HSQC Heteronuclear single-quantum correlation 

INTERMAP INTERnational collaborative of Macronutrients and blood 

Pressure 

IP Ion pair 

IS Internal standard 

IT Ion trap 

LC Liquid chromatography 

LLOQ Lower limit of quantification 

LOD Limit of detection 

LOQ Limit of quantification 

MCF Methyl chloroformate 

MRM Multiple reaction monitoring 

MS Mass spectrometry / mass spectrometer 

MS/MS Tandem mass spectrometry 

MPS Multipurpose Sampler 

MSTFA N-methyl-trimethylsilyltrifluoroacetamide 

MSUD Maple syrup urine disease 

MT Migration time 

NEFA Non-esterified fatty acid 

NMR Nuclear magnetic resonance 

NPD Nitrogen phosphorus detector 

NPD-F 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole 

OPA o-phthalaldehyde 

PCF Propyl chloroformate 

PID Photoionisation detector 

PITC Phenylisothiocyanate 

PKU Phenylketonuria 

PTV Programmed-temperature vaporization 

QC Quality control 

QTRAP Triple quadrupole – linear ion trap hybrid mass spectrometer 

R Correlation coefficient 
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RF Radio-frequency 

RP Reversed phase 

RSD Relative standard deviation 

RSQ Square of the correlation coefficient R 

RT Retention time 

SD Standard deviation 

SIM Selected ion monitoring 

SPE Solid-phase extraction 

SRM Single reaction monitoring 

TCD Thermal conductivity detector 

TE Technical error 

TEM Auxilary gas temperature 

TLC Thin layer chromatography 

TOF Time-of-flight 

TQ Triple quadrupole 

ULOQ Upper limit of quantification 

UPLC Ultra-performance liquid chromatography 

UV Ultraviolet 

 

 

 

The abbreviation for the amino acids are listed in chapter11, Table 11.
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3 Motivation 

Amino acids are important targets for metabolic profiling and their quantitative 

analysis is essential in many areas including clinical diagnostics of inborn errors 

of metabolism, biomedical research, bio-engineering and food sciences. 1, 2 

There is an increasing need for fast and robust methods for the quantitative 

analysis of amino acids in large clinical and epidemiological studies.3 The 

prevailing method for amino acid analysis has been cation exchange 

chromatography followed by post-column derivatization with ninhydrin and UV 

detection. But due to the low throughput and the low specificity of detection it is 

not suitable for the analysis of large sample batches of complex biological fluids 

such as urine and blood serum. There are several other methodologies available 

to analyze amino acids, which are based on chromatography, capillary 

electrophoresis, direct infusion coupled to different mass analyzers, as well as 

nuclear magnetic resonance (NMR). Protein precipitation is required for all LC 

and CE methods independent of the detection method used, which renders 

complete automation difficult. Shortcomings of NMR are relatively high limits of 

detection and large sample volumes required. Therefore there is still need for a 

method that allows the completely automated analysis of amino acids in 

biological fluids that can meet the demand for high sample throughput in large 

metabolomic studies.  

Aim #1: Development of a fully automated method for the direct 
quantitative analysis of amino acids in various biological matrices 

The aim was to develop a robust, accurate, fast and precise method for the 

analysis of urinary amino acids and its application to urine specimens from the 

INTERMAP study that examines the correlation between diet and 

ethnogeographic patterns of blood pressure, where urinary amino acids serve as 

surrogate markers of dietary protein sources. GC-MS was chosen because of its 

high separation efficiency and wide dynamic range. In order to obtain volatile 

analytes usually derivatization of metabolites is performed for GC analysis. GC-
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MS based metabolomics studies commonly use silylation, which however causes 

degradation of some amino acids. The GC-MS method of choice builds on the 

direct derivatization of amino acids in diluted urine with propyl chloroformate, GC 

separation and mass spectrometric quantitation of derivatives using stable 

isotope labeled standards. Since derivatization with propyl chloroformate can be 

carried out directly in the aqueous biological sample without prior protein 

precipitation or solid-phase extraction of the amino acids, the entire analytical 

process, starting from the addition of reagents, over extraction, derivatization to 

injection into the GC-MS can be automated. Method parameters such as limit of 

detection (LOD), lower limit of quantification (LLOQ), linear range, 

reproducibilities and evaluation of matrixe spikes were to be determined to show 

to the method`s applicability to analyze amino acids in several biological 

samples. Propyl chlorofromate can react with all compounds containing amino 

and/or a carboxy function therefore there is space to include other metabolites 

e.g. fatty acids. The integration of fatty acids was to be determined, additionally. 

Specific Aim #2: Urinary Amino Acid Analysis: A Comparison of iTRAQ®-
LC-MS/MS, GC-MS and Amino Acid Analyzer 

Another goal was the comparison of the performance of classical ion-exchange 

chromatography with postcolumn ninhydrin detection and the GC-MS method 

developed under aim #1 and a novel LC- MS/MS method based on the 

derivatization of amino acids with iTRAQ®. In this process, the performance of 

the iTRAQ® -LC-MS/MS method was to be evaluated. 

Using two blinded sets of urine samples containing replicates and a certified 

amino acid standard, the precision and accuracy of the GC-MS method could be 

tested and the results compared with iTRAQ® derivatization LC-MS/MS and 

postcolumn ninhydrin detection of amino acids. The performance of the three 

methods was to be compared using various statistics, including technical error of 

mearuement, regression analysis and Bland-Altman plotting.  

 

 

 2



Specific Aim #3: Quantitative analysis of amino acids and related 
compounds by LC-MS/MS 

Some important amino acids are thermally instable and cannot be quantified by 

GC-MS, such as arginine, citruline as well as 1- and 3- methyl histidines. Amino 

acids are highly polar analytes and, therefore, not suitable for conventional 

reversed-phase high-performance liquid chromatography (RP-HPLC). Thus, a 

derivatization is needed. The potential of derivatization with propyl 

chloroformates, follow by LC-MS/MS analysis for amino acid determination was 

to be tested and expanded to tryptophan metabolites and polyamines that are of 

great interest in several biological projects. Due to their amino function they can 

be derivatized with propyl chloroformate and analyzed by LC-MS/MS. For 

quantification aims it is important to use internal standards. However, isotope- 

labeled standards are not available commercially for all metabolites of interest. 

Instead of synthesizing individual standards for each metabolite, we wanted to 

exploite the derivatization of amino and carboxy functions with propyl 

chloroformate employing d3-labeled propanol as a mean of generating an internal 

standard for each analyte. 
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4 Background 

An abbreviated version of this chapter was published in Analytical Bioanalytical 

Chemistry.4  

4.1 Metabolomics 

The complete set of small molecules in an organism is termed metabolome. 5  

Nucleus

DNA (Genome)

mRNA

t

mRNA (Transcriptome)

(Proteome)

(Metabolome)

Proteins 

Metabolites

 

Figure 1: Information flow in a cell. 

 

Metabolomics is the last step in the “omics” cascade (Figure 1). Metabolites are 

the end products of cellulary processes. Therefore, their concentration can be 

regarded as the response of biological systems to genetic and/or environmental 

changes. Metabolomics aims at the quantitative analysis of all metabolites in a 

given biological system.6 In the absence of a single analytical technique that can 
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cover the entire metabolome, analysis is typically limited to the quantitative 

profiling of selected pathways or building blocks of the metabolome. 7 

There are different approaches in the field of metabolomics: 

Metabolic profiling is the quantitative analysis of sets of metabolites in a 

selected biochemical pathway or a specific class of compounds. Important 

targets for metabolic profiling are e.g. amino acids, intermediates of the central 

carbon metabolism, nucleotides and polyamines, just to name a few. For this 

approach, it is necessary to develop accurate and robust methods to quantify 

those compounds. 

Target analysis is more focused than metabolic profiling and only very few 

analytes are measured. They are often directly related to a genetic perturbation, 

such as substrates or products of enzymatic reactions, or they serve as 

biomarkers for a certain disease. 7 

Metabolic fingerprinting aims at the detection of as many analytes as possible. 

Metabolic fingerprinting is a global screening approach to classify samples based 

on metabolite patterns or “fingerprints. 

Metabolic footprinting uses the same methods as fingerprinting but is limited to 

the analysis of metabolites in cell culture media. The reasoning is that 

compounds excreted by a cell or taken up from the medium will also give 

valuable insights into a cell’s phenotype and physiological state. 8 

4.2 Amino acids  

Twenty standard amino acids are used by organisms in protein biosynthesis. The 

structures of the proteinogenic amino acids are shown in Figure 2.  

 5



NH3

O

O+

Alanine
M=89.09 
C3H7NO2

NH3

O

O

+

Valine
M=117.15
C5H11NO2

NH3

O

O+

Glycine
M=75.07
C2H5NO2

NH3

O

O+

Leucine
M=131.18 
C6H13NO2

NH3

O

O+

Isoleucine
M=131.18 
C6H13NO2

H2N

COO-
+

Proline
M=115.13 
C5H9NO2

NH3

O

O

OH

+

NH3

OH

O

O+

Serine
M=105.09
C2H7NO3

Threonine
M=119.12
C4H9NO3

NH3

O

O

S

+

Methionine
M=149.21
C5H11NO2S

NH3

O

O
NH2

O
+

Asparagine
M=132.12
C4H8N2O3

Glutamine
M=146.15
C5H10N2O3

Cystein
M=121.16
C3H7NO2S

NH3

O

ONH2

O

+

OSH
NH3

O

+

b)

a)

NH3

O

O+

Phenylalanine
M=165.19
C9H11NO2

NH3

O

OH

O+
NH3

O

N
H

O+

Tyrosine
M=181.19
C9H11NO3

Tryptophan
M=204.23
C11H12N2O2

c)

NH3

O
O

O
O+

Aspartic acid
M=133.10 
C4H7NO4

NH3

O

O

O

O +

Glutamic acid
M=147.13
C5H9NO4

d)

NH3

O

O
NH3

+

+

Lysine
M=146.19
C6H14N2O2

NH3

O
NH

N
H

O+

+ Histidin
M=155.16
C6H9N3O2

N
H

NH2

NH3

O

OH2N
+

+

Arginine
M=174.2
C6H14N4O2

e)

 
Figure 2: Molecular structure, formula weight and empirical formula for all 20 proteinogenic 
amino acids. Molecular structures are illustrated as they are at pH of 7; depending on their side 
chain, they are divided in a) unpolar side chain, b) polar uncharched side chain, c) aromatic side 
chain, d) negative charged side chain, e) positive charged side chain.  
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At pH 7 the α-amino group is protonated and the α-carboxy group is 

deprotonated. The positive and negative charges are equal, resulting in a neutral 

charge; therefore, they are called zwitterions. Depending on the chemical 

behavior of the side chains at pH 7 amino acids can be grouped as follows. 

Neutral amino acids have a non-charged (Figure 2a-c), acidic amino acids a 

negatively (Figure 2d) and basic amino acids a positively charged side chain 

(Figure 2e). Neutral amino acids can be subdived into neutral amino acids with 

unpolar side chain (Figure 2a), polar side chain (Figure 2b) and aromatic side 

chain (Figure 2c). Mammals including humans, can synthesize only 11 of the 

proteinogenic amino acids: tyrosine, aspartic acid, asparagine, alanine, serine, 

glycine, cysteine, glutamic acid, glutamine, proline and arginine. They are known 

as the non-essential amino acids. Tyrosine for example can be synthesized out 

of phenylalanine catalyzed by the enzyme phenylalanine monooxygenase 

(Figure 3) 

 

NH3

O

O

NH3

O

O

HO

Phenylylanine
monooxygenase

Phenylalanine Tyrosine  
 

Figure 3: Biosynthesis of the non-essential amino acid tyrosine. PKU patients have a deficiency 
in the enzyme phenylalanine hydroxylase (PAH), also named Phenylalanine monooxygenase. 

 

If the enzyme or its cofactors are defect, phenylylalanine is accumulating.9 

Phenylalanine accumulates and is converted into phenylketones, which can be 

detected in the urine and cause problems with brain development, leading to 

progressive mental retardation and seizures. This disease is called 

Phenylketonuria (PKU).2, 9 Aminotransferase enzymes can catalyze the reaction 
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from α-keto acids to the corresponding amino acid. Transamination of pyruvate, 

oxaloacetate, and α-ketoglutarate, yields alanine, aspartic acid, and glutamic 

acid, respectively. From glutamic acid the amino acids glutamine, proline and 

arginine can be formed and asparagine can be synthesized out of aspartic acid. 

Serine, glycine and cysteine are made from the intermediate 3-phosphoglyceric 

acid, formed by glycosis.10 The other nine amino acids-phenylalanine, threonine, 

methionine, lysine, tryptophan, leucine, isoleucine, valine and histidine cannot be 

synthesized in mammals and must be provided in the diet.  They are called 

essential amino acids. 

4.3 Gas chromatography (GC)  

4.3.1 Principles of GC 

Gas chromatography is a separation technique that employs a gas as mobile 

phase and either a solid (gas solid chromatography) or a liquid (gas liquid 

chromatography) as stationary phase. Nowadays, most GC applications use 

capillary columns, with the stationary phase coated on the inner wall of the 

capillary. In case of a solid stationary phase these are called PLOT (porous layer 

open tubular) columns and if a liquid stationary phase is used they are called 

WCOT (wall coated open tubular) columns. This type of separation is suited for 

compounds, which can be vaporized wihout decomposition. The retention time of 

the analytes depends on the type of analyte and the interaction with the 

stationary phase. This is expressed by the partioning coefficient K, which is 

temperature dependend (lnK~1/T) and, therefore, the retention time can be 

controlled by column temperature. The temperature is either kept constant 

(isothermal) for analytes in a narrow boiling point range or is ramped for analytes 

in a wide boiling point range. The carrier gas that transports the sample through 

the column. Typical carrier gases are helium, argon, nitrogen or hydrogen.  

For the quantitative analysis it is very important to have baseline resolved peaks. 

Chromatographic resolution is calculated as follows: 
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Where RS is the resolution, tR1 and tR2 are the respective retention times of peak 

1 and 2, and wb1 and wb2 are the respective base peak witdths of peak 1 and 2. 

For quantitative analysis the value for RS should be higher then 1.5.11 

4.3.2 Injector types 

The sample is transfered onto the column by means of the injector. Commonly 

employed injectors are hot split/splitless and programmed-temperature 

vaporization (PTV) injection. Split and splitless injection are both performed using 

the same inlet, which is often termed a split/splitless inlet. For both applications 

the sample is introduced into a heated small chamber via a syringe through a 

septum. Split injection is used for concentrated samples, where only a small 

portion of the sample is transfered on the column and the major part is emerged 

through the split outlet. The amount of sample is controlled by the splt ratio. The 

whole sample amount is introduced onto the column using splitless injection. A 

programmed-temperature vaporization (PTV) inlet is a hybrid of the techniques 

described above. It is a split/splitless inlet that has been modified to allow cold 

injection and rapid temperature programming. This is a rather gentle injection 

technique, which is favorable for thermally labile compounds. A critical 

component of the injector is the liner. It is the chamber into which the sample is 

injected. The sample is vaporized and throughly mixed with the carrier gas. The 

liner shape must ensure complete sample vaporization, provide sufficient volume 

to accommodate the resulting vapor and must be inert to avoid analyte 

adsorption. Glass liners are used commonly and exist in wide range, differing in 

volume, special form or design, fillings (e.g. quarz or glas wool packed) or 

treatment for deactivation of the surface.  
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4.3.3 Gas chromatographic columns and stationary phases 

There are two main groups of columns, namely packed columns and capillary 

open tubular columns. For most applications capillary columns are used. 

Capillary columns are made of fused-silica with a polyimide outer coating and the 

stationary phase coated onto the inner surface. Presently, fused-silica capillary 

columns having a length of 10–100 m and an inner diameter of 0.10–0.53 mm 

are in widespread use. The most common stationary phases in gas-

chromatography columns are polysiloxanes, which contain various substituent 

groups to change the polarity of the phase. The commercial nonpolar end of the 

spectrum is polydimethyl siloxane, which can be made more polar by increasing 

the percentage of phenyl- and/or cyanopropyl groups on the polymer. Wide 

spread stationary phases in metabolomics are 100% polydimethyl siloxane, 5% 

polydiphenyl- 95%- polydimethyl siloxane or with 14% polycyanopropylphenyl- 

86%- polydimethyl siloxane. For very polar analytes, polyethylene glycol 

(carbowax) is commonly used as stationary phase. The chemical structures of 

the four mentioned stationary phases are shown in Figure 4. 
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Figure 4: Chemical structur of popular stationary phases in GC. 

 

The stationary phase can varry in the film thickness from 0.1 to 5 µm. The 

thickness of the film has an effect on the retentive character of the column. Thick 

films are used for the analysis of highly volatile analytes and thin films are used 

for the analysis of less volatile compounds.11 

4.3.4 Detectors 

A large number of GC detectors are available. The most popular detector is the 

flame ionizations detector (FID). A hydrogen/air flame is used to decompose the 

carbon containing analytes from the GC into ions by burning them and the 

changes in the current are measured afterwards. The FID detects most organic 

compounds when they are ionized and cause a voltage drop across the collector 

electrodes. The measured change is proportional to mass, and therefore number 

of carbon atoms, of the organic compound. One important benefit of a FID is that 

it is insensitive to H2O, CO2, CS2, SO2, CO, NOx, and noble gases because they 
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are not able to be oxidized/ionized by the flame. There are still a lot of 

applications using flame ionization detector (FID) as detector. However it is a 

non-specific detector and coeluting compounds cannot be separated.  

Some gas chromatographs are connected to a mass spectrometer (MS) which 

acts as the detector. Suitable mass analyzers for GC are quadrupole/triple 

quadrupole, ion trap (IT), time of flight (TOF). The most common type of MS 

coupled to a GC is the quadrupole mass spectrometer. A quadrupole ion filter 

consists in four parallel rods. The rods have fixed DC (direct current) and 

alternating RF (radio-frequency) voltages applied to them. Depending on the 

electric field, only ions of a particular m/z will be allowed to pass, all the other 

ions will be deflected into the rods. Quadrupole ion filters are used in routine 

analysis due to their good reproducibility and excellent stability. 

In conventional GC-MS electron impact (EI) ionization technique is employed. EI 

is an ionization method whereby energetic electrons interact with gas phase 

atoms or molecules to produce ions. This is a hard ionization technique and 

therefore the molecular ions break up into smaller fragments. The resulting mass 

spectrum is complex and provides important information about the structure of 

the molecule. Another possibilty to ionize compounds is the chemical ionization 

that begins with the ionization of methane, creating radicals which in turn impact 

the samples molecules rendering them postively charged as [MH]+ molecular 

ions.  

Other detectors for GC include nitrogen phosphorus detector (NPD), electron 

capture detector (ECD), photoionisation detector (PID), flame photometric 

detector (FPD), thermal conductivity detector (TCD), and atomic emission 

detector (AED). 

4.3.5 Sample preparation 

Sample preparation in biomedical analysis is mainly performed by liquid-liquid 

extraction and solid-phase extraction (SPE). In liquid-liquid extraction, dissolved 

components are transferred form one liquid phase to another. The most common 
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application is the transfer of analytes from aqueous solution to an organic solvent 

that is more suitable for GC. 11 With the SPE technique the analytes are trapped 

on solid sorbent for concentration or cleanup. Another technique is the 

headspace technique used for the determination of cancerogen or toxic 

substances in urine or blood.12, 13 It is most suited for the analysis of the highly 

volatile analytes in samples that can be efficiently partitioned into the headspace 

gas volume from the liquid or solid matrix sample. Higher boiling compounds and 

semi-volatiles are not detectable with this technique due to their low partition in 

the gas headspace volume. However, many biological analytes including amino 

acids have to be derivatized prior to GC to render them volatile. Several 

derivatization methods are available to obtain volatile derivatives suitable for GC. 

Derivatisations for GC analysis will be discussed in chapter 4.4.6.  

4.4 Amino acid analysis for metabolomics 

Amino acids are important targets for metabolic profiling. Besides being the basic 

structural units of proteins, amino acids have several non-protein functions. They 

are a source of energy either through formation of keto acids from the ketogenic 

amino acids or through gluconeogenesis from glucogenic amino acids. Glutamic 

acid and γ-aminobutyric acid are neurotransmitters,14 while tryptophan and 

tyrosine are precursors of serotonin and catecholamines, respectively.15 Glycine 

is a precursor of porphyrins, whereas ornithine is a precursor of polyamines16 

and arginine can be metabolized to form nitric oxide.17 Elevated amino acid 

levels in blood plasma and urine are well-known markers for inborn errors of 

metabolism, such as phenylalanine in phenylketonuria or maple syrup urine 

disease.1, 2 Amino acids also serve as markers for nutritional influences, e.g., 

urinary taurine levels serve as an indicator for fish intake,18 while the 1-

methylhistidine level in urine correlates with meat protein intake.19 

Due to the important biological functions of amino acids, their quantitative 

analysis is required in several fields, including clinical diagnostics of inborn errors 

of metabolism, biomedical research, bio-engineering and food sciences. 

Consequently, different analytical methods have been developed and 
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commercialized over the past few decades for amino acid analysis. Nevertheless, 

efforts to improve existing methodology with regards to speed of analysis, 

robustness, reproducibility and sensitivity are ongoing and have been driven by a 

shift in application away from the analysis of protein hydrolysates to the analysis 

of free amino acids in various biological matrices. To that end, mass 

spectrometry coupled to chromatography has become a major means of amino 

acid analysis because of its selectivity and sensitivity. 

4.4.1 Sample preparation 

Analysis of free amino acids in biological samples often requires protein 

precipitation prior to analysis. Methods described for deproteinization include 

precipitation with acid or organic solvent, and ultrafiltration. The most common 

method to remove proteins is precipitation with sulphosalicylic acid.20 Amino 

acids are highly polar analytes and, therefore, not suitable for conventional 

reversed-phase high-performance liquid chromatographic (RP-HPLC)21 or gas 

chromatographic (GC) analysis. Capillary electrophoresis (CE) does not require 

derivatization, but sensitivity for CE-UV analysis can be increased by introduction 

of a UV active label. Therefore, a derivatization step is often employed. Most 

reagents used react with the amino group. Some derivatizing reagents react only 

with primary amines, but ideally secondary amines, such as proline and 

hydroxyproline, are also covered. Another option is to derivatize the carboxy 

function of the amino acids. The most common derivatization reagents are listed 

in Table 1 and their use will be discussed in the following chapters. 
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4.4.2 Liquid chromatographic methods coupled with optical 
detection 

There are several LC methods coupled with UV absorbance detection available 

for the quantification of amino acids. The two general approaches are either ion-

exchange chromatography followed by post-column derivatization or pre-column 

derivatization preceding Reversed-phase (RP) HPLC. The gold standard method 

is cation-exchange chromatography using a lithium buffer system followed by 

post-column derivatization with ninhydrin and UV detection. The separation of the 

amino acids is achieved through changes in the pH and cationic strength of the 

mobile phase. Through the reaction of ninhydrin with amino acids containing a 

primary amine Ruhemann’s purple (Figure 5) is generated, which is UV active 

(λmax 570 nm). Secondary amines, such as proline, produce a yellow product 

(λmax 440 nm).  
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Figure 5: Reaction of amino acids with ninhydrin to Ruhemann`s Purple. 

 

The eluate is monitored at 440 and 570 nm, respectively. Linearity ranges 

typically from 5 - 2500 µmol/L. Routinely, 38 amino acids are separated with a 

conventional amino acid analyzer in 115 min, but the method can be expanded to 

more than 140 min to resolve more analytes. A typical elution profile of urinary 

amino acids monitored at both 440 nm and 570 nm is shown in Figure 6.  
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Figure 6: Typical elution profiles of urinary amino acids obtained on a Biochrom 30 amino acid 
analyzer with continuous UV absorbance monitoring at 440 and 570 nm, respectively. 

 

Shortcomings of the method are the long runtime, the instability of ninhydrin, the 

necessity of protein precipitation, which impedes complete automation, and 

crosstalk by analytes other than amino acids and related compounds that may 

react with ninhydrin in complex biological samples and prevent accurate 
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quantitation.22 For example, methionine (Met) and homocitrulline (Hcit), 

phenylalanine (Phe) and aminoglycoside antibiotics, as well as histidine (His) and 

the anticonvulsant gabapentin, commonly have overlapping retention times. 

Derivatization with o-phthalaldehyde23 (OPA) has been used both post-column 

after cation-exchange chromatography and pre-column coupled with RP-HPLC. 

OPA reacts with amino compounds in the presence of a thiol such as 

mercaptoethanol to form a fluorescent derivative. RP-HPLC provides good 

selectivity for separating the OPA derivatives. The OPA derivatives of amino 

acids can be detected by UV absorbance at 340 nm, fluorimetry at excitation and 

emission wavelengths of 340 nm and 450 nm, respectively, amperometry for 

those OPA-derivatives that show little or no fluorescent activity, or a combination 

of the aforementioned detection methods. Alternative reagents for precolumn 

derivatization of free amino groups are phenylisothiocyanate (PITC), 

dimethylamino-azobenzenesulfonyl chloride (DABS-Cl), 9-fluorenylmethylchloro-

formate (FMOC-Cl) and 7-fluoro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-F).24 The 

derivatization time can vary between 1 min for OPA and 20 min for PITC. 

Depending on the number of the analytes, chromatographic run time varies 

between 13 min for 23 compounds and 95 min for 38 compounds.24 

Based on the coupling reaction of the well-known Edman degradation, the 

reaction of phenylisothiocyanate (PITC) with both primary and secondary amino 

acids produces phenylthiocarbamyl derivatives, which are also separated by RP-

HPLC and detected at 254 nm. This reaction served as the basis for the 

PICO•Tag method commercialized by Waters Inc. (Milford, MA, USA). More 

recently, Waters Inc. introduced a new kit (AccQ•Tag) based on the precolumn 

derivation of amino acids with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate 

(AQC). AQC converts both primary and secondary amino acids into exceptionally 

stable, fluorescent derivatives that are amenable to UV-absorbance, 

fluorescence, electrochemical, and MS detection.25 

To achieve faster analysis and improved resolution, the AccQ•Tag Ultra UPLC 

method has been introduced that employs columns packed with uniform 1.7-µm 
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particles. The UPLC method is 3-5 times faster than conventional HPLC analysis, 

and baseline separation of all proteinogenic amino acids is achieved in less than 

10 min. Boogers et al.26 published a comparison between Pico•Tag HPLC and 

AccQ•Tag ultra UPLC analysis. They separated 16 amino acids in 23 min and 8 

min, respectively, using the Pico•Tag HPLC and the AccQ•Tagultra UPLC 

method. For the Pico•Tag HPLC method lower limits of quantification (LLOQ) 

were in the range of 4.3-8.4 µM and for the AccQ•Tag ultra UPLC method in the 

range of 1.3-5.3 µM. 

A drawback of the aforementioned methods is the lack of analyte specificity of 

optical detection. Therefore, uncertainties arise in the analysis of complex 

biological samples that may contain other non-protein amino acids or compounds 

with an amino function that display similar or identical retention behavior. This 

may be avoided by the use of mass spectrometry that allows the identification of 

co-eluting compounds unless they are isobaric and/or display identical 

fragmentation patterns. Optical detection systems are also not suited to 

distinguish between isotopes and, therefore, cannot be used for flux analysis in 

organisms fed with stable isotope labeled substrates. The major advantages of 

LC coupled to optical detection are good reproducibility, the comparatively 

inexpensive equipment and the high sensitivity in the low pmol range.  

4.4.3 Ion pair reversed-phase liquid chromatography – tandem 
mass spectrometry (IP-LC-MS/MS) 

It is feasible to analyze underivatized amino acids by ion pair IP-LC-MS/MS. 

