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1. INTRODUCTION 

In these lectures we shall discuss the use of density functionals 
for calculating static nuclear bulk properties such as average binding 
energies, density distributions and their moments, and deformation 
energies. 

The idea of expressing the total energy of a nucleus as a 
functional of the local density p(r) and to formulate with i t a 
variational principle 

|-P/D3R{ET9{F)]-X9(F)} =O (I.I) 
has been used as early in the history of nuclear physics as 50 years 
ago, namely in the pioneering work which led to the famous semi-
empirical Bethe-Weizsacker mass formula, 1' 2 Sophisticationofthe 
energy density functional £[p]was developed along with the under
standing of the nuclear f o r c e 3 " 5 and led to the so-called energy 
density formalism. 6/ 7 The theoretical j u s t i f i c a t i o n of the v a r i 
ational approach eq. (1.1) came from outside nuclear physics in form 
of the now well-known theorem by Hohenberg and Kohn.8 

Whereas the main d i f f i c u l t y of density functional calculations 
in solid state physics and quantum chemistry l i e s in the develop
ment of sufficiently accurate exchange and correlation energy func
tionals , their applications in nuclear physics are further strongly 
handicapped by the fact that the basic nucleon-nucleon interaction 
i s only p a r t i a l l y known and, due to i t s repulsive core, cannot be 
used directly in a perturbation expansion. We refer to the l i t e r a 
ture for comprehensive discussions of our present knowledge of the 



nucleon-nucleon interaction 9 and i t s use in Bruckner t h e o r y 1 0 ^ 1 1 

calculations for nuclear matter and f i n i t e n u c l e i . 1 2 ' 1 3 

Tiie energy density variational calculations performed u n t i l the 
late sixties, in which mostly the Bruckner G-matrix in the local 
density approximation 1 1* 1 2 was used, have been reviewed by Lombard.7 

Typically, the experimental binding energies of spherical nuclei 
could be reproduced to within % (1-10) MeV and their r a d i i within 
^ (1-4) %. (The shell effects, which cannot be included in this 
formalism, contribute about ± (1-15) MeV to the total energy and 
less than 1 % to the radii.) The density profiles obtained with 
these calculations were as a rule rather poor. This deficiency can 
be traced back mainly to the use of an insufficient kinetic energy 
density functional: mostly, the Thomas-Fermi relation was 
used, sometimes a gradient correction with adjustable coefficients 
was added. The corresponding large errors in the kinetic energies 
were p a r t i a l l y made up by readjustments of the nuclear force para
meters, but this could not help to improve the resulting density 
profiles. 

Several recent developments which took place over the last 
10-15 years allow to reassess now the energy density formalism in 
a much more rigorous and quantitative way. 1 5* 1 6 The developments 
are the following: 
1. Phenomenological effective nucleon-nucleon interactions, which 

may be understood as mathematically simple parametrisations of 
a density-dependent effective G-matrix, can be constructed and 
used in the Hartree-Fock (HF) approximation to reproduce sur
prisingly well nuclear ground-state energies, densities, r a d i i , 
deformation energies (in particular also fission barriers of 
heavy n u c l e i 1 5 ' 1 6 ) a n d some properties of highly collective exci
tations such as the nuclear giant resonances. 1 7' 1 8 (See ref. 19 
for a review of such effective forces and their applications in 
HF (plus RPA) calculations.) In particular, the Skyrme type 
effective interactions 3 ' 2 0 allow to write the nuclear part of 
the HF energy as a functional of local one-body densities only, 
which makes them especially well-suited for the use in density func
tional methods. 

2. The Strutinsky method 2 1 not only proved to be an e f f i c i e n t pheno-
menological tool for f i s s i o n barrier calculations (see, e.g.ref.22)/ 
but i t also provides a quantitative way 2 3 to extract an average 
part of the HF energy which i s semiclassical in i t s nature and 
can be calculated by density functional methods. This allows to 
avoid the very d i f f i c u l t problem of describing the shell effects 
by density functionals; i t was demonstrated 1 5* 2 3 that the shell 



effects can be included perturbatively at the end of a self -
consistent semiclassical calculation without any significant loss 
of accuracy compared to an exact HF calculation, 

3. The extended Thomas-Fermi (ETF) model, based on a semiclassical 
Ii expansion of the partition function or the Bloch density, 2 i f was 
reintroduced into nuclear p h y s i c s 2 5 ' 2 6 and successfully used to c a l 
culate the average energy of nucleons in r e a l i s t i c p o t e n t i a l s . 2 7 It 
was, in particular, also shown 2 6" 2 8 that this average energy i s 
identical to that obtained with the microscopical Strutinsky averag
ing method. From the same ETF model, density gradient expansions of 
the kinetic energy density functional x[p] and a spin-orbit density 
functional J[p] can be derived; they have recently been extended to 
include contributions from nonlocalities of the average nuclear 
potential such as variable effective nucleon masses and spin-orbit 
p o t e n t i a l s . 2 9 ' 3 0 The ETF functional for x[p] was furthermore demon
strated i n microscopical test c a l c u l a t i o n s 2 9 ' 3 0 to reproduce very 
accurately the average kinetic energy of f i n i t e nuclei. 

The strategy of the density functional method discussed in these 
lectures i s thus the following: We use effective Skyrme type forces, 
as they are determined in HF calculations, without touching their 
parameters. We then use the density functionals x[p] and [p] deter
mined from the ETF model once for a l l , without readjusting any of 
their coefficients, in variational calculations for the average 
nuclear properties of interest. In this way, the semiclassical resits 
can at any time be tested against microscopically averaged HF results 
and possible deficiencies of the density functionals can be disent
angled from possible deficiencies of the Skyrme forces themselves. 
The shell effects, wherever they are of importance, are added pertur
batively at the end of the semiclassical variational calculation in 
terms of the corresponding average mean fi e l d s . 

These lectures w i l l be structured as follows: In section 2 we 
discuss in some more detail the above mentioned newer developments, 
in order to provide the basic ju s t i f i c a t i o n of the semiclassical 
variational method. In section 3, we shall present - after a dis
cussion of the ETF-Euler variational equations - the results for 
static nuclear bulk properties obtained in semiclassical calculations 
with a restricted, but flexible variational space of t r i a l nuclear 
densities. We shall also shortly discuss there the expansion of 
the semiclassical nuclear binding energies in a liquid drop model 
(LDM) type series, which allows to link the phenomenological LDM 
or droplet model parameters back to those of the Skyrme force. In 
section 4, we shall f i n a l l y discuss some extensions of the semi-
classical density functional method. 



