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CHAPTER 1

Introduction

The foundation for the realization of a Bose-Einstein condensate has been set already in

1924 by S. N. Bose and A. Einstein with the description of the Bose-Einstein statistics

[1–3] which determines that a single particle quantum state can be occupied by an

arbitrary number of identical particles with the corresponding particles being called

bosons. This is in contrast to fermions which obey the Pauli exclusion principles,

such that two identical particles cannot occupy the same quantum state. Later it was

realized that particles with half-integer spin are fermions and particles with integer

spin obey Bose-Einstein statistics. Albert Einstein recognized that an ensemble of

identical bosons can experience a phase transition, the Bose-Einstein condensation,

where the energetically lowest single quantum state is occupied macroscopically. This

phase transition describes a crossover from a thermal ensemble of particles to a quantum

gas with long range coherence which takes place at the critical temperature. This

critical temperate for atomic vapors is understood in terms of the de Broglie wave

length, which arises due to the particle-wave duality associated with matter. The

condensate is formed as soon as the temperature is reduced such that the mean particle

distance in the dilute gas is comparable to de Broglie wave length of the atoms, and

the waves of the single atoms start to overlap. In this case a macroscopic wave function

emerges which takes the role of an order parameter of the condensate. This new state

of the matter has triggered many scientific projects and opened a new fascinating field.

Furthermore, it allows to address fundamental quantum mechanical questions.

On the way towards the experimental realization of a Bose-Einstein condensate many

experimental difficulties had to be overcome. One important step was the demon-

stration of laser cooling [4], where the thermal motion of neutral atoms is reduced

by employing the Doppler shift with a laser beam near an atomic resonance. But

also techniques like evaporative cooling and magneto-optical traps [5] were developed.

Nowadays temperatures even in the nano-Kelvin regime can be obtained. Therefore, it
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took until 1995 for the first realization of a Bose-Einstein condensate in a dilute atomic

vapor in 87Rb and 23Na [6, 7] and in condensates with weak attractive interactions –

compared to weak repulsive ones before – in 7Li [8]. The direct observation of a matter

wave with imaging techniques was possible for the first time due to the macroscopic

size of the condensate. The large number of atoms and the long coherence length of the

condensate makes the Bose-Einstein condensate a versatile tool to study matter wave

phenomena. After the first observation of a condensate the field exploded, and many

groups are now involved with research on the properties of Bose-Einstein condensates.

The high accuracy and high flexibility in the control of parameters in the experiments

with Bose-Einstein condensates allow to study new phenomena, but also to address

open questions, which have originally occurred in a different context. For example,

it is possible to mimic condensed matter physics [9] with an optical periodic lattice

which is created by a standing wave formed by counter propagating laser beams in all

three spatial directions. Such an optical lattice has no defects or dislocations, which

are encountered in the solid state context. This setup makes it for example possible

to study the transition between the Mott insulator state and the superfluid state [10].

In the Mott insulating state each atom is confined to a potential minimum for a large

laser intensity, whereas for a shallow potential a phase coherent wave function extends

over the whole lattice. This transition is clearly observed in the momentum distribu-

tion, which can be measured after a free expansion of the condensate with absorption

imaging. The analogy to condensed matter can be extended by the usage of ultra

cold Fermi gases [11, 12], which allows to explore the BEC-BCS crossover [13], where

the bosons are molecules consisting of two bound fermionic atoms. Of importance in

this context is a Feshbach resonance [14], which is mediated via a molecular bound

state, and allows to tune the s-wave scattering length, even from positive to negative,

just by changing the external magnetic field. This provides a powerful tool to study

interaction effects in these dilute gases, where the interaction strength is proportional

to the s-wave scattering length. Such effects induced by interaction can also be stud-

ied in transport properties. The transport process can be realized with experimental

setups which create a continuous flow of Bose-Einstein condensates, like atom-lasers

[15–17]. Another experimental technique to investigate transport physics are so-called

atom chips [18], where the magnetic field, which arises from wires on a micro-fabricated

chip forms a waveguide for the atoms. With this chip technology transport through

arbitrary formed potentials can be studied [19, 20]. In such a quasi one-dimensional

waveguide above a microchip fragmentation of the Bose-Einstein condensate was ob-

served, which was then explained by inhomogeneities in the wire resulting in a disorder

potential for the condensate [19, 21–23].

The observation of fragmentation enhanced the investigation in Anderson localiza-

tion in the community of Bose-Einstein condensates. In 1958 P. W. Anderson showed

that diffusion is totally suppressed in some disorder potential [24, 25]. The unambigu-
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ous experimental identification of Anderson localization is quite difficult. For example

in solid state systems the electron-electron interaction modifies the localization effect.

After several attempts [26–28] it was possible just recently, namely in 2008, to demon-

strate the Anderson scenario with Bose-Einstein condensates [29, 30] experimentally.

In one experiment a speckle disorder potential was employed, which is created by il-

luminating a diffusive plate with a laser [29, 31] and in the other one a bichromatic

disorder lattice [30] was used, where in both cases the potential is controlled very well.

Theoretical studies concentrated on the expansion process [32] of the condensate as

well as on the scattering perspective [19, 20]. Complementary studies were focused on

localization properties of Bogoliubov quasi-particles [33, 34], on dipole oscillations in

presence of disorder [35, 36], as well as on the realization of Bose glass phases [37, 38].

The phenomenon of Anderson localization is addressed as well in optical disordered

systems, with a controversial discussion about the unambiguous signatures [39–41], and

the experimental research is still in progress [41–43]. Already in the regime of weak

localization the phenomenon of coherent backscattering is observed [44–46]. It was

shown in 1985 independently by M. van Albada and A. Lagendijk [44], and also by

P. Wolf and G. Maret [45] that by illuminating a random media with a phase coherent

laser beam, an increase of the angular resolved back-scattered intensity is observed

by a factor of two in exactly backward direction. This arises due to the constructive

interference of time reversed scattering paths. This effect is found in astrophysics [47–

49] and in acoustic systems [50, 51] as well. Recently coherent backscattering with light

scattering in a cloud of cold atoms was studied [52–55]. They were thought as good

candidates to explore multiple scattering effects also in the strongly localized regime,

since resonant scattering of identical particles can be exploited to increase the scattering

cross section. Furthermore cold atoms allow to investigate nonlinear scattering effects

due to the saturation of the intra-atomic transition, where the nonlinear systems are

still an open and interesting field. But in the experiments with cold atoms complexity is

added due inelastic scattering [56–58], thermal motion [52] and polarization phenomena

[55].

In this work we introduce the phenomenon of coherent backscattering to matter

waves, especially to a Bose-Einstein condensate scattering in a disorder potential, which

can be created by optical means and is very well controlled. In particular we include

nonlinear effects based on the Gross-Pitaevskii equation in our description, which arise

due to the atom-atom interaction in the condensate. As already mentioned earlier, the

interaction strength can be tuned via Feshbach resonances with an external magnetic

field, which allows for controlled experimental research on nonlinear effects. Our setup

should provide a clean situation, since the coherence of the atomic wave function in

the mean-field regime is well preserved in the presence of the nonlinearity compared

to scattering with light from cold atoms [53], as explained above, at least for very low

temperatures where depletion can be neglected. We show that the interaction effects
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give rise to substantial modifications of the coherent backscattering scenario.

Outline of the thesis

• In Chapter 2 we explain the basic concepts of this thesis. We begin with

a derivation of the Gross-Pitaevskii equation from the many-body Hamiltonian,

where the condensate wave function arises from the macroscopic occupation of the

single particle ground state. We are especially interested in the coherent transport

through a quasi two-dimensional system and deduce the corresponding effective

Gross-Pitaevskii equation in reduced dimensions to describe time-dependent dy-

namics. Then we describe the principles to apply mesoscopic potentials to the

atoms with optical and magnetic fields.

• The methods to solve the two-dimensional Gross-Pitaevskii equation are ex-

plained in Chapter 3. We show an approach to simulate an open system

numerically in order to describe the scattering approach. This can be obtained

by including a source term in the Gross-Pitaevskii equation and by introduc-

ing absorbing boundary conditions, which are especially capable to absorb two-

dimensional waves. At the end we apply the numerical apparatus to a multi-slit

potential, and also to a quasi one-dimensional double barrier potential. In the

latter case we compare the scattering approach to decaying quasi-bound states.

• The linear transport in two-dimensional disorder potentials is the topic of Chap-

ter 4. We describe correlated disorder potentials with a Gaussian correlation

function and speckle disorder potentials. We give an analytical derivation of the

scattering mean free path and the transport mean free path in Boltzmann ap-

proximation but also with weak localization corrections. We relate those mean

free paths with our numerical simulations and find, depending on the parameters,

agreement or deviations which we discuss.

• Chapter 5 is devoted to coherent backscattering. First we explain the funda-

mental ideas and then the applicability to Bose-Einstein condensates. We include

the atom-atom interaction on the mean-field level and show with our numerical

approach that the scenario of coherent backscattering is substantially modified.

Then we present a diagrammatic approach to nonlinear coherent backscattering,

which was developed very recently [59], compare it with our results and give fur-

ther details. For intermediate strength of the nonlinearity we find time-dependent

behavior. Finally, we study the statistical properties of the intensity distribution.

• In Chapter 6 we give a summary of the main results in this thesis in form of

a short overview. Additionally we discuss questions which can be addressed on

the basis of this thesis.



CHAPTER 2

Basic concepts

2.1 Mean-field theory for condensates

This section is devoted to the derivation of the mean-field description of Bose-Einstein

condensates, which leads to the Gross-Pitaevskii equation. Here we especially concen-

trate on a potential geometry, which effectively restricts the Bose-Einstein condensate

to two dimensions. In this derivation of the Gross-Pitaevskii equation we mainly follow

Ref. [60] and also the text books [61, 62]. To this end we start with the many-body

Hamiltonian for N interacting bosons in an external potential V (r):

Ĥ =

∫

dr Ψ̂(r)

[

− ~
2

2m
∇2 + V (r)

]

Ψ̂(r)

+
1

2

∫

drdr′ Ψ̂†(r)Ψ̂†(r′)U(r − r′)Ψ̂(r′)Ψ̂(r) (2.1)

The bosonic field operators Ψ̂†(r) and Ψ̂(r) create and annihilate a particle at position

r. U(r−r′) is the two-body inter-particle potential. In the remaining part of this work

we consider a dilute gas of bosonic atoms, which allows us to neglect three-body or

many-body collisions. We apply the following ansatz, where the field operator can be

written in terms of single particle wave functions Ψα:

Ψ̂(r) =
∑

α

Ψα(r)aα (2.2)
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Here a† and a are bosonic creation and annihilation operators, which satisfy the fol-

lowing relations in Fock-space:

a†α |n0, n1, . . . , nα, . . .〉 =
√
nα + 1 |n0, n1, . . . , nα + 1, . . .〉, (2.3)

aα |n0, n1, . . . , nα, . . .〉 =
√
nα |n0, n1, . . . , nα − 1, . . .〉 , (2.4)

where nα are the occupation numbers of atoms in the single particle states α, and there-

fore the eigenvalues of the number operator n̂α = a†αaα. The creation and annihilation

operators a† and a fulfill the bosonic commutation relations

[aα, a
†
β] = δα,β , [aα, aβ] = 0, [a†α, a

†
β] = 0. (2.5)

The key characteristic for Bose-Einstein condensation is that the ground state is macro-

scopically populated. The occupation number N0 of the single particle ground state

gets very large and especially in the thermodynamic limit N → ∞ the ratio N/N0

remains finite. In this limit the states with to N0 and N0 + 1 ≃ N0 correspond to the

same physical configuration and therefore the creation and annihilation operators of

the ground state can be treated as complex numbers a†0 = a0 =
√
N0

1. Consequently

we can write for the field operator Ψ̂(r) in the case of a homogeneous Bose-Einstein

condensate in a potential V :

Ψ̂(r) =
√

N0/V + Ψ̂′(r). (2.6)

The first term on the right hand side corresponds to the macroscopically populated

ground state with zero momentum and the perturbation Ψ̂′(r). A theory for these

excitations for interacting Bose-Einstein condensates was developed by Bogoliubov

[62]. The above ansatz can be generalized to the nonuniform and time-dependent case:

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t). (2.7)

Here Φ(r, t) is a complex wave function that is defined as the expectation value of the

field operator Φ(r, t) = 〈Ψ(r, t)〉. Hence the density n0(r, t) of the condensate is given

by the modulus squared of the wave function of the condensate:

n0(r, t) = |Φ(r, t)|2. (2.8)

This condensate wave function has also a well defined phase, and is a classical field,

which is interpreted as the order parameter of the condensate. Now we want to derive

1See Y. Castin and R. Dum [63] for a derivation of the Gross-Pitaevskii equation with a well-defined

number of particles.
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the time evolution for this order parameter. To this end we write down the Heisenberg

equation for the many-body Hamiltonian:

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ] (2.9)

=

[

−~
2∇2

2m
+ V (r) +

∫

dr′ Ψ̂†(r′, t)U(r′ − r)Ψ̂(r′, t)

]

Ψ̂(r, t) .

We continue with approximating the two-body interaction potential with a delta func-

tion. This is a good approximation for low densities, where the inter-particle distance

is much larger than the range of the binary collision potential. An additional constraint

arising from this approximation is the low temperature limit, because at low energies

only the s-wave scattering is effective. We can therefore write

V (r′ − r) = U0δ(r
′ − r) , (2.10)

where U0 is the effective interaction strength characterized by the s-wave scattering

length as:

U0 =
4π~

2as

m
. (2.11)

With this simplifications we arrive at the Gross-Pitaevskii equation for the condensate

wave function:
(

− ~
2

2m
∇2 + V (r) + U0|Φ(r, t)|2

)

Φ(r, t) = i~
∂

∂t
Φ(r, t). (2.12)

This Gross-Pitaevskii equation allows us to describe the macroscopic behavior of a sys-

tem, especially the time-dependent and non-uniform behavior. This is only valid where

the s-wave scattering is a good approximation, namely in the low density limit, and

additionally in the regime of low temperatures, much below the critical temperature,

in order to neglect the thermal cloud of atoms.

Gross-Pitaevskii equation in two dimensions

In the following we consider a Bose-Einstein condensate which is effectively confined

to two dimensions. We assume a potential in the z-direction which can be created for

example by optical means (see next section), and which restricts the dynamics to a two-

dimensional plane. To this end we derive an effective two-dimensional Gross-Pitaevskii

equation. This description is valid in the mean-field regime which is characterized by

a3
sn3D ≪ 1 [64], where n3D and in the following n2D is the density in three or two
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dimensions, respectively. The condition for the validity of the mean-field description

translates to two dimension as follows:

n2Da
2
s ≪

a⊥
as

, (2.13)

where a⊥ characterizes the transversal width of the confinement. We especially focus on

those potentials in the two-dimensional plane, which vary slow on the length scale of the

transverse confinement. This allows us to suppose that in the transverse direction the

ground state is realized, and that this ground state adjusts to the adiabatic potential

variations. The derivation is analog to Ref. [65] for one-dimensional waveguides. The

starting point for this derivation is the Gross-Pitaevskii equation in three dimensions:
(

− ~
2

2m
∇2 + V (r) + U0|Φ(r, t)|2

)

Φ(r, t) = i~
∂

∂t
Φ(r, t). (2.14)

We consider now a Bose-Einstein condensate which propagates in this two-dimensional

waveguide and define the in transverse direction integrated density:

n(x, y, t) =

∫

dz |Φ(x, y, z, t)|2. (2.15)

Below we assume that the dynamics in transverse direction is much faster than in the

xy-plane. This leads to the limit of adiabatic wave dynamics and justifies the following

ansatz:

Φ(r, t) = ψ(x, y, t) φ(z, n(x, y, t)). (2.16)

Here ψ(x, y, t) is the wave function in the two-dimensional plane, and φ(z, n) is the

transverse ground state. Note that φ(z, n) depends on the time and on the coordinates

in the plane due to the density n. We impose the following normalization condition

onto the transverse wave function:
∫

dz |φ(z, n)|2 = 1. (2.17)

This also implies that the in plane density is given by n(x, y, t) = |ψ(x, y, t)|2. The

adiabatic regime is described by the following conditions:

∂

∂t
φ ≃ 0,

∂

∂x
φ ≃ 0,

∂

∂y
φ ≃ 0 . (2.18)

We implement these conditions using an adiabatic potential, which means that V (x, y, z)

changes only slowly in the xy-plane on the length scale a⊥, which characterizes the

width of the waveguide in z-direction. Here we consider especially a potential of the

form:

V (x, y, z) = V‖(x, y) + V⊥(z; x, y) , (2.19)
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where the confining potential V⊥(z; x, y) depends only in a parametric way on x and

y. Now we insert the ansatz Eq. 2.16 into the Gross-Pitaevskii equation Eq. 2.14 and

find:

i~φ
∂

∂t
ψ(x, y) = − ~

2

2m
φ

(

∂2

∂x2
+

∂2

∂y2
+ V⊥

)

ψ+ψ

[

− ~
2

2m

∂2

∂z2
+ V‖ + U0|ψ|2|φ|2

]

φ.

(2.20)

Here we identify the term in the square brackets as the effective Hamiltonian in the

transverse z-direction. Of course a Hamilton operator has to be linear, but we interpret

the term U0|ψ|2|φ|2 as an effective potential, and we use the term ‘effective Hamilton

operator’ instead. Since we assume the transverse wave function to be an eigenstate,

we can write:

ǫ(n(x, y, t)) φ =

[

− ~
2

2m

∂2

∂z2
+ V⊥(z; x, y) + U0n(x, y, t)|φ|

]

φ. (2.21)

The eigenenergy ǫ depends due to the density n on the coordinates on the xy-plane.

For the wave equation in the xy-plane we arrive at:

i~
∂

∂t
ψ(x, y) =

[

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+ V‖(x, y) + ǫ(n(x, y, t))

]

ψ(x, y). (2.22)

This is just the final result for the effective Gross-Pitaevskii equation reduced to two

dimensions, where we assumed an adiabatic potential, which means that V changes

only slowly on length scales compared to the transverse width a⊥ of the confinement.

Furthermore we assumed that the transverse wave function is in the ground state.

Harmonic confinement in transverse direction

In the following we restrict to an harmonic potential confining in transverse direction.

In this case we can derive analytical expressions for the transverse energy ǫ(n) in the

limit of low densities and in the high density limit (Thomas-Fermi regime). Addition-

ally we give an analytical formula which interpolates between both regimes. Finally we

show that plane waves are solutions to the two-dimensional Gross-Pitaevskii equation

in the low density limit with a modified dispersion relation.

Consequently we consider a harmonic potential in z-direction:

V⊥(z; x, y) =
1

2
m ω2

⊥(x, y) z2. (2.23)

Here we allow for an explicit dependence of the harmonic oscillator frequency ω⊥(x, y)

on x and y.
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We start with the discussion of the transverse ground state energy in the perturbative

limit which is characterized by the condition nasa⊥ ≪ 1 (see Eq. 2.25 below). For

vanishing atom-atom interaction strength the Gaussian profile of the wave function in

the harmonic oscillator looks like:

φ0(z) = (
√
πa⊥)−1/2 e−z2/2a2

⊥ , (2.24)

where a⊥ =
√

~/mω⊥ is the harmonic oscillator length. The first order correction to

the ground state energy is then calculated to

ǫ(n) =
1

2
~ω + U0n〈φ| |φ|2 |φ〉 =

1

2
~ω +

~
2

2m
4
√

2π
as

a⊥
n

=
1

2
~ω + ~ω2

√
2πnasa⊥ , (2.25)

where we used the definition of Eq. 2.11 of the s-wave scattering length:

U0 = 4π~
2as/m. (2.26)

In the opposite limit, i.e. for high densities nasa⊥ ≫ 1 we can use the Thomas-Fermi

approximation [60] to find an analytical expression for the ground state energy ǫ(n).

To this end we neglect the kinetic energy in comparison to the potential energy and

the interaction energy. In this limit the condensate wave function in z-direction can

be written in the following way:

φTF (z) =
1√
U0n

√

ǫ(n) − V⊥(z) Θ(ǫ(n) − V⊥(z)). (2.27)

The ground state energy in the Thomas-Fermi approximation is as follows:

ǫTF (n) =
1

2
~ω(6πnasa⊥)2/3. (2.28)

The expression below for the ground state energy ǫ(n) can be used to interpolate

between the perturbative limit Eq. 2.25 and the Thomas-Fermi regime Eq. 2.28. It

reduces to Eq. 2.25 in the small density limit and to Eq. 2.28 in the high density limit

(nasa⊥ ≫ 1) :

ǫ(n) =
1

2
~ω

(

1 + 12
√

2π(nasa⊥) + 36π2(nasa⊥)2
)1/3

. (2.29)

Finally we have reached an effective Gross-Pitaevskii equation for a system which is

confined to two dimensions. In the third direction we assumed a harmonic confinement.

Additionally we derived analytical expressions for the transverse ground state energy

in the low and the high density regime, and also an interpolation formula between these
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two regimes.

In the next lines we want to figure out that plane waves are solutions to the Gross-

Pitaevskii equation :

Now we consider the perturbative limit (nasa⊥ ≪ 1). Furthermore we assume a

constant potential. In this case the Gross-Pitaevskii equation for quasi two dimensions

is given by:

i~
∂

∂t
ψ(x, y, t) =

[

− ~
2

2m

(

∂2

∂x2
+

∂2

∂y2

)

+
1

2
~ω⊥ +

~
2

2m
g|ψ|2

]

ψ(x, y, t) , (2.30)

where we define the dimensionless interaction strength g = 4
√

2πas/a⊥. Now we use

the ansatz

ψ(x, y, t) =
√
n ei(kxx+kyy)−iµt/~, (2.31)

and we see that plane waves are solutions to this Gross-Pitaevskii equation but with a

modified dispersion relation:

µ =
~

2

2m

(

|k|2 + gn
)

+
1

2
~ω⊥. (2.32)

In the following we neglect this constant potential offset ~ω⊥/2 since it can be absorbed

by a redefinition of the chemical potential.

2.2 Optical and magnetic potentials

In this section we want to describe methods to create traps for condensates. A potential

that acts on neutral atoms has to be applied. In the following two techniques which

base on two different physical effects are presented: First we present a potential caused

by applying an optical field where the Stark effect is the underlying mechanism and

then we present a second possibility, by applying a magnetic field which takes advantage

from the Zeeman effect.

Optical potentials

In the context of Bose-Einstein condensates optical potentials are very often used, since

they allow to create a rich variety of potential landscapes. The interaction between the

light field and the atom is described in the dipole approximation with the following

Hamilton operator:

H = −d̂ · E . (2.33)
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The expectation value of the dipole operator is proportional to the electrical field:

〈d̂〉 = α E , (2.34)

where we introduced the polarizability α of the atom. We consider now an atom in an

oscillating laser field E(t) = E0 cos(ωt). Initially the atom is in the ground state |g〉,
and can be excited to the states |e〉. In this case the polarizability α depends on the

laser frequency and is given by [61]:

α(ω) =
∑

e

|〈e|d̂ · E/E0|g〉|2
(

1

Ee − Eg + ~ω
+

1

Ee −Eg − ~ω

)

. (2.35)

In the particular situation where the laser frequency ω is close to the resonance fre-

quency ωL = (Eẽ − Eg)/~ between the ground state |g〉 and the excited state |ẽ〉 the

contribution from this transition is dominant and the polarizability can be approxi-

mated to:

α(ω) ≈ |〈ẽ|d̂ · E/E0|g〉|2
~ωL − ~ω

. (2.36)

Now we can combine Eq. 2.33 and Eq. 2.34 and find for the energy shift in the atom

due to the external applied oscillating laser field:

∆V (r) = −1

2
α(ω) 〈E2(r, t)〉t. (2.37)

Note that this energy shift of the atom depends on the intensity, and since this intensity

can be position dependent the laser field effectively introduces a potential landscape

for the atoms. In this way lasers can be used to model potential geometries.

From Eq. 2.36 and Eq. 2.37 we see that the sign of the potential depends on the

laser frequency ω in comparison to the resonance frequency ωL, since the polarizability

changes the sign at the resonance frequency ωL. In the case of a red detuned laser beam,

that means ω < ωL, the maxima of the intensity correspond to potential minima. Here

the atoms are trapped in regions with high laser intensity. In the opposite case of a

blue detuned laser beam, i. e. ω > ωL, the maxima of the intensity correspond to

potential maxima.

A red detuned laser beam was e. g. used to create a one-dimensional waveguide for

a Bose-Einstein condensate [15]. There a laser was focussed to form a narrow tube.

Due to the dipole forces the atoms were trapped in the center of the laser beam at the

maximum of the laser intensity.

Another potential geometry can be realized with two counter propagating laser

beams. Those form a stationary standing wave, which results in a lattice potential.



