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A b s t r a c t : We report on self consistent microscopic calculations of the electronic 
shell and supershell structure of sodium clusters w i th up to N ~ 3000 atoms. The 
spherical je l l ium model i n local density approximation is used and the Kohn-Sham 
equations are solved numerically. The finite temperature of the valence electrons is 
included by treating them as a canonical subsystem embedded i n the heat bath of 
the ions. In particular, we evaluate the total free energy F(N) and investigate its 
fluctuating part , the shell-correction energy 8F(N), as a function of temperature T 
and particle number N. We also discuss the second difference A2-F(JV) = F(N +1) + 
F(N — 1) — 2F(N) and its relation to the recently measured cluster mass abundance 
spectra. 

Meta l clusters provide a unique example for the study of shell effects i n finite 

fermion systems containing up to several thousand particles [1]. A selfconsistent 

microscopic description of such large systems is possible only i n the so-called self-

consistent je l l ium model [2], where the interacting valence electrons move i n the field 

of a uniformly charged sphere ( ' jellium') representing the ions. We report here on 

recent Kohn-Sham calculations for sodium clusters wi th up to N ~ 3000 atoms at 

finite temperatures [3]. 

Nishioka et al. [4], using a phenomenological Woods-Saxon potential fitted to the 

microscopic potentials of Ekardt [2], have drawn attention to the 'supershell structure' 

i n the level density and the oscillating part of the total binding energy of clusters 

wi th N up to 4000: a pronounced beating pattern i n which the shell structure is 

enveloped by a slowly oscillating amplitude. This is, i n fact, a very general feature of 

discrete eigenmodes i n a cavity or i n any steep potential confining many particles to a 

l imited domain of space. Ba l ian and Bloch have shown i n their fundamental work [5] 

that the beating pattern of the level density i n an infinite square well is explained 

by the superposition of amplitudes associated to closed classical trajectories; they 
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reproduced the approximate shape of the exact level density by summing up only the 

contributions from triangular and squared classical orbits. Extending this method to 

smooth potentials, Strutinsky et al. [6] were able to explain the gross shell structure 

of atomic nuclei using realistic deformed shell model potentials. Nucle i , however, are 

not big enough to exhibit the 'supershell ' beating of their shell structure. 

The experimental observation of supershell structure i n cluster expansion sources 

is inhibited by the fact that the clusters so produced have, at least init ial ly , a finite 

temperature which tends to reduce the shell effects [7,8,9]. Nevertheless, i n the 

newest sodium vapour expansion experiments of the Copenhagen - Orsay - Stuttgart 

collaboration [1], a supershell beating i n the mass abundance spectrum of sodium 

clusters has been put into evidence. We shall show here that the experimental results 

can be explained semi-quantitatively i n the selfconsistent je l l ium model, i f the effect 

of finite temperature on the valence electrons is properly included. 

We use the finite-temperature density functional theory i n the Kohn-Sham ( K S ) 

approach [10], employing the spherical je l l ium model and the local-density functional 

for exchange and correlations by Gunnarsson and Lundqvist [11]. The Wigner-Seitz 

radius of bulk sodium, ra = 3.96 a.u., is used; otherwise our calculations are com

pletely parameter free. We treat the valence electrons as a canonical ensemble i n the 

heat bath of the ions and minimize the Helmholtz free energy F(N) = E(N) — TS(N) 

of a cluster w i th N atoms, where E is its total internal energy and S the entropy of 

the electrons at a given temperature T . (See Ref. [9] for details and, i n particular, 

for a fast algorithm for the exact calculation of the canonical part i t ion function.) 

A canonical treatment wi th exactly conserved particle number N is important here 

since we investigate quantities like A2F(N) = F(N + 1) + F(N - 1) - 2F(N) which 

are very sensitive to temperature effects through the entropy part —TS: the large 

degeneracies of the spherical magic shells lead to large entropies even at small tem

peratures. 

The quantity A2E(N) = A2F(N)(T = 0) has often been taken as a measure 

for the stabil ity of the cluster: since it represents the curvature of the total binding 

energy as a function of TV, it is particularly large for the 'magic' systems which have 

a strongly negative shell correction. It has furthermore been argued [7] that i f the 

evaporation process, which takes place immediately after the adiabatic expansion, is 

responsible for enhancing the most stable clusters i n the final mass yie ld , A2F(N) 



should be proportional to — A i In Jyv, where IN is the fluctuating part of the observed 

mass yield. In Refs. [8,9] it has been shown that A2F(N) decreases very fast for 

N ~ 100 - 400 and becomes practically zero for JV > 500 already at T> 400 K . 

