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2D  2-dimensional 

3D  3-dimensional 
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abs.  absolute 

APS  3-aminopropyltriethoxysilane 

atm.  atmosphere 

ATR  attenuated total reflection 

ATRP  atom transfer radical  

  polymerization 

AuMPC monolayer-protected gold  

  cluster 

AuNP  gold nanoparticle 
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Bn  benzyl 
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quant.  quantitative 
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RuAAC ruthenium catalyzed 

azide/   alkyne cycloaddition 

S  solvent 

s  second 
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SMAD  solvated metal atom 

  dispersion 

SPIO  superparamagnetic iron 

  oxide 
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T  temperature 

TEM   transmission electron 

  microscopy 

TEMPO 2,2,6,6- tetramethyl-

  piperidine-1-oxyl 
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THF  tetrahydrofurane 
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  chromatography 
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A. Introduction  
 
Catalysis is among the most important applications within the field of nanoscience.1 

The large surface area of metal nanoparticles qualifies them quite naturally to act 

either as heterogeneous promotors for catalytic reactions2 or as a support for 

homogeneous catalysts.3 Contrary to classic heterogeneous catalysts,4 nanoparticles 

(NPs) are synthesized in a bottom-up approach from molecular precursors such as a 

metal salt, a stabilizer, and a reducing agent (with the latter two being sometimes 

identical). When catalytic applications of NPs are discussed, four general approaches 

can be considered in distinct form as well as in combinations thereof. They can be 

discriminated via the role exerted by the metal the nanoparticle consists of, the 

location of the ligand, if any, with respect to the particle surface and whether the 

ligand plays an active part in the catalytic process or acts solely as a stabilizer.  

  

A + B

C

A + B

C

a) b)

A + B

C

L

L
L

LL
L LL

L

L

c) d)

L
L M

A + B

C

 
Figure 1. Catalysis with a) metal-nanoparticles, b) metal-nanoparticles capped with a protective shell, 

c) metal-nanoparticles capped with ligands contributing to the catalytical activity and d) metal-

nanoparticles with catalysts supported on the protective shell. Only in the latter case the core material 

does not promote the reaction.  

 



A. Introduction 

 2 

Even more complex morphologies are possible if bimetallic nanoparticles or 

multilayer shells are considered. The first three approaches involve the use of 

systems where the nanoparticle metal exerts the dominating influence on the 

catalytic activity (Figure 1a-c). In all these cases, the catalytic processes take place 

on the surface of the nanoparticles, affected only in one structure by ligands/capping 

agents that transmit influence to metal-coordinated substrates in their vicinity (Figure 

1c). A plethora of clusters with constituent metals such as Pt, Pd, Ru and Rh was 

reported.5 Since the catalytic properties of these metal nanoparticles, acting in 

principle as a heterogeneous catalyst, have been extensively reviewed,2 the following 

chapters will focus on nanomaterials acting solely as carriers for soluble catalysts 

(Figure 1d), an approach which has been scarcely discussed.6 In here the clusters 

act as a structuring element for an assembly of ligands, which are bonded to the core 

material through an additional function, different from the chelating functional groups 

defining the catalytic center. The activity arises from a metal different to the core 

material. 

 On these nanoclusters, catalysts are exposed on the particle surface, which makes 

them accessible almost like their homogeneous counterparts. Such a globular 

surface might be superior to conventional polymeric supports, representing the most 

popular scaffolds used for immobilization so far.7 Amorphous resins have sometimes 

the problem that catalytic sites are buried in the polymer backbone, thus limiting the 

access of reactants.8 This limitation was widely tolerated since the benefits which 

arise from the grafting of a soluble heavy-metal complex or organocatalyst, namely 

ease of separation and recyclability of the usually toxic and expensive species, 

outbalance the loss of activity and selectivity occasionally observed. Especially 

soluble transition-metal complexes are difficult to separate, a fact which limited their 

application in large-scale pharmaceutical processes due to metal contamination.9 

Furthermore, the separation of heterogeneous matrices from the reaction mixture is 

more feasible than via biphasic systems, e.g. extraction using perfluorinated tags.10 

The domain of nanoparticles acting as a recyclable scaffold is settled between these 

two orthogonal strategies, hence this approach is sometimes called “semi-

heterogeneous”.2f The separation of the functionalized nanomaterial succeeds via 

different methods, depending on the nature of the particles. Such are centrifugation, 

precipitation–flocculation, nanofiltration, or magnetic decantation (in the case of 

magnetic nanoparticles). Since the core material is not meant to take part in the 
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catalytic reaction, this metal should be comparatively inactive or surrounded by a 

completely impermeable shell. The latter condition is rather difficult to accomplish, 

which explains why only very few metals are used as structural elements, despite the 

many different metal NPs that found application in heterogeneous catalysis. 

Therefore, gold-colloids tethered to a protective alkanethiol-monolayer were for a 

long time the dominating motif for nanosized core/shell-structures due to the 

insinuated inertness of Au(0), an assumption which can, however, not persist 

unrestricted.11 

 

1. Catalysts immobilized on monolayer-protected gold cluster 
The first nanosized core/shell-structures utilized as a support for catalysts were Au-

colloids. Gold-nanoclusters sufficiently stable to act as a support for metal complexes 

usually feature a stabilizing alkanethiol-monolayer on which the catalysts are 

anchored. The exceptional stability of the Au-S-bond could result in the misguided 

association of a certain rigidness of the shell. In fact, the self-assembling-monolayer 

(SAM) on the particle surface is in his behaviour far more comparable to a two-

dimensional fluid. Thiolates are constantly changing their position on the cluster, 

“hopping”12 from one cluster to the next, or exchanging with thiols eventually present 

in the supernatant. Especially the latter behaviour offers a straightforward route for 

the attachment of functionalized thiols via the so-called place-exchange reaction.13 

However, early studies feature examples for in-situ functionalization via passivation 

of preformed gold colloids or simultaneously to the growing of the gold nuclei which 

form upon reduction of tetrachloroaureate with sodium borohydride according to a 

procedure developed by Brust and Schiffrin.14 Due to the exceptional simple and 

concise layout of the Schiffrin-reaction, chemistry using monolayer-protected gold 

clusters (AuMPCs) experienced an additional boost. 
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1.1 In-situ functionalized gold nanoparticles 
 

 

SH

2. RuCl3,

1.

Toluene, 4d, 80°C

Cl Ru

ClRu

S

Cl

Cl

S
S

S

AuAu

1  
 
Scheme 1. Tagging of gold colloids with a Ru-complex for the ring opening metathesis polymerization 

(ROMP) of norbornene to polynorbornene. 

  
The first transition-metal complex immobilized on metal nanoparticles was developed 

by Tremel et al. in 1998.15 Freshly prepared gold colloids were stirred with 4-

methylhexa-3,5-diene-1-thiol in the presence of RuCl3 under argon to yield a black 

powder which can be dissolved in acetone and precipitated from methanol (Scheme 

1). The gold-grafted Ru-complex 1 was able to catalyze the ring opening metathesis 

polymerization (ROMP) of norbornene, providing turnover frequencies (TOF: 16.000 

h-1) superior to those obtained with the homogeneous counterpart (TOF: 3.000 h-1). It 

was reasoned that the orientation of the catalyst on the surface of the MPCs favours 

the coordination of the monomer and the orientation of the growing polymer chain. 

However, Ru-complexes on 2D-Au-surfaces exceeded both values by far (TOF: 

80.000 h-1).   
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S
S S
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S
S

S
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S

HAuCl4

S

S

(C6H17)4N+Br-

NaBH4

HO
HO

2

3

Au

 
 
Scheme 2. Synthesis of ω-1,1`-bi-2-naphthol-alkanethiolated AuMPCs. 

  

In an elegant study, Sasai et al.16 reported on Au-clusters stabilized by thiols bearing 

chiral 1,1`-bi-2-naphthol (BINOL) moieties using exclusively disulfides with (R)-BINOL 

at terminal position. Since functionalized disulfides were employed already during the 

Schiffrin reaction, core passivation and functionalization succeeded in a one-pot 

reaction that makes this route comparatively simple (Scheme 2). Furthermore, this 

represents the first application of a chiral catalyst immobilized on AuNPs. A Ti-

BINOLate-complex was able to catalyze the asymmetric alkylation of benzaldehyde 

using Et2Zn in up to 98% yield and with 86% ee (Scheme 3).  

 
5

O

+

3
(10 mol%)
Ti(O-iPr)4

(2.0 equiv)

CH2Cl2,
7h, -10°C

OH

yield: 98%
ee: 86%4 6

Et2Zn

 
Scheme 3. Asymmetric alkylation of benzaldehyde (4) with diethylzinc (5) catalyzed by Ti-BINOLated-

AuMPCs 

 

Thus, BINOL-functionalized MPCs 3 gave results comparable to the homogeneous 

catalyst (95% yield, 90% ee) and clearly superior to polystyrene-supported Ti-

BINOLate-complexes (61% yield, 83% ee).16c Recycling of the nanocomposite was 



A. Introduction 

 6 

possible via precipitation from EtOH and redispersion in CH2Cl2, although this 

procedure was accompanied by an explicit drop in enantioselectivity (62% ee). In 

addition, the length of the alkanethiol-spacer (C4, C5, C6) was found to have quite an 

effect on the selectivity.  

 Recently, Sasai was expanding this concept to challenge the task of immobilizing 

multicomponent asymmetric catalysts such as Ga–Na-bis(binaphthoxide) complexes 

(GaSB, Figure 2).16b 

  

O O

OO

Na Ga

S

S

7

7

Au

7  
            
Figure 2. AuMPC supported asymmetric Ga–Na-bis(binaphthoxide) multicomponent catalyst. 

  

The synthesis was similar to the one depicted in Scheme 2, using MOM-protected 

BINOL-terminated disulfides but with a significantly longer (C16) alkyl-spacer. The as-

prepared AuMPC-supported BINOL 7 (20 mol%) was treated with GaCl3 (20 mol%) 

and NaOtBu (85 mol%) in the presence of cyclohex-2-enone (8) and dibenzyl 

malonate (9) to afford the corresponding Michael adduct 10 in 67% yield and 98% 

ee, which is comparable to the parent homogeneous catalyst (Scheme 4). 
 

+
CO2Bn

CO2Bn

7
(10 mol%)

THF, 72 h,
25°C

9 yield: 67%
ee: 98%

8

O

CO2Bn

CO2Bn

O

10
 

Scheme 4. Asymmetric Michael-addition of dibenzyl malonate (9) to cyclohex-2-enone (10) using in-

situ created multicomponent catalyst 7. 
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1.2 Gold nanoparticles functionalized via place-exchange reaction 
The exchange of surface-bound thiolates against dissolved functionalized thiols 

represents a convenient post-grafting process. In contrast to the in-situ methods 

previously discussed, the size of the Au-particles can be controlled prior to particle 

modification following well-elaborated protocols since this reaction does not alter the 

core dimensions.  

 

SSSSSSSS

SSSSSS
S SS

SS
SSS

SSSSS
S

SH

SH

n

n

SSSSSSSS

SSSSSS
S SS

SS
SSS

SSSSS
S

Au Au

 
 

Scheme 5. Place-exchange reaction of surface-bound thiolates and dissolved ω-functionalized 

alkanethiols. 

 

In addition, the formation of mixed alkanethiol-monolayers is possible, which enables 

higher degrees of complexity in the SAM. For instance, the use of alkanethiols with 

different chain length results in variably constructed catalytic sites. Complexes 

positioned on long-chained alkanethiols relative to the neighbouring thiolates form 

convex reaction sites, similar to homogeneous catalysts, whereas concave 

formations are possible with short-chained thiols resembling enzyme-like 

environments.  
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Figure 3. Different active sites for metal catalysts on thiolate-monolayers: Convex active site 

(homogeneous-like, left) and concave active site (enzyme-like, right). 
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Different termini of the surrounding alkanethiolates in the monolayer are apt to tune 

the solubility or reactivity of the cluster through interactions with the substrate or the 

catalytic center. In addition, the loading of the particles can be controlled in the place-

exchange reaction by careful choice of concentrations and reaction times. In this 

regard, Stöhr and Pfaltz17 have published a comprehensive study using a [Rh(COD)-

(PYRPHOS)]BArF-catalyst.  

N

O

P

P
RhB

CF3F3C

CF3

CF3

CF3F3C

F3C

F3C

S
5

S

R

n

S

R

n

S

R

n

S

R

n11: n = 1; R = CH3
12: n = 0; R = adamantyl
13: n = 5; R = CH3
14: n = 5; R = NH2
15: n = 5; R = OH

Au

 
 
Figure 4. Representation of different AuMPC-structures tagged with [Rh(COD)-(PYRPHOS)]BArF. 

 

Different gold colloids were synthesized via place-exchange reaction of AuMPCs with 

unequal chain lengths (C6-C12) and end group polarity of the alkanethiolates in the 

shell against rhodium-PYRPHOS-bearing thiols (Figure 4). Almost all “heterogenized” 

catalysts gave yields (>99%) and enantioselectivities (93% ee) equalling those 

obtained with to the homogeneous [Rh(COD)(n-octanoyl-PYRPHOS)]BArF in the 

hydrogenation of methyl α-acetamidocinnamate 16 (Scheme 6). The colloids could 

be recovered by filtration and reused at least thrice without loss of enantioselectivity.  
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conversion: > 99%
ee: 93%

11
(1 mol%)

H2 (60 bar)

CH2Cl2,
4h, 24°C

16

CO2Me

HN

O

∗ CO2Me

HN

O

17
 

Scheme 6. Asymmetric hydrogenation of methyl α-acetamidocinnamate (16) in the presence of 11.  

 

AuMPCs 14 and 15 are the exception in this regard. Both possess polar endgroups  

and deliver significantly lower yield (32-94%) and selectivity (82-86% ee). Thus, the 

promising strategy of creating AuNPs passivated with a ω-hydroxy/-amino-

alkanethiolate layer, which was envisaged to result in particles compatible with polar-

protic-reaction media, failed. Yields and selectivities achieved with 14 and 15 were 

clearly inferior when compared to homogeneous, but also heterogeneous catalysts 

11-13 in EtOH. The anchoring of a preformed complex on gold nanoparticles, as 

reported by Stöhr and Pfaltz,17 is a rather rare example. 

However, according to Scheme 5, many alkanethiols tagged with ligands were 

grafted on preformed AuNPs via place-exchange. A very early example for a convex 

active site forming a homogeneous-like environment was reported by Mrksich.18 A 

mixed monolayer was formed containing 25% of dihydroquinidine-functionalized 

alkanethiols neighbouring octanethiolate coated gold cores with an average diameter 

of 2.5 nm (Figure 5).  
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Figure 5. Representation of a mixed-monolayer coating of gold nanoparticles in which cinchona 

alkaloid derivatives are embedded. 

 

The chiral cinchona alkaloid derivative 18 is used to activate oxidant osmium 

tetroxide in order to render the Sharpless asymmetric dihydroxylation of β-methyl 

styrene 19 highly enantioselective (90% ee). It is noteworthy that 18 was sufficiently 

stable to allow recycling via gel permeation chromatography at least twice, thus 

impressively demonstrating the versatility of this support even in aqueous media and 

under oxidative conditions.   

yield: 72-81%
ee: 79-90%
3 cycles

19 20

Me Me
OH

OH

     18
(10 mol%)

OsO4, K3Fe(CN)3, 
K2CO3, tBuOH/H2O,

 5h, 25°C

 
Scheme 7. Asymmetric dihydroxylation of β-methyl styrene 19 using immobilized catalyst 18. 

 

However, the recovered material exhibited significant lower activity and selectivity in 

each cycle (Scheme 7). 
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If it comes to recyclability, an immobilized Ru-carbene complex developed by Lee et 

al.19 sets the benchmark. Octanethiolate-passivated AuMPCs were exchanged with 

styrene-functionalized dodecanethiols. Treatment of cluster 21 thus obtained with 

second generation Grubbs Ru-complex 22 in the presence of CuCl yielded a 

AuMPC-Ru-carbene complex 23 which is soluble in CH2Cl2 and can be precipitated 

from methanol, ethanol or diethylether (Scheme 8). 
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Scheme 8. Synthesis of AuMPC-bound Ru-carbene complex 23 for the ring-closing metathesis of 

dienes.  

 

This material showed high reactivity (>98% conversion) in the ring-closing olefin 

metathesis of dienes to heterocyclic compounds with satisfying levels of reusability 

(Scheme 9).  

 

 

conversion: 80-98%
6 cycles

2524

N
Ts

CH2Cl2, 1.5 h,
40°C

N
Ts

     23
(5 mol%)

 
Scheme 9. Ring closing metathesis of N-allyl-N-tosylprop-2-en-1-amine (24) promoted by 23 (5 

mol%). 
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After the 6th run, conversion decreased dramatically from 80% down to 20% 

accompanied by particle flocculation. Desorption of the coating monolayer followed 

by aggregation of the gold cores might be responsible for this effect, a suspicion 

which was substantiated by TEM-analysis (Figure 6). 

 

   
 

Figure 6. TEM photographs of 23 a) as-prepared and b) after 7th cycle in the ring closing metathesis 

of dienes (10 nm bar length).19  

 

Tanaka et al. examined the influence of different spacer lengths (C4, C6, C8, C10) of 

the alkanethiols linked to the central carbon atom of a chiral bis(oxazoline) on the 

dispersability of the corresponding (R)-Ph-BOX-AuMPCs (Figure 7, left).20  
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Figure 7. Chiral BOX ligand with different spacer length (C4, C6, C8, C10) (left) and chiral PyOX ligand 

(right) anchored on C6-AuMPC. 

 

The copper(II)-complexes of the functionalized AuMPCs 26-29 acted as nearly 

homogeneous catalysts in the ene reaction between 2-phenylpropene 31 and ethyl 
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glyoxylate 32. It was found that ligands tethered with the shortest (C4) linker show the 

highest level of dispersion and are the most effective in terms of catalytic activity and 

recycling utility. The authors reasoned that in the case of a concave active site, with 

copper(II)-complexes buried in the hexanthiolate-shell, aggregation of the particles is 

minimized. However, the recycling of these highly dispersed particles is a little 

laborious, involving shaking after dilution with hexane, centrifugation (10.000 min-1, 

10 min) and decantation. This procedure has to be repeated thrice before the 

remaining catalyst can be redispersed under sonication for the following cycle 

(Scheme 10). Yields decreased slightly from 99% to 80% in the 5th run whereas 

good enantioselectivites were achieved in each cycle (84-86% ee). 

 

+
O

CO2Et

26
(10 mol%)
Cu(OTf)2
(10 mol%)

CH2Cl2,
5 h, 25°C

CO2Et

32 yield: 80-90%
ee: 84-86%
5 cycles

OH

31 33

 

Scheme 10. Ene reaction between 2-phenylpropene 31 and ethyl glyoxylate 32 catalyzed by in-situ 

formed Cu(II)-26 complex.  
 

Koskinen and coworkers21 extended this approach, forming concave PyOX binding 

sites buried even deeper in the hexanthiolate coating of the gold particle (Figure 7, 

right). The authors suggested that a 32-atom gold cluster was formed, resembling a 

hollow structure, which would be the smallest core diameter (1.2 ± 0.2 nm) ever used 

for AuMPCs serving as carriers for catalysts. However, the catalytic activity of the 

palladium-complexes of these MPCs in the alkylation of chalconol acetate 33 with 

dimethyl malonate 34 is limited (Scheme 11). It shows only neglible activity but 

slightly better enantioselectivity than a polystyrene bound analog. Complete 

conversions and selectivities up to 73% ee are possible with diverse homogeneous 

PyOX-ligands, thus suggesting that an enzyme-like binding site has a detrimental 

effect on this reaction (Scheme 11).   
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OAc

+
CO2Me

CO2Me

30
(6 mol%)

[allylPdCl]2 
(2 mol%)

BTMSA,
KOAc,

THF, 46 h,
-78-40°C

∗

MeO2C CO2Me

rac-33 34 (S)-35 conversion: 5%
ee: 13 %

 

Scheme 11. Asymmetric alkylation of chalconol acetate 33 with dimethyl malonate 34 in the presence 

of 2 mol% [allylPdCl]2 and 6 mol% 30. 

 

Nevertheless, such a poor performance is not usual for transition-metal complexes 

linked to gold nanoparticles. As shown in the previous examples, activities and 

selectivities reach levels that are often restricted to homogeneous catalysts and 

rarely equaled by complexes anchored on solid supports. This might be attributed to 

the excellent dispersibility of these particles, sometimes even considered “soluble”. In 

addition, the immobilization on AuMPCs offers many prospects, e.g. tuning of the 

environment of the catalytic sites. However, it has to be admitted that recycling is 

sometimes tedious and possible only in a limited number. After several cycles the 

monolayers start inevitably to desorb from the surface of the cluster, thus causing 

irreversible aggregation of the gold nuclei finally resulting in a material which can not 

be dispersed anymore.   

 Driven by the motivation to retain the beneficial properties of the AuMPCs and to 

simultaneoulsly overcome limitations in recycling, especially feasibility and deficiency 

in number, several groups disclosed nanoparticles that contain a magnetic core 

material. 

 

2. Catalysts immobilized on magnetic nanoparticles 
Recent advances in the synthesis of size-controlled and monodisperse magnetic 

ferrite nanoparticles without the need of size-selection facilitated the exploition of 

these particles in many applications.22 Similar to gold nanoparticles, these materials 

allow a surface stabilization via simple organic compounds. 
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2.1 Magnetic nanoparticles stabilized with carboxylic- and phosphonic-acid 
derivatives 
Carboxylic acid sites are predominant among the most common capping agents for 

ferrite nanoparticles.23 Thus, a very early example for magnetic nanoparticles coated 

with a homogeneous catalyst is provided by a Rh-based cationic catalyst modified 

with benzoic acid, namely [Rh(COD)- η6-benzoic acid]BF4.24 Co-ferrite (CoFe2O4) 

was chosen as support, possessing a deviation from the nominal structure of a spinel 

ferrite in the shell. An amorphous ferric hydroxide layer on the surface was 

proposed,25 thus explaining the non-stoichiometric composition. The saturation 

magnetization of this nanomaterial with a size distribution ranging from 8 to 20 nm 

was reported to be approximately 60 emu/g. Similar to the place-exchange reaction, 

surface modification did not alter the chemical composition, resulting in the form 

(CoFe2O4)core(Fe0.19Ox)shell-{[ Rh(COD)-η6-benzoic acid] BF4}0.013.  
 

MeO MeO

O +
MeO

O

CO, H2, 3h

CO2
-

Rh+

-O2C Rh+

-O2C
Rh+

CO2
-

Rh+

-O2C
Rh+

CO2
-+Rh

CO2
-

+Rh

CO2
-

+Rh

CoFe2O4

37

36 38 39

yield: >99%
5 cycles  

 

Scheme 12. Hydroformylation of 4-vinylanisole by the nanomagnet-supported catalyst 37. 38/39 = 

10/90. 

 

The nanomagnet-supported catalyst 37 showed an activity and regioselectivity 

toward the hydroformylation of 4-vinylanisole 36, which is comparable to its 

homogeneous counterpart, although it has to be stated that reactions with the 

unsupported catalyst require only one third of the reaction time (Scheme 12). 

However, the activity is still extraordinarily high relative to catalysts immobilized on 

conventional supports, e.g. polymers,26 and shows no loss in activity upon recycling 

via magnetic decantation.  
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Not only ferrite-surfaces can be ligated with carboxylic acid derivatives. For instance, 

cobalt nanoclusters are known to be efficiently stabilized by oleic acid.27 Very 

recently, the synthesis of cobalt nanoparticles, stabilized with oleic acid and long 

chained carboxylic acids ω-functionalized with chiral β-amino alcohols was reported 

(Scheme 13).28 Without the use of oleic acid no nanomaterial can be obtained. 

Particle size and loading depend on the nature of the amino alcohol. With amino 

alcohol derivative 40 a loading of 1.4 mmol/g and a mean cluster diameter of 13 nm 

is achieved.  

NH

COONa

OH
OMePh

Co2(CO)8 (1.0 equiv.)
oleic acid (0.5 equiv.)

TOPO (0.2 equiv.)
o-C6H4Cl2, 180°C, 1h

Co

O
O NH

Ph

HO
OMe

6

40 41

O

O

6

Scheme 13. Synthesis of oleic acid capped cobalt nanoparticles functionalized with chiral amino 

alcohol. 

 

Pericàs et al. used this magnetically recyclable ligand for the ruthenium-catalyzed 

transfer hydrogenation of ketones, e.g. acetophenone 42 (Scheme 14). It was found, 

that activity as well as selectivity of the grafted complex were reasonably higher than 

those of the soluble analog. The authors reasoned that the concave active site 

formed on the surface of the nanostructure induces this beneficial effect. 
 

O OH41 (6 mol%)
[RuCl2(p-cymene)]2

(3 mol%)

iPrOH, KOH, 
22h, 25°C

42 43

conversion: 96% (1st run) 
ee: 77%
conversion: 61% (2nd run)
ee: 26%

 
 

Scheme 14. Ru-catalyzed transfer hydrogenation of acetophenone 42 with immobilized ligand 41. 

 

However, the recovered catalyst paled in means of yield and selectivity when applied 

in a second run, even when fresh [RuCl2(p-cymene)]2 was added. Leaching of 

functionalized carboxylates from the nanoparticles might contribute to this explicit 

drop. Without the addition of ruthenium, virtually no conversion is observed. 
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Reduction of the ruthenium complex by metallic cobalt was made responsible for this 

effect.   

 Superparamagnetic materials, such as iron oxide nanoparticles (SPIO) are 

intrinsically nonmagnetic but readily magnetized in the presence of an external 

magnetic field. The unusual high magnetization moments allow the use of low-field 

magnets to recover these particles quantitatively from solution. The lack of magnetic 

remanence prevents the formation of aggregates in the reaction media.  

 Magnetite (Fe3O4) is not only a widespread representative of such SPIO-particles 

but the most common nanomagnetic support par excellence. Phosphonic acid 

derivatives were successfully used to stabilize the Magnetite NPs in a number of 

publications,29 although they were assumed to be less effective in preventing 

aggregation upon solvent evaporation than oleic acid.29a Lin et. al29a used a 

Ruthenium(II) complex with phosphonic acid-substituted BINAP [Ru(BINAP-

PO3H2)(DPEN)Cl2] tethered to magnetite nanoparticles which were synthesized 

either by thermal decomposition30 or a coprecipitation method (Figure 8).31 
 

    

Fe3O4

P

P
Ru

H2
N

N
H2

Ph
Ph

Ph Ph

Cl

Cl

Ph

Ph

P
O O

O

44  
Figure 8. [Ru(BINAP-PO3H2)(DPEN)Cl2] supported on magnetite nanoparticles. 

 

Especially magnetite synthesized by the latter route demonstrated outstanding 

stability and catalyst 44 immobilized thereon possesses impressive efficacy and 

recyclability in the hydrogenation of 1-acetonaphtone 45 (Scheme 15).   
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conversion: >99%
ee: 97-98%
14 cycles

45

(0.1 mol%)

44
O

H2 (700psi)

KOtBu (1 mol%)
20h, 25°C

OH

46

 
Scheme 15. Asymmetric hydrogenation of 1-acetonaphtone 45 using a Ru(II)-BINAP-phosphonic acid 

catalyst supported on Fe3O4-nanoparticles. 

 

A drop in conversion was observed in the 15th cycle (35%) whereas selectivity 

remained high (95% ee). Catalyst 44 exhibits a saturation magnetization (σs) of 50 

emu/g, which is smaller than that of bulk magnetite (92 emu/g). This is consistent 

with the presence of a surface coating. 

 Magnetite particles obtained from a similar coprecipitation method served as 

carriers for a proline ligand that promoted an Ullmann-type coupling between 

aryl/heteroaryl bromides and nitrogen heterocycles.29b In contrast to previous 

protocols, the phosphonic acid derivative was not ligand-functionalized prior to the 

coating of the particle surface but derivatized in a post-grafting process instead. To 

this end, an alkyne moiety was installed on a 4-hydroxy-proline derivative to yield 

compound 48, which readily undergoes an azide/alkyne cycloaddition32 reaction in 

the presence of catalytic amounts of Cu(I) (Scheme 16).33 Thus, immobilization is 

achieved by reaction of 49 with simple 3-azidopropylphosphonic acid stabilized 

magnetite clusters 47 followed by deprotection.       

 

Fe3O4

47

O
P

O

O
N3 Fe3O4

49

O
P

O
N

O

N
N

O

N
H

OH

O

3

N
Boc

O O

OtBu

1. CuSO4, 
    sodium ascorbate

48

2. TFA/DCM

 
 

Scheme 16. Preparation of SPIO-immobilized proline 49 using a copper(I)-catalyzed azide/alkyne 

cycloaddition reaction.   
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 The as-prepared magnetite proline nanocomposite 49 consists of partially 

aggregated particles with a diameter between 6 and 20 nm. The loading of ligand 

was determined to be approximately 2.0 mmol/g. The nanomagnet could be reused 

up to four times without any significant loss of activity (Scheme 17). 
 

conversion: 93-98%
4 cycles

50

(20 mol%)
49

O

Cs2CO3 (2.0 equiv)
DMF, 24h, 110°C

52

Br

+
HN

N

51

N N

O

CuI (10 mol%)

  

Scheme 17. Ullmann-type coupling reaction of p-bromoacetophenone 50 with imidazole 51 promoted 

by magnetite supported proline 49.  

 

Since phosphonic acids as well as oleate capped iron oxide nanoparticles have 

sometimes the problem of aggregation due to insufficient stabilization of the discrete 

clusters, effort was put into the design of additional mantle structures. Gao and 

coworkers34a used oleate protected γ-Fe2O3 nanocrystals and coated them with a thin 

(2 nm) film of crosslinked polystyrene via an emulsion polymerization approach.35 

1,4-vinylbenzene chloride was copolymerized to allow the immobilization of 1-

methylimidazole, which formed upon deprotonation N-heterocyclic carbenes (NHC). 

NHCs were chosen as ligands for chelating Pd because of the impressive complex 

stability of these compounds (Scheme 18).36 
 

Fe2O3
Cl 1. 1-methylimidazole

2. Pd(OAc)2, Na2CO3
Fe2O3

N

Me
NPd

Cl

Cl
NMe

N

53 54

Scheme 18. Preparation of NHC-Pd complexes tagged on PS-coated SPIO-nanoparticles 53 

 

The catalytic power of this system was tested in a group of Suzuki cross-couplings of 

aryl halides with arylboronic acids.  
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 An average yield of 82% was obtained for 20 reactions. Thus, SPIO-supported Pd 

catalyst 54 showed better catalytic activity than chloromethyl polystyrene resin-

supported counterparts reported in the literature.37 Finally, maghemite-supported Pd 

catalyst 54 was subjected to five iterative reactions between p-iodotoluene 55 and 

phenylboronic acid 56. A yield of 88 ± 3% was obtained each time (Scheme 19).  

 

I
+

(HO)2B

yield: 85-91%
5 cycles

575655

(0.015 mol%)

54

DMF, Na2CO3,
50°C, 12 h

 
Scheme 19. Suzuki cross-couplings 4-iodotoluene 55 with phenylboronic acid 56 catalyzed by SPIO-

immobilized NHC-Pd 54. 

 

2.2 Dopamine stabilized ferrite nanoparticles 
Enediol-ligands such as catechols are known to have a high affinity to under-

coordinated surface sites of metal oxide nanoparticles.38 Therefore, dopamine has 

gathered attention, possessing an additional amine moiety which allows either 

immobilization of metal centers or further covalent modification.39 Manorama and 

coworkers40 reported several examples of Palladium(0) doped ferrite particles 

(NiFe2O4 and Fe3O4 respectively). The dopamine (DOPA) layer was formed by 

refluxing or sonicating the ferrites together with the catecholamine in water. 

 

MO
O

O

N
Pd
H

H

60: MO = NiFe2O4
61: MO = Fe3O4

MO
O

O

NH2

58: MO = NiFe2O4
59: MO = Fe3O4

Na2PdCl4

NH2NH2
pH 9

 
Scheme 20. Synthesis of ferrit-dopamine nanocomposite doped with Pd(0).  

 

Once a palladium(0) source is anchored on the nanomagnets (Scheme 20), the 

saturation magnetization of the spinel ferrite and magnetite supported Pd-DOPA 60 

and 61 respectively drops to 43 and 57 emu/g. For a series of hydrogenation 

reactions including aromatic nitro and azide compounds to their respective amine 
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derivatives with catalysts 60 and 61, an activity is observed that exceeds those of 

previous studies.41 The activity of 61 is somewhat inferior due to a lower palladium 

loading on the surface. Even after 10 cycles, no deterioration in the catalytic efficacy 

of both catalysts appeared.40c After each cycle, the catalyst was recycled with the aid 

of a external magnet (Figure 9). 

 

   
 

Figure 9. Isolation of the dispersed magnetic NPs (left) with the aid of an external magnet (right) from 

the reaction mixture.40c 

 

In addition, the spinel supported catalyst 60 was applied for Suzuki and Heck 

coupling reactions of aromatic halide derivatives (Scheme 21).   

 

Cl

(HO)2B

63

56

62 64

K3PO4, DMF, TBAB,
110°C, 36h

K3CO3, DMF,
130°C, 36h

60

65

yield: 90-93%
3 cycles

yield: 92-95%
3 cycles  

 

Scheme 21. Typical Suzuki (top) and Heck (bottom) coupling reactions of chlorobenzene (62) with 

phenylboronic acid (56) and styrene (64) respectively catalyzed by NiFe2O4-DOPA-Pd 60.  
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Catecholamines can act as cornerstone for more complex molecular architecture on 

iron oxide nanoparticles which allows the tuning of solubility and enables complex 

formation at once.  Gao et al.42 reported on maghemite (γ-Fe2O3) protected with a 

shell of Simanek-type43 (melamine) dendrons footing on a dopamine linker. Different 

generations of Simanek-type building blocks were modified with dopamine, which 

enables these dendritic branches to undergo a place-exchange reaction with oleate-

surfactants.44 Up to three dendron generations were anchored on a maghemite core 

in this way. Triphenylphospine moieties on the termini of generation-one dendrons 

could be used to allow the formation of Pd-complexes on the surface of the 

dendrimer-like core/shell-structure (Scheme 22). The as-prepared dendron coated 

iron oxide NPs were able to promote a Suzuki cross-coupling reaction of several 

arylhalides and phenylborate 56 at a catalyst concentration of 5 mol% under 

conditions comparable to those depicted in Scheme 21. In addition, 69 was found to 

maintain its activity upon recycling. 