Elimination of derivatization reduces sample preparation and minimizes the 

errors introduced by reagent and derivative instability, side reactions, and 

reagent interferences. Usually, charged hydrophobic species are used as IP 

reagents in combination with RP-C18-HPLC columns. There are two 

mechanisms discussed as basis for IP separation. The IP-reagent can be 

adsorbed at the interface between the stationary and mobile phase, creating a 

charged surface with the inorganic counterions forming a corresponding diffuse 

layer. Hence, the IP-reagent creates an electrostatic surface potential, and the 

 20



magnitude of this potential is primarily determined by the surface concentration of 

the IP-reagent. Another hypothesis is the generation of uncharged complexes 

between the IP-reagent and the analyte that are less polar and will thus be 

retained on a C18 column.27 The use of volatile IP reagents, such as 

perfluorocarboxylic acids, allows the hyphenation of LC to electrospray ionization 

mass spectrometry (ESI-MS). Piraud et al.28 utilized HPLC separation on a C18 

column with tridecafluoroheptanoic acid (TDFHA) as IP reagent coupled to 

tandem mass spectrometry for amino acid analysis. To quantify the amino acids, 

multiple reaction monitoring (MRM) was used. A total of 76 amino acids were 

quantified in less than 20 min and the quantification of 16 amino acids was 

validated using their stable isotope-labeled analogs as internal standards. 

De Person et al.29 studied the effect of five perfluorinated carboxylic acids (C3-

TFA, C4-HFBA, C5-NFPA, C7-TDFHA and C8-PDFOA) on MS response. Signal 

intensity depended on type and concentration of IP reagent, as well as MS 

interface geometry. Limits of detection ranged 0.0003 – 9 µM depending on 

amino acid, type of mass spectrometer and IP reagent. Armstrong et al. 21 

coupled IP-RP-HPLC using TDFHA as IP reagent to time-of-flight mass 

spectrometry. Twenty-five amino acids were quantified in human plasma and the 

calibration curves were linear over a range of 1.56 to 400 µM. 

4.4.4 HILIC (Hydrophilic Interaction LIquid Chromatography) 

Another approach to separate polar compounds is hydrophilic interaction liquid 

chromatography. Separation is achieved using a polar stationary phase, such as 

bare silica, amide-, hydroxyl-, cyano-, amino-, and ion-exchange columns, in 

combination with RP-type solvent systems. Gradient elution is started with a high 

percentage of organic solvent, typically acetonitrile, and the retained compounds 

are eluted by increasing the water-content in the mobile phase. Langrock et al.30 

demonstrated the separation of 16 proteinogenic amino acids in 25 min using an 

amide-column coupled to ESI-MS/MS. Detection was carried out using a neutral 

loss scan of formic acid. In a neutral-loss scan, all precursors that undergo loss 

of a specified common neutral, formic acd in this case, are monitored. Further, 
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separation of all hydroxyproline isomers (trans-4-Hyp, trans-3-Hyp, and cis-4-

Hyp) present in collagen hydrolysates was achieved. Detection limits were below 

50 pmol for the Hyp-isomers 

4.4.5 Capillary electrophoresis mass spectrometry (CE-MS) 

Amino acids are chargeable analytes and, therefore, amenable to capillary 

electrophoresis (CE) separation without prior derivatization. However, if optical 

detection is employed, derivatization is needed to improve sensitivity. Labeling 

can be carried out with FMOC, NDA, OPA, or FITC.31 Capillary electrophoresis 

with laser-induced fluorescence detection (CE-LIF) was used to analyze free 

amino acids in cerebrospinal fluid.32 The amino acids were derivatized with FITC 

prior to analysis and the separation was completed within 22 min. Detection limits 

were in the low nanomolar range. Light-emitting diodes (LED) are replacing 

conventional gas lasers for CE-LIF. LEDs are very stable and provide high 

intensity at low cost. 33 Soga et al.34 analyzed urinary amino acids without 

derivatization by bare fused-silica capillary electrophoresis-electrospray 

ionization-triple-quadrupole mass spectrometry. The method was validated for 32 

amino acids with LODs between 0.1 and 14 µM and a linear dynamic range of 

approximately 10 – 200 μM. The relatively high LODs are due to the low injection 

volumes applied in CE.  

4.4.6 Gas chromatography for amino acid analysis 

The derivatization procedure most commonly employed in GC-MS is silylation, 

which replaces acetic hydrogen in functional groups by an alkylsilyl group, 

primarily trimethylsilyl, using reagents such as N,O-bis-(trimethylsilyl)-

trifluoroacetamide (BSTFA) or N-methyl-trimethylsilyltrifluoroacetamide (MSTFA). 

A reaction scheme for the derivatization with MSTFA is shown in Figure 7. GC 

analysis of silylated amino acids is feasible, but not all derivatives are stable; for 

example, arginine decomposes to ornithine, and glutamic acid rearranges to form 

pyro-glutamic acid. Another drawback is the sensitivity of the reagents and 

derivatives to moisture.35 
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Figure 7: Silylation of functional groups with MSTFA. 

 

Other derivatization procedures for GC analysis include acylation/esterification 

using various anhydride/alcohol combinations, such as pentafluorpropyl 

anhydride / isopropanol or trifluoroacetic anhydride / isopropanol.36 An alternative 

is the derivatization of amino acids with alkyl chloroformates and alcohol. 

Carboxylic groups are converted directly to esters and amino groups to 

carbamates. This reaction can be catalyzed by pyridine or picoline. Using the 

alkyl chloroformate reaction, amino acids can be derivatized directly in aqueous 

solution without prior removal of proteins. The amino acids react very quickly, for 

instance, with propyl chloroformate and the derivates can be extracted with an 

organic solvent. From the organic phase an aliquot can be injected directly into 

the GC-MS.37, 38 Fluorinated alcohols yield even more volatile compounds and 

have been applied to the separation of amino acid enantiomers.39 Recently, 

fluoroalkyl chloroformates were used for the analysis of amino acids on 5% 

phenylmethylsilicone phase by GC with MS or FID.40 Linearity was observed in 

the range of 0.1 - 100 nmol and LODs, defined as amount on column, ranged 

from 0.03 pmol for proline to 19.38 pmol for glutamic acid. More than 30 amino 

acids were separated in less than 10 min, including 1- and 3-methylhistidines, 
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which were previously not described as amendable to GC analysis using alkyl 

chloroformate derivatization. 

4.4.7 iTRAQ®-LC-MS/MS 

In 2007, Applied Biosystems (Foster City, CA, USA) introduced a kit for the 

quantification of 42 physiological amino acids and related compounds based on 

the iTRAQ® chemistry originally developed for the quantification of peptides41 by 

LC-MS/MS. Each reagent consists of a reporter group (with the masses m/z 114, 

115, 116 and 117), a neutral balance linker (masses 24-32) and an amino 

reactive group (N-hydroxy-succinimide) (Figure 8).  
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Figure 8: Structure and isotope patterns of iTRAQ® reagents. 
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The amino acids are derivatized with a reactive ester to introduce an isobaric tag. 

The N-hydroxy succinimide ester reacts with the amino group to give an amide 

(Figure 9) 
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Figure 9: Reaction of iTRAQ® labeling reagent with amino acids. 

 

All derivates of one amino acid are isobaric and cannot be separated by RP-

HPLC. The tag contains a cleavable reporter ion, which can be detected upon 

collision-induced dissociation in MS/MS mode (Figure 10). These reporter ions 

differ by one mass unit and can be used to quantify multiplexed biological 

samples. For the analysis of free amino acids, the biological sample is labeled 

with the tag containing the reporter ion m/z 115. Before analysis, the sample is 

mixed with an amino acid standard solution labeled with the reagent containing 

the reporter ion m/z 114. Because the two derivatives of one amino acid have the 

same mass, they elute at the same retention time and experience the same 

matrix effects during ESI. Consequently, each amino acid is quantified based on 

the ratio of the m/z 115-ion over the m/z 114-reporter ion. The main advantage of 

iTRAQ®-LC-MS/MS is the availability of 42 internal standards for all physiological 

amino acids and related compounds, such as taurine, ethanolamine or 

phosphoethanolamine. Disadvantages are the insufficient recovery of amino 

acids with sulfur containing groups, such methionine and cysteine, and the 

somewhat imprecise quantification due to the large number of transitions and the 

resultant insufficient acquisition of data points per peak in a single LC-MS/MS 
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run. The latter may be alleviated by the use of time scheduled multiple reaction 

monitoring (sMRM). 
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Figure 10: Amino acid analysis by iTRAQ®-LC-MS/MS: Separation of derivatives by HPLC and 
detection by MS/MS in multiple reaction monitoring (MRM), Each amino acid has its own internal 
standard correcting for matrix effects. 

 

4.4.8 Direct infusion tandem mass spectrometry 

Analysis of blood and urinary amino acids are used routinely in newborn screens 

for inherited metabolic disorders, such as phenylketonuria and maple syrup urine 

disease. Blood and urine samples are typically collected on filter paper, from 

which disks of defined size are punched out. Amino acids are then extracted with 

methanol containing stable isotope labeled amino acids. Extracted amino acids 

are converted into the corresponding butyl esters using hydrochloric acid in n-
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butanol.2 The screening for inborn errors of metabolism is performed using direct 

infusion MS/MS, which allows the very fast analysis of large number of samples. 

Additionally fatty acid and organic acid disorders can be detected in one brief 

analysis. However, isobaric amino acids, such as leucine, isoleucine and allo-

isoleucine or alanine and sarcosine cannot be distinguished. For direct infusion, 

mass analyzers that provide high mass resolution, such as electrospray 

ionization time-of-flight mass spectrometry (ESI-TOF-MS) and fourier transform 

ion cyclotron resonance mass spectrometry (FTICR-MS) are employed. This 

allows the identification of metabolites using accurate mass measurement. Dunn 

et al. showed the identification of amino acids and other metabolites in fruit 

extracts matching experimental accurate masses to the theoretical masses, for 

example glutamine and lysine are isobaric but can be distinguished by their 

accurate mass.42 

4.4.9 Nuclear magnetic resonance (NMR) 

The main advantage of NMR is its ability to detect all proton-containing 

metabolites in a sample simultaneously. Its sensitivity does not depend on 

chemical properties of the analytes such as pKa or hydrophobicity. Physiological 

fluids such as urine can be directly analyzed with only limited preparation. NMR 

is a very reproducible method and signals scale linearly with metabolite 

concentrations, which allows for reliable quantification. The main drawback of the 

method is its limited sensitivity compared to mass spectrometry. However, with 

the use of the newly developed cryo-probes limits of detection in the low µM 

range are obtained. Due to the high number of metabolites typically present in 

biological samples, however, significant overlap of amino acid signals with other 

signals is commonly observed in 1D 1H NMR spectra as seen in Figure 11A. A 

mathematical solution to this problem is to fit overlapped signals with modelled 

peaks.43 Alternatively, multidimensional NMR such as 2D 1H-13C heteronuclear 

single-quantum correlation (HSQC) spectra may be used to separate the 

overlapping metabolite signals in a second heteronuclear dimension.44 A typical 

example obtained for human urine can be seen in Figure 11B 
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Figure 11: A) 1D 1H spectrum of human urine measured at 600 MHz on a Bruker Avance III 
spectrometer equipped with a cryo-probe. B) The corresponding 1H-13C HSQC spectrum 
measured at natural abundance. As an example for amino acid metabolites in both spectra the 
signals corresponding to the alanine methyl groups are marked. 

 

The availability of the newly developed cryo-probes allows partial compensation 

for the low natural abundance (≈1.1%) and low gyromagnetic ratio of the 13C 

nuclei. In many instances it is advantageous to combine the results obtained by 
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different methods such as NMR and mass spectrometry. As mentioned above 

some intensity loss is observed by going from 1D 1H spectra to 2D 1H-13C HSQC 

spectra. One way of regaining this intensity loss due to the low natural 

abundance of 13C is to chemically N-acetylate the amino-acid metabolites with 
13C-labeled acetic anhydride.45 Using this approach, it is possible to obtain, on 

the one hand, highly sensitive 1H-13C HSQC spectra for amino acids and, on the 

other hand, background related to metabolites not modified by the derivatization 

procedure is drastically reduced, thus enabling lower limits of detection in the 

upper nanomolar range. 

4.4.10 Comparison of methods for amino acid analysis 

A comparison of the methods available for the analysis of amino acids is given in 

Table 2. The major advantage of NMR is that physiological fluids may be 

analyzed directly, albeit at the expense of sensitivity. Gains in sensitivity are 

feasible, but require N-acetylation of the amino acids with 13C-labeled acetic 

anhydride. Another disadvantage is the large sample volume required, albeit due 

to the non-destructive nature of NMR, samples may be retrieved and subjected to 

further testing. The need for the acquisition of 2D-spectra limits throughput, but 

this is balanced by the ability of NMR to detect proton and carbon containing 

metabolites other than amino acids. Protein precipitation is required for all LC 

and CE methods independent of the detection method used, which renders 

complete automation difficult. Liquid chromatographic methods coupled with 

optical detection are well established and highly reproducible. However, classical 

pre- and post-column derivatization protocols employing OPA or ninhydrin suffer 

from long chromatographic runtimes, which render them poorly suited for large 

clinical and epidemiological studies. Another drawback shared by all methods 

based on optical detection is their lack of analyte specificity compared to mass 

spectrometry. The latter, however, is subjected to matrix and ion suppression 

effects that impair quantitative accuracy and necessitate the use of stable-isotope 

labeled internal standards. Nevertheless, MS based methods will prevail in the 

future. HILIC-MS and CE-MS allow the direct analysis of amino acids without 
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prior derivatization, but they suffer from low throughput and comparatively poor 

reliability. Ion-pair LC-MS has been applied to the analysis of both native and 

iTRAQ®-labeled amino acids. The most important benefit of iTRAQ®-LC-MS/MS 

compared to other MS-based methods is the availability of internal standards not 

only for the 20 proteinogenic amino acids, but also for non-protein amino acids. 

But iTRAQ®-LC-MS/MS has a number of disadvantages including somewhat 

poor reproducibility due to the large number of transitions that have to be 

acquired, which may be alleviated in the future by scheduled multiple reaction 

monitoring (sMRM), the inability to accurately measure sulfur-containing amino 

acids, the difficulty of automating sample preparation, and the higher reagent 

costs.  

GC-MS is a very robust method with excellent reproducibility of retention times. 

Especially with alkyl chloroformate derivatization excellent reproducibility of 

quantitative data has been observed and the method can be automated easily, 

thus, allowing high sample throughput. However, thermo-labile derivatives cannot 

be measured.  

Finally, direct flow injection analysis with ESI-MS/MS offers high throughput and 

is now widely used in newborn screening for inborn errors of metabolism. The 

one major limitation is the inability to resolve isobaric amino acids. To date 

various methods exist for the quantification of amino acids in protein hydrolysates 

and physiological fluids. The great importance of amino acid analysis is reflected 

in a number of commercialized solutions ranging from kits to dedicated 

instruments. The development of new methods or the improvement of existing 

methods is still ongoing. Expansion of the analyte spectrum covered, reduction of 

sample preparation and analysis time, improved sensitivity, good robustness and 

reproducibility are the focus of research. An important aspect is method 

automation and high sample throughput, which is essential in studies with large 

sample numbers. There is room for new or improved methodology for amino acid 

analysis, including expansion of the analyte spectrum covered, reduction of 

sample preparation and analysis time, improved sensitivity, good robustness and 

reproducibility. Due to high selectivity and sensitivity, MS is expected to play a 
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key role provided that stable isotope labelled standards, which are a prerequisite 

for robust quantification, become readily and cheaply available. Reduced sample 

pre-treatment is another important aspect for facilitating automation and 

improving robustness and sample throughput, which are essential in 

epidemiological studies with large sample numbers. 
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Table 2: Comparison of selected approaches for the metabolic analysis of amino acids 

Method Advantages Disadvantages LOD Ref. 

LC-methods coupled 
with optical detection 

• Highly reproducible 
• Inexpensive equipment  
• Good linearity over a broad range 

• Protein precipitation and derivatization 
necessary 

• Lack of analyte specificity 
• Co-eluting substances cannot be 

distinguished 
• Not applicable to flux analysis 

 

UV: 5 µM 
(LOQ) 

22-25 

UPLC-MS • Fast separation 
• Good resolution 

 

• Protein precipitation necessary 
• High pressure requires special 

equipment  
• Limited number of amino acids covered 
• Ion suppression 

 

1.3 - 5.3 µM 
(LOQ) 

26 

IP-LC-MS/MS • Derivatization not necessary 
• High number of analytes covered 
• Good resolution for polar amino acids 

• Protein precipitation  necessary 
• Ion suppression 
• Contamination of analytical system with 

IP reagent 
 

0.0003 - 9 µM 

(LOD) 

21, 28, 29 

HILIC • Derivatization not necessary 
• Compatible with MS 
• Well-suited for polar compounds 

• Protein precipitation necessary 
• Poor reproducibility 
• Ion suppression in case of MS detection 

 

5 µM (LOD)  

10 µM (LOQ) 

30 

CE-MS • Derivatization not  necessary 
• Low sample consumption 

• Protein precipitation necessary 
• Only low injection volume possible 

 

0.1 - 14 µM 
(LOD) 

34 

GC-MS • Robust method 
• Highly reproducible 
• Good resolution 
• Fast separation 

• Derivatization necessary  
• Not suited for thermolabile amino acid 

derivatives 

0.03 - 19.98 
pmol on 
column (LOD) 

 

40 

iTRAQ® 
• Fast separation 
• Availability of internal standards for each 

analyte 

• Protein precipitation necessary 
• Insufficient recovery of sulfur containing 

amino acids 

2-10 µM (LOQ) Unpub-lished 
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• Difficult to automate own data 

Direct infusion MS/MS, 
TOF 

• No separation needed 
• High throughput 

• Extraction and derivatization required 
• Isobaric amino acids cannot be 

resolved 
 

  

NMR • No separation and derivatization needed 
• Robust quantification 
• Minimal sample preparation 

• Insufficient sensitivity, albeit LOD can 
be lowered by derivatization 

• Long analysis time  

 

2D: 20 – 312 
µM (LOD) 

46 



 

5 High-throughput analysis of free amino acids in 
biological fluids by GC-MS 

5.1 Introduction 

Our aim was to develop a robust, accurate, fast and precise method for urinary 

amino acid analysis. Amino acids can be derivatized directly in aqueous solution 

using alkyl chloroformate. The amino acids react very quickly, for instance, with 

propyl chloroformate and the derivates can be extracted with an organic solvent. 

From the organic phase an aliquot can be injected directly into the GC-MS.37, 38 

Applying this approach, a fast and fully automated quantitative method for the 

analysis of amino acids in physiological fluids by GC-MS was developed. The 

analysis was performed using a modified protocol based on the EZ: faast kit from 

Phenomenex (Phenomenex Inc, Torrence, CA, USA), whereby the cation-

exchange cleanup step was omitted and the amino acids were derivatized 

directly in the aqueous biological sample. This simplified protocol allowed for the 

full automation of the procedure with an MPS-2 sample robot from Gerstel 

(Gerstel, Muehlheim, Germany), with reliable quantification of amino acids in 

various biological matrices having been accomplished over a wide dynamic 

range using stable isotope labeled standards. A shortened version of this chapter 

was published in the Journal of Chromatography B. 47 

5.2 Materials and methods 

5.2.1 Chemicals 

A standard solution of 17 amino acids at 1mM each in 0.1 M HCl, phenol, 

isooctane, methyl chloroformate, n-propanol, hippuric acid and thiodiglycol were 

purchased from Sigma (Sigma-Aldrich, Taufkirchen, Germany). The certified 

amino acid solution was purchased from NIST (National Institute of Standards 
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and Technology, Gaithersburg, MD, USA). Methanol (LC-MS grade) and 

chloroform (HPLC grade) were from Fisher (Fisher Scientific GmbH, Ulm, 

Germany). The [U-13C, U-15N] cell free amino acid mix was from Euriso-top 

(Saint-Aubin Cedex, France) and α-aminoadipic acid [2, 5, 5-2H3] and [2,3,4,5,6-
2H5] hippuric acid were purchased from C/D/N Isotopes Inc. (Quebec, Canada). 

N-Methyl-N-trifluoroacetamide (MSTFA) was obtained from Macherey-Nagel 

(Dueren, Germany), and the Phenomenex EZ:faast GC kit (Phenomenex Inc. 

Torrence, CA, USA) was used for the derivatization of amino acids with propyl 

chloroformate. 

5.2.2 Biological samples 

Human urine was collected from healthy volunteers. Mice urine was obtained 

from collaborators at the University of Regensburg, while urine and serum 

samples from patients with inborn errors of amino acid metabolism were provided 

by the Zentrum für Stoffwechseldiagnostik Reutlingen GmbH. The lyophilized 

human plasma control was purchased from Recipe (Munich, Germany) and 

reconstituted in HPLC water. The cell culture medium was RPMI 1640 (PAA 

Laboratories GmbH, Cölbe, Germany) with phenol red, to 500 mL of which 

penicillin (30 mg/L) and streptomycin (10.4 g/L) (Invitrogen, Karlsruhe, Germany) 

had been added, as well as 25 mL of fetal calf serum (PAA Laboratories GmbH), 

153 mg glutamine and 115 mg sodium pyruvate (Sigma-Aldrich). To stabilize the 

amino acids in the biological sample, 20 µL of an aqueous solution containing 

10% n-propanol, 0.1% phenol and 2% thiodiglycol, were added to 20-50 µL 

biological sample. 

5.2.3 Instrumentation 

An Agilent model 6890 GC (Agilent, Palo Alto, USA) equipped with a MSD model 

5975 Inert XL, PTV injector) and a MPS-2 Prepstation sample robot was used 

(Gerstel, Muehlheim, Germany. The robot has two autosamplers equipped with 

one syringe each of different volume. A 10-µL syringe is used for addition of the 

internal standards and for sample injection, while a 250-µL syringe is used for 
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adding reagents. Between the adding steps, the syringes were washed at least 3 

times with chloroform and/or propanol. The syringes were washed with propanol 

after adding aqueous solutions and with chloroform and propanol after adding 

organic solutions. Biological samples were kept in a cooled tray (5°C). The MPS-

2 Prepstation is shown in Figure 12. 

 
Figure 12: GC-MS with MPS-2 Prepstation 

 

The GC-column was a ZB-AAA (Phenomenex Inc.), 15 m x 0.25 mm ID, 0.1 µm 

film thickness. In addition, a RTX-35 Amine column and a RXI-5 MS column from 

Restek (GmbH, Bad Homburg, Germany) were tested. The oven temperature 

was initially held at 70°C for 1 min, raised at 30°C/min to 300°C, and held here 

for 3 min. The column flow was 1.1 mL He/min. The injection volume was 2.5 µL 

and the split ratio was 1:15. The temperature of the PTV Injector was set at 50°C 

for 0.5 min and ramped at 12°C/sec to 320°C (5 min). 

The following liners from Gerstel were tested: Deactivated baffled glass liner, 

glass wool packed liner, quartz wool packed liner and the chemically inert 
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SILTEC liner. The transfer line to the mass spectrometer was kept at 310°C. The 

MS was operated in scan (50-420 m/z) and SIM (selected ion monitoring) mode. 

For SIM, appropriate ion sets were selected and two characteristic mass 

fragments of the derivatized amino acids were used for almost all amino acids, 

except for the labeled amino acids. The ion traces are listed in Table 3. 

 
Table 3: Ion traces selected for the SIM analysis of 33 physiological amino acids, dipeptides and 
norvaline. Amino acids printed in bold were quantified via stable isotope dilution using the internal 
standard quantification trace of the corresponding stable-isotope labeled amino acid. 

Amino acid Quantification 
trace 

Secondary Ion 
trace 

Internal standard 
quantification trace 

Alanine 130 88 133 

Sarcosine 130 217  

Glycine 102  105 

α-Aminobutyric acid 144 102  

Valine 158 116 163 

ß-Aminoisobutyric acid 116   

Norvaline 158 72  
Leucine 172 130 178 
allo-Isoleucine 172 130  

Isoleucine 172  178 

Threonine 101 203 104 

Serine 146 203 149 

Proline 156  161 

Asparagine 155 69 160 

Thiaproline 174 147  

Aspartic acid 216 130 220 

Methionine 203 277 206 

Hippuric acid 134 105 139 

Hydroxyproline 172 86  

Glutamic acid 230  235 

Phenylalanine 190 206 199 

α-Aminoadipic acid 244  247 

α -Aminopimelic acid 258 84  

Glutamine 84 187 89 

Ornithine 156 70  

Glycyl-Proline 70 156  
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Lysine 170 128 176 

Histidine 282 168 290 

Hydroxylysine 129 169  

Tyrosine 107 206 114 

Proline-Hydroxyproline 156   

Tryptophan 130  140 

Cystathionine 203 272  

Cystine 248 216  
 

5.2.4 Derivatization 

In contrast to the original Phenomenex protocol, the cation exchange clean-up 

step was omitted. Amino acids were directly derivatized in the aqueous biological 

sample, 20-50 µL of which were transferred manually together with 20 µL of the 

stabilization reagent, described in chapter 5.2.2, to a 2-mL autosampler vial 

(Gerstel). The vial was closed with a magnetic crimp cap to allow automated 

handling by the robot. The first step performed by the robot is the dilution of the 

sample with water up to 225 µL, followed by addition of 10 µL of a norvaline 

solution (200 µM) and 10 µL internal standard mix. A mixture of uniformly 13C, 
15N labeled alanine, glycine, valine, leucine, isoleucine, threonine, serine, proline, 

asparagine, aspartate, methionine, glutamate, phenylalanine, glutamine, lysine, 

histidine, tyrosine and tryptophan, as well as [2,5,5-2H3] α-aminoadipic acid and 

[2,3,4,5,6-2H5] hippuric acid were used as internal standards with a concentration 

range from 0.0438 to 1.4175 mM. To increase the pH of the solution, 120 µL of 

0.33 M sodium hydroxide solution were added, followed by 50 µL of picoline in 

propanol, which acts as a catalyst for the derivatization reaction (solution 

provided by Phenomenex). The vial was moved to an agitator and the solution 

was mixed at 750 rpm for 0.2 min at 35°C. 50 µL of propyl chloroformate in 

chloroform were added to the sample, the solution was mixed for 0.2 min (750 

rpm, 35°C), equilibrated for 1 min and again mixed again for 0.2 min. To extract 

the derivatives, 250 µL of isooctane were added and the vial was vortexed for 0.2 

min (750 rpm, 35°C). For analysis, an aliquot (2.5 µL) was taken from the upper 

organic phase and injected directly into the PTV. All steps were automated and 
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done by the MPS-2 Prepstation from Gerstel. The different features of the MPS-2 

Prepstation are shown in Figure 13. 

Two Autosamplers
10 µL Syringe 
Standard spike
Injection

250 µL Syringe 
Sample Preparation

Two Agitators
(left and right):
Vortex sample,
Incubate at given 
temperature

Cooled sample 
tray

Sample tray

Syringe wash 
stion

Syringe wash 
station

Reagent 
reservoirs

Two injection ports
Front: hot split/ 

splitless
Back: PTV 

Automated 
Liner 
Exchange 
(ALEX)

 

 
Figure 13: MPS Prepstation features. 