2. FOUNDATION OF THE SEMICLASSICAL VARIATIONAL METHOD FROM THE 
SKYRME-HF FORMALISM 

2.1. The Skyrme-HF Energy Density 

We shall b r i e f l y outline here the structure of the energy den
si t y obtained with effective forces of the Skyrme type. 3 They have 
mathematically a zero range; however, velocity dependent terms mock 
up the f i n i t e (but short) range of the nuclear force. This allows to 
write the nuclear part of the HF energy as a functional of local 
one-body densities only. Correspondingly, the total HF energy i s 
written in the form 

E„F = ZD3--IESK IRHE C O U L (F)L. «.!,. 'Sky 

The nuclear (Skyrme) part 

C s k y ( T ) =E S K Y [p Q(F),T Q(R), J q ( P ) ] (2.2) 

i s a simple functional of the local nucleon densities Pq(r), kinetic 
energy densities T q(r) and spin-orbit densities J q ( r ) (q = n, p for 
neutrons and protons, respectively) defined by 

P Q ( f ) = E IIPY ( r , s , q ) l 2 R Q
J , (2.3) 

XQ(F) = IIlv<p v(r,s,q)I 2
FI Q

V, , (2.4) 

JQ(R) M-I)N^F,S*,Q)VIPV(F(S,Q)X<S'LALS>NQ
V , (2.5) 

where tf>v(r,s,q) are the single-particle wave functions with orbital 
and spin quantum numbers v and s, respectively, and n^ are the occu
pation numbers (equal to 1 or O in the pure HF case, or v^ i f pairing 
correlations are included in the BCS approximation 3 2). The Coulomb 
energy density i s the sum of the direct term and the exchange term , 
the latt e r taken in the well-known Slater approximation which has 
proved suf f i c i e n t l y accurate for a l l practical purposes 3 3: 



We refer to the original paper of Vautherin and Brink 2 0 for the 
derivation and the exact form of the functional £sky(r)« (For the 
extended form of Skyrme forces where the density dependent term con
tains a variable power of p, see e.g. ref. 34.) 

As an i l l u s t r a t i o n we give here the expression of S Sj c v (r) for 
the case of a symmetric nucleus with Pn = Pp = P / 2 etc.: 

J W 1 -kT*h"2* ^ • S T 1 I T V I I I P * - (2.7) 

The HF equations, obtained by varying the wave functions 
<p̂  = (py(r,s,q), take the form of Schrodinger equations with variable 
effective nucleon masses and spin-orbit potentials: 

H > Q = [-V~I-.V +V(F)-IW (R)(VXA)L IPQ = £>" • * v 1 2MJ(R) q q J T v v T v ( 2.8) 

The local potentials (r), effective masses (r) and spin-orbit 
potentials (r) are given by the relations 

V R ' - 5P Q(R)- D9Q
 V D(V9Q) * D(A9Q) ' 

T>2 D£(R) 

D£(F) 
2MJ(F) " DY R) 

(2.9) 

(2.10) 

W q (P) = T?T5I • (2.11) 11(F) 

where E(r) i s the sum of the nuclear and the Coulomb energy density. 

Usually, the force parameters t ^ t ^ , t 2 # t 3 # a etc. are deter
mined by f i t s of experimental groundstate properties of a series 
of (mostly spherical) nuclei. However, most of them are related to 
each Other r and restricted i n their range of values, by imposing 
the more or less well established saturation properties of i n f i n i t e 
nuclear matter, such as the binding energy per nucleon E/A (i.e the 
volume energy of the mass formula), the saturation density P00, the 
effective mass m* or the nuclear matter incompressibility Koo. 
Imposing their empirical values, the choice of the force parameters 



i s greatly restricted, although s t i l l innumberable parameter sets 
can be found in the l i t e r a t u r e . 1 9 ' 3 5 The parameter a of the density 
dependent term in the Skyrme functional eq. (2.7) i s rather strongly 
restricted by the values of K and m*. In fact, i f values in the 

00 OO 

ranges 

210 MEV £ K S 240 MEV 
°° (2.12) 

0.7 < M*/M < 0.8 
oo 

are imposed, as they are required in order to f i t the giant mono-
pole and quadrupole resonances by RPA c a l c u l a t i o n s , 1 7 ' 1 8 one finds 
that a must be of the order 

1/6 £ A £ 1/3 . (2.13) 

Having imposed "reasonable" nuclear matter properties alone 
guarantees, of course, in no way that a force w i l l have good sur
face properties of f i n i t e nuclei, which then are adjusted by actual 
HF calculations and f i t s to experimental data. Even more i t must 
be considered a great success that good f i t s to many data were 
obtained, considering the fact that the nuclear matter properties 
f i x already five combinations of the typically 7-8 Skyrme parameters. 
For detailed comparisons of HF (+BCS) results to experimental data, 
we can only refer here to the abundant l i t e r a t u r e . 1 7 " 1 9 ' 3 5 " 3 7 

It might be worth spending a few words on the nature of this 
HF + Skyrme formalism. Although i t formally i s a Hartree-Fock pro
cedure, i t may well go beyond this framework what the physics i s 
concerned. Due to the fact that the Skyrme force i s a parametrized 
G-matrix (and can be derived qualitatively from a Bruckner 
G-matrix 1 3), short-range correlations are b u i l t into i t from the 
very beginning. But also long-range correlations can be contained 
in what above i s called the HF energy, because the HF equations (2.8) 
can be understood as Kohn-Sham equations, 3 8 generalized to include 
nonlocal parts of the potential. Noting that, in fact, the mean 
field s in eq. (2.8) are nothing but functional derivatives of a 
parametrized energy density, one recognizes that due to the 
Hohenberg-Kohn theorem 8 a l l kinds of correlation energies may be 
contained in the energy E h f eq. (2.1) 

2.2 Separation of Shell Effects 

The direct application of the Skyrme energy functional eq. (2.2) 
to the density variational method i s handicapped bv̂  the presence 
of the kinetic energy and spin-orbit densities Tq(r) and (r). In 
principle, we know from the Hohenberg-Kohn theorem8 that there exist 
unique functionals x[p]and J[p] which allow to express these densities 



in terms of the local nucleon densities p q(r) . However we do not 
know these functionals and there i s l i t t l e chance to determine them 
exactly. They certainlyjnust be nonlocal, since the shell effects 
contained in Tq(r) and J q ( r ) are not local, but global properties 
of the nucleusT 3 9*1*0 

This problem can be overcome by averaging out the shell effects 
and expressing the average of the energy by a.functional of the 
average densities o q(r) . This can be j u s t i f i e d by means of 
Strutinsky*s energy averaging method21 which, in fact, allows to 
decompose the exact HF energy in a rather unique way into an average 
and a fluctuating ("shell-correction") p a r t 2 1 - 2 3 : 

£ H F * E H F + 5 1 E n + 6 1 E p • ( 2 ' 1 4 ) 

Hereby the average energy E h f i s practically calculated in the same 
way as the exact energy E h f through eqs. (2.1) - (2.6), but replacing 
the quantum mechanical densities eqs. (2.3) - (2.5) by the averaged 
densities obtained by means of the Strutinsky averaging occupation 
numbers « 3 , 2 2 ' 2 8 

v 

9Q(R) = E l i p V ( T L S ^ ) I 2 FIJ , (2.15) 

etc. The shell-correction energy S J E Q eq. (2.14) i s defined by 

where e are the eigenvalues of the average HF Hamiltonians H H F 

defined through eqs. (2.8) - (2.11) in terms of the averaged densities, 
i.e. 