A. Introduction 

 23 

 

Fe2O3

O

O

H
N

N
N

N
HN

N
H

HN

H
N

O

O

PPh2

PPh2

Fe2O3

O

O 6

5

HO

HO

H
N

N
N

N
HN

N
H

HN

H
N

O

O

PPh2

PPh2

66

68

67

Fe2O3

O

O

H
N

N
N

N
HN

N
H

HN

H
N

O

O

P

P

69

Pd(OAc)2

Pd

Ph
Ph

Ph Ph

L
L

    
Scheme 22. Representative diagram for the synthesis of γ-Fe2O3 nanoparticles protected by first 

generation Simanek-type dendrons possessing Pd-triphenylphosphine moieties. 
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2.3 Silica coated iron oxide nanoparticles 
Apart from enediol-ligands, silanes are frequently used to coat ferrites.45 The 

deposition and adhesion of silica can be achieved via the hydrolysis of a sol-gel 

precursor to give shells with a thickness between 2 and 100 nm. Because of the 

strong affinity of iron oxide surfaces toward silica, no primer is required. An 

advantage of the silica coating is that this surface is terminated by silanol groups 

which can react with various coupling agents to covalently attach linkers, ligands, 

metals or complexes. Nanocomposites of this kind were extensively used for 

palladium catalyzed cross-coupling reactions. 

Schüth and coworkers46 disclosed the prospectives of magnetically separable 

mesoporous silica, however, Ying et al.47 reported on SiO2-coated maghemite 

nanoparticles that functioned as catalyst support. In a straight-forward synthesis, 

maghemite@silica 70 was refluxed with either (3-mercaptopropyl)-trimethoxysilane 

(MPS) or N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AAPS) in toluene for 30h 

to yield 71 and 73 respectively.48 
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Scheme 23. Synthesis of thiol- (top) and amine- (bottom) functionalized silica coated maghemite 

nanoparticles. 

 

Next, palladium nanoclusters were deposited on the surface of the affinity ligand 

functionalized Fe2O3@SiO2-particles 71 and 73 in toluene under microwave 

irradiation (Scheme 23). Both Fe2O3@SiO2@Pd-nanocomposites were examined as 
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catalysts for the hydrogenation of nitrobenzene to aniline. Both, Fe2O3@SiO2-

NH2@Pd 72 and Fe2O3@SiO2-SH@Pd 74 gave 99% conversion over 6 and 5 

consecutive runs respectively. Their conversions then decreased gradually in 

subsequent runs to 87% and 76% respectively at run 14. The drawback in conversion 

after multiple catalyst recycling was rationalized with agglomeration of the Pd 

clusters, especially in the case of Fe2O3@SiO2-SH@Pd 72. TEM photographs taken 

before and after 14 runs affirmed this hypothesis (Figure 10).  
 

  
 

Figure 10. TEM photographs of Fe2O3@SiO2-SH@Pd 72 taken before (left) the first and after the 14th 

run (right) of nitrobenzene hydrogenation. The inset in the right picture shows that Pd nanoclusters 

interconnected and some of them became detached from the support.47  

 

The dependency of catalytic activity is known to relate with Pd cluster size and 

shape.49 The authors concluded that AAPS might serve as a stronger affinity ligand 

than MPS, thus suppressing the aggregation of palladium.  

Gao et al. broadened the scope of their protocol for the immobilization of Pd-NHC-

complexes on PS-coated maghemite nanocrystals 5434a to silica coated maghemite 

(Scheme 24).34b  
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Scheme 24. Synthesis of NHC-Pd complex tagged on silica-coated maghemite-nanoparticle via place-

exchange reaction with oleate stabilized iron oxide nanocrystals 75. 

 

Like its parent, the Fe2O3@SiO2-NHC-Pd complex 76 shows high levels of efficacy 

and recyclability in the Suzuki cross-couping reaction. Furthermore, the authors 

demonstrated the catalyst applicability in Heck and Sonogashira cross-couplings 

(Scheme 25). 
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Scheme 25. Repeated use of recovered Fe2O3@SiO2-NHC-Pd 76 for catalyzing Suzuki (top), Heck 

(middle) and Sonogashira (bottom) cross-coupling reactions respectively. 
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In addition, an interesting application of the nanosized NHC-Pd catalyst 76 was 

presented by the same group.34c They took advantage of the ability of the 

nanomagnet 76 to enter the polystyrene backbone (1% divinylbenzene-crosslinked 

polystyrene) of a solid-phase supported arylhalogenide. The two supports may be 

considered orthogonal due to the different separation procedure. Together with 

arylboronic acid in the solvent-phase, this system enables a three-phase Suzuki 

cross-coupling reaction (Scheme 26). The Pd catalyst was recovered from the 

reaction mixture with the aid of an external magnet. Subsequently, a filtration process 

was followed to remove the excess of dissolved borate reagent from the 

resin/product. Finally, the cross-coupling product was cleaved from the polymer by 

basic hydrolysis.  
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Scheme 26. Representation of a magnetic nanoparticle facilitated solid-phase Suzuki cross-coupling 

reaction.   
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The ability of nanoparticles to penetrate the pores of certain polymers has inspired 

their use in polymer synthesis. In general, the purification of polymers can be 

challenging already with a homogeneous catalyst since separation through copious 

washing is tedious. Therefore, a catalyst support being small enough to pass the 

polymer coils unhampered is a prerequisite for efficient recycling. Moreover, a 

support which can be attracted by an external magnetic field might be apt to reduce 

the amount of solvent necessary for complete removal of catalyst. Following this line 

of argument, Shen and coworkers50 developed a magnetite anchored atom transfer 

radical polymerization (ATRP)51 catalyst with an average diameter of 25 nm (Figure 

11). 
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Figure 11. A tetraethyl-diethylenetriamine-copper(I)-complex for the polymerization of methyl 

methacrylate (MMA) supported on magnetite via a silane agent. 

 

Catalyst 87 mediated the polymerization of methyl methacrylate (MMA) in a manner 

similar to homogeneous catalysts, thus being in contrast to catalysts immobilized on 

comparatively “large” particles, whose resulting polymers had uncontrolled molecular 

weights and high polydispersity. After recycling, 87 showed slightly diminished 

activity which further decreased after another cycle. The authors reasoned that 

oxidation of copper(I) might be responsible for this effect. To overcome this problem, 

in-situ catalyst regeneration methods were developed, e.g. triethylamine was used to 

reduce any Cu(II).50b Indeed, recycled catalyst 87 regained high activity and excellent 

control over polymerization after in-situ regeneration.  

Connon et al. reported on an organocatalyst tethered to a Fe3O4@SiO2-nanomagnet 

which was of unprecedented activity and recyclability.52 They evaluated DMAP 

analog 88 (Figure 12) in  the acetylation of 1-phenylethanol 89 by acetic anhydride 

where it furnished 90 in 14 iterative cycles with 94->98% conversion in each case 

(Scheme 27).  
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Figure 12. A magnetic nanoparticle supported organocatalyst: Magnetite@silica@4-N,N-

dialkylaminopyridine 88. 

 

The recovered material was subsequently found to be even active when employed at 

loadings as low as 0.2 mol% (79%). The reaction scope was examined by subjecting 

recycled catalyst 88 to promote a range of distinct transformations where it acted as 

a nucleophilic catalyst. After 30 consecutive cycles, 88 (0.2 mol%) was still able to 

achieve an identical level of conversion (80%) in the acetylation of 89.  

 
89

OH 88
(5 mol%)

Ac2O (1.5-2 equiv),
NEt3 (1-1.5 equiv),

CH2Cl2, 1-16h, 25°C

O

O

90 conversion: 94->98%
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Scheme 27. 88 as a recyclable catalyst for the acetylation of 1-phenylethanol 89. 

 

Very recently, the “click”-reaction33 has proved its versatility also on silica coated 

magnetite particles. A propargylated dipyridyl-ligand 92 was attached to 3-

azidopropylsilane-capped Fe3O4@SiO2 91 under formation of a triazole moiety.53  

The corresponding Pd-complex was formed in refluxing toluene (Scheme 28). 
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Scheme 28. Preparation of a magnetite@silica-supported di(2-pyridyl)methanol-Pd-complex 92 using 

a CuAAC protocol.  

 

Catalyst 93 demonstrated its efficacy for a range of Suzuki-couplings and could be 

reused four times in the coupling of 4-bromoacetophenone 50 and phenylboronic 

acid 56 with only a slight gradual decrease in yield (95-99%). 

 Similar to catecholamine stabilized iron oxide nanocrystals, silica coated cores can 

be dendronized to make them more stable and soluble in organic solvents. Just like 

on dendronized Fe2O3@DOPA 68, phosphonized moieties can be introduced to 

chelate transition metals. To this end, Post and coworkers54 grew up to three 

generations of a polyaminoamido (PMAM) dendron silanized iron oxide. Interestingly, 

without silica coating a growth of dendrons could not be achieved. The dendrons 

were phosphonated by reaction of the terminal amino groups with 

diphenylphosphinomethanol prepared in-situ from diphenylphosphine with 

paraformaldehyde. Although the amount of amino groups increased with the growth 

of the dendrons to higher generations, the phosphorous content remained almost the 

same because of incomplete phosphination due to sterics. The phosphonated 

dendrons were complexed with [Rh(COD)Cl]2 in dry and degassed toluene for 5 h at 

ambient temperature (Scheme 29).  
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Scheme 29. Procedure for the dendronization, phosphination and complexation with [Rh(COD)Cl]2 of 

silica coated iron oxide nanoparticles.  
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The resultant complexes 95 and 97 were tested in hydroformylation reactions using a 

1:1 mixture of carbon monoxide and hydrogen pressurized to 1000 psi. Both, G(0) 

and G(1) dendrimers 95 and 97 respectively, performed well (Scheme 30). The 

selectivity toward the branched product was high and catalysts were more reactive 

and selective when compared with previous studies.55 G(1) dendrimer based catalyst 

97 was able to maintain its activity in at least five iterative runs whereas its 

counterpart 95 suffered from a significant decrease in the fifth cycle (69% 

conversion). 

CH2Cl2, 20h, 40°C

O

+

O

64 98 99

H2/CO
(1000 psi)

95: conversion: 69-98%
     5 cycles
97: conversion: 98->99%
     5 cycles  

Scheme 30. Hydroformylation of sytrene (64) catalyzed by rhodium-complexes anchored on different 

generations of dendronized magnetite@silica NPs. 

 

In contrast to previous studies,55c moving to higher generations does not involve loss 

of activity and selectivity. The present catalytic systems, engrafted on up to three 

dendron generations, retained its efficacy. 
 

In conclusion, the recycling-handicap of the parent gold nanoparticles vanishes when 

magnetic nanoparticles are used. On the other hand, the heterogeneous character of 

this support increases, especially when intrinsically magnetic materials, e.g. cobalt, 

are used. But even superparamagnetic iron oxide nanoparticles without magnetic 

remanence might not be able to compete with gold clusters (typically 1-5 nm 

diameter) in terms of “solubility”, simply due to increased size (typically 5-20 nm). In 

addition, the different kinds of coating have to be considered. 

 In this regard, the work of Gao et al.6 needs to be acknowledged. They designed a 

maghemite supported Ti-BINOLate complex 100 (Figure 13), which was envisaged to 

deliver results comparable to the AuNP-based catalyst 3 developed by Sasai et al.16  
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Fe2O3

O n O

O

Ti
O

O

100  
 

Figure 13. A maghemite@polymer supported Ti-BINOLate catalyst. 

 

Under conditions silimar to those depicted in Scheme 3, moderate reaction yields 

(47-55%) and enantioselectivities (15-43% ee) were achieved. These values are by 

far lower than those obtained from unsupported Ti-BINOLate (90% yield, 84% ee)6 or 

AuMPC 3 (98% yield, 86% ee).16 Thus, the authors suggested that care has to be 

taken for selecting an appropriate nanoparticle matrix. 

 Such comparative studies are scarce. To the best knowledge of the author, no 

other example was reported so far. Furthermore, it should be mentioned that more 

than 50% of the publications highlighted in the last chapter appeared parallel to 

progressing research presented in this paper, thus demonstrating the current interest 

in this topic.  

 The development of a consistent protocol, that allows the efficient immobilization of 

different catalysts on various nanoparticles for comparative studies among each 

other and very same catalysts anchored on conventional supports, e.g. polymers, 

marks the aim of this dissertation. 
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B. Main Part 
 
I. Catalysts immobilized on Monolayer-protected gold clusters 
The concept of immobilizing a transition-metal complex on a self-assembled 

monolayer (SAM) of alkanethiolates on gold colloids was first reported in 1998 by 

Tremel et al. using a simple ruthenium catalyst.1 In the following years, this account 

gained a lot of attention and was employed by many groups using different catalysts.2 

The immobilized catalysts proved to have activities and selectivities comparable to 

their homogeneous counterparts, a fact which was attributed to the excellent 

dispersibility of the thiol-protected gold particles. In addition, the accessibility of the 

catalysts on the surface of the particles was assumed to be superior to those on 

conventional supports, e.g. polymers. Recycling of the nanocomposite was usually 

accomplished by precipitation from the appropriate solvent, which depends on the 

nature of the coating and the catalyst. 

 However, grafting strategies are very straightforward but scarce. All foot on a rather 

simple place-exchange reaction of surface bound thiolates against functionalized 

thiols in solution. The ligands or complexes have to be tethered to a thiol in all 

established anchoring strategies. Thus, the development of an additional, generally 

applicable method for the efficient tagging of gold colloids with transition-metal 

complexes seems worthwhile, since incompatibilities between the (pre-)catalyst and 

the thiol tail might necessitate tedious protecting group chemistry. In extreme 

examples, the strong dependence on thiol linkers might rule out grafting of certain 

catalysts on AuMPCs. Azabis(oxazolines) will serve as prototypes for such a novel 

immobilization strategy that does not rely on a thiol linker.  

 

1. A short history of gold colloids 
Although the use of gold colloids, e.g. in ruby glass (Figure 14), dates back to Roman 

times,3 their scientific exploration began in the middle of the nineteenth century.  
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Figure 14. Lycurgus cup at the British Museum in London, 5th to 4th century B.C. Gold colloids in the 

glass appear ruby red in transmitted light (right) and green in reflected light (left). (Images: British 

Museum) 

 

In 1857, Michael Faraday reported in his groundbreaking research on “diffused gold”, 

obtained by the reduction of an aqueous solution of sodium tetrachloroaureate with 

white phosphorous in carbon disulfide.4 He described qualitatively the reversible 

colour change of thin films, prepared from dried colloidal solutions, upon mechanical 

compression. Nowadays, the term “nanoparticle” has replaced its antecessor “colloid” 

in large part. Nevertheless, both mean a particle that consists of an assembly of 

atoms in the size range between 1 and usually not more than 50 nm.5 Apart from 

that, the formation of gold nanoparticles is no longer restricted to chemical 

processes. Physical methods, e.g. the controlled condensation of gold atoms from 

the gas phase, known as metal-vapor synthesis,6 have been developed but are still 

less predominant. However, it should be mentioned that gram-scale syntheses of 

thiol stabilized gold nanoparticles have been reported, e.g. based on the so-called 

solvated metal atom dispersion technique (SMAD).7 Briefly, the Au-atoms are frozen 

at 77 K in acetone vapour and subsequently allowed to warm up to give gold colloids 

protected by acetone. Further stabilization was achieved by coating these clusters 

with dodecanethiol. Whereas the interest in gold colloids as colorants and 

pharmaceuticals has vanished, their current impact in science and technology is 

mostly due to the quantum size effect of mater. 

 

 
 
 



B. Main Part  I. Gold Nanoparticles  

 39 
 

2. Synthesis of monolayer-protected gold clusters 
 
2.1 Reductants and stabilizers 
In the past decades, the preparation of gold colloids was subject of a dramatically 

increased number of publications, which contributed to the new “gold rush” in 

catalysis.8 In both, physical and chemical routes, it remains an important aspect to 

avoid coalescence between the distinct gold nanoparticles. Most relevant wet-

chemical procedures still rely on Faraday’s route based on the reduction of AuIII in a 

two-phase system, although more convenient reducing agents have been 

established. In an elegant procedure introduced 1951 by Turkevitch et al.,9 sodium 

citrate was used as reducing agent while citrate itself and its oxidation products could 

act as protecting ligands on the forming metal shell if no other stabiliser was used.10 

The size of the AuNPs could be influenced by the choice of the ratio between gold 

and the reducing/stabilizing agent as demonstrated later on by Frien et al.11 

 More powerful ligands, for instance phosphines, water soluble phosphanes (e.g. 

P(C6H4SO3Na)3) and thiols, allow the isolation of gold nanoparticles as a solid that 

can be redispersed in appropriate solvents. In general, the complete removal of the 

solvent makes the AuNPs loose their ability to form a colloidal solution due to the 

aforementioned tendency of the particles to agglomerate.  

 Schmidt’s cluster [Au55(PPh3)12Cl6] attained popularity for its low size dispersion 

(1.4 ± 0.4 nm) despite its rather inconvenient synthesis by reduction of PPh3AuCl 

using gaseous B2H6.12 Both, phosphines and phosphanes can be usually substituted 

by thiols, hence it is an accepted assumption that thiolates bind more strongly to 

gold.5  

 AuNPs stabilized with alkanethiolates were first reported in 1993 by Mulvaney,13 

however, the most popular method for the preparation of thiol-capped gold 

nanoparticles came from the Schiffrin laboratories in 1994.  

 

2.2 The Brust-Schiffrin method 
Brust et al.14 reported on the facile synthesis of air-stable AuNPs of reduced 

dispersity and controlled size. Particles thus obtained could be handled like simple 

chemical compounds. They allowed the repeated isolation from and redispersion in 

common organic solvents, especially apolar ones, without any sign of flocculation. 

This strategy combined Faraday`s two-phase approach with more recent techniques 
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of ion extraction and monolayer self-assembly of alkanethiols.15 The growing of the 

metallic clusters succeeded simultaneously with the self-assembly of thiols on the 

surface of the nuclei. Therefore, it turned out to be necessary that surface 

passivation and the growing of the cluster take place in the same phase.   
 

  

       

 

 

 

 

 

 

 

 
            101   
 

Scheme 31. Synthesis of monolayer-protected gold clusters by reduction of tetrachloroaureate with 

sodium borohydride in the presence of dodecanethiol according to Brust et al.14 

 

In the first step, an excess of tetraoctylammonium bromide was used to transfer 

AuCl4- from the aqueous into the toluene layer. The organic layer was separated 

from the aqueous one and treated with a freshly prepared aqueous NaBH4-solution in 

the presence of dodecanethiol under vigorous stirring. The overall reaction taking 

place is summarized in equations (1) and (2), where BH4
- is the source of electrons. 

 

AuCl4-(aq) + N(C8H17)4
+ (C6H5Me) → N(C8H17)4

+ AuCl4-(C6H5Me)   (1) 

 

mAuCl4-(C6H5Me) + nC12H25SH(C6H5Me) + 3m e-  

  → 4m Cl-(aq) + [Aum(C12H25SH)n](C6H5Me)    (2) 

 

High resolution TEM images revealed, that the diameters of the AuNPs obtained 

under these conditions were in a range between 1 and 3 nm with a maximum in the 

particle size distribution at 2.0-2.5 nm. The geometry of these particles, sometimes 

referred to as monolayer-protected clusters (MPCs), was found to show a 

HAuCl4
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1. NBr(C8H17)4 
2. C12H25SH
3. NaBH4
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preponderance of cuboctahedral and icosahedral structures. In the following years, 

many publications reported on the successful use of the Schiffrin reaction and it was 

extensively investigated in how far size and size distribution of the clusters correlate 

to diverse reaction conditions.16,17 It was concluded that larger thiol/gold mole ratios 

gave smaller average core sizes and fast borohydride addition as well as cooled 

solutions produced smaller, more monodisperse particles. This was attributed to the 

slowed growth of the metal cores relative to core passivation. 

 For instance, a cooled (0°C) reaction mixture with a C12H25SH/Au mole ratio of 2 

resulted in an average cluster containing 106 Au atoms (~2 nm diameter), if the 

reductant was added within 10 s. On the other hand, at room temperature and with a 

C12H25SH/Au-ratio of 1/12, an average Au4794-cluster with a diameter of 

approximately 5.2 nm was formed.16d In addition, a higher abundance of small core 

sizes (< 2 nm) was obtained by quenching the reaction immediately after the addition 

of borohydride.17b,c 

 In general, smaller MPCs are more stable due to slightly more polarized Au-S-

bonds.16b However, having in mind that the gold nanoparticles are expected to serve 

as recyclable support for homogenous catalysts, it is not suggestive to decrease the 

cluster size below a certain level. Recycling via precipitation would be less feasible 

for such particles because they are also partly soluble in polar solvents, thus 

inevitably causing loss of substance during recovery.   

 Therefore, MPCs with an average diameter of 2 nm were synthesized according to 

a minute protocol developed by Murray et al.16d Briefly, a thiol/gold-ratio of 2 was 

adjusted before NaBH4 was added to the solution at 0°C within 15 min. The number 

of Au atoms in an average cluster was assigned to be 225 and the number of 

alkanethiolates on the surface was assessed with 90.16c The clusters thus prepared 

were known to show a typical core size dispersity of ± 20%. However, because the 

clusters prefer certain “magic numbers” (closed shell structures), this rather small 

dispersity represented a large variation in the number of Au atoms per individual 

cluster.16g 
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The as-prepared particles were analyzed by transmission electron micrography 

(Figure 15).  

     
 

Figure 15. Transmission electron micrography of dodecanethiol coated gold nanoparticles with an 

average cluster diameter of 2 nm (recorded at the University of Regensburg). 

 

It is well-known that some tetraoctylammonium cations remain as minor impurities in 

the alkanethiol shells of the particles. This residual phase-transfer agent was 

removed via Soxhlet extraction.18 

 The Schiffrin reaction is not limited to the use of simple alkanethiols. The use of p-

mercaptophenol in a single-phase system shall be quoted in lieu of many others.14b 

 

3. Functionalization of monolayer-protected gold clusters via a place-exchange 
reaction 
Many different strategies for the modification of alkanethiolate stabilized AuNPs with 

simple chemical compounds were published.16h Comparatively few utilize 

functionalized thiols already during the synthesis of the MPCs, which is not surprising 

having the harsh reductive conditions in mind. Nevertheless, the pioneering work of 

Sasai et al.2b has to be mentioned in this regard. They subjected disulfides bearing 

(R)-1,1´-bi-2-naphthol ((R)-BINOL) moieties at each terminal position to the Schiffrin 

reaction. However, the vast majority takes advantage of a significant feature of self-

assembled thiol monolayers on gold surfaces, the “place-exchange” of thiolate 

ligands in the shell by thiols in solution19 (Scheme 32). 
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3.1 Theoretical considerations concerning place-exchange reactions 
The place-exchange reaction of thiolates on 3D-surfaces, such as AuNPs, has been 

extensively studied.16,20 In general, the tendency of thiolates ligating gold clusters to 

exchange with thiols in the supernatant is higher than on 2D-surfaces. Whereas 

terrace sites are the predominant motif on a flat Au(111) surface, the core surfaces of 

nanoclusters21 contain a large fraction of classically defined defect sites. The different 

surface sites exhibited a substantial gradation in reactivity. Thiolates on vertexes and 

edges were significantly easier to exchange than the ones on the interior terrace 

sites.16f Evidence was found for both, associative16f,22 (SN2-like) and dissociative 

(SN1-like)20a,23 pathways as the rate determining step. Reaction kinetics were 

represented satisfactorily in a pseudo-first-order process.20a In an associative 

pathway, the thiol enters the monolayer, protonates and substitutes a bound thiolate 

ligand. This process does not alter the core dimensions. The rate of place-exchange 

decreases with an increase in the size of the entering ligand and the chain length of 

the protecting monolayer.16f 
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Scheme 32. General scheme for the place-exchange reaction between MPCs of the Brust type and 

functionalized thiols. 
 

Other factors have to be considered, too. The extent of exchange is substantially 

enhanced by the presence of base and depressed by the presence of acid, hence it 

was rationalized that thiolates undergo the place-exchange reaction more rapidly 

than thiols. It should be mentioned that disulfides do not replace any bound thiolates. 

For the choice of the solvent, the solubility of the cluster has to be taken into account. 

Therefore, the less polar solvents in which the AuNPs are most rapidly “dissolved” 

showed also the largest extent of exchange. Suitable solvents are, e.g. toluene, 
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CH2Cl2 and THF. More polar, hydrogen bonding solvents such as methanol are 

unfavourable.20a  

 

3.2 Practical considerations concerning place-exchange reactions 
The place-exchange reaction is for sure the most straight-forward route for the 

functionalization of MPCs of the Brust-type with complex molecules. However, as a 

process driven by the force to equilibrate ligated thiolates and unbound thiols, a 

rather high concentration of functionalized thiols is necessary to obtain reasonable 

loadings. Functionalized thiols, which were not exchanged, are usually discarded 

after the equilibration process. In addition, the free thiol moieties might have 

incompatibilities with functional groups of more complex molecules. Thiol protected 

gold nanoparticles do usually not cause such incompatibilities because the gold core 

acts as some kind of “protecting-group” for the thiols. 

 Due to these limitations, many studies foot on the introduction of rather simple thiol 

building blocks, e.g. a ω-halogen-alkanethiol, on which more sophisticated chemistry 

can take place (Scheme 33). However, these chemistries are not always compatible 

with the desired applications, so that the development of an additional, general route 

toward nanoparticle functionalization still seems worthwhile. 
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Scheme 33. Functionalization of MPCs of the Brust-type via a) a place-exchange reaction,16 b) 

reaction of p-mercaptophenol with propionic anhydride,14b c) SN2 reaction of ω-bromoalkanethiolated 

MPCs with primary alkylamines,16e d) amide and ester coupling reactions,24a e) siloxane formation 

reactions,16g and f) transition-metal-catalyzed ring-opening metathesis polymerization (ROMP).24b 

 

Nevertheless, as an example for the successful grafting of a thiol-modified transition-

metal-complex via direct place-exchange reaction on a MPC the work of Pfaltz2c shall 

be acknowledged. Preliminary investigations towards the immobilization of 

azabis(oxazolines) on monolayer-protected gold nanoparticles were inspired by this 

approach. 
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4. Immobilization of azabis(oxazolines) on monolayer-protected gold clusters 
 
4.1 Classification and synthesis of azabis(oxazoline)-ligands 
Azabis(oxazolines)25 103 (AzaBOX) can be seen as structural hybrids between 

bis(oxazolines) 102 and aza-semicorrines 104.26,27  
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Figure 16. Different C2-symmetric ligands. 

 

They combine the advantage of being accessible from the chiral pool like the 

bis(oxazolines) and the structural variability of aza-semicorrins due to the possibility 

of functionalizing the central nitrogen bridge. In a concise route developed by H. 

Werner,25b chiral aminoalcohols, readily available from the corresponding amino 

acids by reduction with sodium borohydride in the presence of iodine, are 

transformed into the aminooxazolines 108 using in-situ created bromocyanide.25 

These compounds were found to react under acidic conditions with ethoxyoxazolines 

107,28 accessible via selective alkylation of oxazolidinones 106, to give rise to the 

desired azabis(oxazolines) 109 under cleavage of ethanol (Scheme 34).   
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Scheme 34. Synthesis of azabis(oxazolines): a) (EtO)2CO, NaOEt, EtOH, reflux, 87-93%; b) BF4OEt3, 

CH2Cl2, 0°C-RT, 81-98%; c) BrCN, MeOH, 0°C-RT, 38-89%; d) p-TsOH, Toluene, reflux; 35-92%; e) 

n-BuLi, MeI, THF, -78°C-RT, 95-98%. 

 

Azabis(oxazolines) 103 form in general more electron rich complexes than 

bis(oxazolines) 102  or semicorrines 104.29 This can be a disadvantage, because the 

Lewis-acidity and therefore reactivity of the complexes is reduced. On the other 

hand, it provides an advantage for their immobilization since it means potentially less 

leaching of metal. Free metal centers would represent non-selective catalysts, an 

incisive limitation for recycling. Therefore, AzaBOX-complexes are able to maintain 

stable for an increased number of catalytic cycles. A second argument in favour for 

this comparatively novel class of chiral ligands deals with the complex geometry. The 

geometry on the metal center does not suffer from immobilization via alkylation on 

the central bridge atom as it is the case for bis(oxazolines) (Figure 17).30 In 

conclusion, azabis(oxazolines) appear as privileged ligands for immobilization due to 

the central nitrogen atom.  
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Figure 17. Bis(oxazolines)30a (left) and azabis(oxazolines) (right) grafted on polystyrene via alkylation 

of the central bridge atom. The immobilization has no substantial influence on the complex geometry 

in the case of the azabis(oxazolines).  

 

Whereas the alkylation of the central nitrogen atom succeeds smoothly in the case of 

aza-semicorrines already via simple stirring with e.g. halogenalkanes, 

azabis(oxazolines) do not undergo this reaction that easily. Even after deprotonation 

with n-butyllithium the reactivity of the nitrogen nucleophile has only a limited 

scope.25 However, azabis(oxazolines) were found to react quantitatively with 

methyliodide, allyl -and propargylbromide and benzyl bromide as well as certain 

derivatives thereof. Following this strategy, it was possible to covalently tag 

mesocellular silica foam,31 dendrimers and different polymers such as MeOPEG, 

TentagelTM, a hybrid polymer with an insoluble polystyrene backbone and a PEG-

periphery, and Merrifield resin32 to azabis(oxazolines) (Figure 18). 
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Figure 18. MeOPEG (left) and TentagelTM (right) tagged with iPr-AzaBOX 103a via direct alkylation on 

the central nitrogen atom. 
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4.2 Immobilization of thiol-tagged azabis(oxazolines) via place-exchange 
reaction 
 
4.2.1 Synthesis of thiol-modified azabis(oxazolines) via alkylation   
In analogy to this work, efforts were concentrated on the alkylation of AzaBOX with 

12-iodo-dodecanethiol. Success in this work would have yielded thiol modified ligand 

114 which could have been grafted on monolayer-protected gold clusters via a 

simple place-exchange reaction (Scheme 35). 

 

 
  101         115 
 

Scheme 35. Proposed Synthesis of azabis(oxazoline) tagged gold nanoparticles via place-exchange 

reaction with thiol-linked AzaBOX 114. 

 

Several attempts were undertaken using both, unprotected and acetyl-protected 

thiols at different reaction conditions (elevated temperatures, prolonged reaction 

times). Unfortunately, all endeavors were without success (Scheme 36). No signs 

which could be attributed to alkylated AzaBOX 114 were detected in 1H-NMR and 
13C-NMR.  
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Scheme 36. Attempted synthesis of thiol-functionalized iPr-AzaBOX 103a via direct alkylation with 12-

iodo-dodecanethiol and 12-iodo-dodecane-acetyl-thiol respectively. 

 

Inspired by the synthesis of substituted azabisbenzoxazoles (Scheme 37),33 a 

modular approach towards thiol functionalized azabis(oxazoline) 114 was envisaged 

(Scheme 38). A similar method was investigated by A. Gissibl using 

ethoxyoxazolines 107 and simple diamines as well as aniline respectively. Since no 

or only little amount of product was obtained thereby, a more reactive oxazoline-

derivative was employed. To test the viability of this route, (4S)-2-bromo-4-

isopropyloxazoline (117)34 was stirred together with decylamine. However, under 

various reaction conditions no product was obtained (Scheme 39). 
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Scheme 37. Synthesis of substituted azabisbenzoxazole 116. 
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Scheme 38. Proposed synthesis of thiol-linked azabis(oxazoline) 114b.  
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Scheme 39. Attempted preparation of substituted azabis(oxazoline) 119. 

 

Since the direct alkylation on the central nitrogen bridge with the appropriate 

alkanethiol was not successful, it seemed worthwhile to apply a different strategy, 

which had already proven its high versatility in order to install functionalities on the 

central nitrogen. It is known that azabis(oxazoline) 103 reacts quantitatively with 

propargylbromide (Scheme 40) and that alkyne-functionalized AzaBOX 120 obtained 

offers a suitable motif for the copper(I)-catalyzed alkyne/azide cylcloaddition reaction.  
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Scheme 40. Propargylation of azabis(oxazolines) 103a and 103d. 
 

4.2.2 Synthesis of thiol modified azabis(oxazolines) via copper(I)-catalyzed 
azide/alkyne cycloaddition 
 

4.2.2.1 General remarks on the CuAAC-reaction 
The copper-catalyzed35 azide/alkyne cycloaddition36 reaction (CuAAC) has become 

very popular under the catchphrase “click”-reaction since it was developed almost 

simultaneously by Sharpless and Meldal in 2002. A 1,4-disubstituted 1,2,3-triazole is 

formed regioselectively in a Huisgen 1,3-dipolar cycloaddition of an azide with a 

terminal alkyne when the reaction is catalyzed by copper(I). 
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Scheme 41. Cycloaddition reaction of phenylacetylene 81 with benzylazide 121. 

 

Because of the high activation energy (ca. 24-26 kcal/mol), these cycloadditions are 

very slow even at elevated temperatures and produce mixtures of regioisomers if no 

catalyst is provided (Scheme 41). The mechanisms leading to the regioselectivity and 

rate enhancement for triazole formation under Cu(I)-catalysis have been extensively 

reviewed.37 The addition of copper(I) to the alkyne results in the abstraction of a 

proton to form a highly polarized copper-acetylide-cluster. This copper-cluster is 

responsible for ligating the azide in order to enable an attack on the acetylide not via 

a concerted [2,3]-cycloaddition, but a stepwise annealing sequence. This is why the 

reaction is sometimes referred to as ligation of azides and alkynes. Two different 

transition states are possible, depending on whether the copper-cluster coordinates 

the terminal or the imine nitrogen of the azide. In any case, the final step involves the 

regioselective formation of a 1,4-disubstituted triazole (Scheme 42).  
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Scheme 42. Outline of a plausible mechanism for the CuAAC involving the formation of Cu(I)-

clusters.37 
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Most methods use Cu(I)-salts38 or –complexes (e.g. Cu2(OTf)2·C6H6, Cu(PPh3)3Br, 

[(SIMes)CuBr])39 in a concentration of 0.25-5 mol% directly. Other strategies rely on 

the generation of Cu(I) in-situ by reduction of Cu(II)SO4·5H2O or Cu(II)(OAc)2 using 

sodium ascorbate and metallic copper respectively.38 Recently, the use of copper 

clusters of Cu/Cu oxide nanoparticles in activated charcoal,40 PVP-polymers,41 

zeolites42 and aluminum oxyhydroxide nanofibers43 was described. At large, all 

common organic solvents and water can be used as reaction medium. Restrictions 

are due to particular properties of the copper source and can be avoided by choosing 

the appropriate catalyst carefully.  