 

5.2.5 Quantification 

Absolute quantification of 33 compounds (alanine, sarcosine, glycine, α-

aminobutyric acid, valine, ß-aminoisobutyric acid, leucine, allo-isoleucine, 

isoleucine, threonine, serine, proline, asparagine, thiaproline, aspartic acid, 

methionine, hippuric acid, hydroxyproline, glutamic acid, phenylalanine, α-

aminoadipic acid, α-aminopimelic acid, glutamine, ornithine, glycyl-proline, lysine, 

histidine, hydroxylysine, tyrosine, proline-hydroxyproline, tryptophan, 

cystathionine and cystine) was performed by analyzing standard solutions 

containing equimolar amounts of all amino acids. The Phenomenex kit contains 3 

different standard amino acids mixtures at 200 µM each. The first mixture 

consists of 23 amino acids. The second mixture contains amino acids not stable 
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in acidic solution (asparagine, glutamine and tryptophan), while the third mixture 

includes complementary amino acids and dipeptides occurring in urine (α-

aminoadipic acid, cystathionine, glycyl-proline, hydroxylysine, proline-

hydroxyproline and thiaproline). For calibration, the three different mixtures were 

mixed in equal amounts and hippuric acid was added separately to yield a final 

concentration of 60 µM for each compound. The mix was further diluted to final 

concentrations of 6 µM and 0.6 µM, respectively. For calibration, increasing 

volumes of the diluted and non-diluted standards were pipetted automatically by 

the autosampler into empty vials and then derivatized as described above. A 1-

mM amino acid standard solution from Sigma was used to extend the calibration 

curve to higher concentrations. The amino acids were normalized by the area of 

the labeled amino acid for the generation of calibration curves in the range of 0.3-

2,000 µM or normalized by the area of the closest eluting internal standard 

compound. 

5.2.6 NMR 

For NMR structural analysis, the propylformate derivative of asparagine was 

dissolved in 99.99% CDCl3 that was also used as internal standard at 7.26 and 

77.00 ppm for 1H and 13C, respectively. 

NMR experiments were recorded at 300 K on a Bruker Avance III spectrometer 

equipped with two channels and a cryo-cooled pulse field gradient triple 

resonance probe with z-gradients. The conformation of the molecule was 

confirmed by 1D 1H, 2D 1H-13C HSQC and 2D 1H-13C HMBC experiments. 

NMR assignments: C2 155.6 ppm; C4 67.2 ppm; H4A/H4B 3.98 ppm; C5 22.0 

ppm; H5A/H5B 1.59 ppm; C6 10.0 ppm; H6A/H6B/H6C 0.89 ppm; C8 50.5 ppm; 

H8 4.47 ppm; C9 21.6 ppm; H9A 2.96 ppm; H9B 2.87 ppm; C10 115.8 ppm; C12 

168.5 ppm; C15 68.2 ppm; H15A/H15B 4.12 ppm; C16 21.6 ppm; H16A/H16B 

1.65 ppm; C17 10.0 ppm; H17A/H17B/H17C 0.89 ppm (numbering is shown in 

Figure 24, chapter  5.3.9). 
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5.3 Results and Discussion 

5.3.1 Derivatization and column selection 

Both the amino and the carboxyl group of amino acids react readily with alkyl 

chloroformates as shown in Figure 14 to yield volatile derivatives for GC-

analysis.37 

R
HH2N

OHO

Cl O

O

+

cat.
solvent:

OH

- 2 HCl
- CO2

H
N

R

H

OO

O

O  
Figure 14: Reaction scheme for the derivatization of amino acids with propyl chloroformate. 

  

Hydroxyl groups as found in serine and threonine have a very low reactivity and 

amide groups are not derivatized. Zampolli et al.39 showed that methyl 

chloroformate (MCF) and 2,2,3,3,4,4,4-heptafluorobutanol (HFB) produce mono- 

and bis-acylated derivatives for serine, while no acylation of the hydroxyl group in 

threonine was observed. For amino acids without any additional functional 

groups two equivalents of alkyl chloroformate are needed. The acid function is 

converted to the ester, under loss of CO2, and the amino group reacts to the 

corresponding amide. Using U-13C, U-15N labeled amino acids it was shown that 

the CO2 loss originated from the derivatization reagent (data not shown).  

For derivatization of the amino acids with propyl chloroformate prior to GC-MS 

analysis the Phenomenex EZ:faast GC kit was employed. To allow for complete 

automation of sample pretreatment and injection, we explored whether the 

cation-exchange solid-phase extraction step recommended by Phenomenex prior 

to derivatization could be omitted given the high selectivity of a quadrupole mass 

spectrometer operated in SIM mode. Indeed, no significant differences in 
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retention times and number of amino acids detected were observed between 

urine and plasma samples subjected to either solid-phase extraction or 

derivatized directly (data not shown). 

Initially, propyl chloroformate derivates were analyzed on a Phenomenex ZB-

AAA column, 10 m x 0.25 mm ID, which was provided with the Phenomenex 

EZ:faast GC kit. The separation of the analytes was completed in less then 7 

minutes (Figure 15). 
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Figure 15: Typical GC-MS chromatogram for the analysis of an amino acid standard on a 10 m x 
0.25 mm ID ZB-AAA column after derivatization with propyl chloroformate.  

 

However, for some amino acids either peak tailing (e.g., tryptophan and tyrosine) 

or non-linear calibration curves (e.g., glutamine and tryptophan) were observed.  

Further, not all amino acids, including the isobaric leucines, were baseline 
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separated. Therefore, other stationary phases were evaluated.  The first column 

tested was a RTX-35 Amine column (30 m x 0.25 mm ID, 0.5 µm film thickness), 

which is specifically designed for the separation of amines. (Figure 16a) 
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Figure 16: GC-MS chromatograms of an amino acid standard separated on a 30-m RTX-35 
column after derivatization with (a) propyl and (b) methyl chloroformate, respectively. 

 

Peak tailing was significantly reduced. However ornithine, histidine, glutamine, 

glycyl-proline, lysine, hydroxylysine, proline-hydrxyproline, cystathionine and 

cystine were not detected due to either the significant column bleeding occurring 

at high temperatures, which might mask late eluting analytes, or the fairly high 

film thickness (0.5 µm) of the RTX-35 Amine column, which might retain amino 

acid derivates indefinitely. The column is not commercially available with a 

thinner film. To obtain more volatile derivates the reaction with methyl 

chloroformate was tested.38 But even then, many amino acids, including 
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asparagine, serine, glutamine, glycyl-proline, lysine, histidine, hydroxylysine, 

tyrosine, proline-hydroxyproline, tryptophan, cystathionine and cystine, were not 

detected on the RTX-35 Amine column (Figure 16b). In addition to the polar 

column, a low bleeding non-polar RXI-5 MS column was tested (30 m x 0.25 mm 

ID, 0.25 µm film thickness). Using the propyl chloroformate reaction, five amino 

acids were not detected (threonine, serine, glutamine, cystathionine and cystine) 

(Figure 17a), while with the methyl chloroformate reaction aspargine, serine, 

threonine, ornithine, hydroxyproline, proline-hydroxyproline, cystathionine and 

cystine could not be detected (Figure 17b). 
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Figure 17: GC-MS chromatograms of an amino acid standard separated on a 30-m RXI-5MS 
column after derivatization with (a) propyl and (b) methyl chloroformate, respectively. 
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We also compared the separation of the propyl chloroformate derivatives on a 

15-m ZB-AAA column versus the original 10-m column. Employing the same 

temperature program, better resolution was obtained on the longer column for 

asparagine and methionine as well as glutamic acid and phenylalanine, which 

facilitates a more robust selection of SIM windows. For both amino acid pairs the 

resolution (defined in chapter 4.3.1) was 1.7 with the 10-m column and it 

improved to > 2.5 using the 15-m column. Figure 18 represents a typical 

chromatogram of the 34 compounds including norvaline, which is a non-

endogenous compound and used as an internal standard. Less than ten minutes 

were required to resolve all compounds. 



Figure 18: Typical GC-MS chromatogram for the analysis of an amino acid standard on a 15 m x 0.25 mm ID ZB-AAA column after derivatization 
with propyl chloroformate. Amino acids printed in red were quantified using the corresponding stable-isotope-labeled amino acid as internal 
standards for quantification. 
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5.3.2 Injection and liner selection 

Sample injection was done using programmed-temperature vaporization. The 

sample was introduced into the cold insert (50°C), which was then rapidly 

heated to vaporize and transfer the analytes into the GC column. This is a 

rather gentle injection technique, which is favorable for thermally labile 

compounds. Since the amino acid derivatives are still rather polar analytes, 

adsorption to the insert surface can occur, reducing the reproducibility of the 

analysis. Proper selection of the insert type is important. Therefore, different 

liners were tested with regard to the reproducibility of urine analysis: 

Deactivated baffled glass liner, glass wool packed liner, quartz wool packed 

liner and the chemically inert SILTEC liner (Figure 19.). Using the glass or 

quartz wool packed liner increases the liner surface to retain the liquid sample 

injected, which can then evaporate from the glass or quartz wool surface. 

However, there is the risk of increased analyte adsorption to the active sites on 

the surface.  

Carrier
gas inlet Septum purge

Split outlet

Septum

Column

Vaporization
chamber

LinerHeated metal 
block

Test of four different liners:
SilTEC deactivated
baffled liner

Deactivated
baffled liner

Glass wool
packed liner

Quartz wool
packed liner

 
Figure 19: Injector scheme and four different liners tested for reproducibility 
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A urine sample was analyzed five times using each liner and the relative 

standard deviation (RSD) was calculated (Figure 20).  
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Figure 20: Comparison of the relative standard deviation values obtained for the repeated 
analysis (n=5) of urinary amino acids using different injector inserts. 

 

The glass wool packed liner showed the worst reproducibility, in particular for 

amino acids with polar functional groups such as aspartic acid, glutamic acid 

and asparagine. Additionally, it was not possible to detect glutamine, 

cystathionine and cystine. Reproducibility was better for the quartz wool packed 

liner, but still inferior to the SILTEC liner. With the baffled liner, there were more 

amino acids with an RSD > 10%, and for thiaproline the RSD exceeded 20 %. 
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Only with the SILTEC liner, the RSDs were < 10%, except for sarcosine with 

10.6 %, and all amino acids were detected successfully. Therefore, the SILTEC 

liner was used for all further analyses following its prior conditioning by the 

consecutive injection of the silylation reagent MSTFA, a 1 mM amino acid 

standard solution, and blanks to deactivate any active sites on the glass 

surface. 

5.3.3 Internal standard selection 

For the generation of reliable quantitative data, internal standards are required 

to correct for chemical and analytical losses during derivatization and analysis. 

We observed that norvaline corrected quite well for such losses for amino acids 

similar structure and retention to norvaline, e.g. leucine and glycine. But for 

amino acids with a more complex structure and more functional groups, e.g. 

glutamine, histidine and tyrosine, the linearity was lost over a wider 

concentration range, as shown in Table 4. Additionally, the reproducibility 

decreased. This led to the conclusion that more internal standards structurally 

similar to as many analytes as possible were needed. This is best realized by 

stable-isotope labeled amino acids. It is important that the mass difference 

between analyte and internal standard is more than one unit to avoid the 

overlap with the content of the natural isotope 13C.  A standard mix of 18 

uniformly 13C and 15N labeled amino acids was chosen. The labeled amino 

acids are extracted from algae. Consequently, their individual concentrations, 

as analyzed by HPLC, differ and range from 0.043 - 1.417 mM. Additionally 

[2,5,5-2H3] α-aminoadipic acid and [2,3,4,5,6-2H5] hippuric acid were used as 

internal standard. To compare the difference with and without using the internal 

standard mixture, the R square-values of the calibrations of all amino acids are 

shown in Table 4. The R square-values are at least 0.99 using the labeled 

amino acids as internal standards except for hydroxyproline and glycyl-proline. 

In comparison, the R square-values of the calibration curves using norvaline as 

the only internal standard were mostly < 0.99. In summary, the R square-values 

improved for all amino acids except sarcosine, α-aminobutyric acid, α-
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aminopimelic acid and cystathionine, for which no stable-isotope labeled amino 

acids were available. 

 

Table 4: Comparison of the R-square values obtained for the calibration curves of selected 
amino acids using either norvaline (Nval) or stable-isotope labeled amino acids as internal 
standards. The RSD values represent the inter-day reproducibility of urinary amino acid levels 
for 11 repeated injections using either quantification method.  

Amino acida R2 R2 RSD (%) RSD (%) 

 Nval Stable isotopes Nval Stable isotopes 

Alanine 0.9732 0.9997 7.04 1.5 
Sarcosine 0.9974 0.9969 10.91 5.7 
Glycine 0.9893 0.9998 9.06 2.2 
α-Aminobutyric acid 0.9984 0.9984 4.07 4.2 
Valine 0.8904 0.9996 1.96 2.1 
ß-Aminoisobutyric acid 0.9977 0.9970 4.92 5.6 
Leucine 0.9988 0.9992 2.64 2.8 
allo-Isoleucine 0.9953 0.9985 2.86 2.5 
Isoleucine 0.9061 0.9996 2.96 2.7 
Threonine 0.9191 0.9988 n.d. n.d. 
Serine 0.8637 0.9975 n.d. n.d. 
Proline 0.9955 0.9960 6.90 3 
Asparagine 0.9754 0.9986 13.70 2.2 
Thiaproline 0.9858 0.9900 n.d. n.d. 
Aspartic acid 0.9939 0.9997 15.49 14.1 
Methionine 0.9915 0.9958 7.36 11.8 
Hippuric acid 0.9921 0.99 18.60 16.7 
Hydroxyproline 0.9725 0.9758 n.d. n.d. 
Glutamic acid 0.9993 0.9999 8.13 3.3 
Phenylalanine 0.9972 0.9997 5.34 3.4 
α-Aminoadipic acid 0.9908 0.9982 6.81 2.5 
α -Aminopimelic acid 0.9956 0.9925 n.d. n.d. 
Glutamine 0.9523 0.994 15.66 4.2 
Ornithine 0.9909 0.9971 9.07 4.8 
Glycyl-Proline 0.9659 0.984 n.d. n.d. 
Lysine 0.975 0.996 7.79 3.9 
Histidine 0.8937 0.9987 12.28 2.2 
Hydroxylysine 0.985 0.9976 n.d n.d. 
Tyrosine 0.9688 0.9984 5.99 2.5 
Proline-Hydroxyproline 0.9807 0.9906 n.d. n.d. 
Tryptophan 0.9802 0.9987 4.02 2.8 
Cystathionine 0.9959 0.993 5.42 2.5 
Cystine 0.9861 0.995 9.56 11.3 

a Amino acids printed in bold were quantified with a corresponding stable isotope. 
n.d.-not detected above the LLOQ 

 

In addition, we compared the inter-day reproducibility of 11 biological replicates 

of a urine sample. This biological sample was measured 11 times during a 
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batch of 351 biological samples. The RSDs using norvaline as the sole internal 

standard ranged from 1.98% to 18.6%. But they improved significantly (1.5% to 

5.7%) for most amino acids, except for aspartic acid, methionine,hippuric acid 

and cystathionine, when stable-isotope labeled amino acid standards were 

employed. For the latter no stable isotope labeled standards had been 

available.  

5.3.4 Method characterization  

For absolute quantification, calibration curves were generated. Calibration 

curve parameters, retention time, range of quantification, R square-values and 

limits of detection are presented in Table 5. The quantification range is 

determined by the lower (LLOQ) and the upper limit of quantification (ULOQ), 

which are defined as the lowest, respectively highest point of the calibration 

curve with an accuracy between 80-120%, in agreement with the FDA Guide 

for Bioanalytical Method Validation.48 The R square-value or coefficient of 

determination was calculated as the square of the correlation coefficient r of the 

regression analysis over the quantification range. The limit of detection (LOD) is 

defined as the concentration producing a signal to noise (S/N) ratio of at least 

3:1. Concentrations reported in Table 5 were calculated from the analysis of 50-

µL aliquots of human urine. The lowest LOD was 0.03 µM, corresponding to an 

absolute injected amount of 15 fmol.  

The LOD of 0.03 µM was determined for alanine, glycine and tryptophan. The 

LODs for most other amino acids were below 1 µM except for serine, 

asparagine, histidine, hydroxylysine, cystathionine and cystine, which yielded 

an LOD of 3 µM. The highest LODs with 12 µM were obtained for proline-

hydroxyproline and glutamine. For glutamine, this was due to partial 

decomposition of the propylformate derivative through elimination of water, as 

evidenced by two peaks in the chromatogram. For asparagine, elimination of 

water was complete. Nevertheless, both glutamine and asparagine could be 

determined by derivatization with propyl chloroformate, thereby not confirming 

the observation by Casal et al.49, that glutamine and asparagine are converted 
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to aspartate and glutamate during derivatization with ethyl chloroformate and 

2,2,3,3,4,4,4-heptafluoro-1-butanol. The LOD for all amino acids might be 

improved by using less organic solvent for extraction or injecting more sample 

using large volume technique.  

 

Table 5: Calibration curve parameters. Limits of detection and ranges of quantification were 
defined by the lower and upper limits of quantification. Amino acids printed in bold were 
quantified using the corresponding stable isotope-labeled amino acid. 

Amino acid R-squarea LODb 
(μM) 

Range of 
quantification 

[µM] c 

Regression line Retention 
time (min) 

Alanine 0.9997 0.03 0.3-2000 1.507 * x + 0.011940 4.35 
Sarcosine 0.9969 0.3 0.9-270 1.611 * x + -0.008277 4.43 
Glycine 0.9998 0.03 3-2000 1.238 * x + 0.068277 4.49 
α-Aminobutyric acid 0.9984 0.12 0.3-270 2.521 * x + 0.001067 4.62 
Valine 0.9996 0.18 0.3-2000 1.174 * x + 0.001163 4.73 
ß-Aminoisobutyric acid 0.9970 0.27 0.9-270 0.613 * x + -0.003078 4.83 
Leucine 0.9992 0.06 0.3-2000 1.102 * x + 0.005131 4.98 
allo-Isoleucine 0.9985 0.3 0.9-270 1.252 * x + -0.005865 5.02 
Isoleucine 0.9996 0.12 0.9-2000 1.122 * x + -0.002333 5.05 
Threonine 0.9988 0.18 0.3-2000 1.03* x + -0.001590 5.29 
Serine 0.9975 3.0 12-2000 1.22 * x + 0.443377 5.34 
Proline 0.9960 0.27 0.3-2000 0.623 * x + -0.010681 5.43 
Asparagine 0.9986 3.0 12-270 1.125 * x + -0.036928 5.53 
Thiaproline 0.9900 0.3 0.9-270 4.349 * x + -0.006387 5.93 
Aspartic acid 0.9997 0.3 3-2000 1.251 * x + -0.018064 6.11 
Methionine 0.9958 0.9 3-1000 1.177 * x + -0.028463 6.16 
Hippuric acid 0.99 3 12-2000 0.062 * x + -0.003033 6.28 
Hydroxyproline 0.9758 0.9 3-270 0.334 * x + -0.004975 6.30 
Glutamic acid 0.9999 0.9 3-2000 1.249 * x + -0.023798 6.49 
Phenylalanine 0.9997 0.3 0.9-2000 1.191 * x + -0.005860 6.55 
α-Aminoadipic acid 0.9982 0.9 3-270 1.089 * x + -0.033340 6.81 
α-Aminopimelic acid 0.9925 0.9 3-270 2.351 * x + -0.131996 7.09 
Glutamine 0.9940 12.0 30-270 1.197 * x + -0.012232 7.58 
Ornithine 0.9971 0.3 0.9-270 1.526 * x + -0.018075 7.18 
Glycyl-proline 0.9840 0.9 3-270 0.161 * x + -0.006280 7.65 
Lysine 0.9960 0.3 0.9-2000 1.122 * x + -0.024828 7.85 
Histidine 0.9987 3.0 12-2000 0.372 * x + -0.043117 8.06 
Hydroxylysine 0.9976 3.0 12-270 0.208 * x + 0.006536 8.26 
Tyrosine 0.9984 0.3 0.9-2000 2.449* x + -0.001631 8.35 
Proline-Hydroxyproline 0.9906 12.0 12-270 0.047 * x + -0.002474 8.61 
Tryptophan 0.9987 0.03 0.3-270 1.44 * x + -0.003679 8.69 
Cystathionine 0.9930 3.0 12-270 0.133 * x + 0.001518 9.20 
Cystine 0.9950 3.0 12-1000 0.186 * x + 0.012430 9.55 

a Coefficient of determination (square of the correlation coefficient r of the regression analysis)  
b Limit of Detection (S/N ≥ 3)   
c LOD and LOQ were calculated for a sample volume of 50 µL 
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The calibration ranges ranged from 0.3 µM to 2000 µM for most amino acids. 

Satisfactory linearity was obtained for the calibration curves with a R square-

value ≥ 0.99 for all amino acids except hydroxyproline (0.9758) and glycyl-

proline (0.984). However, for these amino acids no corresponding stable-

isotope had been available. 

5.3.5 Method validation 

A certified amino acid standard from NIST was analyzed to check the accuracy 

of the method. This Standard Reference Material (SRM) is an aqueous mixture 

of 17 amino acids in 0.1 M hydrochloric acid. We were able to quantify 16 out of 

17 amino acids. Arginine could not be determined because of the thermal 

instability of its propyl chloroformate derivative that carries a free guanidine 

group. The certified concentrations and estimated uncertainties for the 16 

amino acids are given in Table 6. These values are based on in-house analysis 

at NIST and a round-robin study that was conducted in cooperation with the 

Association of Biomolecular Research Facilities. The certified value is the 

equally weighted mean of the NIST average and the round robin average. 

Additionally gravimetric values given by NIST are shown in the Table 6. The 

gravimetric value is based on the weighed amount of each amino acid used to 

prepare the solution. For all amino acids, there is an excellent correspondence 

between the results obtained by GC-MS and the certified values obtained by 

means of conventional amino acid analyzers. In addition, a recovery based on 

the gravimetric values was calculated. It ranged from 94.3% up to 105.3% for 

methionine and lysine, respectively. Only the recovery for histidine is high 

(123.7%). But for this amino acid, the certified concentration measured by NIST 

is also higher than the gravimetric value. 
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Table 6: Arithmetic means and standard deviations of the concentrations [mM] of amino acids 
in a certified standard compared to the reference values given by NIST and compared to the 
gravimetric values in terms of recovery. 

Amino acid GC-MS ( n=6) NIST ravimetric 
lue 

Recovery (%)of 
the GC-MS data 
based on 
gravimetric 
values 

Alanine 2.506 ±0.027 2.51 ±0.09 2.5 100.2 
Glycine 2.604 ±0.026 2.45 ±0.08 2.51 103.7 
Valine 2.623 ±0.020 2.44 ±0.08 2.55 102.9 
Leucine 2.562 ±0.018 2.48 ±0.09 2.6 98.5 
Isoleucine 2.650 ±0.013 2.39 ±0.07 2.54 104.3 
Threonine 2.549 ±0.069 2.39 ±0.08 2.44 104.5 
Serine 2.584 ±0.082 2.43 ±0.09 2.47 104.6 
Proline 2.592 ±0.035 2.44 ±0.09 2.5 103.7 
Aspartic acid 2.576 ±0.020 2.5 ±0.09 2.55 101.0 
Methionine 2.386 ±0.144 2.43 ±0.09 2.53 94.3 
Glutamic acid 2.513 ±0.055 2.27 ±0.10 2.44 103.0 
Phenylalanine 2.566 ±0.025 2.44 ±0.08 2.58 99.5 
Lysine 2.642 ±0.032 2.47 ±0.10 2.51 105.3 
Histidine 3.080 ±0.052 2.83 ±0.11 2.49 123.7 
Tyrosine 2.609 ±0.047 2.47 ±0.09 2.49 104.8 
Cystine 1.157 ±0.071 1.16 ±0.06 1.2 96.4 

 

The applicability of the method to biological samples was demonstrated by 

analyzing amino acids in a certified biological matrix. We chose Clinchek 

plasma controls from RECIPE, which are used for internal quality assurance in 

clinical-chemical laboratories. The mean values and confidence intervals have 

been established by independent reference laboratories using conventional 

amino acid analyzers. To quantify the amino acid concentration in plasma, 

plasma was measured 10 times by GC-MS. We were able to determine 18 

amino acids in the plasma. All measured values were well inside the control 

range given by RECIPE (Table 7). The sole exception was asparagine, for 

which the GC-MS value was slightly too high. The control range for asparagine 

was 17.3 to 25.9 µM and the concentration measured by GC-MS was 29.7 µM. 
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Table 7: Amino acid concentrations in a plasma reference as determined by GC-MS in 
comparison to the reported control range (data given by the manufacturer). 

 

Amino acid Concentration by GC-MS 
[µM] 

Control range 
[µM] 

 Mean ± SD (n =10)  
Alanine 349.9 ± 3.51 327-491
Glycine 168.7 ± 2.84 148-222
α-Aminobutyric acid 9.8 ± 0.55 10.8-16.2
Valine 195.7 ± 1.60 178-266
Leucine 192.3 ± 1.82 157-235
Isoleucine 68.7 ± 0.86 56.7-85.1
Proline 191.7 ± 1.66 159-239
Asparagine 29.7 ± 0.88 17.3-25.9
Aspartic acid 19.0 ± 0.39 16.9-25.3
Methionine 38.8 ± 1.03 30.3-45.5
Glutamic acid 243.3 ± 2.84 236-354
Phenylalanine 80.6 ± 1.67 65.8-98.8
Ornithine 125.7 ± 3.34 112-168
Glutamine 205.1 ± 9.01 199-299
Lysine 154.6 ± 1.57 128-192
Histidine 71.4 ± 5.61 60.6-91
Tyrosine 64.1 ± 1.47 47.6-71.4
Tryptophan 50.7 ± 0.78 37.8-56.6

 

5.3.6 Precision of GC-MS analysis of amino acids in different 
biological matrices 

The method’s precision low determination of amino acid concentrations in 

different biological matrices was evaluated by analyzing human urine, mice 

urine, control plasma and cell culture medium. Ten or more replicates were 

analyzed for each sample and the RSDs obtained for different amino acids are 

listed in Table 8. For human urine, we determined not only the intra-day but 

also the inter-day precision. The reproducibility in all biological samples for all 

amino acids was excellent, with RSDs typically < 5%. Generally, the RSDs are 

higher in urine than in cell culture medium or plasma, but consistently < 9% in 

the intra-day experiments. For most amino acids, the precision for intra-day and 

inter-day measurements are comparable, except for aspartic acid, methionine 
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and cystine.  For the latter amino acids, the RSDs increased above 10% in the 

inter-day measurements with a maximum value of 14.1% for aspartic acid. 

 

Table 8: Reproducibility of GC-MS analysis of amino acids in different biological matrices using 
aliquots of 20 µL of sample, except for 50 µL of human urine. 

Relative standard deviation [%] 
 

Amino acida 

Human 
Urine 
(n=10) 

Intra-day 

Human Urine
(n=11) 

Inter-day 

Mice urine 
(n=10) 

Intra-day 

Plasma 
(n=11) 

Intra-day 

Media 
(n=10) 

Intra-day 

Alanine 2.0 1.5 1.3 1.0 2.6 
Sarcosine 5.6 5.7 4.6 n.d. n.d. 
Glycine 3.1 2.2 2.1 1.7 2.0 
α-Aminobutyric acid 7.9 4.2 3.9 5.6 3.5 
Valine 2.4 2.1 1.3 0.8 3.4 
ß-Aminoisobutyric acid 5.7 5.6 8.9 n.d. n.d. 
Leucine 3.0 2.8 2.4 0.9 3.0 
allo-Isoleucine 3.6 2.5 1.6 1.6 n.d. 
Isoleucine 2.5 2.7 2.3 1.3 2.6 
Proline 3.2 3.0 3.1 0.9 3.0 
Asparagine 3.5 2.2 5.4 3.0 4.0 
Aspartic acid 8.1 14.1 6.9 2.0 3.8 
Methionine 7.1 11.8 4.8 2.7 4.3 
Hippuric acid 8.7 16.7 7.5 n.d n.d 
Glutamic acid 3.1 3.3 2.5 1.2 3.0 
Phenylalanine 2.5 3.4 3.6 8.3 n.d. 
α-Aminoadipic acid 4.3 2.5 4.3 3.6 n.d. 
Ornithine 3.7 4.8 3.2 2.7 8.2 
Glutamine 8.7 4.2 9.1 4.4 3.9 
Lysine 2.4 3.9 2.0 1.0 3.6 
Histidine 4.9 2.2 7.5 7.8 5.4 
Tyrosine 4.0 2.5 5.8 2.3 3.7 
Tryptophan 2.9 2.8 3.3 1.5 3.9 
Cystathionine 8.8 2.5 n.d. n.d. n.d. 
Cystine 7.1 11.3 8.0 n.d. 14.3 

a Amino acids printed in bold were quantified with a corresponding stable isotope. 
n.d. - not detected above the LLOQ. 