••Uv,.?,!*?-*;¾ • ,2-17' 
Formally, eq. (2.14) just represents the lowest two terms of a Taylor 
expansion of the HF energy around the average parts of the densities. 
(See ref. 23 for a discussion and further literature on this subject.) 
In extended numerical calculations 2 3 i t has been checked that the 
missing higher order terms in eq. (2.14) are negligible for a l l 
practical purposes. In particular i f the averaging by means of the 
ft^ i s done selfconsistently (see also the next subsection), the two 
sides of eq. (2.14) are equal to within less than ̂  0.5 MeV even i n 
heavy, strongly deformed nuclei (corresponding to an ccuracy of 
better than lO"" 3). 



Two important conclusions could be drawn from these numerical 
r e s u l t s 2 3 : 
1) The averaged HF energy B h f has a l l the properties of a LDM type, 

semiclassical energy. 
2) The selfconsistency i s only important for the average quantities 

( E H F , H^ f, p , etc); the shell effects can, in fact, be added 
perturbatJveiy. 

This provides us with a strong motivation to replace the above 
sketched microscopical selfconsistent calculations of E h f by a 
semiclassical calculation. For i t s realization, i t was important to 
quantitatively secure the equivalence of the Strutinsky averaging 
procedure with a semiclassical expansion of the energy, as w i l l be 
discussed i n the following subsection. 

2.3 Strutinsky Averaging as a Microscopical Link to the ETF Model 

Strutinsky 2 1 and Tyapin1*1 surmised that the numerically 
Strutinsky-averaged energies not only correspond to those obtained 
in the Fermi gas theory, but that they contain also inhomogeneity 
corrections such as they are obtained in the so-called extended 
Thomas-Fermi (ETF) model.4*2 

Bhaduri and Ross 2 5 proposed to calculate the average energy of 
nucleons in various model potentials by employing a !!-expansion of 
the partition function, which actually had been developed long ago 
by Wigner and Kirkwood,22* and demonstrated the closeness of their 
results to those of a numerical Strutinsky averaging. (We shall 
discuss the Wigner-Kirkwood expansion and the ETF relations derived 
from i t in section 2.4.) For harmonic os c i l l a t o r potentials, the 
exact equivalence of the Strutinsky averaging method and the semi-
cla s s i c a l Ti-expansion was proved a n a l y t i c a l l y . 2 6 ' 2 8 For r e a l i s t i c , 
deformed Woods-Saxon type potentials including spin orbit f i e l d s , 
the two methods were shown numerically 2 7 to y i e l d identical energies 
to within 1-1.5 MeV (out of several GeV), which i s roughly the 
uncertainty in either method. 

It i s thus well established that - at least as energies are 
concerned and with the numerical accuracy practically required -
the microscopical Strutinsky averaging procedure i s equivalent to 
a semiclassical H-expansion. Therefore i t seems natural to use the 
ETF functionals x[p] and 3[p] obtained from the same !!-expansion 
(see next section) in order to calculate the average HF energy Ejjp 
in a semiclassical, and thus much more economical way. 

That the energy E J j f - which was obtained microscopically in 
ref. 23, as explained i n sect 2.2 - can be expressed as a functional 
of the average densities pq(?) eq* (2.15) i s again a consequence of 
the Hohenberg-Kohn theorem. The iterative inclusion of the 
Strutinsky occupation numbers n^ in the HF cycle has, in fact, been 



formulated i n a s t r i c t l y variational way,23 including a proper con
straint in the energy to be made stationary (and found to be mini
mized i n actual calculations). The Hohenberg-Kohn theorem8 applies 
therefore to this variational averaged system as well as i t applies 
to any variational system of Fermions interacting through a 2-body 
force. 

2.4 The ETF Model and i t s Density Functionals 

We shall i n the following sketch the semiclassical li-expansion 
developed by Wigner and Kirkwood,2 which provides a convenient tool 
to derive the ETF functionals x[p] and 3[p] which we are interested 
in. For the sake of a simple notation, we shall presently r e s t r i c t 
ourselves to the case of N nucleons (one kind only) in a given local 
(HF) potential V(r). Let <pv and e v be the eigenfunctions and eigen
values of the corresponding Schrodinger equation: 

HLPV= [T + V(F)]ip v = E vIp v . (2.18) 

Next we define the Bloch density matrix 

C(r,F';P) = I V ( ? ' ) i p ( F ) E " P \ (2.19) 

where the sum goes over the complete spectrum (including an integral 
over the continuum, i f present). From C, we obtain by an inverse 
Laplace transform the usual density matrix 

9(T\R'> = L;1 [^-C(?,f;P)] 

(2.20) 

= 2?Fj /dPeXPPC(?,?';|3) , 

from which in turn, the local densities p(r) and x(r) can be deter
mined 

N 

9(f) = YL.IIRi(P)I2= 9(r,r') , (2.21) 

v=1 v 

N 

x ( f ) = E I l v i p ( f ) l = v. - vr, p(r,r')L „ . (2.22) 



In eq. (2.20), A i s the Fenni energy which i s fixed by the particle 
number conservation 

M R)D3R = N . (2.23) 

The idea of Wigner and Kirkwood was to expand C(r,r*;B) around 
i t s value obtained in the Thomas-Fermi approximation: 

(2.24) 

One makes the ansatz 

C(R/;P)= C / . f . - p i x f U ^ + f i 2 x 2 + ...} ,(2.25) 

thus expanding the ratio of the exact to the TF Bloch function i n 
powers of ft. The Xn a r e functions of r,r' and 6 which contain com
binations of n gradients acting on V(r) . Uhlenbeck and Beth l f 2 worked 
out a recursive scheme to obtain the Xn successively (see also 
ref. 43). By Laplace-inverting the series eq. (2.25) back term by 
term, one obtains an expansion of the density matrix eq. (2.20) and 
thus of p(r) and T ( r ) , to which only even powers of -R (i.e. Xn 
with even n) contribute. We quote here the results up to order fi2 

= 3 F < X - V < ? » 3 ' 2 * Q ( X - V ( P ) ) X 

* ( 1' 8" ^ A V ( X - V ) - 2 + X ( ^ V ) 2 ( X ' V )" 3 ]) ' 

T E T F It) - (^-F / 2(X -V(R))5'2 x S(A-Vtf)) x 

{1 - F T - I T A V ^ - V ) " 2 - T ( ^ V J 2 ( X - V ) - 3 I } -2 3 FF*\M2/ 
(2.27) 

In the lowest order terms we recognize the TF expressions; the -ft 2-
corrections lead to the well-known divergencies at the clas s i c a l 
turning points tx given by A = V(r\). (Due to the step functions, 
both densities are identically zero outside the cl a s s i c a l l y allowed 
region.) 