 Despite the diversity of the different copper-sources, almost all demand the use of 

base. Common reagents for the “click”-reaction are triethylamine, 2,6-lutidine, and 

N,N-diisopropylethylamine (DIPEA).38 Besides these rather simple bases, additives 

bearing triazole moieties have been shown to accelerate rates dramatically in some 

cases (Figure 19).44 It was speculated that such compounds are capable of 

stabilizing the copper(I) oxidation state, thus preventing coupling reactions such as 

Ullman-, and Cadiot-Chodkiewizc-couplings.45 Moreover, some additives were 

reported to inhibit the Cu(II)-catalyzed oxidative coupling of terminal alkynes to 

diynes.45c 
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Figure 19. Triazole-additives used in the copper-catalyzed azide/alkyne cycloaddition reaction.  

 

Due to this impressive versatility, the “click”-reaction was already utilized for the 

grafting of azabis(oxazolines) on different polymers32 or on fluorous tags.46 
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4.2.2.2 Synthesis of thiol-modified azabis(oxazolines) via “click”-chemistry 
The synthesis of propargylated azabis(oxazolines) 120a was expected to deliver 

thiol-linked azabis(oxazoline) 127 after a copper(I)-catalyzed “click”-reaction with ω-

azido-dodecanethiol. The ligand derivatized thiol 127 could then be applied in a 

place-exchange reaction en-route to the desired azabis(oxazoline)-AuMPC 128 as 

depicted in Scheme 43. 

 

 
  101         128 
 

Scheme 43. Outline for the functionalization of AuNPs through a place-exchange reaction with thiol-

modified azabis(oxazolines) created via “click”-chemistry. 
 

Although the CuAAC is affected by very few incompatibilities, thiols range 

unfortunately among them. Azides are known to react with thiols, especially in the 

presence of Cu(I), to give sulfenylamides, amines and disulfides,47 which makes a 

protecting group for the azido-dodecanethiol inevitable. An acetyl-group was 

envisaged to give the least problems due to very mild deprotection conditions 

applicable. This is an especially important issue, since azabis(oxazolines) 

functionalized on the central nitrogen bridge decompose in the presence of strong 

nucleophiles and even under mild acidic conditions. Thus, it is not even possible to 

perform column chromatography using untreated silica gel. 
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It was found that propargylated AzaBOX 120a reacts in the presence of 5 mol% CuI 

and 1.1 equiv. triethylamine quantitatively with 12-azidododecyl ethanethiolate (131), 

prepared in a two-step synthesis from commercially available 1,12-dibromododecane 

(129) in 42% overall yield, (Scheme 44).35c  
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Scheme 44. Synthesis of acetyl-protected thiol functionalized azabis(oxazoline) 134 via “click”-

chemistry. 

 

However, unanticipated problems occurred during the deprotection step. Extensive 

decomposition was observed under deprotection conditions48 which were not under 

the suspicion to harm N-alkylated azabis(oxazolines) 132 (Table 1). 
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Table 1. Reagents and conditions used for thiol deprotection. 
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132

N
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133   

entry reagents and conditions yield (%) 

1 NaBH4, 2 h, THF,0°C-RT -[a] 

2 1. NH3 (25% aq.), 1 h, MeOH, RT; 2. HCl (0.1 M aq.), pH = 7 -[a] 

3 1. NaOH (0.2 M), 10 min, MeOH, RT; 2. HCl (0.1 M aq.), pH = 7 -[a] 

4 1. NaOH (0.1 M), 15 min, MeOH, RT; 2. Amberlite IR120 -[a] 

5 NaOMe, 5 min, MeOH, RT -[b] 

6 KCN, 3h, MeOH, RT -[a] 

7 
K2CO3 (0.5 M aq.)/Dioxane/MeOH (1/0.5/0.5 v/v); 

Microwave Irradiation (5 min, 300W, Tmax = 60°C) 
-[a] 

  

 [a] Decomposition; [b] Disulfide formation. 

 

Only deprotection conditions which resulted in disulfide formation gave the expected 

product 133. Since disulfides do not undergo the place-exchange reaction, the very 

mild reductants 1,4-dithiothreitol (DTT) and 1,2-ethanedithiol respectively were 

applied to yield the corresponding thiols (Scheme 45). 
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Scheme 45. Attempted reduction of disulfide 135 with 1,4-dithiothreitol. 

 

Again, the expected product could not be observed and decomposition took place. In 

a control reaction, functionalized azabis(oxazoline) 132 was stirred together with 1 

equiv. of 12-dodecanethiol in CH2Cl2 for 3 h. Decomposition was observed, thus 

indicating that not the deprotection conditions are responsible for the decay of the 

oxazoline moieties but the free thiol itself. This unprecedented reaction between 

thiols and azabis(oxazolines) might be similar to the formation of thioxazolines out of 

oxazolines, starting with a nucleophile attack of H2S on the C2-carbon of the 

oxazoline.49 However, the 1H-NMR and 13C-NMR spectra obtained were too complex 

to be analyzed.  

 

The apparent incompatibility of thiols and azabis(oxazolines) points out the limitations 

of the place-exchange reaction, the hitherto predominant strategy for the 

functionalization of AuMPCs. This emphasized the demand for a generally applicable 

strategy for the immobilization of catalysts on gold clusters of the Brust-type. 
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4.3 The CuAAC-reaction as a generally applicable tagging method for AuMPCs 
The CuAAC has already found broad application in polymer and material science,38,50 

since it allows the facile modification of various surfaces including 2D-SAMs of the 

thiol/gold-type.51 The incompatibilities between azides and thiols have not hampered 

the use of a copper(I)-source (CuSO4/ascorbate)51b,c to catalyze the “click”-reaction 

on thiolated Au(111)-surfaces. Once the ω-azidothiol has formed a SAM on the gold 

surface, the use of Cu(I) is apparently less problematic as disclosed by the studies of 

Binder et al. These results were quite encouraging since they implicate that the gold 

surface itself could act as some kind of protecting-group for the thiol. Therefore, a 

copper(I)-catalyzed cycloaddition between azide modified MPC 134 and 

propargylated azabis(oxazoline) 120a appeared promising (Scheme 46). 

 

 
     134         128 

 

Scheme 46.  Proposed synthesis of AuMPC-grafted azabis(oxazoline) 130 using a copper(I)-

catalyzed azide/alkyne cycloaddition between azide functionalized MPC 134 and propargylated 

AzaBOX 120a. 

 

Nevertheless, it has been mentioned already in previous chapters that the difference 

between 2D- and 3D-SAMs are numerous due to the enlarged number of defect sites 

on a cluster. 
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4.3.1 Synthesis of azide-functionalized AuMPCs 
The synthesis of azide-functionalized MPCs was unpretentious. In principle, such 

particles are accessible via place-exchange reaction of clusters obtained by the 

Schiffrin-reaction with ω-azidothiol. However, substantial amounts of this compound 

would be lost during the place-exchange reaction with its rather long reaction time 

(24- 48h) because those thiols are known to decompose slowly under loss of 

nitrogen to give sulfenylamides. Thus, 12-bromododecanethiol was used instead for 

the ligand-exchange and the bromo-functionalized cluster 135 reacted with an 

excess of tetrabutylammoniumazide to yield the azide-functionalized MPC 134 
(Scheme 47). A two phase approach using sodium azide in DMSO and Br-MPCs 135 

in CH2Cl2 together with catalytic amounts of tetrabutylammonium bromide gave 

inferior azide loading. The separation of the as-prepared NPs from the reactants 

succeeded through precipitation from MeOH (Figure 20).  

 

   
 

Figure 20. AuMPCs dispersed in CH2Cl2 (left) and after precipitation from MeOH (right).  
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Scheme 47. Synthesis of azide-functionalized AuMPCs 134 via place-exchange reaction of 

dodecanethiol-capped MPCs 101 with 12-bromododecanethiol and subsequent substitution of Br-

AuMPCs 135 with tetrabutylammoniumazide. 
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Although many reports provide empirical data correlating reaction time, concentration 

of clusters and functionalized thiols in solution to the extent of exchanged thiols,16 it is 

still necessary to determine the amount of bromine moieties on the cluster. This can 

be easily achieved by 1H-NMR-analysis. The ratio of 12-bromo-dodecanethiol and 

dodecanethiol can be determined via integration of the methylene peak vicinal to the 

bromine at 3.38 ppm and the terminal CH3-group at 0.85 ppm. Having knowledge of 

the amount of residual thiols in the supernatant, conclusions can be drawn about the 

loading of the MPCs. In principle, a similar assessment is possible using the 

functionalized AuNPs after copious washing, albeit more sophisticated. Analyzing the 

MPCs does not allow precise integration of the spectra since the methylene peaks in 

the proximity of the particle surface are significantly broadened (Figure 21).52  

 

ppm
1.001.502.002.503.003.50

ppm
1.001.502.002.503.003.50

ppm
1.001.502.002.503.003.50

 
 

Figure 21. 1H-NMR spectra obtained from a) Au-MPCs 101 b) Br-functionalized Au-MPCs 135 and c) 

N3-functionalized Au-MPCs 134 after oxidative cleavage of thiols with I2 in CDCl3. The CH2-units in the 

proximity of the cluster show a significant T2-broadening. 
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Multiple factors contribute to the spectral broadening: Methylenes close to the 

thiolate/gold interface are more densely packed and solid like, whereas CH2-units 

furthermost from the Au core experience freedom of motion and show spin 

relaxations similar to those of the dissolved species. Apart from that, chemical shifts 

of the methylene groups in the proximity of the cluster are inequivalent because of 

different binding sites (terraces, edges, verteces). The width of the spin-spin 

relaxation (T2) broadening decreases with increasing core size, thus giving 

information about the Au cluster.  

 As a result, quantification of ligand exchange in the monolayer can be difficult. A 

solution for this problem is to cleave the alkanethiols oxidatively from the AuNPs by 

treatment with I2 and to analyze the disulfides instead. Without the protective thiol 

shell, the gold cores flocculate immediately and can be filtered off the supernatant 

containing the disulfides. 

 Thus it was concluded that 20% of the thiolates were exchanged against 12-bromo-

dodecanethiol. The success of the substitution of the bromide against the azide can 

be monitored qualitatively by recording the IR-spectra of the MPCs. It shows a 

significant peak at 2100 cm-1 if azide moieties are present. A quantitative analysis is 

possible in the same manner as discussed above. The CH2-groups next to the N3 are 

found at approximately 3.22 ppm, thus the extent of N3-functionalized thiols in the 

protective shell was assessed to be ca. 16%. 

 

4.3.2 CuAAC between propargylated azabis(oxazolines) and azide-
functionalized AuMPCs  
Tagging of azide-capped gold colloids 134 with propargylated azabis(oxazolines) 

120a was envisaged to be possible under various conditions since many “click”-

protocols are applicable in apolar solvents. 

 

4.3.2.1 Copper(I)-salts and –complexes as catalysts 
Unfortunately, upon addition of any copper(I)-salt or –complex (CuI, Cu2(OTf)2·C6H6, 

CuI(phen)), the AuNPs started to flocculate within minutes. A recent study, which was 

published in parallel to investigations presented in this work, substantiated the 

suspicion that MPCs of the Brust-type are destroyed by Cu(I)-sources.53 In detail, 

Williams et al. reported immediate and extensive aggregation of the MPCs upon 

addition of CuI, Cu(PPh3)3Br and CuBr/2,6-lutidine, most probably caused by 
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coordination of copper to the thiolates in the protective shell. The use of polytriazole-

additives such as TBTA 126 was not able to suppress this effect.44 

 
4.3.2.2 Heterogeneous copper(I)- sources as catalysts 
Heterogeneous copper-sources offer an interesting, albeit hardly disclosed 

alternative to common systems. Most methods provide only a limited scope and 

diminished activity. However, some recent studies show an impressive scope 

including bulky substrates. Since migration of copper(I) to the thiol/Au-interface is 

presumably hampered when copper nanoparticles are immobilized within a stable 

matrix, such a catalyst might not destroy the protective shell of the gold clusters. 

 
4.3.2.2.1 Copper-in-charcoal (Cu/C) 
An exceptionally simple way to create “heterogenized” copper(I) was reported by 

Lipshutz and coworkers.40 They impregnated commercially available wood charcoal 

with Cu(NO3)2 in water under sonication. Upon this treatment, CuO and Cu2O were 

proposed to be present within the charcoal matrix, thus suggesting that a reducing 

agent might not be needed. Only the latter species is known to possess some 

catalytic activity in the CuAAC.43 The Cu/C-catalyst, suspended together with N3-

MPC 134, propargylated AzaBOX 120a and NEt3, proved to be an unsuitable catalyst 

for this system. No traces of product could be isolated at various reaction conditions 

(Table 2). 

 
Table 2. Reagents and conditions used in the Cu/C-catalyzed 1,3-dipolar azide/alkyne cycloaddition. 

 

entry reagents and conditions yield (%) 

1 THF, NEt3 (1.1 equiv.), 25°C, 96h - 

2 CH2Cl2, NEt3 (1.1 equiv.), 25°C, 96h - 

3 Dioxane/Toluene (1:2, v/v), NEt3 (1.1 equiv.), 60°C, 96h - 

4 
Dioxane/Toluene (1:2, v/v), NEt3 (1.1 equiv.), 60°C, 96h, Microwave 

Irradiation (5 min, 300W, Tmax = 60°C) 
- 
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Moreover, the MPCs could be recovered in only 30% average yield, even after 

copious washing. This is most probably not due to decomposition of the AuNPs upon 

mild heating because selfsame yield was observed at ambient temperature. 

However, the as-prepared copper-charcoal-matrix proved to be an efficient catalyst, 

allowing the formation of the 1,4-disubstituted triazole to take place quantitatively in a 

test reaction between benzylazide 121 and 1-ethynylbenzene (81).  

  

4.3.2.2.2 Copper nanoparticles in aluminum oxyhydroxide nanofibers 
Another promising heterogeneous catalyst was generated by heating a mixture of 

cupric chloride dihydrate, ethanol, aluminum tri-sec-butoxide, and pluronic P123 at 

160°C.43 Without pluronic, the copper nanoparticles aggregated before gelation. The 

surface of these particles, stabilized in a matrix of aluminum oxyhydroxy-fibers, was 

reported to consist of Cu2O and CuO as shown by XPS analysis.43 The catalytically 

active species is likely again Cu2O. The copper content of this material was 

calculated to be 4.0 wt% and the catalyst thus obtained was reported to be 

sufficiently active even without additional base. 

 Unfortunately, N3-MPCs 134 and propargylated azabis(oxazoline) 120a dissolved in 

refluxing n-hexane did not undergo 1,2,3-triazole formation in the presence of up to 

20 mol% Cu/AlO(OH) within 96 h, although this catalyst demonstrated its activity in 

the simple benzylazide 121/1-ethynylbenzene (81) –system. However, no 

aggregation of the gold cores was observed, thus indicating that catalysts of such a 

fashion are indeed capable of preventing migration of copper(I) into the thiol-SAMs. 

Nevertheless, also the MPCs are most probably unable to enter the aluminum matrix 

in which the copper is incorporated. 

 

4.4 Ruthenium catalyzed azide/alkyne cycloaddition (RuAAC)      
Other metal sources, such as Ni, Pd, and Pt salts, have been reported to promote the 

[3+2] Huisgen cycloaddition as well, but their reactivity pales in comparison with 

copper(I).54 A highly promising alternative was investigated by Sharpless and co-

workers.55 They found that a variety of Ru-complexes (Cp*RuCl(PPh3), [Cp*RuCl2]2, 

Cp*RuCl(NBD), Cp*RuCl(COD) and  [Cp*RuCl]4) promote the azide/alkyne click 

reaction. Interestingly, not only the 1,4-adduct is favored by some catalysts (i.e., 

Ru(OAc)2(PPh3)2), but also the 1,5-adducts can be obtained as the only product. A 
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catalytic cycle that relies on a pathway similar to the cyclotrimerization reaction of 

alkynes via a six-membered ruthenacycle has been proposed (Scheme 48).55b 
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Scheme 48. Proposed Intermediates in the Ru-catalyzed reaction of azides and alkynes.55b 
 
Typically 1-5 mol% of Ru-catalyst were applied to obtain moderate to excellent yields 

within reasonable reaction times, which could even be shortened when reactions 

were carried out under microwave irradiation.55c However, the scope of the Ru-

catalyzed cycloaddition reaction still seems inferior when compared to its Cu-

catalyzed counterpart.  

 
    134               136 
 

Scheme 49. Proposed synthesis of AuMPC-immobilized azabis(oxazolines) 138 via RuAAC. 

 
Attempts to utilize a RuAAC reaction for the tagging of AuMPCs with 

azabis(oxazolines) were unsuccessful (Scheme 49). Decomposition of the gold 

nanoparticles was observed to some extent after refluxing in THF for 24 h, but no 

NMR-signals could be assigned to the 1,5-triazol. 
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4.5. Conclusion 
In conclusion, several factors impeded a successful tagging of AuMPC 101 with 

azabis(oxazoline)-ligands. On the one hand, azabis(oxazolines) were destroyed by 

thiols, whereas on the other hand the protective thiolate shell was cleaved from the 

gold cores when exposed to copper(I). This ruled out the use of thiol-modified 

azabis(oxazolines) in a place-exchange reaction as well as a “click”-reaction between 

azide functionalized AuMPCs 134 and propargylated AzaBOX 120a. Thus, it seemed 

reasonable to explore alternatives to gold nanoparticles rather than investigating 

more circumstantial strategies in order to achieve grafting of azabis(oxazolines) on 

monolayer- protected gold clusters. 
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II. Catalysts immobilized on Magnetic Nanoparticles  

 
1. Catalysts immobilized on silica coated magnetite nanoparticles 
Magnetic metal oxide nanoparticles, in particular magnetite nanoparticles, have 

demonstrated their versatility in a plethora of applications, e.g. ferrofluids were 

envisioned as magnetic storage media,1 vessels for drug delivery,2 contrast agents 

for magnetic resonance imaging (MRI)3 and for cancer treatment through 

hyperthermia.4 In addition, the use of magnetite NPs attracted a lot of attention in the 

field of catalysis.5 The magnetic nature of superparamagnetic iron oxide (SPIO) 

particles provides a prerequisite for the effective and fast recycling of this material.6 

The nanocomposite is intrinsically nonmagnetic but the particles are readily 

magnetized in the presence of an external magnetic field. On the other hand, the lack 

of magnetic remanence prevents the agglomeration of the nanocrystals. 

Aforementioned properties, combined with the high accessibility of the globular 

arranged active sites on silica coated Fe3O4-particles, encouraged their application 

as supports for noble metals,7 several palladium-based catalysts for C-C-bond 

formations,8 or organocatalysts such as 4-N,N-dimethylaminopyridine (DMAP).9 The 

immobilization of catalyst on a silica coating turned out to be especially beneficial in 

the latter case, giving rise to an invariant high activity and improved numbers of 

recycle and reuse referring to DMAP immobilized on conventional polymeric 

supports.10 Moreover, a chiral transition-metal complex “heterogenized” on 

magnetite@silica-nanoparticles, had not been disclosed before. Therefore, the 

“click”-chemistry route for the grafting of Cu(II)-azabis(oxazoline)-complexes was 

reattempted using magnetite nanoparticles coated with amorphous silica.  

 

1.1 Synthesis of silica coated magnetite particles 
Much attention has been focused on the synthesis of magnetic core-shell structures 

by coating a SiO2-shell around a preformed nanoparticle in the recent years.11 

Especially one large scale synthesis of discrete and uniformly sized 

superparamagnetic Fe3O4@SiO2 seems attractive due to its simplicity.12 In this 

strategy, the coating is achieved by addition of silane agents, e.g. tetraethyl 

orthosilicate (TEOS), to reverse micelles 137 during the formation of uniformly sized 

magnetite nanoparticles in a simple one-pot reaction. An interesting aspect lies in the 

addition of derivatized silane agents, such as 3-azidopropyltriethoxysilane, which can 
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be embedded in the silica shell already during the passivation of the iron oxide cores.  

Thus, nanocrystals can be synthesized and functionalized within one single step, 

starting from a 1:2 mixture of FeCl2·4H2O/Fe(NO3)3·9H2O and a microemulsion of 

dodecylbenzenesulfonate (DBS) in xylene. However, post-grafting on the surface of 

the particle shell is a more common alternative to the single-step functionalization 

and can be conveniently carried out by stirring 3-azidopropyltriethoxysilane together 

with the particles in THF for 48 h (Scheme 50).9  
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Scheme 50. Synthesis of azide-functionalized magnetite@silica-nanoparticles out of reverse micelles 

137 via a post-grafting (path I) and a single-step protocol (path II) followed by TMS-endcapping of the 

surface silanol groups. 

 

These two strategies did not only result in an altered amount of azide moieties - 0.3 

mmol/g and 0.5 mmol/g respectively as determined by elemental microanalysis - but, 

more striking, in a different thickness of the silica shell (Figure 22). 
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Figure 22. TEM images of particles 138 modified through a post-grafting process (Fig. 22a: 50 nm; 

Fig. 22b: 10 nm bar length) and single-step synthesized particles 140 (Fig. 22c: 20 nm; Fig. 22d: 10 

nm bar length): The particles 138 synthesized via a post-grafting process form a thick silica shell (b) 

whereas only a thin SiO2-coating, not visible in the TEM, is obtained for the nanoparticles 140 
produced by the single-step pathway (d).   

 

Aforementioned reaction conditions applied led to particles with a mean diameter of 7 

nm for the magnetite core and an average diameter of 25 nm for magnetite@silica-

particle 138 synthesized via the post-grafting process. In the case of the single-step 

synthesized particle 140, the radius of the silica shell could not be determined by 

TEM even at higher resolutions (Figure 22b), whereas the size of the magnetite core 

remained unaltered. These dimensions were in agreement with the initial 

characterization of Hyeon et al. using 3-aminopropyltriethoxysilane (APS) instead of 

3-azidopropyltriethoxysilane. 

  

1.2 The silica shell 
Following the line of argument that a high surface area is beneficial for catalyst 

activity, one would consider a coating with mesoporous rather than amorphous silica. 

From another point of view, a high catalyst density on the surface might even be 
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detrimental for both activity and selectivity. Indeed, a direct comparison between a 

Cu(II)-bis(oxazoline) complex anchored on MCM-41 and amorphous silica revealed 

that in the enantioselective Friedel-Crafts hydroxyalkylation of 1,3-dimethoxybenzene 

with 3,3,3-trifluoroppyruvate the complex grafted on mesoporous silica was inferior in 

means of selectivity (82% vs. 92% ee).13 Although the authors reasoned that this 

effect might be caused by uncapped silanol groups, further studies demonstrated that 

even excessive TMS-endcapping of siliceous mesocellular foam (MCF) supported 

bis(oxazolines) using hexamethyldisilazane (HMDS) in a vapour phase reaction did 

not equal the results obtained when the surface of the MCF was precapped in large 

part before catalyst immobilization, thus limiting catalyst density on the surface.14 In 

general, a complete TMS-postcapping of the residual surface silanol is beneficial, so 

avoiding interactions of the silanol moieties with metal salts.13,14,15 Nevertheless, 

some reports indicated that TMS-capped silica exerts some catalytic activity, e.g. in 

the Diels-Alder reaction even at -70°C.16  

 

1.3 Immobilization of azabis(oxazolines) on magnetite@silica-nanoparticles via 
CuAAC  
As-prepared and endcapped particles were subjected to a copper(I)-catalyzed17 

azide/alkyne cycloaddition18 reaction with propargylated azabis(oxazoline) derivative 

120d (Scheme 51). The loading typically achieved under these conditions was 

assessed by reacting 139 and 141 respectively with alkyne 142 bearing a para-

nitrophenolester (Scheme 51).19 Briefly, the particles were separated from excess of 

142 in the supernatant, washed copiously and dried. Subsequently, 143 and 145 

were subjected to basic hydrolysis (1 M NaOHaq./dioxane, 1:1 (v/v), 1 h) and the 

concentration of nitrophenolate was detected by UV/vis-spectroscopy measured 

against a standard solution. Thus, it appeared that 0.1 mmol/g of 142 could be 

immobilized on 139 and 0.3 mmol/g on 141 respectively. These data were confirmed 

by elemental microanalysis. Following a slightly modified protocol, propargylated 

azabis(oxazoline) 120d was grafted onto 139 and 141 to yield the heterogeneous 

catalysts 144 and 146. 
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Scheme 51. Copper(I)-catalyzed azide/alkyne cycloaddition-reaction of azide functionalized 

magnetite@silica-nanoparticles 139 and 141 with 1-(nitrophenyl)-2-propyn-1-one (142) and 

propargylated azabis(oxazoline) 120b, respectively. 

The functionalization chemistry of the Fe3O4@SiO2-nanomagnets was monitored by 

IR spectroscopy (Figure 23). The unfunctionalized silica coated magnetite particles 

showed stretches at 565, 1055, 1630 and 3300 cm-1 which were attributed to the Fe-

O, Si-O-Si and –OH bonds respectively. In the case of the azide functionalized 

particles 139 and 141, the characteristic absorption bands at 2100 cm-1 could only be 

observed for 141, bearing just a thin silica layer. Intensities remained too weak for a 

distinct identification of functionalities upon further surface modification for 138 due to 

the intense Si-O-Si-bands at 1050 cm-1 with one exception: The vanishing –OH 
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signal at 3300 cm-1 gave hint of a successful TMS-postcapping. Various new signals 

between 1550 and 1670 cm-1 related to azabis(oxazolines) linked via a triazole 

moiety on the single-step synthesized Fe3O4@SiO2 146.  

  
Figure 23. ATR-IR spectra of unfunctionalized (138), different azide functionalized magnetite@silica 

nanoparticles (139, 141) and of azabis(oxazolines) immobilized thereon (146) (top to bottom). 

 

The azide/alkyne cycloaddition reaction as a tagging method which runs under mild 

conditions and with tremendous tolerance towards different functionalities provided 

the possibility to “click” preformed complexes directly onto the support. Hence, in an 

alternative strategy 120b·CuCl2 was subjected to CuAAC (Scheme 52).  
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Scheme 52. Copper(I)-catalyzed azide/alkyne cycloaddition reaction between 120b·CuCl2 and single-

step azide functionalized magnetite@silica nanoparticles 141. 

 

0.9 equivalents of CuCl2 with respect to azabis(oxazoline) 120b were applied in the 

complexation reaction, thus ensuring that the 6 mol% of copper(I) iodide 

subsequently used for the Huisgen cycloaddition were all ligated thereafter. The 

magnetite supported catalyst 147 was removed from the reaction mixture with the aid 

of an external magnet and redispersed in CH2Cl2 after decantation of the 

supernatant. This procedure was repeated five times before the retained material 

was applied in catalysis.  

 

2. Catalysts immobilized on carbon coated cobalt nanoparticles 
Apart from the magnetic metal oxides, pure metals such as Fe, Co, and Ni and their 

metal alloys, were used in various fields requiring magnetic materials.20 The 

saturation magnetization of these ferromagnets exceeds the values obtained with 

ferrites by far. Compared to iron oxide nanoparticles, these levels are hardly 

diminished upon surface modification.  

 On the other hand, nanoparticles out of pure metals are highly sensitive to air and 

can even be pyrophoric, whereas oxidation of aforementioned magnetite particles to 

ferrimagnetic maghemite is potentially less problematic. The sensitivity towards 

oxygen is not necessarily a disadvantage. Metal nanoparticles can be coated with a 

layer of its metal oxide during a controlled oxidation process, e.g. Co/CoO-

nanoparticles were prepared in such a manner. This is of particular interest because 

of the exchange bias effect between ferromagnetic Co and antiferromagnetic CoO.21 

Nevertheless, other core/shell motifs are more promising for further functionalization. 

 

2.1 Characteristics of the shell 
The intrinsic instability of all nanoparticles is caused by the tendency to agglomerate, 

thus reducing the energy associated with the high surface area/volume-ratio. 
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Naturally, the affinity to coalescence is enhanced in ferromagnetic particles. 

Moreover, the coating should be able to exclude oxygen. This problem is best 

addressed with shells derived from inorganic components, including silica,22 precious 

metals, such as Ag and Au,23 and carbon24 rather than organic compounds (e.g. 

surfactants, polymers).25 Nevertheless, a recent example shows that even cobalt 

nanoparticles stabilized by a rather penetrable oleic acid layer can act as recyclable 

carrier for a ligand promoting the ruthenium-catalyzed transfer hydrogenation of 

ketones (Scheme 14).26 Reduction of the ruthenium complex by metallic cobalt was a 

major drawback, demonstrating once more the need for an impermeable coating 

which would also rule out catalytic action of Co. 

 Two problems arise from the coating of Co with precious-metals such as Au, which 

was reported by Luov et al.27 Apart from economic considerations, further 

functionalization of the gold surface can create problems that were extensively 

discussed beforehand. 

 Silica coatings are sufficiently stable as long as harsh basic conditions are avoided 

and have therefore gained a predominant position for the passivation of iron oxide 

nanoparticles. However, a primer has to be used to make the surface of metal 

nanoparticles glasslike (“vitreophilic”)28 in order to create an additional barrier for 

oxygen and other species which could diffuse through pores in the silica. 

 Carbon layers provide definitely the highest level of chemical and thermal stability 

over all aforementioned organic and inorganic compounds.29 Despite this benefit, the 

formation of carbon coated metal particles is challenging and was possible only in 

small-scale operations (< 1 g/h) via arc discharge techniques,30 chemical vapour 

depositions31 and pyrolysis of metal complexes.32 Recently, Stark et al.33 reported on 

cobalt nanoparticles (50 nm average diameter) on which a graphene layer (1 nm) 

was deposited via reducing flame-spray pyrolysis.34 In contrast to all literature 

precedents, this procedure gave rise to substantial amounts of Co/C nanoparticles (> 

30 g/h). 

 

2.2 Synthesis of Co/C-nanoparticles via flame spray pyrolysis 
Cobalt(II)-2-ethylhexanoate was dispersed by an oxygen jet forming a spray, which 

was subsequently ignited by a premixed flame. In a conventional spray reactor 

(Figure 24, left), this precursor would combust to H2O, CO2 and metal oxide 

nanoparticles. 
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Figure 24. Photograph of a burning spray flame (left) and a spray flame operating in a glove box 

under oxygen limitation and encased in a doublewalled tube (right). The latter is used for the synthesis 

of Co/C-nanoparticles.33 

 

Since the flame was operated in a nitrogen filled glove box under oxygen limitation, 

the combustion yielded CO and H2 instead. The metal oxide nanoparticles were 

simultaneously reduced to the metal. Addition of acetylene through the side walls of a 

double walled tube (Figure 24, right) allowed the controlled coating of the 

nanoparticles by depositing carbon. The saturation magnetization of this material was 

close to bulk cobalt (158 emu/g), thus exceeding values obtained with the SPIO-

particles 138-141 by far (ca. 20 emu/g). 

 

2.3 Surface modification via reductive grafting of diazonium compounds 
Covalent modification of a carbon surface is possible via aryl radicals generated from 

reduction of diazonium compounds (Scheme 53).35  
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Scheme 53. Reduction grafting of diazonium compounds.  
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This strategy seemed highly versatile since most of the methods previously used for 

modifying the carbon surface involved harsh oxidation processes, e.g. boiling in 

HNO3 leads to the formation of carboxy, quinone, keto or hydroxyl groups on the 

surface36 that allow coupling with the molecules to be attached. In addition, the 

formation of oxygenated functionalities is hard to control in number and nature and 

often accompanied by roughening or even degradation of the carbon surface. Initial 

studies35 focused on the electrochemical reduction of diazonium salts on glassy 

carbon (GC) and highly oriented pyrolytic graphite (HOPG) which were in the 

following expanded to any kind of carbon scaffolds and modifications including 

nanotubes and diamond.37 The procedure is applicable for surfaces different than 

carbon, for instance hydrogenated silicon38 and diverse metals and metal oxides.39 A 

study which deserves to be mentioned in this regard was reported by Schiffrin and 

coworkers.40 They demonstrated that Au and Pt nanoparticles can be stabilized by 

reduction grafting of 4-diazonium decylbenzene fluoroborate (DDB) (Figure 25). 
 

 

M

148: M = Au
149: M = Pt  

 

Figure 25. Au and Pt nanoparticles stabilized with carbon-metal bonds formed upon reduction of DDB. 

 

The calculated bonding energies of the covalent bonds41 that result from the attack of 

the aryl radical range from 24 kcal/mol on gold to 70 kcal/mol on Si and up to 105 

kcal/mol on carbon. This demonstrates once more the supremacy of carbon shells in 

this regard. 
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2.4 Synthesis of azide functionalized Co/C-nanoparticles 
Two options were established by Stark et al.33 for the grafting of functionalized aryl 

radicals on the graphene layer of cobalt particles.  
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Scheme 54. Grafting of in-situ prepared (top) and preformed (bottom) diazonium compounds on 

carbon coated cobalt nanoparticles.33 
 

Since in-situ prepared diazonium-salts seemed to result in superior loading, a similar 

approach was followed to install 4-aminobenzylalcohol 155 on the surface of the 

Co/C-nanoparticles 150. Sonication was necessary to reduce the aggregation of the 

nanomagnets, a prerequisite for the grafting of the arylradicals which form upon loss 

of nitrogen. Keeping in mind the various side reactions possible with the sensitive 

diazonium moiety created in-situ and the excess of reagent that has to be applied in 

the course of the reaction, the grafting is apparently limited to quite simple aniline-

derivatives. Hence, the tagging with more complex molecules had to be realized 

following a different route. In order to functionalize the nanobeads with more complex 

molecules, the phenylethanol-derivative 156 was transformed into the 

(azidomethyl)phenyl counterpart 157 using a modified Mitsunobu reaction to enable a 

copper(I)-iodide17 catalyzed azide/alkyne cycloaddition18 on the particle surface 

(Scheme 55). 

 



B. Main Part  II. Magnetic Nanoparticles 

 82 

Co H2N+ Co

HCl, NaNO2
H2O

20°C, 15 min
Sonication

150 155 156

n

n

OH OH

Co

157

n

N3

HN3,
DEAD,
PPh3

Toluene,
25°C, 24 h

 
 

Scheme 55. Grafting of the diazonium salt of 4-aminobenzyl alcohol (155) onto carbon coated cobalt 

particles and subsequent substitution of the alcohol against an azide under modified Mitsunobu 

conditions. 