 

5.3.7 Quantification in biological matrices 

Matrix spike experiments were performed in human urine to evaluate the 

impact of the biological matrix on the quantification. Amino acid standards in 

three different absolute amounts (1.5, 6.0 and 10.5 nmol) were added to three 

different urine samples and measured in triplicate. Linear regression analysis 
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was performed for the standard addition and the calculated slopes were 

compared with those obtained from the calibration with the aqueous standards. 

The correlation between the slopes for the amino acids found in human urine is 

shown in Figure 21. A slope of 1.08 and a correlation coefficient (RSQ) of 0.95 

indicate the absence of matrix effects for most amino acids and justify the use 

of aqueous standards for calibration. Only glycine, sarcosine, α-aminobutyric 

acid and tyrosine are slightly over- or underestimated. The average recovery for 

all amino acids calculated over all spike levels and all replicates were 93.6%, 

ranging from 70.9% for glutamine to 120% for glycine. However, glutamine and 

glycine have high levels in urine and the spike levels used are too low to 

evaluate these amino acids correctly. 
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Figure 21: Evaluation of matrix effects by comparison of the slopes of the calibration curve (x-
axis) with the slope of the standard addition curve in human urine (y-axis). 

 

5.3.8 Inborn errors of amino acid metabolism 

Analysis of blood and urinary amino acids are used routinely in the diagnosis 

and treatment of inherited metabolic disorders, such as phenylketonuria (PKU) 

and maple syrup urine disease (MSUD). The screening for inborn errors of 

metabolism is widely done using direct infusion LC-MS-MS methods,2, 50, 51 
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which allows the very fast analysis of large number of samples. However, 

isobaric amino acids, such as leucine, isoleucine and allo-isoleucine or alanine 

and sarcosine cannot be distinguished. In contrast, the GC-MS method takes 

longer, but separation of those isobars is achieved. 

To demonstrate the applicability of the GC-MS method to the determination of 

abnormal amino acid levels in inherited disorders of amino acid metabolism, 

serum and urine samples were ascertained from patients with various inborn 

errors of metabolism. Four different serum samples and four different urine 

samples were analyzed.  The serum samples originated from patients with 

maple syrup urine disease, phenylketonuria, propionic acidemia and 

tyrosinemia I, whereas the urine samples were from patients with 

argininosuccinic aciduria, propionic acidemia, maple syrup urine disease and 

aminoaciduria. All samples were measured in triplicate. The amino acid 

concentrations observed in these patients are listed in Table 9 and Table 10 in 

this chapter. Phenylketonuria (PKU) is caused by a deficiency of the enzyme 

phenylalanine hydroxylase or its cofactors,1 leading to the accumulation of 

phenylalanine (Figure 3, chapter 4.2).45 PKU can be diagnosed by an increased 

ratio of phenylalanine to tyrosine in serum.52 In the serum samples with this 

inborn error, there is a high concentration of phenylalanine, in comparison to 

the other samples. This is obvious from the dominant phenylalanine peak (q) in 

the GC-MS total ion current chromatograms shown in Figure 22a. Figure 22a 

and Figure 22b show chromatograms of the propyl chloroformate derivatives of 

amino acids from a PKU-positiv serum and MSUD-positv serum, respectively.  
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Figure 22: GC-MS total ion current chromatograms of propyl chloroformate derivatives of 
amino acids from a PKU-positive serum (a) and a MSUD-positive serum (b).  Labeled peaks 
are the derivatives of a) Ala, b) Gly, d) Val, f) Leu, h) Ile, i) Thr, j) Ser, k) Pro, l) Asn, m) Asp, n) 
Met, p) Glu, q) Phe, s) Gln, t) Orn, u)Lys, v) His, w) Tyr, and y) Trp.  

 

A high concentration of phenylalanine (296.8 µM) was detected in the PKU 

serum sample compared to the other samples analyzed that yielded an 

average phenylalanine concentration of 39.1 µM.  

Patients with maple syrup urine disease (MSUD) have a defect in branched-

chain α-keto acid decarboxylase, resulting in increased serum concentrations 

of keto acids and their corresponding amino acids. The pathways of the 

degradation of the branched chain amino acids are shown in Figure 23. The 

amino acid that accumulates the most is leucine. Further, increased 

concentrations of valine and isoleucine are often observed.2  
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Figure 23: Branched chain amino acid metabolism. MSUD is caused by a deficiency of the 
metabolic enzyme branched chain α-keto acid dehydrogenase (BCKDH). 

 

MSUD can be diagnosed by an increased ratio of leucine and isoleucine to 

phenylalanine.52 As shown in Table 9, leucine is the most abundant amino acid 

with serum concentration of 394 µM, while the average concentration was only 

58 µM in the three MSUD-negative serum samples. The concentrations of 

valine and isoleucine in the MSUD serum sample were also higher than in the 

other serum samples. In addition, allo-isoleucine was detected in the serum 

sample with a concentration of 32.1 µM. There were also pronounced 

differences in the urinary amino acid profiles between MSUD-positive and 

MSUD-negative samples. In comparison to argininosuccinic aciduria and 

propionic acidemia, the urinary concentrations for valine, leucine and isoleucine 

were increased 8-, 15- and 17-fold, respectively. Even allo-isoleucine could be 

detected and quantified with a concentration of 56 µM. In addition, high urinary 
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concentrations of threonine, serine, α-aminoadipic acid, lysine, histidine and 

proline-hydroxyproline were detected.  

Tyrosinemia I and II are characterized by an accumulation of tyrosine.2 The 

tyrosinemia type I is caused by a deficiency of fumarylacetoacetase. The 

tyrosinemia-positive urine sample has a ten times higher concentration of 

tyrosine compared to the other urine samples analyzed.  Propionic acidemia is 

categorized as a deficiency of propionyl-CoA-carboxylase. Methylcitrate and 

propionic acid are the key indicators for that disorder.53-55 Additionally, high 

concentrations of glycine can occur in urine and serum.56 Accordingly, high 

glycine concentrations were detected in the propionic acidemia positive serum 

and urine samples. Argininosuccinic aciduria is an inborn error with a urea 

cycle defect that causes ammonia to accumulate in the blood. It is caused by a 

deficiency of argininosuccinate lyase.9, 57 There were no characteristic 

concentration changes for any of the amino acids quantified by GC-MS in the 

argininosuccinic aciduria-positive urine. Aminoaciduria is a condition that can 

occur in several disorders, like Hartnup disease, Dent`s disease and Fanconi 

syndrome. The aminoaciduria is generally characterized by high urinary amino 

acid excretion.58 Levels of almost all amino acids were increased except for α-

aminobutyric acid, isoleucine, aspartic acid, and methionine. Interestingly, the 

concentration for α-aminoadipic acid decreased by a factor of four in 

comparison to the levels detected in the urine of patients with argininosuccinic 

aciduria or propionic acidemia. 
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Table 9: Plasma amino acid concentrations [µM] for patients with inborn errors of metabolism. 
Each sample was measured in triplicate.  

Amino acid Maple syrup 
urine disease 

Phenyl-
ketonuria 

Propionic 
acidemia 

Tyrosinemia I 

Alanine 69.56 ± 1.46  174.81 ± 0.95 86.51 ± 0.48 187.75 ± 1.29 
Glycine 81.67 ±2.05 151.57 ± 4.93 489.14 ± 2.93 187.45 ± 6.03 
α-Aminobutyric acid 3.81± 0.17 3.07 ± 0.12 2.97 ± 0.02 3.46 ± 0.08 
Valine 245.49 ± 5.16 126.69 ± 1.11 80.67 ± 0.31 70.55 ± 0.39 
ß-Aminoisobutyric acid n.d. n.d. 1.2 ± 0.07 1.06 ± 0.04 
Leucine 394.3 ± 7.95 55.15 ± 0.47 69.44 ± 0.68 49.7 ± 0.68 
allo-Isoleucine 32.11 ± 1.06 n.d. n.d. n.d. 
Isoleucine 123.37 ± 2.44 31.65 ± 0.21 29.11 ± 0.1 21.71 ± 0.35 
Threonine 39.91 ± 1.49 50.39 ± 0.40 39.02 ± 1.08 50.74 ± 0.84 
Serine 56.1 ± 0.55 79.86 ± 0.31 60.49 ± 1.89 77.21 ± 1.46 
Proline 47.4 ± 1.21 95.59 ± 1.76 65.21 ± 0.41 80.75 ± 0.54 
Asparagine 13.47 ± 0.29 n.d. 16.43 ± 0.62 17.33 ± 1.22 
Aspartic acid 14.17 ± 0.45 13.62 ± 0.3 8.27 ± 0.27 13.95 ± 0.26 
Methionine 8.58 ± 0.17 7.06 ± 0.43 8.12 ± 0.21 7.52 ± 0.45 
Hydroxyproline n.d. n.d. n.d. 9.26 ± 1.29 
Glutamic acid 36.35 ± 0.62 50.65 ± 0.22 21.3 ± 0.3 47.39 ± 0.46 
Phenylalanine 45.54 ± 0.65 296.75 ± 1.81 33.43 ± 0.65 38.4 ± 0.42 
α-Aminoadipidic acid n.d. n.d. 1.05 ± 0.05 n.d. 
Glutamine 120.63 ± 1.76 151.81 ± 3.58 103.23 ± 3.87 173.81 ± 3.27 
Ornithine 18.87 ± 1.25 51.45 ± 2.86 11.67 ± 0.15 32.83 ± 2.25 
Lysine 50.85 ± 1.07 67.61 ± 1.14 118.23 ± 1.08 70.65 ± 0.77 
Histidine 31.43 ± 1.15 32.05 ± 1.95 27.67 ± 0.58 39.8 ± 0.43 
Tyrosine 25.02 ± 0.56 34.97 ± 0.30 19.46 ± 0.25 277.05 ± 1.83 
Proline-hydroxyproline 66.07 ± 5.68 53.23 ± 21.84 53.99 ± 21.27 50.26 ± 17.09 
Tryptophan 13.92 ± 0.23 23.55 ± 0.09 15.21 ± 0.02 18.06 ± 0.07 
n.d. - not detected above the LLOQ. 

 

Table 10: Urinary amino acid concentrations [µM] for patients with inborn errors of metabolism. 
Each sample was measured in triplicate. 

Amino acid Argininosuccinic 
aciduria 

Propionic acidemia MaMaple 
syrup  

 D   urine 
disease 

Amino- 

aciduria 

Alanine 123.87 ± 1.64 180.57 ± 1.33 129.34 ± 1.70 2424.03 ± 38.64 
Sarcosine n.d. 1.06 ± 0.18 2.06 ± 0.07 40.02 ± 1.51 
Glycine 489.81 ±1.67 5524.1 ± 188.5 2034.0 ± 18.3 27090 ± 1259.7 
α-Aminobutyric acid 6.58 ± 0.18 4.73 ± 0.18 4.35 ± 0.14 5.3 ± 0.11 
Valine 32.27 ± 0.69 16.64 ± 0.21 194.71 ± 1.17 129.38 ± 1.92 
ß-Aminoisobutyric 
acid n.d. 25.35 ± 1.04 3.9 ± 0.02 262.69 ± 6.43 
Leucine 19.55 ± 0.15 23.03 ± 0.06 305.33 ± 2.26 80.88 ± 1.16 
allo-Isoleucine n.d. n.d. 56.12 ± 0.37 n.d. 
Isoleucine 6.31 ± 0.04 9.89 ± 0.16 134.8 ± 0.61 8.67 ± 0.22 
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Threonine 68.13 ± 3.27 57.41 ± 4.43 178.41 ± 10.72 2398.44 ± 20.06 
Serine 202.89 ± 4.52 294.62 ± 13.09 903.29 ± 7.70 1885.23 ± 40.18 
Proline 13.38 ± 0.18 11.09 ± 0.83 23.63 ± 0.08 4909.14 ± 96.19 
Asparagine 51.77 ± 0.74 86.95 ± 0.75 82.71 ± 1.54 1236.85 ± 13.46 
Thiaproline 1.43 ± 0.21 2.38 ± 0.18 1.46 ± 0.1 4.13 ± 0.2 
Aspartic acid 19.13 ±0.32 11.77 ± 0.73 12.94 ± 0.55 12.87 ± 0.14 
Methionine 54.57 ± 1.04 11.31 ± 0.22 21.68 ± 0.71 33.87 ± 1.14 
Hydroxyproline n.d. n.d. 41.29 ± 1.82 1083.45 ± 52.37 
Glutamic acid 11.99 ± 0.34 18.39 ± 1.31 60.49 ± 0.36 175.23 ± 8.95 
Phenylalanine 46.44  ± 0.71 48.93 ± 0.66 87.4 ± 1.87 596.53 ± 10.76 
α-Aminoadipic acid 26.68 ± 1.08 29.71 ± 0.45 136.79 ± 1.22 6.65 ± 0.2 
Glutamine 556.96 ±19.8 220.95 ± 6.94 447.29 ± 25.19 2899.77 ± 73.38 
Ornithine 11.1 ± 0.72 8.75 ± 0.20 15.43 ± 0.51 338.05 ± 8.88 
Glycyl-proline 24.93 ± 1.86 8.24 ± 1.49 119.95 ± 5.08 n.d. 
Lysine 46.78 ± 0.31 49.85 ± 0.87 173.27 ± 1.53 3565.4 ± 60.90 
Histidine 172.27 ± 0.99 182.45 ± 1.26 1416.05 ± 65.85 1806.71 ± 15.21 
Tyrosine 30.99 ± 1.09 141.63 ± 5.22 125.92 ± 3.95 754.26 ± 21.63 
Proline-
hydroxyproline 135.29 ± 9.95 167.34 ± 36.54 742.37 ± 70.66 87.01 ±8.72 
Tryptophan 22.63 ± 0.53 42.79 ± 0.41 72.45 ± 0.35 86.45 ± 1.25 
Cystathionine 34.6 ± 1.85 n.d. 5.25 ± 0.18 18.33 ±  1.40 
Cystine 44.73 ± 6.26 51.18 ± 0.93 84.28 ± 3.59 286.35 ± 22.9 

n.d. - not detected above the LLOQ 

5.3.9 Method limitations 

Arginine is an important amino acid that cannot be analyzed by GC-MS 

following alkyl chloroformate derivatization.38 This is due to the thermal 

instability of the derivative that carries a free guanidine group. We could not 

confirm the report by Namera et al.59 that threonine, serine, asparagine and 

glutamine cannot be derivatized and analyzed by GC-MS successfully. 

However, we did observe the complete, respectively partial elimination of water 

during the derivatization of asparagine and glutamine. As a result, the 

corresponding derivatives contain a nitrile function instead of the amide group 

as confirmed by NMR (see experimental section 5.6). The reaction is shown in 

Figure 24. 
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Figure 24: Reaction scheme for the loss of water in the propyl chloroformate derivate of 
asparagines. 

 

The quantitation of asparagine and glutamine proved robust in our hands, while 

this was not consistently the case for serine and threonine. Standards of serine 

and threonine could be detected readily after proper conditioning of the SILTEC 

liner as described above. For human adult urine samples, however, a rapid 

deterioration of the liner performance was observed, which resulted in 

increasingly broader peaks over very few injections. Reconditioning of the liner 

did not alleviate this problem. Interestingly, we were able to detect the threefold 

derivatized serine and threonine with the hydroxyl group being also acylated. In 

both cases the threefold derivatized product is the minor product.  In 

comparison to the major derivative the threefold derivative was observed in the 

urine samples in low quantity. This observation led to the assumption that the 

free hydroxyl group and the biological matrix can interact with the liner. 

5.4 Applications to different biological projects 

5.4.1 Metabolome analysis of E. coli 

A capillary electrophoresis – mass spectrometry (CE-MS) method was 

developed and validated for the quantitative analysis of negatively charged 

metabolites, using a time-of-flight (TOF) mass by Timischl et al.60 The method 

was used to elucidate metabolic changes in an Escherichia coli mutant, UdhA-

PntAB, a double kock out for the nicotinamide nucleotide transhydrogenase.  
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To validate the CE-MS method and to get a more comprehensive coverage of 

the E. coli metabolome, the E. coli samples were also subjected to the amino 

acid analysis by GC-MS with propyl chlorofromate. For the amino acids 

glutamic acid and aspartic acid, which were detected by both methods, a very 

good correlation was observed. Many of the other amino acids showed 

significant differences between the wild type and the mutant strain. The results 

of the amino acid analysis are also puplished by Timischl et al. 60 

5.4.2 Cross-validation with 2D NMR 

A two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy 

method was developed by Gronwald et al. for the quantification of metabolites 

in biological fluids and tissue extracts. 46 The quantitative 2D NMR data of a 

selected set of the urinary metabolites were compared with data obtained by 

GC-MS amino acids analysis with and propyl chloroformates. To crossvalidate 

the NMR measurement with other analytical methods a blinded set of 50 

human urine samples originating from the INTERMAP study were analyzed by 

NMR, GC-MS and LC-MS. The set contained 6 triplicates (18 samples) 5 

duplicates (10 samples), 14 single samples, and 8 samples that were mixed at 

a ratio of 1:1 (Figure 25). 
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Figure 25: Study design of the blinded sample set. 

 

The RSDs (%) for the GC-MS analysis are shown in Figure 26 for the 

triplicates, duplicates, mixed samples and for the average over all. 
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Figure 26: Reproducibility as relative standard deviation of urinary GC-MS amino acids 
analysis of the 50 samples using 50 µL sample aliquots. 

 

The 2D NMR results of the 50 urine samples taken from the INTERMAP study 

for 7 compounds (alanine, glutamine, glycine, hippuric acid, histidine and 

lysine) were linearly regressed with the data obatianed by GC-MS and the R-

square values were calculated.  One important urinary metabolite amenable to 

both NMR and GC-MS is hippuric acid. Figure 27 shows the comparison of the 

corresponding NMR and GC-MS results for the 50 urine samples investigated. 

As indicated by the high R-square value of 0.99, both methods allowed the 

precise determination of hippuric acid and showed a linear correlation over the 

entire observed concentration range.46 
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Figure 27: Correlation between 2D NMR analysis and GC-MS analysis for hippuric acid. 

 

5.4.3 Other biological projects 

Due to the broad applicability of the method a lot of different samples were 

measured. Samples ranging from sera and plasma to urine, cell media, cell 

extracts and milk. Mice urine samples were measured for a working group of 

the biology department, cell media was measured for our in house working 

group examining the intake of glutamine, human urine samples were measured 

for the correlation of GC-MS and NMR for hipuric acid.61 Tryptophan analysis 

was performed for a project investigating mesenchymal stem cells (MSC) 

inhibiting the immune response in vitro.62 
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6  A Comparison of iTRAQ®-LC-MS/MS, GC-MS and 
 Amino Acid Analyzer 

6.1 Introduction 

The goal of the present study was to compare sample preparation, amount of 

sample needed for analysis, runtime, number of analytes amenable to 

quantification, cost, lower limit of quantification (LLOQ), reproducibility, 

reliability, and validity of three methods for urinary amino acids analysis: A 

conventional amino acid analyzer, GC-MS of propyl chloroformate derivatives,47 

and iTRAQ®-LC-MS/MS.41 Use of iTRAQ®-LC-MS/MS for this purpose is 

described here for the first time. The iTRAQ® method is based on differential 

derivatization of standard and sample amino acids with isobaric tags that show 

identical chromatographic retention, but can be distinguished by tandem mass 

spectrometry upon collision-induced dissociation of reporter ions that differ by 

one mass unit. The advantage of iTRAQ®-LC-MS/MS over other existing 

methods is the availability of 42 internal standards of physiological amino acids 

and related amines that enable absolute quantification by isotope ratio analysis.  

For the comparison of the three methods blinded sets of 98 and 341 urine 

specimens, respectively, were analyzed. The urine specimens were aliquots 

from the timed 24-hour urine collections of the INTERMAP study 

(INTERnational collaborative of MAcronutrients and blood Pressure) on relation 

between diet and blood pressure among 4,680 men and women ages 40-59 

years in Japan, Peoples Republic of China (PRC), UK and USA.3, 63 This 

chapter will be published in the Journal of Chromatography B.64 
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6.2 Materials and Methods 

6.2.1 Urine specimens 

The urine specimens were aliquots taken from the timed 24-hour urine 

collection of the 17 population samples collected by the INTERMAP Study from 

1996 to 1999 in 4 countries. Boric acid had been added as a preservative to the 

urine samples upon collection. Before preparation of aliquots for this study, 

specimens had been stored at -20°C. Aliquots were shipped from London to 

Regensburg and Framingham, respectively, on dry ice and, thereafter, stored at 

-20°C until analysis. 

The first test set comprised 30 triplicates and 4 duplicates from 34 INTERMAP 

urine specimens randomly selected from five (of 17) population samples: 

Sapporo (Japan), Aito Town (Japan), Guangxi (PRC), Chicago (US), and 

Minneapolis (US), respectively. The second set comprised 341 aliquots from 

144 INTERMAP urine specimens that were different from those in batch I, but 

selected from the same five population samples. Of the 144 different urine 

specimens, 91 were represented as duplicates and 53 as triplicates. 

6.2.2 iTRAQ®-LC-MS/MS 

The analysis by LC-MS/MS was carried out by Applied Biosystems. 

Derivatization of urinary amino acids with iTRAQ® was performed semi-

automated using the Apricot Designs TPS-24 Total Pipetting Solution™ liquid 

handler with a 12-position pipetting head. Forty µL of urine were manually 

pipetted into 96-well plates. The plates were placed on the liquid handler and 

10 µL of 10% sulfosalicylic acid containing 4 nmol of norleucine were added to 

each well to precipitate the proteins. Norleucine served as internal standard to 

calculate extraction efficiency. The plates were removed from the liquid 

handler, mixed for 30 s, and then centrifuged in an Eppendorf Centrifuge 

5810R for 5 min at 2,000 RPM (700xg). The plates were returned to the liquid 

handler, 10 µL of supernatant were transferred to new wells and mixed with 40 

µL labeling buffer (0.45 M borate buffer, pH 8.5, containing 20 pmol/µL 
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norvaline as internal standard to calculate derivatization efficiency). Ten µL of 

the diluted supernatant were transferred to new wells and mixed with 5 µL of a 

diluted iTRAQ® reagent 115 solution (1 tube mixed with 70 µL of isopropanol) 

and incubated at room temperature for 30 min. Then 5 µL of 1.2% 

hydroxylamine solution were added to each well. The samples were allowed to 

evaporate overnight to dryness and were reconstituted the next day with 32 µL 

of iTRAQ® reagent 114-labeled standard mix (5 pmol of each amino acid/µL - 

with the exception of L-cystine, present at 2.5 pmole/µL - in 0.5% formic acid). 

Chromatographic separation of amino acids with an identical nominal mass was 

achieved at 50°C using an Agilent 1100 HPLC system. An Applied Biosystems 

C18-5 µm column (4.6 i.d. x 150 mm) was used. LC separation was carried out 

using a mobile phase consisting of 0.1% formic acid and 0.01% 

heptafluorobutyric acid in water (solvent A) and 0.1% formic acid and 0.01% 

heptafluorobutyric acid in acetonitrile (solvent B). The column was equilibrated 

in 98% A and the gradient was 98%-72% A over 10 min, 72%-0% A over 0.1 

min, hold at 100% B for 5.9 min. A flow rate of 800 µL min-1 was used and the 

injected sample volume was 2 µL. Tandem mass spectrometry was performed 

on an API 3200 mass spectrometer (Applied Biosystems) with turbo ion spray 

in positive mode using the following parameters: Ion spray voltage (IS) 1500 V; 

auxiliary gas temperature (TEM) 700ºC; curtain gas (CUR), nebulizer gas 

(GS1), and auxiliary gas (GS2) 20, 70, and 70 arbitrary units, respectively; 

collision gas medium. Entrance potential (EP) was set at 10 V, declustering 

potential (DP) at 20 V, collision energy (CE) at 30 V, and collision cell exit 

potential (CXP) at 5 V. Quantitative determination was performed in multiple 

reaction-monitoring (MRM) mode using one transition for the analyte and one 

for the internal standard, according to the manufacturer’s instructions. 

Processing of the chromatograms was performed using a beta version of the 

Cliquid® software (Appl. Biosys.) for automated tracking of mass traces and 

stable isotope ratio analysis. A chromatogram of a urinary sample, using MRM, 

is shown in Figure 28. 
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Figure 28: Separation of 44 amino acids in an urine sample on a C18 column with iTRAQ® 

(labeled with numbers) in MRM mode, divided into 4 different time windows. Labeled peaks are 
the derivatives of: 1) Pser, 2) PEtN, 3) Tau, 4) Asn, 5) Ser, 6) Hyp, 7) Gly, 8) Gln, 9) Asp, 10) 
EtN, 11) Cit, 12) Sar, 13) bAla, 14) Ala, 15) Thr, 16) Glu, 17) His, 18) M1His, 19) M3His, 20) 
Hcit, 21) GABA, 22) ßAib, 23) Abu, 24) Aad, 25) Ans, 26) Car, 27) Pro, 28) Arg, 29) Hly, 30) 
Orn, 31) Cth, 32) Cys-Cys, 33) Asa, 34) Lys, 35) Val, 36) Nva, 37) Met, 38) Tyr, 39) Hcys, 40) 
Ile, 41) Leu, 42) Nle, 43) Phe, 44) Trp. 

 

6.2.3 Amino acid analyzer 

The amino acid analyzer Biochrom 30 was used (Laborservice Onken, 

Gründau, Germany) for the analysis of the first batch of urine specimens. 

Sample preparation and analysis were performed using the manufacturer’s 

standard protocols, including protein precipitation with sulfosalicylic acid before 

chromatographic separation. The amino acids were eluted with lithium citrate 

buffer from a cation-exchange column using a step gradient, followed by post-

column ninhydrin derivatization and UV absorbance detection at 570 nm and 

440 nm, respectively. Data on urinary levels of 21 selected amino acids for the 

second batch of specimens had been measured previously at the INTERMAP 
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central laboratory in Leuven, Belgium, using a Biochrom 20 (Biochrom Ltd, 

Cambridge, UK) amino acid analyzer. 

6.2.4 Statistics 

Intra-specimen reliability of amino acid duplicate and triplicate measurements 

was tested separately on the 34 and 144 urine specimens of batches 1 and 2, 

respectively, by calculating the technical error (TE) of measurements, which is 

interpreted to be the typical magnitude of measurement error that one can 

expect to incur.65 It was computed as the square root of the sum of variance 

between corresponding measurements divided by the number of urine 

specimens analyzed. For calculation of percent TE (%TE), TE was divided by 

the mean of all split sample values and multiplied by 100. Pearson’s correlation 

analysis was implemented to calculate the association between the three 

techniques for each urinary amino acid. The Bland-Altman test66 was employed 

to determine the 95% limits of agreement between the techniques. The urinary 

amino acid concentrations measured are reported as micromolar (µmol/L) 

ranges both uncorrected and corrected for the molar concentration of urinary 

creatinine, which had been measured previously at the INTERMAP central 

laboratory in Leuven by the Jaffe method.63 The uncorrected values are given 

for direct comparison of urinary amino acid concentrations with the respective 

lower limits of quantitation (LLOQ) for GC-MS and iTRAQ®-LC-MS/MS. The 

LLOQ is defined as the lowest point of the calibration curve that can be 

determined with 80-120% accuracy, in agreement with the FDA Guide for 

Bioanalytical Method Validation.48 We abstained from reporting means and 

standard deviations for urinary amino acid concentrations because of the small 

number of ethnogeographically diverse specimens. Data were analyzed using 

SAS/STAT 9.1 software (SAS Institute Inc., Cary, NC) and descriptive statistical 

functions implemented in Excel® 2004 for Mac (version 11.4.1, Microsoft Corp., 

Redmond, WA). 
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6.3 Results and Discussion 

6.3.1 Reproducibility 

First a blinded set of 98 urine samples was analyzed by GC-MS, iTRAQ®-LC-

MS/MS and the amino acid analyzer. The set comprised 34 different urine 

specimens, from which 2 or 3 replicate aliquots had been prepared. All 34 urine 

specimens were analyzed by the amino acid analyzer, while only 33 and 31 

specimens were subjected to GC-MS and iTRAQ®-LC-MS/MS, respectively, 

due to specimen volume limitations. Not all amino acids and their derivatives 

were amenable to analysis by all three methods and the same applied to the 

availability of stable isotope labeled internal standards for GC-MS analysis 

(Table 11). 