2.2. OPTICAL AND MAGNETIC POTENTIALS 13

a)

BEC

Laser

Laser

z

|E|2

b)

Figure 2.1: a) A two-dimensional confinement potential for a condensate can be realized

with an optical lattice potential in z-direction. This is created with two counter propagating

laser beams. b) Optical setup as it is used in the experiment by J. E. Lye et al. to realize

a disorder potential by optical means. A laser illuminates a diffusive plate. The resulting

interference pattern is then imaged onto the region of the condensate. The lower left figure

shows the speckle potential in real space and its Fourier transform in the lower right figure.

(The picture is taken from Lye et al. [31].)

With this setup atoms can be confined to a two-dimensional plane for high enough

laser intensity. This setup is sketched in Fig. 2.1 a.

A disorder potential for Bose-Einstein condensates can be created by illuminating

a diffusive plate with a laser. The resulting speckle pattern is then imaged to the

experimental region, which introduces a disorder potential to the condensate wave

function [31]. Here the correlation length of the speckle pattern and the intensity is

well known. This method allows to create disorder in a controlled manner in contrast

to other systems, where the disorder is not known a priory. This experimental setup is

shown in Fig. 2.1 b. Another experimental technique we mention here allows to confine

atoms with acoustooptic deflectors with a fast moving blue detuned laser beam to an

arbitrary potential geometry like billiard boundaries [66]. The periodic deflection of

the laser beam along an arbitrary path is much faster than the typical velocities of the

atoms. Therefore the atoms experience effectively a static potential.

Magnetic potentials

Neutral atoms with a magnetic moment µb can be trapped with magnetic fields. The

energy shift due to the Zeeman effect, which is in good approximation linear in the
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a)

B

V↓

V↑

b)

Figure 2.2: a) The potential for neutral atoms arising due to the Zeeman effect. Only

states with a negative magnetic moment can be trapped, which are called low field seekers,

because local magnetic maxima cannot be realized. b) A three wire configuration with a local

minimum in the magnetic field is shown, which forms a one-dimensional waveguide.

magnetic field, is determined by [61, 67]

VHFS = gFµbmFB , (2.38)

where mF is the quantum number of the total angular momentum in direction of the

magnetic field, gF is the Landé factor. For a negative magnetic moment gFmF the

atoms tend to higher magnetic fields and the corresponding states are called high field

seekers. In the opposite case of a positive magnetic moment the atoms experience a

force to the minimum of the magnetic field, those states are called low field seekers.

Since it is not possible to create magnetic fields with a local maximum at least for a

current free region (shown in [68]), we look for magnetic potentials with a local mini-

mum and therefore low field seekers are considered. Additionally a field configuration

is desirable, where the magnetic field does not vanish at the minimum of the trap, be-

cause otherwise the magnetic moment is not aligned to the field and spin flip processes

can occur. In the case of a spin flip the atom then experiences a maximum of the po-

tential and is expelled from the trap leading to losses of atoms. The potential situation

is depicted in Fig. 2.2 a. A minimum of the magnetic field can be achieved for example

with a three wire configuration shown in Fig. 2.2 b, which creates an elongated quasi

one-dimensional waveguide in the direction of the wire. Such a setup has also been

successfully mounted on a micro fabricated chip [18].



CHAPTER 3

Transport through two-dimensional systems

The current chapter is focused on the transport of Bose-Einstein condensates through

systems confined to two dimensions. In the third direction we assume a strong confine-

ment forcing the condensate to remain in the transverse ground state. We analyze the

time-dependent dynamics of the condensate subject to a scattering potential. Therefore

we develop our numerical approach to study scattering effects.

The confinement to two dimensions can be realized as discussed in the previous

chapter with two reverse propagating laser beams in the transverse direction forming

a static lattice potential. The transverse potential minimum where the Bose-Einstein

condensate is transferred to, can be approximated as a harmonic potential, character-

aBEC

x

y

z

Figure 3.1: Schematic setup of the system under investigation. A Bose-Einstein condensate

is transferred into the two-dimensional wave guide with transverse extent a⊥ where it is

exposed to a scattering potential.
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ized by the oscillator length a⊥(r) =
√

~/[mω⊥(r)]. We assume that the oscillator

length is either independent or only adiabatically dependent on the position r. In the

mean-field approximation the dynamics of the condensate is well described with the

two-dimensional Gross-Pitaevskii equation (r = (x, y)) as given in Eq. 2.30:

i~
∂

∂t
Ψ(r, t) =

(

− ~
2

2m
∆ + V (r) +

~
2g(r)

2m
|Ψ(r, t)|2

)

Ψ(r, t). (3.1)

The strength of the atom-atom interaction is given by the dimensionless quantity g(r) =

4
√

2πas/a⊥(r), where as is the s-wave scattering length.

With this setup it is now possible to study the expansion process of Bose-Einstein

condensates in different potential geometries like lattice potentials, cavities or dis-

order potentials. In the latter case experiments were performed in one-dimensional

wave guides in order to investigate the regime of Anderson localization[26–31]. A

Bose-Einstein condensate is created in a three-dimensional harmonic trap where the

ground state wave function is either Gaussian-shaped in the weakly interacting regime

or shaped like an inverted parabola in the Thomas-Fermi regime [62]. The condensate

is then transferred to the wave guide and the expansion process can be analyzed. One

disadvantage of such a situation is that the initial wave packet has a broad spread

in momentum and the interesting quantities like the localization length depend on

the k-vector. Consequently the interpretation of the experimental results gets more

complex [32].

The approach we have chosen is to investigate scattering processes with a fixed in-

cident k-vector [19, 69]. Experimentally this could be achieved by feeding a broad

wave packet (small momentum spread) into the wave guide (see Fig. 3.1) or in one-

dimensional wave guides with the technique of atom lasers [15–17]. This method might

be also extended to two-dimensional systems. In the analytical and numerical imple-

mentation we add an inhomogeneous source term to the Gross-Pitaevskii equation

which describes the coupling from a reservoir of Bose-Einstein condensate to the wave

guide (see Fig. 3.2). This approach was introduced for one-dimensional systems in

Ref. [69]. The Gross-Pitaevskii equation with source term reads:

i~
∂

∂t
Ψ(r, t) =

(

− ~
2

2m
∆ + V (r) +

~
2g(x)

2m
|Ψ(r, t)|2

)

Ψ(r, t)+ S(r, t) e−iµt/~. (3.2)

In the following we use a source S(r, t) = S0(t)φS(y)δ(x− x0) that emits along a line

at position x0 with a transverse intensity profile φS(y). Furthermore µ = ~
2k2/2m is

the chemical potential of the BEC in the reservoir.
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Figure 3.2: In the upper figure the coupling mechanism of a reservoir of Bose-Einstein

condensate to a wave guide is shown schematically. The δ-like source at position x0 emits

a plane wave e±ikx to the left and right side with µ = ~
2k2/2m. In the lower figure the

setup of the two-dimensional simulation region is shown. The source emits plane waves along

the x-direction. Absorbing boundaries are implemented at the left and right boundary, and

periodic boundaries are used at the top and bottom.

3.1 Numerical integration scheme for the Gross-

Pitaevskii equation

Below we derive a numerical integration scheme for the time-dependent Gross-Pitaevskii

equation with the following properties: First off all the method should be applicable

to the nonlinear wave equation. In order to couple the condensate into the simulation

region with a specified wave vector we need to include the source term. The next

demand for the numerical setup is that at the boundaries of the simulation region in

x-direction approaching waves are absorbed with high efficiency. Whereas in the y-

direction we want to implement periodic boundary conditions. Last but not least the

numerical method should be accurate, especially the norm of the wave function has to

be conserved (without absorbing boundaries and source term).
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First we start to discuss an integration method for a linear Hamilton system ex-

cluding the nonlinearity, but with a time-dependent potential. Later we take the

nonlinearity into account by replacing the potential V (r, t) by an effective potential

Veff(r, t) = V (r) + g|Ψ(r, t)|2.
The inhomogeneous Schrödinger equation reads as follows:

i~
∂

∂t
Ψ(x, y, t) = H(t)Ψ(x, y, t) + S(x, y, t)e−iµt (3.3)

where H(t) = Tx + Ty + V (t) + Dx and Tx, Ty are operators for the kinetic energy in

x and y direction respectively, V is the potential and Dx is an operator describing the

absorbing boundaries. With the ansatz Ψ(r, t) = Φ(r, t) exp(−iµ/~) it is possible to

split off the trivial time-dependence: i~ ∂
∂t

Φ = (H(t) − µ) Φ+S(t). With the definitions

H̃(t) = H(t) − µ = T̃x + Ty + V (t) and T̃x = Tx +Dx − µ we get:

i~
∂

∂t
Φ = H̃(t)Φ + S(t) (3.4)

Integrating this equation results in:

Φ(t) = T e
− i

~

R t
t0

H̃(t′)dt′
Φ(t0) −

i

~

∫ t

t0

T e−
i
~

R t
t′

H̃(t′′)dt′′S(t′)dt′ (3.5)

where Φ(t0) is the initial wave function and T is the time-ordering operator.

To obtain the propagation term Φ(t+ ∆) we execute following steps: First we solve

the initial value problem, that means we propagate the Eq. 3.5 one time step ∆/2

starting from the initial wave function Φ(t). Then we repeat this backward in time

starting from the wave function Φ(t+∆) and expressing Φ(t+ ∆
2
) (final value problem).

Furthermore we can apply the trapezoidal rule to approximate the above equation for

the initial and final value problem:
∫ x2

x1

f(x)dx ≈ 1

2
(f(x1) + f(x2))(x2 − x1) (3.6)

This approximation is valid for small time steps ∆, and yields by eliminating Φ(t+∆/2)

a higher order integration scheme. By merging the two expressions for Φ(t+ ∆
2
) we get

the final result (Eq. 3.9) Φ(t).

Step t→ t+ ∆
2
:

Φ(t+
∆

2
) = T e−

i
~

R ∆/2
0 H̃(t+τ)dτΦ(t) − i

~

∫ ∆/2

0

T e−
i
~

R ∆/2
τ H̃(t+τ ′)dτ ′

S(t+ τ)dτ

Step t+ ∆ → t+ ∆
2
:

Φ(t+
∆

2
) = T e+ i

~

R ∆/2
0

H̃(t+∆−τ)dτΦ(t+∆)+
i

~

∫ ∆/2

0

T e+ i
~

R ∆/2
τ

H̃(t+∆−τ ′)dτ ′

S(t+∆−τ)dτ
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Applying the trapezoidal rule to the above equation for the initial and final value

problem and merging the two equations we find:

Φ(t+
∆

2
) ≈ e−

i
~
(H̃(t)+H̃(t+∆/2))∆

4 Φ(t) − i∆

4~

(

e−
i
~
(H̃(t)+H̃(t+∆/2))∆

4 S(t) + S(t+
∆

2
)

)

≈ e
i
~
(H̃(t+∆/2)+H̃(t+∆))∆

4 Φ(t+ ∆)

+
i∆

4~

(

e+ i
~
(H̃(t+∆/2)+H̃(t+∆))∆

4 S(t+ ∆) + S(t+
∆

2
)

)

.

To abbreviate the above equation we define the following short notation, which is also

for small time steps ∆ a good approximation. For now it is just an abbreviation, as

we can can later come back to the original formula:

H̃(t+ ∆/4) ≈ 1

2
[H̃(t) + H̃(t+ ∆/2)] and (3.7)

H̃(t+ 3∆/4) ≈ 1

2
[H̃(t+ ∆/2) + H̃(t+ ∆)]. (3.8)

With this we end up at the final propagation scheme:

Φ(t+ ∆) = e−
i
~
H̃(t+ 3

4
∆)∆/2

[

e−
i
~
H̃(t+ 1

4
∆)∆/2

(

Φ(t) − i∆

4~
S(t)

)

−i∆
2~
S(t+ ∆/2)

]

− i∆

4~
S(t+ ∆). (3.9)

In this formulation one has to apply the propagation step onto the two-dimensional

wave function as a whole, which is usually time consuming. Therefore in order to

implement this scheme efficiently we have to make further approximations. We can

split the propagation into several effective one-dimensional problems. Therefore we

use the split-operator technique:

e−iH̃(t)τ/~ ≈ e−iT̃xτ/~ e−iTyτ/~ e−iV (t)τ/~ ≈ e−iV (t)τ/~ e−iTyτ/~ e−iT̃xτ/~ (3.10)

The symmetrization of the split-operator technique results according to the Baker-

Campbell-Hausdorff formula [67] to a higher order integration scheme. Applying this

method to the propagation step the final result is

Φ(t+ ∆) = e−
i
~
V (t+ 3

4
∆)∆/2e−

i
~
Ty∆/2e−

i
~
Tx∆/2

[

e−
i
~
Tx∆/2e−

i
~
Ty∆/2e−

i
~

V (t+ 1
4
∆)∆/2 (Φ(t) − i∆

4~
S(t)) − i∆

2~
S(t+ ∆/2)

]

− i∆
4~
S(t+ ∆). (3.11)
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In this way every step is effectively one-dimensional. This improves the scaling of the

execution time of the code with system size quite a lot. The above formula is compli-

cated, and for clarity we write this equation again in a more descriptive way (~=1):

Φ(t+ ∆) = e−iV ∆/2 e−iTy ∆/2 e−iT̃x ∆/2 e−iT̃x ∆/2 e−iTy ∆/2 e−iV ∆/2 Φ(t). (3.12)

↑
− i∆

4
S

↑
− i∆

2
S

↑
− i∆

4
S

In the following we use two different integration schemes for the x- and y-direction. In

the y-direction we use a Fourier propagation method, since it intrinsically implements

periodic boundary conditions, and in x-direction we employ the Crank-Nicolson inte-

gration scheme, which allows to incorporate absorbing boundaries at the left and right

side of the simulation region.

3.2 Fourier Propagation

In this section we explain the details of the propagation along the y-direction method

by employing the Fourier transformation to calculate Ty. For simplicity we neglect the

source term here. The inclusion of the source term will be described later on. First of

all we define the Fourier transformation of the wave function in y-direction:

Φ(ky) = FΦ(y) =
1

W

∫ W

0

e−ikyyΦ(y) dy (3.13)

Φ(y) = F−1Φ(ky) =
∑

ky

eikyyΦ(ky) . with ky = n
2π

W
, n ∈ Z , (3.14)

where W is the width of the two-dimensional system (see Fig. 3.2). The idea of the

Fourier method here is to apply a transformation in a way that the kinetic operator in

y-direction gets diagonal. Then the propagation of a time step is just a multiplication

with a complex number. Applying a Fourier transformation to the kinetic energy

operator has the desired effect:

T̄y = F Ty F−1 = F
(

− ~
2

2m

∂2

∂y2

)

F−1 =
~

2k2
y

2m
. (3.15)

Therefore we can write a propagation step of the wave function in the following way:

e−iTy ∆/2~ → F−1 e−iT̄y ∆/2~ F . (3.16)

This means we first apply a Fourier transformation, multiply the wave function with

a complex number and then apply a back transformation. In principle this has to be
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Figure 3.3: Demonstration of the periodic boundary conditions with the Fourier propagation

method. A Gaussian wave packet with initial velocity is positioned on the simulation region.

It propagates to the boundary and then enters from the other boundary.

done twice during one propagation step ∆, because the kinetic energy operator e−iTy ∆/2

appears twice in one propagation step (second line of Eq. 3.17). But we can omit the

second Fourier transformation (see third line of Eq. 3.17) by applying the propagation

in x-direction, because the operator T̃x is invariant under Fourier transformation. To

this end we apply T̃x not on the wave function Φ(x,y, t) but instead on the partially

Fourier transformed wave function Φ(x,ky, t), which is in addition advantageous as

explained later on.

Φ(t+ ∆) = e−iV ∆/2~ e−iTy ∆/2~ e−iT̃x ∆/~ e−iTy ∆/2~ e−iV ∆/2~ Φ(t)

= e−iV ∆/2~
F

−1 e−iT̄y ∆/2~
F e−iT̃x ∆/~

F
−1 e−iT̄y ∆/2~

F e−iV ∆/2~ Φ(t)

= e−iV ∆/2~
F

−1 e−iT̄y ∆/2~ e−iT̃x ∆/~ e−iT̄y ∆/2~
F e−iV ∆/2~ Φ(t) (3.17)

The method of the Fourier transformation has the advantage that the desired peri-

odic boundary condition is already implemented intrinsically. A demonstration of this

property is illustrated in Fig. 3.3. A Gaussian wave packet ψ(y, t) with initial velocity

is positioned on the simulation region:

ψ(y, t) = e−y2/2+iky . (3.18)

The wave packet propagates to the right boundary and enters from the left hand side

again. During the propagation the wave packet spreads of course.

3.3 Finite Difference Approximation

In this section we describe the integration scheme in x-direction with the method

of finite differences. For the moment we neglect the absorbing boundaries and the
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source term. As explained already we can apply to every ky point a one-dimensional

propagation along the x-direction. Here we approximate the time evolution of the

unitary operator e−
i
~
T̃x ∆ with the Crank-Nicolson integration scheme [65, 69–71].

e−
i
~
T̃x ∆ Φ(x, ky, t) ≈

1

1 + i∆
2~
T̃x

(

1 − i∆
2~
T̃x

)

Φ(x, ky, t) . (3.19)

Note that this approximated time evolution operator in Eq. 3.19 is unitary and con-

serves the norm of the wave function. Furthermore it is of order O(∆2) in the time

step ∆. This implicit integration scheme for the wave function reads then

(

1 +
i∆

2~
T̃x

)

Φ(x, ky, t+ ∆) =

(

1 − i∆

2~
T̃x

)

Φ(x, ky, t). (3.20)

We write the wave function in the lattice representation with Nx lattice sites and a

lattice spacing of ∆x = (xmax − xmin)/N in the following way: Φn
j,ky

= Φ(xmin +

j∆x, ky, t0 + n∆), where the upper index n indicates the discrete time, and the lower

index j the discrete position. Here xmin and xmax are the lattice boundaries. Using

the finite-difference representation for the Hamilton operator T̃x we find

(

1 ± i∆

2~
T̃x

)

Φn
j,ky

≃ Φn
j,ky

± i∆

2~

[

− ~
2

2m

Φn
j+1,ky

− 2Φn
j,ky

+ Φn
j−1,ky

∆2
x

− µΦn
j,ky

]

(3.21)

The lattice points Φn
j,ky

can be written in vectorial form ~Φn
ky

= (Φn
0,ky

, ..,Φn
N−1,ky

). With

this definition Eq. 3.20 can be rewritten in matrix representation:

D2
~Φn+1

ky
= D1

~Φn
ky

(3.22)

with the definitions of the matrices

D1 ≡
[(

1 − i∆

2~
T̃x

)]

, D2 ≡
[(

1 +
i∆

2~
T̃x

)]

. (3.23)

This shows that we have to solve a system of linear equations, and that the matrices

D1 and D2 are tridiagonal matrices.

Up to now we have excluded the source term. This can easily be incorporated in

this finite difference scheme. According to Eq. 3.12 or Eq. 3.11 the full equation in

x-direction we have to solve including the source term is as follows:

Φ(x, ky, t+ ∆) = e−
i
~
Tx∆/2

[

e−
i
~

Tx∆/2Φ(x, ky, t) − i∆
2~
S(x, ky, t+ ∆/2)

]

. (3.24)

Here the source term S(x, ky, t) = S0(t)φS(ky)δ(x − x0) is the Fourier transform of

S(x, y, t), but only in y-direction. The source is a δ-function in x-direction positioned
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at x0 = xmin + j′∆x (see Fig. 3.2). In order to incorporate the source term into our

matrix representation we define the components of the vector ~b
n+ 1

2
ky

b
n+ 1

2
j,ky

=
i∆

2~
S0(t+ ∆/2)φS(ky) δj j′ . (3.25)

This leads to our final result for the integration step with the finite difference method:

D2
~Φn+1

ky
+~bn+ 1

2 = D1
~Φn

ky
. (3.26)

This system of linear equations with an inhomogeneous term is solved very efficiently

in a numerical implementation. The next step is to include the absorbing boundaries

in the propagation step. The method we use is only possible in this Crank-Nicolson

integration scheme.

3.4 Absorbing Boundaries in two dimensions

In the numerical simulation we are faced with the difficulty, that we want to study

scattering states which are extended to infinity to the left and to the right. But in the

numerical implementation we are limited to compute in a finite region. The boundary

introduces artificial back reflection in the case of the finite difference method, or re-

currences due to periodic boundary conditions in the case of the Fourier propagation

method. In order to tackle this problem we can either extend the lattice so that the

wave packet does not reach the boundary during the propagation time, or we modify

the integration scheme in order to suppress this artificial back reflection. The easiest

method is the use of a complex potential, but the precision is not very accurate. An-

other method was introduced by T. Shibata [72] for one-dimensional systems which is

especially suited in the case of scattering states with a narrow momentum distribution.

In this section we generalize this method to two-dimensional systems in order to absorb

wave functions at the left and right end of the numerical setup, according to Fig. 3.2,

where the wave function approaches the boundary with an arbitrary angle, or even

with an angular distribution.

We assume that the potential does not depend on y near the right or left boundary

V (r) = V (x). In our case we especially use a flat potential there. The idea is to

decompose the wave function along the y-direction into eigenstates. This is achieved

in the case of the flat potential with the Fourier transformation in y-direction.

Φ̄(x, ky) = FΦ(x, y) =
1

2πW

∫ W

0

e−ikyyΦ(x, y) dy (3.27)

Due to the eigenmode decomposition and the constant potential V (x) near the bound-

ary, the different eigenmodes do not interact anymore near the boundary. Therefore
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they can be considered separately. With this trick we have reduced the task of two-

dimensional absorption to the absorption in each one-dimensional Fourier mode ky

separately. This brings us back to the method of T. Shibata in one dimension Φ̄(x; ky).

Of course this method relies on the eigenmode decomposition, which is only possible

for linear systems. Therefore we have to pay special attention in applying this method

to the nonlinear Gross-Pitaevskii equation. To this end we switch off the nonlinearity

adiabatically when approaching the boundary (see Sec. 3.6 for details).

Let us illustrate for example an incoming wave with chemical potential µ = ~2|k|2

2m
.

This wave gets scattered elastically in the potential under investigation, and finally

approaches the boundary. Note that also in the case of the Gross-Pitaevskii equation

we have only elastic scattering processes. We apply the eigenmode decomposition, in

our case the Fourier transformation to obtain Φ(x; ky). At the boundary we therefore

have to absorb a wave with wave vector kx = ±
√

2m
~2 µ− k2

y in mode ky. Of course this

is only possible in the regime
~
2k2

y

2m
< µ, otherwise we have evanescent modes, which we

discuss later.

Now we briefly discuss the absorbing boundary conditions for the Schrödinger equa-

tion introduced by T. Shibata [72]. We consider

i~
∂

∂t
Φ(x, ky, t) =

(

− ~
2

2m

∂2

∂x2
−

~
2k2

y

2m
+ Vext

)

Φ(x, ky, t), (3.28)

where Vext is a constant external potential. The wave functions Φ(x, ky, t) = Ae−i(µt/~−kxx)

are then solutions with the dispersion relation

~kx = ±
√

2 [µ− V (ky)], (3.29)

where we defined the potential V (ky) = −~
2k2

y

2m
+ Vext. The plus and minus signs in

this equation correspond to left- and right-going waves. Therefore we want that the

absorbing boundaries fulfill the branch of the dispersion relation for right moving waves

at the right side of the grid, and the other branch at the left side of the grid. These are

the so-called “one-way wave equations”, allowing only outgoing waves. The nonlinear

dispersion relation Eq. 3.29 is now approximated by a linear one:

~kx = g1(µ− V ) + g2, (3.30)

where we have defined g1 and g2 according to Fig. 3.4. The approximation is chosen

in such a way that it is optimal in a small interval around the energy of the incident

wave:

g1 ≡ ±
√

2mα2 −
√

2mα1

α2 − α1

,

g2 ≡ ±α2

√
2mα1 − α1

√
2mα2

α2 − α1
. (3.31)



3.4. ABSORBING BOUNDARIES IN TWO DIMENSIONS 25

Figure 3.4: The positive branch of the dispersion relation of a plane wave (black line) is

approximated by a linear function (straight blue line). The parameters α1, α2 are chosen such

that the wave numbers of the plane waves to be absorbed lie within the momentum interval

∆kx.

The linearized dispersion relation Eq. 3.30 can now be transformed into a partial dif-

ferential equation via the following duality relations:

i~
∂

∂t
⇐⇒ µ,

∂

∂x
⇐⇒ ik . (3.32)

Finally, we arrive at a one-way wave equation:

i~
∂

∂t
Φ(x, ky, t) =

(

−i~ 1

g1

∂

∂x
+ V (ky) −

g2

g1

)

Φ(x, ky, t) . (3.33)

This one-way wave equation can be easily implemented in combination with the Crank-

Nicolson integration scheme. Only the boundary entries in the tridiagonal matrices D1

and D2 in Eq. 3.26 have to be modified. No additional calculation step is needed. The

corresponding matrix elements for the implementation of the absorbing boundaries are

presented in Ref [72, 73].

These boundary conditions absorb with a high degree of precision. This is demon-

strated in the examples of Fig. 3.10 and Fig. 3.11. Note that this boundary condi-

tions absorb superpositions of waves with momentum ~kx satisfying
√

2mα1 . ~kx .√
2mα2.