 

2.5 CuAAC as a generally applicable route for the immobilization of catalysts 
on Co/C-nanoparticles  
In a preliminary investigation, the reactivity of the azide functionalized Co/C-particles 

in the “click”-reaction and the loading typically obtained under these conditions was 

assessed by reacting 157 with alkyne 142 bearing a para-nitrophenolester19 (Scheme 

56). The necessity of a rather high concentration of copper salt (20 mol%) for a 

quantitative reaction course within 36 h might be attributed to solvation effects since 

the reaction proceeds within a heterogeneous environment (proximity of the particle 

surface). In order to maintain a maximum level of dispersion, the particles were 

sonicated in an ultrasound bath throughout the reaction.   
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Scheme 56. Copper(I)-catalyzed “click”-reaction of (azidomethyl) benzene functionalized 

nanoparticles 147 with 4-nitrophenylpropiolate (142). 

 
 
Figure 26. IR-spectra of Co/C powder after functionalization with phenylmethanol, (azidomethyl) 

benzene and after subsequent ”click”-reaction of the latter with 4-nitrophenylpropiolate (142). 

 

After accomplished immobilization – monitored by the vanishing azide peak at 2100 

cm-1 (Figure 26) – the particles were separated from excess of 142 in the supernatant 

via repeated magnetic decantation and dried. The concept of magnetic decantation 
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takes advantage of the fact that a separation of the magnetic nanobeads is achieved 

within seconds after applying an external magnet to the reaction vessel (Figure 27). 
 

   
 

Figure 27. Co/C-nanoparticles dispersed in dichloromethane before (left) and after the application of 

an external neodymium based magnet (right). 

 

The supernatant can be decanted while the nanomaterial is retained. Recovered 

material was redispersed in the same volume of fresh solvent for another washing 

cycle until the waters remained colorless for three iterative washing cycles. 

Subsequently, the ester moieties immobilized on the Co/C-nanoparticles were 

subjected to basic hydrolysis (1M NaOHaq./dioxane, 1:1 (v/v), Scheme 57) and the 

concentration of nitrophenolate in the supernatant was measured by UV/vis-

spectroscopy against a standard solution of 4-nitrophenolate 160. 
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Scheme 57. Basic hydrolysis of Co/C-grafted nitrophenolester. 

 

It is known that phenolates can be adsorbed on carbon surfaces to some extent.42 

Therefore, a reference solution was measured in which a standard solution of 

nitrophenolate was incubated together with 150 for 1 h. No significant loss of 
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concentration was detected, thus indicating that no physisorbtion of phenolates on 

the graphene layer is taking place. The maximum loading of the azide-functionalized 

cobalt-nanoparticles 158 was assessed to be approximately 0.1 mmol/g, a value 

which was affirmed by elemental microanalysis. 

 

2.5.1 Azabis(oxazolines) immobilized on Co/C-nanoparticles 
Based on promising results obtained with SPIO-particle immobilized catalyst 147, a 

CuCl2-complex of propargylated azabis(oxazoline) 120b was subjected to the CuAAC 

reaction instead of the propargylated ligand itself (Scheme 58). 
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Scheme 58. Copper(I)-catalyzed “click”-reaction of (azidomethyl) benzene functionalized 

nanoparticles 157 with propargylated azabis(oxazoline)-copper complex 161. 

 

However, agitating the reaction mixture in an ultrasound bath did not deliver 

catalytically active material although the azide-peak vanished in the IR-spectrum of 

161 (Figure 58). Extensive leaching of metal centers through continuous sonication 

might account for this effect. Hence, an alternative procedure was chosen in order to 

circumvent this drawback. The explicit ferromagnetism of the cobalt cores turned out 

to be sufficient for keeping the particles in dispersion when the reaction vessel was 

placed between adjacent parallel flanks of two magnetic stirrers. Indeed, the 

nanomaterial isolated after magnetic agitation under otherwise unchanged reaction 

conditions delivered catalytically active material.  
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Figure 28. IR-spectra of Co/C powder after functionalization with phenylmethanol, (azidomethyl) 

benzene and after subsequent ”click”-reaction of the latter with propargylated azabis(oxazoline)-

copper complex 120b·CuCl2. 

 

2.5.2 Oxidation-catalysts immobilized on Co/C-nanoparticles 
As mentioned afore, the ability of the shell to protect the metallic core material from 

oxygen is most crucial for the stability of such materials. In order to elucidate how 

efficiently the graphene layers are shielding the cobalt core, two different oxidation 

catalysts were anchored on the Co/C-nanoparticles and the condition of the 

nanocatalysts was examined after several consecutive oxidation reactions.  

 

2.5.2.1 TEMPO immobilized on Co/C-nanoparticles  
The selective oxidation of primary and secondary alcohols into the corresponding 

carbonyl compounds is one of the most important transformations in organic 

chemistry ever since.43 Common reagents for these oxidation reactions are usually 

toxic chromium(VI) salts in stoichiometric amounts, which exhibits a severe 
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environmental issue.44 Therefore, the development of systems using comparatively 

harmless oxidants such as oxygen, peroxide or hypochlorite seems worthwhile.45  

 The stoichiometric oxidation of primary alcohols to the corresponding aldehydes by 

the oxoammonium cation was first reported by Golubev and coworkers in 1965.46 

The oxoammonium cation could also be generated from TEMPO in-situ using single 

oxygen donors such as m-chloroperbenzoic acid,47 sodium bromite,48 persulfate,49 

and sodium hypochlorite.50 

 The stable nitroxyl radical 2,2,6,6- tetramethylpiperidine-1-oxyl (TEMPO) 

demonstrated benign properties such as low toxicity51 and a reversible redox 

behaviour which motivated its application in combination with diverse primary 

oxidants. Examples of TEMPO-catalyzed reactions involved the oxidation of 

secondary alcohols into ketones with m-CPBA,47 oxidation of primary, secondary and 

benzylic alcohols in an electrochemical process,52 and the oxidation of allylic and 

benzylic alcohols to aldehydes by oxygen/CuCl.53 

 Especially the protocol developed 1987 by Anelli et al., using buffered household 

bleach at 0°C in combination with 10 mol% of sodium bromide and 1 mol% of 4-

methoxy-TEMPO in dichloromethane/water is widely applied in organic synthesis.54 

Both, primary and secondary alcohols are converted to carbonyl compounds in high 

yields, even in large-scale operations. In addition, the oxidation of primary alcohols 

could be modified to give carboxylic acids by adding a phase-transfer catalyst to the 

biphasic system.54b Whichever oxidant was used, product isolation and catalyst 

recovery remained key issues. Although low catalyst concentrations are required 

(typically 1-2.5 mol%), TEMPO is quite expensive. Therefore, it is highly eligible to 

separate the catalyst after the oxidation reaction and reuse it. Hence, several groups 

have addressed this problem by anchoring TEMPO to solid supports such as 

different polymers,55 silica,56 or by entrapping TEMPO in a silica sol-gel.57 TEMPO 

was even immobilized on thiol-protected gold nanoparticles utilizing a place-

exchange reaction.58 However, no nanoparticle support had proven to be stable 

under conditions required for the TEMPO mediated oxidation. In fact, initial studies 

revealed that AuMPCs (oxidation of thiols to disulfides) as well as silica coated 

magnetite particles (oxidation of iron(II) to iron(III)59) are affected under the reaction 

conditions used for TEMPO oxidations, although oxidation of magnetite to maghemite 

is not necessarily a disadvantage since both are ferrimagnetic. 
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However, cobalt nanoparticles were expected to be more stable under these 

conditions due to their protecting graphene layers. In contrast to the well studied 

behavior of the nitroxyl radical on silica surfaces,56,57 no report had addressed its 

catalytic activity on carbon surfaces so far although examples of TEMPO grafted on 

carbon, i.e. fullerenes,60 were known.  
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Scheme 59. Synthesis of propargyl ether TEMPO 163.  
 
To enable a “click”-reaction between the organocatalyst and azide-modified 

nanomagnet 157, 4-hydroxy-TEMPO 163 was transformed into propargyl ether 

TEMPO 163 (Scheme 59). 
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Scheme 60. Copper(I)-catalyzed “click”-reaction of (azidomethyl) benzene functionalized 

nanoparticles 157 with propargyl ether TEMPO 163. 
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Figure 29. IR-spectra of Co/C powder after functionalization with phenylmethanol, (azidomethyl) 

benzene and after subsequent ”click”-reaction of the latter with propargyl ether TEMPO 163 

respectively (top to bottom). 

 
The grafting of the propargyl ether derivative of 4-hydroxy-TEMPO succeeded 

smoothly in the presence of catalytic amounts of CuI (Scheme 60) and was 

conveniently monitored by IR spectroscopy as described above (Figure 29). The 

oxidation of Cu(I) by TEMPO is seemingly not a problem.61 In contrast to the protocol 

applied for the immobilization of azabis(oxazoline)-copper complexes, sonication in 

an ultrasound bath was used to keep the particles in dispersion. This strategy, which 

did not impede a quantitative course of the CuAAC reaction using 4-

nitrophenylpropiolate, proved to be likewise successful. The heterogeneous CoNP-

TEMPO was purified via magnetic decantation as described above. The as-prepared 

catalyst was envisaged to be an efficient promotor for the selective oxidation of 

alcohols to carbonyl compounds.   
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2.5.2.2 Co(II)-Schiff base complexes immobilized on Co/C-nanoparticles 
Molecular oxygen is an abundant and ubiquitous oxidant. Since it was discovered 

that cobalt(II)-β-diketonate complexes allow trapping and activation of oxygen,62 

many Co(II)-based systems for the aerobic oxidation have been developed. Early 

examples were reported by Mukaiyama et al.63 using Co(II)-bis(1,3-diketonato) 

complexes for the oxidation of secondary alcohols into the corresponding ketones 63a 

or for the conversion of olefins to the hydrated products.63b In any case, the presence 

of an excess of secondary alcohol, which was stoichiometrically co-oxidized to the 

corresponding ketone, was crucial for the success of the reaction. The secondary 

alcohol could also be used as solvent. Furthermore, the authors concluded that water 

inhibits the catalytic activity of the cobalt(III) superoxide complexes64 formed. Addition 

of molecular sieves had proven to be an efficient dehydrating method.63a However, 

especially the hydration of olefins resulted in a mixture of products, namely 

secondary alcohols, ketones and alkanes, thus limiting the synthetic value of the 

“oxidation-reduction hydration”.63b Interestingly, Co(salen)-complexes were unsuitable 

catalyst in the presence of secondary alcohols.  

 Nevertheless, studies carried out by the same group showed that cobalt(II)-Schiff 

base complexes65 are superior catalysts for the oxygenation of olefins into epoxides 

when cyclic ketones are used as reductants instead of secondary alcohols.66 Further 

investigations by Iqbal and coworkers substantiated the versatility of these 

complexes in the epoxidation of olefins, oxidation of secondary alcohols and allylic as 

well as benzylic oxidations.67 Isobutyraldehyde and cyclic ketoesters respectively 

were reported to be equally active reductants. Cobalt(II)-Schiff base complexes have 

been anchored on silica68 and diverse polymers69 applying different strategies and 

forming highly active and recyclable catalysts, which outperformed even their 

homogenous counterparts in means of activity and selectivity in some cases.69e,h,i 

Since carbon coated cobalt particles were expected to endure the oxidative 

conditions without alterations, their application as support seemed promising. 

 To this end, propargylated Schiff base 165b was “clicked” onto azide functionalized 

Co/C-nanoparticles 157 (Scheme 61). Imine 165b was accessed via Schiff-base 

reaction between salicylaldehyde and propargylated L-tyrosine derivative 167b 

(Scheme 62). 
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Scheme 61. Copper(I)-catalyzed “click”-reaction of (azidomethyl) benzene functionalized 

nanoparticles 157 with propargylated Schiff base 165b. 
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Scheme 62. Synthesis of different Schiff base ligands. 
 

In analogy to previous reports,69 it was attempted to form a cobalt(II)-Schiff base 

complex in-situ by agitating the nanoparticle linked imine 166 in an external magnetic 

field together with anhydrous CoCl2 and ligand 165a in dry acetonitrile (Scheme 63).   
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Scheme 63. Attempted synthesis of Co-NP immobilized Co(II)-Schiff base complex 168 via 

complexation of Co-NP grafted Schiff base 166 with CoCl2 in the presence of 165a. 

 

Elemental microanalysis revealed that this protocol did not result in formation of the 

desired immobilized Co(II)-Schiff base complex 168. 
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Scheme 64. Copper(I)-catalyzed “click”-reaction of (azidomethyl) benzene functionalized carbon 

coated cobalt nanoparticles 157 with propargylated Co(II)-Schiff-base complex 169. 
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Figure 30. IR-spectra of Co/C powder after functionalization with phenylmethanol, (azidomethyl) 

benzene and after subsequent ”click”-reaction of the latter with Co(II)-Schiff-base complex 169 

respectively (top to bottom). 

 

Hence, the preformed complex 169 was applied in the CuAAC reaction instead, thus 

resulting in the depicted catalyst 168 (Scheme 64).  

 IR spectroscopy revealed that all azide moieties on the graphene layer underwent 

triazole formation in the presence of an excess (5 equiv.) of propargylated complex 

169 (Figure 30). The loading was determined by elemental analysis und found to be 

in accordance with the one assessed via UV/vis spectroscopy using nitrophenolester 

derivatized particles 158.    
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III. Catalysis  
 
1. Asymmetric catalysis with azabis(oxazolines) 
If it comes to the application of “heterogenized” organometallic catalysts, a distinction 

can be drawn whether preformed complexes are anchored on the support or 

catalysts are prepared in-situ via complexation of the scaffold-grafted ligand with 

metal salt. Either approach was employed but the latter needs to be discussed in 

detail under the aspect of recent studies by Reiser et al.1 focussing on the 

importance of ligand/metal-ratio in asymmetric catalysis.  

 

1.1 Significance of ligand/metal-ratio 
The determination of the optimum ligand/metal ratio has been an issue in many 

pioneering works in the field of asymmetric catalysis with chiral oxazoline ligands. An 

early example was reported by Brunner and co-workers2 demonstrating that in 

general the rhodium/ligand ratio in the enantioselective hydrosilylation of 

acetophenone with [Rh(COD)Cl]2 using pyridineoxazoline ligands as cocatalysts is 

crucial for asymmetric induction. An excess of rhodium was found to be as 

detrimental as an equimolar ratio of ligand to metal whereas a fivefold ligand surplus 

proved to give best optical induction. The same group showed that the Cu(OAc)2-

catalyzed monophenylation of meso-diols with Ph3Bi(OAc)2 can be rendered 

enantioselective with an even higher excess of pyridineoxazoline.3 Indeed, it appears 

reasonable to assume that at least a small excess of ligand is required in order to 

suppress a background reaction promoted by ligand-free and therefore unselective 

metal centers. Consequently, a slight excess of ligand was applied in various 

asymmetric catalyses ever since. Evans4 and Pfaltz5 have developed highly enantio-

selective processes for the copper(I)-catalyzed cyclopropanation of olefins utilizing 

bis(oxazolines) and semicorrines respectively in small overspill, the latter also applied 

at a ligand/copper ratio of 2 but accompanied by a diminutive loss of selectivity. The 

same ligands proved to be very efficient in palladium-catalyzed allylic alkylations at a 

ligand/Pd ratio of 1.25.5b 

 However, the stereoelectronic outcome of the asymmetric monobenzoylation of 1,2-

diols was found to be affected neither by a slight excess of copper(II) nor 

bis(oxazoline) ligand.6 This made the kinetic resolution of vicinal diols highly 

interesting for catalysis with any immobilized ligand, since the ligand/metal-ratio can 
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not be adjusted that accurately as it is possible in homogeneous catalysis. Therefore, 

it seemed reasonable to examine the efficacy of the novel nanoparticle supported 

catalysts first with such an unpretentious reaction.  

 

1.2 Asymmetric monobenzoylation of racemic 1,2-diols  
Asymmetric acylations using enzymes are possible with a broad range of substrates 

and include the desymmetrization or kinetic resolution of alcohols.7 Such highly 

enantioselective transformations are also possible with transition-metal- or 

organocatalysts. For instance, Matsumura et al. developed a protocol for the kinetic 

resolution of vicinal 1,2-diols via asymmetric benzoylation using bis(oxazoline)-

copper(II) complexes.8  The monobenzoylated product was obtained in 49% yield 

(theoretical maximum: 50%) and in >99% enantioselectivity (Scheme 61). 
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Scheme 61. Kinetic resolution of racemic diol 170 through asymmetric benzoylation.8 
 

The authors suggested that coordination of one enantiomer of 1,2-diol 170 should 

result in the formation of product 171, depending on which chiral environment is 

provided by the copper-bis(oxazoline) catalyst. A complex of type B forms, in which 

170 is prone to the attack of a weak base. The metal-alkoxide complex C can be 

trapped with the electrophile 172. Provided that the copper-bis(oxazoline) complex is 

regenerated after the formation of an acylated product 171, a catalytic cycle 

concerning A is completed (Scheme 62). 

 The enantiodiscrimination in the kinetic resolution of (±)-170 was explained with a 

shielding of the copper center against the electrophile 172 as depicted for complex D 

(Figure 29, left). If one enantiomer of 170 and the chiral bis(oxazoline) 102c match in 

a fashion that allows the attack of benzoylchloride 172, a transition state of type E is 
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formed (Figure 29, right). The benzoylated product 171 would result from such a 

transition state.  
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Scheme 62. Catalytic cycle as proposed by Matsumura et al.8 
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Figure 29. Schematic representation of unfavoured transition state D (left) and favoured transition 

state E (right).  
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1.2.1 Asymmetric monobenzoylation with homogeneous and polymer-
supported azabis(oxazolines) 
The concept discussed above was successfully coined on azabis(oxazolines).9 

Benzyl substituted AzaBOX 109d had proven to be the most selective (entry 1, Table 

3) in the asymmetric benzoylation of (±)-170. The isolated yield of 49% thus obtained 

was close to the maximum yield attainable in the desymmetrization of the 1,2-diol 

and could be achieved even at an extremely low catalyst concentration (0.5 mol%). 

Whereas methylation of the central nitrogen bridge was required for excellent 

selectivities, a triazole moiety has proven to be less favourable in this position, 

leading to diminished ee values for the homogeneous ligand 173 (entry 2). The 

slightly detrimental effect of the triazole has to be accepted when a copper(I)-

catalyzed azide/alkyne cycloaddition is used as tagging method for polymeric 

supports. However, the drop in selectivity and activity for polymer supported catalysts 

174 and 175 was much more severe.10 The poor performance of polystyrene grafted 

AzaBOX 174 can be explained to some extent with the reaction temperature. Since it 

was not feasible to stir the reaction mixture at 0°C, mechanical agitation at room 

temperature was applied instead. However, the decrease in enantioselectivity is that 

more grave compared to selectivities observed for the homogeneous derivative 173, 

thus it was reasoned that the slightly detrimental effect of the triazole is not the 

primary cause for this drop. More likely, uncomplexed coppersalt was retained in the 

polymer backbone from either the copper(I)-catalyzed azide/alkyne cycloaddition or 

the complexation reaction. Both polymers were subjected to several extraction cycles 

with aqueous EDTA-solution after the CuAAC-reaction, therefore any free coppersalt 

might more likely derive from uncomplexed CuCl2. For the soluble MeOPEG 

supported catalyst 175, copper(II)chloride was filtered off after stirring for one hour at 

room temperature and the catalyst was recovered by recrystallization from Et2O. In 

the case of the heterogeneous catalyst supported on Merrifield resin 174, coppersalt 

was removed by copious washing with methanol. However, selectivities faded for 

both polymer supported catalysts 174 and 175 upon recycling already in the second 

run (entries 3-6, Table 3). 
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Table 3. Cu(II)-catalyzed benzoylation of (±)-170 in the presence of various immobilized and non-

immobilized azabis(oxazoline) ligands.[a]  
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Ph Ph
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     CH2Cl2
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[a] Reagents and conditions: dl-Diol (1 mmol), benzoylchloride (0.5 mmol), DIPEA (1 mmol), 0°C, 3 h, 

CH2Cl2. [b] Yield of isolated product 171. [c] Determined by chiral HPLC. [d] Ref.11 [e] Taken from 

Ref.9 [f] Taken from Ref.10 [g] 6h, 25°C. [h] 6h. 
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Figure 30. Immobilized and non-immobilized azabis(oxazoline) ligands 109d and 173-175 used in the 

Cu(II)-catalyzed monobenzoylation. 

 

 

 

 

 

 

entry catalyst (mol%) run yield (%)[b] ee (%)[c] s[d] 

1[e] 109d·CuCl2 (0.5) 1 49 >99 >751 

2 173·CuCl2 (1.0) 1 47 93 71 

3[f], [g] 174·CuCl2 (5.0) 1 31 67 7 

4[f], [g] 174·CuCl2 (5.0) 2 35 56 5 

5[f], [h] 175·CuCl2 (5.0) 1 36 82 16 

6[f], [h] 175·CuCl2 (5.0) 2 43 62 7 
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1.2.2 Asymmetric monobenzoylation with azabis(oxazolines) supported on 
magnetite@silica-nanoparticles 
 

1.2.2.1 In-situ prepared Fe3O4@SiO2@AzaBOX·Cu(OTf)2-catalyst 

Uncomplexed Cu(II) is potentially the biggest disturbing factor in this reaction, hence 

complexation of magnetite@silica supported azabis(oxazolines) 144 and 146 was 

carried out with 2.0 equivalents of Cu(OTf)2 in respect to azabis(oxazoline) as a 

copper source being soluble in dichloromethane. After stirring at ambient 

temperature, the excess of Cu(OTf)2 in the supernatant can be easily eliminated via 

repeated magnetic decantation. CuCl2 is insoluble in CH2Cl2 and uncomplexed 

coppersalt therefore more difficult to separate. In a heterogeneous dispersion of 

nanopowder, the removal of insoluble metalsalt is naturally less feasible than in the 

case of a soluble support such as MeOPEG. Washing with a coordinating solvent like 

MeOH, as applied for polystyrene supported catalyst 174, appears to be suboptimal 

having the catalytic results in mind (entries 3 and 4, Table 3). On the other hand, 

coordination of surface silanol groups to coppersalt is not expected to give any 

problems due to the TMS-postcapping.12 Indeed, selectivities of in-situ prepared 

catalysts 144·Cu(OTf)2 and 146·Cu(OTf)2 exceeded those obtained with their 

polymeric counterparts by far and were even able to measure up with 

enantioselectivities achieved with homogeneous catalysts 109d·CuCl2 and 173·CuCl2 

(entries 1 and 2, Table 3). The fact, that the enantioselectivities of 144·Cu(OTf)2 and 

146·Cu(OTf)2 were superior when compared to their triazole bearing homogeneous 

counterpart 173·CuCl2 might give hint that the detrimental coordination of the triazole 

moiety to copper centers is hampered by its proximity to the silica surface and 

therefore less predominant. 

 144·Cu(OTf)2, which was synthesized and functionalized via a post-grafting route, 

performed slightly worse than 146·Cu(OTf)2 in means of selectivity. Moreover, 

146·Cu(OTf)2 maintained its high activity and selectivity for at least 3 runs, which is 

clearly superior to the recycling ability provided by Merrifield resin and MeOPEG. 

(entries 2-4, Table 4).  
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Table 4. Cu(II)-catalyzed monobenzoylation of (±)-170 using azabis(oxazolines) immobilized  on 

magnetite@silica nanoparticles.[a] 
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Ph Ph
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Ph Ph
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[a] Reagents and conditions: dl-Diol (1 mmol), benzoylchloride (0.5 mmol), DIPEA (1 mmol), 0°C, 3 h, 

CH2Cl2, catalyst (1 mol%). [b] Yield of isolated product 171. [c] Determined by chiral HPLC. [d] Ref.11  
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Figure 31. Different magnetite@silica immobilized azabis(oxazolines). 

 

The recycling was carried out by applying an external magnet to the reaction vessel. 

Separation of the superparamagnetic ironoxide particles was achieved within 

seconds and the supernatant containing the product was decanted (Figure 32).  

 

entry ligand run yield (%)[b] ee (%)[c] s[d] 

1 144 1 38 91 37 

2 146 1 46 94 80 

3 146 2 43 98 221 

4 146 3 45 96 118 
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Figure 32. Dispersion of the magnetite@silica nanoparticle immobilized catalyst 146·Cu(OTf)2 during 

the asymmetric benzoylation of (±)-170 (left). Recycling of the catalyst through magnetic decantation 

(right). 

 

For maximum yield it was required to redisperse the catalyst in dichloromethane and 

repeat the magnetic decantation twice. The nanopowder could be reused for the next 

cycle without further activation. Due to this very efficient recycling mode virtually no 

loss of catalyst was observed.  

 

1.2.2.2 Preformed Fe3O4@SiO2@AzaBOX·CuCl2-catalyst 
The application of the preformed azabis(oxazoline)-CuCl2 complex 147 for 

immobilization on magnetite@silica allowed to circumvent the obstacles caused by 

the use of a heterogeneous copper source in an in-situ protocol, e.g. above 

mentioned purification problems. Furthermore, CuCl2 is the most efficient promoter 

for the asymmetric benzoylation, hence, its application highly desired. Moreover, an 

in-situ immobilization strategy which would rule out the most valuable copper source 

for this reaction appears suboptimal.  

 Selectivity levels with the novel catalyst 147 (Table 5) exceeded not only those 

obtained with immobilized catalysts 174·CuCl2 and 175·CuCl2 but also of triazole 

modified azabis(oxazoline) 173·CuCl2 (entries 2-6, Table 1). At least four runs were 

possible with the novel nanocatalyst 147 without evident drop in yield or 

enantioselectivity. Thus, the concise grafting of preformed azabis(oxazoline)-copper-

complexes delivered as selective catalysts as accessed via an in-situ route but 

without any restrictions for the choice of the copper source.   
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Table 5. Cu(II)-catalyzed benzoylation of (±)-170: Recycling experiment using azabis(oxazolines) 

immobilized  on magnetite@silica nanoparticles.[a] 

 

Ph

OHHO

Ph Ph

OBzHO

Ph Ph

OHHO

Ph
+

PhCOCl (0.5 equiv.)
DIPEA (1.0 equiv.)
 CH2Cl2, 0°C, 2.5h(±)-170 (R,R)-171 (S,S)-170

147
(1 mol%)

N
NN

N

N
OO

N
Bn Bn

OTMS

OTMS

TMSO

TMSO OTMS

TMSO OTMS

Fe3O4

Cu
Cl Cl

 
 

 

[a] Reagents and conditions: dl-Diol (1 mmol), benzoylchloride (0.5 mmol), DIPEA (1 mmol), 0°C, 

2.5h, CH2Cl2. [b] Yield of isolated product 171. [c] Determined by chiral HPLC. [d] Ref.11  

 

Efforts to broaden the scope of the magnetite@silica immobilized catalyst 147 were 

limited by the efficacy of the ligand rather than restrictions due to the support. 

Racemic cyclohexane- and cycloheptane-diols 176a and 176b respectively were 

subjected to the kinetic resolution, giving, in general, good yields but lower 

selectivities (Table 6). However, at least for 177a selectivities were equal to those 

obtained with 109d· CuCl2. 

 

 

 

 

 

 

 

 

entry run yield (%)[b] ee (%)[c] s[d] 

1 1 46 95 98 

2 2 49 96 163 

3 3 43 96 107 

4 4 48 98 311 
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Table 6. Cu(II)-catalyzed benzoylation of aliphatic cyclic diols in the presence of magnetite@silica 

supported and non-immobilized azabis(oxazoline) ligands.[a]  

 

 

HO OH HO OBz HO OH

+n n n

(±)-176a (n=1)
(±)-176b (n=2)

(R,R)-177a (n=1)
(R,R)-177b (n=2)
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(S,S)-176b (n=2)

PhCOCl (0.5 equiv.)

DIPEA (1.0 equiv.)
 CH2Cl2, 0°C

 
 

 

[a] Reagents and conditions: dl-Diol (1 mmol), benzoylchloride (0.5 mmol), DIPEA (1 mmol), 0°C, 3h, 

CH2Cl2. [b] Yield of isolated product 177. [c] Determined by chiral HPLC. [d] Ref.11 [e] Ref.9 

 

1.2.3 Asymmetric monobenzoylation with azabis(oxazolines) supported on 
Co/C-nanoparticles 
 
1.2.3.1 Catalysis under batch conditions 
Preformed azabis(oxazoline)-copper(II)chloride complexes, which were immobilized 

on carbon coated cobalt-nanoparticles, proved to be highly efficient catalysts for the 

asymmetric monobenzoylation of racemic diol 170. However, stirring the highly 

ferromagnetic particles in order to create well-dispersed solutions had to be ruled out 

since the attraction of the nanobeads to the stir bar is too strong. The use of an 

ultrasound bath allowed the nanopowder to be dispersed efficiently though cooling 

remained a challenging issue. Maybe the most promising solution is provided by the 

immanent magnetism of the particles which caused selfsame problem: The cobalt 

cores bear the capacity to act as their own stirrers in a magnetic field strong enough. 

To this end, a Schlenk flask containing Co/C-immobilized catalyst 161 in the reaction 

mixture was placed between adjacent parallel flanks of two magnetic stirrers which 

were operated in a cooling chamber. Under these conditions, the asymmetric 

monobenzoylation of (±) diol 170 succeeded in very good yields and selectivities 

entry diol catalyst (mol%)  yield (%)[b] ee (%)[c] s[d] 

1[e] 176a 109d·CuCl2 (5.0) 45 73 11 

2 176a 147 (1.0) 39 79 14 

3[e] 176b 109d·CuCl2 (5.0) 41 80 16 

4 176b 147 (1.0) 47 59 6 
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(Table 7). Enantioselectivities increased even slightly after the first three cycles 

(entries 4 and 5). 
 
Table 7. Cu(II)-catalyzed monobenzoylation of (±)-170: Recycling experiment using azabis(oxazoline)-

CuCl2-complexes immobilized  on Co/C-nanoparticles.[a] 
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[a] Reagents and conditions: dl-Diol (1 mmol), benzoylchloride (0.5 mmol), DIPEA (1 mmol), 0°C, 3h, 

CH2Cl2. [b] Yield of isolated product 171. [c] Determined by chiral HPLC. [d] Ref.11  

 

Recycling of the catalyst via magnetic decantation was facilitated by the high 

saturation magnetization of the Co/C-nanocomposite, which allowed its separation 

from the reaction mixture within seconds. The recovered material maintained its high 

activity for at least five iterative runs. 

  

1.2.3.2 Catalysis under continuous-flow conditions 
An interesting option represented the application of the supported catalyst system in 

a continuous-flow process. The eminent low catalyst concentration (< 1 mol%), which 

is sufficient for high conversions within reasonable reaction times (entry 1, Table 3), 

additionally qualifies the title reaction for a process with inherent limited catalyst 

entry run yield (%)[b] ee (%)[c] s[d] 

1 1 47 97 183 

2 2 43 96 100 

3 3 49 97 227 

4 4 48 99 645 

5 5 46 99 536 
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package. A continuous-flow setup offers a number of potential advantages over 

batch techniques.13 The reaction conditions (flow rate, stoichiometry and pressure) 

can be independently varied and precisely controlled. Flow processes are readily 

scalable by employing multichannel or parallel reactors (number-up vs. scale-up). 

Some interesting approaches were recently reported for continuous asymmetric 

processes using either organic or inorganic supports.14 However, some of these 

systems suffered from uncontrollable fluid dynamics since catalysts packed as 

random fixed-bed reactors may lead to stagnation zones, hot-spot formations and 

large residence time distributions.15 Additional drawbacks might arise from polymer-

specific issues such as the necessity of swelling,14e limited accessibility of catalytic 

sites and clogging of the frit by polymerization byproducts.14c 

 The use of a magnetic nanoparticle supported catalyst was foreseen to allow a 

novel reactor design, which might be able to overcome several restrictions related to 

conventional fixed-bed reactors. Agitation of the nanomagnets in a rotating external 

magnetic field might have beneficial influence on the fluid dynamics. Moreover, due 

to the pronounced ferromagnetism of carbon coated cobalt particles, the free-floating 

nanocatalyst might be magnetically retained in the reactor, thus making the 

application of membranes for nanofiltration dispensable. This would provide an 

especially interesting feature since the nanoparticles tend to aggregate and block 

membranes because of their magnetic remanence, thus inevitably provoking a flow-

collapse.  

 To this end, a glass column (Omnifit, 10 cm length, 3.4 mL volume) was charged 

with the recycled Co/C-immobilized catalyst 161 and placed vertically between 

adjacent parallel flanks of two magnetic stir motors (Heidolph) with a distance of 4 cm 

to each other (Figure 33). The glass column was equipped with adequate joints to be 

connected to a piston pump that allowed the reactor to be floated with anhydrous 

CH2Cl2. A PE frit (25 μm pore size) was mounted into the lower thread of the glass 

column to prevent excessive sedimentation of the particles to the piston pump after 

shutdown.    
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Figure 33. Co/C supported catalyst 161 in a jointed glass column contained by an external magnetic 

field (left). The nanomagnets were agitated in the rotating magnetic field while CH2Cl2 was passed 

through the reactor (right). 

 

Because of the small flow rates required in these experiments, a diaphragm metering 

pump (KNF STEPDOS 03-RC) was chosen as the delivery assembly for reactants 

and reagents. Residence times of the reactants in the flow reactor were not sufficient 

to enable satisfying conversion of the racemic diol into the enantioenriched 

monobenzoylated product even at very low flow-rates (< 0.1 mL/min). Hence, 

adopting recirculation seemed more feasible than further reduction of flow rate in 

order to achieve high rates in a single pass. Nevertheless, a flow of 0.2 mL/min was 

maintained in order to avoid leaching of Co/C-nanoparticles.  

 In principle, for a given amount of catalyst, reaction rates in a continuous-flow 

reactor depend on the feed composition, mean residence time and reaction 

temperature. However, raising the temperature in order to increase rates up to a level 

adequate for a single pass is severely limited for an enantioselective process.  

 In order to control the temperature, the whole setup was operated in a cooling 

chamber (4°C), which was envisaged to secure an isothermal reaction rather than 

applying a column jacket with a circulating cooling fluid, for instance. Furthermore, a 

column jacket would demand space, which was required by the stir motors for the 

effective containment of the particles. 
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Figure 34. Representation of a closed circuit type reactor for the asymmetric monobenzoylation of 

racemic diol 170 

 

Charging of the closed circuit type reactor with solvents and reagents was carried out 

without sophisticated techniques, e.g. an inert atmosphere box. A nitrogen filled 

balloon was applied to create an inert atmosphere in the septum-sealed vessel 

containing the dissolved reactants. In addition, the flask was equipped with an 

external neodymium based magnet that would trap any catalyst leached from the 

reactor along with the circulating reactants (Figure 34).  

 In the case of the magnetite@silica-supported catalyst, excessive leaching 

occurred already at moderate flow-rates, thus, SPIO-nanoparticles with their 

comparatively low saturation magnetization appear ineligible under continuous-flow 

conditions. Co/C-nanoparticles instead, were retained at such a flow rate, showing 

only negligible catalyst leaching.   