  
Table 11: List of amino acids amenable to analysis by each of the three methods. 

Amino Acid Abbreviation iTRAQ GC-MS Biochrom30 
α-Aminoadipic Acid Aad Χ X Χ 
α -Aminobutyric acid Abu Χ Χ Χ 
Alanine Ala  Χ Χ Χ 
Anserine Ans Χ  Χ 
Arginine Arg Χ  Χ 
Argininosuccinic Acid Asa Χ   
Asparagine Asn Χ Χ Χ 
Aspartic Acid Asp Χ Χ Χ 
β-Alanine β-Ala X   
β-Aminoisobutyric acid βAib Χ Χ Χ 
Carnosine Car Χ  Χ 
Citrulline Cit Χ  Χ 
Cystathione Cth Χ Χ Χ 
Cystine Cys-Cys Χ Χ Χ 
Ethanolamine EtN Χ  Χ 
γ-Aminobutyric Acid GABA Χ  Χ 
Glutamine Gln Χ Χ Χ 
Glutamic acid Glu Χ Χ Χ 
Glycine Gly Χ Χ Χ 
Glycine-Proline Gpr  Χ  
Homocitrulline Hcit Χ   
Homocystine Hcys    
Hippuric acid Hip  Χ  
Histidine His Χ Χ Χ 
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Hydroxylysine Hyl Χ X Χ 
Hydroxyproline Hyp Χ X  
allo-Isoleucine allo-Ile  Χ  
Isoleucine Ile Χ Χ Χ 
Leucine Leu Χ Χ Χ 
Lysine Lys  Χ Χ Χ 
1-Methylhistidine M1His Χ  Χ 
3-Methylhistidine M3His Χ  Χ 
Methionine Met Χ Χ Χ 
Ornithine Orn Χ Χ X 
Phosphoethanolamine PEtN Χ  Χ 
Phenylalanine Phe Χ Χ X 
Proline Pro Χ Χ  
Phosphoserine Pser Χ  Χ 
Sarcosine Sar Χ Χ Χ 
Serine Ser Χ  Χ 
Taurine Tau Χ  Χ 
Threonine Thr Χ  Χ 
Tryptophan Trp Χ Χ Χ 
Tyrosine Tyr Χ Χ Χ 
Valine Val Χ Χ Χ 

Number of analytes covered by the different methods ranged from 26 analytes 

for GC-MS to 40 and 42 for the amino acid analyzer and iTRAQ®-LC-MS/MS, 

respectively. As described previously,47 urinary serine, threonine, 

hydroxylysine, and hydroxyproline, could not be measured reliably by the GC-

MS method because of secondary interactions of their underivatized hydroxyl 

group with the liner in the injector, resulting in increasingly broader peaks within 

only a few injections. In addition, anserine, arginine, argininosuccinic acid, 

carnosine, citrulline, ethanolamine, γ-aminobutyric acid, homocitrulline, 

phosphoethanolamine, phosphoserine, taurine, and the methylhistidines were 

not amenable to GC-MS because of either their thermal instability (e.g., 

arginine) or low vapor pressure and high polarity (e.g., phosphoethanolamine). 

Quantification of ß-alanine by iTRAQ® was impeded by coeluting matrix 

components, hence it was excluded. Urinary levels of some amino acids, such 

as phosphoserine, cystathionine and proline, were low and, consequently, not 

all urine specimens analyzed yielded concentration values above the lower 

limits of quantitation, which are listed together with the ranges of urinary amino 

acid levels observed for both batches of urine specimens in Table 12.  
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Table 12: Range of urinary amino acid concentrations [µmol/L] uncorrected and corrected for 
urinary creatinine [µmol/mmol creatinine] in batches 1 and 2 (434 and 433 urine aliquots, 
respectively), and LLOQs [µmol/L] for GC-MS and iTRAQ®-LC-MS/MS. 

Amino 
Acid 

 

GC-MS 
(N=434) 
µmol/L 

iTRAQ® 
(N=433) 
µmol/L 

GC-MS 
µmol/mmol 
creatinine* 

iTRAQ® 
µmol/mmol 
creatinine* 

GC-
MS 
LLOQ 
µmol/L 

iTRAQ® 

LLOQ 
µmol/L 

Aad <3.00 – 99.28 3.58 – 153.12 0.05 – 0.83 0.07 – 1.22 3 0.5 
Abu 0.38 – 35.80 <0.5 – 40.40 0.01 – 0.23 0.02 – 0.27 0.3 0.5 
Ala 19.56 – 1072.70 22.19 – 1376.46 0.4 – 7.82 0.39 – 10.9 0.3 1 
Ans UD <1.00 – 806.71 - 0.01 – 9.12 - 1 
Arg UD <5.00 – 128.58 - 0.06 – 1.73 - 5 
Asa UD <5 – 37.83 - 0.03 – 0.49  5 
Asn 10.62 – 550.48 17.31 – 713.97 0.22 – 5.0 0.36 – 6.39 12 5 
Asp <3.00 – 65.44 0.66 – 49.67 0.02 – 0.48 0.01 – 0.35 3 0.5 
βAib 6.50 – 2299.96 4.64 – 2523.59 0.09 – 27.3 0.06 – 23.05 0.9 0.5 
Car UD 1.43 – 260.80 - 0.02 – 5.87 - 1 
Cit UD <0.50 – 30.80 - 0.09 – 0.4 - 0.5 

Cys-Cys <12.00 – 355.24 <10 – 1491.36 0.15 – 2.43 0.21 – 15.62 12 10 
EtN UD 60.45 – 803.76 - 0.67 – 10.53 - 0.5 

GABA UD <1 – 23.96 - 0.01 – 0.49 - 1 
Gln 32.06 – 1753.00 37.15 – 1867.69 0.66 – 21.51 0.59 – 31.49 30 0.5 
Glu 1.60 – 38.76 2.18 – 36.19 0.06 – 0.72 0.05 – 0.65 3 0.5 
Gly 70.60 – 5175.28 124.50 – 6524.52 1.44 – 69.44 1.89 – 121.8 3 0.5 
Gpr <3.00 – 35.36 UD 0.02 – 0.45 - 3 - 
Hcit UD <5.00 – 163.69 - 0.07 – 1.13 - 5 
Hip 42.08 – 5148.88 UD 0.34 – 111.3 - 30 - 
His 54.58 – 2444.74 55.27 – 2865.53 1.16 – 19.25 0.95 – 34.4 12 0.5 
Hyl UD <1.00 – 76.31 - 0.02 – 0.94 12 1 
Hyp UD <0.5 – 65.15 - 0.003 – 0.41 3 0.5 

Allo-Ile <0.9 – 10.3 UD 0.004 – 0.06 - 0.9 - 
Ile 1.44 – 40.72 1.47 – 51.24 0.03 – 0.25 0.03 – 0.32 0.9 0.5 

Leu 3.42 – 96.56 3.63 – 103.33 0.07 – 0.63 0.07 – 2.45 0.3 0.5 
Lys 7.06 – 1862.82 8.6 – 2206.81 0.14 – 25.0 0.15 – 29.61 0.9 0.5 
Met <3.00 – 18.90 <0.5 – 18.81  0.01 – 0.13 0.004 – 0.24 3 0.5 

M1His UD 7.98 – 5614.71 - 0.1 – 63.44 - 1 
M3His UD 10.15 – 2966.78 - 0.14 – 40.04 - 0.5 

Orn 1.66 – 75.78 <5.00 – 110.66 0.03 – 1.02 0.04 – 1.49 0.9 5 
PEtN UD 2.40 – 106.43 - 0.05 – 0.9 - 0.5 
Phe 6.62 – 192.74 6.50 – 220.00 0.12 – 1.14 0.12 – 1.2 0.9 0.5 
Pro 0.94 – 24.60 <5 – 24.19 0.02 – 0.32 0.03 – 0.25 0.3 5 
Sar 0.92 – 7.94 0.6 – 11.01 0.01 – 0.14 0.01 – 0.14 0.9 0.5 
Ser UD 48.99 – 1092.64 - 0.72 – 9.77 - 0.5 
Tau UD 11.88 – 5238.65 - 0.27 – 71.84 - 1 
Thr UD 10.33 – 498.27 - 0.2 – 6.11 - 1 
Trp 5.88 – 242.08 7.17 – 269.72 0.12 – 1.3 0.1 – 1.45 0.3 0.5 
Tyr 8.76 – 350.36 8.8 – 363.43 0.18 – 2.03 0.14 – 2.4 0.9 1 
Val 4.98 – 136.10 4.21 – 146.67 0.1 - 0.82 0.1 – 0.92 0.3 1 

*Ranges are only given for amino acid concentrations above the LLOQ, UD, undeterminable. 
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For amino acids, for which not all urine specimens could be included in 

computation of %TE due to limits of quantitation, the actual number of 

specimens is given in brackets next to the %TE value in Table 13. Average 

percent technical error (%TE) over all sample replicates was calculated for 

each amino acid in Table 13. 

 

Table 13: Percent technical errors computed from duplicate and triplicate measurements of 
urinary amino acids for batches #1 and #2 of urine specimens. Number of duplicates or 
triplicates used for computing percent technical error is given in brackets. Urine specimens with 
amino acid levels below the lower limit of quantitation were excluded. 

First batch Second batch Amino 
acid 

 
iTRAQ 
(N=31) 

GC-MS 
(N=33) 

Biochrom30 
(N=34) 

iTRAQ 
(N=143) 

GC-MS 
(N=144) 

Biochrom20 
(N=101) 

Aad 11.08 34.84 (30) 6.72 22.73 4.08 ND 
Abu 22.15 (30) 56.54 5.26 20.37 6.63 ND 
Ala 9.90 16.33 2.20 23.54 3.38 4.02 
β-Ala UD ND 5.65 (10) UD ND ND 
Ans 46.81 (22) UD 5.24 (18) 50.53 (132) UD ND 
Arg 17.67 (28) UD 7.45 22.25 (140) UD 15.60 (84) 
Asa <LLOQ UD <LLOQ 43.15 (94) UD ND 
Asn 13.40 16.21 5.00 18.86 4.16 5.86 
Asp 21.43 12.80 (16) 12.00 25.55 15.02 (138) ND 
β-Aib 64.26 33.49 10.95 (30) 63.99 11.02 ND 
Car 18.59 UD 9.36 (3) 29.32 UD 8.23 (100) 
Cit 22.45 UD 6.60 30.01 (141) UD ND 
Cth 8.72 (9) 13.18 (6) 17.62 (26) 25.81 (6) 9.98 (18) ND 

Cys-Cys 14.91 31.65 3.29 73.31* (142) 14.02 (139) 5.84 
EtN 7.30 UD 5.27 13.88 UD 7.53 

GABA 26.01 (22) UD 25.42 26.57 UD ND 
Gln 25.11 22.70 3.98 22.27 13.95 3.84 
Glu 11.99 19.92 19.03 (32) 22.03 3.93 ND 
Gly 13.91* (30) 19.22 2.98 40.64 4.47 2.66 
Gpr UD 36.25 (17) ND UD 28.69 (121) ND 
Hcit 21.50* (26) UD ND 30.24 (138) UD ND 
Hip UD ND UD UD 25.08 UD 
His 18.26 10.14 2.13 27.15 4.39 3.30 
Hyl 33.72 (28) UD 11.72 (24) 43.01 (133) UD ND 
Hyp 36.93 (31) UD <LLOQ 23.05 (37) UD ND 

allo-Ile UD <LLOQ ND UD 5.23 (30) ND 
Ile 6.60 15.24 16.05 (28) 18.32 5.22 16.86 (60) 

Leu 52.15 14.29 9.06 (30) 16.59 4.13 ND 
Lys 18.96 20.73 6.27 50.60 4.53 5.72 
Met 16.12 (27) 20.16 (8) <LLOQ 115.64 (102) 10.30 (79) 19.01 (95) 

M1His 14.89 UD 6.76 35.78 UD 3.30 
M3His 17.01 UD 2.92 21.17 UD 4.80 
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Orn 15.40 (25) 23.11 4.00 33.76 (121) 9.13 ND 
PEtN 6.90 UD 5.58* (33) 17.56 UD ND 
Phe 11.92 16.15 4.07 16.45 4.10 10.60 (99) 
Pro 7.51 (7) 18.76 <LLOQ 18.21 (89) 5.65 ND 
Pser 13.11 (2) UD <LLOQ 23.05 (37) UD ND 
Sar 22.20 ND 11.40 (32) 23.74 7.49 (104) ND 
Ser 19.28 UD 2.39 15.38 UD 3.56 (100) 
Tau 15.75 UD 4.53 20.84 UD 3.01 
Thr 13.33 UD 2.56 23.75 UD 4.18 
Trp 9.49 12.80 5.04 18.22 4.29 12.69 (82) 
Tyr 9.51 22.10 2.57 16.30 4.37 6.63 
Val 7.74 12.15 7.15 18.54 3.85 12.07 (98) 

*One outlier exceeding 8 SDs of the mean excluded;  
ND, not determined;  
UD, undeterminable. 

 

 For 20 urinary amino acids, quantitative data were available from all three 

methods; the following comparison of reproducibility is limited to those analytes. 

Mean ± SD of %TE (range) for the 20 amino acids was 7.27±5.22 (2.13-19.03), 

21.18±10.94 (10.14-56.54), and 18.34±14.67 (6.60-64.26), respectively, for 

amino acid analyzer, GC-MS, and iTRAQ®-LC-MS/MS. For α-aminoadipic acid 

(Aad), α-aminobutyric acid (Abu), ß-aminoisobutyric acid (β Aib), cystathionine 

(Cth), and cystine (Cys-Cys), no stable isotope labeled standards had been 

available for GC-MS analysis of the first batch of urine specimens. As a result, 

the concentrations of Aad, Abu, β-Aib, Cth, and Cys-Cys, had to be calculated 

using the nearest eluting stable isotope standard as a reference. However, this 

fails to account fully for any variation of ionization that may occur between 

analyses and, therefore, technical error is expected to be higher. This was 

confirmed by excluding Aad, Aba, βAib, and Cys-Cys, from computation of TE. 

For GC-MS, %TE improved from 21.60±11.07 (mean ± SD) to 16.93±4.15, 

range 10.14-23.11. For iTRAQ®-LC-MS/MS, the corresponding values also 

improved slightly from 18.85±14.89 to 16.38±11.19, range 6.60-52.15, due to 

omission of the high %TE associated with the measurement of βAib. 

Limiting the above comparison to amino acid analyzer and iTRAQ®-LC-MS/MS 

and the 34 amino acids that could be measured by both methods, mean ± SD 
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(range) of %TE was 7.43±5.43 (2.13-25.42) and 19.08±12.92 (6.60-64.26), 

respectively. 

GC-MS and iTRAQ®-LC-MS/MS were further evaluated with a second batch of 

341 split samples from 144 INTERMAP urine specimens randomly selected 

from the same five population samples used for the first batch. For 101 urine 

specimens from these population samples, urinary levels of 21 selected amino 

acids had been analyzed previously in duplicate at the INTERMAP central 

laboratory using a Biochrom 20 amino acid analyzer. For 13/21 amino acids 

with urinary levels determined successfully by amino acid analyzer, GC-MS, 

and iTRAQ®-LC-MS/MS, mean ± SD (range) of %TE was 8.39±5.35 (2.66-

19.01), 6.23±3.84 (3.38-14.02), and 35.37±29.42 (16.30-115.64), respectively. 

Excluding methionine, whose urinary levels were the least reproducible for 

amino acid analyzer and iTRAQ®-LC-MS/MS with %TEs of 19.01 and 115.64, 

respectively, reduced the corresponding average %TEs to 7.51±4.48, 

5.89±3.80, and 28.68±17.59. Expanding the comparison to all 21 amino acids 

amenable to both amino acid analyzer and iTRAQ®-LC-MS/MS yielded average 

%TEs of 7.59±4.96 and 30.90±23.88, respectively. 

Overall, including the %TEs of all amino acids whose urinary levels could be 

determined (Table 13), the amino acid analyzer yielded the most consistent 

results with average %TEs of 7.43±5.43 and 7.59±4.96 (mean ± SD) for 

batches 1 and 2, respectively, despite the fact that the measurements had been 

done on different instruments at different locations. GC-MS matched the 

reliability of the amino acid analyzer for the second batch of urine specimens 

only with an average %TE of 8.28±6.64, while the average %TE for the first 

smaller batch of urine specimen had been 21.69±10.67. There is no obvious 

reason for the improvement in precision for the second batch other than the 

gain in experience over time by the operator of GC-MS. Reproducibility of GC-

MS measurements depends to a significant extent on the availability of stable 

isotope labeled amino acid standards that allow to account for variation of 

electron impact ionization due to matrix effects. This is immediately obvious 

from comparing the average %TE of 5.87±3.59 for the 17 amino acids, for 
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which stable isotope labeled internal standards were available, with the 

average %TE of 13.03±8.31 for the 8 amino acids, whose concentrations were 

determined using the nearest eluting stable isotope labeled standard as 

reference. Hence, further improvements of GC-MS performance will depend on 

the successful synthesis of additional stable isotope labeled amino acids. This 

will not benefit the most significant drawback of GC-MS, namely, the 

comparatively small number of only 26 urinary amino acids and related amines 

amenable to successful analysis versus 34 and 40 for amino acid analyzer and 

iTRAQ®-LC-MS/MS, respectively. The latter method also carries the advantage 

of having stable isotope labeled internal standards available for 44 amino acids, 

including norleucine and norvaline that are added to biological samples to 

account for extraction and derivatization efficiency, respectively. As a 

consequence, one would expect iTRAQ®-LC-MS/MS to be highly reproducible. 

But for reasons discussed below, iTRAQ®-LC-MS/MS yielded the highest 

average %TE of 30.38±19.16 for the second batch of urine specimens and 

surpassed only slightly GC-MS with an average %TE of 19.08±12.58 for the 

first batch. 

6.3.2 Correlation between methods 

The second batch of urine samples had been analyzed previously on a 

Biochrom 20 amino acid analyzer at the INTERMAP central laboratory in 

Leuven, Belgium. These data and those obtained by GC-MS and iTRAQ®-LC-

MS/MS were correlated with each other; Pearson r-values are listed in Table 

14. The Pearson’s correlation coefficients for the 12 amino acids that could be 

measured by both GC-MS and the amino acid analyzer ranged from 0.800 

(Trp) to 0.980 (Gly). GC-MS and iTRAQ®-LC-MS/MS had 19 amino acids in 

common and showed generally good correlation (cystathionine was excluded, 

because its urinary levels were with few exceptions below the LLOQs of GC-

MS and iTRAQ®-LC-MS/MS). The single exception was the sulfur containing 

amino acid cystine (r=0.822). The correlation coefficients for the remaining 18 

analytes ranged between 0.934 (Glu) and 0.988 (Tyr). Urinary levels of 20 
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amino acids were available for the comparison of iTRAQ®-LC-MS/MS with the 

amino acid analyzer. Correlation coefficients for arginine (0.561), carnosine 

(0.801), cystine (0.811), isoleucine (0.802), taurine (0.885) tryptophan (0.764), 

and tyrosine (0.780) were poor. The correlation coefficients for the remaining 

13 amino acids varied from 0.899 (Phe, Val) to 0.951 (Lys). 

 

Table 14: Pearson correlation coefficients (R) and slopes computed from the mean 
concentrations of duplicate and triplicate measurements of 144 urine specimens using the 
amino acid analyzer Biochrom 20 , GC-MS and iTRAQ® -LC-MS/MS. 

Amino 
Acid 

GC-MS vs. 
Biochrom 20 

iTRAQ®-LC-MS/MS 
vs. GC-MS 

iTRAQ®-LC-MS/MS 
vs. Biochrom 20 

 R slope R slope R Slope 
Aad - - 0.968 1.258 - - 
Abu - - 0.953 0.974 - - 
βAib - - 0.967 0.722 - - 
Ala 0.970 0.928 0.979 1.175 0.944 0.823 
Arg - - - - 0.561 0.900 
Asn 0.953 0.719 0.986 1.050 0.940 1.170 
Asp - - 0.929 0.618 - - 
Car - - - - 0.801 1.462 
Cys 0.944 0.684 0.822 1.49 0.811 0.616 
EtN - - - - 0.917 0.873 
Glu - - 0.934 0.752 - - 
Gln 0.956 1.111 0.958 0.628 0.938 1.231 
Gly 0.980 0.968 0.937 1.198 0.921 0.730 
His 0.969 1.056 0.965 1.042 0.940 0.799 
Ile 0.812 0.812 0.976 1.059 0.802 0.737 

Leu - - 0.984 0.997 - - 
Lys 0.969 0.966 0.977 0.963 0.951 0.968 

M1His - - - - 0.934 0.799 
M3His - - - - 0.906 0.753 

Orn - - 0.963 1.310 - - 
Phe 0.909 0.778 0.986 1.018 0.899 1.015 
Ser - - - - 0.939 0.856 
Tau - - - - 0.885 0.694 
Thr - - - - 0.946 1.071 
Trp 0.800 0.782 0.981 0.907 0.760 0.841 
Tyr 0.844 0.525 0.988 0.974 0.807 1.318 
Val 0.912 0.995 0.983 0.952 0.899 0.851 
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6.3.3 Bland-Altman plots 

Bland-Altman plots depict agreement between two different analytical methods: 

This graphical method plots the concentration difference between the two 

techniques for each specimen against the average of the two techniques. In 

addition, the mean difference (đ) and lower and upper limits of agreement are 

shown as horizontal lines. The limits of agreement are defined as the mean 

difference plus/minus 1.96 times the standard deviation (đ ± 1.96 SD). The 

mean difference, limits of agreement and the type of plot obtained are listed in 

Table 15.  

 

Table 15: Mean differences (⎯d) and limits of agreement (⎯d ± 1.96 SD) between methods in 
µM and types of Bland-Altman plots (TP*). 

AA Biochrom vs. GC-MS GC-MS vs. iTRAQ BIOCHROM vs. iTRAQ 

 ⎯ đ ±1.96 SD TP ⎯ đ ±1.96 SD TP đ ±1.96 SD TP 

Aad    -7.45 -24.95 – 10.04 E    

Abu    -0.89 -4.96 – 3.18 A    

bAib    98.96 -320.6 – 518.6 D    

Ala 23.2 -55.7 – 102.0 A -11.2 -134.1 – 111.7 F 11.9 -135.9 – 159.8 A 

Arg       -4.76 -42.1 – 32.5 C 

Asn 31.57 -39.2 – 102.4 D -7.96 -49.1 – 33.1 F 23.7 -54.0 – 101.4 F 

Asp    4.54 -2.1 – 11.1 D    

Car       70.8 1.1 – 140.5 D 

Cys 18.0 

-14.8 – 50.8 D 

-26.29 

-139.31 – 86.72 E 

-8.27

-117.83 – 

101.28 

E 

EtN       -15.1 -127.6 – 97.5 A 

Gln - 59.3 -219.9 – 101.3 C 141.7 -83.0 – 366.3 D 82.4 -84.7 – 249.4 D 

Glu    2.95 -3.3 – 9.2 B    

Gly 2.2 -292.1 – 296.5 A -44.9 -927.0 – 837.2 A -42.6 -954.8 – 869.6 A 

His - 44.0 -254.4 – 166.3 E -2.53 -340.7 – 335.7 F -46.6 -440.3 – 347.1 F 

Ile - 1.9 -6.2 – 2.4 C -0.75 -4.5 – 3.0 A -2.7 -8.5 – 3.1 C 

Leu    -0.12 -8.2 – 8.0 A    

Lys 68.5 -67.3 – 204.3 D 1.8 -192.6 – 196.1 F 70.4 -158.0 – 298.8 F 

M1Hi

s  

  

 

  

28.9 

-524.0 – 581.7 A 
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M3Hi

s  

  

 

  

-8.3 

-107.5 – 90.9 A 

Orn    -2.8 -14.3 – 8.7 E    

Phe 6.4 -16.6 – 29.3 B -2.7 -15.6 – 10.1 A 3.7 -22.0 – 29.3 A 

Ser       -3.0 -128.6 – 122.7 A 

Tau  

  

 

  -

121.

5 

-993.1 – 750.2 E 

Thr       23.2 -48.3 – 94.8 B 

Trp -9.03 -48.5 – 30.4 C 5.1 -11.0 – 21.3 A -4.7 -33.9 – 24.4 A 

Tyr 5.49 -82.2 – 93.2 A 2.7 -20.0 – 25.4 A 4.86 -38.5 – 48.2 A 

Val - 2.35 -16.3 – 11.6 F 1.4 -8.0 – 10.8 F -0.94 -17.0 – 15.1 F 

*A, methods are interchangeable; B, absolute mean difference between two methods has a 
positive value exceeding 15% of mean concentration for all measurements; C, absolute mean 
difference between two methods has a negative value exceeding 15% of mean concentration for 
all measurements; D, absolute mean difference becomes proportionatly more positive the higher 
the analyte concentration; E, absolute mean difference becomes proportionatly more negative the 
higher the analyte concentration; F, absolute mean difference increases with analyte 
concentration. 
 

Since it is not possible to display all plots, each Bland-Altman plot was 

categorized according to its graphical appearance and six major plot types 

were defined. 

Type A: Type A represents the ideal agreement between two methods. The 

mean difference is almost zero and the individual differences scatter randomly 

with no apparent systematic error. For type A plots, the mean of the difference 

is lower than 15 % of the mean concentration over all measurements obtained 

with two methods. A typical plot is shown in Figure 29 a for glycine (comparison 

of GC-MS to iTRAQ®-LC-MS/MS). Here the mean of the concentration over all 

measurements for both methods is 991.6 µmol/L and the mean of the 

difference is -44.9 µmol/L. 

Type B: If the mean difference has a negative value and is higher than 15 % of 

the mean concentration over all measurements, the Bland-Altman plot is 

labeled as type B. In this case an absolute systematic error is detected, 

because the first analytical method underquantifys compared to the second 

method as is exemplified in Figure 29 b for the analysis of arginine by Biochrom 

and iTRAQ®-LC-MS/MS. 
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Type C: Type C equals type B, but the mean difference has a positive value 

indicating that the first method overquantifys relative to the second method. An 

example is shown in Figure 29 c for glutamic acid and the comparison of GC-

MS with iTRAQ®-LC-MS/MS. 

Type D: Type D plots represent a proportional error in the agreement between 

the methods. In this case the first method underquantitates the more the higher 

the concentration of the analyte. An example for type D is the comparison 

between Biochrom and GC-MS for lysine (Figure 29 d). 

Type E: In case of type E plots the first method overquantitys the more the 

higher the concentration of the analyte. This is exemplified for the comparison 

between GC-MS and iTRAQ®-LC-MS/MS for cystine (Figure 29 e).  