Note that α1 and α2 depend on the transverse Fourier mode ky due to the potential

V (ky). This is because we fix the absolute value of the wave vector of the incoming wave

|k|, and then adjust mode the optimal momentum for absorption to kx = ±
√

|k|2 − k2
y

in every ky.
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Evanescent modes - Complex absorbing Potentials

As seen above the method of T. Shibata can only be used in the case of
~2k2

y

2m
< µ.

Otherwise kx = ±
√

2m
~2 µ− k2

y is imaginary, and this leads to a numerical instability

in the above method. This imaginary kx corresponds to exponentially damped modes

and those do not propagate. They are called evanescent modes. Usually we do not

need to care about these modes, because they are damped anyway. Nevertheless in

a calculation over long times an artificial back-reflected background is accumulated,

especially in the case of slowly damped evanescent modes
~2k2

y

2m
. µ. In order to reduce

this artifacts we use complex absorbing potentials.

This is another often used method to suppress artificial back reflection from the

boundaries. To this end one adds an imaginary part to the potential V (r) in the

time-dependent integration procedure:

Φ(r, t+ ∆) = e−
i
~
(T+V (r))∆ Φ(r, t) with ℑ(V (r)) < 0 . (3.34)

In the inside of the simulation region this imaginary part is zero and is finite near

the boundary. The increase to the final value at the boundary of such an imaginary

part has to be very smoothly and the strength of such an imaginary part has to be

tuned very carefully and it has to be adjusted for every situation separately. There

are many free parameters to fit in contrast to the method of T. Shibata with only one

parameter. Nevertheless we can use complex absorbing potentials, because the modes

are already damped due to the evanescent character and therefore high accuracy is not

too critical, compared to propagating modes. Specifically we use a quadratic function

for the imaginary potential, which continuously starts to increase at 3π/k away from

the boundary.

With the combination of these two methods we arrive at a description for the bound-

ary which absorbs a two-dimensional wave packet with a momentum spread adjusted

by α1 and α2. The absorption is of very high accuracy and artificial back-reflections

are strongly suppressed. The quality depends mainly on the lattice spacing of the

numerical grid. We optimized this in such a way that in all calculations we have in

the long time limit less than 1% back reflection. Most of the time we achieve 0.25%

or less intensity oscillations due do artificial back reflection. Additionally this method

seamlessly integrates into the whole time dependent propagation scheme, since the de-

composition in eigenmodes is already performed due to the Fourier propagation method

in y-direction.
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3.5 Predictor-Corrector method

Up to now we described the time-dependent integration scheme for a linear Schrödinger

equation but already with a time-dependent potential V (r, t). This allows us to include

the nonlinearity by replacing the potential V (r, t) with an effective potential Veff(r, t) =

V (r) + g|Ψ(r, t)|2. The integration scheme can then be formulated in terms of the

effective potential:

Φ(t+ ∆) = e−
i
~
Veff (t+3

4
∆)∆/2 e−

i
~
Ty∆/2e−

i
~

Tx∆e−
i
~
Ty∆/2 e−

i
~
Veff (t+1

4
∆)∆/2 Φ(t).

(3.35)

For the calculation of Φ(t + ∆) from Φ(t) the unknown wave function at time t + ∆
4

and t+ 3∆
4

enters. Assuming that the wave function is only slowly varying in time we

can use the wave function at time t instead. If we let the time step ∆ be infinitesimal

small, the resulting error is negligible. But short time steps raise the computational

time. To eliminate this problem we use the predictor-corrector method. Therefore we

propagate the wave function in a first step using the effective potential at time t. In

the second step we calculate the effective potential using the temporary wave function,

and propagate again the same time step, but with this predicted effective potential:

• Predictor step: Calculate temporary Φ̃(t+ ∆)

Φ(t) −→ Φ̃(t+ ∆)

by using Veff = V + g|Φ(t)|2

• Calculate approximation for Veff using linear interpolation:

Ṽeff(t+ ∆
4
) = V + g|3

4
Φ(t) + 1

4
Φ̃(t+ ∆)|2

Ṽeff(t+ 3∆
4

) = V + g|1
4
Φ(t) + 3

4
Φ̃(t+ ∆)|2

• Corrector step: Calculate Φ(t+ ∆) with approximated Ṽeff :

Φ(t) −→ Φ(t+ ∆)

using Ṽeff(t+ ∆
4
) and Ṽeff(t+ 3∆

4
)

For an optimal result this scheme has to be iterated a couple of times until convergence

is achieved, but in the investigated nonlinear regime already one recursion step is

adequate.

3.6 Adiabatic change of the nonlinearity strength

In this section we bring together the nonlinear propagation method with the two-

dimensional absorbing boundaries and the source. In order to apply the absorbing
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Figure 3.5: The nonlinearity g(x) is adiabatically switched on inside the scattering region

and switched off outside the scattering region. This is necessary for the two-dimensional

absorbing boundary conditions. On the right sketch the experimental interpretation is shown.

As the nonlinearity strength depends on the transverse confinement a⊥ of the wave guide the

reduction of the nonlinearity refers to a broadening of the wave guide. This also allows to

transfer the Bose-Einstein condensate into the wave guide. If this change is slow enough,

then no condensate is scattered back. as is the s-wave scattering length of the atom-atom

interaction.

boundaries from Sec. 3.4 we have to apply an eigenmode decomposition in y-direction

near the boundary. This is only possible for a linear system. Furthermore the position

of the source has to be located in a linear regime in order to avoid nonlinear back-

action of the wave function with the source. To get around this difficulty we change the

strength of the nonlinearity slowly to zero when approaching the absorbing boundary.

We also position the source in the linear regime. A schematic setup of the simulation

region is shown in Fig. 3.5. We choose an adiabatic change of the nonlinearity as a

function of the longitudinal direction x as follows:

g(x, y) ≡ g(x) =
1

2
g0

[

tanh

(

2x

xad

)

+ 1

]

. (3.36)

It was demonstrated by T. Paul [65] for one-dimensional wave guides that an incoming

plane wave with wave vector k is transformed adiabatically to the nonlinear wave and

nothing is reflected for xad ≫ 2π
k

.

This adiabatic change of the nonlinearity strength g(x) is not only of technical in-

terest, it is also of experimental relevance. In an experimental setup the Bose-Einstein

condensate has to be transferred to the two-dimensional wave guide. The idea is to

start with a broad wave packet of condensate and move it towards the confining po-
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tential with decreasing width a⊥. This change of a⊥(x) is directly translated in the

nonlinearity strength: g(x) = 4
√

2π as

a⊥(x)
.

3.7 Source term

In this section we show that the source term, which we introduced in Eq. 3.2 emits plane

waves propagating towards the scattering potential. Since we place the source term in

the linear region (g(x) = 0) we restrict the discussion to the Schrödinger equation with

source term:

i~
∂

∂t
Ψ(r, t) =

(

− ~
2

2m
∆ + V (r)

)

Ψ(r, t) + S0(t)φS(y)δ(x− x0) e−iµt/~. (3.37)

In the following we use that the source S0(t)φS(y)δ(x− x0) emits along a line at posi-

tion x0 with a transverse intensity profile φS(y) and a time-dependent intensity S0(t).

Furthermore µ is the chemical potential of the BEC in the reservoir. We especially

focus on the case where the transverse profile is determined by φS(y) = eik0y. For

the general case one has to decompose φS(y) in a superposition of Fourier modes. A

solution to this inhomogeneous differential equation is given by:

Ψ(x, y, t) =
S0(t)m

i~2kx
e

−iµt
~ eik0yeikx|x−x0| (3.38)

where the wave vector in x-direction is determined by kx =
√

2mµ
~

− k2
0. We observe

that the source emits a plane wave moving away from the source position x0 with an

angle α = arctan k0

kx
, which can be illustrated with the current density:

j =
|S0|2

~3|kx|2
(±kx

k0

)

. (3.39)

The plus sign corresponds to x > x0 and the minus sign to x < x0. In our simulations

we fix the incoming current, and consequently the source term is determined by

|S0|2 =
~

2|kx|2|j|√
2mµ

. (3.40)

In order to be as close as possible to an experimental setup, we start our simulation

with an empty wave guide. Then we couple a reservoir of Bose-Einstein condensate

to the wave guide as depicted in Fig. 3.2, and we fill the wave guide gradually. In

the alternative method where a broad wave packet of condensate is adiabatically fed

into the wave guide the situation is similarly. Therefore we do not switch the source

abruptly on, but instead we increase the coupling strength adiabatically from zero to
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a) b) c)

d) e) f)

source

scattering
region

Figure 3.6: In the upper graph the adiabatic increase of the source amplitude s(t) up to the

final value is shown. The gradual filling of the waveguide is shown with density plots (a-e)

at consecutive times corresponding to the upper graph. At the beginning the wave guide is

empty, and is the slowly filled with condensate and reaches at the end a stationary scattering

state. In figure f) the setup of the system is depicted.

the final value. We take the time scale for the adiabatic increase ∆T to be much larger

than the characteristic time scale related to the chemical potential τ = ~/µ ≪ ∆T .

From the numerical point of view, in the linear case of the Gross-Pitaevskii equation

also convergence to a stationary scattering state is much faster reached, compared to

suddenly switching the source amplitude to the final value, where oscillations emerge.

Therefore we stay as close as possible to a stationary scattering state during the grad-

ual filling, which is finally reached at the end of the calculation. In the linear case

it can be shown, that a stationary solution is obtained [65], whereas in the nonlin-

ear case it is not guaranteed that a dynamic stable solution exists. In this case the

time-dependent integration scheme shows an intrinsically time-dependent wave func-

tion [19, 74]. Therefore we get additionally information about the dynamical stability

of solutions.

Note that in the stationary nonlinear case there are two possible scattering states, a

supersonic and a subsonic solution. Our procedure guarantees to populate always the

supersonic solution [65]. This supersonic solution is the desired solution to the exper-

imental setup described above. In principle the subsonic solution can be obtained if
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one starts with a Bose-Einstein condensate which is at rest in a trap with an additional

scattering potential, and then one begins to move the scattering potential [20].

3.8 Selected examples

3.8.1 Double barrier potential

In this first example we study a one-dimensional system with a double barrier poten-

tial. On the one hand this allows for a comparison to results known from Ref. [69] and

to confirmation of our numerical method. On the other side we give further interpre-

tation for the observed results, and especially relate the approach from the scattering

description to the problem of a decaying quasi bound state in the nonlinear regime. To

this end we consider the one-dimensional Gross-Pitaevskii equation:

i~
∂

∂t
Ψ(x, t) =

(

− ~
2

2m

∂2

∂x2
+ V (x) + g̃|Ψ(x, t)|2

)

Ψ(x, t) + S(x, t) e−iµt/~ (3.41)

where g̃ = 2as~ω⊥ is the one-dimensional interaction strength. We especially focus

on a one-dimensional wave guide with a harmonic transverse confinement and a corre-

sponding harmonic oscillator width of a⊥ =
√

~/(mω⊥) in the following. We consider

a double barrier potential given by:

V (x, y) = V0

(

e−
|x−L/2|2

2σ2 + e−
|x+L/2|2

2σ2

)

. (3.42)

The transmission is treated as a function of the chemical potential of the incoming

wave with wave vector k =
√

2mµ/~ and fixed incident current. For definiteness we

specify a double barrier potential with a height of V0 = 1.1~ω and a barrier width of

σ = 1.0a⊥. The two barriers are separated by a distance of L = 4.25a⊥.

For the linear Schrödinger equation the double barrier potential can also be seen as

a Fabry-Pérot interferometer where we get the well-known Breit-Wigner distribution

for the transmission from.

T (µ) =
(~γ0/2)2

(µ− µ0)2 + (~γ0/2)2
(3.43)

A transmission of T = 1 is observed if the energy µ of the incoming monochromatic

wave has a resonance frequency with energy µ0. The width of the resonance is deter-

mined by the decay rate γ0. Such a transmission spectrum is shown with the black

line in Fig. 3.7. Of course the above Breit-Wigner distribution is only a good approx-

imation for well separated resonances that do not overlap, which is the case for our
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Figure 3.7: The transmission through a double barrier potential is studied. The solid line

refers to the time-dependent integration of the Gross-Pitaevskii equation. The dotted line

shows an alternative approach where the stationary Gross-Pitaevskii equation is solved for

a fixed incident current (see Ref. [65, 73] for the methods used). Parameters: V0 = 1.1~ω,

σ = 1.0a⊥, L = 4.25a⊥, jin = 1ω.

parameters. The energy of the lowest resonance is found at µ0 = 0.389~ω. And the

next resonance is already above the potential maxima.

In Ref. [69] the transmission spectrum was studied for the nonlinear Gross-Pitaevskii

equation then. It was shown there that the resonant peak bends to the right for re-

pulsive atom-atom interaction and to the left for attractive interaction. This bending

results in a bi-stability phenomenon: For a fixed incident current more than one sta-

tionary scattering solution to the stationary Gross-Pitaevskii equation is found, which

is shown in the dotted lines of Fig. 3.7. The solution with high transmission results in

a high population of the quasi bound state in the resonator, whereas for the solution

with low transmission also a low density inside the resonator is found. Additionally we

carried out the time-dependent integration process of the Gross-Pitaevskii equation,

where the results are presented in the solid lines of Fig. 3.7. This shows that only the

stationary solution with the lowest transmission is populated.

In the following we explain the origin of the bi-stability, and especially draw a connec-

tion between the scattering states and the corresponding decaying quasi bound states.

We recognize that in the high transmitting state the corresponding high density inside

the resonator shifts the resonance energy µ0 due to the interaction energy in the non-

linear case µ0 → µ0(N), where N =
∫ L/2

−L/2
|Ψ(x)|2dx is the condensate density inside

the resonator. Similarly, the decay rate depends on the density γ0 → γ0(N). Thus, the

transmission function has to be modified in the following way:

T (µ) =
(~γ0(N)/2)2

(µ− µ0(N))2 + (~γ0(N)/2)2
(3.44)

This ansatz assumes that the important modifications arise due to the interaction in



3.8. SELECTED EXAMPLES 33

the resonator, and the nonlinear effects outside the double barrier can be neglected.

This is justified near a resonance with a small decay rate and correspondingly with a

high density inside the double barrier. The open question is now the calculation of the

dependence of the density N on the chemical potential µ and the incoming current jin.

In the linear case it can be shown that the density is given by [73]:

N =
~γ0/2

(µ− µ0)2 + (~γ0/2)2
~jin (3.45)

In order to account for the nonlinearity in the above equation the resonance energy

and the decay rate depend again on the density itself. Therefore we have to solve the

resulting equation self-consistently:

N =
~γ0(N)/2

(µ− µ0(N))2 + (~γ0(N)/2)2
~jin (3.46)

Since we want to compare the new formulas Eq. 3.44 and Eq. 3.46 in the nonlinear

regime with the stationary solution of the Gross-Pitaevskii equation shown in Fig. 3.7,

we need the density dependent resonance energy and decay rate:

This information can be extracted now from the corresponding decaying quasi bound

state [75–78]. We choose the method of time integration of the Gross-Pitaevskii equa-

tion with density renormalization. To this end we perform a numerical simulation of

the time-dependent Gross-Pitaevskii equation without source term. Instead of this we

use a Gaussian wave packet in the double barrier as initial condition for the propaga-

tion process close to the resonance state. After each propagation step we renormalize

the wave function to the density N in the resonator according to:

N =

∫ L/2

−L/2

|Ψ(x)|2 dx (3.47)

With this description convergence to the energetically lowest quasi bound state is

realized with the normalization N (see Fig. 3.8 a). Finally we extract the energy of the

quasi bound state by:

µ0(N) =
1

N

∫ L/2

−L/2

dx Ψ∗(x)

(

− ~

2m

∂2

∂x2
+ V (x) + g̃|Ψ(x)|2

)

Ψ(x) (3.48)

The decay rate of the quasi bound state is given by:

γ0(N) = −∆N

Nτ
, (3.49)

where ∆N is the change of the density during the integration by a time step τ . The

results are shown in Fig. 3.8 b and c. With this information that the intensity is
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a) b) c)

Figure 3.8: a) The black line shows the double barrier potential. The red line (in arbitrary

units) shows the density of the wave function of the decaying quasi bound state, which

is obtained by time evolution with density renormalization in the resonator. Absorbing

boundaries are at the left and right boundary of the simulation region. b) Resonance energy

depending on the intensity. c) Decay rate depending on the intensity.

dependent on the resonance energy and decay rate we can solve the equations Eq. 3.44

and Eq. 3.46 self-consistently, and obtain the related transmission spectrum from the

information of the decay problem. The results are shown in Fig. 3.9. The solid line

shows the transmission received from the information of the decaying state. The dotted

line shows the stationary solutions of the Gross-Pitaevskii equation. For the methods

used to solve the stationary Gross-Pitaevskii equation see Ref. [65, 73]. The good

agreement - besides a small overestimation of the line width for higher nonlinearity -

shows the one to one correspondence between nonlinear scattering states and nonlinear

resonances. Especially it reveals the bistability phenomenon.

With the density depending on the resonance energy we can now provide an inter-

Figure 3.9: The dotted line shows the transmission corresponding to all stationary solutions

of the stationary Gross-Pitaevskii equation for a fixed incident current (see Ref. [65, 73] for the

methods used). The solid line shows the transmission calculated from the density dependent

resonance energy and decay rate for the corresponding quasi bound state.
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pretation, why only the lowest transmission state is populated in the time-dependent

transmission process with source (see solid line in Fig. 3.7). To illustrate this let us

consider a nonlinearity strength and a chemical potential of the incoming wave, where

a bistability exists near the nonlinear resonance. Since the starting point of the time-

dependent integration is an empty wave guide we are in the low density regime or,

similarly expressed, in the almost linear case, which implies that the incoming wave

is off-resonance. To this end no high density in the resonator can build up and the

high transmitting state can not be realized. Because of this a necessary condition to

populate the high transmitting state is an initial high density in the double barrier.

This can for example be realized by an adiabatic increase of the chemical potential,

from the linear resonance energy to the nonlinear resonance energy.

If the high transmitting state is populated in this way it is found that this state is

dynamically unstable [69] and decays over a characteristic time to the low transmit-

ting state. This extracted information is a further advantage of the time-dependent

approach to the Gross-Pitaevskii equation, namely that we can extract information

about the dynamic stability of stationary solutions.

3.8.2 Multiple slit interference

Now we can go on to a truly two-dimensional system. We investigate the transmission

through a double slit and through an array of slits. In the latter example our numerical

setup is perfectly suited, because in y-direction we have already periodic boundary

conditions, and therefore we can restrict the calculation to a single slit. Treating the

problem this way leads to a result which is already correct for an infinitely large array

of slits. The setup is shown in Fig. 3.10 where the slit has a width of 2λ and the

slits are separated by 6λ. The source emits a wave travelling perpendicular to the

barrier. The barrier is chosen to have a finite height V0 = 5µ. The density plot

of the final stationary solution is shown with white color referring to high intensity

and black color to zero intensity. In the lower panel the stationary wave function is

Fourier transformed in y-direction and the intensity of the wave function for the ky

modes are shown. The black line refers to the wave vector ky = 0. At the left side

one can see the typical interference pattern of the incoming and reflected wave for

this mode, whereas for all other modes there is no interference pattern. Only at the

barrier scattering into higher modes occurs and somewhere else away from the barrier

no scattering is possible. Therefore we just have the zero mode and plane outgoing

waves in all the higher modes to the right side. One can also see the perfect numerical

symmetry in y-direction between the wave vectors +ky and −ky. Near the barrier one

can also observe higher ky modes which go exponentially to zero when approaching the

boundaries. In these cases ky is so large that kx needs to be imaginary to preserve the

energy-momentum relation µ = ~2

2m
(k2

x + k2
y).
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a)

x

y

0

b)

Figure 3.10: The setup is shown in the upper picture, where the slit has a width of 2λ and

the slits are separated by 6λ. The source emits a wave travelling perpendicular to the barrier.

The barrier is chosen to have a finite height V0 = 5µ. The density plot of the final stationary

solution is shown with white color referring to high intensity and black color to zero intensity.

In the lower panel the stationary wave function is Fourier transformed in y-direction and the

wave function for the ky modes are shown. The lower right graph is a high zoom to the

outgoing mode ky = 0, which illustrates the small errors from the absorbing boundaries.

The straight line of the intensity is also an excellent demonstration for the absorbing

boundaries in two dimensions. The fact that there is no interference pattern shows

the high precision of the absorbing boundaries. In the lower right graph of Fig. 3.10 a

zoom into the ky = 0 mode of the intensity of the wave function is shown. One can see

tiny oscillations with a periodicity of the wave length. This corresponds to reflections

from the boundaries. From the height of this oscillations we estimate the artificial back

reflection to be less then 0.25%. In the rest of the calculation we keep the quality of

the back reflection to be lower then 1%.

As a special case we want to mention the double slit as a well-known and often

discussed problem: The setup is analog to the setup of the multiple slit problem. The

slits in this example have a width of λ and are separated by 3λ. The finite height of

the barrier is chosen as V0 = 5µ. One analytical result of the intensity at x = x0 is

shown in Fig. 3.11 with a black dashed line. It is shaped like a squared sine wave. The



3.8. SELECTED EXAMPLES 37

result is calculated by summing up all incoming wave amplitudes with different wave

vectors and then being squared. It is assumed that the incoming wave amplitudes are

sinusoidal in the slit. This can be done, because the barrier is long enough (length

is λ/2) to make the waves passing the slit be standing waves, supposed to be in the

ground state. The second analytical result shown as blue dotted line in the same figure

is analog to the first one but with the wave amplitudes passing the slit being taken

from the numerical calculation. In this way it can be seen that the deviations arise not

from numerical errors, but can be explained by using the correct intensity distribution

at the slit.

a)

x

−W/4

0

W/4

y

x00

b)

Figure 3.11: The setup is analog to the setup in Fig. 3.10. The slits in this example have

a width of λ and are separated by 3λ. The finite height of the barrier is V0 = 5µ. In the

right panel the intensity at x = x0 is shown. The red line shows the result of the numerical

calculation, the black dashed line shows the analytic calculation with the incoming wave at

the slit assumed to be in the ground state, that means to be sinusoidal, and the blue dotted

line shows the analytic calculation with the values of the amplitudes of the incoming wave at

the slit taken from the numerical calculation





CHAPTER 4

Transport in disorder potentials

In this chapter we discuss the properties of disorder potentials and the transport process

in such potentials. In experiments with Bose-Einstein condensates the disorder can

originate for example from imperfection of the experimental setup. In one-dimensional

waveguides manufactured with magnetic fields which are created with wires on a micro

fabricated chip the imperfections in the wires result in inhomogeneous magnetic fields

[19, 21–23]. Therefore this mechanism imposes a disorder potential on the waveguide.

On the other hand disorder potentials can be created on purpose to investigate for

example the transition to Anderson localization [26–29]. The most evolved technique

for creating disorder potentials in Bose-Einstein condensate experiments is to shine

a laser beam onto a diffuse plate and image the resulting speckle pattern onto the

experimental region. This method results in a speckle field [31].

First we discuss the properties of the disorder potentials, and then we study the

important length scales, namely the scattering mean free path and the transport mean

free path. The latter one is given by the Boltzmann transport path in the diffusion

approximation. When approaching the quantum regime interference effects cannot be

neglected and the transport length has to be corrected by coherent multiple scatter-

ing. In this chapter we neglect the atom-atom interaction within the Bose-Einstein

condensate. This allows to compare with an analytic theory where the correlations of

the disorder potential are taken into account. A further justification to neglect atom-

atom interaction here is given later on in chapter 5, where coherent backscattering is

treated. There we show that the intensity distribution in the medium is unchanged in

lowest order of the interaction strength. Only the coherent multiple scattering effects

are modified due to the atom-atom interaction.
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In the following we focus on the transport of a Bose-Einstein condensate through

a disorder potential. Therefore it is necessary to explain the principal setup of the

simulated system: A coherent flow of a Bose-Einstein condensate enters the simulation

region via the inhomogeneous source term added to the Gross-Pitaevskii equation.

Then the condensate scatters on a slab of disorder potential. We assume this disorder

potential to be Gaussian correlated or to be a speckle potential. To simulate an infinite

slab we use periodic boundary conditions at the transverse boundaries. Finally the

condensate reaches the left or right boundary, where it gets absorbed.

source

y

0

W

0 x Lx0

Figure 4.1: A coherent flow of a Bose-Einstein condensate enters the simulation region

via the coupling with the source term. Then the condensate scatters on a slab of disorder

potential. To simulate an infinite slab we use periodic boundary conditions at the transverse

boundaries. Finally, the condensate reaches the left or right boundary, where it gets absorbed.

The left panel shows a top view and the right panel a side view where the white plane

corresponds to the potential and the condensate wave function is illustrated in blue.

4.1 Correlated disorder potentials

In Bose-Einstein condensate experiments the disorder potential can be created by op-

tical means. In this case the shortest length scale is the wave length of the laser beam.