 Considering the solvent volume of the whole system (8 mL) and the flow-rate 

applied, the total volume of the reaction mixture in the vessel would be circulated 

within 40 min. Four successive batches of a solution of 170 in anhydrous CH2Cl2 

were thus fed with intermediate washing of the charged column using dry CH2Cl2. 
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The contact of the catalyst with adventitious air during the washing procedure had no 

mentionable effect on the catalyst efficiency in the next run.  

 By this procedure, overall 4 mmol of 170 were effectively resolved using catalyst 

161, which had been recovered from the batch reactions (Table 7). The immobilized 

azabis(oxazoline)-copper(II) complex 161 delivered essentially unchanged 

enantioselectivities in 171 within the first three runs (Table 8).  A gradual decrease in 

yield was observed subsequent to the second run, followed by an explicit decline in 

enantioselectivity in the fourth run (entries 3 and 4).   

 
Table 8. Cu(II)-catalyzed monobenzoylation of (±)-170 catalyzed by azabis(oxazoline)-CuCl2-

complexes immobilized  on Co/C-nanoparticles in a closed circuit type reactor.[a] 
 

 

 

[a] Reagents and conditions: dl-Diol (1 mmol), benzoylchloride (0.5 mmol), DIPEA (1 mmol), catalyst 

161 (5 mol%) 4°C, 20h, CH2Cl2. [b] Yield of isolated product 171. [c] Determined by chiral HPLC. [d] 

Ref.11 [e] Amount of supported catalyst 161 which was extruded from the reaction chamber during the 

denoted reaction time and collected in the neodymium magnet trap. 

 

The drop in activity after the third run might be attributed to leaching of copper from 

the immobilized ligand rather than to the insignificant amount of immobilized catalyst 

leached from the reaction chamber. Hence, the containment and agitation of the 

nanomagnets in a microreactor via an external magnetic field provides an interesting 

alternative to fixed-bed reactors which necessitate a membrane that bears the 

danger of obstruction.  

 
 
 
 
 
 

entry batch yield (%)[b] ee (%)[c] s[d] catalyst-leaching (%)[e] 

1 1 43 99 449 < 1 

2 2 47 98 282 < 1 

3 3 39 99 383 < 1 

4 4 32 76 10  < 1 
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1.3 Asymmetric Michael-addition of indole to benzylidene malonates 
Since the enantioselectivity in many asymmetric catalyses is improved by a slight 

surplus of ligand,2-6 whereas the stereoelectronic outcome of the asymmetric 

monobenzoylation of 1,2-diols is affected by neither excess of copper(II) nor 

bis(oxazoline) ligands,1b the question arises if catalyses might even be negatively 

influenced in their optical yields by ligand excess. Indeed, such a detrimental effect 

was observed in the enantioselective Michael-addition of indole (178) to benzylidene 

malonates 179.1 A similar effect was reported shortly after by Chan et al. for the 

copper(I)-catalyzed alkynylation of α-amino ester with arylacetylenes, which 

responds to any excess of pybox with a significant decrease in enantiofacial selection 

to the point that even a reversal of enantioselectivity could be achieved.16 Obtaining a 

deeper understanding of this unprecedented effect is crucial in order to develop 

strategies which allow the successful application of immobilized catalysts in such a 

reaction.  

 

1.3.1 Catalysis with homogeneous azabis(oxazolines) 
The Friedel-Crafts reaction is one of the most powerful methods for the formation of 

carbon-carbon bonds17 and has therefore gained a lot of attention during the past 

decades including the development of enantioselective variants.18 The copper(II) 

catalyzed 1,4-addition of indole (178) to benzylidene malonate 179 is known to 

proceed in the presence of bis(oxazoline) 102b with moderate selectivities (up to 

69% ee) under standard reaction conditions (ligand/copper ratio 1.1-1.2) as reported 

by Jørgensen et al. (Table 9).19  
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Table 9. Enantioselective Friedel-Crafts Alkylation of indoles with alkylidene malonates.19  
 

THF, 24h

N

O

N

O

Cu
TfO OTfBut tBu

102b-Cu(OTf)2
(10 mol%)

+
CO2R3

CO2R3

CO2R3

CO2R3

R2

N
H N

H

R2

R1 R1

178 179 180
 

 

Although some improvement was achieved by Tang et al.20 (up to 82% ee) they 

reasoned that simple C2-symmetric bis(oxazolines) were unsuitable ligands to form a 

highly stereodiscriminating environment for the copper complex, a prerequisite to 

achieve high enantioselectivities. An elegant alternative was proposed with the 

development of tris(oxazoline) ligand 181 which is able to coordinate in a tridentate 

fashion to the copper center. 
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Figure 35. Different binding modes of bidentate azabis(oxazoline) (left) and tridentate tris(oxazoline) 

(right) in a copper-benzylidene malonate complex.  
 

entry R1 R2 R3 T(°C) yield (%) ee (%) 

1 H Ph Et 0 73 60 

2 H Ph Me 0 95 50 

3 H 4-Br-Ph Et 0 45 50 

4 H 2-Cl-Ph Et 30 87 69 

5 OMe 4-NO2-Ph Me 20 99 58 
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A pentacoordinated complex of type B (Figure 35, right), in which one oxazoline 

moiety necessarily has to be in apical position, was postulated to account for 

enhanced stereochemical induction. Indeed, employing 181 resulted in highly 

improved selectivities up to 94% ee for the adduct 180a.21  

 
Table 10. Enantioselective Friedel-Crafts Alkylation of indole (178) with benzylidene malonate 179a 

catalyzed with a tris(oxazoline)-copper complex.21b  

N
H

COOEt

COOEtN
H CO2Et

CO2Et
+

Cu(X)2

N

OO

N
iPrPri

N

O iPr

179a178 180a

181

(10 mol%)

(12 mol%)

 
 

 

[a] 181/Cu(OTf)2 = 1.0/1.5. 

 

Moreover, changing the solvent from apolar to polar protic ones resulted in greatly 

enhanced reactivity. Especially bulky alcohols, e.g. iBuOH, were capable of 

improving selectivities, thus indicating coordination of solvent to the metal center in 

the active species. Taking these observations and previous studies by Evans22 into 

account, Tang et al. proposed a plausible mechanism for the catalytic cycle (Scheme 

63).  

 

entry solvent Cu(X)2 T(°C) yield (%) ee (%) 

1 acetone/ether Cu(ClO4)2 6H2O 0 50 85 

2 EtOH Cu(ClO4)2 6H2O 15 100 82 

3 TTCE Cu(OTf)2  15 76 65 

4[a] iBuOH Cu(OTf)2 15 99 81 

5 iBuOH Cu(OTf)2 - 25 99 94 
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Scheme 63. Catalytic cycle as proposed by Tang et al.21b 

 

Chelation of the malonate to the copper center affords the activated substrate-

catalyst complex, which undergoes nucleophilic addition to provide the Cu(II)-

alkylation adduct. Subsequent solvent assisted H-transfer, followed by 

decomplexation, gives the product and concomitantly regenerates the catalyst E. 
 However, it was found that a species of type B (Figure 35) might not necessarily be 

required in order to create highly stereoselective complexes. Seemingly inferior 

bidentate azabis(oxazolines) 103 were found to be applicable for the highly 

enantioselective addition of indole (178) to benzylidene malonate 179.1 If any excess 

of ligand is avoided and the ligand/copper ratio carefully adjusted to 1.04, excellent 

enantioselectivities (>99% ee) were obtained using both, bis(oxazoline) 102a or 

azabis(oxazoline)23 103a, the latter resulting in somewhat higher yields (entry 3, 

Table 11). Even if the 103a/copper-ratio was shifted towards a slight excess of 

copper (entry 5, Table 11) the selectivity remained respectable and clearly superior to 

the one obtained if selfsame ligand surplus was employed (entry 2). 
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Table 11.1 Dependence of enantioselectivity on ligand/metal-ratio in the asymmetric 1,4-addition of 

indole (178) to benzylidene malonate 179a.[a] 

N

O
H
N

N

O

Pri iPr

178

+
CO2Et

CO2EtPh

179a

CO2Et

CO2Et

Ph

180a

EtOH, 
20°C

N
H

N
H

          
       Cu(OTf)2

103a

 
 

 

[a] Reagents and conditions: 1.2 mmol Indole, 1.0 mmol malonate, 5 mol% 103a, Cu(OTf)2 according 

to metal/ligand ratio, 20°C, 8h, solvent: 4 mL EtOH. [b] Determined by HPLC. 

 

This was quite in contrast to the usual observation in asymmetric catalysis that an 

excess of chiral ligand is beneficial in order to avoid background reactions by 

uncomplexed metal. A square-planar species of type A was assumed to give the 

same high enantioselectivity as its five-membered counterpart B if bis(oxazoline) 

ligands 102 or 103 are employed (Figure 35). A resting state of the catalyst might be 

entered by coordination of a third oxazoline moiety to copper, as suggested by Gade 

et al.,24 if an excess of ligand is provided. To reach an active species one of the 

nitrogen moieties has to leave the coordination sphere, which should be the apical 

oxazoline if ligand 181 is employed. An excess of external ligand might however 

compete for an equatorial position, which could result in low enantioselectivity.  

 The use of indole (178) as nucleophile seems to be crucial for the performance of 

the Michael addition since other heteroaromatic compounds like pyrrole (182) or even 

substituted indoles19 pale in comparison with indole (178) (Scheme 64).  
 

entry ligand/metal-ratio yield (%) ee (%)[b] 

1 1.3/1.0 98 81 

2 1.1/1.0 93 85 

3 1.04/1.0 97 >99 

4 1.0/1.0 90 98 

5 1.0/1.1 96 98 

6 1.0/1.3 95 91 
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N
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yield: 81%
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Scheme 64. Asymmetric 1,4-addition of pyrrole (182) to benzylidene malonate 179a. 

 

When a number of substituted benzylidene malonates was examined for the reaction 

with indole (178) at ligand/metal ratios of 1.05 and 1.3 a surprising dependence of 

the latter with the electronic nature of the substituent was revealed. It was found that 

comparatively electron rich compounds, especially 179a and 179b (entries 1 and 4, 

Table 12) were forming adducts with indole (178) in high optical yields if any excess 

of ligand is prevented. On the contrary, the strongly electron deficient 4-nitro-

derivative 179g paled in this respect (entry 13). Surprisingly, very good 

enantioselectivities were achieved for 179g if excess of ligand (103a/copper ratio 1.3) 

was applied (entry 14) - selfsame excess which was found to be highly 

disadvantageous for the electron rich counterparts (entry 2). In addition, it was 

observed that the sensitivity of enantioselectivity towards ligand excess vanished with 

decreasing inductive contribution of the substituent until it was reversed in its 

contrary: Best results for compounds 179c and 179d were still found at nearly 

equimolar ratios of ligand and copper (entries 5-8), although both, selectivities and 

ligand dependence were somewhat lower compared to 179a and 179b. Whereas the 

2-bromo-derivative 179e appeared to be rather insensitive to the influence of 

ligand/copper ratio, 4-bromo-benzylidene malonate 179f marked the turnaround, 

showing maximum ee at a ligand/metal ratio of 1.3 (entries 9-12). As mentioned 

above, the reversed sensitivity towards ligand excess culminated for 4-nitro-

derivative 179g. Further rise in the ligand/metal ratio did not increase the selectivity. 

Strongly electron donating substituents such as the dimethylamino-group oppressed 

the reactivity of the substrate completely (entry 15). 
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Table 12. Dependence of enantioselectivity on ligand/metal ratio in the 1,4-addition of indole (178) to 

substituted benzylidene malonates (179a-h): Electronic effects of different malonates.[a]  
 

 178

+
CO2Et

CO2Et

179a-h

CO2Et

CO2Et

180a-h

EtOH,
 20°CN

H
N
H

R

R

            103a
         Cu(OTf)2

 
 

 

[a] Reagents and conditions: 1.2 mmol Indole, 1.0 mmol malonate, 5 mol% 103a, 20°C, 8h, solvent: 4 

mL EtOH. [b] Determined by HPLC. [c] Ref.1b [d] Obtained in at least two independent runs. 

 

 

 

entry ligand/metal-ratio R yield (%) ee (%)[b] 

1[c] 1.04/1.0 H (179a) 97 >99[d] 

2 1.3/1.0 H (179a) 98 81[d] 

3[c] 1.04/1.0 4-Me (179b) 80 93 

4 1.3/1.0 4-Me (179b) 78 76 

5 1.05/1.0 4-OMe (179c) 75 84 

6 1.3/1.0 4-OMe (179c) 69 70 

7 1.05/1.0 4-CF3 (179d) 95 90 

8 1.3/1.0 4-CF3 (179d) 93 81 

9 1.05/1.0 2-Br (179e) 89 85 

10 1.3/1.0 2-Br (179e) 86 86 

11 1.05/1.0 4-Br (179f) 97 75 

12 1.3/1.0 4-Br (179f) 95 82 

13 1.05/1.0 4-NO2 (179g) 92 82[d] 

14 1.3/1.0 4-NO2 (179g) 83 94[d] 

15 1.05/1.0 4-NMe2 (179h) - - 
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Hence, this different behavior might be associated with the different electronic 

parameters of the derivatives 179a-g. A semi-logarithmic plot of optical yields at the 

two different ligand/metal ratios (1.05 and 1.3) versus the σΙ values25 of all para-

substituted benzylidene malonates, gave a sigmoid trajectory (Figure 36). 

 

 
Figure 36. Semi-logarithmic correlation of optical yield ratio versus σΙ values of para-substituents in 

the reaction of indole (4) and substituted benzylidene-malonates 179a-d, f, g. 
 

In order to obtain a deeper insight into the proposed interplay of tetra- and 

pentacoordinated copper-oxazoline complexes, the use of lithium triflate for the title 

reaction was investigated, an additive that was supposed to have an influence on the 

enantioselectivity by coordination of triflate on the copper center in apical position.21b 

It is possible that a pentacoordinated complex of type F might be less affected by 

ligand excess (Scheme 65). In contrast to the likewise square-pyramidal species B, 

no additional stereochemical information is provided by coordination of the triflate 

counterion. 
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Table 13. Dependence of enantioselectivity on ligand/metal-ratio in the 1,4-addition of indole (178) to 

benzylidene malonates 179a,e,g: Influence of triflate as additive.[a] 

 178

+
CO2Et

CO2Et

179a,e,g

CO2Et

CO2Et

180a,e,g

EtOH, 
20°CN

H
N
H

R

R

         103a
     Cu(OTf)2

 
 

 

[a] Reagents and conditions: 1.2 mmol Indole, 1.0 mmol malonate, 5 mol% 103a, 20°C, 8h, solvent: 4 

mL EtOH. [b] Determined by HPLC. [c] Ref.1b [d] Obtained in at least two independent runs. 

 

Studies were carried out at different 103a/copper ratios and with benzylidene 

malonates 179a, 179e and 179g, each representing a varied inductive contribution 

and therefore different sensitivity towards ligand excess. Changing the amount of 

indole (178) in the reaction with 179a from 1.2 to 5.0 mmol at a ligand/metal ratio of 

1.04 had no influence on neither enantioselectivity nor yield (entry 1, Table 13), thus 

indicating a subordinate role played by indole (178) in that regard. An addition of 25 

mol% (= 5 equiv. with respect to the copper-azabis(oxazoline) complexes) of 

lithiumtriflate to the already highly selective reaction of indole (178) with 179a in the 

absence of additives at a ligand/metal ratio of 1.04 had some negative effect on 

entry ligand/metal-ratio R Li(OTf)/103a yield (%) ee (%)[b] 

1[c] 1.04/1.0 H (179a) - 97 >99[d] 

2 1.05/1.0 H (179a) 5 90 93 

3 1.3/1.0 H (179a) - 98 81[d] 

4 1.3/1.0 H (179a) 5 97 96 

5[c] 1.04/1.0 2-Br (179e) - 89 85 

6 1.05/1.0 2-Br (179e) 5 84 82 

7 1.3/1.0 2-Br (179e) - 86 86 

8 1.3/1.0 2-Br (179e) 5 78 85 

9 1.05/1.0 4-NO2 (179g) - 92 82[d] 

10 1.05/1.0 4-NO2 (179g) 5 89 96 

11 1.3/1.0 4-NO2 (179g) - 83 94[d] 

12 1.3/1.0 4-NO2 (179g) 5 73 93 
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enantioselectivity, whereas the same amount of additive at the disadvantageous 

103a/copper ratio of 1.3 annihilated the negative influence of ligand excess to a large 

part. The enantioselectivity thus obtained was almost comparable to the one at a 

meticulously adjusted ligand/metal ratio (entries 1-4, Table 13). 

 This observation might be explained if a five-membered square-pyramidal complex 

is taken into consideration, which is widely accepted to persist additionally to the 

distorted square-planar complex of type A during catalysis with bis(oxazoline) 

complexes,26 whereas the catalytic activity of such intermediates remains an 

unsettled issue. This square-pyramidal complex offers two possible modes for the 

coordination of the benzylidene malonate: It might be bound in the plain of the 

oxazolines with either both carboxyl moieties or with one in equatorial and the other 

in apical position. The latter binding fashion is most popular for pybox27 but was also 

discussed for bis(oxazolines).26b,28 With an excess of ligand present competing with 

benzylidene malonate for coordination space, the benzylidene malonate might be 

driven in the less enantioselective binding mode G (Scheme 65), thus providing the 

sterically more demanding oxazoline surplus with an equatorial position.  
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Scheme 65. Mechanistic model for the asymmetric 1,4-addition of benzylidene malonate 179a. 
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In this case non-identical alternatives for coordination in equatorial position would 

probably arise, accounting for the drop in selectivity. In fact, there are hints that 

triazole moieties, although sterically less demanding than their oxazoline 

counterparts, are bound in a square-pyramidal copper-complex in equatorial rather 

than in apical position (Figure 37). With a considerable excess of triflate applied (5 

equivalents in respect of 103a), competing with a rather small ligand surplus for the 

fifth coordination site, triflate might cover this position due to plain spill-over. 

However, it is unlikely in means of steric and electronic demand that triflate would 

occupy an equatorial position rather than benzylidene malonate. Moreover, structures 

of type F in which triflate is bound in apical position were disclosed before.21b,26c Such 

a complex geometry would provide the same high enantioselectivity as the four-

membered species A (Scheme 65). After all, a mechanistic model involving a five-

membered intermediate is capable of explaining both, the effect of ligand excess and 

effects caused by the addition of triflate. However, coordination of a third oxazoline 

moiety would in this model not result in a deactivation of the complex due to reduced 

Lewis acidity as proposed by Gade et al.,24 but in less enantioselective 19e--species 

G1 and G2. Pentacoordinated copper-bis(oxazoline) complexes with equatorial/apical 

coordinated α-ketoesters29 or (benzyloxy) acetaldehyde26a as electrophilic substrates 

have been proposed as catalytically relevant species before. 
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Figure 37. X-ray structure of a polymeric ligand structure bridged by copper atom: Triazole moieties 

are coordinated in equatorial position.1 
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Figure 38. X-ray structure of [Cu-102b(H2O)2] (OTf)2
26c (left) and [Cu-102b(Ph(CH)2(CO2Me)2)] 

(SbF6)2
26d

 (right); non-coordinating counterions omitted for clarity. 

 

As expected, the addition of triflate did not increase the selectivity if the reaction itself 

is insensitive towards ligand/copper ratio, as it is the case for the alkylation of indole 

(178) with 179e (entries 5-7, Table 13). The enantioselectivity obtained with the 4-

nitro-derivative 179g at optimum reaction conditions, i.e. at a 103a/copper ratio of 

1.3, was likewise indiscernible from the result without additive. However, when the 

disfavored ligand/metal ratio was applied for substrate 179g, its detrimental influence 

vanished after addition of triflate, leading in this case to the highest 

enantioselectivities ever obtained for 180g, either using bis- or tris(oxazoline) ligands 

(entries 9-11).21a Lithiumtriflate seems to act as a decoupling agent for the 

ligand/metal ratio by stabilizing a pentacoordinated complex of type F, which is 

supposed to be less susceptible to this effect. 

 

 

 

 



B. Main Part   III. Catalysis 

 125  

1.3.2 Catalysis with nanoparticle-supported azabis(oxazolines)  
The promising results using Li(OTf), an agent which might make meticulous 

adjustment of the ligand/metal-ratio unnecessary, motivated the application of 

magnetite@silica-immobilized azabis(oxazolines) 144, 146 and 184, as well as Co/C 

immobilized ligand 161 in this reaction. The catalysts were prepared in analogy to 

those used for the monobenzoylation of 1,2-diols. Briefly, the nanomagnets were 

dispersed in dichloromethane containing 2.0 equiv. of Cu(OTf)2, agitated for 3 h at 

ambient temperature and copiously washed via magnetic decantation. The 

magnetite@silica-particles enabled the use of a magnetic stir bar, whereas this 

option was ruled out for 161 because of the high ferromagnetism of the cobalt cores. 

In the latter case, it was not feasible to remove the nanomagnets quantitatively from 

the stir bar. Hence, agitation of the Co/C-nanopowder was accomplished in an 

external magnetic field provided by two stir motors. The use of malonates 179a and 

179g was expected to be especially interesting since they represent the two 

counterpoints in the dependence of this reaction from the ligand/metal-ratio. The 

results, however, were mediocre (Table 14).  
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Table 14. Asymmetric 1,4-addition of indole (178) to benzylidene malonates (179a,g) using different 

homogeneous and heterogeneous azabis(oxazolines).[a] 

 178

+
CO2Et

CO2Et

179a,g

CO2Et

CO2Et

180a,e,g

EtOH, 
20°CN

H
N
H

         
     Cu(OTf)2

R

(5 mol%)

R

 
 

 

[a] Reagents and conditions: 1.2 mmol Indole, 1.0 mmol malonate, 20°C, 8h, solvent: 4 mL EtOH.  

[b] Determined by chiral HPLC. [c] Ref.1b 

 

 

entry run ligand (mol%) time (h) R yield (%) ee (%)[b] 

1[c] 1 103a (5.2) 8 H 97 99 

2 1 103a (6.5) 8 NO2 73 93 

3 1 146 (5.0) 8 H traces n.d. 

4 1 146 (5.0) 8 NO2 traces n.d. 

5 1 146 (10) 48 H 32 66 

6 2 146 (10) 48 H traces n.d. 

7 1 182 (10) 48 H 18 n.d. 

8 2 184 (10) 48 H traces n.d. 

9 1 144 (10) 48 H traces n.d. 

10 1 161 (10) 48 H traces n.d. 



B. Main Part   III. Catalysis 

 127  

N
NN

N

N

OO

N

Bn Bn

OTMS

OTMS

TMSO

TMSO OTMS

TMSO OTMS

Fe3O4

146

N
NN

N

N

OO

N

Bn Bn

OTMS

OTMS

TMSO

TMSO

TMSO OTMS

144

O

O
Si
OEt

Fe3O4

N
NN

N

N

OO

N

Pri iPr

OTMS

OTMS

TMSO

TMSO OTMS

TMSO OTMS

Fe3O4

184

N

N
N

Co

161

N N

O

O N

Bn

Bn

 
 

Figure 39. Different magnetite@silica and Co/C-immobilized azabis(oxazolines). 

 

For both, magnetite- and cobalt-supported catalysts, virtually no conversion was 

observed, even after prolonged reaction times (up to 48 h) and at higher catalyst 

concentrations (up to 10 mol%). Immobilized ligand 146 delivered the best result in 

this regard, affording 32% yield and 66% ee in product 180a (entry 5). The recovered 

Cu(OTf)2-146 complex was unable to promote the reaction in a second cycle (entry 

6). This finding might be explained with leaching of copper during product 

isolation/catalyst recycling. In a polar solvent like EtOH, the complex might be 

especially susceptible to this effect. However, the poor performance of all 

immobilized catalysts remains an issue. Insufficient spacer length might contribute to 

the suppressed reactivity, although this is seemingly no problem in the 

monobenzoylation of 1,2-diols. A negative influence of the triazole linker can be ruled 

out since it is known that triazole additives have a beneficial effect in this reaction, if 

any.1b  

 

1.4 Asymmetric Michael-addition of indole to nitroalkenes 
Whereas asymmetric Friedel-Crafts alkylations that proceed via 1,4- or 1,5-chelating 

complexes with β,γ-unsaturated α-ketoesters30 and alkylidene malonates19,20 

respectively have been studied extensively, reports on 1,3-metal bonding species 

with chiral Lewis acids are scarce. Especially nitroalkenes serve as excellent Michael 
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acceptors.31 Hence, Zhou et al.32 developed a Zn(OTf)2-bis(oxazoline) catalyst for the 

asymmetric addition of indole (178) to trans-β-nitrostyrene 185 (Scheme 66). 
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(12 mol%)
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Toluene, 0°C yield: 98%

ee: 90%  
Scheme 66. Asymmetric Friedel-Crafts alkylation of indole (178) with trans-β-nitrostyrene 182. 

 

The proposed reaction mechanism is similar to the one provided in Scheme 63. The 

nitroalkene is activated by chelating to Zn(II) to form a four-membered intermediate, 

which undergoes a nucleophilic addition of indole (178) to provide the Friedel-Crafts 

alkylation adduct. Subsequently, the H-transfer, followed by dissociation of the 

product, affords 186 and regenerates the Zn(II)-bis(oxazoline) catalyst A (Scheme 

67). 

 This reaction was considered to be interesting under two aspects: On the one hand, 

the Michael-addition of indole (178) to nitroalkene 185 might show the same 

sensitivity towards ligand excess which was observed for the Michael-addition with 

benzylidene malonates 179. Tuning the ligand/metal-ratio to 1.05 might therefore 

result in improved enantioselectivities for 186. On the other hand, the optimized 

reaction was envisaged to be a suitable target for the application of immobilized 

azabis(oxazolines).  
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Scheme 67. Proposed catalytic cycle for the alkylation of indole (178) with trans-β-nitroalkene 185. 

 

First, a couple of azabis(oxazoline)-ligands and metal salts was screened under 

conditions that were found to be ideal for the bis(oxazoline)-system (Table 15).  
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Table 15. Asymmetric Friedel-Crafts alkylation of indole (178) with trans-β-nitrostyrene 185 using 

different azabis(oxazolines) and metalsalts.[a] 

N
H

NO2

N
H

∗ NO2

178 185 186

Toluene, 0°C

 
 

 

[a] Reagents and conditions: 1.0 mmol Indole, 2.0 mmol β-nitrostyrene, 10 mol% M(OTf)2, 10.5 mol% 

ligand, toluene, 0 °C; [b] Determined by chiral HPLC. 

entry ligand metalsalt time (h) yield (%) ee (%)[b] 

1 109a Ni(OTf)2 96 98 58 

2 109b Ni(OTf)2 96 99 71 

3 109c Ni(OTf)2 72 75 69 

4 109d Ni(OTf)2 96 95 55 

5 103c Ni(OTf)2 96 99 65 

6 187 Ni(OTf)2 72 56 35 

7 103c Cu(OTf)2 72 24 69 

8 187 Cu(OTf)2 72 23 28 

9 109a Zn(OTf)2 72 66 rac 

10 109b Zn(OTf)2 72 96 17 

11 109c Zn(OTf)2 72 92 65 

12 109d Zn(OTf)2 72 77 13 

13 103c Zn(OTf)2 72 95 34 

14 187 Zn(OTf)2 72 80 39 
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Figure 40. Azabis(oxazolines) for the asymmetric Friedel-Crafts alkylation of indole (178) with trans-β-

nitrostyrene 185. 

 

The most relevant conclusion that could be drawn out of the results from Table 15 

was that no azabis(oxazoline) ligand is able to reach levels of enantioselectivity 

provided by bis(oxazoline) 102c. Moreover, reaction times ranging from 72-96 h were 

necessary to access yields comparable to those obtained with bis(oxazoline) 102c 

within 15 h. However, tBu-AzaBOX 109b and Ph-AzaBOX 109c performed with equal 

levels of activity and selectivity (entries 2 and 3, Table 15) when Ni(OTf)2 was used. 

The catalyst had to be prepared in-situ by adding Ag(OTf) to the corresponding 

NiBr2-derivative because of the hygroscopic nature of Ni(OTf)2-complexes. Since this 

procedure is pretentious and prone to nonconformities, further studies were carried 

out with Zn(OTf)2 which delivered comparable yields and selectivities when 

complexed with Ph-AzaBOX 109c (entry 11). Using Cu(OTf)2 resulted in as high 

enantioselectivities but considerably lower yield (entry 7). The unmethylated central 

nitrogen bridge in 103c is detrimental when Zn(OTf)2 is used but has only a negligible 

effect in the case of Ni(OTf)2 (entries 5 and 13, Table 15). Possessing a triazole 

moiety on the same position is advantageous in neither case, causing a harsh drop in 

selectivity (entries 6, 8 and 14).  

 In order to improve rates and selectivities, different counterions and solvents were 

screened using the most successful ligand 109c. 
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Table 16. Asymmetric Friedel-Crafts alkylation of indole (178) with trans-β-nitrostyrene 185 using 

different solvents and metalsalts.[a] 

N
H

NO2

N
H

NO2
O

N

N

N
O

Me

Ph Ph

178 185 186

 0°C

109c

 
 

 

[a] Reagents and conditions: 1.0 mmol Indole, 2.0 mmol β-nitrostyrene, 10 mol% M(OTf)2, 10.5 mol% 

ligand, toluene, 0 °C; [b] Determined by chiral HPLC. 

 

Perchlorates have the disadvantage of being insoluble in apolar solvents, thus no 

conversion was achieved in toluene (entry 2, Table 16). Only if the perchlorates were 

solubilised in EtOH prior to the addition of toluene, moderate yields were obtained in 

general but only modest selectivities (entries 3-5). Strongly coordinating counterions 

such as chloride oppressed the reactivity of the complex completely (entry 6). In 

means of enantioselectivity Zn(OTf)2 complexes in toluene remained superior. When 

CH2Cl2 was used as the solvent, reaction rates increased but this lead also to 

diminished ee values (entry 9). Consequently, the use of dichloromethane as 

entry solvent metalsalt time (h) yield (%) ee (%)[b] 

1 Toluene Zn(OTf)2 72 92 65 

2 Toluene Ni(ClO4)2 6H2O 72 - - 

3 Toluene/EtOH 
4 :1 Ni(ClO4)2 6H2O 72 76 36 

4 Toluene/EtOH 
4:1 Co(ClO4)2 6H2O 72 86 29 

5 Toluene/EtOH 
4:1 Cu(ClO4)2 6H2O 72 17 42 

6 Toluene  CuCl2 72 - - 

7 Toluene/CH2Cl2 
4:1 Zn(OTf)2 60 98 61 

8 Et2O Zn(OTf)2 72 73 60 

9 CH2Cl2 Zn(OTf)2 48 95 35 

10 EtOH Zn(OTf)2 96 44 rac 



B. Main Part   III. Catalysis 

 133  

cosolvent in a 1:4 mixture with toluene accelerated the reaction, but was 

accompanied by a slight decrease in selectivity (entry 7, Table 16). 
 

Table 17. Asymmetric Friedel-Crafts alkylation of indole (178) with trans-β-nitrostyrene 185 at different 

reaction temperatures.[a]
 

N
H

NO2

N
H

NO2

O
N

N

N
O

Me

Ph Ph

178 185 186

Zn(OTf)2
(10 mol%)

109c
(10.5 mol%)

 
 

 

[a] Reagents and conditions: 1.0 mmol Indole, 2.0 mmol β-nitrostyrene, 10 mol% Zn(OTf)2, 10.5 mol% 

ligand, toluene; [b] Determined by chiral HPLC. 

 

Decreasing the temperature down to -15°C had no beneficial effect on the chiral 

induction. On the other hand, increasing the temperature did not allow considerable 

shortening of reaction times either. 
   
Table 18. Asymmetric Friedel-Crafts alkylation of indole (178) with trans-β-nitrostyrene 185 at different 

ligand/metal-ratios.[a]
 

 
 

 

 

 

 
 

 

 

 
 

[a] Reagents and conditions: 1.0 mmol Indole, 2.0 mmol β-nitrostyrene, toluene, 96 h, 0°C, 10 mol% 

Zn(OTf)2; [b] Determined by chiral HPLC. 

entry T(°C) time (h) yield (%) ee (%)[b] 

1 15 60 81 56 

2 0 72 90 65 

3 -15 96 99 63 

entry ligand/metal-ratio yield (%) ee (%)[b] 

1 1.2/1.0 99 61 

2 1.05/1.0 99 65 

3 1.0/1.0 98 67 

4 0.9/1.0 99 65 
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Tuning of the ligand/metal ratio had no positive effect on enantioselectivities. In 

conclusion, results obtained do not indicate that azabis(oxazolines) are suitable 

ligands for this reaction. Moreover, the asymmetric Friedel-Crafts-reaction of indole 

(178) with trans-β-nitroalkene 185 did not exhibit the same sensitivity towards ligand 

excess as the analogous reaction with benzylidene malonate 179, albeit the 

proposed mechanistic models are alike (Scheme 63 vs. Scheme 67). Since the 

complex geometry on the metal center was discussed to account for the impact of the 

ligand/metal-ratio on the optical yields of certain reactions, the different behaviour of 

the two reactions might be explained with the different metal source used. Hence, 

copper(II)-catalyzed reactions were considered to be more versatile for further 

studies on the influence of the ligand/metal-ratio. 

 

1.5 Asymmetric intramolecular Cannizarro reaction 
The copper(II)-catalyzed conversion of phenyl glyoxal hydrate 188 to isopropyl 

mandelate was envisaged to be especially worthwhile for studying effects of 

ligand/metal-ratio. Morken and coworkers33 reported on such a enantioselective 

reaction using an in-situ created Cu(OTf)2-bis(oxazoline) complex, which afforded 

189 in 57% yield and 28% ee (Scheme 68).  
 

 

O
N N

O

Ph Ph

Cu(OTf)2

102c
(15 mol%)

(10 mol%)
iPrOH/C2H4Cl2 yield: 57%

ee: 28%

O
O

OH
O

OiPr

24h, 20°C
188 189

 

Scheme 68. Cu(II)-Ph-BOX catalyzed asymmetric Cannizarro Reaction. 