Type F: Type F indicates that variation of at least one method depends strongly 

on the magnitude of measurements as shown in Figure 29 f for valine 

(Biochrom vs. iTRAQ®-LC-MS/MS).  
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Figure 29: Different types of Bland-Altman plots: (a) type A with glycine shown as an example; 
(b) type B with arginine as an example; (c) type C with glutamic acid as an example; (d) type D 
with lysine as an example; (e) type E with cystine as and example; and (f) type F with valine as 
an example. 

 

Overall, only 19 out of 51 (37.3%) Bland-Altman plots revealed an excellent 

type A agreement between any of two methods compared. Glycine and tyrosine 

were the only amino acids with quantitative data that agreed well across all 

three methods, i.e. for these amino acids the three methods are 

interchangeable. For phenylalanine and tryptophan, type A agreements were 

observed between GC-MS and iTRAQ®-LC-MS/MS as well as BIOCHROM and 

iTRAQ®-LC-MS/MS, while absolute systematic errors were found between 

BIOCHROM and GC-MS, with the former method either slightly under- (Trp) or 

overquantifying (Phe) in comparison to GC-MS. In case of isoleucine, 
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BIOCHROM underquantitated relative to both GC-MS and iTRAQ®-LC-MS/MS, 

while the latter two methods showed type A agreement. Overall, absolute 

systematic errors were observed in 8 (15.7%) instances; proportional errors, i.e. 

mean difference rises (type D) or falls (type E) with increasing urinary amino 

acid concentrations, in 8 (15.7%) and 6 (11.8%) cases, respectively; in 10 

(19.6%) cases, variation of at least one method depended strongly on 

magnitude of measurements (type F), i.e. error proportional to concentration of 

the quantity being measured. 

Especially, since only 7 out of 19 (36.8%) comparisons between GC-MS and 

iTRAQ® showed excellent agreement over the urinary amino acid 

concentrations measured, and 5 other comparisons revealed a multiplicative 

error (type F), we validated the accuracy of these methods using a NIST 

certified amino acid standard. 

6.3.4 Validation with a certified standard 

The certified NIST standard, comprising a total of 17 amino acids, was 

analyzed to validate GC-MS and iTRAQ®-LC-MS/MS. We quantitated 16 

amino acids with the GC-MS method. Arginine could not be determined due to 

the thermal instability of its propyl chloroformate derivative. An excellent 

correspondence with the NIST certified values was obtained for all amino acids 

measured by GC-MS and iTRAQ®-LC-MS/MS (Figure 30). The recoveries for 

GC-MS varied from 98-111% and for iTRAQ®-LC-MS/MS from 91-106%. 

Overall, GC-MS tended to overestimate the NIST certified values by 

5.33±3.70% (mean ± standard deviation), whereas iTRAQ®-LC-MS/MS, on 

average, matched the certified values well with -0.04±4.18%. The 

reproducibility of the GC-MS data was excellent with relative standard 

deviations (RSDs) of about 1% (based on 6 replicate measurements) for most 

amino acids. The iTRAQ®-LC-MS/MS data showed RSDs of about 3-6% based 

on 40 replicate measurements. 
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Figure 30: Arithmetic means and standard deviations of amino acid concentrations [mM] in a 
NIST-certified standard that was analyzed by GC-MS (n=6) and LC-MS/MS (n=40). 

 
Both GC-MS and iTRAQ®-LC-MS/MS quantitated accurately the concentration 

of cystine in the acidified NIST standard, which does not contain any free 

cysteine. In urine, however, iTRAQ®-LC-MS/MS consistently overquantitated 

cystine with the difference from GC-MS and the amino acid analyzer becoming 

greater with higher urinary cystine levels (Table 14, Figure 29 e). Cysteine may 

oxidize under non-acidic conditions to cystine; the rapid disappearance of small 

amounts of urinary cysteine has been reported in non-acidified urine in contact 

with air.67 Although the urine specimens were alkalized with borate buffer to pH 

8.5 for the labeling of amino acids with the iTRAQ® reagent, followed by the 

addition of a 1.2% hydroxylamine solution after completion of the labeling 

reaction to reverse partial labeling of the phenolic hydroxyl group of tyrosine 

and to stabilize cysteine to prevent its oxidation to cystine, the excess in urinary 

cystine by iTRAQ®-LC-MS/MS far exceeded the reported levels of urinary 
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cysteine, which is typically present at about 10% of cystine.67 Therefore, 

reasons other than the potential oxidation of cysteine to cystine have to account 

for the apparent overquantitation of urinary cystine. 

6.3.5 Comparison of methods 

Both, amino acid analyzer and iTRAQ®-LC-MS/MS require protein precipitation. 

GC-MS allows the direct derivatization of amino acids with propyl chloroformate 

in native urine and, therefore, automation of the entire analytical procedure. 

The urine volumes needed for GC-MS and iTRAQ®-LC-MS/MS analysis are 40-

50 µL, while 200 µL are required for the amino acid analyzer. Given that urine 

is typically available in large quantities, these differences in sample volume are 

negligible. 

A drawback of the amino acid analyzer is the typical runtime of 130 min. In 

contrast, total runtimes for GC-MS and iTRAQ®-LC-MS/MS are 20 and 25 min, 

respectively. The LLOQs for the amino acid analyzer (2-3 µmol/L) are also on 

average higher than those for GC-MS (0.3-30 µmol/L) and iTRAQ®-LC-MS/MS 

(0.5-10 µmol/L). 

A disadvantage of GC-MS is the smaller number of amino acids amenable to 

analysis. In principle, 33 urinary amino acids can be detected by GC-MS, but 

only 22 amino acids were measurable above the LLOQ in ≥ 80% of the 144 

urine specimens of the second batch. In contrast, it was possible to quantify 34 

analytes in at least 80% of the urine specimens by iTRAQ®-LC-MS/MS. 

The higher TEs of iTRAQ®-LC-MS/MS appear to be mainly due to excess of 

multiple reaction-monitoring transitions acquired in the third of the four 

predefined time windows. In the first, second, and fourth period, 3 (PSer, PEtN, 

Tau), 7 (Asn, Ser, Hyp, Gly, Gln, EtN, Asp), and 10 (Val, Nva, Met, Tyr, Hcy, 

Ile, Leu, Nle, Phe, Trp) amino acids are monitored, respectively. In contrast, in 

the third period 24 amino acids (Cit, Sar, bAla, Ala, Thr, Glu, His, 3MHis, 

1MHis, Hcit, Asa, GABA, bAib, Abu, Aad, Ans, Car, Pro, Arg, Hyl, Orn, Cth, 

Cys, Lys) are monitored, with only half as many data points recorded. This has 
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a significant influence on the reproducibility of peak areas. For the second 

batch of urine specimens, mean ± SD of %TE (range) was 33.09±14.60 (18.21-

73.31) for period 3, while it was (excluding methionine) 21.16±7.39 (13.88-

40.64) for periods 1, 2, and 4. This shortcoming may be alleviated by recent 

implementation of scheduled sMRM that allow definition of as many 

overlapping periods as there are amino acids, with each amino acid monitored 

only for the time period of its expected elution from the column. For maximum 

precision, chromatographic resolution of amino acids will have to be improved 

to limit number of overlapping periods. 

In conclusion, GC-MS and LC-MS/MS are attractive alternatives to the amino 

acid analyzer. The advantages of GC-MS are its complete automation, short 

runtime, and higher precision; its one limitation is the smaller number of amino 

acids amenable to analysis. In comparison, iTRAQ®-LC-MS/MS excels in 

greater number of amino acids amenable to analysis and current availability of 

42 stable isotope labeled standards. Incorporation of scheduled MRM, 

improved chromatographic resolution, and an advanced integration algorithm 

may improve reproducibility of the iTRAQ® method. 
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7 Combined amino and fatty acid analysis by GC-MS 

7.1 Introduction 

An important sub-compartment of the metabolome are lipids and their 

comprehensive analysis is the subject of lipidomics.68, 69 Lipids can be 

categorized into several classes, including for example non-esterified fatty 

acids (NEFAs), triglycerides and phospholipids. Essentially all NEFAs in serum 

are bound to albumin.70 Fatty acids are compound with a carboxyl group and an 

alkyl chain which is either saturated or unsaturated and differ in length. Most of 

the natural fatty acids have an even number of carbon atoms, usually 14, 16, 

18 or 20 because their biosynthesis involves acetyl-CoA, a coenzyme carrying 

a two-carbon-atom group. The double bond can occur in a cis or trans 

configuration. In general, the fatty acids in biological systems contain only cis 

double bonds. The most common fatty acids in mammals are shown in Table 1. 

Fatty acids, in particular stearic acid, oleic acid, linolenic acid and palmitic acid, 

are precursors for the synthesis of cholesterol and steroid hormones that 

regulate a wide range of functions, including blood pressure, blood clotting, 

blood lipid levels, immune and inflammatory responses to injury and infection.71, 

72 Several analytical methods have been developed for lipid analysis. Lipid 

extraction is commonly performed by Folch73 or Bligh & Dyer extraction.74 

Another approach is the determination of the fatty acid composition by GC-FID 

or GC-MS after conversion into fatty acid methyl esters (FAMEs). Esterification 

is achieved using acidic methanol75, iodomethane  or BF3/methanol. To avoid 

lengthy sample preparation steps Lepage & Roy developed a method for the 

direct transesterification of all classes of lipids in plasma using an acetyl 

chloride/methanol mixture.76 This method was further simplified by Masood et 

al. by introducing a one-step stock solution method, without the requirement for 

subsequent neutralization or centrifugation to separate phases.77 
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Table16: Common natural fatty acids (saturated and unsaturated) 

Common name 
of acid 

Abbreviation Chemical structur 

Saturated fatty acids 

Myristic acid C14:0 
HO

O

 

Palmitic acid C16:0 
HO

O

 

Stearic acid C18:0 
HO

O

 

Unsaturated acid 

Palmitoleic 
acid 

C16:1 
O

HO  

Oleic acid C18:1 
O

HO  

Linoleic acid C18:2 
O

HO

Arachidonic acid C20:4 
O

HO  

Docosahexanoic
acid 

C22:6 
O

HO

 

Husek et al. reported the applicapility of alkyl chloroformate derivatization to 

fatty acids.37 Mateo-Castro et al. used ethyl chloroformate derivatization in 

aqueous medium to analyze amino, fatty and bile acids by GC-FID in binders 

used in artistic paintings after the samples were hydrolyzed by HCl.78 Our aim 

was to integrate fatty acids in the fully automated quantitative method by GC-

MS using propyl chloroformate derivatization to analyze amino acids and fatty 
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acids in the same analysis. The analysis of the fatty acids should allow either 

the analysis of free fatty acids, or the total fatty acids from all lipid classes. Due 

to the behavior of propyl chloroformate in base as a good esterifying reagent, 

the fatty acids that are attached to other molecules should react with the 

reagent immediately. 

7.2 Materials and methods 

7.2.1 Chemicals 

The fatty acids C10:0, C12:0, C14:0, C16:1, C16:0, C18:1 cis, C18:0, C18:1 

trans, C18: 2, C18:3, C20:0, C20:4, C22:1, C22:0, C22:6, C24:1, and C24:0 

were purchased from Sigma. The [U-13C] fatty acid mix was from Medical 

Isotopes Inc. (Pelham, USA).  

7.2.2 Biological samples 

The applicability of the method was tested using human, mice and bovine 

serum. Human serum was collected from healthy volunteers. Bovine serum 

was provided by collaborators from the clinic for ruminants in the veterinary 

faculty of the Ludwig-Maximilians-University Munich (LMU). Mice serum was 

obtained from collaborators at the University of Regensburg. Due to low sample 

volume available from the latter, several samples were pooled to perform 

reproducibility studies. Twenty microliters of serum were always used.  

7.2.3 GC-MS analysis 

To that end, the method was adapted to allow the combined analysis of fatty 

acids and free amino acids in a single gas chromatographic run. The retention 

times and specific ion traces for the SIM analysis of the fatty acids C10:0, 

C12:0, C14:0, C16:1, C16:0, C18:1 cis, C18:0, C18:1 trans, C18:2, C18:3, 

C20:0, C20:4, C22:1, C22:0, C22:6, C24:1, and C24:0, as well as 25 

endogenous amino acids were determined and listed in Table 17. A 

temperature program was used starting at a temperature of 70°C and a heating 
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rate of 5°C/min to 300°C, and then held for 3 min. Column gas flow was set to 

1.1 mL He/min and a sample volume of 2.5 µL was injected with a split ratio of 

1:5. A stable isotope labeled fatty acid mix, containing uniformly 13C labeled 

C14:0, C16:0, C16:1, C18:0, C18:1 cis, C18:2 and C18:3 was integrated as 

internal standard for the fatty acids. The column and GC-MS is identical as 

discribed in chapter 5.2.3 

 
Table 17: Retention times and ion traces selected for the SIM analysis of endogenous amino 
acids plus norvaline and 17 fatty acids. Analytes printed in bold were quantified using the 
internal standard quantification trace of the corresponding stable-isotope labeled compound as 
reference. 

Analyte Retention 
time (min) 

Quantification 
trace 

Secondary 
ion trace 

Internal 
standard trace 

C10:0 10.78 173 214  
Alanine 12.45 130 88 133 
Sarcosine 12.9 130 217  
Glycine 13.19 102  105 
α-Aminobutyric acid 13.96 144 102  
Valine 14.64 158 116 163 
C12:0 14.92 183 242  
ß-Aminoisobutyric acid 13.19 116   
Norvaline 15.52 158 72  
Leucine 16.1 172 130 178 
allo-Isoleucine 16.24 172 130  
Isoleucine 16.46 172  178 
Proline 18.37 156  161 
C14:0 18.79 270 211 284 
Asparagine 19.04 155 69 160 
C16:1n7 22.39 296 237 312 
C16:0 22.36 298 239 314 
Aspartic acid 22.53 216 130 220 
Methionine 22.61 203 277 206 
Hippuric acid  134 105 139 
Glutamic acid 24.74 230  235 
Phenylalanine 24.73 190 206 199 
C18:1n9cis 25.59 324 265 342 
C18:0 25.68 326 267 344 
C18:1n9trans 25.71 324 265  
C18:2n6cis 25.85 322 263 340 
C18:3n3 26.28 320 261 338 
α-Aminoadipic acid 26.6 244  247 
Glutamine 28.41 84 187 89 
C20:0 28.7 354 354  
C20:4n6 28.73 346 287  
Ornithine 30.95 156 70  
C22:1n9 31.52 321 380  
C22:0 31.54 323 382  
C22:6n3 32.07 91 105  
Lysine 32.52 170 128 176 
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Histidine 33.59 282 168 290 
C24:1 34.2 349 408  
C24:0 34.19 410 351  
Tyrosine 35.28 107 206 114 
Tryptophan 36.8 130  140 
Cystathionine 37.51 203 272  
Cystine 41.3 248 216 252 

 

7.2.4 Derivatization 

Twenty microliters of serum were transferred together with 20 µL of a 

stabilization reagent containing 10% iso-propanol, 0.1% phenol and 2% 

thiodiglycol to a 2-mL autosampler vial. Then 10 µL of the stable isotope 

labeled fatty acid mix, containing uniformly 13C labeled C14:0, C16:0, C16:1, 

C18:0, C18:1 cis, C18:2 and C18:3 in n-propanol was added to the vial, 

followed by the addition of 10 µL of stable isotope labeled amino acid mix 

(descriped in chapter 5.2.4). Addition of the stable isotope labeled fatty acid mix 

was performed manually because addition of the n-propanol solution by the 

autosampler proved to be not reproducible (data not shown). The vial was then 

closed with a magnetic crimp cap to allow automated handling by the robot. 

The first step performed by the robot is the dilution of the sample with 135 µL 

water, followed by addition of 50 µL of n-propanol. Addition of n-propanol was 

performed, because for calibration purposes 50 µL of fatty acid standard in n-

propanol were used and the percentage of n-propanol in the reaction mixture 

should be kept constant. The next steps were identical to those described in 

chapter 5.2.4. 

7.2.5 Quantification 

Absolute quantification of 25 amino acids (alanine, sarcosine, glycine, α-

aminobutyric acid, valine, ß-aminoisobutyric acid, leucine, allo-isoleucine, 

isoleucine, proline, asparagine, aspartic acid, methionine, hippuric acid, 

glutamic acid, phenylalanine, α-aminoadipic acid, glutamine, ornithine, lysine, 

histidine, tyrosine, tryptophan, cystathionine and cystine) and 17 fatty acids 

(C10:0, C12:0, C14:0, C16:1, C16:0, C18:1 cis, C18:0, C18:1 trans, C18:2, 
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C18:3, C20:0, C20:4, C22:1, C22:0, C22:6, C24:1, and C24:0) was performed 

by analyzing standard solutions. Single stock solutions of the fatty acids were 

prepared in n-propanol at concentrations of 100 mM (C10:0, C12:0, C14:0, 

C16:0, and C18:1 trans, C18:3), 81mM (C16:1), 65.9mM (C22:0), 50mM 

(C18:2, C18:1 cis, C18:0, and C20:0), 39 mM (C24:0), 14 mM (C20:4), and 5 

mM (C22:6, C22:1, and C24:1). Using the single stock solutions a master mix 

of all fatty acids was prepared in n-propanol at a concentration of 1 mM for 

each analyte. A serial dilution containing 13 points of the master mix in n-

propanol was prepared resulting in a concentration range of 0.24 µM- 1000 µM, 

keeping the volume of propanol constant at 50 µL. 

7.3 Results and discussion 

7.3.1 Method development 

In comparison to the original protocol described in chapter 5 for the analysis of 

amino acids the number of amino acids quantified in the present method was 

modified. Threonine and serine were excluded because the quantification of 

these analytes proved to be not reproducible as already described in chapter 

5.3.9. Moreover, thiaproline, hydroxyproline, hydroxylysine, glycyl-proline, α-

aminopimelic acid and proline-hydroxyproline were not quantified because 

these analytes were not detected in the biological samples, specifically serum, 

analyzed so far in our laboratory. Another modification made to the original 

protocol is a longer temperature program. Using a temperature program with a 

start temperature of 70°C and a heating rate of 5°C/min provided sufficient 

separation of oleic (C18:1 n9 cis) and elaidic acid (C18:1 n9 trans). These two 

monounsaturated C18-acids yielded the same fragments after ionization by 

electron impact (EI) making baseline chromatographic separation crucial for 

their analysis. Stearic acid (C18:0) and elaidic acid were not baseline 

separated, but could be distinguished based on characteristic mass fragments. 

The ion traces for C18:0 and 18:1 isomers are shown in Figure 31. 
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Therefore, the molecular ion, although not being very intense, is used for 

quantification because this allows the differentiation between fatty acids with 

the same carbon number but different degrees of unsaturation, such as C18:0 

and C18:1 or C16:0 and 16:1. Figure 32 presents a typical chromatogram of the 

amino acids including norvaline and the 17 fatty acids. The analysis time was 

50 min.  

 

Figure 31: Separation of oleic acid (C18:1n9 cis), elaidic acid (C18:1 1n9 trans)and stearic acid 
(C18:0). 
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Figure 32: GC-MS analysis of fatty acids and amino acids standards after derivatization with propyl chloroformate.Analytes with their 
corresponding stable-isotope labeled are marked red.



 

7.3.2 Method characterization  

A calibration was carried out using 13 calibration points. Figures of merit and 

calibration curve parameters are presented in Table 18. The R square-value or 

coefficient of determination was calculated as the square of the correlation 

coeffiient R of the regression analysis over the quantification range. The 

quantification range is determined by the lower (LLOQ) and the upper limit of 

quantification (ULOQ), which are defined as the lowest, respectively highest point 

of the calibration curve with an accuracy between 80-120%. The limit of detection 

(LOD) is defined as the concentration producing a signal to noise (S/N) ratio of at 

least 3:1. For some analytes it was observed that the stable isotope labeled 

internal standards contain minute amounts of the unlabeled analytes. In that case 

the LOD was defined as background analyte level plus three times the standard 

deviation of the background signal.  

 
Table 18: Figures of merit and calibration curve parameters. 

Analyte LODa,b 
(μM) 

LOQb 
(μM) 

ULOQb 
(μM) 

Regression line R2c 

C10:0 0.08 1.11 4375 45.687 * x + 1.302893 0.9994 
Alanine 0.15 1.50 4375 1.370* x + 0.016749 0.9997 
Sarcosine 0.30 1.50 525 1.207 * x + -0.008837 0.9996 
Glycine 0.15 4.50 4375 1.455 * x + 0.461975 0.9993 
α-Aminobutyric acid 0.15 4.50 4375 2.336 * x + -0.067501 0.9966 
Valine 0.15 0.53 4375 1.306* x + 0.004960 0.9999 
C12:0 0.31 2.44 2500 35.456 * x + 0.885587 0.9996 
ß-Aminoisobutyric acid 1.50 4.50 525 0.767 * x + -0.027075 0.9976 
Leucine 0.15 0.53 4375 1.257 * x + 0.005071 0.9998 
allo-Isoleucine 0.30 0.53 4375 1.402 * x + 0.000658 0.9996 
Isoleucine 0.15 0.53 4375 1.286 * x + 0.007381 0.9999 
Proline 0.15 52.50 4375 0.817 * x + -0.337205 0.9972 
C14:0 1.11 9.78 2500 6.481 * x + 0.305019 0.9996 
Asparagine 1.50 4.50 525 1.325 * x + -0.013764 0.9980 
C16:1n7 2.44 19.58 2500 14.855 * x + -1.077235 0.9990 
C16:0 4.88 19.58 2500 0.425 * x + 0.306325 0.9999 
Aspartic acid 1.50 7.50 4375 1.218 * x + -0.279939 0.9980 
Methionine 0.30 30.00 4375 1.069 * x + 0.190182 0.9992 
Hippuric acid 0.53 4.50 4375 0.093 * x + 0.073425 0.9999 
Glutamic acid 4.50 30.00 1250 1.030 * x + 0.317407 0.9934 
Phenylalanine 1.50 4.50 4375 1.369 * x + 0.011706 0.9993 
C18:1n9cis 9.78 19.58 2500 0.681 * x + 0.240229 0.9999 
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C18:0 0.61 4.88 2500 9.410 * x + 1.560254 0.9986 
C18:1n9trans 19.58 39.08 2500 0.401 * x + -0.084591 0.9969 
C18:2n6cis 0.31 19.58 2500 2.951 * x + 1.154595 0.9992 
C18:3n3 4.88 19.58 2500 5.302 * x + 2.658921 0.9995 
α-Aminoadipic acid 0.53 30.00 525 5.426 * x + -1.15785 0.9934 
Glutamine 7.50 30.00 525 1.564 * x + 0.073241 0.9995 
C20:0 9.78 19.58 2500 6.720 * x + -1.453153 0.9966 
C20:4n6 39.08 78.13 2500 0.704 * x + -0.416711 0.9986 
Ornithine 0.30 1.50 525 1.219 * x + -0.013352 0.9992 
C22:1n9 19.58 78.13 2500 0.214 * x + -0.157461 0.9981 
C22:0 4.88 39.08 2500 4.983 * x + -2.349723 0.9962 
C22:6n3 19.58 39.08 2500 143.757 * x + -89.363077 0.9967 
Lysine 0.15 0.30 4375 1.348 * x + 0.006601 0.9997 
Histidine 1.50 4.50 4375 1.764 * x + -0.017558 0.9996 
C24:1 39.08 78.13 2500 0.132 * x + -0.123526 0.9976 
C24:0 9.78 39.08 1250 4.097 * x + -1.994844 0.9945 
Tyrosine 0.15 1.50 4375 1.207 * x + 0.009607 0.9998 
Tryptophan 0.15 1.50 4375 1.327 * x + 0.002861 0.9999 
Cystathionine 1.50 7.50 525 3.588 * x + -0.158190 0.9895 
Cystine 0.53 7.50 1250 3.937 * x + 0.092151 0.9958 

a Limit of detection (S/N≥3 or method blank plus 3 times standard deviation of method blank) 
b LOD, LLOQ and ULOQ were calculated for a sample volume of 20 µL 
c Coefficient of determination (square of the correlation coefficient r of the regression analysis) 
Analytes printed in bold were quantified with a corresponding stable isotope labeled standard. 
 

Concentrations reported in Table 18 were calculated for the analysis of 20-µL 

sample aliquots. LODs for the fatty acids ranged from 0.08 µM up to 39 µM. The 

lowest LOD (0.08 µM) was observed for C10:0, corresponding to an absolute 

injection amount of 16 fmol. However, C10:0 is also a fatty acid for which no 

stable isotope labeled internal standard was available and which is consequently 

not disturbed by a background signal. C12:0, C18:0 and C18:2n6 cis had also 

LODs below 1 µM, while for the remaining fatty acids higher values were 

determined. The highest LOD (39 µM) was found for C20:4, which is caused by 

the high degree of fragmentation observed during EI ionization. Therefore no 

intense fragment ion was available for quantification resulting in the high LOD. 

LODs for the amino acids ranged from 0.15 µM to 7.5 µM. The lowest LOD (0.15 

µM) was observed for alanine, glycine, leucine, isoleucine, lysine, proline, 

tryptophan, tyrosine, valine and α-aminoadipic acid, while the highest value was 

determined for glutamine (7.5 µM). The range of LODs is similar to those 

described in chapter 5.3.4 Overall, lower detection limits were determined for the 

amino acids. Analysis of a standard solution (absolute amount in solution 

derivatized: fatty acids 6.25 nmol, amino acids 10.5 nmol) in six replicates yielded 
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an accuracy ranging from 83.9 to 105.6% for the fatty acids and from 90.4 to 

115.3% for the amino acids, respectively (datas not shown). Relative standard 

deviations (RSDs) were between 1.6 and 10.5% for the fatty acids with C24:0 

showing the highest RSD. For the amino acids RSDs were below 4% with the 

exception of α-aminoadipic acid (12.1%). Inter-day reproducibility of replicate 

standard analyses was in the same range as observed for intra-day 

reproducibility (Table 19). In addition to a standard, the method precision was 

tested for the analysis of human serum, bovine serum and mice serum. Human 

and bovine sera were analyzed in six replicates while for mice serum only 4 

replicates were measured due to the limited sample volume. The RSDs obtained 

for the fatty acids and amino acids analyzed in the different matrices are listed in 

Table 19. The reproducibility in all biological samples for all analytes was good, 

with RSDs ranging from 0.7 to 11%. The average reproducibility across all 

biological samples was excellent, but with 2.8% somewhat lower for the amino 

acids compared to the fatty acids with 5.5%. An influence of the serum type on 

the reproducibility was not observed. A number of analytes, such as C20:0, 

C22:1n9, C22:0, C24:1, C24:0, ß-aminoisobutyric acid, allo-Isoleucine, α-

aminoadipic acid, and cystathionine were not detected above the LLOQ in the 

serum samples, while detection of some analytes above the LLOQ depended on 

the serum type, for example C10:0 and C12:0 were only detected in human 

serum and hippuric acid was only found bovine serum.  

 
Table 19: Reproducibility of GC-MS analysis of fatty acids and amino acids solved in n-propanol 
and water, respectively and in different biological matrices using 20 µL sample aliquots. 
Reproducibility is given as relative standard deviation [%]. Concentration of standard in absolute 
amount: fatty acids 6.25 nmol, amino acids 10.5 nmol. 