In spite of their turning point divergencies, the densities 
eqs. (2.26), (2.27) can be shown4*3 to lead to f i n i t e energies and 
particle numbers, even i f the Tl* terms are included. This shows that 
the ETF densities are rather to be understood as distributions 
with well-defined integrals and moments (see also ref. 44). The 
energies so obtained form a rapidly converging asymptotic series 

£ E T F = E T F + E 2 + E 4 * - ( 2 ' 2 8 ) 

The sum of the f i r s t three terms (i.e. up to order 4R1*) converges 
typically to within ^ 1 MeV and agrees, as mentioned in section 2.3 
above, with the energy obtained by Strutinsky averaging: 

E C T C - E c . = Z c n . (2.29) ETF Sfr v v v 

We shall not discuss here the technicalities of including effective 
mass and spin-orbit contributions, which can be done starting from 
a Hamiltonian of Skyrme type eq. (2.8) ; they can be found in the 
literature.22/^3 

Before coming to the construction of the ETF density functionals, 
we mention that a way of removing the turning point divergencies in 
PgTF( r) a n ^ T E T F ̂ r) b v p a r t i a l l y resumming the Wigner-Kirkwood series 
eq. (2.25) w i l l be discussed i n sect. 4.2 below. 

2.4. a) The functional x[p] for a local potential 

From eqs. (2.26) and (2.27) i t i s possible to eliminate algebrai
cally the Fermi energy X, the potential V(r) and i t s derivatives, 
hereby consistently retaining a l l terms of order f i 2 and neglecting 
those of higher orders in fi. The result i s (for one kind of nucleons) 

Tig] = T t f [p] + T 2 [ 9 ] { 2 - * » 

with the well-known Thomas-Fermi relation 

T T F [ 9 ] = K 9
5' 3, K = f ( 3TC 2) 2' 3 (2.31) 

and the second order gradient correction 



T 2 l p ]
 = 36 9 + T A P • (2.32) 

The f i r s t term in T 2 [ p ] i s the so-called Weizsacker correction; this 
author 1 derived i t i n a somewhat ad hoc manner and obtained i t with 
a 9 times larger coefficient. This coefficient has subsequently given 
rise to a l o t of discussion. By now i t i s clear that various alter
native semiclassical expansion procedures 3 0 ' 1 + 1 f t f 2 lead to exactly 
the same relations and coefficients. (For a recent review in which 
these alternative expansions are discussed and related, see ref. 45.) 
The coefficient 1/36 of the Weizsacker term i s thus well established 
in the framework of semiclassical expansions (and for smooth poten
t i a l s V(r)). The second term in eq. (2.32) does not contribute to 
the integrated kinetic energy and has therefore often been ignored; 
i t does however contribute to the total Skyrme energy through the 
terms containing Tp/ see eq. (2.7). 

Going up to order Ii i f in the expansion of PJSTF A N < * T E T F a n d Pro
ceeding in the same way, one obtains the next correction Ti4 [p ] to 
the functional, containing up to fourth derivatives of p. The some
what lengthy expression for T^[p] i s given in r e f s . 2 9 ' 3 1 . When inte
grating over the whole space, the fourth and third derivatives of p 
can be eliminated by par t i a l integration, and the expression simpli
fies to 

A J 9 I A = J J J J ORF* 3/," [8 ( ½ ) ' - 2l[fff , « , 3 3 , 

This procedure can in principle be continued ad libitum, includ
ing higher and higher gradient corrections. However, the terms T n [ p ] 
with n > 6 diverge for densities which decay exponentially in the 
t a i l region. Therefore, the terms up to fourth order must be con
sidered as the converging part of an asymptotic series for x [ p ] ; we 
shall denote this part by T E T p [ p ] : 

Similarly, one obtains 

- 3 ( - 9 - ) T + 3 0 hp Jd r 

(2.35) 

The above derivation of the functional T ^ p f p ] i s s t r i c t l y 



speaking not allowed at the classical turning points, where T e t f ( r ) 
and PETF(£) a r e singular. It holds, however, at any other point. 
(In the c l a s s i c a l l y forbidden region, T E T F I P ] holds t r i v i a l l y since 

T E T F A N D P E T F t n e r e a r e identically zero!) One may therefore hope 
to be able to use T E T F E P ] everywhere in space by analytical conti
nuation . 

The functional t E T F E P I given by eqs. (2.31)-(2.35) has been 
tested numerically with the help of microscopically Strutinsky 
averaged densities P(r) and x(r), defined as in eq. (2.15), for 
different spherical and deformed p o t e n t i a l s . 2 9 ' 3 1 The results of 
these tests may be summarized as follows (for a more detailed 
discussion, see ref. 31 ): 
1) The functional T E T F E P ] eq. (2.35) reproduces the total Strutinsky 

averaged kinetic energy within less than ~ 1.5 MeV, corresponding 
to a few parts in IOi* for heavy nuclei. This holds independently 
of the radial shape of the potential, of i t s deformation and of 
the particle number, as i t should be expected from the Hohenberg-
Kohn theorem. 

2) The functional also reproduces the integral Gjpxd 3r, as i t occurs 
in the Skyrme energy, within less than 1 MeV (using r e a l i s t i c 
Skyrme parameters to determine G). 

3) The terms due to T^[p] are essential for obtaining the correct 
deformation energies, in particular the fission barriers. 

The points 1 and 3 are ill u s t r a t e d in figure 1 (taken from ref .31). 
It shows the kinetic energy for 112 particles in a deformed harmonic 
oscillator potential as a function of the deformation parameter 
q =W1Zuz which measures the frequency ratio. The different curves 
are obtained i n terms of the Strutinsky averaged density p(r) 
eq. (2.15) through the ETF functional eq. (2.35) 

TnI?!= ^ r / d 3 r x [?(?)] , (2.36, 

whereby the index n shows where the functional (2.35) has been 
truncated (e.g. n = 2 means TF plus 2nd order gradients included). 
The reference quantity of the test i s the microscopically Strutinsky 
averaged kinetic energy T defined by 

(2.37) 

whereby T ( r ) has been averaged analogously to p(r) eq. (2.15). It i s 
seen that the f u l l functional T E T F E P ] up to 4th order reproduces 
the energy T exactly within the accuracy of the drawing; the energies 
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Fig. 1. Kinetic energy of 112 particles in axially deformed 
harmonic o s c i l l a t o r potential with frequency ratio 
q = o)i/o)2/ obtained with the ETF functional x[p] up 
to various orders of gradient corrections (see text). 
T i s the microscopically Strutinsky-averaged kinetic 
energy; the dashed curve shows the exact kinetic 
energy T which includes shell fluctuations. 