Therefore the correlation length which gives the typical width of the disorder peak is

usually in the order of σ ≈ 1µm. On the other hand the size of the Bose-Einstein con-

densate is usually in the order of d ≈ 100µm. This size implies a width ∆k ≈ 1/d of the

wave vector distribution, which in turn limits the maximal wavelength λ≪ 1/∆k = d

of the moving condensate in order to have condensate with a relative narrow momen-

tum width. Therefore, it is not possible to consider a priori the disorder potential
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as δ-correlated, and we have to account for a finite correlation length. In this work

we consider two cases of disorder potentials: Gauss-correlated disorder potentials and

speckle disorder potentials.

4.1.1 Gauss-correlated disorder potentials

In the following we consider a disorder potential which has a two-point correlation

function of Gaussian shape:

V (r)V (r′) = P(r − r′) = V 2
0 e−

|r−r′|2

2σ2 , (4.1)

V (r) ≡ 0, (4.2)

where V0 is the strength of the disorder potential and σ is the correlation length. A

correlation energy of Eσ = ~
2

2mσ2 is then related to this correlation length. For conve-

nience, we consider a disorder potential with vanishing mean. Additionally, we assume

that the disorder potential arises from a Gaussian random process. This implies that

every 2N -point correlation function can be expressed in terms of two-point correlation

functions:

V (r1)V (r2)..V (r2N−1)V (r2N) =
∑

P

V (rP (1))V (rP (2)) · ... ·V (rP (2N−1))V (rP (2N)) (4.3)

Furthermore (2N − 1)-point correlation functions vanish.

Such a Gauss-correlated disorder potential is analytically much easier to treat than a

speckle potential which is discussed below. To this end it also allows us to compare the

results with an analytical description in the nonlinear regime in the next chapter about

coherent backscattering. From the experimental point of view the Gauss-correlated

disorder potential is more difficult to implement, because with an optical setup a speckle

potential is created. But the Gauss-correlated disorder potential can also be seen as

an approximation to the speckle potential or other correlated disorder potentials. For

a small enough correlation length the details of the correlation function are not that

important and the true correlation function can be approximated by a Gaussian one.

The numerical implementation requires a method to create a potential with such

properties. To this end we create a random number with a Gaussian probability dis-

tribution P (aij) on the numerical grid on each lattice point. Then we convolute these
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Figure 4.2: Comparison of the potential correlation function of the numerically generated

disorder potentials with the analytical prediction. In the right figure a density plot of a

typical disorder realization is shown.

random numbers with a Gaussian envelope:

V (r) =

∫

dr′V(r′)
1

NxNy
e−

|r−r′|2

2σ2 (4.4)

V(r) =
∑

ij

aijδ(r − r′ij) with rij = (idx, jdy) (4.5)

P (aij) =
1

V0

√
2π

e
−

aij

2V 2
0 (4.6)

where i and j are the lattice points, dx and dy the lattice spacing in x and y-direction.

V0 is the strength of the disorder potential and σ is the correlation length. The nor-

malization factors Nx and Ny are given by:

N2
α =

∑

i

e−
2d2

α
σ2 i2 ≈ σ

√
2π

2dα

, (4.7)

with α = x, y. In Fig. 4.2 a density plot of a typical disorder realization is shown. In

the left graph we compare the disorder averaged correlation function of the numerically

generated configurations (about 1000 disorder potentials) and the analytical prediction,

and we see a very good agreement.

In the following numerical analysis we consider the transport of a Bose-Einstein

condensate through a slab of disorder. Therefore we have an interface between the

disorder region and the outside with a flat potential. Numerically the interface is

created by restricting the primary lattice which is filled with the random numbers to

the disorder region. Then we apply the convolution. This means that the crossover

between flat potential and disorder takes place on a distance of the correlation length.
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4.1.2 Speckle potentials

The speckle potential is the disorder potential which is most often used in Bose-Einstein

condensate experiments [26–29, 31], because it can be produced in the easiest way.

One shines a laser beam on a diffuse plate with radius R and images the resulting

interference pattern onto the experimental region located at a distance z away from

the diffuse plate. The two-dimensional condensate is in the plane perpendicular to the

optical axis like it is shown in Fig. 4.3. After the diffusive plate, which is rough on the

scale of the optical wavelength, the electrical field is a superposition of many coherent

partial waves. Due to the irregular scattering positions the phase of these partial

waves is distributed randomly. Therefore the real and imaginary part of the electrical

field have Gaussian statistics. However, the speckle potential does not obey Gaussian

statistics, because the interaction of the laser field with the atoms of the Bose-Einstein

condensate depends on the intensity of the electrical field and the absolute square of

a Gaussian random field loses its Gaussian properties. The correlation function of a

speckle field is given by [79, 80]:

V (r)V (r′) = V 2
0

[

1 +

(

2
J1(|r− r′|/σ)

|r− r′|/σ

)2
]

(4.8)

Here J1 denotes the first order Bessel function. V0 is the strength of the disorder

potential which is proportional to the laser intensity. The correlation length is given

Figure 4.3: Optical setup as it was used in the experiment by J. E. Lye, et al.. A laser

illuminates a diffusive plate. The resulting interference pattern is then imaged onto the

region of the condensate. The lower left figure shows the speckle potential in real space and

its Fourier transform in the lower right figure. (The picture is taken from Lye, et al.[31].)
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Figure 4.4: Comparison of the potential correlation function of the numerical generated

disorder potentials with the analytical prediction. In the right figure a density plot of a typical

disorder realization is shown. As explained in the text the speckle potential is asymmetric,

because the intensity has a lower bound, but no upper threshold. There are more regions

with low intensity (blue regions) and less high intensity spots (red spots).

by σ = z
RkL

, where R is the radius of the diffusive plate, z is the distance between

diffusive plate and condensate, and kL is the wave vector of the laser beam [80]. Note

that here we have chosen the same definition for the correlation length σ as in the

literature [81]. This is a natural definition, since the speckle potential has a cut-off in

momentum space kmax = 1/σ (see below for discussion), which results in a width of

the correlation function of
√

2σ, in contrast to a width of σ in our definition of the

Gauss correlated disorder potential. In the same line we define the correlation energy

in the case of the speckle potential as Eσ = ~2

mσ2 . In the following we neglect the offset

of V 2
0 from the correlation function which corresponds to setting the mean value to

zero V (r) = V0 → V (r) = 0. This potential offset V0 can be neglected, because it can

be trivially separated in the Schrödinger equation.

Numerically a speckle potential is generated in the following way [80, 82, 83]: We

start from the potential in the Fourier space V (kx, ky). Then we choose random vari-

ables for the real and complex part at the positions of the numerical grid with a Gaus-

sian probability distribution, but only at lattice points with k =
√

k2
x + k2

y <
1
σ

= kmax.

Finally, we apply a Fourier transformation back to position space resulting in a ran-

dom electrical field. To get the intensity we take the absolute square of the electrical

field. This method results in a speckle correlated disorder potential with the above

correlation function.

Here we already recognize that the speckle potential has a finite support in the k-

space with a maximal wave vector kmax. As a consequence the localization length for

Anderson localization diverges in Born approximation. For a propagating wave with
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k > kmax this implies that it localizes on very large length scales.

Furthermore, we note that the speckle potential is not symmetric with respect to the

mean value V (r). This is plausible, since intensity has a lower bound, but no upper

threshold. Therefore the three-point correlation function V (r)V (r′)V (r′′) 6= 0 does not

vanish, in contrast to the Gaussian correlated disorder potential.

For our further studies of the transport through a two-dimensional slab geometry we

have to define the interface between the disorder region and the flat potential. To this

end we create a disorder potential in the whole simulation region, and multiply this

potential with an envelop function f(x):

f(x) =
1

4

[

tanh

(

x− xmin

σ

)

+ 1

]

·
[

tanh

(−x+ xmax

σ

)

+ 1

]

(4.9)

where xmin and xmax are the left and right positions of the interface to the disorder.

We switch on the disorder potential within the natural length scale of σ.

4.2 Scattering mean free path

In disordered systems the observables differ from realization to realization. Therefore

only observables which are averaged over disorder configurations are meaningful. Such

a parameter is the scattering mean free path, which denotes the average distance

between two scattering events. This scattering mean free path manifests itself in the

exponential decay of the disorder averaged complex wave function. It can be calculated

in the weak scattering approximation from the imaginary part of the self energy in the

effective medium. The real part of the self energy accounts for a change in the refractive

index.

In this chapter we study the evolution of the linear system at energy E = ~2k2

2m
where

k is the wave vector which is governed by the Schrödinger equation:
(

− ~
2

2m
∇2 + V (r)

)

Φ(r) = E Φ(r) (4.10)

In the next two sections we follow closely the derivation of R. C. Kuhn, et al.[80, 84]

for the diagrammatic Green function approach with correlated potentials and also

references [85–88] for general perturbation theory and quantum transport. The re-

tarded/advanced Green function GR/A(E), which describes the evolution of the wave

function in a single disorder realization is given by the following Born series:

GR/A(E) = G
R/A
0 (E)+G

R/A
0 (E)V G

R/A
0 (E)+G

R/A
0 (E)V G

R/A
0 (E)V G

R/A
0 (E)+... (4.11)

where G
R/A
0 is the retarded/advanced Green function for the free Schrödinger equation

with vanishing disorder potential. G0 is diagonal in momentum space due to the



46 CHAPTER 4. TRANSPORT IN DISORDER POTENTIALS

isotropy of space:

〈k′|GR/A
0 (E)|k〉 = (2π)2δ(k − k′) G

R/A
0 (k, E) = lim

ǫ→0+

(2π)2δ(k − k′)

E − ~2k2

2m
± iǫ

(4.12)

Since we are not interested in the dynamics of a special disorder potential but in

observables which are independent of the disorder configuration, we average the Green

function over many different disorder realizations:

G(E) = G0(E)+G0(E)V G0(E)V G0(E)+G0(E)V G0(E)V G0(E)V G0(E)+... (4.13)

The linear term in V disappears, because we have chosen the disorder potential V to

have a vanishing mean. This series can formally be summed up to yield the following

Dyson equation:

GR/A(E) = G
R/A
0 (E) +G

R/A
0 (E) ΣR/A(E) GR/A(E) (4.14)

GR/A(E) =
1

G
R/A
0 (E)−1 − ΣR/A(E)

(4.15)

Here we introduced the retarded/advanced self-energy ΣR/A. In the second equation

we solved for the averaged Green function, which is possible, because upon iteration

the Dyson equation shows the structure of a geometric series. The self-energy ΣR/A

contains all irreducible correlation functions. Irreducible correlations cannot be split

into products of lower order correlation function by suppressing only a single propagator

G0. This can be visualized by

Σ = + + + ... . (4.16)

Due to the disorder average the isotropy in space is restored again and the Green

function and the self-energy depend only on the modulus of k = |k|:

GR/A(k, E) = lim
ǫ→0+

1

E − ~2k2

2m
− ΣR/A(k, E) ± iǫ

. (4.17)

This leads to the complex dispersion relation E − ~2k2
E

2m
− ΣR(kE , E) = 0. The wave

vector kE inside the effective medium is then determined by the refractive index n:

kE = n(E)
1

~

√
2mE ; (4.18)

n(E) =

√

1 − ΣR(kE, E)

E
≈ 1 − ℜ

[

ΣR(kE, E)
]

2E
− i

ℑ
[

ΣR(kE, E)
]

2E
. (4.19)

In principle the two equations have to be solved self-consistently, but very often one

uses the on shell approximation, where in Eq. 4.19 on the right hand side kE is replaced
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by the free particle dispersion relation kE =
√

2mE/~. This approximation and the

expansion of the square root in Eq. 4.19 is only valid for weak scattering ∆ =
V 2
0

E Eσ
≪ 1,

where V0 is the height of the disorder potential and Eσ is the correlation energy. The

imaginary part of the refractive index illustrates that an incoming wave gets damped

and is therefore scattered into different scattering modes. The strength of the damping

is related to the scattering time τs by

~

τs(kE)
= −2ℑ

[

ΣR(kE, E)
]

(4.20)

and to the scattering mean free path ℓs by

ℓs(kE) =
~k

m
τs(kE) , (4.21)

which is the mean distance between two scattering events. We can therefore evaluate

the Green function in the on shell approximation, and by neglecting the energy shift

due to the real part of the self energy we obtain

GR/A(k, E) ≈ 1

E − ~2k2

2m
± i~/2τs(kE)

(4.22)

which transforms into position space as

GR/A(r, r′, E) ≈ −i m
2~2 H0(±kE|r − r′|) e−|r−r′|/2ℓs(kE) , (4.23)

where H0 is the zeroth-order Hankel function. By applying the Born approximation

which is valid in the regime of ∆ =
V 2
0

E Eσ
≪ 1 for the self energy, i. e., by cutting the

perturbation expansion after the first non-vanishing diagram in Eq. 4.16 we arrive at

the following expression for the self energy:

Σ
R/A
B (k, E) =

∫

dk1

2π
P(k − k1)G

R/A
0 (k1, E) (4.24)

where P(k) is the Fourier transform of the correlation function P(r) from Eq. 4.1.

Now we use the fact that the imaginary part of the free Green function is a Delta

function in momentum space and the definition P(k, θ) = P(kk̂ − kk̂′), where k̂ is a

unit vector in the direction of k. By combining Eq. 4.20, Eq. 4.21 and Eq. 4.24 we end

up with the final expression for the scattering mean free path ℓs in Born approximation

in two-dimensional systems [81]:

1

kℓs(k)
=

m2

k2~4

∫ 2π

0

dθ

2π
P(k, θ) . (4.25)

With this expression it is possible to insert an arbitrary correlation function for the

disorder type, for example for the Gauss correlated disorder and the speckle disorder.
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Figure 4.5: The coherent mode
∣

∣

∣
Ψ(x)

∣

∣

∣

2
averaged over ∼ 700 disorder configurations along

the propagation direction x is shown. It decays exponentially with the scattering mean free

path ℓs. The dashed line shows the fitted exponential which is in very good agreement with

the numerical calculation. A scattering mean free path of ℓs = 1.5λ is extracted. Parameters:

kL = 40, kσ = 0.5, V0 = 0.614µ, k =
√

2mµ/~.

Gauss correlated disorder potential

Now we consider the special case of a Gauss correlated disorder potential, which has a

Gaussian correlation function (Eq. 4.1):

P(r − r′) = V (r)V (r′) = V 2
0 e−

|r−r′|2

2σ2 . (4.26)

We insert the Fourier transformed correlation function, which is again a Gaussian, into

Eq. 4.25. In the Born approximation the scattering mean free path reduces to

1

kℓs
=
π

2

V 2
0

E2
(kσ)2 I0(k

2σ2) e−k2σ2

, (4.27)

where I0 is the modified Bessel function of order zero and k =
√

2mE/~. The scattering

mean free path as a function of the disorder strength V0 is shown in Fig. 4.6 for two

correlation lengths. In the left graph kσ = 0.5 is used which corresponds to almost

isotropic scattering, whereas in the case kσ = 1.0 scattering in forward direction is

strongly enhanced compared to scattering in backward direction.

In order to compare Eq. 4.27 to our simulation we have to extract the scattering

mean free path from the numerical wave functions. The setup for our numerical stud-

ies is shown in Fig. 3.1. A coherent flow of condensate with chemical potential µ = ~
2k2

2m

approaches perpendicularly the disorder region. (In the numerical setup we usually use

the term chemical potential as a synonym for the energy E = ~2k2

2m
, because the origin
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Figure 4.6: Comparison of the numerically extracted scattering mean free path (points),

and the analytical results in the Born approximation (BA, dashed line) for Gauss correlated

disorder potentials. This is shown for the correlation length kσ = 0.5 (left graph), where

almost isotropic scattering is effective, and for kσ = 1.0 with anisotropic scattering. We

observe good agreement in the weak scattering limit ∆ =
V 2
0

E Eσ
≪ 1 with Eσ = ~2

2mσ2 , whereas

we find a deviation of a factor 2 at ∆ ≈ 1. The deviations can be explained for kσ = 1.0 by

higher order approximation, the self consistent Born approximation [89].

of the propagating wave is a reservoir of condensate with a chemical potential µ.) In

the transverse y-direction we have periodic boundary conditions, so that we have trans-

lational invariance in y-direction for the observables such as the coherent mode or the

intensity after the disorder average is performed. As soon as the wave has entered the

disorder region, the coherent mode
∣

∣

∣
Ψ(x)

∣

∣

∣

2

(the absolute value is taken after the aver-

age in contrast to the intensity |Ψ(x)|2 ) according to Eq. 4.23 is exponentially damped

with the scattering mean free path. This is shown in Fig. 4.5, where we see an excellent

agreement with an exponential fit. The oscillation in front of the disorder medium and

at the end of the medium are not numerical or statistical effects, but are due to reflec-

tion at the boundary due to a change of the refractive index and will be discussed later

on. In Fig. 4.6 we compare the extracted scattering mean free path with the analytical

predictions. In the weak scattering regime ∆ =
V 2
0

E Eσ
≪ 1 where the diagrammatic

perturbation theory is valid we observe good agreement between the analytical results

(dashed line) and the numerical results (points). However, for larger ∆ ≈ 1 we already

see a significant deviation by approximately a factor of two. Sometimes [81] the validity

of the Born approximation is assumed up to ∆ ≈ 1, especially in the context of strong

localization. The importance is due to the fact that the localization length is strongly

underestimated in this case. The localization length ξloc gives the length scale of the

exponential decay of the wave function in the regime of Anderson localization (strong

disorder). The localization length is given by ξloc = ℓB exp(π
2
kℓB) [84], where ℓB is the

Boltzmann transport mean free path which is identical with the scattering mean free
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path in the case of isotropic scattering. The transport mean free path is discussed in

the next section. Since the localization length is exponentially dependent on the mean

free path small deviations in the scattering mean free path result in large deviations of

the localization length. In order to demonstrate that the deviations are related to the

breakdown of the Born approximation we compare our results to the scattering mean

free path in the self-consistent Born approximation (SCBA) calculated by C. A. Müller

[89], shown in the right graph of Fig. 4.6, where we observe a much better agreement

with the numerical results than for the Born approximation.

As already mentioned earlier we observe oscillations in the coherent mode in front

of the disorder region and also at the end of the disorder region in our numerical

simulation. These are no numerical errors or statistical fluctuations, but they are

due to the reflection at the disorder boundary. As seen in Eq. 4.19 the self-energy

also modifies the real part of the refractive index n =
√

1 − ℜ[Σ(E)]
E

. Due to this index

mismatch between the free part and the disorder region one observes specular reflection

at the interface [67]:

R =

(

1 − n

1 + n

)2

. (4.28)

The real part of the self energy for Gaussian disorder can be calculated in the Born

approximation yielding the following result [90]:

ℜ [Σ2(k, E)] = −mσV 2
0√

2~2k
e−2k2σ2

∫ ∞

0

dv
e−v

√
v
√

1 + v
2k2σ2

. (4.29)

Additionally, we can extract the reflected intensity from our numerical data. We

assume to have a superposition of an incoming plane wave with amplitude α and a

reflected wave with amplitude β: ψ = αeikx + βe−ikx. The intensity pattern is then

described by

|A|2 = α2 + β2 + 2αβ cos(2kx). (4.30)

We fit this function to our coherent mode in front of the disorder region and extract

the amplitudes α and β, which results in the numerical reflection coefficient R = α2

β2 .

In Fig. 4.7 a comparison between the analytical results (solid line) and the numerical

data (points) is shown. The good agreement confirms our explanation at least for not

too large disorder strengths where the analytical result is applicable.
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Figure 4.7: Comparison of the reflection at the disorder interface due to the refractive index

mismatch between the analytical result in Born approximation (solid line) and the numerical

data (points).

Speckle disorder potential

Now we consider the case of a speckle potential which is described by the correlation

function Eq. 4.8:

P(r − r′) = V (r)V (r′) = V 2
0

(

2
J1(|r− r′|/σ)

|r − r′|/σ

)2

. (4.31)

Within the Born approximation all higher order correlation functions are neglected, like

the three point correlation function, which vanishes in the Gaussian correlated disorder,

but not in the speckle potential. The Fourier transformation of this correlation function

can be calculated to yield [84]:

P(k) =
8V 2

0

σ2



arccos

(

k

2σ

)

− k

2σ

√

1 −
(

k

2σ

)2


 θ

(

1 − k

2σ

)

. (4.32)

The scattering mean free path cannot be calculated in closed form, therefore we have to

calculate the integral in Eq. 4.25 numerically. A comparison between the diagrammatic

approach in the Born approximation (BA) and our numerical calculations are shown in

Fig. 4.8 for two different correlation lengths. We observe quite large deviations in the

scattering mean free path for intermediate potential strength. The difference is much

larger than in the Gauss correlated disorder potential1. This slower convergence of the

1Note that due to the definition of the correlation length Eq. 4.8 of the speckle potential a corre-

lation length of σ of the speckle potential should be compared with a correlation length
√

2σ of the

Gauss correlated disorder potential.
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Figure 4.8: Comparison of the numerical extracted scattering mean free path (points),

and the analytical results in the Born approximation (BA, solid lines) for speckle disorder

potentials. This is shown for the correlation length kσ = 0.3 where almost isotropic scattering

is effective and for kσ = 0.5 with anisotropic scattering. We observe already significant

deviations in the weak scattering limit ∆ =
V 2
0

E Eσ
≪ 1 with Eσ = ~

2

mσ2 .

diagrammatic approach is also expected in the case of the speckle potential. In the

Gaussian case there are no diagrams contributing to the self energy which arise from

three point correlators. This is different in the speckle potential, where the self energy

has an additional contribution from the following third order diagram [84]:

Σ3 = + + + (4.33)

These deviations between our numerical studies and the analytical results are im-

portant, especially when the transition to strong localization is considered. Because

a change in the scattering mean free path modifies the localization length ξloc =

ℓB exp(π
2
kℓB) [84] significantly. The Boltzmann transport mean free path ℓb is pro-

portional to the scattering mean free path ℓs for fixed kσ.

4.3 Transport mean free path

In this section we focus on transport processes in disordered systems. Therefore a de-

scription of the intensity propagation is necessary, which finally leads to the diffusion

equation with the transport mean free path. In the classical limit, where interference

effects are neglected, this leads to the Boltzmann transport mean free path. Approach-

ing the quantum regime this transport mean free path has to be adjusted with weak

localization corrections due to coherent multiple scattering. We compare our numer-

ical simulations through a slab geometry with disorder to analytical results. In the
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diagrammatic approach we present only the main results following the derivation of

R. C. Kuhn, et al.[80, 84] and the original work by D. Vollhardt and P. Wölfle [91, 92].

In order to study the averaged current or the average intensity within a disordered

medium the intensity propagation kernel K = GA ⊗GR plays a fundamental role where

GR/A is the retarded/advanced Green function in the disorder potential. The matrix

elements are given by:

K(k,k′,q, E, ǫ) = 〈k′ − q
2
|GA(E + ǫ

2
)|k − q

2
〉〈k + q

2
|GR(E − ǫ

2
)|k′ + q

2
〉 (4.34)

K=

k + q/2 k′ + q/2

k − q/2 k′ − q/2 (4.35)

Similarly the matrix elements of the operator GA ⊗GR are given by:

〈k′ − q
2
,k + q

2
|GA(E + ǫ

2
) ⊗GR(E − ǫ

2
)|k − q

2
,k′ + q

2
〉 (4.36)

= (2π)2 δ(k − k′)GA(k,q, E, ǫ)GR(k,q, E, ǫ)

In the way the average Green function solves the Dyson equation the intensity propa-

gation kernel K solves the Bethe-Salpeter equation:

K = [GA ⊗GR] + [GA ⊗GR] R [GA ⊗GR] , (4.37)

R = U + U [GA ⊗GR] R. (4.38)

Here R is the reducible vertex function and U the irreducible vertex function. A

irreducible vertex function cannot be divided into two diagrams by removing a single

propagator line.

+ ++ += ...U

(4.39)

A upper line corresponds to GR and a lower line to GA. In order to account also for

speckle statistics further building blocks have to be considered. In this case also third

order diagrams appear [80], similar to the additional diagram in the self-energy shown

in Eq. 4.33:

+ + ...+ +
+++

++ + +

+++

+
+ +

+
(4.40)

Now one can solve the quantum kinetic equation in the diffusion approximation and

in linear response [84, 86, 91]. A central quantity appearing in this derivation is the
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Diffusion constant D or the transport time τ , which are related by D(k) = ~2k2

2m2 τ(k).

The transport time expressed in terms of the irreducible scattering vertex U is [80]:

~

τ(kE)
=

1

2πN(E)

∫ ∫

dk dk′

(2π)4
(1 − k̂ · k̂′)A(k, E)A(k′, E) U(k,k′, E), (4.41)

where we have defined the spectral function A(k, E) = −2ℑ[GR(k, E)] and the density

of states N(E) =
∫

dk
(2π)3

A(k, E). k̂ is again a unit vector in direction k. This expression

is quite general. It does not rely on the Boltzmann approximation, because it still

contains the general scattering vertex U . From the transport scattering time we define

the transport mean free path by ℓ(k) = ~k
m
τ(k).