 

The reaction took place in a 2-propanol/dichloroethane (2:1) mixture, in which 2-

propanol reacts with the arylglyoxal 188 to form hemiacetal 189. The authors 

suggested that coordination of 190 to the chiral Lewis-acid catalyst gives rise to an 

intramolecular hydride transfer. A transition state of type B would then coin the 

stereocenter in 189 (Scheme 69). A ligand/metal-ratio of 1.5/1.0 was employed, 

which made this reaction appear quite interesting for studies concerning ligand/metal-

ratio despite the low levels of enantioselectivities and moderate yields obtained.  
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Scheme 69. Mechanistic model for the intramolecular copper(II)-catalyzed Cannizarro reaction as 

proposed by Morken et al.33 
 

Table 19. Asymmetric Cannizarro reaction: Variation of ligand/metal-ratio and cosolvent.[a] 

 

O
N

H
N

N
O

Ph Ph

Cu(OTf)2

103c

(10 mol%)

O
O

OH
O

OiPr

48h, 20°C188 189  

 

[a] Reagents and conditions: 5 mol % Cu(OTf)2, 2 mL of solvent, 48 h, 20 °C; [b] Determined by GC; 

[c] Determined by HPLC. 

 

entry solvent ligand/metal-ratio conversion (%)[b] yield (%) ee (%)[c] 

1 C2H4Cl2/ iPrOH 
1 : 2 

1.5/ 1.0 33 27 30 

2 C2H4Cl2/ iPrOH 
1 : 2 

1.05/ 1.0 99 97 41 

3 Toluene/ iPrOH 
1 : 2 

1.05/ 1.0 64 60 35 

4 CH3CN/ iPrOH 
1 : 2 

1.05/ 1.0 70 65 36 

5 iPrOH 1.05/ 1.0 66 64 36 
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It was evident from the studies of Morken et al. that phenyl-substituted bis(oxazoline) 

ligands are the most suitable ones for this type of reaction, hence no further ligand 

screening was carried out. Indeed, lowering the excess of ligand did increase 

selectivities noticeably (entry 2, Table 19) but the overall values are still moderate. 

Increased yields are only partly due to this effect since reaction times were extended 

considerably (48 h vs. 24 h). The use of cosolvents different from dichloroethane 

resulted in inferior conversions.  

 
Table 20. Asymmetric Cannizarro reaction: Variation of ligand/metal-ratio and cosolvent.[a] 
 

 

[a] Reagents and conditions: 5 mol % Cu(OTf)2, 2 mL of solvent, 48 h, 20 °C; [b] Determined by GC; 

[c] Determined by HPLC. 

 

The addition of 5 equiv. of Li(OTf), an agent which is possibly capable of diminishing 

the detrimental effect of ligand excess, gave the expected results, namely a slight 

increase in enantioselectivity of 189. However, conclusions can hardly be drawn 

upon such marginal deviations. 

 

 

 

 

 

 

 

 

 

 

 

 

entry Li(OTf)/Cu(OTf)2 ligand/metal-ratio conversion (%)[b] yield (%) ee (%)[c] 

1 0 1.5/ 1.0 33 27 30 

2 5 1.05/ 1.0 86 85 37 

3 0 1.05/ 1.0 99 97 41 

4 5 1.05/ 1.0 87 83 37 
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2. Co/C-immobilized catalysts for oxidation reactions 
 
2.1 TEMPO mediated oxidation of primary and secondary alcohols  
The stable nitroxyl radical TEMPO, anchored on carbon coated cobalt nanoparticles, 

was used to promote the oxidation of benzylic and aliphatic alcohols using a modified 

Anelli protocol.34 The active species is not the radical itself, but the oxoammonium 

cation 191 in which it disproportions (Scheme 70).35 

 

N
O

190

2 N
O

+ N
OH

191 192

H+

 
Scheme 70. Disproportion of TEMPO 190 into oxoammonium cation 191 and TEMPOH 192. 

 

The catalytic cycle involves alternating oxidation of the alcohol by the oxoammonium 

cation which is regenerated with the primary oxidant hypochlorite. Bromide can be 

used as a promoter because it is assumed that hypobromite is more reactive towards 

TEMPO than hypochlorite.  

N
O

N
OH

R1 R2
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R1 R2

O
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OBr -

OCl -

Cl -

 
 
Scheme 71. Catalytic cycle for the TEMPO mediated oxidation of alcohols using hypochlorite as 

primary oxidant and bromide as promotor.35 
  

The best turnover is achieved in a CH2Cl2/water system at pH 9 and at a reaction 

temperature of 0°C. Since the disproportion equilibrium is temperature dependent, an 

increase in temperature has consequently a detrimental effect on the reactivity.   
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Figure 41. Proposed transition state in the oxidation of alcohol by oxoammonium cation 191.35 

 

2.5 mol% of CoNP-TEMPO 164 were used along with 1.25 equivalents of sodium 

hypochlorite as primary oxidant and together with 30 mol% potassium bromide. 

Under these conditions, complete and chemoselective conversion of 4-

methylbenzylic alcohol 193 into the corresponding aldehyde 194 was achieved within 

1 h (Scheme 72). No overoxidation to the corresponding carboxylic acid was 

observed. 

 

 

N
N
N

O

Co

164

N O
OH

Me

O

Me

(2.5 mol%)

NaOCl, KBr, NaHCO3,
CH2Cl2/H2O, 0°C, 60 min

193 194  
 

Scheme 72. CoNP-TEMPO 164 mediated oxidation of 4-methylbenzylic alcohol 193. 

 

This reaction was repeated five times with the recycled catalyst 163 (Table 21). After 

each iterative oxidation reaction, the nanocomposite was recovered via magnetic 

decantation and reused in the next run. The activity of the catalyst did not decrease 

significantly after six runs.  
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Table 21. Recycling experiment in the CoNP-TEMPO 164 mediated oxidation of 4-methylbenzyl 

alcohol 193.[a]  
 

 

[a] 4-Methylbenzyl alcohol 193 (3 mmol), CH2Cl2 (6 mL), KBr (1 mmol), CoNP-TEMPO 164 (2.5 

mol%), NaOCl (3.8 mmol), NaHCO3 (0.6 mmol), 0°C, 60 min; [b] Determined by 1H and 13C NMR; [c] 

Isolated yield. 

 

Moreover, the carbon coated cobalt particles endured the oxidative stress without 

significant morphologic alteration as determined by transmission electron 

micrography analyses of Co/C-particles before and after the oxidation reactions 

(Figure 42). 
 

  
 

Figure 42. TEM images of CoNP-TEMPO 164 before (left) and after (right) the 5 recycling 

experiments: The structure of the nanoparticles is not affected by iterative oxidation reactions. 

 

Consequently, recycled catalyst was used for all subsequent oxidations (Table 22). 

Again, quantitative recovery was achieved after each run. 2-Phenylethanol showed 

diminished reaction rates allowing no complete conversion within 60 minutes (entry 5, 

Table 22). However, applying 5 mol% of CoNP-TEMPO 164 afforded 2-

phenylacetaldehyde in very good yield and purity. Furthermore, catalyst 164 

entry run conversion (%)[b] yield (%)[c] purity (%)[b] 

1 1 > 98 89 > 98 

2 2 > 96 92 > 96 

3 3 > 98 95 > 98 

4 4 > 98 87 > 98 

5 5 > 93 90 > 93 

6 6 > 98 96 > 98 
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demonstrated its efficacy in the oxidation of aliphatic alcohols (entry 6 and 7, Table 

2). A peculiarity of TEMPO-mediated oxidations is the different activity towards 

primary and secondary alcohols, the latter being oxidized much slower. Indeed, the 

secondary alcohol proved to be oxidized significantly slower, demanding a reaction 

time of 3 h at an elevated hypochlorite concentration to reach quantitative conversion 

(entry 8, Table 22). 

 
Table 22. CoNP-TEMPO 164 mediated oxidation of different alcohols to aldehydes. The catalyst was 

recycled after each iterative run and reused.[a] 
 

 

[a] Alcohol (3 mmol), CH2Cl2 (6 mL), KBr (1 mmol), CoNP-TEMPO 164 (2.5 mol%), NaOCl (3.8 mmol), 

NaHCO3 (0.6 mmol), 0°C, 60 min; [b] Determined by 1H and 13C NMR; [c] Isolated yield; [d] 5 mol% 

CoNP-TEMPO 164; [e] 5 mol% CoNP-TEMPO 164, 7.5 mmol NaOCl, 3 h. 

 

2.2 Co(II)-Schiff base catalyzed oxidations with molecular oxygen  
Co(II)-Schiff base complexes are known to bind molecular oxygen in the presence of 

an axial ligand, whereas the corresponding four-coordinated complexes are very poor 

acceptors for oxygen at ambient pressure.36 Aliphatic aldehydes and cyclic ketones 

can act as such ligands, resulting in Co(III)-dioxygen complexes of type B (Scheme 

73).37 In the case of 2-methylpropanal (195) as reducing agent, an intramolecular 

oxygen transfer to the aldehyde via dioxygen complex B provides isobutyric acid 196 

and species C. Cobalt complex C is capable of oxidizing diverse substrates. Because 

of the high reactivity of the radical complex, a mixture of different oxidation products 

is often obtained. However, the oxidation of e.g. alcohols to the corresponding 

carbonyls regenerates catalyst A to complete the cycle (Scheme 73). 

entry alcohol conversion (%)[b] yield (%)[c] purity (%)[b] 

1 4-methylbenzyl alcohol > 98 89 > 98 

2 4-bromobenzyl alcohol > 98 92 > 98 

3 4-methoxybenzyl alcohol > 98 96 > 98 

4 benzyl alcohol > 98 85 > 98 

5 2-phenylethanol > 83 (>98)[d] 77 (94)[d] > 83 (>98)[d] 

6[d] 1-octanol > 98 87 > 98 

7[d] 1-dodecanol > 98 92 > 98 

8[e] cyclohexanol > 98 96 > 98 
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Scheme 73. 2-Methylpropanal mediated oxidation of alcohols with Co(III)-dioxygen complexes. 

 

Using ethyl-2-oxocyclopentanecarboxylate (197) instead of 2-methylpropanal (195) 

results likewise in the initial formation of a cobalt(IIl)-superoxo complex C and oxygen 

atom transfer to the carbonyl compound, which is initiated by an intramolecular 

hydrogen transfer from ketoester 197 to the terminal oxygen of the complex bound 

dioxygen. The resulting cobalt enolate E can undergo an intramolecular hydroxylation 

to give the tertiary alcohol 198 and highly reactive cobalt(IV)-oxo intermediate C. The 

latter species can transfer oxygen to an arbitrary substrate.  
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Scheme 74. Ethyl-2-oxocyclopentanecarboxylate (197) assisted formation of Co(IV)-oxo complex C. 

 

The oxidation of secondary alcohols to the ketones was chosen as a model reaction 

to examine the catalytic power of the nanoparticles supported catalyst 168. To this 

end, Co(II)-Schiff base complex, immobilized on carbon coated cobalt particles, was 

placed in a glass vessel (8 cm length, 10 mL volume), equipped with a column jacket 

for the controlled heating of the reaction chamber via a thermostat. The bottom of the 

reactor was sealed with a G3-frit, which enabled bubbling of oxygen through a jointed 

gas inlet. The outlet of the glass tube was connected to a reflux condenser in order to 

reduce the evaporation of solvent due to heating and the constant oxygen streaming. 

The whole apparatus was placed vertically between adjacent parallel flanks of two 

magnetic stir motors with a distance of 5 cm to each other, thus allowing the Co/C-

nanoparticles to be agitated in the field created by the two rotating magnets (Figures 

43 and 44). 



B. Main Part   III. Catalysis 

 143  

 
 
Figure 43. Schematic representation of the setup used for the Co(II)-Schiff base catalyzed oxidation 

with molecular oxygen.  

  

       
 

Figure 44. Glass reactor containing Co/C-nanoparticle supported Co(II)-Schiff base complex 168 
between adjacent parallel flanks of two magnetic stir motors at rest (left) and in motion (right). 
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In a preliminary experiment, the reaction chamber was charged with 1.5 equivalents 

of the reductant 2-methylpropanal (195) with reference to the oxidizable substrate, 

dissolved in dry acetonitrile. A catalyst concentration of 5 mol% was applied and a 

reaction temperature of 50°C established before oxygen was bubbled through the 

reaction mixture, containing molecular sieves (3 Ǻ). Under these conditions, the 

oxidation of diphenylmethanol (199) to benzophenone 200 succeeded rather slowly. 

After 3 h, only 28% of the alcohol had been converted into the ketone (entry 2, Table 

23). Since salicylaldehyde 195 exhibits a rather high vapour pressure, parts might 

have been volatilized through the oxygen bubbling. Decreasing the reaction 

temperature, prolonging reaction times or increasing the amount of 2-methylpropanal 

(195) could not improve results considerably (entries 3-5). However, when the 

cyclopentanone derivative 197 was used as reductant, conversions were significantly 

improved, especially when a continuous oxygen flow was applied (entries 6 and 7).  
 
Table 23. Consecutive oxidations of diphenylmethanol (199) with Co/C-supported Co(II)-Schiff Base 

complex 164.[a] The catalyst was recovered and reused after each run.  
 

 

[a] Diphenylmethanol (199) (184 mg, 1 mmol), reductant (1.5 mmol), catalyst 168 (5 mol%), 

acetonitrile (10 mL), O2-flow;  [b] Determined by 1H and 13C NMR; [c] O2 (1 atm.). 

 

entry reductant (equiv.) T (°C) time (h) conversion (%)[b] 

1 195 (1.5) 25 3 26 

2 195 (1.5) 50 3 28 

3[c] 195 (1.5) 50 3 57 

4 195 (1.5) 50 6 34 

5 195 (3.0) 50 3 53 

6[c] 197 (1.5) 50 3 46 

7 197 (1.5) 50 3 > 98 

8 197 (1.5) 50 3 92 

9 197 (1.5) 50 3 > 95 

10 197 (1.5) 50 3 > 98 

11 197 (1.5) 50 3 > 98 
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Under these conditions, complete conversion of the model substrate 

diphenylmethanol (199) to the corresponding ketone was achieved. The reaction 

mixture containing the crude product was extracted into the bottom glass tube by 

suction from the reaction chamber through the mounted G3 frit. To this end, vacuum 

was applied at the oxygen inlet. Due to their high magnetic remanence, the Co/C-

nanoparticles form comparatively large aggregates if not dispersed in an external 

magnetic field. This procedure allowed the efficient separation of the nanocomposite 

via filtration. Small quantities of nanoparticles withdrawn in the waters were 

eliminated through magnetic decantation. The remaining nanomagnets were washed 

with dry acetonitrile thrice and reused for the following run. Heterogeneous catalyst 

168 remained its activity in at least five iterative oxidations (entries 7-11, Table 23).  

 To demonstrate the scope of the immobilized Co(II)-Schiff base complex 168 in 

oxidations with molecular oxygen, a number of substrates was screened (Table 24). 

The catalyst was recycled after each run as described above. Secondary benzylic 

alcohols 199, 201 and 203 underwent oxidation to the carbonyl compounds in 

excellent yields within 3 h (entries 1-3, Table 24).  Benzylic oxidations required in 

general longer reaction times (6 h) and a higher concentration of reductant 197 (2 

equivalents) (entries 4-6). Finally, the oxidation of diphenylmethanol (199) was 

repeated in order to re-evaluate an eventual loss in activity of the recovered material 

over the several consecutive reactions. The corresponding ketone 200 was formed 

once more in excellent yield, thus indicating that no significant drop in the catalyst 

efficacy occurred over the indicated period.  

 In conclusion, Co(II)-Schiff base complexes immobilized on carbon coated cobalt 

nanoparticles can be considered highly versatile and recyclable heterogeneous 

catalysts for the oxidation of diverse substrates with molecular oxygen.  
 
 
 
 
 
 
 
 
 
 
 



B. Main Part   III. Catalysis 

 146  

Table 24. Consecutive oxidations with Co/C-supported Co(II)-Schiff base complex 168.[a] The catalyst 

was recovered and reused after each run. 
 

 

[a] Substrate (1 mmol), ethyl-2-cyclopentanone-carboxylate (197) (1.5 mmol), catalyst 168 (5 mol%), 

acetonitrile (10 mL), O2-flow, 50°C, 3h;  [b] Determined by 1H and 13C NMR; [c] Isolated yield; [d] 6 h, 2 

mmol 197.  

 

entry substrate product conversion (%)[b] yield (%)[c] 

1 

OH

199  200

O

 

> 98 96 

2 

201

OH

O

 202

O

O
 

> 98 95 

3 

203

OH

 204

O

 

85 79 

4[d] 

205  200

O

 

91 88 

5[d] 

206  207

O

 

74 70 

6[d] 

208  209

O

 

> 98 97 

7 

OH

199  200

O

 

> 98 91 



B. Main Part   III. Catalysis 

 147  

3. References 
                                                 
1  a) A. Schätz, R. Rasappan, M. Hager, A. Gissibl, O. Reiser, Chem. Eur. J. 2008, 14, 7259; b) R. 

 Rasappan, M. Hager, A. Gissibl, O. Reiser, Org. Lett. 2006, 8, 6099. 

2 a) H. Brunner, U. Obermann, Chem. Ber. 1989, 122, 499; b) G. Eblavoine, J.C. Clinet, I. 

 Lellouche, Tetrahedron Lett. 1989, 30, 5141; c) H. Brunner, P. Brandl, Tetrahedron: Asymmetry 

 1991, 2, 919. 

3  H. Brunner, U. Obermann, P. Wimmer, Organometallics, 1989, 8, 821. 

4  D. A. Evans, K. A. Woerpel, M. M. Hinman, M. M. Faul, J. Am. Chem. Soc. 1991, 113, 726. 

5  a) H. Fritschi, U. Leutenegger, A. Pfaltz, Helv. Chim. Acta. 1988, 71, 1553; b) U. Leutenegger, G. 

 Umbricht, P. Fahrni, P. von Matt, A. Pfaltz, Tetrahedron 1992, 48, 2143. 

6  a) A. Gissibl, M. G. Finn, O. Reiser, Org. Lett. 2005, 7, 2325; b) A. Gissibl, C. Padie, M. Hager, F. 

 Jaroschik, R. Rasappan, E. Cuevas-Yanez, C.-O. Turrin, A.-M. Caminade, J.-P. Majoral, O. 

 Reiser, Org. Lett. 2007, 9, 2895. 

7  Enzyme Catalysis in Organic Synthesis: A Comprehensive Handbook, K. Drauz, H. Waldmann, 

 Eds. Wiley-VCH, Weinheim, 2002; Vols. I-III. 

8  a) Y. Matsumura, T. Maki, S. Murakami, O. Onomura, J. Am. Chem. Soc. 2003, 125, 2052; b) Y. 

 Matsumura, T. Maki, K. Tsurumaki, O. Onomura, Tetrahedron Lett. 2004, 45, 9131; c) C. Mazet, 

 V. Köhler, A. Pfaltz, Angew. Chem., Int. Ed. 2005, 44, 4888; d) C. Mazet, S. Roseblade, V. 

 Köhler, A. Pfaltz, Org. Lett. 2006, 8, 1879. 

9  A. Gissibl, M. G. Finn, O. Reiser Org. Lett. 2005, 7, 2327. 

10  M. Hager, master thesis, Regensburg, 2006. 

11  a) H. B. Kagan, J.-C. Fiaud, Top. Stereochem. 1988, 18, 249; b) C. J. Sih, S. H. Wu, Top. 

 Stereochem. 1989, 19, 63; c) H. B. Kagan, Tetrahedron 2001, 57, 2449; d) J. M. Keith, J. F. 

 Larrow, E. N. Jacobsen, Adv. Synth. Catal. 2001, 343, 5. 

12  J. Lim, S. N. Riduan, S. S. Lee, J. Y. Ying, Adv. Synth. Catal. 2008, 350, 1295. 

13  a) P. Hodge, P. Curr. Opin. Chem. Biol. 2003, 7, 362; b) U. Jas, A. Kirschning, Chem. Eur. J. 

 2003, 9, 5708; c) P. Hodge, Ind. Eng. Chem. Res. 2005, 44, 8542; d) A. Kirschning, W. 

 Solodenko, K. Mennecke, Chem. Eur. J. 2006, 12, 5972. 

14  a) D. A. Annis, E. N. Jacobsen, J. Am. Chem. Soc. 1999, 121, 4147; b) A. J. Sandee, D. G. I. 

 Petra, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van Leeuwen, Chem. Eur. J. 2001, 7, 1202; b) 

 C. Jonsonn, S. Lundgren, S. J. Haswell, C. Morberg, Tetrahedron 2004, 60, 10515; c) A. Mandoli, 

 S. Orlandi, D. Pini, P. Salvadori, Tetrahedron: Asymmetry 2004, 15, 3233; d) M. I. Burgete, A. 

 Cornejo, E. García-Verdugo, M. J. Gil, S. V. Luis, J. A. Mayoral, V. Martínez-Merino, M. Sokolova, 

 J. Org. Chem. 2007, 72, 4344; e) M. A. Pericàs, C. I. Herrerías, L. Solá, Adv. Synth. Catal. 2008, 

 350, 927. 

15  A. Cybulski, J. A. Moulijn, Structured Catalysts and Reactors; Marcel Dekker: New York, 1998. 

16  Z. Shao, J. Wang, K. Ding, A. Chan, Adv. Synth. Catal. 2007, 349, 2375. 

17  a) G. A. Olah, R. Krishnamurti, G. K. S. Prakash, Comprehensive Organic Synthesis, Pergamon 

 Press, Oxford, 1991; b) G. R. Meima, G. S. Lee, J. M. Garces, Friedel-Crafts Alkylation, Wiley-

 VCH, New York, 2001. 



B. Main Part   III. Catalysis 

 148  

                                                                                                                                                         
18  Review: K. A. Jørgensen, Synthesis, 2003, 1117. 

19  W. Zhuang, T. Hansen, K. A. Jørgensen, Chem. Commun. 2001, 347. 

20  J. Zhou, Y. Tang, Chem. Commun. 2004, 432. 

21  a) J. Zhou, Y. Tang, J. Am. Chem. Soc. 2002, 124, 9030; b) J. Zhou, J.; M.-C. Ye, Z.-Z. Huang, 

 Y. Tang, J. Org. Chem. 2004, 69, 1309; c) J. Zhou, M.-C. Ye, Y. Tang, J. Comb. Chem. 2004, 6, 

 301; d) M.-C. Ye, B. Li, J. Zhou, X.-L. Sun, Y. Tang, J. Org. Chem. 2005, 70, 6108.  

22  a) D. A. Evans, T. Rovis, M. C. Kozlowski, J. S. Tedrow, J. Am. Chem. Soc., 1999, 121, 1994; b) 

 D. A. Evans, T. Rovis, M. C. Kozlowski, C. W. Dowey, J. S. Tedrow, J. Am. Chem. Soc. 2000, 

 122, 9134. 

23 a) H. Werner, R. Vicha, A. Gissibl, O. Reiser, J. Org. Chem. 2003, 68, 10166; b) M. Glos, O. 

 Reiser, Org. Lett. 2000, 2, 2045. 

24  a) C. Foltz, M. Enders, S. Bellemin-Laponnaz, H. Wadepohl, L. H. Gade, Chem. Eur. J. 2007, 13, 

 5994; b) C. Dro, S. Bellemin-Laponnaz, R. Welter, L. H. Gade, Angew. Chem. Int. Ed. Engl. 2004, 

 34, 4479; c) C. Foltz, B. Stecker, G. Marconi, S. Bellemin-Laponnaz, H. Wadepohl, L. H. Gade, 

 Chem. Commun. 2005, 5115; d) B. D. Ward, S. Bellemin-Laponnaz, L.-H. Gade, Angew. Chem. 

 Int. Ed. 2005, 44, 1668. 

25  R. W. Taft, I. C. Lewis, J. Am. Chem. Soc. 1957, 80, 2436. 

26 a) D. A. Evans, M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R. Campos, B. T. Connell, R. J. 

 Staples, J. Am. Chem. Soc. 1999, 121, 669; b) D. A. Evans, S. J. Miller, T. Lectka, P. von Matt, J. 

 Am. Chem. Soc. 1999, 121, 7559; c) D. A. Evans, E. J. Olhava, J. S. Johnson, J. M. Janey, 

 Angew. Chem. Int. Ed. 1998, 37, 3372. 

27  G. Desimoni, G. Faita, P. Quadrelli, Chem. Rev. 2003, 103, 3119. 

28  a) J. Thorhauge, M. Roberson, R. G. Hazell, K. A. Jørgensen, Chem. Eur. J. 2002, 8, 1888; b) D. 

 A. Evans, T. Rovis, J. S. Johnson, Pure Appl. Chem. 1999, 71, 1407. 

29  C. Christensen, K. Juhl, R. G. Hazell, K. A. Jørgensen, J. Org. Chem. 2002, 67, 4875. 

30  K. B. Jensen, J. Thorauge, R.-G. Mazell, K. A. Jørgensen, Angew. Chem. Int. Ed. 2001, 69, 7511. 

31  a) H. Schäfer, D. Seebach, Tetrahedron 1995, 51, 2305; b) A. Alexakis, C. Benhaim, Org. Lett. 

 2000, 2, 2579; c) A. Duursma, A. J. Minnaard, B. L. Feringa, J. Am. Chem. Soc. 2003, 125, 3700; 

 d) N. Sewald, Angew. Chem., Int. Ed. 2003, 42, 5794; e) H. Choi, Z. Hua, I. Ojima, Org. Lett. 

 2004, 6, 2689; f) D. M. Mampreian, A. H. Hoveyda, Org. Lett. 2004, 6, 2829; g) T. Hayashi, T. 

 Senda, M. Ogasawara, J. Am. Chem. Soc. 2000, 122, 10716; h) J.-G. Ji, D. M. Barnes, J. Zhang, 

 S. A. King, S. J.  Wittenberger, H. E. Morton, J. Am. Chem. Soc. 1999, 121, 10215; i) T. Okino, Y. 

 Hoashi, Y. Takemoto, J. Am. Chem. Soc. 2003, 125, 12672; j) M. Watanabe, A. Ikagawa, H. 

 Wang, K. Murata, T. Ikariya, J. Am. Chem. Soc. 2004, 126, 11148; k) H. Li, Y. Wang, L. Tang, L. 

 Deng, J. Am. Chem. Soc. 2004, 126, 9906; m) C. Czekelius, E. M. Carreira, Angew. Chem. Int. 

 Ed. 2003, 42, 4793. 

32  Y.-X. Jia, S.-F. Zhu, Y. Yang, Q.-L. Zhou, J. Org. Chem. 2006, 71, 75. 

33  A. E. Russel, S. P. Miller, J. P. Morken, J. Org. Chem. 2000, 65, 8381. 

34  P. L. Anelli, S. Banfi, F. Montanari, S. Quici, J. Org. Chem. 1989, 54, 2970. 

35  R. A. Sheldon, I. W. C. E. Arends, Adv. Synth. Catal. 2004, 346, 1051. 



B. Main Part   III. Catalysis 

 149  

                                                                                                                                                         
36  L. D. Jones, D. A. Sommerville, F. Basolo, Chem. Rev. 1979, 79, 139. 

37  a) T. Punniyamurthy, J. Iqbal, Tetrahedron Lett. 1994, 35, 4003; b) S. J. S. Singh Kaira, T. 

 Punniyamurthy, J. Iqbal, Tetrahedron Lett. 1994, 35, 4847. 



C. Summary 

 150 

C. Summary 
 
It was the aim of this work to develop a generally applicable strategy for the 

immobilization of catalysts on different nanoparticles with particular interest in the 

“heterogenization” of chiral azabis(oxazolines),1 which represent a predestined class 

of ligands for the grafting on solid supports due to their central nitrogen atom. To this 

end, a copper(I)-catalyzed2 azide/alkyne cycloaddition3 (CuAAC) reaction was 

envisaged to be the most versatile tagging method, allowing even the use of 

preformed transition-metal complexes after according derivatization with an alkyne 

moiety. Such a route was expected to provide distinct advantages over the in-situ 

complexation by adding the equivalent amount of metalsalt to the immobilized ligand, 

since the exact determination of ligand loading is challenging. This issue was 

aggravated by recent investigations from Reiser et al.,4 indicating that not only an 

excess of transition metal has a detrimental effect on the optical yields attained, but 

also a ligand surplus is capable of diminishing the level of enantioselectivity in certain 

reactions.4,5 Whereas the negative influence of uncomplexed metal centers on the 

ee-values obtained is apparent, since no stereodiscriminating environment is coined 

to the catalytic center by a chiral ligand, the elucidation of the mechanism of the 

unprecedented effect of ligand surplus was considered highly relevant for 

immobilized ligands on any type of support. Thus, preliminary investigations focused 

on the understanding of this effect with the aim to develop strategies, which could 

help circumventing the negative influence of ligand excess in the reactions affected. 

 
1. Significance of ligand/metal-ratio   
The stereoelectronic outcome of the asymmetric copper(II)-catalyzed Michael-

addition of indole (178) to benzylidene malonates 179 was found to be highly 

dependent from the azabis(oxazoline)/copper-ratio applied (Scheme 75). 

Enantioselectivities up to >99% were obtained under the prerequisite that the 

ligand/metal ratio was tuned meticulously.4 
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Scheme 75. Enantioselective Friedel-Crafts Alkylation of indole (178) with benzylidene malonates 179 

catalyzed by azabis(oxazoline)/copper(II) complexes. 

 
Explicit attention had to be paid to the electronic parameters of the malonate 

derivatives 179. If comparatively electron rich benzylidene malonates were used, any 

excess of ligand had to be avoided to reach high enantioselectivities, a fact which is 

in contradiction to a common paradigm in asymmetric catalysis that calls for excess 

of ligand in order to suppress a background reaction promoted by metal centers in a 

ligand-free, i.e. achiral environment. It was found that the sensitivity of 

enantioselectivity towards ligand excess vanished with decreasing inductive 

contribution of the substituent. This trend was even reversed for strong electron 

acceptors, which required an excess of ligand for maximum ee. A semi-logarithmic 

plot of optical yields at two different ligand/metal ratios versus the σI values6 of the 

substituted benzylidene malonates 179 resulted in a sigmoid trajectory (Figure 45). 

 

Figure 45. Semi-logarithmic correlation of optical yield ratio versus σΙ values of para-substituents in 

the reaction of indole (178) with different substituted benzylidene-malonates 179. 
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More strikingly, the significance of the ligand/metal ratio vanished in the presence of 

an excess of lithiumtriflate, giving rise to equal or even superior enantioselectivities at 

any ligand/metal ratio employed (Table 25).  
 

Table 25. Dependence of enantioselectivity on ligand/metal-ratio in the 1,4-addition of indole (178) to 

benzylidene malonates (179a,e,g): Influence of triflate as additive.[a] 
 

 

 

[a] Reagents and conditions: 1.2 mmol Indole, 1.0 mmol malonate, 5 mol% 103a, 20°C, 8h, solvent: 4 

mL EtOH. [b] Determined by HPLC; [c] Ref.4b [d] Obtained in at least two independent runs. 

 

It was reasoned that a five-membered square-pyramidal complex, having triflate in 

apical position, might be less prone to the effect of ligand/metal-ratio. Thus, applying 

an excess of triflate was foreseen to be a convenient strategy to overcome the 

difficult adjustment of the ligand/metal-ratio with nanoparticle-supported 

azabis(oxazolines).  

 

2. Azabis(oxazolines) immobilized on nanoparticles 
Azabis(oxazoline) ligands and azabis(oxazoline)-copper(II) complexes respectively 

were successfully immobilized on superparamagnetic magnetite@silica- and 

ferromagnetic carbon coated cobalt-nanoparticles7 using a concise  “click” protocol. 

The application of selfsame protocol was not feasible using monolayer-protected gold 

nanoparticles of the Brust-type,8 since mandatory copper(I) caused disintegration of 

the thiolate shell followed by the irreversible aggregation of the Au cores. Moreover, 

the oxazoline-moieties of the azabis(oxazolines) were not stable against an attack of 

thiols, thus making the immobilization of this type of ligand in an environment of 

entry ligand/metal-ratio R Li(OTf)/X yield (%) ee (%)[b] 

1[c] 1.04/1.0 H (179a) - 97 >99[d] 

2 1.05/1.0 H (179a) 5 90 93 

3 1.3/1.0 H (179a) - 98 81[d] 

4 1.3/1.0 H (179a) 5 97 96 

9[c] 1.05/1.0 4-NO2  (179g) - 92 82[d] 

10 1.05/1.0 4-NO2  (179g) 5 89 96 

11 1.3/1.0 4-NO2  (179g) - 83 94[d] 

12 1.3/1.0 4-NO2  (179g) 5 73 93 
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thiolate-SAMs appear disadvantageous. However, different azide-functionalized 

magnetic nanobeads were not affected by such incompatibilities, thus resulting in 

azabis(oxazoline)-ligands and -copper(II) complexes respectively, grafted on 

magnetic nanoparticles via a triazole-linker (Figure 46). Propargylated 

azabis(oxazoline)-ligands and Cu(II)-complexes were equally active in the CuAAC 

reaction with the azide functionalized core/shell materials, resulting in quantitative 

conversion of the azide moieties. The material thus obtained, proved to be highly 

active and selective in the asymmetric monobenzoylation of racemic 1,2-diols. 

Magnetite@silica-nanoparticle supported catalysts could be recycled via magnetic 

decantation (Figure 47) after each run and proved to be active in at least five 

consecutive batch reactions without any significant drop in selectivity (Scheme 76). 
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Figure 46. Different magnetite@silica and Co/C-immobilized azabis(oxazolines) and 

azabis(oxazoline)-copper(II) complexes. 
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Scheme 76. Cu(II) catalyzed monobenzoylation of (±)-170: Recycling experiment using 

azabis(oxazoline)-CuCl2 complexes immobilized  on magnetite@silica-nanoparticles. 

 

 
 
Figure 47. Dispersion of the magnetite@silica nanoparticle immobilized catalyst 146·Cu(OTf)2 during 

the asymmetric benzoylation of (±)-170 (left). Recycling of the catalyst through magnetic decantation 

(right). 

 
Co/C-nanoparticle supported catalyst 161 was as active in 5 iterative runs at batch 

conditions and allowed the implementation of the nanomagnets in a closed circuit-

type reactor under continuous-flow conditions. The high saturation magnetization of 

the ferromagnetic cobalt cores allowed those particles to act as their own nanosized 

stirrers in a microreactor that was operated vertically between adjacent parallel flanks 

of two magnetic stir motors (Figure 48).  
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Figure 48. Representation of a closed circuit-type reactor for the asymmetric monobenzoylation of 

racemic diol 170. 

 

In addition, the cobalt nanoparticles were contained in the magnetic field. Hence, a 

membrane on the outlet of the microreactor was unnecessary, thus preventing a 

flow-collapse which would inevitably arise from a blocked membrane.   

 The asymmetric monobenzoylation of 1,2-diols is known to be indifferent towards 

the influence of the ligand/metal-ratio.4b However, nanoparticle supported 

azabis(oxazolines) gave only very poor yields and enantioselectivities in the 

asymmetric Michael-addition of indole (178) to benzylidene malonates 179, thus 

limiting the scope for further investigations concerning ligand/metal-ratio and the 

application of lithiumtriflate in this regard.  