T and T1̂  [p] agree in fact within less than 0.1 MeV at a l l deforma
tions. The 4th order terms x^[p] s t i l l contribute 10-15 MeV to the 
total kinetic energy and are seen to be important for obtaining the 
correct deformation dependence. Fig. 1 also contains the exact 
kinetic energy T (shown by a dashed curve) which contains shell 
effects. It would of course be hopeless to try to reproduce this 
exact energy by a local gradient expanded functional, even i f the 
exact quantum mechanical density p(?) i s put into the functional 

We might add here some remarks concerning simplified functio
nals x[p] of the form 



r 1 5/3 1 ( ? p ) 2 

T i p ] = xp • T I 36 " p ( 2 - 3 8 ) 

with an adjustable coefficient n, as they have repeatedly been used 
in the liter a t u r e . 1 * ' 1 + 6 " ^ 8 It may be hoped, indeed, to mock up the 
4th order terms T i^ [p ] by choosing n > 1 such as to f i t the functional 
eq. (2.38) to the correct total kinetic energy. However, i t i s not 
obvious, then, that the same value of n can be used for a l l potent
i a l s , a l l deformations and a l l particle numbers. 

In order to i l l u s t r a t e this, we have calculated the quantity 

^ /dBr{x 2[pl • T j g ] } 
T I = 1% T Z T l j (2.39) 

/CRR T 2IP] 

from the results obtained in ref. 31 for the harmonic oscillator 
potential. In figure 2, the number n eq. (2.39) i s plotted against 
the particle number N (crosses) and against the deformation para
meter q (circles). It i s seen to be rather constant with values 
T) a 1.4-1.5 for not too small particle numbers. Similar values 
are also obtained for a deformed Woods^Saxon potential. The value 
^ a 1.4 - 1.5 i s , however, about three times smaller than what typi
call y has been used1*6"1* 8 ; the reasons for this w i l l be discussed in 
sect. 3.1 below. 

2.0 2.5 

Harmonic OsciUator 

3.0 35 

7|(q) N=112 
-j 
50 N 100 150 

Fig. 2. The parameter n eq. (2.39) obtained for deformed harmonic 
osci l l a t o r potentials i s plotted against particle number N 
(crosses, values on lower axis; evaluated for q = 1) and 
against deformation q (circles, values on upper axis, 
evaluated for N= 112 particles). 



This result should be used with caution. We cannot expect this 
procedure of mocking up the 4th order contributions by a single para
meter to work for nonlocal potentials. (Indeed, n i s dependent on the 
effective mass of the force. 1* 6) Furthermore, problems arise with the 
surface of the densities, i f such adjusted functionals as eq. (2.38) 
are used in variational calculations (see sect. 3.1). 

2.4.b) The functionals x[p] and 3[p] for Skyrme-type nonlocal 
potentials 

For velocity-dependent Skyrme forces, one has to generalize the 
functional t E T F [ P J ' since i t receives e x p l i c i t contributions from 
the nonlocal parts of the HF-potential. Rewriting the Skyrme-HF 
Hamiltonian (see eq. (2.8)) in the form 

HSK = - ^ V • F(F)V + V(R) - IW(R)(VXA) , (2.4o> 

where f(r) = m/m*(r), the Wigner-Kirkwood expansion eq. (2.25) can 
be readily obtained. (The Bloch density C i s in this case a 2 x 2 
matrix, the x n

 w i t n n > 1 containing the Pauli matrices a^.) The 
second-order contribution to the kinetic energy density functional 
then becomes 

The spin orbit density only gets contributions from the ft2 and higher 
terms. The lowest-order expression i s 

(A semiclassical spin-orbit correction equivalent to eq. (2.42) for 
m = m* has been derived earlier by Stocker et al.** 9) 

Carrying through the expansion to 4th order with effective mass 
and spin-orbit i s extremely tedious. It has been done with an 
algebraic computer code by Grammaticos and Voros 3 0; we refer to 
their papers for the e x p l i c i t expressions for T i t [p ] and ^ [p ] . Again 
after suitable p a r t i a l integrations, the relevant contributions to 
the total energy only contain f i r s t and second derivatives of the 
densities p Q ( r ) . The corresponding expressions are given in ref. 15. 

(2.41) 

(2.42) 



Note that for Skyrme forces f(r) = 1 + Bp (r), an<J W(r) i s pro
portional to Vp(r), so that the functionals x[p] and J[p] ultimately 
only contain the density p and i t s gradients. We also re c a l l to the 
reader that the equations in this section hold for either proton or 
neutron densities^ an<J not for the total densities x = T + x , 
P = P + p and J = J + J . n P n p n p 

2.5 Summary 

Let us summarize at this point the main steps of the derivation 
and j u s t i f i c a t i o n of the semiclassical variational method. 
1) HF calculations with effective Skyrme interactions allow to c a l 

culate a vast amount of nuclear ground-state properties, defor
mation energies and (with RPA) giant resonances to a satisfactory 
degree. 

2) The HF energy can be s p l i t , by means of the Strutinsky averaging 
procedure, in a selfconsistent average part E h f and a shell-correc
tion part, «see eq. (2.14). 

3) The averaged energy E r f and the corresponding selfconsistent 
average densities pq(?) can be obtained in a s t r i c t l y variational 
way. Therefore,^by virtue of the Hohenberg-Kohn^theorem, E h f and 
thus Tq(r) and J(r) are unique functionals of Pq(r). 

4) The Strutinsky averaging method i s practically equivalent to a 
semiclassical li-expansion of the enerqy, 2 7 which in turn leads to 
the ETF density functionals x[p] and J[p]. 

5) The ETF functional x[p] with gradient corrections up to fourth 
order reproduces with high accuracy the average kinetic energy 
of nucleons in r e a l i s t i c p o t e n t i a l s . 2 9 ^ 3 1 _ _̂  

6) Combining 3) and 4) allows to express E a p ^ i n terms of Pq(r) only 
by means of the ETF-functionals x[p] and J[p] and to perform 
semiclassical density variational calculations in order to 
optimize p g(r) . ^ 

7) After selfconsistency has been reached for E h f and pq(r), the 
average mean fields eqs. (2.9) - (2.11) can be used to calculate 
the shell-correction energies ^ 1 E q (2.16) by^solving once the 
Schrodinger equation (2.17). Adding ^ 1 E g to E h f , thus incorporating 
the shell effects perturbatively, allows to recover the (exact) HF 
energy with sufficient accuracy. ^'*° 

8) in the case of purely local potentials, the contribution to the 
total kinetic energy coming from the 4th order correction term 
TtfCp] may be simulated by multiplying the Weizsacker term in 
T2[p] by a factor n % 1.4 - 1.5. However, this procedure does not 
work for nonlocal Skyrme potentials (where n depends on the 
effective mass m*) ? i t also leads to unphysical variational 
densities, as discussed in sect. 3.1 below. 