In the following we briefly explain the time evolution of a intensity distribution in

terms of this Diffusion constant. We consider a point source, which is suddenly switched

on and off at t = 0. Therefore, we define the diffusive intensity relaxation kernel:

K(k,q, ǫ) =

∫

dE

2π

∫

dk′

(2π)2
K(k′,k,q, E, ǫ). (4.42)

This diffusive intensity relaxation kernel can be approximated in the long time limit

ǫτ/~ ≪ 1 and large-distance limit ℓ(k)q ≪ 1 to yield:

K(k,q, ǫ) =
1

−iǫ+ ~D(kE)q2
and (4.43)

K(k,R, t) =
1

4πD(k)t
e−

|R|2

4D(k)t . (4.44)

In the second equation we applied a Fourier transformation to time and position space.

This diffusive intensity relaxation kernel obeys the well known diffusion equation:

∂

∂t
K(k,R, t) −D(k)∆ K(k,R, t) = δ(R)δ(t), (4.45)

where R = r − r′. With these definitions the time evolution of the disorder averaged

probability density is written in the following way:

p(r, t) = 〈r|θ(t)ρ(t)|r〉 =

∫

dk

(2π)2

∫

dr′K(k, r − r′, t)W0(k, r
′). (4.46)

The probability density is expressed in terms of the average atomic density opera-

tor ρ(t), and the initial density is specified with the corresponding Wigner function

W0(k, r
′) =

∫

dq
(2π)2

〈k′ + q
2
|ρ0|k′ − q

2
〉.

We have introduced a general framework to characterize the transport process in

a disordered medium. The diagrammatic perturbation theory allows to calculate the

relevant transport observables like the transport mean free path, which in turn allows

to calculate the propagation of the diffuse probability density. This approach is still

general, because the disorder type has not to be specified yet. Moreover, the scattering

vertex is not fixed allowing to include coherent multiple scattering.
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4.3.1 Boltzmann transport mean free path

In this subsection we show the independent scattering approximation applied to the

transport mean free path, where all effects of interference are neglected and which is

called the Boltzmann approximation. The only irreducible diagram which is taken into

account is:

U ≈ U(k,k′, E) ≈ P(k − k′). (4.47)

In order to account for multiple scattering of this type a series of these single scattering

events is considered. In the reducible vertex function the considered types of diagrams

form a ladder. They are therefore denoted by L. This series of diagrams is also called

Diffuson.

R ≈ + L with L = + + =:... . (4.48)

Considering the wave function it can be interpreted in the following way: The amplitude

of a wave which returns to a given point is calculated by summing up all amplitudes

φi corresponding to a scattering path i. Hence the intensity is given by |
∑

i φi|2 =
∑

i φiφ∗
i +

∑

i6=j φiφ∗
j . For different scattering paths i and j a randomly distributed

phase factor appears in the second term, and thus the sum is zero. Only the first term

is kept, where the two waves travel along the same scattering path. In this case weak

localization corrections are neglected.

Inserting the lowest order diagram, Eq. 4.47, into the general expression for the mean

transport time, Eq. 4.41, we find the Boltzmann transport scattering time:

~

τB(kE)
=

1

2πN(E)

∫ ∫

dk dk′

(2π)4
(1 − k̂ · k̂′)A(k, E)A(k′, E) P(k − k′) (4.49)

=
m

~2

∫ 2π

0

dθ [1 − cos(θ)]P
(

2kE sin( θ
2
)
)

. (4.50)

For the spectral function one can use the on-shell approximation, which reduces the

spectral function to a delta function. From the Boltzmann transport time we can

define the Boltzmann scattering mean free path in the usual way by ℓB(k) = ~k
m
τB(k).

Combining Eq. 4.50 with the expression of the scattering mean free path in the Born

approximation Eq. 4.25 we end up with the final result for the Boltzmann scattering

mean free path:

ℓs
ℓB

= 1 − 〈cos(θ)〉f = 1 −
∫ 2π

0

dθ cos(θ)f(k, θ). (4.51)
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Figure 4.9: In the left graph the phase function for the Gauss correlated disorder potential

is shown. Small values of kσ correspond to almost isotropic scattering, otherwise scattering

in forward direction is enhanced and scattering is less effective. Therefore ℓB is larger than

ℓs, which is shown in the right graph.

Here we have defined the phase function f(k, θ), which illustrates the scattered intensity

into the scattering angle θ:

f(k, θ) =
P(k, θ)

∫ 2π

0
dθ P(k, θ)

. (4.52)

For delta correlated disorder potentials this phase function is constant as a function of

the angle, which implies isotropic scattering. Whereas for correlated potentials forward

scattering is usually pronounced in comparison to scattering in backward direction.

Gauss correlated disorder potential

Now we concentrate again on the Gauss correlated disorder potential. Analog to the

scattering mean free path we can calculate the Boltzmann transport mean free path in

closed form:

ℓs
ℓB

= 1 − I1(k
2σ2)

I0(k2σ2)
(4.53)

where Ij is the modified Bessel function of order j and k =
√

2mE/~. We note that

ℓB ∝ ℓs, and that the proportionality factor depends only on the product kσ. In the case

of isotropic scattering, kσ ≪ 1, the two length scales ℓs and ℓB are identical, whereas

in the case of longer correlation lengths forward scattering is enhanced as illustrated

in Fig. 4.9. This implies that scattering is less effective and the Boltzmann transport

mean free path is always larger than the scattering mean free path. In Fig. 4.14 a

comparison to our numerically obtained transport mean free path is presented. It

shows very good agreement to the analytical results in the weak scattering regime for
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small V0. For stronger scattering we see a deviation due to weak localization effects.

Both this effect and also the way we extract the transport mean free path from the

numerical simulation will be discussed below.

Speckle potential

In the case of the speckle potential the Boltzmann transport mean free path cannot be

calculated in closed form. Instead we state only analytical expressions for the limiting

cases [80]:

ℓB =
π2 − 4

π2 − 8
ℓs kσ = 1 (4.54)

ℓB ≈ ℓs kσ ≪ 1 (4.55)

ℓB ≈ 15

4
(kσ)2ℓs kσ ≫ 1 (4.56)

In Fig. 4.11 numerical results for the Boltzmann transport mean free path are shown,

which are calculated by inserting the speckle correlation function from Eq. 4.8 or

Eq. 4.31 into the general expression for the Boltzmann transport mean free path ℓB,

Eq. 4.51. We extract the transport mean free path from our numerical simulations and

find significant deviations like in the case of the scattering mean free path. This is

shown in Fig. 4.15.

4.3.2 Diffusion in a slab of finite width

Now we relate the analytical results to our numerical simulation. In the numerical setup

we consider a coherent beam propagating along the x-direction towards the disorder

Figure 4.10: Comparison between scattering mean free path and Boltzmann transport mean

free path for kσ = 1.0 for a Gauss correlated disorder potential.
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Figure 4.11: In the left graph the phase function for the speckle disorder potential is shown.

Small values of kσ correspond to almost isotropic scattering, otherwise scattering in forward

direction is enhanced and scattering is less effective. Therefore ℓB is larger than ℓs, which is

shown in the right graph.

region of finite length L. We can extract the intensity distribution in x-direction

from the stationary scattering state. Note that in y-direction we have translational

invariance due to the periodic boundary conditions after applying the disorder average.

Such an intensity distribution is shown in Fig. 4.12. According to Refs. [87, 93] the

intensity decays in the diffusive regime for long samples linearly with the position x.

Only at the entrance the intensity has a different shape and also at the exit, where

boundary effects are present. A method to extract the transport mean free path is

to extend the linear decay over the disorder region at the right boundary until it hits

the zero-line of the intensity. The distance from this point to the disorder boundary

corresponds to the transport mean free path z0ℓtr for two dimensions, as indicated by

an arrow in Fig. 4.12. The factor z0 is known only numerically: z0 ≈ 0.82 [94]. We

have confirmed this factor by solving the diffusion process numerically. The procedure

we adopted for the numerical diffusion simulation is performed with a Monte-Carlo

method: We start with the intensity of an incoming plane wave and propagate one

step ℓ, a random length, into the disorder region, where ℓ is taken from the probability

distribution with characteristic length ℓs: P (ℓ) = 1
ℓs

e−ℓ/ℓs according to the average real

space Green function. Then a scattering event into a random direction θ takes place,

where θ is the scattering angle. The probability distribution for the scattering angle

is the normalized phase function f(k, θ) (Eq. 4.52) corresponding to the correlation

function of the disorder potential. Then the propagation of the wave function and

the scattering events are repeated until the boundary of the medium is reached. For

the intensity distribution we calculate the sum over the intensity along the scattering

path. Finally, the entire scattering process is repeated until the intensity distribution

is statistically converged.

The only input parameters of the calculation are the incoming intensity, the scatter-
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Figure 4.12: The intensity averaged over ∼ 700 disorder configurations along the propaga-

tion direction x is shown. After an initial bump it decays linearly until the end of the disorder

region. The dashed line shows the linear fit where the transport mean free path is extracted.

The distance between the disorder boundary and the linear extrapolation of the intensity to

the x-axis results in 0.82ℓtr . For illustration the coherent mode is also shown. Parameters:

kL = 40, kσ = 0.5, V0 = 0.614µ, k =
√

2mµ/~.

ing mean free path, where we used the numerically extracted one from the quantum

mechanical calculation, and the phase function, where we inserted the analytical for-

mula Eq. 4.52. Note that there is no further fitting parameter involved. The result

of the diffusion process is shown in Fig. 4.13 (blue line), which shows good agreement

with our quantum mechanical results (black line). However, there are deviations, espe-

cially in the maximal value of the intensity. This is due to the weak localization effects.

To demonstrate this we performed the numerical simulation of the nonlinear Gross-

Pitaevskii equation with a nonlinearity strength at which the coherent backscattering

cone vanishes (see next chapter for details). In this case the intensity profiles (red and

blue lines) lie on top of each other.

4.3.3 Weak localization corrections

We have already seen that in the quantum limit and in the limit of strong scattering we

see deviations from the independent scattering approximation due to coherent multiple

scattering. Regarding the wave function we can calculate the amplitude of a wave which

returns to a given point by summing up all amplitudes φi corresponding to a scattering

path i. Therefore the intensity is given by |
∑

i φi|2 =
∑

i φiφ
∗
i +

∑

i6=j φiφ
∗
j . The first

part corresponds to the independent scattering approximation. If we take a closer

look at the second term, not all contributions cancel. Considering a scattering path
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Figure 4.13: Intensity distribution inside the disordered medium. The blue line is the

solution of the classical diffusion process in comparison to the black line from our quantum

mechanical calculation. The red line is the solution to the Gross-Pitaevskii equation with

a nonlinearity of g = 0.01, which corresponds to a vanishing backscattering cone (see next

chapter). In the latter case the multiple scattering effects are effectively suppressed and

therefore the intensity matches best with the classical diffusion process. Parameters left:

kσ = 0.5, V0 = 0.614µ, kℓs = 9.6, right: kσ = 1.0, V0 = 0.4µ, kℓs = 9.34.

i and its time reversed counterpart irev. We write the second term as
∑

i6=j φiφ∗
j =

∑

i φiφ∗
irev

+
∑

i6=j 6=irev
φiφ∗

j , and realize that the amplitude of a path and its time

reversed counterpart have always the same phase. Thus this contribution does not

vanish, but increases the return probability by a factor of two.

In order to account for this phenomena in the language of the diagrammatic ap-

proach, we have to include the maximally crossed diagrams CA, also called Cooperon:

U ≈ UBoltzmann+CA with CA = + ...+ =: . (4.57)

The relation to the ladder diagram is quite close, only the direction of the lower line

has to be inverted. Using time-reversal symmetry arguments the crossed diagrams can

be related to the ladder diagrams by:

CA(k,k′, q, E, ǫ) = L(k−k′

2
+ q

2
, k′−k

2
+ q

2
,k + k′, E, ǫ). (4.58)

In the case of anisotropic scattering due to the correlated potential it is also necessary

to include Hikami corrections CB, CC to have a consistent approximation [84]:

C = CA + CB + CC = + + =: . (4.59)

It can be shown that the total Cooperon correction yields C = 1
2
(1 − 〈cos(θ)〉f)CA,

[84]. With this information it is possible to evaluate the transport time τtr with weak
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localization correction in analogy to the derivation of the Diffuson. For the corrected

transport time we get:

τtr
τB

=
1

1 + δτtr/τB
≈ 1 − δτtr

τB
, (4.60)

where the correction δτtr is determined by [84]:

δτtr
τB

=
2~

2

m

∫

dQ
1

−iǫ + ~DBQ2
(4.61)

=
2

πkℓB

∫ 1/ℓB

1/L

dQ
1

Q
. (4.62)

In the second line the static limit is taken: ǫ → 0, and DB = ~k
2m
ℓB. The integral

Eq. 4.61 is divergent, so that an ultra-violet cut-off and also a infra-red cut-off has to

be introduced. For the UV cut-off the natural length scale is the system size or in case

of phase breaking mechanisms the phase coherence length (whatever is smaller). The

infra-red cut-off is set to be the Boltzmann transport mean free path. Evaluation of

Eq. 4.62 yields the final expression for the transport mean free path ℓtr = ~k
m
τtr with

the corrections for coherent multiple scattering [81, 95]:

ℓtr = ℓB

[

1 +
2

πkℓB
ln

(

L

ℓB

)]−1

(4.63)

This expression implies that due to the higher return probability the scattering in

backward direction is enhanced, and therefore transport processes are suppressed. Thus

Figure 4.14: Transport mean free path for a Gauss correlated disorder potential for nearly

isotropic scattering (left graph) and anisotropic scattering (right graph). The points denote

ℓB extracted from our numerical simulation, compared to the analytical Boltzmann approx-

imation ℓB (dashed) and with weak localization corrections ℓtr. The blue dotted line shows

the scattering mean free path. The length L of the disorder region is kL = 40.
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the transport mean free path is always smaller than the classical Boltzmann transport

mean free path.

Finally we can compare the expected corrections due to weak localization with our

numerical simulation. In the case of the Gauss correlated disorder potential the trans-

port mean free path is shown in Fig. 4.14 for almost isotropic scattering (left graph,

kσ = 0.5) and anisotropic scattering (right graph, kσ = 1.0). In both cases we see the

agreement of the analytical results with our numerical simulation. For small disorder

strengths V0 the diffusion approximation is valid and the Boltzmann mean free path

captures the physics, whereas for stronger disorder strength V0 weak localization ef-

fects get important, and the transport mean free path (numerical and analytical one)

deviate significantly from the independent scattering approximation. The results fit

for both isotropic and anisotropic scattering.

Figure 4.15 shows the same situation but now for the speckle disorder potential.

As mentioned earlier we already see significant deviations for the scattering mean

free path. In the same way the transport mean free path deviates from the analytical

predictions. In our numerical data one can see clearly the same qualitative behavior. In

the diffusive regime the transport mean free path is larger than the scattering mean free

path, which reverts in the regime of weak localization. This deviation of the analytical

result is important for the diagrammatic discussion, with regard to the predictive

power for experiments, since the threshold for strong localization depends strongly on

the transport mean free path. The localization length is given by ξloc = ℓB exp(π
2
kℓB).

Figure 4.15: Transport mean free path for a speckle disorder potential for nearly isotropic

scattering (left graph) and more anisotropic scattering (right graph). The points denote ℓB

extracted from our numerical simulation, compared to the analytical Boltzmann approxima-

tion ℓB (dashed) and with weak localization corrections ℓtr. The blue line shows the scattering

mean free path and the blue dots the numerical scattering mean free path. The length L of

the disorder region is kL = 40.



CHAPTER 5

Coherent backscattering

In astrophysics it was observed already in 1887 [47] that the reflected light intensity at

the rings of Saturn is higher in backscattering direction, when sun, Saturn and earth

are aligned. The interpretation in terms of coherent backscattering led to a better

understanding of this effect [48, 49, 87].

One of the most prominent implications of coherent multiple scattering in disordered

systems is the phenomenon of coherent backscattering. If a random media is illumi-

nated by a phase coherent laser beam, an increase of the angular resolved scattered

intensity is observed by a factor of two in exactly backward direction [43–45, 87]. This

was for the first time realized experimentally and discussed in 1985 by M. van Albada

and A. Lagendijk [44], and also by P. Wolf and G. Maret [45]. The effect of coherent

backscattering is closely related to the weak localization corrections to the transport

mean free path discussed in the previous chapter. The underlying situation appears

in several physical systems. This effect can also be investigated in acoustics [50, 51].

The weak localization phenomenon is also valid for electrons, but there the angular

structure cannot be analyzed because the electrons are injected and also collected from

reservoirs. In this context, however, characteristic peaks in the magneto-resistance are

observed [96, 97]. In optical systems the disordered media is often provided by a sus-

pension of small beads with a diameter in the order of 0.5µm [44, 45]. The parameters

of the disordered medium can be modified to reach the regime of Anderson localization

[24, 39–42, 46]. Another recently studied scattering medium are cold atoms [52–55],

where the atoms act like point-shaped scatterers. Furthermore they were thought

as good candidates to explore multiple scattering effects also in the strong localized

regime, since resonant scattering of identical particles can be exploited to increase the

scattering cross section. But then a modified peak structure, especially for different



64 CHAPTER 5. COHERENT BACKSCATTERING

polarizations, was observed due to the interaction with the internal structure of the

Rubidium atoms. The saturation of the intra-atomic transition leads to nonlinear, but

also to inelastic scattering [56–58]. Further complexity is added due to thermal motion

[52] and polarization phenomena [55].

Now we introduce the opposite system: We change the propagating waves from light

to a Bose-Einstein condensate, and change the disorder potential from the condensate

as scatterers to a speckle potential created by light. The (interacting) Bose-Einstein

condensate is scattered in a quasi two-dimensional disorder potential, resulting from

a speckle field created with a laser. This opens new possibilities to study coherent

backscattering in two dimensions with a special focus on the atom-atom interaction

described within the Gross-Pitaevskii equation. Our approach should provide a cleaner

system compared to scattering with light from cold atoms since the wave function of the

Bose-Einstein condensate in the mean-field regime remains well preserved in the pres-

ence of the nonlinearity. We show that a moderate nonlinearity strength already results

in substantial modifications of the albedo, leading to a negative coherent backscatter-

ing contribution indicating destructive instead of constructive interference. We further

confirm our numerical results by comparing them with a diagrammatic approach which

was developed very recently by T. Wellens and B. Grémaud [59]. Increasing the non-

linearity further, we show that the stationary solution is not stable anymore and we

enter into a time-dependent regime.

5.1 Linear coherent backscattering

We begin by introducing a theoretical scheme of coherent backscattering and of cal-

culating the resulting intensity in backward direction for a non-interacting system.

Coherent backscattering arises due to constructive interference between time reversed

paths. To demonstrate this we consider an incoming wave which scatters along the

path i and leaves the medium in backward direction with angle θ between the incom-

ing and the outgoing wave vector. The wave is described by the wave function φi

corresponding to the scattering path i.

We first describe the two parts the intensity consists of: A diffusive part, independent

of the angle θ between the incoming and outgoing wave vector, and where the wave

function and its complex conjugated one have the same scattering events in the same

direction, and a coherent part, where the wave function and its complex conjugate have

the same scattering events in time reversed direction, and which depends on θ. Later

we calculate these two expressions for the diffusive and coherent intensity.

The intensity is given by |
∑

i φi|2 =
∑

i φiφ
∗
i +

∑

i6=j φiφ
∗
j . The first part relates to

the diffusive intensity which is independent of the angle θ. If we take a closer look at

the second term, we see that not all contributions cancel in the disorder average. To
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Figure 5.1: a) Scattering path, which results in a speckle pattern in the backscattered

intensity profile in one disorder realization, but vanishes upon disorder averaging, since the

phase difference between the two scattering paths depends strongly on the disorder realization.

b) Diffuson approximation for the backscattered intensity. The contribution of this scattering

paths survives the disorder average, because the two paths accumulate always the same phase.

every scattering path i there exists also a time reversed scattering path irev. Now we

write the second term as
∑

i6=j φiφ
∗
j =

∑

i φiφ
∗
irev +

∑

i6=j 6=irev
φiφ

∗
j , and realize that the

amplitude of a path and its time reversed counter part have always the same phase

if the angle θ = 0. Thus, this contribution,
∑

i φiφ∗
irev

, does not vanish but increases

the backscattering by a factor of two. The last term,
∑

i6=j 6=irev
φiφ

∗
j , finally vanishes

in the disorder average. Indeed, for a fixed realization of the disorder it gives rise to a

random speckle pattern of the reflected intensity, see Fig. 5.1a.

In order to study the angular dependence of the backscattering cone we follow the

derivation presented by E. Akkermans et al. [87, 98, 99]. We consider the case of

isotropic scattering, that means the scattering mean free path is the same as the trans-

port mean free path: ℓs = ℓtr. First we study the backscattered intensity arising from

the independent scattering approximation, which corresponds to the Diffuson approx-

imation, where the two propagation lines experience the same scatterers in the same

order, see Fig. 5.1b. We specify the case where the incident wave enters perpendicular

the disorder medium located in the half plane, x > 0. The scattered current jd in

backward direction then is given by:

jd = n2πkR

∫

dr1dr2

∣

∣ψi(r1)
∣

∣

2
P (r1, r2)

∣

∣

∣
G

R
(r2,R)

∣

∣

∣

2

. (5.1)

Here ψi(r1) is the incoming plane wave, which scatters the first time at r1, and G
R

is

the disorder averaged Green function as defined in Eq. 4.23. The propagation of the

intensity from r1 to r2 is expressed by the probability density kernel P (r1, r2) taking

into account all scattering events. The wave exits from the last scattering event r2 to

R = Rŝe, ŝe denoting the exit direction. In the formula n is a normalization factor.
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The disorder averaged incoming wave which is exponentially damped inside the dis-

order medium with the scattering mean free path as discussed in Sec. 4.2 is given by:

ψi(r1) ∝ e−|r1−r|/2ℓs eikŝir1 . (5.2)

r denotes the point where the incoming wave enters the medium, and ℓs is the scattering

mean free path. To propagate the wave from the last scattering position r2 to the point

of observation, R, we use the Green function Eq. 4.23:

G
R
(r2,R) ∝ −iH0(k|R− r2|) e|r

′−r2|/2ℓs (5.3)

≈ −e|r
′−r2|/2ℓs

ei(kR+π/4)

√
2πkR

eikŝer2 . (5.4)

Here r′ is the exit point of the outgoing wave. In the last approximation we assumed

R to be far to the left. We define x2 as the distance from the line x = 0. Therefore we

have |r2 − r′| = x2/µ with µ = cos(θ), see Fig. 5.1b. Then,

jd = n

∫

dr1dr2 e−x1/ℓse−x2/µℓsP (r1, r2). (5.5)

At last we have to solve for the intensity relaxation kernel P (r1, r2). It has to fulfill

the stationary diffusion equation Eq. 4.45 with the appropriate boundary conditions:

−D∆r2P (r1, r2) = δ(r1 − r2) . (5.6)

As seen in Sec. 4.3.2, the diffusive intensity vanishes a distance z0ℓtr away from the

boundary, with z0 being a fixed number, mentioned already in the last chapter, z0 =

0.82 in two dimensions.

In the next step we calculate the coherent multiple scattering contribution to the

backscattered intensity. We consider the crossed diagrams, also called Cooperons.

There, the two propagator lines experience the same scattering points, but in reverse

direction, as shown in Fig. 5.2. The expression for the coherent backscattered current

jc(ŝe) obeys the same structure as for the diffusive one, varying only in the positions

for the first scattering event for ψi and ψ
∗

i and similarly for the outgoing wave:

jc(ŝe) = n

∫

dr1dr2 ψi(r1)ψ
∗

i (r2) P
′(r1, r2) G

R
(r2,R)G

A
(R, r1) (5.7)

= n

∫

dr1dr2 e−
µ+1
2µ

x1+x2
ℓs P ′(r1, r2) eik(ŝi+ŝe)·(r1−r2) . (5.8)

Note that the normalization factor n is the same for jd and jc. Here P ′(r1, r2) is the

intensity relaxation kernel for the crossed diagrams. It can be shown by time reversal
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Figure 5.2: Contribution of the Cooperon to the backscattered intensity. For the angle

θ = 0 the two paths acquire the same phase and interfere constructively, resulting in the same

intensity contribution in backward direction as the Diffuson approximation, see Fig. 5.1. The

intensity reduces for a larger angle and a larger distance between the first and last scattering

event.

arguments (similar to Eq. 4.58) that P ′(r1, r2) = P (r1, r2). We see that in backward

direction both contributions, the diffusive one and the coherent one, are equal:

jc(θ = 0) = jd(θ = 0) (5.9)

Furthermore we notice the additional phase factor in Eq. 5.8, compared to jd. This

phase factor results in a strong dependence of jc on the angle θ between incoming and

reflected wave in contrast to the almost flat profile of the diffusive contribution.