Analyte 
 

Human 
serum 
(n=6) 

Bovine 
serum 
(n=6) 

Mice 
serum 
(n=4) 

Standard 
Intra-day 

(n=6) 

Standard 
Inter-day 

(n=3) 
C10:0 9.29 n.d. n.d. 4.21 5.36 
Alanine 0.67 2.97 1.30 0.45 0.24 
Sarcosine n.d. n.d. 4.62 3.20 5.05 
Glycine 3.04 3.23 1.08 0.45 0.45 
α-Aminobutyric acid 4.16 11.03 2.02 1.74 3.46 
Valine 1.17 1.18 1.35 0.61 0.40 
C12:0 6.54 n.d. n.d. 3.49 6.03 
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ß-Aminoisobutyric acid n.d. n.d. n.d. 2.55 2.17 
Leucine 2.46 2.17 1.17 0.46 0.29 
allo-Isoleucine n.d. n.d. n.d. 1.09 0.73 
Isoleucine 1.55 0.96 1.32 0.92 0.19 
Proline 0.86 1.81 0.87 0.45 0.89 
C14:0 8.75 10.30 n.d. 3.55 4.18 
Asparagine 3.55 4.76 4.07 2.89 0.51 
C16:1n7 5.46 6.58 10.72 8.90 2.88 
C16:0 4.50 3.14 3.92 2.61 1.99 
Aspartic acid 5.56 10.70 0.95 1.30 1.11 
Methionine n.d. n.d. 2.19 1.80 1.82 
Hippuric acid n.d. 2.17 n.d. 0.41 0.49 
Glutamic acid 5.33 n.d. 1.85 3.35 2.57 
Phenylalanine 0.84 2.46 4.96 3.63 0.66 
C18:1n9cis 3.73 2.75 6.12 2.27 3.71 
C18:0 1.56 2.83 3.62 5.36 5.07 
C18:1n9trans 8.69 n.d. 10.30 3.76 7.15 
C18:2n6cis 2.74 3.24 4.99 1.86 1.15 
C18:3n3 n.d. 2.83 n.d. 1.63 2.80 
α-Aminoadipic acid n.d. n.d. n.d. 12.06 12.52 
Glutamine 4.12 2.35 3.78 3.24 2.79 
C20:0 n.d. n.d. n.d. 6.80 0.30 
C20:4n6 6.15 6.28 5.11 4.01 4.69 
Ornithine 5.67 2.62 5.12 1.90 1.69 
C22:1n9 n.d. n.d. n.d. 6.08 2.63 
C22:0 n.d. n.d. n.d. 8.72 4.49 
C22:6n3 3.87 n.d. 5.40 3.39 8.76 
Lysine 1.56 1.95 1.82 0.40 0.05 
Histidine 4.18 3.24 2.21 3.84 0.03 
C24:1 n.d. n.d. n.d. 7.85 4.23 
C24:0 n.d. n.d. n.d. 10.50 6.36 
Tyrosine 1.68 1.81 1.57 0.64 0.93 
Tryptophan 1.21 1.91 3.14 0.44 0.61 
Cystathionine n.d. n.d. n.d. 2.65 5.93 
Cystine 0.87 n.d. n.d. 1.03 4.84 

n.d.: not detected above the LLOQ. 
Analytes printed in bold were quantified with a corresponding stable isotope labeled standard. 
 

Matrix spike experiments were performed using human and bovine serum to 

further validate the accuracy of the method. Twenty-µL aliquots of serum were 

spiked with 0, 1.56, 6.25 and 12.5 nmol absolute of the fatty acid standard and 0, 

1.5, 6 and 9.3 nmol absolute of the amino acid standard. Each spike level was 

prepared and analyzed in triplicate. The zero spike level was used to subtract the 

endogenous analyte concentration in order to calculate a recovery for the three 

spike levels. The average recovery of the analytes at the three different levels in 

the human and bovine serum matrix in both matrices was 103.6%, ranging from 
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91% for C24:0 in bovine serum to 125.4% for C18:0 in bovine serum as well. The 

average recovery for the amino acids was 102.8%, ranging from 88.2% for α-

aminobutyric acid up to 128.5% for glutamic acid, both in bovine serum. For 

some analytes in bovine serum, such as C18:0, glycine and proline, higher 

deviations from the spiked amount were observed at the first spike level. 

However, these analytes have higher endogenous levels in serum and the spike 

levels might be too low to evaluate these analytes correctly.  

 

Table20: Recovery rates for amino and fatty acids in human and bovine serum at three different 
spike levels. 

Analyte Spike level 1 Spike level 2 Spike level 3 
 Human Bovine Human Bovine Human Bovine 
C10:0 106.8±5.1 108.4±9.2 107.2±6.1 106.3±7.8 106.5±3.5 108.7±4.5 

Alanine 108.8±5.2 121.3±4.1 104.4±2.1 105±1 103±0.4 102.1±0.8 

Sarcosine 106.9±8.4 111.7±10.2 115±2.7 112.8±10.2 114.4±7.9 103.8±8.9 

Glycine 120.1±10.2 148.7±13.2 100.6±5.2 97.3±1.7 96.4±0.2 94.5±1.3 

α-Aminobutyric acid 87.1±1.3 79.2±10.1 93.2±1.3 90.6±5.2 93.6±1.6 94.8±4.9 

Valine 99.6±4.1 101.6±4.4 99.3±1.1 101.3±0.8 98.2±0.2 97.8±0.4 

C12:0 101.4±2.2 101.9±6.9 103.9±5.3 104.4±3.1 104.6±3.6 106.7±5.9 

ß-Aminoiso-butyric 

acid 
92.3±2.4 87.1±5.8 95.7±1.1 93.3±2.3 93.6±0.3 95.2±1.8 

Leucine 99.2±3.3 105.5±2.8 97.7±1 97.6±0.6 96.3±0.2 95.4±0.1 

allo-Isoleucine 101.8±0.9 98.3±1.8 106.3±0.6 103.1±1 107.2±0.6 102.9±1 

Isoleucine 102.8±1.1 103.5±2.7 102.5±0.9 103.5±0.4 101.9±0.2 100.9±0.2 

Proline 116.9±6.1 182.9±0.5 85.4±1.1 86±2.1 85.1±0.2 84.3±0.2 

C14:0 105.5±2.2 98.5±5.3 106.2±6.2 103.7±2.3 106.8±2.8 106.3±6 

Asparagine 89.2±1.5 99.3±5.6 91.2±0.5 94.6±5.3 99.2±1.1 97.8±5.6 

C16:1n7 97.3±2.6 84.7±2.1 103.6±6.3 89.6±4.8 105.2±2.5 100±6.2 

C16:0 117.1±43.4 94.6±17 118.8±4.9 110.5±17.4 112.2±7.8 113±9.3 

Aspartic acid 107.9±4.8 78.3±4.5 106.1±2.6 103.4±3.8 105.1±1.4 110.8±1.6 

Methionine 110.5±1.9 107.7±5 110.5±1.2 102.7±2.2 110.7±1 105.6±4 

Hippuric acid 99.4±2.2 106.3±0.7 98.7±0.7 98.5±1.6 97.8±0.2 96.3±0.7 

Glutamic acid 121.6±6.9 118.7±6.7 120.5±0.9 140.2±3.5 114.7±6 126.7±3.7 

Phenylalanine 101.4±1.5 101.7±0.9 99.6±0.8 99.4±0.3 98.5±0 97.8±0.7 

C18:1n9cis 111.3±9 101.4±34.7 104.5±3.8 99.9+5.6 103.7±2.4 109.9±5.1 

C18:0 115.1±29.1 141.5±32.2 111.1±14.5 115.3±4 108.7±6.2 119.3±2 

C18:1n9trans 98.4±1.6 114.3±3.4 94.6±1.2 102.9±3.3 98.8±5.1 107.4±4.9 

C18:2n6cis 118.5±14.8 111.6±28.5 118.1±4.2 112.8±2.6 108.3±2.8 115±7.6 

C18:3n3 93.9±6.2 115.6±13.7 95.3±1.2 108.2±4.5 99.2±1.1 113.4±4.8 
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α-Aminoadipic 
acid 

107.8±7.8 105.8±4.1 108.6±3.7 106.6±3.8 105.9±1.9 105.8±5.1 

Glutamine 118.2±29.7 121.3±17.7 88.3±11 111.4±11.4 108.3±11.3 104.6±8.1 

C20:0 99.5±3.1 103.7±10.2 98.7±4.5 97.4±1.5 101.2±3 100.7±4 

C20:4n6 80.5±2 98.3±14.3 103.2±8.1 117.3±3.2 106.8±3.4 119.1±3.8 

Ornithine 104.9±5.6 113±5.7 104.9±3.9 102.9±1 103.3±1.5 96±1.6 

C22:1n9 117.9±6.3 101.7±3.1 94.2±3.1 89.4±5.7 99.6±1.2 97.7±6.3 

C22:0 100.3±4.3 93.6±0.7 96.6±4.7 89±2.9 101.2±2.4 98.5±5.2 

C22:6n3 96.8±2.8 105.7±6.7 91.1±6.6 93±1.7 99.2±1.5 102.9±7.5 

Lysine 102.1±3.2 114.9±1.4 101±0.9 101.4±0.4 100.5±0.6 100.4±0.7 

Histidine 98.3±1.3 95.8±2.4 97.4±1.2 99.1±2.9 97.2±1 97.7±0.2 

C24:1 112±12.2 114.4±6.2 91.3±5.7 89.3±3.1 98.1±2.7 97.9±7.2 

C24:0 88±3.5 81.5±2 96±6.3 88.8±3.8 106.1±2.3 102.7±6.6 

Tyrosine 104.8±1.1 111.9±2.3 103.6±0.9 103.6±1 101.7±0.4 100.2±0.7 

Tryptophan 98.6±1.8 103.6±1.1 97.7±0.3 99.2±0.5 97.2±0.2 97.8±0.2 

Cystathionine 95.1±4 103.2±3 87.9±2.7 95.5±8.1 83.5±3.5 98.2±9.7 

Cystine 104.6±0.8 105.7±1.9 103.4±0.6 103.1±0.6 102.1±0.4 101±0.03 
Analytes printed in bold were quantified with a corresponding stable isotope labeled standard. 
 

7.3.3 Saponification of triglycerides 

Derivatization with propyl chloroformate, as described in 5.2.4, is performed 

under alkaline conditions and might also result in transesterfication of fatty acids 

bound in triglycerides. To investigate whether triglycerides actually are esterified 

with the propyl chloroformate, the triglyceride trimyristic (C14:0/ C14:0/ C14:0) 

was dissolved in propanol, derivatized and the amount of free myristic acid was 

analyzed. The experiment was performed in triplicates with a 0.2 mM and 0.02 

mM solution in propanol using 50 µmol each. The recoveries for the free fatty 

acid ranged from 95 % to 130 %. Due to the unpolar character of triglycerides it 

was not possible to examine higher triglycerides, which are not soluble in n-

propanol. Using high glyceride solutions in chloroform did not result in high 

glyceride saponification, because the ester in the organic phase is not amenable 

to the NaOH. 

7.3.4 Outlook for the analysis of NEFAs 

One major aim in lipidomics is the exclusive analysis of nonesterified fatty acids 

(NEFA) only without a labour intensive TLC separation prior to the analysis. This 
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might be achieved by modifying the derivatization procedure. Omission of the 

base should prevent saponitfication or reesterfication. Preliminary experiments 

were performed on the triglyceride of C10:0.  As shown in Figure 33, upon 

omission of the base no free fatty acid was detected. Further, the yield of the 

internal standard C14:0 was comparable in both analyses, i.e. with and without 

the base. Hence, it may be feasible to analyse NEFA by omitting the base. 
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Figure 33: Analysis of the triglyceride tricaprin under two different conditions: with and without 
base. The ion traces for C10:0 and the internal standard 13C14:0 are shown for the two different 
derivatization conditions. 
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8 Quantitative analysis of amino acids and related 
compounds by LC-MS/MS 

8.1 Introduction 

Some important amino acids are thermally instable and cannot be quantified by 

GC-MS, such as arginine, citruline, as well as 1- and 3- methylhistidines. Amino 

acids are highly polar analytes and, therefore, not suited for conventional 

reversed-phase high-performance liquid chromatography (RP-HPLC). Therefore, 

a derivatization is needed. The potential of derivatization with propyl 

chloroformate, followed by LC-MS/MS analysis for amino acid determination was 

investiged in this work. The method was expanded to tryptophan metabolites and 

polyamines, which are of great biomedical interest. Due to their amino or carboxy 

function they can be derivatized with propyl chloroformate and analyzed by LC-

MS/MS. First experiments for this project were performed by Stephan Fagerer. 

The most important polyamines are spermine, spermidine and putrescine. They 

can be detected in the cells of all living organisms often in high concentrations.79 

Moreover, they are important factors for cell growth, protect DNA and proteins 

from damage by active oxygen species,80, 81 and were suggested as tumor 

markers. 82-84 Therefore, polyamine analysis is an important extension to the 

method. Similarly, tryptophan metabolites were implemented in the method. 

Various articles report that the tumor escape mechanism of cancer cells involves 

depletion of tryptophan and accumulation of its (toxic) metabolites. 85, 86 The 

kynurenine pathway is the main pathway of tryptophan metabolism and is 

activated during inflammatory processes such as immune activation and 

neurodegenerative disorders. Activation of the pathway decreases the level of 

tryptophan and increases the concentration of downstream metabolites, including 

kynurenine, 3-hydroxykynurenine and 3-hydroxyanthranilic acid.87-89 Parts of the 

tryptophan pathway are shown in Figure 34. 
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Yamada et al. described the simultaneous measurement of tryptophan and 

related compounds by liquid chromatography-electrospray ionization tandem 

mass spectrometry without derivatization by using trifluoroacetic acid as ion pair 

reagent. 90 The separation was carried on a C18 column. A tandem mass 

spectrometer operated in MRM with ESI in positive mode was used for detection. 

Quantification was demonstrated to be reliable for compounds with a dedicated 

isotope-labeled standard. In contrast, compounds that are not normalized against 

an isotope-labeled standard, such as polyamines, ornithine and citrulline yield 

poor linearity and, consequently, are not quantified reliably. Therefore, 

introduction of isotope-labeled standards for as many analytes as possible should 

be pursued. Our experiments have already established the importance of internal 

standards. However, isotope-labeled standards are not available commercially 

for all metabolites of interest. Instead of synthesizing individual standards for 

each metabolite, we exploited the derivatization of amino and carboxy functions 

with propyl chloroformate employing d3 labeled propanol. Propyl chloroformate 

(PCF) reacts with carboxylic acids and amines. At room temperature the 

carboxylic acids are esterified and amines are converted to carbamoyl derivatives 

and esters, respectively.  

8.2 Material and Methods 

8.2.1 Chemicals 

An amino acid standard (Sigma) containing 27 compounds, mostly amino acids 

at a concentration of 2.5 mM each (except cystine 1.25 mM), formic acid (puriss 

p.a.) heptafluorobutyric acid (puriss. p.a.), iso-octane (GC-MS grade) and n-

propanol (GC-MS grade), glutamine, arginine, histidine, hydroxylysine, lysine, 

ornithine, γ-aminobutyric acid, hippuric acid, tryptophan, 3-hydroxy-kynurenine, 

kynurenine, kynurenic acid, anthranilic acid, agmatine, putrescine, U-13C 

putrescine, spermine, spermidine, ethanolamine, taurine, norleucine, citrulline, 1- 

and 3-methyl-histidine, [2H3] 3-methyl-histidine were purchased from Sigma-

Aldrich (Taufkirchen, Germany). The [U-13C, U-15N] cell free amino acid mix 
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was from Euriso-Top (Saint-Aubin Cedex, France). [2, 5, 5-2H3] α-aminoadipic 

acid and [2,3,4,5,6-2H5] hippuric acid were purchased from C/D/N Isotopes 

(Quebec, Canada). Methanol (LC-MS grade) and chloroform (HPLC grade) were 

purchase from Fisher (Fisher Scientific GmbH, Ulm, Germany). The EZ:faastTM 

C18 RP column (250 mm x 2.0 mm, 4 µm) for LC-MS was from Phenomenex . 

8.2.2 Instrumentation 

An Agilent 1200 series binary SL system with autosampler was used for liquid 

chromatography. The column was kept at a constant temperature of 50 °C in a 

column oven . Five µL of sample were injected each run. For separation a binary 

gradient was used with mobile phase A: water with 1 % (v/v) formic acid and 0.1 

% heptafluorobutyric acid and mobile phase B: methanol with 1 % (v/v) formic 

acid and 0.1 % heptafluorobutyric acid. A C18 RP column (4.6 mm x 150 mm, 5 

µm) equipped with a guard cartridge system from Phenomenex® was used for 

separation to avoid column contamination. The LC-separation was evaluated by 

Stephan Fagerer. The gradient is shown in Table 21.  

 
Table 21: Gradient for LC separation. 

Total time 
[min] 

% Mobile 
Phase A 

% Mobile 
Phase B 

0.0 38 62 

12.0 21 79 

12.01 2 98 

15.0 2 98 

15.01 38 62 

23.0 38 98 

 

An ABI 4000 QTRAQ mass spectrometer was used for detection. Experiments 

were performed using the Analyst Software 1.5. The Turbo Ionspray, declustering 

potential, exit potential and collision energy parameters as well as all precursor 

and product ion masses for the analytes and internal standards are listed in 
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Table 22. ESI in positive mode and scheduled MRM were used. The transitions 

were recorded for one minute at the scheduled retention time. The transitions 

were adopted from Stephan Fagerer for except 3-methylhistidine IS, hippuric acid 

IS, putrescine IS, hydroxylysine, agmatine and α-aminoadipic acid IS that were 

added later to the method.   

  
Table 22: List of derivatized compounds after propyl chloroformate derivatization and their 
optimized MRM parameters. The numbers in the left column indicate the labeling in the 
chromatogram in Figure 35. 

Compound 
(number ) 

Mass 
[Q1] 

Mass 
[Q3] 

RT 
[min] 

DP 
[V] 

CE 
[V] 

CXP 
[V] 

Ethanolamine (1) 148.1 62 2.3 29 14 9

Taurine (2) 212.05 126 2.4 53 17 10

Glutamine (2) 275.15 172.1 3.2 61 19 10

Glutamine IS 282.1 178.1 3.2 61 19 10

3-Methylhistidine (4) 298.2 256.1 3.2 60 18 10

3-Methylhistidine IS 301.2 259.1 3.2 60 18 10

Citrulline (5) 304.2 156.1 3.3 46 24 11

1-Methylhistidine (4) 298.2 210.1 3.6 60 26 12

Hippuric acid (6) 222.1 162.1 3.7 30 13 10

Hippuric acid IS 227.1 167.1 3.7 30 13 10

Serine (7) 234.13 174.08 3.7 50 14 10

Serine IS 238.1 178.1 3.7 50 14 10

Arginine (8) 303.2 70 4.2 88 55 11

Arginine IS 313.2 70 4.2 88 55 11

Asparagine (9) 243.13 157.1 3.9 66 14 11

Asparagine IS 249.13 163.1 3.9 66 14 11

Glycine (10) 204.12 144.07 4.5 56 12 12

Glycine IS 207.1 147.1 4.5 56 12 12

Threonine (11) 248.14 160.1 4.6 53 16 8

Threonine IS 253.14 164.1 4.6 53 16 8

Kynurenic acid (12) 232.1 190.1 4.7 32 21 10

Putrescine (13) 261.2 201.2 5.4 31 13 10

Putrescine IS 265.2 205.2 5.4 31 13 10

ß-Alanine (14) 218.13 158.1 5.6 42 14 10
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Agmatine (15) 217.2 158.1 5.8 48 17 9

Alanine (16) 218.13 130.09 5.9 59 17 10

Alanine IS 222.13 133.09 5.9 59 17 10

γ-Aminbutyric acid (17) 232.2 172.1 6.5 30 13 9

Sarcosine (18) 377 317 6.9 60 17 10

Hydroxylysine (19) 377 125 7 30 14 8

ß-Aminoisobutyric acid (20) 232.2 172.2 7.2 44 14 9

Anthranilic acid (21) 266.1 206.1 7.5 48 11 10

α-Aminobutyric acid (22) 232.3 172.3 7.9 30 13 9

Proline (23) 244.15 184.1 8.5 50 12 10

Proline IS 250.15 190.1 8.5 50 12 10

Ornithine (24) 347.21 287.16 8.6 67 14 8

Methionine (25) 278.13 190.09 8.6 55 15 10

Methionine IS 284.13 195.09 8.6 55 15 10

Aspartic acid (26) 304.17 216.12 9.7 61 18 11

Aspartic acid IS 309.17 220.12 9.7 61 18 11

Histidine (27) 370.19 196.1 9.8 60 31 9

Histidine IS 379.19 204.1 9.8 60 31 9

Valine (28) 246.16 158.12 10 58 16 13

Valine IS 252.16 163.12 10 58 16 13

Lysine (29) 361.23 301.18 10.2 71 14 8

Lysine IS 369.23 309.18 10.2 71 14 8

3-OH-Kynurenine (30) 439.2 336.1 10.2 38 15 9

Glutamic acid (31) 318.18 230.14 10.4 64 18 12

Glutamic acid IS 324.18 235.14 10.4 64 18 12

Tryptophan (32) 333.17 245.13 10.8 68 22 10

Tryptophan IS 346.17 257.13 10.8 68 22 10

Spermidine (33) 404.3 284.3 11 76 23 7

α-Aminoadipic acid (34) 332.3 244.2 11.7 50 18 10

α-Aminoadipic acid IS 335.3 247.2 11.7 50 18 10

Leucine (35) 260.18 172.13 12 58 17 10

Leucine IS 267.18 178.13 12 58 17 10

Phenylalanine (36) 294.16 206.12 12.2 60 16 11

Phenylalanine IS 304.16 215.12 12.2 60 16 11

Isoleucine (37) 260.18 130.08 12.4 53 25 10

Isoleucine IS 267.18 136.08 12.4 53 25 10
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Cystine (38) 497.19 248.1 14.5 89 23 6

Cystine IS 505.19 252.1 14.5 89 23 6

Tyrosine (39) 396.19 308.15 14.9 84 19 9

Tyrosine IS 406.19 317.15 14.9 84 19 9

Spermine (40) 547.36 427.26 15.5 95 28 12

Kynurenine (41) 423.21 320.1 16.2 74 14 9

 

8.3 Sample preparation 

8.3.1 General procedure 

The sample preparation was carried out as described in section 5.4. This protocol 

was performed by the MPS-2 Prepsation or manually. In contrast to this protocol 

120 µL from the upper organic phase were transferred to a new autosampler vial. 

The sample was concentrated in an infrared vortexing concentrator and 

redissolved in 100 µL of mobil phase.  

8.3.2 Preparation of the internal standard using d3-propanol 

Two hundred µL of standard mix A and B (mixed equimolar) were added in a 2 

mL glass vial followed by the addition of 120 µL of 0.33 M NaOH solution. In the 

next step 50 µL of a picoline/ d3-propanol solution were added. The ratio of 

picoline to d3-propanol was 23:77. Fifty µL of propyl chloroformate in 

chloroform/isooctane mix were added to the sample, the solution was mixed for 

12 seconds, equilibrated for 1 min and once again mixed for 12 seconds. To 

extract the derivatized analytes, 250 µL of issooctane were added and the vial 

was vortexed for 12 seconds. From the upper layer 200 µL were transferred to a 

new vial. The created internal standard was diluted 1:50 and 10 µL of the solution 

were added to the samples after transferring of the 120 µL organic phase to a 

new vial and before the evaporation step. The ratio of propanol to propyl 

chloroformate is 7:1 in the standard protocol. To reduce the percentage of non-

labeled d3-derivatives the ratio of picoline/ d3-propanol/propyl chloroformate was 

varied. The ratio of d3-propanol to propyl chloroformate of 2.5:1 and 14:1 was 
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also tried. In one experiment the content of the catalyst picoline was increased, 

so the ratio of d3-propanol and picoline was 1:1.  

8.3.3 Different extraction procedures 

Furthermore, the extraction of the derivatives was investigated to increase the 

yield. Ectraction with isooctane, chloroform, ethyl acetate and isooctane plus 

addition of a saturated NaCl solution to use the salt out effect was tested. An 

overview of all tested protocols is shown in Table 23. 

 
Table 23: Different Derivatization protocols. 

General  procedure: 
isooctan extration 

Expanded 
reaction time 

Isooctane + 
salt out (sat. 
NaCl solution)  

Chloroform 
extraction 

Ethyl 
acetate 
extraction 

1. Pipette 50 µL standard 
mixture  

2. Complement volume 
with H2O to a total of 200 
µL 

3. Add 120 µL 0.33 M 
NaOH 

4. Add 80 µL 3-methyl-
pyridine (23% in n-
propanol)  

5. Add 50 µL propyl 
chloroformate in 
chloroform/isooctane 
(17.4:71.6:11.0) 

6. Mix (12 sec), wait 1 
min, mix (12 sec) agan 

7. Add 250 µL isooctane  

8. Transfer 120 µL 
(organic layer) to a new vial  

9. Evaporate solvent (100 
mbar, 45 min) 

10. Redissolve in 100 µL 
mobile Phase  

Step 1-5 equal 
to the general 
procedure 

 

 

 

 

 

 

 

 

6. Mix (12 
sec), wait 2 
min, mix (12 
sec) again 

  

Step 7-10 of 
the general 
procedure 

Step 1-7 equal to 
the general 
procedure 

 

 

 

 

 

 

 

 

 

 

 

8. Add 50 µL 
brine 

Step 7-10 of the 
general 
procedure 

Step 1-6 
equal to the 
general 
procedure 

 

 

 

 

 

 

 

 

 

 

7. Add   250 
µL 
chloroform 

Step 8-10 of 
the general 
procedure 

Step 1-6 
equal to the 
general 
procedure 

 

 

 

 

 

 

 

 

 

 

7. Add   250 
µL ethyl 
acetate 

Step 8-10 of 
the general 
procedure 
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8.4 Quantification 

Absolute quantification of compounds was performed by analyzing standard 

solutions containing equimolar amounts of all amino acids. Three different 

solutions were used and listed in Table 28. The first solution consisted of 22 

compounds in 0.1 M HCl, the second mixture contained 12 compounds, including 

amino acids not stable in acidic solution, complementary amino acids and 

tryptophan metabolites, while the third mixture included polyamines, aromatic 

amino acids and ethanolamine. The first and the second mixture was 2.5 mM, 

while the third one was 5 mM. For calibration, the three different solutions were 

mixed at the following ratio: 2:2:1 resulting in a final concentration of 1 mM. For 

calibratio,n this standard mix was employed in a range of 2.5 pmol to 10 nmol 

absolute in 16 serial dilutions corresponding to a concentration range of 125 nM 

to 0.5 mM using 20 µL of biological sample. The calibration and first 

quantification experiments were performed by using the same standard mix of 20 

uniformly 13C and 15N-labeled amino acids as described in 5.4, including arginine 

and cystine. Arginine was concentrated too low for use as internal standard. 

During the course of experiments compounds were added to expand the 

spectrum of internal standards: [2,5,5-2H3] α-aminoadipic acid and [2,3,4,5,6-2H5] 

hippuric acid, [2H3] 3-methylhistidine, and U-13C labeled putrescine. 

8.5 Results and Discussion 

8.5.1 LC-MS/MS  

The LC-MS/MS method used was adopted from Stephan Fagerer. Previously the 

tandem mass spectrometer was operated in MRM mode with positive ESI and 

the separation time was divided into four periods. Now the scheduled MRM 

modus was used for the analysis. A chromatogram of a standard solution is 

shown in Figure 35. The separation of the analytes was completed in less than 

17 min.  
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Figure 35: Full chromatogram of the propyl chloroformates obtained by LC-MS/MS. Fourty-one 
peaks were identified and labeled with numbers. The corresponding compounds are given in 
Table 22. 