3. SEMICLASSICAL VARIATIONAL CALCULATIONS 

Inserting the functionals t E T F ^ P I and J E T F [ P ] in the Skyrme 
energy density eq. (2.2^ and making use of the variational d e f i n i 
tions of fq = m/m̂  and Wq by eqs. (2.lO), (2.11)f we can now express 
the total average energy of the nucleus as a functional of the 
spatial densities Pq only. The idea then i s , as discussed i n the 
introduction, to perform a variational calculation on the densities 
Pq, including Lagrange multipliers ^q to ensure the correct particle 
numbers (N and Z): 

6/S3R{ETP ,9 1 - X 9 {F)- X 9 (R)} = 0 . U.N 

(Here E[p n,pp] contains both the nuclear and the Coulomb parts.) In 
the following we shall discuss what happens i f the variation i s done 
exactly, i.e. i f the corresponding Euler-Lagrange equations are 
solved. 

*• Discussion of the ETF-Euler Variational Equations 

In order to simplify the presentation, we shall again assume 
only one kind of particles - r e a l i s t i c a l l y , one w i l l obtain two 
coupled d i f f e r e n t i a l equations for p n and p p - and leave out the 
effective mass and spin-orbit contributions (i.e. put f = 1 and 
W=O). These restrictions do not affect the conclusions drawn below. 

The Euler-Lagrange equation then becomes 

^ { Y K 9 2 / 3 + D 2[9l • D 4 W H V F 9 ] = X , (3.2) 

where the term in curly brackets comes from the variation of the 
kinetic energy and the potential i s 

V I 9 1 = 5 ^ F , <3'3) 

cf. eq. (2.9). The second-order kinetic term i s 



The term Di. [p] correspondingly contains 7 contributions with up to 
4th order derivatives of p . 2 9 ' 3 1 The equation (3.4) can in principle 
only be solved numerically. However, i t i s possible to determine 
rather easily the asymptotic behavior of the solution both inside 
the nucleus and in the outer surface. 

3.1 a) Asymptotic behavior in the outer surface 

The f a l l - o f f of the density p(r) at large distance r (we shall 
for simplicity assume spherical symmetry) i s completely determined 
by the gradient corrections in the kinetic energy functional x[p]/ 
i f they are included at a l l . We shall accordingly discuss i t in three 
steps. 

*~ Using x T F[p] only; If only T t f [ p ] i s used, eq. (3.2) reduces to 
2 

• - |K9 2' 3+ V[P] = X . (3.5) 

If the potential V[p] contains only powers of p and no gradients, 
the only solution of eq. (3.5) i s p ( r ) = P o and one obtains thus 
a l i q u i d drop model type constant density with a sharp cut-off at 
the surface. 

For Skyrme-Iike forces with a term b(Vp) 2 in the potential 
energy, eq. (3.5) leads to a density profile which near the sur
face goes l i k e 3 

9(R)« TGH 2(^P F I) O.E) 
for spherical nuclei, where a i s essentially determined by the 
constant b in front of the (^p)2 term. This density thus has to 
be cut off at a f i n i t e radius r = R 0 and put equal to zero out
side, and i s therefore not very physical. It leads to the d e f i 
ciencies of the calculations reported in ref. 7 which we have 
already mentioned in the introduction. 

2- Using x T F[p] + T 2 [ 0 ]; Berg and Wiletsi* pointed out that the i n 
clusion of a Weizsacker term in the variational equation eq. (3.2) 
(with Dif = 0) leads to an asymptotic f a l l - o f f of the density with 
the correct exponential form (in the spherical case): 

(3.7) 

The range a i s given by the Fermi energy X (which i s always 
negative) and the coefficient of the Weizsacker term: 



36 2M X L JL.1 (3.8) 

Unfortunately, this range i s too small by a factor 2-3 compared 
with r e a l i s t i c nuclear surfaces. Consequently, the variational den
s i t i e s f a l l off too quickly in the outer surface and lead to an 
overestimation of the kinetic energy (which i s p a r t i a l l y compen
sated by an overestimation of the potential energy). This was con
firmed in numerical calculations by Bohigas et a l . , 5 0 who solved 
the Euler equations using the local functional T T F [ p ] + T2[p] 
eqs. (2.31), (2.32) for a Skyrme force with m<x>/m * 0.95 and without 
spin-orbit force. The semiclassical energies obtained in this way 
differed from the exact HF energies by ̂  0.4 - 0.6 MeV per nucleon, 
thus by far more than the order of magnitude of the shell correc
tions . 

To overcome this defect - s t i l l in an attempt to solve the 
relatively easy second order d i f f e r e n t i a l equation - several 
authors used functionals of the type 

where a and n were adjustable parameters. • 1 + 8 ~ 8 ' 5 1 In particular 
in the so-called MTF-functional, 1 + 6 n w a s chosen to be 4-5, in 
order to obtain r e a l i s t i c t a i l s of the densities, see eq. (3.8). 
This leads, however, to a drastic overestimation of the kinetic 
energy - in particular i t s surface contributions - which was com
pensated in ref. 46 by reducing the coefficient of the TF term 
(i.e. a < k)• In this way i t was possible to f i t the kinetic 
energies of spherical nuclei quite well (see also ref. 47). How
ever, the price to be paid for this i s that a and 3 depend on the 
nucleon number and on the force (in particular on m£). The latter 
i s obvious since the e x p l i c i t effective mass and spin-orbit contri
butions in T 2Ip]/ shown in eq. (2.41), are ignored in eq. (3.9). 
Moreover, the MTF-functional 6 completely f a i l s to give reasonable 
deformation energies due to a drastic overestimation of the surface 
energy contributions (see the next section). 

Treiner and Krivine 1* 8 recently used another functional of the 
type of eq. (3.9) with the original coefficient of the TF term 
(i.e. a = K)and n = 2, and added the correct second-order spin-
orbit terms (see eqs. (2.41), (2.42)). This functional s t i l l s l i g h t l y 
overestimates the surface energy, leading to a too high fission 
barrier as compared to the one obtained with the f u l l , unchanged 
functional t E T F [ P ] including the 4th order contributions (see 
sect. 3.2). In fact, we have seen in f i g . 2 above that a factor of 
n - 1.4 to 1.5 would lead to reasonable deformation energies i f 

(3.9) 



spin-orbit and eff. mass contributions are neglected. However, 
the t a i l s of the density distributions then become unrealistically 
steep, as seen from eq. (3.8). 