Finally, it is possible to calculate P (r1, r2) in the semi-infinite medium and to obtain

the shape of the cone [87, 98–101]:

j(θ)

jd(θ=0)
= µ

2z0 + 2µ
µ+1

2z0 + 1
+

1

(2z0 + 1)(k⊥ℓs + 2µ
µ+1

)2

(

1 − exp(−2z0k⊥ℓs)

k⊥ℓs
+

2µ

µ+ 1

)

≈ 1 +
1

(2z0 + 1)(k⊥ℓs + 1)2

(

1 − exp(−2z0k⊥ℓs)

k⊥ℓs
+ 1

)

(5.10)

≈ 2 − 2(z0 + 1)2

1 + 2z0
k ℓs |θ| . (5.11)

Here k⊥ = k(ŝi + ŝe)⊥ = k sin(θ) is the projection on the x = 0 line. In the second line

of Eq. 5.10 we assumed µ = cos(θ) ≈ 1, which is usually a valid approximation, since

the width of the cone is very sharp in optical experiments. We furthermore recognize
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that the width of the cone depends on the product of the scattering mean free path

and the wave vector and is given by δθ = 1
kℓs

.

a) b)

Figure 5.3: a) Experimental observation of the coherent backscattering from a suspension

of sub-micron sized polystyrene particles by P. Wolf and G. Maret [45] in 1985. The cone

width (curve 1) decreases with an decreasing concentration of the particles, and vanishes

(curve 4) if the optical resolution (curve 5) is larger than the cone width. b) The cone shape

was studied with high precision by D. S. Wiersma [102] and shows the triangular cusp of the

backscattered intensity measured in a powder of ZnO. The pictures are from [45] and [102].

Coherent backscattering was first observed experimentally by M. P. van Albada and

A. Lagendijk [44] and P. Wolf and G. Maret [45] in 1985, see Fig. 5.3 a. In these

experiments a highly concentrated suspension of sub-micron sized polystyrene spheres

was illuminated with a laser beam. In backward direction it was possible to observe

the backscattering cone. Here we see already the sharp cusp of the backscattering

signal, also present in the analytical description. The approximation k⊥ ≈ 2π
λ
|θ| for the

third equation in Eq. 5.11 is only valid for very small angles and shows the triangular

shape of the cone. This reveals that the line shape of the cone has a singularity

in the backscattering direction. When analyzing the contributions to the coherent

backscattering arising from different scattering orders [100], it is observed that low

orders contribute to the broader angular spectrum, while the higher scattering orders

form the sharp cusp of the coherent backscattering cone. This was nicely demonstrated

experimentally by D. S. Wiersma [102], see Fig. 5.3 b.

The derivation of the cone shape for weak localization presented here is valid only

for isotropic scattering where ℓs = ℓtr is the only relevant length scale. In the case of

anisotropic scattering it can be shown that the shape of the cone is not changed, only

ℓs has to be replaced by the transport mean free path: ℓs → ℓtr [87, 100].
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Figure 5.4: Sketch of an experimental setup for the study of coherent backscattering with

Bose-Einstein condensates. The reflected matter waves can be detected after a time-of-flight

expansion with absorption imaging.

5.2 Coherent backscattering with Bose-Einstein con-

densates

In this section we introduce the phenomenon of coherent backscattering to the field

of matter waves, especially with Bose-Einstein condensates. To our knowledge this

has not been studied experimentally and also not theoretically before our work. We

show a new effect arising due to the atom-atom interaction in the condensate. To

this end we consider the setup shown in Fig. 4.1, where a broad wave packet of the

Bose-Einstein condensate enters adiabatically into a two-dimensional waveguide. Then

the condensate scatters in the disorder region and is partly transmitted and partly

reflected. The reflected intensity again leaves the waveguide (for a sketch see Fig. 5.4).

The condensate then can be detected after a time-of-flight expansion and absorption

imaging, where the Bose-Einstein condensate is resonantly illuminated and then the

transmitted intensity is recorded. Of course the Bose-Einstein condensate is destroyed

at this measurement process.

Alternatively, it might be possible to extend the method of an atom laser to two-

dimensional systems. In one dimension a guided quasi-continuous atom laser has al-

ready been demonstrated [15–17], where a Bose-Einstein condensate is trapped in an

optomagnetic trap. Then it is coupled out by superimposing a radio frequency and

inserted into the quasi one-dimensional optical waveguide, formed by a narrow focused

laser beam.

The two-dimensional waveguide can be realized with two laser beams propagating in

opposite direction along the z-direction. This forms a standing wave, and therefore an
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Figure 5.5: The two-dimensional confinement can be realized with an optical lattice po-

tential in z-direction. Several propagation processes in the different slices can be performed,

allowing already for an disorder average.

optical lattice potential in z-direction. One of these potential minima can then be used

to confine the Bose-Einstein condensate to two dimensions, such that in transverse

z-direction only the ground state is populated. Along the z-direction one can super-

impose the disorder potential by optical means. But it has to be taken into account,

that we have to perform an average over disorder realizations in order to have a statis-

tical statement in contrast to single samples. To this end one can use several minima of

the confining optical lattice potential in z-direction and perform the propagation of the

Bose-Einstein condensate in the two-dimensional slices simultaneously. This procedure

intrinsically implies already an average over disorder realizations. This is depicted in

Fig. 5.5. Another experimental setup was suggested by G. Labeyrie and is shown in

Fig. 5.6, where a strongly confined droplet of condensate starts to expand and reaches a

ring of disordered media. In this configuration the coherent backscattering shows up as

an increased intensity at the original starting point of the expanding condensate. The

situation is similar to the situation of coherent backscattering of acoustic seismological

waves in the near field around a source [103].

5.3 Nonlinear coherent backscattering

In Sec. 5.1 we studied the coherent backscattering effect for wave functions which are

solutions to the linear Schrödinger equation or equivalently to the Helmholtz equation
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CBS

Disorder

Figure 5.6: Experimental setup suggested by G. Labeyrie, where an condensate which is

initially confined to the center expands into the disorder region and then gets (coherently)

scattered back to the origin, similar to the coherent backscattering of acoustic seismological

waves in the near field around a source [103].

in the optical context. Now we apply this mechanism to the nonlinear Gross-Pitaevskii

equation, where the nonlinearity arises due to the atom-atom interaction in the s-wave

approximation. The Gross-Pitaevskii equation with source term is given by (Eq. 3.2):

i~
∂

∂t
Ψ(r, t) =

(

− ~
2

2m
∆ + V (r) +

~
2g(x)

2m
|Ψ(r, t)|2

)

Ψ(r, t)

+S0(t)φS(y)δ(x− x0) e−iµt/~. (5.12)

The dimensionless nonlinearity strength g(r) = 4
√

2πas/a⊥(r) is determined by the s-

wave scattering length as and the transverse confinement a⊥(r) =
√

~/[mω⊥(r)]. The

source term is already included, and we use a constant profile φS(y) ≡ 1 (if not explicitly

specified otherwise), which corresponds to an incoming plane wave perpendicular to

the disorder region as shown in Fig. 5.7. In the following calculations we fix the

incoming current density to jin = ~k|Ψ0|2/m, where k =
√

2mµ/~ is the wavenumber

of the incident beam. This is no restriction since the Gross-Pitaevskii equation can be

rescaled by keeping the product g|Ψ|2 constant, and a higher current just renormalizes

the nonlinearity strength g to lower values otherwise.

In order to study coherent backscattering numerically, we have to extract the angular

resolved current from the simulations. One possibility is to take the disorder average

over the wave function and to apply a two-dimensional Fourier transformation in the

region between the source and the disorder where the nonlinearity is still negligible

small. The nonlinearity has to be negligible, such that the superposition principle is

valid, and in order to associate the Fourier modes with the outgoing current in certain
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Figure 5.7: Scattering geometry and stationary scattering state associated with a randomly

generated disorder potential. The left hand side displays the potential V (x, y) in a gray scale

plot and the spatial variation of the nonlinearity g(x). x0 is the position of the source and

x1 denotes the position where the backscattered current is evaluated. The upper right panel

shows the density plot of the corresponding scattering state. The lower right panel shows the

decay of the coherent mode |Ψ|2 and the density |Ψ|2 averaged over y and ≈ 1000 disorder

configurations.

directions. Thereby the relevant k-vectors of the transport modes are extracted. A

density plot pointing out the intensity distribution as a function kx and ky is shown in

Fig. 5.8 b. With this method we can separate incoming waves (kx > 0) from reflected

waves (kx < 0). The strong peak in forward direction corresponds to the incoming

plane wave, while in backward direction we can clearly see the coherent backscattering

signal at ky = 0 and kx < 0 and for larger angles we see also the diffusive background.

The drawback of this method is that we need an extra simulation region where the

nonlinearity is zero and which is large enough to allow a good resolution. Already in

Fig. 5.8(b) the size in x-direction is almost to small resulting in artificial oscillations

for large angles due to the finite spacing.

On the other hand the Fourier decomposition in x-direction is only necessary to

subtract the incoming wave component. However, we know the value of this amplitude

analytically and can also calculate it numerically in a simulation without any disorder

potential. We have chosen the second method, because the discretization of the source

can introduce errors in the order of 0.2% for typical input parameters, and those

deviations from the analytical prediction are eliminated with the numerical calculation

of the propagating plane wave Φ0(x, y, t). To avoid these numerical errors we subtract
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a) b)

Figure 5.8: a) The angular dependent current of the backscattered condensate is plotted.

The clear coherent backscattering cone is observed. The analytical formula Eq. 5.10 is fitted

and shows good agreement. The current is extracted along the line x = x1. b) Extraction

of the coherent backscattering by a two-dimensional Fourier transformation of this part of

the averaged wave function right to the source position. The strong peak (height is cut)

represents the incoming wave (kx > 0). For kx < 0 we see the coherent backscattering cone.

The oscillations arise due to the finite spacing of the grid.

the wave function that is numerically obtained in the absence of a scattering potential,

namely Φ0(x, y, t) ∝ |Ψ0|eikx, from the wave function Φ(x, y, t) to get the reflected part

Φref(x, y, t):

Φref(x, y, t) = Φ(x, y, t) − Φ0(x, y, t) . (5.13)

Note that we do not have to care about a time-dependent phase-factor since the trivial

time-dependence has been already separated with the ansatz Ψ(r, t) = Φ(r, t)e−iµt/~ in

the numerical calculation. In order to calculate the backscattered current we apply a

Fourier transformation in y-direction to the disorder averaged reflected wave function

Φref(x1, y) at the position x1 close to the source, where the nonlinearity g(x1) is still

negligible small (see Fig. 5.7). This results in a decomposition into transverse eigen-

modes Φ(x1, ky,n) ∼ exp(inπy/W ), which supports outgoing waves into directions with

angles θn = arcsin[2πn
kW

].

The current density in direction θn, normalized with respect to the total incoming

current Wjin, is then calculated by:

j(θn) =
2π

Wjin

~

m
kx,n |Φ(x1, ky,n)|2 W cos(θn) . (5.14)

The wave vector kx,n is related to the transverse mode by kx,n =
√

|k|2 − k2
y,n (see

Fig. 5.9). The last factor W cos(θn) arises due to the geometrical fact that the outgoing
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Figure 5.9: The angular resolution of the backscattered current is limited by the width W

of the disorder region. This implies a spacing of the wave vector ∆ky = 2π
W in y-direction.

The angle corresponding to the transversal Fourier mode n is given by: θn = arcsin[2πn
kW ].

current in direction θn passes through a perpendicular line of length W cos(θn). A

typical angular resolved backscattered current is shown in Fig. 5.8 a. The current is

then normalized in the following way:

∫ 2π

0

j(θ) dθ = 2π . (5.15)

Note that this integration (or summation over discrete angles) also takes angles in

forward direction into account.

In the following we want to summarize the numerical implementation and the param-

eters we have chosen. Afterwards we present the results we yield in this way: We con-

sider a Gauss correlated disorder potential characterized by V (r)V (r′) = V 2
0 exp(− |r−r′|2

2σ2 ).

Furthermore we specify an average height of the potential of V0 = 0.614µ and a cor-

relation length of kσ = 0.5 with the wave vector k =
√

2mµ/~. This corresponds to

almost isotropic scattering as already seen in the previous chapter. Using the results

of Eq. 4.27, Eq. 4.53 and Eq. 4.63 we can calculate the scattering and transport mean

free path. Additionally we have extracted the length scales numerically and have found

a scattering mean free path kℓs ≃ 9.61 and a transport mean free path of kℓtr ≃ 9.75,

which is in good agreement with the analytical result. The result ℓs ≈ ℓtr confirms

that we have almost isotropic scattering. For the optical thickness b of the disorder

medium we have chosen b = L/ℓs = 4.1 (kL = 40) and the width kW = 120. The

width of the system results in an angular resolution of ∆θ = 2π/kW ≃ 0.05[rad]. In

order to perform the disorder average we repeat the time-dependent integration of the

Gross-Pitaevskii equation approximately 103 times with randomly generated disorder

realizations for each set of parameters. The error bars in the following graphs represent
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a) b)

c) d)

Figure 5.10: The coherent backscattering peak for the nonlinear Gross-Pitaevskii equation

is calculated for several nonlinearity values g. The error bars correspond to the statistical

deviations arising from the disorder average (∼1000 realizations). a) In the linear regime g = 0

the well known behavior is observed with a cone height by a factor of two larger compared

with the diffusive background. b) For a nonlinearity g = 0.01 the coherent backscattering

peak vanishes. c) and d) The cone reverts into a pronounced dip (g = 0.02), implying

destructive instead of constructive interference. The underlying interference phenomenon is

still active. This is observed already at a small interaction energy g|Ψ(r)|2 ∼ 10−2.

the standard deviation arising from the disorder average.

In the linear case g = 0 we encounter the well known coherent backscattering peak

as explained in the previous section. We observe a peak height of roughly a factor

two compared to the diffusive background as shown in Fig. 5.10(a). This is expected

since our potential has a vanishing mean V (r) = 0 and furthermore the real part of

the refractive index in the effective medium is modified only marginal as we have seen

in Fig. 4.7. This implies a small single scattering contribution. For a small nonlinear-

ity the cone height is reduced (Fig. 5.10(a)) and vanishes eventually if the interaction
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Figure 5.11: We compare the coherent backscattering, where the incident wave enters

the disorder region perpendicular (left graph) and where the incoming wave is tilted by an

angle φ−6 ≃ −0.32 (right graph). In the latter case coherent backscattering is observed in

retro-reflection, in contrast to ordinary specular reflection, where the peak would appear at

φ+6 ≃ +0.32. This is also observed in the nonlinear case, which confirms that in both cases

the feature arises due to interference between time reversed paths.

strength increases (Fig. 5.10(b)). But it is very interesting that the underlying inter-

ference effect is not washed out but reverts the cone (Fig. 5.10(c) and Fig. 5.10(d))

for intermediate strength of the nonlinearity. We find the novel phenomenon that the

atom-atom interaction reverts the interference from constructive to destructive, imply-

ing that the interference phenomenon is still effective. The shape of the cone and the

dip are quite similar, especially the width is comparable. The intermediate interaction

strength g = 0.02, where the dip is quite pronounced, is still weak, corresponding to

an interaction energy of g|Ψ(r)|2 ∼ 10−2µ.

In the case of a perpendicular incident wave we cannot distinguish between coherent

backscattering and ordinary specular reflection. In the case of coherent backscattering

one expects the peak to appear in exactly backward direction in contrast to specular

reflection, where the reflected wave forms with the incoming wave an angle of 2φn. In

order to prove that the dip is still related to coherent backscattering we investigated

the angular resolved current in the case where the incident wave enters the disorder

medium with an angle φ, as depicted in Fig. 5.11 in the right side. This can actually

be achieved in our numerical simulation by changing the transverse function of the

source. To this end we choose the source amplitude φS(y) of Eq. 5.12 to be an excited

transverse eigenmode:

φS,n(y) = ei 2π n
W

y. (5.16)

The incident wave is tilted by the angle φn = arcsin[2πn
kW

] in this case.

We specifically have chosen n = −6 and φ−6 ≃ −0.32. In the case of coherent
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backscattering the peak has to appear in exactly backward direction. Indeed we observe

the dip structure like the cone in retro-reflection, see Fig. 5.11. This shows clearly that

the origin of the dip arises due to interference between the time reversed scattering

paths. In the right graph, especially for g = 0, one is attempted to see a small peak at

the opposite angle φ+6 ≃ +0.32 which could correspond to specular reflection of the

single scattering events. But this is not significant due to the statistical error bars.

The observed dip structure shows that the reduction of the peak height results from

a coherent effect, which is necessary for a negative contribution of the coherently scat-

tered light, in contrast to “dephasing processes”, which lead to a suppressed coherent

contribution. Such a contribution is never negative. This reduced coherent part is ob-

served in absorption processes and polarization effects [55, 104], thermal motion [52],

or magnetic fields in electronic devices [96, 97] (except in combination with spin orbit

coupling [105]). Nonlinearities, on the other hand, also arise in scattering of light from

cold atoms [53] due to the saturation of the intra-atomic transition [56–58]. However,

in this case the saturation leads also to inelastic scattering. To this end our approach,

where a Bose-Einstein condensate in the mean-field regime scatters from an optical

disorder potential provides a cleaner situation, since the coherence of the atomic wave

function is well preserved in the presence of the nonlinearity.

Before we study the new effects in nonlinear coherent backscattering in more de-

tails, we first give a short review of a diagrammatic approach to nonlinear coherent

backscattering, which was developed very recently. This theory will confirm our nu-

merical results. The discussion of results for even stronger atom-atom interaction is

postponed until Sec. 5.6, since we enter a new regime, where time-dependent effects

play a role.

5.4 Diagrammatic approach to nonlinear coherent

backscattering

In order to confirm our observations of the reversed coherent backscattering peak aris-

ing due to the atom-atom interaction in a Bose-Einstein condensate, we compare our

numerical results with a diagrammatic theory developed recently by T. Wellens and

B. Grémaud [59] for nonlinear scattering events in the optical context. This theory

is equally applicable to a nonlinear wave equation like the Gross-Pitaevskii equation.

We briefly discuss in this section the diagrammatic approach following the references

[59, 106, 107]. The starting point is the integral form of the Gross-Pitaevskii equation

(Eq. 5.12) in the stationary case:

Ψ(r) = Ψ0 e
ikx +

∫

dr′ GR
0 (r, r′)

[

V (r′) + ~
2

2m
g|Ψ(r′)|2

]

Ψ(r′). (5.17)
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This is the solution of the Gross-Pitaevskii equation with the boundary condition of

an incident plane wave with amplitude ψ0 along the x-direction. In the following, we

restrict the discussion to a slab geometry. GR
0 is the free retarded Green function:

GR
0 (r, r′) = −i m

2~2
H0(k|r− r′|). (5.18)

In the case of weak nonlinearity ~
2

2m
g|Ψ(r)|2

√
kℓs ≪ µ the equation Eq. 5.17 can be

solved self-consistently by iteration, and we can already extract the building blocks for

the diagrammatic approach:

ΨΨ

Ψ

Ψ∗

Ψ∗

Ψ∗
(5.19)

The first diagram corresponds to the usual linear scattering event due to the disorder

potential. The second diagram arises from the nonlinear wave equation. Due to the

term g|Ψ(r)|2 two additional incoming lines appear, one from Ψ and the other from

Ψ∗. Here solid lines correspond to Ψ (or GR) and dashed lines to Ψ∗ (or GA). The last

diagram is the complex conjugate of the second one. Eq. 5.17 can be similarly written

for the complex conjugate Ψ∗, and in this situation the third diagram appears.

In the next step we consider the disorder average. First of all we restrict the discus-

sion to isotropic scattering V (r)V (r′) ∝ δ(r− r′), and additionally to weak scattering,

such that kℓs ≫ 1. In this limit all the transport length scales coincide ℓs ≈ ℓB ≈ ℓtr.

In the disorder average always a pair of Ψ and Ψ∗ have to be grouped together, other

contributions vanish in the stationary phase approximation. In this case we have to

take into account ladder diagrams and for the interference effects for coherent backscat-

tering the Cooperon diagrams. Below we want to describe first the Diffuson and then

the Cooperon.

Contribution of the nonlinear Diffuson

For the ladder diagrams the propagation lines are grouped such that all lines point

in the same direction. An example for such a process is depicted in Fig. 5.12 a. To

develop a diagrammatic approach we notice that any nonlinear ladder diagram can be

composed from the building blocks La and Lb, as shown in Fig. 5.12 b, and additional

linear scattering events. But also the opposite is true, all combinations of La and Lb

result in the full set of ladder diagrams. The nonlinear contribution Gnl to the average

Green function arising from the diagram La can be approximated in lowest order of

the nonlinearity g by

|GR,nl(r1, r2)|2 = 2g ~2

2m

∫

dr3 GR(r1, r3) GR(r3, r2) GA(r1, r2) |Ψ(r3)|2 (5.20)

≃ −igk |r1 − r2| |GR(r1, r2)|2 〈|Ψ|2〉r1→r2/k
2 . (5.21)
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a) b) La Lb

Figure 5.12: a) Example for a nonlinear ladder diagram. The points denote a linear

scattering event, and the squares a nonlinear scattering event. The lines that belong together

point all in the same direction. b) Building blocks for the nonlinear scattering events. All

nonlinear Diffuson diagrams can be extracted from these building blocks and vice versa.

Here we consider a nonlinear propagation from r1 to r2 with a nonlinear scattering

event at r3. At r3 the intensity |Ψ(r3)|2 modifies the index of refraction. In Eq. 5.21

we denoted the average of |Ψ(r)|2 along the line r1 → r2 with 〈|Ψ|2〉r1→r2. The approx-

imation in Eq. 5.21 was obtained with a stationary phase argument, where the disorder

averaged Green function, arising just from linear scattering events, is given by:

GR(r, r′) = −i m
2~2

H0(k|r−r′|) e−|r−r′|/2ℓs
kr≫1≈ −m

~2

ei(k|r−r′|+ π
4
)

√

2πk|r− r′|
e−|r−r′|/2ℓs . (5.22)

The condition for weak nonlinearity g2|Ψ(r)/k|4kℓs ≪ 1 ensures that at most one

nonlinear event occurs between two linear scattering events. That means in other

words that the scattering from the fluctuations arising due to the nonlinearity is small

compared to scattering from the disorder potential [108, 109]. The self-consistent

diffusion equation for the average intensity |Ψ(r)|2 is then modified by the nonlinearity

in the following form:

|Ψ(r)|2 = |Ψ0|2e−x/ℓs +

∫

dr′
e−|r−r′|/ℓs

2πℓs|r − r′| |Ψ(r′)|2
(

1 − i(g − g∗)k|r − r′|〈|Ψ|2〉r1−r2/k
2
)

= |Ψ0|2 e−x/ℓs +

∫

dr′
e−|r−r′|/ℓs

2πℓs|r − r′| |Ψ(r′)|2. (5.23)

The term proportional to g in the first line of Eq. 5.23 corresponds to the nonlinear

diagram La and the term g∗ arises from diagram Lb. Since we consider the case of

real g, this contribution vanishes. Therefore, in the energy conserving case of real g

the intensity distribution does not change due to nonlinear scattering in this order

of approximation. On the contrary, in the case of an absorbing medium, with an

imaginary g or in the case of amplifying media (random lasers [110]), the nonlinearity

would yield modifications in the intensity distribution [111]. The probability to leave

the disorder region after the last nonlinear event is then given by the intensity multiplied
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with the exponential damping with the scattering mean free path. For the diffusive

backscattered current follows:

jd =

∫

dr

ℓs|Ψ0|2W
e−x/ℓs |Ψ(r)|2. (5.24)

Contribution of the nonlinear Cooperon

Now we consider the case of the Cooperon intensity. As we saw in the previous sec-

tion we expect substantial modifications arising from the nonlinear crossed diagrams.

A crossed diagram consists of one pair of counter propagating paths, as shown in

Fig. 5.13a. Similar to the ladder diagrams we can specify building blocks. Every

crossed diagram can be assembled from the building blocks as depicted in Fig. 5.13 b.