Therefore, the smoothing effect of a finite temperature on quantities like A2F(N) is 

very crucial for the observability of shell structure and, i n particular, the supershells 

i n large metal clusters. 

The temperature dependence of shell structure has been well studied i n nuclei, 

both schematically [12] and i n selfconsistent Hartree-Fock calculations [13]. In a 

schematic harmonic oscillator approximation, the amplitude of the shell-correction 

6F — and thus also of the quantity A2F(N) in which the average energies pract i 

cally cancel — is found to go like SF(T) = SF(0) r / ( S i n h r ) wi th r = 2ir2T/hw. 

Expanding for large temperatures and using hu oc TV"" 1 / 3 , this gives a temperature 

suppression factor oc exp(—JV 1 / 3 ) . Pedersen et al. [1] therefore mult ipl ied the loga

r i thmic derivatives of the mass yields IN by y/N exp(c iV 1 / 3 ) , where c is a constant 

containing an effective temperature, and the root factor compensates the decrease 

of the shell-correction at T = 0 with increasing N [12]. In the resulting plot, magic 

shell closures wi th N up to ~ 2720 and a beating of the shell oscillations can clearly 

be seen (see also F i g . 2 below). 

A s an example of our theoretical results, we show i n F i g . 1 the free energy shell-

correction 6F(N) versus i V 1 / 3 at the three temperatures T = 0 K , 400 K and 600 

K . [Hereby we simply used SF(N) = F(N) — F(N) w i th a l iquid drop model type 

expansion for the average free energy, F(N) = e\>N + aaN2^3 + acN1^3, determining as 

and ac at each temperature by a simple eye fit such that 6F(N) is oscillating around 

zero. The bulk energy is fixed at its theoretical value e& = -2.2567 eV.] 

The salient feature of the curves i n F i g . 1 is the supershell beating of the otherwise 

quite regular shell structure. The T = 0 curve is very similar to that obtained by 

Nishioka et al. [4] for a phenomenological Woods-Saxon potential; note that the 

present results are fully selfconsistent. The amplitude of the shell effects is clearly 

reduced wi th increasing temperature. 

In Figure 2, we have reproduced the relevant figure from the experimental analysis 

of Pedersen et al. [1] and compare it to our theoretical results. Here the negative 

second difference —A2F(N) is shown, multipl ied by the same enhancement factor 

(with the value of c readjusted by ~ 10%). In spite of the simplyfing assumptions 



underlying the identification of — A2F(N) w i th A i l n [ 7 , 9 ] , the agreement of the 

two curves is str iking. Th is demonstrates that the finite temperature of the valence 

electrons which alone contribute to the quantities shown here — the ionic parts 

of the free energies practically cancel i n the differences A2F(N) and A i In IN — 

plays an essential role i n the mass yields and can be correctly taken into account i n 

selfconsistent K S calculations even i n the simple je l l ium model. 

M u c h remains, however, to be understood - i n particular the value of the factor 

c which, using the above harmonic oscillator estimates, is too large for the estimated 

temperatures [1,7] of ~ 400 — 500 K . A more realistic study of the evaporation 

mechanism and, more generally, a non-equilibrium treatment of the ions' dynamics 

would be desirable to this a im. 

We are grateful to S. Bj0rnholm for many enlightening discussions and a continu

ing encouragement, and to K . Hansen for important contributions at the early stages 

of our investigations. 
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F i g u r e 1: Free energy shell-correction SF(N) = F(N) - F(N) for spherical Na 
clusters versus N1^3 for three different temperatures T , obtained in selfconsistent K S 
calculations [3]. L D M parameters used at T = 0 K : a , = 0.6259, a c = 0.2041; at 
T = 400 K : a, = 0.5918, a c = 0.3796; and at T = 600 K : a, = 0.5755, ac = 0.4204 
(all in eV). Numbers near the bottom are the magic numbers of filled major spherical 
electronic shells. 
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F i g u r e 2: Upper part: Relative variation < A j In IN >K0 in experimental Na 
cluster abundance IN versus TV 1 / 3 (Pedersen et al. [1]; see this reference for the 
details). Lower part: Negative second difference — ̂ F^N) of free energy obtained 
in selfconsistent K S calculations [3] at T = 600 K . Both quantities are enhanced by 
a iV-dependent factor to compensate for the temperature suppression (see text). 