One faces thus a basic dilemma when using adjustable func
tionals of the type of eq. (3.9): If one wants to obtain densities 
with good t a i l s , one needs r\ - 4-5; i f one wants to obtain good 
energies, and in particular deformation energies, one needs 
n * 1.4 - 1.5. (A similar dilemma exists also in atomic physics in 
the so-called Thomas-Fermi Weizsacker theory. 5 2) We shall see in 
the next section that this dilemma can be satisfactorily resolved 
by using the f u l l , unchanged functional T E T F [ p ] . 

3- Using Tffpp[P] up to 4th order: The f u l l fourth order equation (3.2) 
was discussed in ref. 31. In this case the spherical solution of 
p(r) f a l l s off like 

p ( r ) > - x : (3.10) 

the coefficient c i s given by 

This result at f i r s t looks rather discouraging, since eq. (3.10) 
i s not the behavior we would lik e to expect from a nice density. 
However, we do not know at which distance from the nuclear surface 
the behavior r ~ 6 w i l l be assumed. In order to investigate this, 
l e t us take A = - 7 MeV. We then find from eq. (3.11) that 
c a 0.03 fm 3. If eq. (3.10) were to be true at a distance of 
r = IO fm in 2O^Pb, the density then would be 3 x IO"8 fm"3 at 
that point which i s 4 orders of magnitude smaller than what i t 
would be for a Fermi function type density. This indicates that 
eq. (3.10) i s a purely mathematical result which i s reached so far 
outside the nuclear surface that i t w i l l have no physical meaning. 
This i s il l u s t r a t e d also in the semi-infinite nuclear matter c a l 
culations presented in ref. 15. 

Unfortunately, the highly non-linear, fourth order differential 
equation (3.2) seems unaccessible to numerical solutions. Even in 
the semi-infinite case, where i t can be integrated once analyti
cally, we did not succeed in solving numerically the resulting 
third order equation. However, the results obtained with a 
restricted variational space for the densities Pq(r) presented 
below are satisfactory enough, so that i t i s riot necessary to 
solve eq. (3.2) exactly. 



3.1.b) Asymptotic behavior inside the nucleus 

The onset of the surface region, i.e. the deviation of the 
density from a constant value in the interior of a heavy nucleus, can 
also be estimated qualitatively without exactly solving the Euler 
equation. For simplicity we shall ignore the Coulomb interaction and 
the curvature effects, i.e. take the l i m i t of a very large nucleus. 
Since in the inner region the density i s very near i t s saturation 
value, we shall - following Skyrme,3 and Strutinsky and Tyapin 5 3 

who developed in this way a precursor of the droplet model - replace 
the Skyrme energy density by a schematic one which, however, preserves 
the correct saturation properties. 

We thus write 

ELPL = PEJP) * atvp) • 2NT( -¾!9]•Tjp]) 0.12) 

where the "volume part" e (0) i s taken to be 

?~<9) = A ; ° + ^ ( 9 - 9 J 2 • ( 3- 1 3 ) 

This corresponds to a parabolic approximation of the saturation 
curve near the saturation density P 0 0, which certainly i s good enough 
for the following estimations. Writing 

9( R) = 9OOY(R) , (3.U> 
the Euler equation then becomes (neglecting the curvature contribu
tion) 

^ O Y 2 -4Y +1) -2A9^Y" + ^(D 2[Y] + D4LYL)=0,(3.i5) 

where y" = d 2y/dr 2. The kinetic terms D 2 and D1+ play a minor role 
in the following development and we shall therefore drop [p] imme
diately. To arrive at eq. (3.15) we have also neglected the fact that 
the central density in f i n i t e nuclei i s in general different from the 
saturation density P 0 0

 5<*; this has l i t t l e bearing on the following 
argument and shall shortly be discussed in sect. 3.3. 

VJe now write 

Y(R) =1-E , R- R , / A=1-E(R) . O.IEJ 
Inside the nucleus, e M « 1 and we can expand eq. (3.15) in powers 
of e. Keeping the linear terms in e, we obtain an equation for a: 



For r e a l i s t i c Skyrme forces, bp ̂ * (10-13) MeV fm2, so that a turns 
out to be of the order of ̂  1 fm. The Weizsacker correction (the 
second term in the brackets in eq. (3.17)) only contributes i 3 % to 
this result; the term [p] in eq. (3.15) would have contributed 
even far less. 

We learn from this that the asymptotic inner part of the nuclear 
surface i s mainly determined by the "surface term" a(vp) 2 of the 
Skyrme energy density and by the incompressibility Kw; the kinetic 
energy gradient terms play only a minor role here. The range a of 
the inner surface part i s % 1 fm and thus about twice larger than 
the typical value of the diffuseness parameter of the density when 
parametrized by a Fermi function. This tends to make the r e a l i s t i c 
densities asymmetric around the half-density distance; the "shoulder" 
of the surface i s broader than the t a i l of the surface. This asymmetry 
i s , indeed, seen in the results discussed in sect. 3.2 below. 

In order to summarize this section, l e t us repeat the main con
clusions we have reached. 
1- If the functional Tg«pp[p] i s used to solve the Euler-Lagrange va

riational equation for the density, the gradient corrections to 
T e t f [ p ] completely determine the asymptotic f a l l - o f f of-the den
sity in the extreme surface. In no order of i t s gradient expan
sion can ̂ e t f 

[p] give a r e a l i s t i c exponential f a l l - o f f . In p a r t i 
cular with the gradient terms kept up to 4th order, one obtains 
a f a l l - o f f of the form 1/r 6. 

2- This lat t e r result need not be in contradiction with the positive 
numerical results quoted in sect. 2.4 in the sense that the mathe
matical f a l l - o f f ^ 1/r 6 i s only assumed at far distances outside 
the nucleus which play no physical role, whereas a r e a l i s t i c sur
face region i s compatible with the 4th order functional t E T F ^ ^ # 

3- Heuristic functionals x[p] with only second order corrections and 
adjustable coefficients can either reproduce energies or density 
profiles, but not both at the same time. 

4- Practically independently of the gradient corrections to x[p]# the 
inner asymptotic part of the surface i s essentially determined by 
a balance between the gradient term 'V/(Vp) 2 of the potential energy 
and the incompressibility Kto. As a consequence, the density pro f i l e 
i s in general asymmetric around i t s inflection point. 

3.2 Variational Calculations for Finite Nuclei 

In the following we shall present some selective results of 
variational semiclassical calculations 1 5 obtained with a restricted, 
but flexible variational space of t r i a l nuclear densities. We shall 



be brief and refer the interested reader to the review a r t i c l e 1 5 in 
which these calculations have been discussed in de t a i l . 