 

3. Oxidation catalysts immobilized on carbon coated cobalt nanoparticles 
Azabis(oxazoline)-copper(II) complexes were the first example of a catalyst 

immobilized on carbon coated cobalt nanoparticles by then. In general, core/shell 

structures that possess a ferromagnetic metal core bear the disadvantage of being 

willingly oxidized. In contrast to the magnetite particles, that would be oxidized to the 
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likewise ferrimagnetic maghemite, cobaltoxide is antiferromagnetic, thus implicating a 

potential loss of magnetizability of the nanobeads.  Hence, the impermeability of the 

carbon coating against oxidants during several iterative reactions was expected to 

set a benchmark for immanent limitations on the stability of this material. To this end, 

the stable nitroxyl-radical TEMPO9 was immobilized on Co/C-nanoparticles, resulting 

in a highly active and recyclable heterogeneous organocatalyst, which was capable 

of oxidizing primary alcohols chemoselectively into the corresponding aldehydes 

(Scheme 77). 
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Scheme 77. CoNP-TEMPO 164 mediated oxidation of 4-methylbenzylic alcohol 193. 

 

No morphologic alterations were observed in the TEM analyses of the recovered 

catalyst. Next, Co(II)-Schiff base complexes10 were tethered to Co/C-nanoparticles, 

forming a catalyst that was able to bind and activate molecular oxygen for the 

oxidation of e.g. secondary alcohols. A setup similar to the one applied for the 

monobenzoylation of 1,2-diols under continuous-flow conditions was used to agitate 

the nanomagnets while oxygen was purged through the reactor. The nanocomposite 

was retained after the reaction was finished, thus allowing the catalyst to be reused 

without further treatment. 
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Figure 49. Schematic representation of the setup used for the Co(II)-Schiff base catalyzed oxidation 

with molecular oxygen. 

 

In summary, novel carbon coated cobalt nanoparticles,7 which had not been tagged 

with homogeneous catalysts hitherto, turned out to be an extremely stable support 

that allowed rapid recycling due to the inherent ferromagnetism of the cobalt cores.     
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D. Experimental 
 
 
1. General comments 
All reactions were carried out in oven dried glassware under an atmosphere of dry 

nitrogen unless otherwise indicated. Commercially available reagents were used as 

received. Carbon coated cobalt nanoparticles were donated from Prof. W. J. Stark 

(ETH Zürich). Magnetic nanobeads were dispersed with the aid of an ultrasound bath 

(Sonorex RK 255 H-R, Bandelin) and recovered with the aid of a neodymium based 

magnet (N48, W-12-N, Webcraft GmbH, side length 12 mm) unless stated otherwise. 

The following solvents and reagents were purified prior to use: 

Dichloromethane (CH2Cl2) was distilled from calciumhydride. Ethanol (EtOH) and 

methanol (MeOH) were distilled from magnesium and stored over molecular sieves (3 

A). Tetrahydrofurane (THF) was distilled from sodium wire. Toluene and Xylene were 

dried with CaH2, distilled and stored over sodium wire. Ethylacetate (EE) and 

hexanes (PE) for chromatographic separations were distilled before use. 

Benzaldehyde, benzoylchloride, 2-methylpropanal (195), ethyl-2-cyclohexanone-

carboxylate (197) and N,N-diisopropylethylamine (DIPEA) were distilled prior to use. 

CoCl2·6H2O was dried at 110°C for 4 h. 

Analytical thin layer chromatography was performed on Merck TLC aluminium sheets 

silica gel 60 F254. Visualization was accomplished with UV light and vaniline solution 

followed by heating. Liquid chromatography was performed using Merck silica gel 60 

(70-230 mesh ASTM).  

 
NMR spectroscopy 
1H (300 MHz) NMR spectra were recorded on a Bruker AC 300 spectrometer at 

ambient temperature. Data are as follows: Chemical shift in ppm from internal CHCl3 

(7.27 ppm) as standard on the δ scale, multiplicity (b = broad, s = singlet, d = doublet, 

t = triplet, q = quartet, dd = doublet of doublet and m = multiplet), integration and 

coupling constant (Hz). 13C (75.5 MHz) NMR spectra were recorded on a Bruker AC 

300 spectrometer at ambient temperature. Chemical shifts are reported in ppm from 

internal CHCl3 (77 ppm) as standard on the δ scale. 
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HPLC 
High performance liquid chromatography was carried out using a HPLC 335 detector 

on a 325 system by Kontron Instruments. Chiralcel OD/OD-H, OJ and AS 

respectively served as chiral stationary phase. 

 

GC 
Gas chromatography was performed on a Fisons GC 8000. 

 

Melting points 
The melting points were meassured on a Büchi SMP-20 apparatus in a silicon 

oilbath. Values thus obtained were not corrected. 

 

Alpha 
The optical rotation was determined in a Perkin Elmer 241 polarimeter at 589 nm 

wavelength (sodium-d-line) in a 1.0 dm measuring cell of 2 mL volume. 

 

Mass spectrometry  
Mass spectrometry was performed using a Finnigan ThermoQuest TSQ 7000 at the 

Central Analytical Laboratory (Universität Regensburg). 

 

IR spectroscopy 
ATR-IR spectroscopy was carried out on a Biorad Excalibur FTS 3000 spectrometer, 

equipped with a Specac Golden Gate Diamond Single Reflection ATR-System. 

 

Elemental microanalysis 
Elemental microanalysis was performed on a LECO CHN-900 at the ETH Zürich. 

 

TEM 
Transmission electron microscopy was carried out with a Philips CM30 ST equipped 

with a LaB6 cathode and operated at 300kV point resolution (~ 4 Å) at the ETH 

Zürich. 
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2. Syntheses of literature-known compounds 
The following compounds were prepared according to literature synthesis: 

(4S)-(1-Methylethyl)-2-oxazolidinone (106a);1 (4S)-(1,1-Dimethylethyl)-2-

oxazolidinone (106b);1 (4R)-Phenyl-2-oxazolidinone (106c);1 (4S)-Benzyl-2-

oxazolidinone (106d);2 2-Amino-4,5-dihydro-(4S)-(1-methylethyl)-1,3-oxazole 

(108a);1 2-Amino-4,5-dihydro-(4S)-(1,1-dimethylethyl)-1,3-oxazole (108b);1 2-Amino-

4,5-dihydro-(4R)-(phenyl)-1,3-oxazole (108c);1 2-Amino-4,5-dihydro-(4S)-(benzyl)-

1,3-oxazole (108d);2 2-Ethoxy-(4S)-(1-methylethyl)-4,5-dihydro-oxazole (107a);1 2-

Ethoxy-(4S)-(1,1-dimethylethyl)-4,5-dihydro-oxazole (107b);1 2-Ethoxy-(4R)-phenyl-

4,5-dihydro-oxazole (107c);1 2-Ethoxy (4S)-Benzyl-4,5-dihydro-oxazole (107d);2 

Bis[4,5-dihydro-(4S)-(1-methylethyl)-1,3-oxazol-2-yl]-amine (103a);1 Bis[4,5-dihydro-

(4S)-(1,1-dimethylethyl)-1,3-oxazol-2-yl]-amine (103b);1 Bis[4,5-dihydro-(4R)-

(phenyl)-1,3-oxazol-2-yl]-amine (103c);1 Bis[4,5-dihydro-(4S)-(benzyl)-1,3-oxazol-2-

yl]-amine (103d);2 Bis-[4,5-dihydro-(4S)-(1-methylethyl)-1,3-oxazol-2-yl]-methylamine 

(109a);1 Bis-[4,5-dihydro-(4S)-(1,1-dimethylethyl)-1,3-oxazol-2-yl]-methylamine 

(109b);1 Bis-[4,5-dihydro-(4S)-(phenyl)-1,3-oxazol-2-yl]-methylamine (109c);1 Bis-

[4,5-dihydro-(4S)-(benzyl)-1,3-oxazol-2-yl]-methylamine (109d);1 Bis-[4,5-dihydro-

(4S)-(1-methylethyl)-1,3-oxazol-2-yl]-prop-2-ynyl-amine (120a);1 L-3-(4-

Propargyloxyphenyl)-2-aminopropionic acid methyl ester (166b);3 1-(Nitrophenyl)-2-

propyn-1-one (142);4 12-Bromododecanethanethioate (132);5 3-Azidopropyl-

triethoxysilane;6 Diethyl-2-benzylidene malonate;7 Diethyl-2-(4-methylbenzylidene) 

malonate;7 Diethyl-2-(4-methoxybenzylidene) malonate;7 Diethyl-2-(4-

trifluoromethylbenzylidene) malonate;7 Diethyl-2-(2-bromobenzylidene) malonate;7 

Diethyl 2-(4-bromobenzylidene) malonate;7 Diethyl 2-(4-nitrobenzylidene) malonate;7 

Diethyl 2-(4-dimethylaminobenzylidene) malonate.7 
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3. Syntheses of novel compounds 
 
 

  

N

O N

N

O

Bn Bn  
 

Bis-[4,5-dihydro-(4S)-(benzyl)-1,3-oxazol-2-yl]-prop-2-ynyl-amine (120b):  
336 mg (1.0 mmol) of azabis(oxazoline) 103d was dissolved in anhydrous THF (8 

mL) and the solution was cooled down to -78°C under nitrogen atmosphere. n-

Butyllithium (0.66 mL; 1.6 N in hexane, 1.1 mmol) was added dropwise. Upon 

addition, the solution changed its colour from to a bright orange. The reaction mixture 

was stirred for further 15 min before propargylbromide (440 µL; 80% (w/w) in toluene, 

4 mmol) was injected through a septum. The solution was allowed to reach ambient 

temperature while stirring continued for further 12 h. A saturated solution of Na2CO3 

was added and the mixture was concentrated. The aqueous layer was extracted 

thrice with CH2Cl2 and the combined organic layers were dried over MgSO4. After 

removing the solvent under vacuum, 360 mg (0.96 mmol, 96%) of 120b were 

obtained as brown oil. 
1H-NMR (300 MHz, CDCl3): δ = 2.29 (s, 1 H), 2.62 (dd, J = 8.3, 13.2 Hz, 2 H), 3.21 

(dd, J = 5.0, 13.8 Hz, 2 H), 4.2 (dd, J = 6.3, 7.8 Hz, 2 H), 4.28-4.46 (m, 4 H), 4.6 (d, J 

= 1.4 Hz, 2 H), 7.12-7.35 (m, 10 H); 13C-NMR (75.5 MHz, CDCl3): δ = 169.4, 136.1, 

128.1, 127.2, 70.7, 65.2, 40.1, 38.5; IR (ν/cm-1): 2959, 1700, 1632, 1545, 1407, 1383, 

1326, 1261, 1240, 1092, 1051, 1025, 969, 935, 796, 722, 573; MS (CI): m/z (%) = 

374 (MH+, 100), 233 (2), 215 (4), 195 (18). 
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N

O N

N

O

Bn BnCu
Cl Cl  

 

Copper(II)chloride-[Bis-(4-benzyl-4,5-dihydro-oxazol-2-yl)-prop-2-ynyl-amine]: 
Propargylated azabis(oxazoline) 120b (373.5 mg, 1.0 mmol) was stirred in CH2Cl2 (5 

mL) at ambient temperature together with CuCl2 (121 mg, 0.9 mmol) for 3 h. The 

solvent was evaporated to yield 494 mg of a green solid (99%).  

IR (ν/cm-1): 3229, 1678, 1588, 1489, 1460, 1248, 1096, 952, 705, 668, 512. 

 

 

 

N
O

O

 
 

2,2,6,6-Tetramethyl-4-(prop-2-ynyloxy)piperidine-1-oxyl (163): 
To a stirred suspension of NaH (60% in mineral oil, 850 mg, 22.0 mmol) in dry DMF 

(50 mL) was added 4-hydroxy-TEMPO 162 (3.0 g, 17.4 mmol) in portions at 0°C and 

stirred for 30 min. Propargylbromide (2.4 mL, 22.0 mmol) was added dropwise at 0°C 

and the resulting mixture was allowed to warm to room temperature while stirring 

continued for further 3 h. Water (80 mL) was added and the solution was extracted 

five times with EE (80 mL). The combined organic layers were dried over MgSO4, 

filtered, evaporated under reduced pressure and purified by column chromatography 

(PE/EE = 3/1) to afford 3.1 g of compound 163 as a ruby-red solid (85%). 

m.p. 57–59°C; IR (ν/cm-1): 3230, 2974, 2937, 2111, 1719, 1313, 1243, 1176, 1083, 

1022, 938, 734, 691, 594, 554; MS (EI-MS, 70 eV): m/z = 210 (M+, 44). 
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HO

CO2Me

N

HO

 
 

(S,E)-Methyl-2-(2-hydroxybenzylideneamino)-3-(4-hydroxyphenyl)propanoate 
(167a):  
Salicylaldehyde (2.44 g, 20 mmol) was added to a stirred solution of L-tyrosine 

methyl ester (3.9 g, 20 mmol) and molecular sieves (3 A) in anhydrous methanol (25 

mL) and the reaction mixture was stirred at ambient temperature for 24 h. The 

molecular sieves were filtered off and the solution was concentrated in vacuo down to 

10 mL volume. The Schiff base precipitated over night at 4°C from the solution and 

could be separated by filtration to afford 167a, which was sufficiently pure to be used 

without further purification (3.59 g, 60%). 
1H-NMR (300 Hz, DMSO): δ = 2.93-2.99 (m, 1 H), 3.12-3.18 (m, 1 H), 3.70 (s, 3 H), 

4.35 (dd, J = 5.3, 8.19 Hz, 1 H), 6.62-6.67 (m, 2 H), 6.86-6.99 (m, 4 H), 7.31-7.38 (m, 

2 H), 8.33 (s, 1 H), 9.24 (s, 1 H) 13.1 (s, 1 H); 13C-NMR (DMSO): δ = 171.1, 167.5, 

160.1, 155.8, 132.6, 131.7, 130.2, 126.6, 118.6, 118.3, 116.3, 114.9, 71.4, 51.9; IR 

(ν/cm-1): 2571, 1739, 1637, 1610, 1519, 1442, 1371, 1341, 1238, 1154, 1107, 873, 

829, 763, 527; MS (CI): m/z (%) = 300 (MH+, 100), 196 (1). 

 

 
 

 

O

CO2Me

N

HO

 
 

(S,E)-Methyl-2-(2-hydroxybenzylideneamino)-3-(4-(prop-2-ynyloxy)phenyl) 
propanoate (165b): 
Salicylaldehyde (2.44 g, 20 mmol) was added to a stirred solution of L-(4-

propargyloxy)tyrosine methyl ester (4.66 g, 20 mmol) in anhydrous methanol (25 mL) 

and the reaction mixture was stirred at ambient temperature for 12 h. The Schiff base 
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precipitated in the course of the reaction and was subsequently separated from the 

supernatant by filtration to afford 165b, which was sufficiently pure to be used without 

further purification (5.40 g, 81%). 
1H-NMR (300 Hz, CDCl3): δ = 2.48 (t, J = 2.37 Hz, 1 H), 3.09 (dd, J = 9.0, 13.73 Hz, 1 

H), 3.32 (dd, J = 4.69, 13.73 Hz, 1 H), 3.76 (s, 3 H), 4.11 (dd, J = 4.7, 8.97 Hz, 1 H), 

4.63 (d, J = 2.38 Hz, 2 H), 6.81-6.89 (m, 3 H), 6.98 (d, J = 8.2 Hz, 1 H), 7.06-7.15 (m, 

3 H) 7.29-7.36 (m, 1 H), 7.97 (s, 1 H), 12.96 (s, 1 H); 13C-NMR (CDCl3): δ = 171.3, 

166.9, 160.9, 156.4, 132.8, 131.7, 130.6, 129.7, 118.7, 118.4, 117.1, 114.9, 78.5, 

75.4, 73.3, 55.8, 52.4, 39.1; IR (ν/cm-1): 3270, 1732, 1633, 1579, 1513, 1407, 1281, 

1242, 1196, 1172, 1114, 1033, 983, 873, 834, 771, 656, 599; MS (CI): m/z (%) = 338 

(MH+, 100). 

 

 

 

O
CO2Me

N

OCo

N

O

CO2Me

OH  
 

[Co((S,E)-methyl 2-(2-hydroxybenzylideneamino)-3-(4-(prop-2-ynyloxy) phenyl) 
propanoate) ((S,E)-methyl 3-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-
2-(2-hydroxybenzylideneamino)propanoate)] (169): 
Schiff base 165a (1.49 g, 5 mmol) and 165b (1.68 g, 5 mmol) were dissolved in 

acetonitrile (25 mL) containing anhydrous cobalt(II)chloride (mg, 2.5 mmol) and 

stirred for 20 h at ambient temperature under nitrogen atmosphere. Removal of the 

solvent yielded 3.46 g (99%) of 169 as a green soild. 

IR (ν/cm-1): 3274, 1744, 1600, 1511, 1448, 1223, 1015, 762, 667, 537, 454. 
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4. Nanoparticle syntheses 
4.1 Synthesis of monolayer-protected gold clusters  
 

 

Au S
SS

S

SS

S

S

 
 

Dodecanthiol-protected gold cluster (101): 
0.31 g of HAuCl4 (1.1 mmol) in 25 mL of water (milipore) was transferred into 80 mL 

of toluene using 1.5 g of tetraoctylammonium bromide (7 mmol). The organic phase 

was isolated, and 0.45 g of dodecanethiol (2.2 mmol) was added. The solution was 

cooled to 0°C and stirred for 10 min, after which 25 mL of a freshly prepared, 

aqueous NaBH4-solution (0.38 g, 10 mmol) was added within 15 min. The slurry was 

allowed to stir further 30 min at 0°C and an additional 3 h at room temperature before 

the organic layer was separated and evaporated (< 50°C), producing a black, waxy 

solid. The product was suspended in 30 mL of ethanol, briefly sonicated to ensure 

complete dissolution of byproducts, collected on a glass filtration frit, and washed 

with at thrice with 80 mL of ethanol and twice with 150 mL of acetone. 

The as-prepared AuMPCs were further purified via Soxhlet extraction. The 

nanoparticles were dissolved in toluene (50 mg/mL) and then placed into a Soxhlet 

thimble. 250 mL of acetone was used as the cleansing solvent. The product was 

recovered by dissolving the particles held within the thimble in toluene, affording 260 

mg of 101. 

IR (ν/cm-1): 2915, 2848, 1469, 718. 
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12-bromododecanthiol/dodecanthiol-protected gold cluster (135): 
500 mg 12-bromododecanthiol (1.8 mmol) was dissolved in 220 mL anhydrous and 

degassed dichloromethane together with 800 mg of the alkanethiolate-protected gold 

cluster 101. The reaction mixture was stirred for 30 h at room temperature. After this, 

the solvent removed under vacuum and the resulting precipitate was collected by 

filtration and washed thrice with 50 mL of absolute EtOH and twice with 50 mL 

anhydrous acetonitrile to give 780 mg of a black, waxy solid which was processed 

without further purification. 

IR (ν/cm-1): 2955, 2820, 1742, 1460, 717. 
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12-azidododecanthiol/dodecanthiol-protected gold cluster (134): 
500 mg of 12-bromododecanthiol/dodecanthiol-protected gold clusters 135 were 

dissolved in CH2Cl2 (200 mL) together with tetrabutylammoniumazide (640 mg, 2.25 

mmol). The solution was stirred for 12 h at ambient temperature. After this, the 

solvent was removed under vacuum and the resulting precipitate was collected by 

filtration and washed five times with 50 mL of EtOH to yield 440 mg of a black, waxy 

solid. 

IR (ν/cm-1): 2923, 2850, 2097, 1472, 720. 
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4.2 Syntheses of magnetite@silica-nanoparticles 
 

General procedure for the synthesis of magnetite@silica nanoparticles:  
Sodiumdodecylbenzenesulfonate (1.75 g, 5 mmol) was dissolved in 15 mL of xylene. 

To this emulsion was added a solution of FeCl2·4H2O (199 mg, 1 mmol) 

Fe(NO3)3·9H2O (808 mg, 2 mmol) in 0.9 mL of deionized water under vigorous 

stirring and the resulting mixture was kept at ambient temperature for 12 h. The 

solution was heated to 90°C within 1 h under continuous N2 flow before 1 mL 

aqueous hydrazine solution (34 wt%) was added. The reaction mixture was kept at 

this temperature for 3 h and subsequently cooled to 40°C within 1 h. Tetraethyl 

orthosilicate (TEOS) and a 1:1 mixture of TEOS and 3-azidopropyl triethoxysilane 

respectively were injected to form the silica coated magnetite particles which were 

then removed from the reaction mixture with the aid of an external neodymium based 

magnet, repeatedly redispersed in and recovered from EtOH by magnetic 

decantation.  

 

 

 

Fe3O4

OH

OH

OHHO

HO OH

HO OH

Fe3O4

 
 

Magnetite@silica nanoparticles (138): 
Synthesized according to the aforementioned protocol using 2 mL of TEOS. 

Yield: 852 mg.  

IR (ν/cm-1): 3292, 2938, 1630, 1576, 1500, 1055, 1003, 797, 603, 565.  
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Magnetite@silica-N3 nanoparticles (140):  
Synthesized according to the aforementioned protocol using 1 mL of TEOS and 1 mL 

of 3-azidopropyl triethoxysilane. Yield:  600 mg. 

IR (ν/cm-1): 3435, 3200, 2923, 2853, 2094, 1626, 1454, 1409, 1179, 1068, 1035, 830, 

789, 669, 578.  

 

Magnetite@silica-N3 nanoparticles through post-grafting (139): 
138 (250 mg) was dispersed in a solution of 3-azidopropyl triethoxysilane (200 mg, 

0.8 mmol) in THF and stirred for 48 h at ambient temperature under N2 atmosphere. 

The particles were removed from the reaction mixture with the aid of an external 

magnet, repeatedly redispersed in THF and recovered by magnetic decantation. The 

material thus obtained was subjected to TMS endcapping as described below to 

afford 224 mg of 139.  

 

General procedure for TMS endcapping of magnetite@silica-N3 139 and 141: 
Magnetite@silica-N3 nanoparticles (400 mg) were degassed in vacuo at 50°C 

overnight. The flask was cooled down using liquid N2 and excess of HMDS (2 mL) 

was injected under vacuum. The vessel was slowly warmed to room temperature and 

subsequently heated to 75°C for 3 h. After this time, the excess of HMDS was 

removed under vacuum to afford 139 and 141 respectively in quantitative yield. 
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139: IR (ν/cm-1): 1633, 1059, 795, 565; elemental microanalysis (%): C, 3.24; N, 1.35; 

H, 0.83. 
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141: IR (ν/cm-1): 2926, 2099, 1629, 1456, 1039, 844, 791, 576; elemental 

microanalysis (%): C, 9.53; N, 1.97; H, 4.15. 

  

 
 
General procedure for 4-nitrophenyl-1-benzyl-1H-1,2,3-triazole-4-carboxylate 
functionalized magnetite@silica nanoparticles: 
The azide-functionalized magnetite@silica particles were suspended in degassed 

dioxane (2 mL) before 1-(nitrophenyl)-2-propyn-1-one (142) and CuI were added. 

The resulting dispersion was stirred for 48 h at ambient temperature. The 

nanoparticles were recovered from the reaction mixture with the aid of a magnet and 

washed with dioxane (5x 5 mL) as described above.  
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4-Nitrophenyl-1-benzyl-1H-1,2,3-triazole-4-carboxylate functionalized 
magnetite@silica nanoparticles (143): 
Synthesized according to the aforementioned protocol, using 200 mg (0.3 mmol/g 

azide) of 139, 20 mg (0.15 mmol) of 142 and CuI (1 mg) affording 196 mg of 143.  

IR (ν/cm-1): 1736, 1618, 1055, 797, 561.  
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4-Nitrophenyl-1-benzyl-1H-1,2,3-triazole-4-carboxylate functionalized 
magnetite@silica nanoparticles (145): 
Synthesized according to the aforementioned protocol, using 240 mg (0.5 mmol/g 

azide) of 141, 115 mg (0.6 mmol) of 142 and CuI (3 mg, 0.01 mmol), to afford 267 mg 

of 145.  

IR (ν/cm-1): 3294, 2960, 2102, 1630, 1577, 1500, 1255, 1055, 844, 804, 756, 559.  

 

 

General procedure for azabis(oxazoline)-functionalized magnetite@silica 
nanoparticles: 
The azide-functionalized magnetite@silica particles were dispersed in degassed 

CH2Cl2 (5 mL) before propargylated azabis(oxazoline) 120, NEt3 and CuI were 

added. The reaction mixture was stirred for 48 h at ambient temperature. The 

nanoparticles were recovered from the reaction mixture with the aid of a magnet and 

washed with CH2Cl2 (5x 5 mL) as described above.  

 

 

 

 

 

 

 

 



D. Experimental 

 172 

 

N
NN

N

N

OO

N

Bn Bn

OTMS

OTMS

TMSO

TMSO

TMSO OTMS

O

O
Si
OEt

Fe3O4

 
 

(4S)-4-benzyl-N-((1-propyl-1H-1,2,3-triazol-4-yl)methyl)-N-((S)-4-benzyl-4,5-
dihydrooxazol-2-yl)-4,5-dihydrooxazol-2-amine functionalized magnetite@silica 
nanoparticles (144): 
Synthesized according to the aforementioned protocol using 550 mg (0.3 mmol/g 

azide) of 139, 140 mg (0.38 mmol) of 120b, NEt3 (21 μL, 0.15 mmol) and CuI (4 mg, 

0.02 mmol) affording 536 mg of 144.  

IR (ν/cm-1): 1632, 1052, 772, 558;  

elemental microanalysis (%): C, 6.65; N, 1.73; H, 2.22. 
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(4S)-4-benzyl-N-((1-propyl-1H-1,2,3-triazol-4-yl)methyl)-N-((S)-4-benzyl-4,5-
dihydrooxazol-2-yl)-4,5-dihydrooxazol-2-amine functionalized magnetite@silica 
nanoparticles (146): 
Synthesized according to the aforementioned protocol using 510 mg (0.5 mmol/g 

azide) of 141, 480 mg (1.3 mmol) of 120b, NEt3 (65 μL, 0.5 mmol) and CuI (6 mg, 

0.03 mmol) affording 554 mg of 146.  

IR (ν/cm-1): 2100, 1672, 1641, 1490, 1451, 1265, 1049, 843, 732, 701, 582; 

elemental microanalysis (%): C, 18.53; N, 2.58; H, 5.47. 
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(4S)-4-isopropyl-N-((1-propyl-1H-1,2,3-triazol-4-yl)methyl)-N-((S)-4-isopropyl-
4,5-dihydrooxazol-2-yl)-4,5-dihydrooxazol-2-amine functionalized 
magnetite@silica nanoparticles (184): 
Synthesized according to the aforementioned protocol using 620 mg (0.5 mmol/g 

azide) of 141, 220 mg (0.8 mmol) of 120a, NEt3 (45 μL, 0.3 mmol) and CuI (6 mg, 

0.03 mmol) affording 598 mg of 184.  

IR (ν/cm-1): 2098, 1700, 1642, 1490, 1460, 1271, 1050, 840, 732. 
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[CuCl2((4S)-4-benzyl-N-((1-propyl-1H-1,2,3-triazol-4-yl)methyl)-N-((S)-4-benzyl-
4,5-dihydrooxazol-2-yl)-4,5-dihydrooxazol-2-amine)] functionalized 
magnetite@silica nanoparticles (147): 
Azide-functionalized magnetite@silica particles 141 (500 mg, 0.5 mmol/g azide 

loading) were dispersed in degassed CH2Cl2 (5 mL) before propargylated 

azabis(oxazoline)-CuCl2 complex (317 mg, 0.625 mmol), NEt3 (35 μL, 0.25 mmol) 

and CuI (4 mg, 0.02 mmol) were added. The reaction mixture was stirred for 48 h at 

ambient temperature. The nanoparticles (503 mg) were recovered from the reaction 

mixture with the aid of a magnet and washed with CH2Cl2 (5x 5 mL) as described 

above.  

IR (ν/cm-1): 3354, 2960, 2105, 1681, 1491, 1047, 796, 572.  
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4.3 Syntheses of carbon coated cobalt-nanoparticles 
 

 

Co
n

OH

 
 
Phenylmethanol functionalized carbon coated cobalt nanoparticles (156):  
Carbon coated cobalt nanobeads 150 (1 g) were suspended in milipore water (5 mL) 

by the use of an ultrasonic bath (Sonorex RK 255 H-R, Bandelin). 4-aminobenzyl 

alcohol 155 was transformed into the corresponding diazonium salt in-situ by adding 

a cooled solution of sodium nitrite (2.3 mmol, 160 mg in 12 mL H2O) to a mixture of 

the alcohol 155 (1.5 mmol, 185 mg), HCl (0.6 mL, concentrated) and H2O (20 mL) in 

an ice bath. After addition of the carbon coated nanoparticles, the reaction mixture 

was sonicated for 30 minutes. The nanobeads were recovered from the reaction 

mixture with the aid of a neodymium based magnet (N48, W-12-N, Webcraft GmbH, 

side length 12 mm) and washed with water (3x 5 mL) and acetone (6x 5 mL). Each 

washing step consisted of suspending the particles in the solvent, ultrasonication (5 

min) and retracting the particles from the solvent by the aid of the magnet. After the 

last washing step the particles were dried in vacuo to afford 972 mg of 156.  

IR (ν/cm-1): 2916, 2850, 1698, 1599, 1398, 1276, 1214, 1178, 1015, 835, 681; 

elemental microanalysis (%): C, 8.75; N, 0.24; H, 0.2.  
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n
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(azidomethyl)Benzene functionalized carbon coated cobalt nanoparticles (157): 
The functionalized cobalt particles 156 (900 mg) were suspended in tolueneabs. (5 

mL) by sonication (10 min) before PPh3 (0.3 mmol, 80 mg), freshly prepared HN3 (0.3 

mmol, 1M solution in toluene) and diethylazodicarboxylate (0.3 mmol, 40% in 

toluene) were added. The resulting slurry was sonicated for 24 h at ambient 

temperature. The nanoparticles were recovered from the reaction mixture with the aid 

of a magnet and washed with toluene (3x 5 mL) and acetone (3x 5 mL) as described 

above. After the last washing step the particles were dried in vacuo to afford 897 mg 

of 157.  
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IR (ν/cm-1): 2922, 2854, 2100, 1699, 1599, 1539, 1386, 1217, 1115, 1015, 830, 781, 

723, 693; elemental microanalysis (%): C, 8.9; N, 0.77; H, 0.26.  

 

 

General procedure for the CuAAC-reaction on azide-functionalized Co/C-NPs 
with propargylated compounds: 
The azide-functionalized cobalt particles 157 (1 g) were suspended in degassed 

solvent (5 mL) by sonication (10 min) before propargylated catalyst (0.5 mmol), NEt3 

(0.5 mmol, 70 μL) and catalytic amounts of CuI were added. The resulting slurry was 

either sonicated or magnetically agitated for 36 h at ambient temperature. The 

nanoparticles were recovered quantitatively from the reaction mixture with the aid of 

a magnet and washed copiously with the appropriate solvent. 
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4-Nitrophenyl-1-benzyl-1H-1,2,3-triazole-4-carboxylate functionalized carbon 
coated cobalt nanoparticles (158):  
The azide-functionalized cobalt particles 157 (0.5 g) were suspended in degassed 

dioxane (4 mL) by sonication (10 min) before 1-(nitrophenyl)-2-propyn-1-one (142) 

(0.25 mmol, 48 mg) and CuI (0.025 mmol, 5 mg) were added. The resulting slurry 

was sonicated for 36 h at ambient temperature. Two additional portions of CuI (0.013 

mmol, 3 mg) were added after 12 and 24 h. The nanoparticles were recovered from 

the reaction mixture with the aid of a magnet and washed with dioxane (3x 5 mL) and 

acetone (5x 5 mL) as described above to yield 504 mg of 158.  

IR (ν/cm-1): 2852, 1751, 1699, 1594, 1524, 1346, 1208, 1111, 1014, 861, 831, 746, 

682; elemental microanalysis (%): C, 9.27; N, 0.87; H, 0.33. 
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4-(1-Benzyl-1H-1,2,3- triazol-4- yloxy)-2,2,6,6- tetramethylpiperidine-1- oxyl 
functionalized carbon coated cobalt nanoparticles (164):  
The azide-functionalized cobalt particles 157 (1 g) were suspended in degassed 

toluene (5 mL) by sonication (10 min) before propargyl ether TEMPO 163 (0.5 mmol, 

95 mg), NEt3 (0.5 mmol, 70 μL) and CuI (0.05 mmol, 10 mg) were added. The 

resulting slurry was sonicated for 36 h at ambient temperature. Two additional 

portions of CuI (0.025 mmol, 5 mg) were added after 12 and 24 h. The nanoparticles 

were recovered from the reaction mixture with the aid of a magnet and washed with 

toluene (3x 5 mL) and acetone (5x 5 mL) as described above to afford 936 mg of 

164.  

IR (ν/cm-1): 2974, 2935, 1700, 1600, 1541, 1507, 1379, 1363, 1242, 1218, 1177, 

1083, 1015, 833, 679; elemental microanalysis (%): C, 10; N, 0.97; H, 0.5.  

 

 

 

Co
N
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N

N
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Bn
CuCl2

 
 

[CuCl2{(4S)-4-benzyl-N-((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)-N-((S)-4-benzyl-
4,5-dihydrooxazol-2-yl)-4,5-dihydrooxazol-2-amine}] functionalized carbon 
coated cobalt nanoparticles (161): 
The azide-functionalized cobalt particles 157 (1 g) were suspended in degassed 

CH2Cl2 (5 mL) by sonication (10 min) before propargylated azabis(oxazoline)-copper 
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complex (0.5 mmol, 250 mg), NEt3 (0.5 mmol, 70 μL) and CuI (0.05 mmol, 10 mg) 

were added to the Schlenk tube. The vessel was placed between two opposing 

magnetic stirrers (Heidolph) operating at 1100 rpm for 36 h at ambient temperature. 

Two additional portions of CuI (0.025 mmol, 5 mg) were added after 12 and 24 h. The 

nanoparticles were recovered from the reaction mixture with the aid of a magnet and 

washed with CH2Cl2 (10x 5 mL) as described above to yield 1.08 g of 161.  

IR (ν/cm-1): 1671, 1596, 1489, 1376, 1217, 1091, 1014, 836, 701, 631, 531; 

elemental microanalysis (%): C, 12.07; N, 1.0; H, 0.56. 