 

8.5.2 Calibration 

Quantification was carried out as described in 7.2.5 and figures of merit are 

shown for 38 compounds in table Table 24.The calibration range defined as the 

LLOQ and ULOQ and the R-square from the calibration are listed. The calibration 

was linear from 25 pmol to 10,000 pmol for most analytes. R-square-values ≥ 

0.99 were obtained for all compounds except kynurenic acid (0.9882), 

hydroxylysine (0.9877), anthranilic acid and spermidine (0.9862). However, for 

these amino acids no corresponding stable-isotope had been available. No linear 

relation between analyte signal and amount was observed for ethanolamine, 

taurine and agmatine and therefore excluded from Table 24.  
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Table 24: Calibration parameters of the analytes. LLOQ and ULOQ are given in pmol absolute. 
Analytes printed in bold were quantified using the internal standard transition of the 
corresponding stable-isotope labeled amino acid as reference. The internal standard used for the 
other compounds is given in brackets.  

Compound LLOQ [pmol] ULOQ 
[pmol]

R-square 

Glutamine 25 10000 0.9997 
Methyl-histidine 25 10000 0.9992 
Citrulline (Glutamine IS) 25 7500 0.998 
Arginine (Glutamine IS) 1000 7500 0.994 
Hippuric acid 50 10000 0.9997 
Serine 25 10000 0.9998 
Asparagine 50 10000 0.9998 
Glycine 50 10000 0.9996 
Kynurenic acid (Hippuric acid IS) 70 10000 0.9882 
Threonine 25 10000 0.9999 
Putrescine 25 2500 0.9928 
ß-Alanine (Alanine IS) 25 10000 0.9947 
Alanine 50 10000 0.9996 
γ-Aminobutyric acid (Alanine IS) 100 10000 0.993 
Sarcosine (Proline IS) 150 7500 0.991 
Hydroxylysine (Threonine IS ) 250 10000 0.9877 
α-Aminobutyric acid (Aminoadipic acid IS) 25 7500 0.9972 
ß-Aminoisobutyric acid (Alanine IS) 100 7500 0.9952 
Anthranilic acid (Hippuric acid IS) 500 7500 0.9854 
Proline 25 10000 0.9999 
Ornithine (Lysine IS) 150 2500 0.9918 
Methionine 25 10000 0.9992 
Aspartic acid 50 2500 0.9984 
Valine 50 10000 0.9997 
Histidine 100 2500 0.9967 
Lysine 150 2500 0.9927 
3-OH-Kynurenine (Hippuric acid IS) 100 7500 0.9965 
Glutamic acid 500 10000 0.9985 
Tryptophan 100 2500 0.9968 
Spermidine (Putrescine IS) 50 2500 0.9862 
α-Aminoadipic acid 25 2000 0.9998 
Leucine 50 10000 0.9992 
Phenylalanine 100 5000 0.9974 
Isoleucine 50 10000 0.9997 
Cystine 100 2500 0.9943 
Tyrosine 100 2500 0.9955 
Spermine (Putrescine IS) 100 2500 0.9915 
Kynurenine (Hippuric acid IS) 25 5000 0.9965 

To prove the reproducibility of the method a standard solution was derivatized 

and analyzed in triplicates in three different concentrations. An absolute amount 

of 100 pmol, 250 pmol and 2500 pmol were analyzed and the RSDs are shown in 

Table 25. The RSDs for the analytes corrected by their own internal standard 

were between 1 and 5 % except for glycine, hippuric acid, putrescine, alanine, 
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aspartic acid, valine and tyrosine, which yielded higher RSDs at the low 

concentration level. RSDs higher than 10 % were observed for kynurenic acid, ß-

alanine, γ-aminobutyric acid, sarcosine, hydroxylysine, α-aminobutyric acid, ß-

aminoisobutyric acid, and anthranilic acid. But these compounds did not have a 

corresponding internal standard. 
 

Table 25: Reproducibility of LC-MS/MS analysis of propyl chloroformate for independent 
derivatizations.  

Analyte Relative standard deviation [%]; n=3 

 100pmol 250 pmol 2500 pmol   
Glutamine 0.61 2.31 0.62 
Methyl-histidine 1.05 2.99 2.42 
Citruline 15.25 6.53 5.56 
Arginine n.d. 3.93 30.65 
Hippuric acid 12.56 5.46 1.08 
Serine 10.03 3.62 0.41 
Asparagine 2.57 2.25 2.52 
Glycine 6.46 0.48 2.70 
Kynurenic acid 7.45 7.27 41.77 
Threonine 1.48 1.61 0.70 
Putrescine 7.45 1.34 2.90 
Alanine 17.59 1.99 1.41 
ß-Alanine 21.96 7.19 25.55 
γ-Aminobutyric acid 13.19 9.85 29.31 
Sarcosine 21.74 13.07 12.20 
Hydroxylysine 7.61 19.53 17.63 
α-Aminobutyric acid 15.93 20.24 10.39 
ß-Aminoisobutyric acid 18.06 5.60 25.00 
Anthranilic acid 1.52 5.35 33.75 
Proline 3.50 0.71 1.07 
Ornithine n.d. 6.85 4.80 
Methionine 0.62 0.77 1.73 
Aspartic acid 7.27 2.79 2.84 
Valine 7.00 1.24 0.71 
Histidine 2.65 1.14 3.41 
Lysine n.d. 2.67 4.72 
3-OH-Kynurenine 9.44 7.05 4.89 
Glutamic acid 3.89 0.82 1.82 
Tryptophan 5.86 0.96 1.37 
Spermidine n.d. 1.76 12.15 
α-Aminoadipic acid 1.13 1.39 1.71 
Leucine 1.07 0.68 0.45 
Phenylalanine 3.25 1.76 0.23 
Isoleucine 2.09 2.79 1.03 
Cystine 1.78 0.98 9.70 
Tyrosine 7.27 1.35 0.43 
Spermine 8.86 1.91 27.29 
Kynurenine 36.95 9.08 7.39 

a Analytes printed in bold were quantified with a corresponding stable isotope. 
n.d. - not detected above the LLOQ. 
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8.5.3 Biological samples 

For a set of mice serum samples the tryptophan analysis by LC-MS/MS was 

compared to GC-MS analysis as described in chapter 5. The results are shown in 

Table 29. Another aim was to detect changes of the tryptophan metabolites 

kynurenine, kynurenic acid or hydroxykynurenine. In mouse serum the 

concentrations of kynurenine varied between the LLOQ and two times the 

concentation of the LLOQ. Kynurenic acid and hydroxykynurenine were not 

detected above the LLOQ. For some amino acids, e.g. lysine, the measured 

concentrations were almost outside the calibration range. Therefore, increasing 

the sample volume or injection volume would exclude some amino acids from the 

quantification. Up to this point, it proved impossible to quantify the tryptophan 

metabolites simultaneously with the amino acids. 

8.5.4 Synthesis of internal standards using d3-propanol 

Quantification is more reliable for compounds with a dedicated isotope-labeled 

standard. For some compounds, no standards are available or very expensive. 

An elegant way to create an isotope-labeld standard for a large group of 

compounds in a single reaction would be to derivatize a standard mix with propyl 

chloroformate in isotope-labeled propanol. The alkoxy group found in the 

esterfied carboxylic acid corresponds to the alcohol in the reaction medium and 

not to the alkoxy group of the chloroformate. That was demonstrated by Zampolli 

and Wang et al.39, 91 Propyl chloroformate (PCF) reacts with carboxylic acids and 

amines. At room temperature the carboxylic acids are esterified and amines are 

converted to carbamoyl derivatives and esters, respectively. Using this approach 

our aim was to use labeled propanol to produce stabil-isotope labeled derivatives 

that could be then added to the derivatized samples. A rearrangement of the 

ester should take place and the obtained product is shown in Figure 36 . 
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Figure 36: Reaction of the amino acids with d-3 propanol. 

 

Mastermix A and B (compounds listed in Table 28) were mixed equally and 200 

µL were subjected to the derivatization procedure as described in chapter 8.3. 

The rearrangement took place for all compounds but for some compounds also 

non-labeled derivatives were obtained. This would cause a background signal for 

the analyte and result in higher LLOQs. Different ratios of propanol to propyl 

chloroformate were investigated to decrease the content of non-labeled 

compound. Furthermore, a higher content of the catalyst picoline was tested. The 

percentage of non-labeled derivative relative to the labeled analyte is shown in 

Table 26. The amount of non-labeled analyte decreases with increasing d3-

propanol ratio. For glutamine the ratio decreased from 14.4 to 2.8 %. But the 

yield of the reaction decreased too (data not shown). Therefore, the following 

experiments were carried out with a ratio of d3-propanol to propyl chloroformate 

of 7:1. Here the ratios varied between 1 and 10 %, except for citrulline, sarcosine 

and glycine.  
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Table 26: The content of non-labeled analyte relative to the labeled analyte in percent for the 
different experiments. 

Percentage of the non-
labeled analyte [%] 
Analyte 

Ratio of d3-propanol to 
propylchloroformate 

     2.5:1        7:1              14:1 

Propanol: 
Picoline=1:1 

Arginine 4.0 0.4 3.0 0.6 
Glutamine 14.4 4.8 2.8 10.6 
Citrulline 137.8 37.4 35.1 83.0 
Serine 32.5 9.8 5.8 26.3 
Asparagine 16.8 5.1 3.1 18.9 
Sarcosine 61.8 23.6 10.7 36.9 
Kynurenic acid 17.8 5.9 3.4 16.4 
Glycine 100.5 32.2 17.7 92.5 
Threonine 16.2 4.8 3.1 14.0 
Alanine 16.0 4.3 2.2 9.8 
β-Alanine 16.2 5.4 2.7 10.8 
γ-Aminobutyric acid 31.6 9.1 4.6 18.4 
Hydroxylysine 3.6 1.7 0.6 4.0 
ß-Aminoisobutyric acid 15.1 4.3 2.1 8.9 
α-Aminobutyric acid 16.3 5.1 2.2 10.4 
Proline 31.0 9.4 4.9 26.3 
Ornithine 30.1 10.6 3.6 12.6 
Methionine 18.8 5.9 2.8 13.8 
Aspartic acid 3.1 0.3 0.0 1.2 
Valine 20.6 6.2 2.9 17.0 
Histidine 19.1 7.7 3.3 13.1 
Lysine 26.7 9.3 3.6 13.0 
3-OH-kynurenine 14.4 5.4 2.5 10.8 
Glutamic acid 5.3 0.6 0.2 2.7 
Tryptophan 22.9 7.8 3.9 12.9 
α-Aminoadipic acid 9.4 2.8 1.7 8.2 
Leucine 19.9 6.5 3.2 14.9 
Phenylalanine 15.8 5.3 2.6 11.0 
Isoleucine 18.0 6.6 2.9 14.8 
Cystine 15.6 5.1 3.1 14.2 
Tyrosine 16.9 6.5 3.7 12.0 
Kynurenine 20.8 5.5 3.3 15.6 

 

Experiments were carried out by using diluted self-made internal standard as 

described in section 7.3 The internal standard corrected well for injection as 

investigated for kynurenine. The RSD for a ten-fold injection was 10 % without 

using an internal standard and below 1 % using the corresponding d3-labeled 

internal standard (data not shown). But applying the d3-labeled internal standard 

decreased the accuracies during calibration compared to using the 13C and 15N-
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labeled amino acids of the algae mix for corrections. In both cases the ratio of 

analyte and internal standard were applied for the Quantification. A calibration 

range from 41 -6250 pmol was compared. For threonine the accuracies ranged 

applying the d3 standard from 100 to 235 % for the different calibration levels 

compared to 100 to 119 % using 13C and 15N-labeled threonine. In conlusion, the 

self-made internal standard could correct for injection and ion suppression, but 

not for the differences in extraction efficiency. Therefore, this approach was 

discarded.   

8.5.5 Method limitations 

There are a few drawbacks of the method. First, the methyl histidines cannot be 

separated as described by Stephan Fagerer and therefore the method 

parameters are for the sum of 1-methyl-histidine and 3-methyl-histidine. No linear 

range was observed for ethanolamine, taurine and agmatine and a high LOQ 

was observed for arginine compared to the other analytes. Human serum was 

analyzed and no kynurenine or kynurenine derivatives were deteced. The 

method is not useful to quantify tryptophan metabolites because the biological 

concentration is lower than the LLOQ for those analytes. 

8.5.6 Extraction experiment 

The aim was to test different extraction solvent to increase sensitivity for polar 

compounds e.g. ethanolamine, citrulline or methylhistidine and to get better 

yields for all analytes and, consequently, better LLOQs. Changing the extraction 

medium to more a polar solvent (EtOAc, HCCl3) was tested. Additionally, the 

expansion of the reaction time as well as an additional step with brine solution 

was evaluated. The different conditions of the protocol are shown in 8.3, Table 

23. The analytes are divided into 6 different groups, which are discussed: neutral 

amino acids, polar amino acids, tryptophan metabolites and aromatic amino 

acids, basic compounds as polyamines and basic amino acids and ethanolamine 

and taurine. The areas of the neutral amino acids are shown in Figure 37.  
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Figure 37: Area obtained by different extraction protocols for derivatives of neutral amino acids. 

 

The areas for the polar amino acids are compared in Figure 38. All those amino 

acids contain a functional group e.g. threonine and serine have a hydroxyl group, 

aspartic acid and glutamic acid a second carboxy function, glutamine and 

asparagine an amide function, and cystine and methionine contain sulfur. Apart 

from methionine the higher extraction yields were obtained with ethyl acetate and 

chloroform compared to isooctane, with chloroform showing the best 

performance.  
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Figure 38: Area obtained by different extraction protocols for derivatives of polar amino acids. 

 

Ethyl acetate is the best solvent for the extraction of polyamines, lysine and 

ethanolamines (data not shown). For methylhistidine the yield was almost 5 or 9 

times higher using ethylacetate and chloroform, respectively. For arginine the 

yield was 30 or 25 times higher using ethylacetate and chloroform, respectively. 

Both are shown in Figure 39 
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Figure 39: Area obtained by different extraction protocols for arginine and methylhistidine 

 

The same trend was observed for aromatic amino acids and tryptophan 

metabolites (data not shown). In conclusion, using either ethyl acetate or resulted 

in higher yield and improved LLOQs. In particular, for the analysis of the 

tryptophan derivates improved LLOQs are needed. 
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9 Conclusion and Outlook 

9.1 GC-MS method 

A robust and accurate GC-MS method was developed for the automated 

quantitative analysis of amino acids as their propyl chloroformate derivatives in 

various biological matrices. At present, 31 amino acids and dipeptides can be 

reliably quantified by using 19 stable-isotope labeled amino acids as internal 

standards. The advantage of the method in comparison to other available 

methods is the complete automation and a very robust quantification. By limiting 

manual sample preparation steps, the sample throughput is increased, which is 

of high importance in metabolomics studies. For the analysis of blood or urine a 

sample amount of 20 - 50 µL is necessary. The introduction of stable-isotope 

labeled amino acids as internal standards immensely improved the method 

reproducibility over using only norvaline as internal standard, which allowed the 

accurate and robust quantification of amino acids in large sample batches. The 

method was validated for the analysis of amino acids using certified amino acid 

standard and reference plasma, and its applicability was shown by matrix spike 

experiments. The application for metabolomic studies with large sample numbers 

was demonstrated by anaylyzing 2 blinded sets. The method was adapted to 

allow the combined analysis to the total fatty acid content of 17 fatty acids and 25 

free amino acids in a single gas chromatographic run. The chromatographic run 

time increased from 12 min to 50 min. Modification of the derivatization protocol 

may allow the analysis of free fatty acids as a subset of the lipidome. There is 

also the possibility to expand the method for the analysis of additional 

compounds e.g. polyamines or other dipeptides. 
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9.2 LC-MS/MS method 

Limitations of the GC-MS method are firstly that serine and threonine, depending 

on the biological matrix, may not always be measured reliably and, secondly, that 

certain amino acids, such as arginine, cysteine, citrulline, taurine, and the 1- and 

3-methylhistidines are not amenable to GC-MS analysis due to their thermal 

instability. Therefore, the potential of derivatization with propyl chloroformates, 

followed by LC-MS/MS analysis for amino acid determination was investigated. 

The method was expanded to tryptophan metabolites and polyamines. In total 41 

analytes were investigated. Due to their amino function they can be derivatized 

with propyl chloroformate and analyzed by LC-MS/MS. The main focus was the 

evaluation of a novel strategy to generate a stable-isotope labeled standard by 

using d3-labeled propanol. Experiments showed that the created standard was 

not suitable for quantification purposes. Therefore, isotope-labeled analogs have 

to act as internal standards. In total 23 stable-isotope labeled amino acids were 

used as internal standards but for many analytes no stable-isotope labeled 

standard was available. e.g. kynurenine. Means of synthesizing labeled 

compounds include chemical synthesis or the use of enzymes. Matin et al. 

demonstrated the enzymatic conversion of tryptophan to kynurenine using 

indoleamine 2,3-dioxygenase (IDO).92 Changing tryptophan to labeled tryptophan 

would lead to labeled kynurenine. It was not possible to detect all analytes e.g. 

tryptophan metabolites above the LLOQ in biological samples. Therfore the 

sensitivity of the method has to be increased. The sample preparation contain a 

extraction with isooctane. Experiments with different solvents showed that there 

is a way to increase the yield of extraction using chloroform or ethyl acetate. Due 

to the better handling applying the ethyl acetate approach would be the best way 

for the future. 
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11 Appendix 

 

Table 27: [U-13C, U-15N] labeled cell free amino acid mix extracted from algae. Molar % and 
weight % as provided from the manufacturer (determined by HPLC). The standard was dissolved 
in 10 mL water (resulting concentrations given in the table). 

AA Molar % Weight % M [g/mol] m [mg] 
conc 
[µmol/10 
ml] 

conc 
[nmol/µl] 

       

Aspartic acid 7.84 8.25 138.1 2.327 16.846 1.6846 

Glutamic acid 10.04 11.67 153.13 3.291 21.491 2.1491 

Asparagine 4.34 4.56 138.12 1.286 9.310 0.9310 

Serine 4.26 3.53 109.09 0.995 9.125 0.9125 

Glutamine 4.43 5.15 153.15 1.452 9.483 0.9483 

Histidine 0.41 0.51 164.16 0.144 0.876 0.0876 

Glycin 9.33 5.53 78.07 1.559 19.975 1.9975 

Threonine 4.77 4.48 124.15 1.263 10.176 1.0176 

Alanine 13.29 9.35 93.09 2.637 28.324 2.8324 

Arginine 4.9 6.78 174.2 1.912 10.98 1.098 

Tyrosine 2.13 3.04 191.19 0.857 4.484 0.4484 

Valine 6.53 6.04 123.15 1.703 13.831 1.3831 

Methionine 1.63 1.92 155.21 0.541 3.488 0.3488 

Tryptophan 1.81 2.92 217.23 0.823 3.791 0.3791 

Phenylalanine 2.41 3.15 175.19 0.888 5.070 0.5070 

Isoleucine 4.71 4.88 138.18 1.376 9.959 0.9959 

Leucine 8.66 8.97 138.18 2.530 18.306 1.8306 

Lysine 3.98 4.6 154.19 1.297 8.413 0.8413 

Proline 3.9 3.55 221.13 1.001 4.527 0.4527 

Cysteine  not det.     
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Table 28: The three differt Mastermixsolutions for the analysis by LC-MS/MS as propyl 
chloroformates 

 

Mastermix A 

Conc: 2.5 µM  

Mastermix B 

Conc: 2.5 µM 

Mastermix C 

Conc: 5 µM 

ß-alanine Glutamin hippuric acid 

Alanine Arginine 3-methyl-histidine 

Α-aminoadipic acid γ-aminobutyric acid Anthranilic acid 

α-aminobutyric acid Histidine Spermine 

ß-aminoisobutyric acid Hydroxylysine Spermidine 

Asparagine Kynurenine Putrescine 

Aspartic acid Kynurenic acid Agmatine 

Citrulline Hydroxykynurenine Ethanolamine 

Cystine (1.25 µM) Lysine  

Glutamic acid 1-methyl-histidine  

Glycine Ornithine  

Isoleucine Tryptophan  

Leucine   

Methionine   

Phenylalanine   

Proline   

Sarcosine   

Serine   

Taurine   

Threonine   
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Tyrosine   

Valine   

 

 

 
Table 29: Comparison of tryptophan values analyzes as propyl chloroformates by GC-MS and 
LC-MS/MS 

µM GC-MS  LC-MS/MS 

 C1      78.45 74.5

 C2      101.8 97.5

 C3      135.25 124.5

 C4      93.35 88.5

 C5      143.9 130.5

 C6      132.55 120.5

 N1      158.75 142

 N3      126.35 112.5

 N4      182.65 145

 N5      129.4 120.5

 M1      190.95 168

 M2      120.9 113

 M3      132 122

 M4      129.95 121

 M5      124.3 114.5

 M6      145.45 133.5
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14 Summary 

Amino acids are intermediates in cellular metabolism and their quantitative 

analysis plays an important role in disease diagnostics. A gas chromatography-

mass spectrometry (GC-MS) based method was developed for the quantitative 

analysis of free amino acids as their propyl chloroformate derivatives in biological 

fluids. Derivatization with propyl chloroformate could be carried out directly in the 

biological samples without prior protein precipitation or solid-phase extraction of 

the amino acids, thereby allowing for automation of the entire procedure, 

including addition of reagents, extraction and injection into the GC-MS. The total 

analysis time was 30 minutes, including sample preparation and 31 amino acids 

could be reliably quantified using 19 stable isotope-labeled amino acids as 

internal standards. Limits of detection (LOD) and lower limits of quantification 

(LLOQ) were in the range of 0.03 - 12 μM and 0.3 - 30 μM, respectively. The 

method was validated using certified amino acid standard and reference plasma, 

and its applicability to different biological fluids was shown. Intraday precision for 

the analysis of human urine, blood plasma, and cell culture medium was 2.0 - 

8.8%, 0.9 - 8.3%, and 2.0% - 14.3%, respectively, while the inter-day precision 

for human urine was 1.5 - 14.1%.  

Using two blinded sets of urine specimens containing replicates, the GC-MS 

method was further validated and the results were compared with those obtained 

for iTRAQ® derivatization HPLC-tandem mass spectrometry and ion exchange 

chromatography with postcolumn ninhydrin detection of amino acids. The 

technical error (TE), as determined by repeated aliquot measurements of various 

urine specimens was calculated to prove that the method was suitable for the 

quantitative analysis of amino acids in large clinical and epidemiological studies. 

The quantitative results obtained by the three methods were compared by 

regression analysis and Bland-Altman plotting.  
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The method was further expanded to fatty acids. Due to the carboxy function 

fatty acids can be derivatized with propyl chloroformate and included in the 

develpoped GC-MS method. To resolve isobaric fatty acids the GC program had 

to be expanded and the analysis time increased to 50 min for one GC run.  LODs 

for the fatty acids ranged from 0.08 µM to 39 µM. To that end, the method was 

adapted to allow the combined analysis of the total fatty acid content of 17 fatty 

acids and 25 free amino acids in a single gas chromatographic run. 

The number of amino acids amenable to GC analysis is limited and therefore, the 

potential of derivatization with propyl chloroformates, followed by LC-MS/MS 

analysis for amino acid determination was investigated. The method was 

expanded to tryptophan metabolites and polyamines that are of great interest in 

several biological projects. The intention to use an in-house synthesized internal 

standard for each analyte failed as experiments showed that the created 

standard is not suitable for quantification purposes. Therefore, isotopes labeled 

analytes have to act as internal standards. Using 23 stable-isotope labeled 

compounds as internal standards, the method aims the quantification of 41 

analytes comprising amino acids, tryptophan metabolites and polyamines. It was 

not possible to detect tryptophan metabolites above the LLOQ in biological 

samples. Preliminary experiments were performed to improve the method by 

evaluating choice of the extraction solvent. 
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15 Zusammenfassung 

Aminosäuren sind Zwischenprodukte im zellulären Stoffwechsel und ihre quanti-

tative Analyse ist speziell bei der Diagnose von Krankheiten von enormer Be-

deutung. Zur Bestimmung von Aminosäuren in unterschiedlichen biologischen 

Proben wurde eine gaschromatographische mit Massspektrometer gekoppelte 

Methode entwickelt, welche auf der Derivatisierung von Aminosäuren mit 

Chlorameisensäurepropylester beruht. Diese Art der Derivatisierung kann ohne 

vorgeschaltete Proteinfällung oder Festphasenextraktion direkt in biologischen 

Proben durchgeführt werden, wodurch eine Automatisierung des gesamten 

Prozesses - Zugabe der Reagenzien, Extraktion und Injektion ins GC-MS - 

ermöglicht wird. Die Gesamtanalysenzeit inklusive Probenvorbereitung beträgt 

30 min, wobei durch die Verwendung von 19 stabile isotopenmarkierten 

Aminosäuren als interner Standard 31 Aminosäuren und Dipeptide quantifiziert 

werden konnten. Die Nachweisgrenzen (LOD) lagen zwischen 0,03 und 12 µM 

und die unterste Quantifizierungsgrenze (LLOQ) zwischen 0,3 und 30 µM. Die 

Methode wurde durch die Analyse eines zerifizierten Standards und 

Referenzplasma validiert und die Anwendbarkeit für verschiedene biologische 

Proben getestet. Die relative Standardabweichung für eine Zehnfachbestimmung 

am selben Tag lag zwischen 2,0 und 8,8% für menschlichen Harn, zwischen 0,9 

und 8,3% für menschliches Plasma und zwischen 1,3 und 9,1% für Mäuseharn, 

während die Standardabweichung für eine Zehnfachbestimmung für 

menschlichen Harn über mehrere Tage verteilt zwischen 1,5 und 14,1% lag.  

Die GC-MS Methode wurde weiterhin durch die Analyse von zwei verdeckten 

Probensets validiert, welche Splitproben enthielten. Dieselben Proben wurden 

zusätzlich mit der iTRAQ® Derivatisierung gefolgt von HPLC -Tandemmassen-

spektometrie und einer Nachsäulenderivatisierung mit Ninhydrin mittels eines 

Aminosäurenanalysator gemessen. Um die Eignung der Methode für einen 

hohen Probendurchsatz zu zeigen, wurde der technische Fehler für die 
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Splitproben berechnet. Die quantitativen Ergnisse aller drei Methoden wurden 

durch Regressionsanalyse und Bland-Altman Auftragungen miteinander 

verglichen. 

Die Methode wurde zusätzlich für die Analyse von Fettsäuren erweitert, welche 

aufgrund ihrer Carboxylgruppe mit Chlorameisensäurepropylester derivatisiert 

werden können. Um isobare Fettsäuren trennen zu können mußte die GC-

trennung auf von 11 auf 50 min erweitert werden. Der Bereich der 

Nachweisgrenzen (LOD) lag zwischen 0.08 und 39 µM. Mit der erweiterten 

Methode ist es möglich eine vereinte Analyse von Aminosäurenkonzentration 

und totalen Fettsäurenkonzentration für 17 Fettsäuren und  25 Aminosäuren 

durchzuführen.  

Da die Anzahl der Aminosäuren die mittels GC bestimmt werden können limitiert 

ist, wurde zusätzlich die Möglichkeit zur Aminosäurenanlytik mittels LC-MS/MS  

Chlorameisensäurepropylesterderivate getestet. Tryptophanmetabolite und 

Polyamine sind in mehreren biologischen Projekten von großem Interesse und 

wurden deshalb in die Methode integriert. Da der eigens synthetisierte Standard 

nicht zu Quantifizierungszwecken eingesetzt werden konnte wurden erneut 

isotopenmarkierten Aminosäuren als interner Standard verwendet. Insgesamt 

wurden 23 isotopenmarkierte Verbindungen für die Quantifizierung 41 Analyten 

(Aminosäuren, Tryptophanderivate und Polyamine) verwendet. Mit dieser 

Methode war es nicht möglich Konzentrationen für  Tryptophanmetabolite 

oberhalb der unteren Quantifizierungsgrenze in biologischen Proben zu 

bestimmen. Zur Verbesserung der Nachweisgrenzen wurden erste Experimente 

durchgeführt, die eine bessere Extraktion der Analyten ermöglichen. 
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