However the contrary is not true. Not every combination of the building blocks Ca,

Cb, Cc and Cd is a valid crossed diagram. An example of a forbidden diagram is shown

in Fig. 5.14. When going back to the integral form of the Gross-Pitaevskii equation

Eq. 5.17, which is expanded by iteration, we see that such a loop between Cc and Cd is

not allowed by causality. A loop between those diagrams, where each diagram serves

as source for the other, is not possible. In order to account for this forbidden diagram,

we exclude all combinations in the summation, where a diagram Cc appears in the

iterative expansion after Cd. To this end we split up the Cooperon part

C(r) = C1(r) + C2(r) , (5.25)

where C1 contains only diagrams of Ca, Cb and Cc. C2 is a self-consistent equation for

the diagrams for Ca, Cb and Cd, and additionally C1 can enter as source into C2. This

a)

b) Ca Cb Cc Cd

Figure 5.13: a) Example for a nonlinear crossed diagram. There is one path with counter

propagating waves. b) Building blocks for the nonlinear scattering events contributing to the

Cooperon. All Cooperon diagrams can be assembled from these building blocks.
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Cc Cd

Figure 5.14: This forbidden diagram does not appear in the iterative expansion of Eq. 5.17.

assures that no Cc can appear after Cd:

C1(r) = |Ψ0|2e−x/ℓs +

∫

dr′
e−|r−r′|/ℓs

2πℓs|r− r′|C1(r
′)

[

1 − kℓs
(

i(g − g∗)−ig∗
) |Ψ(r′)|2

k2

]

,

C2(r) =

∫

dr′
e−|r−r′|/ℓs

2πℓs|r− r′|

[

C2(r
′) − kℓs

(

C2(r
′)
(

i(g − g∗) + ig
)

+ igC1(r
′)
) |Ψ(r′)|2

k2

]

jc =

∫

dr

ℓs|Ψ0|2W
e−x/ℓs

(

C1(r) + C2(r) − e−x/ℓs
)

. (5.26)

Here the factors i(g − g∗) correspond to Ca and Cb, the factor −ig∗ (in the equation

for C1) to Cc and the factor ig (in the equation for C2) is associated with Cd. The last

line in the above equations is the Cooperon contribution to the backscattered current.

Here a factor e−x/ℓs has to be subtracted to exclude single scattering. For simplicity

we assumed, that r and r′ are far inside the medium to be able to neglect boundary

effects, and also that |Ψ(r)|2 and C1,2(r) vary on length scale much larger than ℓs.

In the energy conserving case (real g) the above equations can be rewritten in the

following form:

C(r) = |Ψ0|2e−x/ℓs +

∫

dr′
e−|r−r′|/ls

2πℓs|r − r′|C(r′)
(

1 − igkℓs〈|Ψ2(r′)|〉/k2
)

, (5.27)

jC =

∫

dr

|Ψ0|2Wℓs
e−x/ℓs ℜ

[

C(r) − e−x/ℓs
]

. (5.28)

From this equations we see that the Cooperon equation acquires a phase factor due

to the nonlinearity g. Since for the outgoing wave the intensity depends on the real

part of the Cooperon, the intensity is reduced, and can also become negative. This

shows qualitatively the same behavior as we found in our numerical simulations in the

previous chapter.

This derivation can only account qualitatively for the phenomenon of the inversion

of the peak height. But it shows, that the reduction of the peak height results from

a coherent effect, which allows also a negative contribution. This is in contrast to
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“dephasing processes” which lead to a suppressed coherent contribution, but this is

never negative. However, in order to compare quantitatively with our numerical simu-

lations, boundary effects and the variation of the intensity has to be taken into account.

Furthermore, nonlinear processes can take place to the left of the disorder potential

(see Fig. 5.6 for the setup of the system). This can be incorporated and the resulting

equations were derived by T. Wellens [112], which we present in the Appendix A. A

simplified version [59, 107], where especially the contribution C2 is neglected, is given

by

Cc(x) = |ψ0|2e−x̂/ℓs

(

1 +
i

k

∫ x

x0

dx′g(x′)C1(x
′)

)

, (5.29)

C1(x) =

∫ L

0

dx′

πℓs

[

K0

(
∣

∣

∣

∣

x̂− x′

ℓs

∣

∣

∣

∣

)

(

C1(x
′) + Cc(x

′)
)

+ (5.30)

+
i

k
K1

(
∣

∣

∣

∣

x̂− x′

ℓs

∣

∣

∣

∣

)

〈|ψ(x′)|2〉
∫ max(x,x′)

min(x,x′)

dx′′g(x′′)
(

C1(x
′′) + Cc(x

′′)
)

]

for the Cooperon intensity C1(x) and the coherent Cooperon intensity Cc(x), with x̂ ≡
max(x, 0) and K0,1 the modified Bessel functions of the second kind. The contribution

to the flux scattered in backward direction then results in

jc(0) = ℜ
∫ L

0

dx

ℓs|ψ0|2
e−x/ℓs

(

C1(x)+
i

k
〈|ψ(x)|2〉

∫ x

x0

dx′g(x′)C1(x
′)

)

. (5.31)

Note that nonlinear processes also occur for x0 < x < 0 where V (r) = 0 but g(x) > 0.

From this derivation developed by T. Wellens and B. Grémaud one can also deduce,

that the same effect is expected for attractive interaction, which corresponds to a

negative nonlinearity strength g.

5.5 Comparison with diagrammatic theory and fur-

ther numerical results

In this section we compare our numerical results for coherent backscattering with the

diagrammatic approach presented in the previous section. The equations arising from

the diagrammatic approach were numerically solved by T. Wellens, and the results

agree well with our numerical observations. In addition we want to show with our

numerical simulations that the novel effect that the coherent backscattering cone re-

verts into a dip for increasing nonlinearity g is applicable for a quite large range of

parameters. We furthermore investigate whether this phenomenon is influenced by

the geometry of the two-dimensional waveguide, especially when the Bose-Einstein
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condensate is transferred into the waveguide. Additionally, the impact of the disor-

der correlation length and moreover the type of disorder correlation function onto the

backscattered current distribution is discussed.

5.5.1 Cone height

We start our discussion with the comparison of the current in exact backward direction

j(θ = 0). As already presented in Sec. 5.3 we observe that the coherent backscattering

peak changes with increasing nonlinearity strength g from a cone in the linear case to

a flat profile and then to a dip. The same qualitative behavior is indeed also expected

from the diagrammatic approach. Now we compare our numerical calculation quanti-

tatively with the diagrammatic theory. The results of this relation – the parameters

are listed below – are presented in Fig. 5.15. The points denote the numerically calcu-

lated current in backward direction as a function of the nonlinearity strength, where

the error bars show the statistical standard deviation arising from the average over

∼ 103 disorder realizations. The blue dashed line shows the diffusive contribution jd to

the backscattered current from the diagrammatic approach as given in Eq. 5.24. The

diffusive contribution does not change with the nonlinearity g, because we saw in the

previous section, that the intensity profile |ψ(r)|2 is not affected in lowest order by the

nonlinearity (see Eq. 5.23). The red dotted line in Fig. 5.15 shows the total backscat-

tered current j(θ=0) = jd + jc(θ=0), where the current arising from the Cooperon is

given by Eq. 5.31. As explained in the previous section this is an approximation to

the full set of equations given in App. A, which result in the current shown by the red

solid line.

For the simulation we used the same parameters as in Sec. 5.3. Especially we consider

a Gauss correlated disorder potential with a small correlation length kσ = 0.5, which

results in almost isotropic scattering. This is needed to compare to the analytical

theory, which is valid only for isotropic scattering. For the strength of the disorder

potential we use V0 = 0.614µ. This results in a scattering mean free path of kℓs ≈
9.61 and a transport mean free path kℓB ≈ kℓtr ≈ 9.75. This confirms the isotropic

scattering condition (ℓs ≈ ℓtr). For the optical thickness b of the slab geometry we

used b = L/ℓs = 4.2 (kL = 40) and a width of kW = 120. The nonlinearity strength

g(x) as a function of x is shown in Fig. 5.7.

In general we see good agreement between our numerical results and the diagram-

matic approach in Fig. 5.15. We observe a vanishing peak at the nonlinearity strength

g ≃ 0.01 and at g ≃ 0.02 we find clearly a negative Cooperon contribution. All three

curves for the total current show the same overall behavior. The two curves from di-

agrammatic theory coincide at small nonlinearity and then deviate. Nevertheless the

main contributions from the full equations (solid red line, App. A) are captured in the
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Figure 5.15: Comparison of the current scattered in exact backward direction (θ = 0) as a

function of the nonlinearity strength g. The black dots correspond to the current extracted

from the numerical solution of the Gross-Pitaevskii equation, where the error bars denote

the statistical standard deviation. The red curves present the results from the diagrammatic

approach from the previous section. The diffusive contribution jd (Eq. 5.24) is given by

the blue dashed line. The solid red line shows the total current j = jd + jc from the full

set of equations (App. A), and the dotted red line the approximation to this equation, as

stated in Eq. 5.31 and Eq. 5.24. In overall we see good agreement. Parameters: kL = 40,

kW = 120, jin = ~k3/m, k =
√

2mµ/~, Gauss correlated disorder potential with kσ = 0.5

and V0 = 0.614µ, g(x) as shown in Fig. 5.7.

approximation given in Eq. 5.31 (dotted red line). In comparison with the numeri-

cal results we see good agreement. Nevertheless we also see small deviations, which

we explain in the following. We postpone the discussion of the differences in the last

point g ≃ 0.03 to the next section, because they are fundamentally different from the

following discussion. So we start with the discussions of the deviations in the linear

case.

In the diagrammatic description the diffusion process is solved, which fulfills already

current conservation, implying that the integral over the outgoing current over all angles

- including forward direction - is equal to the incoming current. In our normalization

this reads:
∫ 2π

0

dθ jd(θ) = 2π(1 − e−L/ℓs) . (5.32)

where the last term accounts for the coherent mode leaving the disorder region in for-

ward direction without any scattering event. Note that the diffusive intensity depends
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Figure 5.16: Comparison between the numerical (blue line) and diagrammatic (black line)

angular resolved current. Angles with θ > π/2 correspond to scattering in forward direction.

Since the diagrammatic prediction does not obey current conservation we rescale the curve

by an angle independent factor. This results in the red dashed curve, which is in much better

agreement with our numerical results. Parameters: kL = 40, jin = ~k3/m, k =
√

2mµ/~,

Gauss correlated disorder potential with kσ = 0.5 and V0 = 0.614µ, kℓs = 9.6. The right

panel shows the region θ = −0.2 . . . 0.2 in more detail.

on the angle only due to geometrical reasons, which means that the angular profile is

shaped cosine-like due to the smaller effective width of the slab for larger angles. In

addition to this Diffuson part the Cooperon contribution is calculated. This implies,

that current conservation is not fulfilled anymore for the total current j = jd + jc. In

order to see the influence of this effect we rescaled the diagrammatic result by an angle

independent factor α such that current conservation is restored:
∫ 2π

0

dθ α
(

jd(θ) + jc(θ)
)

= 2π(1 − e−L/ℓs) . (5.33)

Of course this can only be seen as a first order approximation, and for a detailed

study higher order coherent contributions, namely Hikami contributions [87, 113], have

to be taken into account, which are responsible to restore current (or equivalently

energy) conservation in the coherent part. It was shown [114] that the coherent multiple

scattering contribution is adjusted downwards at all angles with a larger negative shift

at angles near backward direction.

The angular dependence of the current is shown in Fig. 5.16 for the linear case. In

the left plot the full angular dependence of the current is shown, including the forward

direction (θ > π/2), and in the right graph a zoom to small angles in backscattering

direction is presented. The blue line shows the numerical results and the black line

the diagrammatic prediction. The rescaled curve from diagrammatic theory, which
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now obeys current conservation, is shown as a red, dashed line. We observe that the

rescaled curve shows much better agreement with the numerical results. Therefore we

attribute the discrepancies in Fig. 5.16 at g = 0 between numerical and diagrammatic

results to the approximations used in the diagrammatic description.

For stronger nonlinearity we expect similar deviations, but in the opposite direction.

For the diagrammatic results, we consider in the following the results arising from the

full set of equations (see App. A). In the linear case the theory overestimates the

total outgoing current, due to the constructive interference leading to the increased

backscattering cone. In the same way the theory underestimates the total current

for the destructive interference leading to the dip structure in the angular resolved

current. In the last case a renormalization of the diagrammatically predicted current

would yield a higher current in direction θ = 0. To this end we expect that the

theory overestimates the current in the linear case at g = 0, is in good agreement at a

vanishing cone (g ≃ 0.01), and underestimates the current at the nonlinearity g ≃ 0.02,

at the position of the dip. We observe exactly this behavior between the numerical

results (black dots) and the results from diagrammatic theory (solid red line, full set

of equations) in Fig. 5.15.

5.5.2 Influence of the width of the disorder sample

In our numerical simulation, we always have to take a finite width W of the simulation

region into account as presented in Fig. 5.7. We numerically checked whether this

width influences the coherent backscattering effect. Since we have periodic boundary

conditions the wave can go in y-direction a lengthW and then interfere with itself. This

would be an artifact of our numerical simulation not encountered in an experimental

setup. Therefore we checked the dependence of the angular resolved current for two

widths, kW1 = 120 as in the previous calculations, and kW = 40, where both have the

same length of the disorder region, kL = 40. The most obvious difference is of course

the angular resolution ∆θ of the current:

∆θ ≈ sin(∆θ) =
∆ky

k
=

2π

kW
. (5.34)

This angular resolution is also important in an experimental setup in order to be able to

resolve the angular width of the coherent backscattering cone. This is clearly recognized

in Fig. 5.17, which shows the angular resolved current in backward direction θ < π/2

and in forward direction θ > π/2, in the linear regime (g = 0). The two curves coincide

very nicely. Especially in backward direction of the coherent backscattering cone there

are no deviations observed, although the angular resolution is not enough to show

the details of the peak structure. However we see differences in the current in forward

direction, moreover the peak height in forward direction changes. However, this is to be
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Figure 5.17: Angular resolved current in backward and forward direction in the linear case,

from our simulation. We observe no difference in the current distribution for different widths

of the disorder region, except in forward direction. This arises from the vanishing angular

width of the coherent mode. The same overall behavior is observed in the nonlinear regime.

expected. The origin of this peak is the coherent mode |Ψ(x, y)|2 ∝ exp(−x/ℓs). Due

to the finite length of the disorder region some part of the condensate can go through

the disorder region without any scattering event. Since the coherent mode is observed

strictly in forward direction, i.e. it has no width in contrast to the backscattering

cone, the height of the coherent part should scale with 1/∆θ ∝W . We estimate from

Fig. 5.17 the height of the coherent mode j0 on top of the diffusive background in the

case of kW = 40 to j0 ≈ 0.6 ± 0.1 and in the case of kW = 120 to j0 ≈ 1.6 ± 0.15,

which is in agreement within the error bars compared to an expected factor of 3.

Here we have shown only the comparison in the linear case. But the results are

equally applicable for the nonlinear regime. We did not find any significant deviations

there.

5.5.3 Nonlinear density distribution and coherent mode

Now we turn to how the nonlinearity modifies the scattering mean free path. To this end

we calculate the coherent mode |Ψ(r)|2 in the disorder potential. This coherent mode

is shown in Fig. 5.18, with the characteristic exponential decay. For the nonlinearity

strength under consideration we do not observe any significant deviations from the

linear case. We conclude that the scattering mean free path is unchanged.

For the intensity distribution |Ψ(r)|2 the diagrammatic description predicts no changes

arising due to the nonlinearity. This can be confirmed with our numerical simulations.

As we see in Fig. 5.18 the intensity distribution |Ψ(r)|2 is only very slightly affected

by changes in the nonlinearity, in contrast to the coherent backscattering peak. We

especially observe a good agreement between the diffusive calculation (see Sec. 4.3.2)
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Figure 5.18: The coherent mode |Ψ(r)|2 is not affected by the nonlinearity. The intensity

distribution |Ψ(r)|2 is also almost unchanged, as predicted by theory. Parameters: kL = 40,

kW = 120, jin = ~k3/m, k =
√

2mµ/~, Gauss correlated disorder potential with kσ = 0.5

and V0 = 0.614µ, g(x) as shown in Fig. 5.7.

and the nonlinear curve at g = 0.01, where the peak vanishes. This is compared to a

slightly smaller intensity in the linear case, which is necessary to compensate the coher-

ent backscattering peak for current conservation, which results in a reduced background

of backscattered intensity, according to

jd =

∫

dr

ℓs|Ψ0|2W
e−x/ℓs |Ψ(r)|2. (5.35)

Nevertheless the deviations are very small and probably difficult to measure in an

experimental realization.

Similarly, the transmission current through the disordered system is almost unaf-

fected by the nonlinearity, as shown in Fig. 5.19. We observe a very slight increase of

the current from peak (g = 0) to dip (g = 0.03), which is in the same order as the cur-

rent contained in the coherent backscattering cone (∼ 6%). In conclusion we see only

slight changes, which we think are not easily accessible in an experiment with a Bose-

Einstein condensate, at least in the weak localization regime with weak nonlinearity.

5.5.4 Influence of the transverse confinement of the waveguide

In the following we discuss the influence of the experimental geometry onto the non-

linear coherent backscattering effect. Especially we show that the nonlinear region in
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Figure 5.19: Transmission through the two-dimensional disorder region as a function of the

nonlinearity strength. The same parameters as in Fig. 5.18 are used.

front of the disorder region is quantitatively changing the results, but not qualitatively.

We study a system where a three-dimensional droplet of Bose-Einstein condensate is

transferred by an adiabatic increase of the confining potential in z-direction into the

effective two-dimensional system. The situation is shown in Fig. 5.20. In the mean-field

description for the condensate we use the Gross-Pitaevskii equation:

i~
∂

∂t
Ψ(r, t) =

(

− ~
2

2m
∆ + V (r) +

~
2g(x)

2m
|Ψ(r, t)|2

)

Ψ(r, t) + S(r) e−iµt/~, (5.36)

where the nonlinearity g is given by:

g(x) =
4
√

2πas

a⊥(x)
, with a⊥(x) =

√

~/[mω⊥(x)] . (5.37)

Here as is the s-wave scattering length, a⊥ is the transverse confinement, and ω⊥

the corresponding frequency of the confinement when approximated by a harmonic

aBEC

x

y

z

Figure 5.20: A wave packet of Bose-Einstein condensate is transferred into the two-

dimensional confinement. In this case the nonlinearity g(x) = 4
√

2πas/a⊥(x) depends

through a⊥(x) on the position x. The corresponding nonlinearity g is shown.



90 CHAPTER 5. COHERENT BACKSCATTERING

Figure 5.21: Dependence of the current in backward direction on the length of the nonlinear

region in front of the disorder region. The nonlinearity strength of the black (red, blue and

green) curve in the left graph corresponds to the black (red, blue and green) points (numeric)

and the black (red) line (diagrammatic theory) in the right graph, where the current in

exactly backward direction is shown. The gray dashed line in the right graph shows the

diffusive background for comparison. Parameters: kL = 40, kW = 120, jin = ~k3/m,

k =
√

2mµ/~, Gauss correlated disorder potential with kσ = 0.5 and V0 = 0.614µ. The black

line corresponds to parameters kxl = −15, kxr = 55, and kxad = 3.5π, which were used in

all previous calculations.

oscillator. But in our situation this transverse confinement a⊥ changes from a small

value in the two-dimensional confinement to a very large value outside, where the

droplet of condensate starts the propagation towards the disorder region, as depicted

in Fig. 5.20. To this end the nonlinearity g(x) varies due to the confining width a⊥(x)

with the position x, as given in Eq. 5.37. For the numerical simulations we used the

following functional dependence for g(x):

g(x) = g0
1

2

(

tanh

(

2(x− xl)

xad

)

− tanh

(

2(x− xr)

xad

))

, (5.38)

where xl and xr are the left and right positions for the adiabatic increase, and xad is

the distance over which the adiabatic increase is performed and g0 is the nonlinearity

strength inside the disorder potential.

We performed simulations with different forms of the adiabatic increase of the nonlin-

earity. Especially we changed the position, where we start to increase the nonlinearity,

as shown in the left graph of Fig. 5.21. We find that the current in backward direction

(θ = 0) is modified. In particular we find a stronger reduction of the current if the

region in front of the disorder region is longer (black and blue points in Fig. 5.21).

On the contrary, a larger nonlinearity strength is needed to reach a negative coherent

backscattering contribution if the nonlinear region vanishes in front of the disorder

potential (red points). The diffusive background is shown by the dashed gray line.
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a) b)

Figure 5.22: a) Diagram that contributes to the nonlinear coherent backscattering as de-

scribed in Sec. 5.4. b) Nonlinear scattering events can also occur in front of the disorder

region, and contribute to the backscattered current, in contrast to linear scattering events,

which are pinned to the disorder region.

Nevertheless in all cases we find a dip in the angular resolved backscattered current for

a strong enough nonlinearity strength.

Our numerical results are in good agreement with the predictions from diagrammatic

perturbation theory. This is shown in the right graph of Fig. 5.21 with the solid red

and black curve. Those were calculated by T. Wellens with the set of equations from

App. A and the same functional dependence of the nonlinearity strength.

From those observations we conclude that it is important to include nonlinear scat-

tering events also in front of the disorder region. This is in contrast to linear scattering

events, which are pinned to the disorder region. A nonlinear crossed diagram is shown

in Fig. 5.22 a, but this nonlinear events can occur also outside the disorder region, as

shown in Fig. 5.22 b. This nonlinear region in front of the disorder potential effectively

introduces an additional phase difference, which enhances the destructive interference.

In order to know the backscattered current we can state by following the diagram-

matic perturbation theory, that the observed effects depend on gkℓs〈|Ψ2(r′)|〉/µ (see

Eq. 5.27), where ℓs should be replaced by an effective length of the nonlinear scattering

path, including the length in the nonlinear region in front of the disorder potential.

5.5.5 Nonlinear coherent backscattering for an anisotropic scat-

tering potential

Here we want to show that the destructive interference in backscattering direction is

also observed for a larger correlation length. To this end we used a Gauss-correlated

disorder potential with a correlation length of kσ = 1.0. In Fig. 4.9 we see that

this correlation length corresponds to anisotropic scattering with enhanced forward

scattering. We used a disorder strength of V0 = 0.4µ. We extracted the scattering

mean free path numerically and found kℓs = 9.6, and for the transport mean free path
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Figure 5.23: This plot confirms that the negative coherent backscattering contribution

is also observed for anisotropic scattering. Here we used a correlation length of kσ = 1.

Parameters: kL = 40, jin = ~k3/m, k =
√

2mµ/~, Gauss correlated disorder potential with

kσ = 1.0 and V0 = 0.4µ, kℓs = 9.6, kℓtr = 13.4.

kℓtr = 13.4, resulting in a slightly larger cone width. In Fig. 5.23 we found the same

effect of destructive interference for a nonlinearity strength g = 0.025. Therefore we

conclude that this phenomenon of a negative coherent backscattering contribution is

also observed for larger correlation lengths. A finite correlation length is relevant in

an experimental setup, since the lower bound for the correlation length is given by the

wave length of the laser, which produces the disorder potential.

Here we cannot compare with results from the diagrammatic approach to nonlinear

coherent backscattering from Sec. 5.4, since this theory is only applicable to isotropic

scattering, and has not been generalized to the case of anisotropic scattering.

5.5.6 Nonlinear coherent backscattering with a speckle disor-

der potential

For small correlation lengths one can argue that the details of the correlation function

does not influence the coherent backscattering. In order to verify that the destructive

interference effect also persists for an intermediate correlation length we performed

numerical simulations for a speckle potential. The speckle disorder potential is of

most interest from the experimental point of view, since it can be realized very easily

by shining a laser on a diffusive plate, and then image this speckle pattern onto the

experimental region.

To implement this we created randomly chosen realizations of speckle patterns and

performed the same simulations as before. We used a correlation length of kσ = 0.5 and

a strength of V0 = 0.614µ. This results in a scattering mean free path of kℓs = 10.8 and

a transport mean free path of kℓtr = 15. We used a system size of kL = kW = 40 and
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Figure 5.24: The inversion of the coherent backscattering peak applies also to a speckle

potential, which is experimentally most easily accessible. Parameters: kL = 40, jin = ~k3/m,

k =
√

2mµ/~, xl = −15, kxr = 55, kxad = 3.5π, speckle potential with kσ = 0.5 and

V0 = 0.614µ, kℓs = 10.8. kℓtr = 15.

the same functional dependence of g(x) as above. The results are shown in Fig. 5.24.

We find that the phenomenon, where the coherent backscattering peak changes from

constructive to destructive interference, is quite robust, and shows the same behavior

for a speckle potential.

In conclusion we confirm that this interference phenomenon is quite robust under

variation of system sizes, potential strength, correlation length, and also correlation

function (Gauss and speckle) in the regime of weak localization.

5.6 Time-dependent effects in the transport pro-

cess

In the course of this chapter we study nonlinear coherent backscattering. Thus, we

simulate the propagation process with the time-dependent Gross-Pitaevskii equation.

We start with an empty two-dimensional waveguide and couple the condensate with the

additional source term, we added to the Gross-Pitaevskii equation, into the simulation

region. In order to be as close as possible to a stationary scattering state we slowly

increase the strength of the source up to a final value corresponding to the desired

incoming current density. In the linear case this procedure guarantees to reach a

stationary scattering state. For a nonlinear wave equation this is not true in general. In

particular there can exist stationary scattering states, which are not dynamically stable

[19]. With our time-dependent integration scheme of the Gross-Pitaevskii equation we

are sensitive to instabilities, which are predicted by Ref. [108, 109].
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Figure 5.25: Time-dependent transmission through n individual disorder potential for dif-

ferent nonlinearity strength. The source is adiabatically increased over a time period of

t = 300~/µ. For g = 0.1 we observe a strong intrinsic time-dependence of the transmission.