 

 

 

N
N

N

O

CO2Me

N

HO

Co

 
 

(S,E)-methyl 3-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-2-(2-
hydroxybenzylideneamino)propanoate functionalized carbon coated cobalt 
nanoparticles (166): 
The azide-functionalized cobalt particles 157 (1 g) were suspended in degassed 

acetonitrile (5 mL) by sonication (10 min) before propargylated Schiff-base 165b (0.5 

mmol, 170 mg), NEt3 (0.5 mmol, 70 μL) and CuI (0.05 mmol, 10 mg) were added to 

the Schlenk tube. The vessel was placed between two opposing magnetic stirrers 

(Heidolph) operating at 1100 rpm for 36 h at ambient temperature. Two additional 

portions of CuI (0.025 mmol, 5 mg) were added after 12 and 24 h. The nanoparticles 

were recovered from the reaction mixture with the aid of a magnet and washed with 

acetonitrile (10x 5 mL) as described above to yield 0.998 g of 166.  

IR (ν/cm-1): 3300, 2925, 1663, 1599, 1508, 1392, 1213, 1170, 1003, 834, 762; 

elemental microanalysis (%): C, 14.07; N, 1.2; H, 0.8.  
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[Co((S,E)-methyl 2-(2-hydroxybenzylideneamino)-3-(4-hydroxyphenyl) 
propanoate) ((S,E)-methyl 3-(4-((1-benzyl-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-
2-(2-hydroxybenzylideneamino)propanoate)] functionalized carbon coated 
cobalt nanoparticles (168): 
The azide-functionalized cobalt particles 157 (1 g) were suspended in degassed 

acetonitrile (5 mL) by sonication (10 min) before propargylated Co(II)-Schiff base 

complex 169 (0.5 mmol, 350 mg), NEt3 (0.5 mmol, 70 μL) and CuI (0.05 mmol, 10 

mg) were added to the Schlenk tube. The vessel was placed between two opposing 

magnetic stirrers (Heidolph) operating at 1100 rpm for 36 h at ambient temperature. 

Two additional portions of CuI (0.025 mmol, 5 mg) were added after 12 and 24 h. The 

nanoparticles were recovered from the reaction mixture with the aid of a magnet and 

washed with acetonitrile (10x 5 mL) as described above to afford 1.02 g of 168.  

IR (ν/cm-1): 3300, 2925, 1601, 1510, 1444, 1400, 1225, 1176, 1017, 758, 536; 

elemental microanalysis (%): C, 14.99; N, 1.4; H, 0.92.  
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5. Catalysis 
 
General procedure for the asymmetric benzoylation with azabis(oxazoline)-
copper complexes: 
Azabis(oxazoline) 109d (17.5 mg, 0.05 mmol) and CuCl2 (6.7 mg, 0.05 mmol) were 

allowed to stir for 1 h in dry CH2Cl2 (2 mL) at room temperature under nitrogen 

atmosphere. The solution was diluted up to 5 mL with dry CH2Cl2 and the vessel 

subsequently charged with 1,2 diol 170 (214 mg, 1.0 mmol) and 

diisopropylethylamine (DIPEA, 170 μL, 1.0 mmol) before the reaction mixture was 

cooled to 0°C. Benzoylchloride 172 (58 μL, 0.5 mmol) was added and stirring 

continued at 0°C until the acid chloride disappeared (TLC). The reaction mixture was 

diluted with water (5 mL) and extracted three times with CH2Cl2 (5 mL). The 

combined organic layers were dried over magnesium sulfate, concentrated under 

reduced pressure and the residue was purified on silica. Optical yields were 

determined by chiral HPLC. 

 

 

General procedure for the catalytic asymmetric benzoylation with 
magnetite@silica nanoparticle supported azabis(oxazolines): 

1,2 Diol 170 (214 mg, 1.0 mmol), diisopropylethylamine (DIPEA, 170 μL, 1.0 mmol) 

and typically 0.01 mmol of the immobilized catalyst were dissolved in dry CH2Cl2 (5 

mL) and cooled to 0°C. Benzoylchloride 172 (58 μL, 0.5 mmol) was added and the 

mixture was stirred at 0°C until the benzoylchloride 172 disappeared (TLC). 

Immobilized catalyst was recovered from the reaction mixture with the aid of an 

external neodymium based magnet, three times redispersed in and recovered from 

CH2Cl2 by magnetic decantation. The reaction mixture was diluted with water and 

extracted three times with CH2Cl2. The combined organic layers were dried over 

magnesium sulfate, concentrated under reduced pressure and the residue was 

purified on silica. Optical yields were determined by chiral HPLC. 
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General procedure for the catalytic asymmetric benzoylation with Co/C 
nanoparticle supported azabis(oxazolines) under batch conditions: 

1,2 Diol 170 (214 mg, 1.0 mmol), diisopropylethylamine (DIPEA, 170 μL, 1.0 mmol) 

and typically 0.01 mmol of the immobilized catalyst 161 were dispersed in dry CH2Cl2 

(5 mL). The Schlenk tube containing the reaction mixture was placed vertically 

between adjacent parallel flanks of two magnetic stir motors (Heidolph) with a 

distance of 4 cm to each other, operating at 1100 rpm in a cooling chamber (4°C). 

Benzoylchloride (58 μL, 0.5 mmol) was added and the mixture was stirred at 4°C until 

the acid chloride 172 disappeared (TLC). Immobilized catalyst was recovered from 

the reaction mixture with the aid of an external neodymium based magnet, which was 

then redispersed in and recovered from CH2Cl2 by magnetic decantation three times. 

The separated reaction mixture was concentrated under reduced pressure and the 

residue was purified on silica. Optical yields were determined by chiral HPLC. 

 
 
General procedure for the catalytic asymmetric benzoylation with Co/C 
nanoparticle supported azabis(oxazolines) under continuous flow conditions: 
A glass column (Omnifit, 10 cm length, 3.4 mL volume) was charged with 0.05 mmol 

of the Co/C-immobilized catalyst 161 and placed vertically between adjacent parallel 

flanks of two magnetic stir motors (Heidolph, 1100 rpm) with a distance of 4 cm to 

each other. The lower thread was mounted with a PE frit (25 μm pore size) and the 

glass column subsequently connected to a piston pump (KNF STEPDOS 03-RC) via 

the lower joint and a septum-sealed Schlenk tube containing 1,2 diol 170 (214 mg, 

1.0 mmol), diisopropylethylamine (DIPEA, 170 μL, 1.0 mmol) and benzoylchloride 

172 (58 μL, 0.5 mmol) dissolved in dry CH2Cl2 (5 mL) under a nitrogen filled balloon. 

The whole setup was operated in a cooling chamber (4°C). The Schlenk tube, 

equipped with a neodymium based magnet, was likewise connected to the piston 

pump and the reaction mixture moved through the reactor in a circular course at a 

constant flow rate (0.2 mL/min) until the benzoylchloride 172 disappeared (TLC). The 

crude product was extruded from the glass column by floating the apparatus with dry 

CH2Cl2 (20 mL) and the separated reaction mixture concentrated under reduced 

pressure. The residue was purified on silica. Optical yields were determined by chiral 

HPLC. 
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(R,R)-Benzoic acid 2-hydroxy-1,2-diphenyl-ethyl ester (171): 
Prepared according to the general procedure and purified by column chromatography 

(PE/EE 3:1) to obtain the pure product as a white solid. 

m.p. 145-146°C; 1H-NMR (300 MHz, CDCl3): δ = 2.61 (d, 1 H, J = 3.4 Hz), 5.09 (d, 1 

H, J = 7.4 Hz), 6.11 (d, 1 H, J = 7.4 Hz), 7.17-7.27 (m, 10 H), 7.45-7.50 (m, 2 H), 

7.57-7.63 (m, 1 H), 8.07-8.15 (m, 2H); 13C-NMR (75.5 MHz, CDCl3): δ = 164.7, 137.9, 

135.7, 132.2, 128.9, 128.7, 127.4, 127.2, 127.2, 127.1, 127.1, 126.2, 126.1, 79.5; IR 

(ν/cm-1): 3494, 3387, 2895, 1699, 1452, 1276, 1116, 695; HPLC: OJ column, n-

heptane : isopropanol = 80 : 20, detection wavelength: 254 nm, flow rate: 0.5 mL/min, 

tr (minor) = 19.8 min, tr (major) = 35.6 min, >99% ee; [α]D20 = -66 (50 mg/2mL, CHCl3).  

 

 

 

HO O O

 
 

(R,R)-Benzoic acid 2-hydroxy-cyclohexyl ester (177a): 
Prepared according to the general procedure and purified by column chromatography 

(PE/EE 3:1) to obtain the pure product as a white solid. 

m.p. 92-94°C; 1H-NMR (300 MHz, CDCl3):  δ = 1.26-1.53 (m, 4 H), 1.70-1.82 (m, 2 

H), 2.06-2.20 (m, 2 H), 3.67-3.81 (m, 1 H), 4.80-4.89 (m, 2 H), 7.42-7.48 (m, 2 H), 

7.53-7.61 (m, 1 H), 8.04-8-08 (m, 2 H); 13C-NMR (75.5 MHz, CDCl3): δ = 166.7, 

133.1, 129.6, 128.4, 78.8, 72.9, 33.1, 30.1, 23.9, 23.8; IR (ν/cm-1): 3526, 2935, 2861, 

1686, 1273, 1115, 716; HPLC: OJ column, n-heptane : isopropanol = 95 : 5, 

detection wavelength: 254 nm, flow rate: 0.5 mL/min, tr (minor) = 25.9 min, tr (major) = 

26.8 min, 79 % ee, [α]D20 = -59 (50 mg/2mL, CHCl3). 
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HO O O

 
 
(R,R)-Benzoic acid 2-hydroxy-cycloheptyl ester (177b):  
Prepared according to the general procedure and purified by column chromatography 

(PE/EE 3:1) to obtain the pure product as a white solid.  

m.p. 72-74°C; 1H-NMR (300 MHz, CDCl3): δ = 1.43-1.99 (m, 10 H), 2.84 (s, 1 H), 

3.89-3.92 (bs, 1 H), 4.91-5.01 (m, 1 H), 7.42-7.47 (m, 2 H), 7.54-7.56 (m 1 H), 8.03-

8.06 (m, 2 H); 13C-NMR (75.5 MHz, CDCl3): δ = 167.0, 133.1, 130.3, 129.7, 128.4, 

82.7, 76.1, 32.7, 30.4, 28.3, 23.1, 23.0; IR (ν/cm-1): 3535, 2932, 1688, 1454, 1275, 

709; HPLC: OD/OD-H, n-heptane : isopropanol = 95:5, detection wavelength: 254 

nm, flow rate 0.3 mL/min, tr (minor) = 29.2 min, tr (major) = 33.2 min, 59% ee, [α]D20 = 

–29.3 (50 mg/2mL, CHCl3). 

 

 

General procedure for the catalytic asymmetric Michael-additions with 
azabis(oxazoline)-copper complexes:  
To a Schlenk tube were added catalyst 103a (12.0 mg, 0.05 mmol) and Cu(OTf)2 

(18.1 mg, 0.05 mmol) under ambient atmosphere. Ethanol (2 mL) was added and the 

mixture was stirred for 1 h at room temperature (20-25°C). To the resulting blue-

green solution benzylidene malonate 179 (1 mmol) in EtOH (2 mL) was added and 

stirring continued for 20 min before the indole (178) (140 mg, 1.2 mmol) was added. 

After stirring for 8 h at room temperature, the solution was concentrated under 

reduced pressure and the crude product purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2). 
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General procedure for the catalytic asymmetric Michael-additions with 
nanoparticle supported catalyst:  
In a typical procedure, to a Schlenk tube were added immobilized azabis(oxazoline) 

copper complex  (0.1 mmol) under ambient atmosphere. Benzylidene malonate 179 
(1 mmol) in EtOH (4 mL) was added and the dispersion was allowed to stir at room 

temperature for 20 min before indole (178) (140 mg, 1.2 mmol) was added. In the 

case of Co/C-immobilized catalyst 161, magnetic agitation of the particles was 

applied instead of stirring. After agitation for 8 h at room temperature, the catalyst 

was recovered from the reaction mixture with the aid of an external neodymium 

based magnet, three times redispersed in and recovered from EtOH by magnetic 

decantation. The combined waters were concentrated under reduced pressure and 

the crude product purified by column chromatography (performed with PE/CH2Cl2 

1:1, followed by CH2Cl2). 

 

 

 

CO2Et

CO2Et
NH

 
 

(S)–Ethyl2–ethoxycarbonyl–3–(2–pyrrolyl)–3–(phenyl)propanoate (183): 
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

white solid.  

m.p. 104-106°C; 1H NMR (300 MHz, CDCl3): δ = 0.97 (t, J = 7.14 Hz, 3 H), 1.19 (t, J 

= 7.14 Hz, 3 H), 3.92 (q, J = 7.12 Hz, 2 H), 4.14 (d, J = 10.6 Hz, 1 H), 4.16 (q, J = 

7.12 Hz, 2 H) 4.78 (d, J = 10.5 Hz, 1 H), 5.94 (brs, 1 H), 6.07 (m, 1 H), 6.65 (m, 1 H), 

7.20–7.31 (m, 5 H), 8.48 (brs, 1 H); 13C NMR (75 MHz, CDCl3): δ = 168.8, 167.6, 

139.8, 130.9, 128.5, 128.3, 127.2, 117.6, 108.1, 106.6, 61.9, 61.5, 58.1, 44.4, 14.1, 

13.8; IR (ν/cm-1): 3383, 2983, 1741, 1456, 1368, 1311, 1258, 1145, 1094, 1025, 861, 

732, 697, 551; MS (CI): m/z (%) = 333 (MNH4
+, 2), 316 (MH+, 100), 178 (4), 156 (18); 

HPLC: OD/OD-H, n-heptane : isopropanol = 90:10, detection wavelength: 254 nm, 

flow rate 0.5 mL/min, tr (major) = 15.76 min, tr (minor) = 18.57 min, 18 % ee, [α]D20 = 

+2.4 (20 mg/2 mL, CH2Cl2). 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–phenylpropanoate (180a): 
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

white solid. 

m.p. 174-176°C; 1H-NMR (300 MHz, CDCl3): δ = 0.93-1.06 (m, 6 H), 3.93-4.06 (m, 4 

H), 4.30 (d, J = 11.8 Hz, 1 H), 5.09 (d, J = 11.8 Hz, 1 H), 7.00-7.07 (m, 1 H), 7.09-

7.31 (m, 6 H), 7.37 (d, J = 7.4 Hz, 2 H), 7.56 (d, J = 8.0 Hz, 1 H), 8.07 (brs, 1 H); 13C-

NMR (75 MHz, CDCl3): δ = 168.1, 167.9, 141.4, 136.2, 128.4, 128.2, 126.8, 126.7, 

122.3, 120.9, 119.5, 119.4, 117.0, 111.0, 61.5, 61.4, 58.4, 42.9, 13.8, 13.8; IR (ν/cm-

1): 3401, 2983, 1741, 1457, 1368, 1307, 1268, 1149, 1104, 1026, 851, 740, 701, 584; 

MS (CI): m/z (%) = 383 (MNH4
+, 89), 366 (MH+, 3), 206 (100), 178 (5); HPLC: 

OD/OD-H, n-heptane : isopropanol = 90:10, detection wavelength: 254 nm, flow rate 

0.5 mL/min, tr (minor) = 26.67 min, tr (major) = 31.40 min; >99% ee, [α]D20 = +65.4 (20 

mg/2 mL, CH2Cl2). 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-methylphenyl)propanoate 
(180b): 
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

white solid. 
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m.p. 140-142°C; 1H-NMR (300 MHz, CDCl3): δ = 0.98 (t, J = 7.1 Hz, 3 H), 1.04 (t, J = 

7.1 Hz, 3 H), 2.24 (s, 3 H), 3.94-4.05 (m, 4 H), 4.27 (d, J = 11.8 Hz, 1 H), 5.04 (d, J = 

11.8 Hz, 1 H), 6.99-7.06 (m, 3 H), 7.08-7.18 (m, 2 H), 7.22-7.31 (m, 3 H), 7.55 (d, J = 

8.0 Hz, 1 H), 7.99 (brs, 1 H); 13C-NMR (75 MHz, CDCl3): δ = 168.1, 167.9, 138.4, 

136.2, 136.2, 129.0, 128.0, 126.7, 122.2, 120.8, 119.5, 119.5, 117.3, 110.9, 61.4, 

61.4, 58.4, 42.4, 21.0, 13.8, 13.8; IR (ν/cm-1): 3406, 2977, 1745, 1514, 1458, 1369, 

1306, 1268, 1180, 1142, 1028, 829, 740, 641, 582, 531, 502; MS (CI): m/z (%) = 397 

(MNH4
+, 73), 379 (2), 220 (100), 178 (7); HPLC: OD/OD-H, n-heptane : isopropanol = 

90:10, detection wavelength: 254 nm, flow rate 0.5 mL/min, tr (major) = 22.12 min, tr 

(minor) = 25.47 min, 94 % ee, [α]D20 = +26.7 (10 mg/2 mL, CH2Cl2). 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-methyoxyphenyl)propanoate 
(180c): 
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

white solid. 

m.p. 168-170°C; 1H-NMR (300 MHz, CDCl3): δ = 0.97-1.07 (m, 6 H), 3.73 (s, 3 H), 

3.95-4.04 (m, 4 H), 4.23 (d, J = 11.7 Hz, 1 H), 5.03 (d, J = 11.8 Hz, 1 H), 6.73-6.78 

(m, 2 H), 6.98-7.31 (m, 6 H), 7.52 (d, J = 7.8 Hz, 1 H), 8.01 (brs, 1 H); 13C-NMR (75 

MHz, CDCl3): δ = 167.9, 158.3, 136.3, 133.5, 129.2, 126.7, 122.3, 120.7, 119.5, 

117.4, 113.7, 110.9, 61.4, 58.6, 55.3, 42.1, 13.8; IR (ν/cm-1): 3408, 2980, 1744, 1610, 

1512, 1458, 1371, 1338, 1244, 1177, 1145, 1097, 1033, 842, 808, 742, 584, 515; MS 

(CI): m/z (%) = 413 (MNH4
+, 31), 395 (5), 236 (100), 178 (11); HPLC: OD/OD-H, n-

heptane : isopropanol = 90:10, detection wavelength: 254 nm, flow rate 0.5 mL/min, tr 
(minor) = 48.38 min, tr (major) = 53.71 min, 84 % ee, [α]D20 = +53.3 (20 mg/2 mL, 

CH2Cl2). 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-trifluoromethylphenyl)- 
propanoate (180d): 
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

white solid. 

m.p. 152-154°C; 1H-NMR (300 MHz, CDCl3): δ = 1.02 (m, 6 H), 3.95-4.05 (m, 4 H), 

4.29 (d, J = 11.7 Hz, 1 H), 5.14 (d, J = 11.7 Hz, 1 H), 7.01-7.22 (m, 3 H), 7.29-7.33 

(m, 1 H), 7.50-7.52 (m, 4 H), 8.05 (brs, 1 H); 13C-NMR (75 MHz, CDCl3): δ = 167.6, 

167.5, 145.6, 136.2, 128.6, 126.4, 125.3, 122.6, 121.0, 119.1, 116.1, 111.1, 61.7, 

61.6, 57.9, 42.5, 13.7; IR (ν/cm-1): 3408, 2926, 1744, 1619, 1458, 1421, 1373, 1325, 

1273, 1196, 1155, 1110, 1069, 1041, 857, 815, 741, 693, 652, 609, 518; MS (CI): 

m/z (%) = 451 (MNH4
+, 100), 433 (12), 274 (78), 178 (9); HPLC: OD/OD-H, n-

heptane : isopropanol = 90:10, detection wavelength: 254 nm, flow rate 0.5 mL/min, tr 
(minor) = 40.78 min, tr (major) = 47.98 min, 90 % ee, [α]D20= +15.2 (10 mg/2 mL, 

CH2Cl2). 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(o-bromophenyl)propanoate 
(180e): 
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

brown oil. 
1H-NMR (300 MHz, CDCl3): δ = 0.96 (t, J = 7.1 Hz, 3 H), 1.03 (t, J = 7.1 Hz, 3 H), 

3.92-4.07 (m, 4 H), 4.37 (d, J = 11.5 Hz, 1 H), 5.64 (d, J = 11.5 Hz, 1 H), 6.97-7.31 

(m, 5 H), 7.41 (dd, J = 8.0, 1.6 Hz, 1 H), 7.53 (dd, J = 8.0, 1.4 Hz, 1 H), 7.72 (d, J = 

7.7 Hz, 1 H), 8.08 (brs, 1 H); 13C-NMR (75 MHz, CDCl3): δ = 168.0, 167.7, 140.8, 

136.1, 133.2, 129.1, 128.2, 127.6, 126.7, 124.9, 122.3, 122.2, 119.7, 115.6, 111.2, 

61.6, 58.0, 41.8, 41.4, 14.1, 13.8, 13.7; IR (ν/cm-1): 3396, 2981, 1725, 1467, 1369, 

1301, 1244, 1148, 1095, 1024, 861, 741, 595; MS (CI): m/z (%) = 461 (MNH4
+, 100), 

444 (MH+, 4), 284 (58), 206 (3), 178 (12); HPLC: OD/OD-H, n-heptane : isopropanol 

= 90:10, detection wavelength: 254 nm, flow rate 0.5 mL/min, tr (minor) = 24.30 min, 

tr (major) = 37.42 min, 85 % ee, [α]D20= +48.5 (20 mg/2 mL, CH2Cl2). 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-bromophenyl)propanoate 
(180f): 
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

white solid. 
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m.p. 148-150°C; 1H-NMR (300 MHz, CDCl3): δ = 1.00 (t, J = 7.1 Hz, 3 H), 1.06 (t, J = 

7.1 Hz, 3 H), 4.02 (m, J = 7.13 Hz, 4 H), 4.24 (d, J = 11.7 Hz, 1 H), 5.04 (d, J = 11.7 

Hz, 1 H), 6.99-7.38 (m, 8 H), 7.49 (d, J = 7.9 Hz, 1H), 8.02 (brs, 1 H); 13C-NMR (75 

MHz, CDCl3): δ = 167.7, 167.6, 140.5, 136.2, 131.4, 129.9, 126.5, 122.8, 120.6, 

119.7, 119.2, 116.5, 111.0, 61.6, 58.0, 42.2, 13.8, 13.7; IR (ν/cm-1): 3409, 2925, 

2855, 1744, 1626, 1489, 1457, 1369, 1335, 1246, 1151, 1107, 1010, 741, 583, 517; 

MS (CI): m/z (%) = 461 (MNH4
+, 66), 443 (9), 284 (100), 178 (7); HPLC: OD/OD-H, n-

heptane : isopropanol = 90:10, detection wavelength: 254 nm, flow rate 0.5 mL/min, tr 
(minor) = 29.17 min, tr (major) = 31.86 min, 82 % ee, [α]D20= +24.4 (20 mg/2 mL, 

CH2Cl2). 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-nitrophenyl)propanoate (180g):  
Prepared according to the general procedure and purified by column chromatography 

(performed with PE/CH2Cl2 1:1, followed by CH2Cl2) to obtain the pure product as a 

yellow solid. 

m.p. 105-107°C; 1H-NMR (300 MHz, CDCl3): δ = 1.01 (t, J = 7.1 Hz, 3 H), 1.07 (t, J 

=7.1 Hz, 3 H), 3.97-4.08 (m, 4 H), 4.32 (d, J = 11.8 Hz, 1 H), 5.20 (d, J = 11.5 Hz, 1 

H), 7.05 (m, 1 H), 7.16 (m, 1 H), 7.21 (d, J = 2.5 Hz, 1 H), 7.32 (d, J = 8.2 Hz, 1 H), 

7.47 (d, J = 8.0 Hz, 1 H), 7.55 (m, 2 H), 8.10 (m, 2 H), 8.15 (brs, 1 H); 13C-NMR (75 

MHz, CDCl3): δ = 167.5, 167.4, 149.3, 146.7, 136.2, 129.2, 126.3, 123.7, 122.7, 

121.3, 119.9, 118.9, 115.4, 111.3, 61.8, 57.7, 42.5, 13.9, 13.8; IR (ν/cm-1): 3409, 

2987, 1741, 1598, 1512, 1458, 1338, 1271, 1150, 1105, 1032, 857, 742, 697, 582, 

519; MS (CI): m/z (%) = 428 (MNH4
+, 100), 410 (2), 398 (7), 251 (25), 221 (22), 178 

(11); HPLC: AS, n-heptane : isopropanol = 85:15, detection wavelength: 254 nm, flow 

rate 0.5 mL/min, tr (minor) = 29.13 min, tr (major) = 39.83 min, 96 % ee, [α]D20= +8.3 

(20 mg/2 mL, CH2Cl2); 
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(R)-3-(2-nitro-1-phenylethyl)-1H-indole (186): 
In a representative procedure, Zn(OTf)2 (18.5 mg, 0.05 mmol) and azabis(oxazoline)  

109c (16.28 mg, 0.05 mmol) were added to a dried Schlenk tube under N2 

atmosphere, followed by addition of tolueneabs. (5 mL). The solution was stirred at 

room temperature for 2 h before the trans- β-nitrostyrene (185) (149 mg, 1.0 mmol) 

was added. The mixture was cooled to 0°C and stirred for 10 min before the indole 

(178) (57 mg, 0.5 mmol) was added. After the reaction was complete (monitored by 

TLC), the solvent was removed under vacuum and the residue was 

chromatographically purified (EE/PE = 1:3) to afford 186.  
1H-NMR (300 MHz, CDCl3): δ = 4.94 (dd, J = 8.4, 12.4 Hz, 1 H), 5.06 (dd, J =  7.6, 

12.4 Hz, 1 H), 5.2 (t, J =  8.0 Hz, 1 H), 7.0 (d, J = 2.2 Hz, 1 H), 7.07-7.13 (m, 1 H), 

7.19-7.36 (m, 7 H), 7.48 (d, J = 7.9 Hz, 1 H), 8.07 (s, 1 H); 13C-NMR (75 MHz, 

CDCl3): δ = 139.2, 136.5, 128.9, 128.7, 127.8, 127.6, 126.1, 122.7, 121.7, 119.9, 

118.9, 114.4, 111.5, 79.57, 41.59, 29.77, 14.21; IR (ν/cm-1): MS (CI): m/z (%) = 266 

(M+, 49), 220 (43), 219 (100), 206 (60); HPLC: OD/OD-H, n-heptane : isopropanol = 

90:10, detection wavelength: 254 nm, flow rate 0.5 mL/min, tr (minor) = 54.28 min, tr 

(major) = 64.66 min, 67 % ee, [α]D20= +4.5 (20 mg/2 mL, CH2Cl2). 
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(S)-isopropyl 2-hydroxy-2-phenylacetate (189): 
In a representative procedure, a 10 mL round bottom flask under N2-atmosphere was 

charged with azabis(oxazoline) 103c (8 mg, 0.026 mmol) and 9 mg Cu(OTf)2 (0.025 

mmol) before 720 μL of dichloroethane were poured in the flask to allow stirring at 

ambient temperature for 3 h. To the reaction mixture were added 50 mg 

phenylglyoxal 186 (0.37 mmol) followed by 1.4 mL isopropanol. The resulting slurry 

was stirred at room temperature for 24 h. The reaction was then poured into 50 mL of 

2 N HCl and extracted thrice with dichloromethane. The organic layer was dried with 

MgSO4, filtered and concentrated by rotary evaporation to crude product 189 which 

was further purified by flash chromatography. Conversion and optical purity were 

determined by chiral GC.       
1H-NMR (300 MHz, CDCl3): δ = 1.09 (d, J = 6.26, Hz, 3 H); 1.27 (d, J = 6.28 Hz, 3 H); 

3.53 (d, J = 5.95 Hz, 1 H); 5.05-5.13 (m, 1 H); 5.11 (d, J = 5.9 Hz, 1 H); 7.44-7.28 (m, 

5 H); 13C-NMR (75 MHz, CDCl3): δ = 173.3, 138.6, 128.5, 128.3, 72.9, 70.2; IR (ν/cm-

1): 3306, 2973, 2890, 1728, 1105; MS (CI): m/z (%) = 212 (MNH4
+, 100), 195 (MH+, 

5); GC: CP-Chirasil-Dex CB 25m x 0.25 mm Di, 0.25 mm film, 250 °C detection 

temperature, 250°C injection temperature, tr (major) = 5.21 min, tr (minor) = 5.50 min, 

41 % ee, [α]D20= +39 (47 mg/2 mL, CH2Cl2). 
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General procedure for the CoNP-TEMPO mediated oxidation of alcohols: 
4-Methylbenzyl alcohol 194 (3 mmol, 366 mg) in CH2Cl2 (6 mL), KBr (1.0 mmol, 120 

mg) and CoNP-TEMPO 164 (0.1 mmol/g, 750 mg, 2.5 mol% TEMPO) were merged 

in a 50 mL round-bottom flask. The reaction mixture was sonicated at 0°C for 15 min 

using an ultrasonic bath filled with a tempered coolant solution (10% glycol in water) 

before 2.4 mL of a NaOCl solution (10%, Aldrich) and NaHCO3 (120 mg, 50 mg/mL 

bleach) were added. The resulting suspension was sonicated at 0°C for 1 h. Then the 

reaction mixture was separated from catalyst 164 by decantation with the aid of a 

neodymium based magnet. The particles were suspended in CH2Cl2 (10 mL), 

subjected to ultrasound (5 min) and the supernatant was decanted once again after 

applying an external magnet. This procedure was repeated thrice before the solution 

was dried over MgSO4, filtered and concentrated under vacuum to afford 4-

methylbenzaldehyde 194. CoNP-TEMPO 164 was washed as described above with 

water (3x 5 mL) and acetone (6x 5 mL), dried in vacuo and reused without further 

purification. 
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General procedure for CoNP-Co(II)-Schiff base complex catalyzed oxidations 
with molecular oxygen: 
A glass column (8 cm, 10 mL volume) containing 0.05 mmol of the Co/C immobilized 

Co(II)-Schiff base complex 168 and 500 mg molecular sieves (3 Ǻ) in dry acetonitrile 

(10 mL) was charged with benzhydrol 199 (184 mg, 1 mmol) and cyclohexanone-2-

ethylcarboxylate 197 (220 μL, 1.5 mmol). The microreactor was equipped with a 

column jacket which allowed applying a temperature of 50°C in the reaction chamber 

via a thermostat. The bottom of the reactor was sealed with a G3-frit, which enabled 

bubbling of oxygen through a jointed gas inlet at a low flow rate. The outlet of the 

glass column was connected to a reflux condenser in order to reduce the evaporation 

of solvent due to heating and the constant oxygen streaming. The whole apparatus 

was placed vertically between adjacent parallel flanks of two magnetic stir motors 

with a distance of 5 cm to each other, thus allowing the Co/C-nanoparticles to be 

agitated in the field created by the two rotating magnets. The particles were agitated 

until the secondary alcohol disappeared (TLC). Subsequently, the oxygen inlet was 

disconnected and vacuum was applied in order to filter the reaction mixture through 

the jointed frit into the glass tube beneath the reaction chamber. The reaction 

chamber was floated repeatedly with dry acetonitrile (4 x 10 mL) under magnetic 

agitation of the particles to remove any residual crude product. The combined waters 

were concentrated in vacuo and subjected to column chromatography (PE/EE 5:1) to 

deliver benzophenone 200 in 96% yield.   
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E. Appendix 
 
1. NMR-spectra 
 
1H-NMR (300 MHz, CDCl3):  -upper image 

 
13C-NMR (75 MHz, CDCl3):  -lower image 

 

Solvent (if not stated otherwise):  CDCl3 
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Bis[4,5-dihydro-(4S)-(1-methylethyl)-1,3-oxazol-2-yl]-amine (103a): 
 

ppm
0.01.02.03.04.05.06.07.08.09.010.011.012.0
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Bis-[4,5-dihydro-(4S)-(1-methylethyl)-1,3-oxazol-2-yl]-methylamine (109a): 
 

ppm
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Bis[4,5-dihydro-(4S)-(1,1-dimethylethyl)-1,3-oxazol-2-yl]-amine (103b): 
 

ppm
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Bis[4,5-dihydro-(4S)-(1,1-dimethylethyl)-1,3-oxazol-2-yl]-methylamine (109d): 
 

ppm
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Bis[4,5-dihydro-(4R)-(phenyl)-1,3-oxazol-2-yl]-amine (103c): 
 

ppm
0.01.02.03.04.05.06.07.08.09.010.011.012.0

 
 

ppm
0102030405060708090100110120130140150160170180190200210220230

 

N

O
H
N

N

O

Ph Ph



E. Appendix 

 200 

Bis[4,5-dihydro-(4S)-(benzyl)-1,3-oxazol-2-yl]-amine (103d): 
 

ppm
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Bis[4,5-dihydro-(4S)-(benzyl)-1,3-oxazol-2-yl]-amine (109d): 
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Bis-[4,5-dihydro-(4S)-(benzyl)-1,3-oxazol-2-yl]-prop-2-ynyl-amine (120b):  
 

ppm
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1-(Nitrophenyl)-2-propyn-1-one (142): 
 

ppm
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(S,E)-methyl2-(2-hydroxybenzylideneamino)-3-(4-hydroxyphenyl)propanoate 
(165a): Solvent: DMSO 

ppm
1.02.03.04.05.06.07.08.09.010.011.012.013.014.0
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(S,E)-methyl-2-(2-hydroxybenzylideneamino)-3-(4-(prop-2-ynyloxy)phenyl) 
propanoate (165b): 

ppm
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ppm
0102030405060708090100110120130140150160170180190200210220230

 

O

CO2Me

N

HO



E. Appendix 

 206 

(R,R)-Benzoic acid 2-hydroxy-1,2-diphenyl-ethyl ester (171): 
 

ppm
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(R,R)-Benzoic acid 2-hydroxy-cyclohexyl ester (177a): 
 

ppm
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(R,R)-Benzoic acid 2-hydroxy-cycloheptyl ester (177b):  
 

ppm
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-methyoxyphenyl)propanoate 
(183): 

ppm
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–phenylpropanoate (180a): 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-methylphenyl)propanoate 
(180b): 

ppm
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-methyoxyphenyl)propanoate 
(180c): 

ppm
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-trifluoromethylphenyl)- 
propanoate (180d): 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(o-bromophenyl)propanoate 
(180e): 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-bromophenyl)propanoate 
(180f): 
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(S)–Ethyl2–ethoxycarbonyl–3–(3–indolyl)–3–(p-nitrophenyl)propanoate (180g):  
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(R)-3-(2-nitro-1-phenylethyl)-1H-indole (186): 
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(S)-Isopropyl 2-hydroxy-2-phenylacetate (189): 
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