For a nonlinearity g & 0.02 we find indeed that we do not reach a stationary state

anymore. We observe that the time-dependent integration results in an intrinsically

time-dependent dynamic of the condensate wave function, similar to the situation,

which was found in one-dimensional waveguides with disorder potentials [19, 20]. In

Fig. 5.25 we see that in the linear case the transmission converges to a final value, after

an adiabatic increase of the source over a time scale of t = 300~/µ. In an intermediate

regime (g = 0.025) we observe oscillations on a long time scale, which are damped

in this case of the disorder realization. For strong nonlinearity we observe initial

convergence, and when a critical interaction energy (Enl = g|ψ|2 ~
2/2m) is reached

time-dependent oscillations in the current start. Note that the critical strength for the

nonlinearity depends on the disorder realization. Therefore we find a smooth transition

from stationary scattering states to time-dependent scattering dynamics in the disorder

average. This is presented in Fig. 5.26 in the lower panel, where the fraction of the

disorder realizations that lead to a stationary scattering state is shown. In the upper

panel the current in backscattering direction is shown. We see an increase in the

backscattered intensity in direction θ = 0. Deviations between numerical simulations

and diagrammatic perturbation theory appear as soon as time-dependent processes

start. This is expected, since the theory assumes a stationary solution (see Eq. 5.17).

In order to discuss the increased backscattered current we take a closer look to the

angular resolved current, which is shown in Fig. 5.27. We find that the dip disappears

and the overall shape of the current distribution changes quite drastically to a Gaussian

shape. Until now we do not have a good explanation for this shape of the current

distribution, therefore this needs further investigations.

Nevertheless we checked, whether this shape is related to coherent backscattering.

To this end we calculated the angular resolved current in the case, where the direction

of the incoming plane wave is tilted by an angle φ = −0.32, as was done at the end of

Sec. 5.3 in the stationary case ( Fig. 5.11). In the case of coherent backscattering the
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Figure 5.26: Upper graph: Comparison of the current scattered in exact backward direction

(θ = 0) as a function of the nonlinearity strength g. The dots correspond to the current

extracted from the time-dependent integration of the Gross-Pitaevskii equation. The solid

curves present the results from the diagrammatic approach. Lower graph: The blue line

shows the fraction of the disorder realization which lead to a stationary scattering solution,

whereas the red curve presents the time-dependent fraction. Parameters: kL = 40, kW =

120, jin = ~k3/m, k =
√

2mµ/~, Gauss correlated disorder potential with kσ = 0.5 and

V0 = 0.614µ, g(x) as shown in Fig. 5.7.

peak is observed in exactly backward direction, at φ = −0.32, in contrast to specular

reflection which is observed in this case at an angle φ = 0.32. As already explained,

the dip occurs in coherent backscattering direction, which verifies that the dip is an

destructive interference effect (see Fig. 5.28). A different situation manifests in the

a) b)

Figure 5.27: Angular resolved backscattered current. In the time-dependent regime the dip

disappears. Parameters: kL = 40, kW = 120, jin = ~k3/m, k =
√

2mµ/~, Gauss correlated

disorder potential with kσ = 0.5 and V0 = 0.614µ, g(x) as shown in Fig. 5.7.
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Figure 5.28: We compare the coherent backscattering in the case, where the incident wave

enters the disorder region perpendicular (left graph) to the case where the incoming wave is

tilted by an angle φ−6 ≃ −0.32 (right graph). In the latter setup coherent backscattering is

observed in retro-reflection. This is also observed in the weak nonlinear case (g = 0.02), which

confirms, that both arise due to interference between time reversed paths. This is in contrast

to specular reflection, where the peak appears at φ+6 ≃ +0.32. In the time-dependent regime

(g = 0.06) the center of the peak is at an positive angle, which shows that it is not related

to coherent backscattering.

time-dependent regime, where the center of the reflected current is shifted to positive

angles in the right graph of Fig. 5.28. This shows that we do not observe coherent

interference effects. We actually expected this, because a constant phase difference

between two scattering paths is a necessary condition for interference effects, which is

destroyed in the time-dependent regime.

Finally it has to be discussed, whether the mean-field approximation is still valid

in the time-dependent regime, or whether the condensate fraction is reduced and the

thermal cloud is populated. In the limiting case of large density |Ψ|2 → ∞ but with

constant g|Ψ|2 = const (i.e. g → 0) the mean-field description is exact, and our re-

sults are valid. The case of a finite density has been investigated for one-dimensional

systems [115], with a cumulant approach [116], which can account for the fact that

atoms can scatter out of the condensate wave function. This can lead to a reduction

of the condensate density, and can eventually also destroy the whole condensate. This

has to be addressed especially in the time-dependent regime and needs further inves-

tigations. Adopting the approach [115] mentioned above for two-dimensional systems

is numerically demanding, because it involves the time-dependent integration of two-

point correlation functions for the non-condensed fraction, which are four-dimensional

matrices for a two-dimensional system.
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5.7 Intensity statistics of the wave functions

The last topic we address in this chapter is the subject of the statistical properties of

the intensity of the wave functions. We show that we observe deviations from Rayleigh

statistics [79] for the linear system (g = 0). The Rayleigh distribution is calculated by

neglecting interferences. The discrepancy from this probability calculation is explained

by crossing trajectories. These deviations have already been studied [117–119] and are

in good agreement with our numerical calculations. But in the nonlinear regime we

find quite significant differences. We begin with the description of the linear case and

follow especially Ref. [117].

The probability distribution for the intensity I(r) = |Ψ(r)|2 is the probability for

the occurrence of a specific intensity of the wave function at position r for a randomly

chosen disorder realization. We assume for the remainder of the discussion that we

are far inside the medium such that boundary effects can be neglected. In particular,

the coherent mode |Ψ(r)|2 is already damped out. Otherwise the discussion has to be

extended by the results from Ref. [120]. The Rayleigh distribution function is obtained

from the following considerations: The amplitude Ψ of a wave at a given point is the

sum over all amplitudes Ψα which arise from the scattering path α:

Ψ =
∑

α

Ψα . (5.39)

Next we calculate the nth moment of the intensity:

In =
∑

α1...αn
β1...βn

Ψα1 ...ΨαnΨ∗
β1
...Ψ∗

βn
. (5.40)

We now assume that all amplitudes Ψα acquire a different phase, and therefore only

contributions arise for pairs of those wave functions with the same scattering path

α = β: ΨαΨ∗
β = δαβ I. From combinatorial arguments we find that there are n! such

combinations, and we arrive finally at the relation for all moments:

In = n! I
n
. (5.41)

If all moments are known, the probability distribution can be calculated with the

following relation [121]:

P (I) =

∫ ∞

−∞

dξ

2π
eiξI

∞
∑

n=0

(−iξ)n

n!
In . (5.42)

In the above case we recover the Rayleigh distribution

P (I) =
1

I
e−I/I . (5.43)
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k

j K

J

Figure 5.29: Scattering path for transmitted waves with crossing, which give rise to non-

Rayleigh statistics.

In the following we illustrate that deviations from this Rayleigh law are found. Si-

milarly to the discussion of weak localization and coherent backscattering deviations

are expected in the case of crossed paths. To this end we consider the scattering path

depicted in Fig. 5.29, where the paths to the left of the crossing are labelled (k, j) and to

the right of the crossing (K, J). Taking these paths into account the amplitude results

in: Ψ = ΨkK + ΨkJ + ΨjK + ΨjJ . Now we concentrate on the second moment of the

intensity which involves terms of the following form ΨkKΨ∗
kJΨjKΨ∗

jJ ∝ Ψei∆φ with the

corresponding phase difference ∆φ = (φk +φK)− (φk +φJ)− (φj +φK)+(φj +φJ) = 0.

This shows that the second moment is enhanced by:

I2 = 2I
2

+ 2γI
2
, (5.44)

where γ is the probability for the crossing. The same arguments can be generalized to

higher moments which yields [117]:

In = n! I
n

+ 2γ (n
2
)2 (n− 2)! I

n
(5.45)

≈ n!
[

1 +
γ

2
(n2 − n)

]

I
n
. (5.46)

The last approximation is valid for a small probability γ for the occurrence of an

intersection. Finally we can convert the approximation for the moments in Eq. 5.46

into a probability distribution with the help of Eq. 5.42. The probability distribution

for the intensity of the wave function reads [117]:

P (I) =
1

I
e−I/I

[

1 + γ

(

1 − 2
I

I
+

I2

2I
2

)]

. (5.47)

Now we compare this last result with our numerical calculation of the wave function.

We have chosen the following parameters for the simulation: A Gauss correlated disor-

der potential with a potential height of V0 = 0.4µ and a correlation length of kσ = 1.0.
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Figure 5.30: Probability distribution for the intensity of the wave function in the disorder

potential. The dashed line shows the Rayleigh distribution e−n with n = |Ψ|2/|Ψ|2. We

observe non-Rayleigh statistics in the linear regime (black curve), as predicted by theory

[117]. The blue line shows a fit of the diagrammatic prediction to our numerical result with

γ = 0.053. In the nonlinear case (red curve), with g = 0.025, where destructive interference

in the coherent backscattering signal is observed, the curvature is reverted. Parameters:

kL = 40, kW = 120, jin = ~k3/m, k =
√

2mµ/~, Gauss correlated disorder potential with

kσ = 1.0 and V0 = 0.4µ, g(x) as shown in Fig. 5.7. The statistical curve is extracted at a

position kx = 15, resulting in a small contribution of the coherent mode.

This results in anisotropic scattering and we extract the mean free path following the

methods from Chapt. 4, to kℓs = 9.6 for the scattering mean free path and kℓtr = 13.4

for the transport mean free path. We have chosen a length of kL = 40, a current of

jin = ~k3/m, and in the nonlinear case a functional dependence of the nonlinearity

as shown in Fig. 5.7. Finally we analyze the probability distribution at the position

kx = 15 away from the left boundary. This is far enough inside the medium to neglect

the coherent mode, which has also been disregarded in the diagrammatic derivation

above. We need a large disorder average of ∼ 103 disorder realizations for the numer-

ically extracted probability distribution to be smooth. Additionally we have used all

intensities along the y-direction at the fixed position kx = 15 to increase statistics. The

result is shown in Fig. 5.30. The black line corresponds to the numerical results in the

linear case. The dashed line is the Rayleigh distribution, and we see clear deviations.

The blue line is a fit of the diagrammatic prediction (Eq. 5.47) to our numerical results,
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and we see very good agreement. For the probability for crossing we extract a value

of γ = 0.053. We believe that γ is related to the transport mean free path in the way

γ = 2
πkℓtr

ln L
ℓtr

, which is the same weak localization correction as given in Eq. 4.63, and

leads to a transport mean free path of kℓtr = 13.2, which is in very good agreement

with the extracted value of kℓtr = 13.4 with the method from Chapt. 4. Nevertheless

this is still work in progress and is not confirmed yet.

However, this shows that this approach can result in an alternative way to extract

the transport mean free path. Especially it would allow to investigate the dependence

of the transport mean free path on the position. A transport property is extracted in

this way from a local measurement.

Finally we consider the nonlinear case. In analogy to the linear case we have ex-

tracted the probability distribution for the nonlinear Gross-Pitaevskii equation. We

have considered a nonlinearity strength of g = 0.025, which corresponds to destructive

interference in the coherent backscattering signal. And indeed we observe clear devi-

ation also in the probability distribution of the intensity for the wave function (red

curve in Fig. 5.30). In addition it shows the same signatures as the nonlinear coherent

backscattering effect. The curve changes from a positive curvature to a negative one.

Another starting point for the interpretation is to realize that in the case of repulsive

interaction peak structures are broadened due to the interaction energy, especially high

intensity peaks are affected stronger. This implies that repulsive interaction reduces

the peak height and therefore the probability to observe high intensity values is lower

as found in Fig. 5.30. Up to now we do not have a good understanding of this effect,

calling for possible further investigations.



CHAPTER 6

Summary and perspectives

The aim of this work was to explore the field of coherent backscattering and transport

in disorder potentials with matter waves, in particular with Bose-Einstein condensates.

With this work we joined the theoretical research activities which were attracted as

well as the experimental research by the incentive to realize Anderson localization with

Bose-Einstein condensates, which was finally achieved in 2008 [29, 30]. The interests

of these research activities were mainly focused on the properties of effectively one-

dimensional systems. However, new effects arise in two or three spatial dimensions due

to the scenario of weak localization. Consequently, we investigated two-dimensional

systems with correlated disorder: On the one hand we studied transport properties

which are characterized by the scattering- and transport mean free path, and on the

other hand we opened the field to study coherent backscattering with matter waves in

particular with a focus on the effects arising from atom-atom interaction. Furthermore

we developed numerical methods to calculate time-dependent nonlinear scattering.

This work is based on the mean-field dynamics of the Bose-Einstein condensate de-

scribed by the nonlinear Gross-Pitaevskii equation, which has already been successfully

applied to many experimental situations. Therefore we gave a derivation of the Gross-

Pitaevskii equation which describes the time-dependent macroscopic wave function of

the condensate at the beginning of this work:

We started from the many body Hamiltonian for the atoms and then derived a formu-

lation of the dynamics for a system which is confined to two dimensions by a transverse

potential. Consecutively, we studied the experimental relevant case of potentials in the

plane which change adiabatically in space, which allows to consider the ground state in

transverse direction. We explained possibilities to create such potentials for the atoms,

either with optical or with magnetic methods.
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After preparing the fundamentals, we were confronted with the task to develop a

numerical apparatus to describe the dynamics of scattering states within the nonlin-

ear wave equation for two-dimensional geometries. In order to study open scattering

systems we mimicked the reservoir by an inhomogeneous source term in the Gross-

Pitaevskii equation. In the context of infinitely extended scattering states absorbing

boundaries are of essential importance, because the numerical approach is limited to a

finite region in space. To this end we designed boundary conditions which are capable

to absorb two-dimensional waves. These new methods can be applied to a wide range

of scattering potentials including time-dependent potentials.

We applied those methods to calculate the intensity pattern through a double slit

and a multi slit geometry, where the results demonstrate the accuracy and possibilities

of our numerical technique. Furthermore we studied an effectively one-dimensional

double barrier potential, which can also be seen as a Fabry-Perot interferometer. We

showed the relation between scattering states and quasi bound states. To this end

we derived the transmission through the double barrier potential near a well-separated

resonance only from the properties of the corresponding quasi bound state in the double

barrier potential. We especially showed that the tilting of the Breit-Wigner resonance

is due to the energy shift arising from the interaction energy of the quasi bound state.

Furthermore we addressed the problem of transport in two-dimensional disorder po-

tentials for the linear Schrödinger equation. The relevant case for experiments are

correlated disorder potentials, which we studied in detail. We considered on the one

hand a disorder potential with a Gaussian correlation function and Gaussian statistics

and on the other hand a speckle potential which is utilized in most experiments with

disorder. We presented a diagrammatic theory which allows to calculate the scattering

mean free path and the transport mean free path [84], the latter one in the diffusion

approximation as well as with weak localization corrections, which arise due to the

constructive interference of time reversed scattering paths.

In the case of the Gauss correlated disorder potential we presented analytical expres-

sions for the scattering and transport mean free path within the Born approximation.

For small correlation lengths of the Gauss correlated disorder potential we found good

agreement in the scattering and the transport mean free path for weak scattering. In

particular we observed the weak localization corrections. Nevertheless we discovered

deviations in the scattering mean free path for stronger scattering and larger correla-

tion lengths. These deviations can be attributed to the Born approximation since the

self-consistent Born approximation shows already improved agreement with our nu-

merical results. These deviations are of importance especially in the regime of strong

localization, because the localization length is strongly affected by the scattering mean

free path.

In the case of a speckle disorder potential we observed quite large deviations in the

scattering and the transport mean free path between our numerical results and the
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diagrammatic approach in the Born approximation. We expect that the Born approx-

imation for the Gaussian disorder potential leads to better results compared to the

speckle potential, since the next to leading order vanishes for the Gaussian case but

not for the speckle potential. We restricted the discussion above to the linear case, since

the atom-atom interaction modifies the scattering mean free path and transport mean

free path only negligible. This is in comparison to the influences of the nonlinearity in

the coherent backscattering scenario.

We finally studied coherent backscattering which arises due to constructive interfer-

ence between time reversed scattering paths in great detail. We explained that this

interference arises only in exactly backward direction of the incident current and con-

sequently presented known results like the shape of the coherent backscattering peak,

which were originally derived in the context of optics. Then we showed the applica-

bility of coherent backscattering to Bose-Einstein condensates. Our main focus was

to describe the influence of the atom-atom interaction onto the scenario of coherent

backscattering. There we found the new phenomena that the coherent backscattering

peak reverts to a dip in the angular resolved current, which implies a change from

constructive to destructive interference between scattering paths. This occurs already

at a quite small strength of the nonlinearity which corresponds to an interaction energy

of ∼ 10−2 from the kinetic energy. We compared our numerical results for a Gauss

correlated disorder potential with a diagrammatic theory developed just recently [59],

where we gave a sketch of the principle ideas and derived an expression which accounts

for the reduction of the coherent backscattering peak. We found good quantitative

agreement between the diagrammatic theory and our numerical results. The small

deviations there we could relate to current, respectively energy conservation, which is

not fulfilled in the diagrammatic approach.

In addition we found that the coherent mode and the density distribution, which de-

termines the scattering and transport mean free path, is only negligibly modified as

predicted by diagrammatic theory. Furthermore, we investigated the experimental rele-

vant situation, where the Bose-Einstein condensate is coupled via an adiabatic variation

of the transverse confinement into the two-dimensional waveguide. This changes quan-

titatively the backscattered current and the necessary interaction strength to observe

the destructive interference, but the qualitative behavior remains. We checked that the

inversion of the coherent backscattering peak from constructive to destructive interfer-

ence is also observed in the case of a disorder potential with longer correlation length,

and particularly in the case of the experimental relevant case of a speckle disorder po-

tential. The interpretation of the dip structure arising from coherent backscattering is

confirmed by a simulation where the incident current enters with an angle, where the

dip appears in exactly backward direction, in contrast to reflection, which we observe

for stronger atom-atom interaction. In this regime the time-dependent integration of

the Gross-Pitaevskii equation leads to a intrinsically time-dependent behavior.
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Finally we started to investigate the statistical properties of the intensity, which show a

Rayleigh distribution in first approximation. In the linear case the deviations from this

Rayleigh distribution are explained due to weak localization effects arising from the

interference of transmitted scattering paths with intersection. Those predictions are in

good agreement with our numerical results. In the nonlinear case we find significant

deviations, where the interpretation is still open. This question opens an interesting

field to analyze the statistical properties of the scattering wave functions in particular

in the presence of interaction, since we have already shown that modifications can be

observed.

Our approach allows for a detailed study of the transport phenomena in two-dimen-

sional systems, but since it is based on the Gross-Pitaevskii equation we are restricted to

the mean-field regime. This implies that the interaction with the thermal cloud around

the condensate and the depletion of the condensate is neglected, and consequently

we are limited to temperatures of the Bose-Einstein condensate much lower than the

critical condensation temperature. Additionally, excitations from the condensate can

arise in the nonlinear regime where intrinsic time-dependent behavior occurs. These

effects can be investigated with a cumulant approach introduced by T. Köhler and K.

Burnett [116], which allows the corrections to the mean-field in the case of a finite

number of atoms to be calculated in a systematic way. This has been investigated only

in one-dimensional systems [115, 122].

Furthermore we hope that our work initiates experimental research on coherent

backscattering within the nonlinear regime. Especially the group of G. Labeyrie and R.

Kaiser in Nice is already working on the experimental realization of coherent backscat-

tering with matter waves. From a theoretical perspective interesting effects may also

be expected towards the regime of strong localization. We already started to explore

Anderson localization for the linear system with the emphasis to understand finite size

effects due to the limited spatial size of the condensate. The nonlinear case is still

open and new effects may be discovered. We consider our approach as a good starting

point for further theoretical research activities. For example it can be applied to the

transport through two-dimensional billiard geometries, where the disorder is replaced

by a billiard geometry, which displays chaotic dynamics in the classical regime.

In conclusion we have presented the transport of Bose-Einstein condensates in disor-

der potentials. We evaluated the scattering and transport mean free path for correlated

disorder potentials numerically. Furthermore, we introduced the phenomenon of coher-

ent backscattering to coherent matter waves and found a substantial modification in

the interference effect. Our numerical results are in good agreement with the diagram-

matic approach to nonlinear coherent backscattering. Finally we would appreciate if

our theoretical predictions are confirmed by experimental investigation, and if our work

inspires further research activities.



APPENDIX A

Equations for diagrammatic CBS

In chapter 5 we compared our numerical results to the diagrammatic theory for nonlin-

ear coherent backscattering developed by T. Wellens and B. Grémaud [59, 112]. The

theory was originally designed for nonlinear scattering events, but it applies as well to

a nonlinear scattering medium. Here we give for reference the full set of equations for

the calculation of the coherent backscattering peak as derived by T. Wellens.

The following equations are valid only for isotropic scattering with scattering mean

free path ℓ = ℓs = ℓB and an arbitrary shape of the disorder region, especially 1
ℓ

= 0

outside the disorder region. Furthermore they are valid for an arbitrary nonlinearity

region with α(r) = 2m|ψ0|2g(r)/(~k)2. The linear equations for the average intensity

I(r) = 〈|ψ(r)|2〉/|ψ0|2 and ladder current density jd in backward direction are given

by:

I(r) = e−
R ∞
0

dt/ℓ(r−teL) +

∫

dr′P (r, r′)
I(r′)

ℓ(r′)
and (A.1)

jd =

∫

dr

A
Ic(r)

I(r)

ℓ(r)
, (A.2)

where eL is a unit vector parallel to the incident wave, A is the transverse width of the

disorder sample, and P (r, r′) is determined by:

P (r, r′) =
e−|r−r′|

R 1
0 dt/ℓ(r−tr+tr′)

2π|r− r′| . (A.3)
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For the crossed intensity the following transport equations are obtained:

Cc(r) = eik
R ∞
0 dtnc(r−teL)

(

e−ik
R ∞
0 dtn∗(r−teL) (A.4)

−ik
∫ ∞

0

dsα∗(r − seL)e−ik
R s
0

dtn∗(r−teL)−ik
R ∞
s

dtn∗
c (r−teL)C1(r − seL)

)

C1(r) =

∫

dr′P (r, r′)
(

C1(r
′) + Cc(r

′)
)

(

1

ℓ(r′)
− ikα∗(r′)Î(r′, er′−r)

)

(A.5)

C2(r) = Cp(r) +

∫

dr′
P (r, r′)

ℓ(r)
C2(r

′) + ikα(r)eik
R ∞
0 dt(nc−n)(r−teL) ×

×
∫ ∞

0

ds

(

Co(r + seL) + e−
R ∞
−s dt/ℓ(r−teL) I(r + seL)

ℓ(r + seL)

)

(A.6)

Cp(r) = ikα(r)

∫

dr′P (r, r′)

[

C2(r
′) +

+
(

C1(r
′) + Cc(r

′)
)( 1

ℓ(r′)
− ikα∗(r′)Î(r′, er′−r)

)

]

Î(r, er−r′) (A.7)

Co(r) = eik
R ∞
0

dt(n−n∗
c)(r−teL)

(

C1(r)

ℓ(r)
+ Cp(r) +

∫

dr′
P (r, r′)

ℓ(r)
C2(r

′)

)

−ike−
R ∞
0

dt/ℓ(r−teL) I(r)

ℓ(r)

∫ ∞

0

dseik
R ∞

s
dt(n∗−n∗

c)(r−teL) ×

×α∗(r − seL)C1(r− seL) , (A.8)

where er−r′ is a unit vector given by er−r′ = (r−r′)/|r−r′|. Additionally the following

definitions have been used:

n(r) = 1 +
i

2kℓ(r)
+ α(r)I(r) (A.9)

nc(r) = n(r) − α(r)
e−

R ∞
0 ds/ℓ(r−seL)

2
(A.10)

Î(r, e) =

∫ ∞

0

dρe−
R ρ
0 ds/ℓ(r+se) I(r + ρe)

ℓ(r + ρe)
(A.11)

Finally the current in backward direction arising from the nonlinear Cooperon is

obtained:

jc =

∫

dr

A
Co(r) . (A.12)

The total current j is the sum of the ladder and the cooperon contribution j = jd + jc,

and the above transport equations were solved numerically.
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[56] T. Wellens, B. Grémaud, D. Delande, and C. Miniatura, Coherent

backscattering of light with nonlinear atomic scatterers, Phys. Rev. A 73,

013802 (2006).

[57] T. Chanelière, D. Wilkowski, Y. Bidel, R. Kaiser, and C. Miniatura,

Saturation-induced coherence loss in coherent backscattering of light, Phys. Rev.

E 70, 036602 (2004).



112 BIBLIOGRAPHY

[58] V. Shatokhin, C. A. Müller, and A. Buchleitner, Coherent Inelastic

Backscattering of Intense Laser Light by Cold Atoms, Physical Review Letters

94, 043603 (2005).
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Nicht weniger fruchtbar waren die Diskussionen, die wir mit Physikern von externen

Instituten führten. Als erstes will ich dazu Dr. Thomas Wellens und Prof. Dr. Cord
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