For spherical nuclei we chose the radial densities to have the 
form (see also ref. 55): 

Ir) = s , p v

 q q • (q = p,n) O.ie) 
2/o2n2* 

1 r ,r-R 

q [ N E X P ( ^ ) ] T ' 
We have thus 10 independent variational parameters PQ q/ Piq' $q' cig* 
and Y q / with respect to which the total energy i s minimized; the 
radius constants R q are always determined to f i x the nucleon numbers 
Z and N. For Pjq= 0 and Y q = 1 we have the familiar Fermi functions 
with central density p$q and surface diffuseness a . For y ^ l , the 
surface i s asymmetric; as we have discussed in sect. 3.1, we expect 
Yq > 1 in r e a l i s t i c cases. For Piq ^ 0, the Gaussian factor in 
eq. (3.18) allows for a depression or an enhancement in the central 
region measured by B q; for physical reasons we are interested only 
in values 0.3 £ < 1.0. (In fact, the energy was found to be 
stationary for B q - 0.5 in a l l cases where P l q ± 0 was favored at 
a l l . 1 5 ' 5 5 ) 



In figure 3 we compare the density profiles obtained for ̂ uCa 
and 2 0 8 P b with microscopical HF results, both calculated with the 
Skyrme force SkM*. 1 5' 1 6 An almost perfect agreement i s obtained in 
the surface and the t a i l region. In the interior part the ETF den
si t i e s reproduce nicely the average trend of the HF results. In fact 
the p o s s i b i l i t y to build up a bump or a dip near the center, although 
i t does not affect the binding energies by more than a few hundred 

, i s important for obtaining this agreement. In particular for 
i 4 0Ca, we see that the central densities are enhanced by * 20 %. It i s 
worth underlining that this i s not just a shell effect, but i t must 
be understood as a bulk effect which results from the compression of 
the nucleus by the surface tension. In heavy nuclei such as Pb, 
this compression effect i s overpowered by the Coulomb repulsion 
between the protons, which leads to a slight depression at the center 
(^8% for the proton and ̂  2 % for the neutron density of 2 0 8 P b ) . 

In table 1 we present the binding energies of a series of spheri
cal nuclei ( a l l in MeV). B e x p are the experimental values; B h f and 
BETF the HF and the ETF results (with SkM*). (In both calculations, 
a 1-body cm. energy correction 1 6 has been included; i t i s not 
included in a l l the other results presented below.) Note the nice 
agreement between B h f and B especially for the 6-stable nuclei. 
The semiclassical energies Bg f p p, which of course do not contain 

Table 1 
B 
exp 

BHF B 
ETF 

BEVM 

1 6O 127.6 127.7 128.0 127.4 

4 0 C a 342.1 341.1 345.9 340.4 

4 8Ca 416.0 420.1 421.8 418.4 

56 . Ni 484.0 485.4 483.9 483.1 

Zr 783.9 784.5 786.6 782.7 

114 
Sn 971.6 969.2 976.0 967.9 

132 
Sn 1102.7 1110.7 1101.5 1108.3 

140^ Ce 1172.7 1173.9 1174.5 1171.6 

208„, Pb 1636.5 1636.4 1627.0 1633.7 



the shell effects, are larger than the averaged HF energies by 
3-8 MeV. This effect of a slight overbinding was observed earlier 

with other Skyrme forces11+ - i t i s larger by a factor of roughly 2 
for the SIII f o r c e , 3 5 presumably due to i t s larger incompressibility ~ 
and must be considered as a slight defect of the ETF functionals. 
Although the variational principle holds s t r i c t l y for the "ideal" 
(but unknown) exact functional £[p]/ the use of approximate functio
nals can lead to violations of the variational principle and thus to 
such overbinding effects. This slight deficiency of B e t f i s , however, 
healed after inclusion of the shell effects by the "expectation value 
method" (EVM), 5^' 5 7 which corresponds to performing a single HF 
iteration using the variational ETF densities as an input. The so 
obtained energies are shown in the last column of table 1 and are 
seen to reproduce the HF energies to within less than % 1 MeV 
(160, i^Oca) to ^ 3 MeV (208 P b) . 

In refs. 15,16 i t was shown that also the HF neutron and proton 
r.m.s. r a d i i - and in particular their difference, the so-called 
"neutron skin" - are also very accurately reproduced by the variatio
nal ETF calculations (the shell effects are practically negligible 
here). 

This excellent agreement between the ETF and the (averaged) HF 
results for both energies and densities demonstrates the powerfulness 
of the 4th-order corrected ETF functionals; i t cannot be obtained 
leaving out the [p] term, as discussed above. 

In figure 4 we compare the variational ETF charge densities of 
5 spherical nuclei to the experimental ones deduced from electron 
scattering experiments. A very good agreement i s found for the 
average trends in a l l cases; the remaining differences are the typical 
shell fluctuations. (These are overestimated in HF calculations with 
most effective forces; see, however ref. 37 for a recent discussion 
of this effect.) 

As already indicated above, the deviations of constant densities 
in the nuclear interior - governed by the parameters Pjq and Bq in 
eq. (3.18) - have very l i t t l e influence on the total energy of the 
nucleus. This i s demonstrated in table 2, where we l i s t a l l the density 
parameters according to eq. (3.18) together with the minimized energies 
E E T F o f f^ n e 5 nuclei shown also in f i g . 4. For ^ 0Ca and 2 0 8 P b we also 
give the results obtained when the densities were restricted to pure 
Fermi functions (imposing Yq = Plq ^ o r asymmetric Fermi func
tions (with Yq ^ 1, but p l q = 0). It i s interesting to note that the 
10 parameter variation lowers the total energy by only 2.3 MeV in 
^Oca (i.e. ̂  0.7 %) and by 5.1 MeV in 2O^Pb (i.e. ̂  0.03 %) compared 
to the 4 parameter variation with pure Fermi functions. Furthermore, 
almost a l l of this gain in energy i s already obtained with f l a t den
s i t i e s ( P l q •= 0) with an asymmetric surface ( y q ^ A s ^ong as one 
i s interested in binding or deformation energies alone, i t i s thus 
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0.10 SkM* 

r[fm] 

Fig. 4. Comparison of semiclassical ETF charge densities (including 
a proton form factor of 0.64 fm2) with the experimental 
distributions extracted from electron scattering data 5 8 

for five spherical nuclei. 

perfectly sufficient to use 3-parameter densities (i.e. Fermi func
tions to the power y q) with a f l a t interior. The values of y q vary 
only a l i t t l e , from ^ 1.4 in l i g h t to ^ 1.5 in heavy nuclei. For 
forces with larger K00 , the y become smaller, as can easily be 
understood on the basis of the discussion in sect. 3.1 above. (For 
the SIII force, e.g., y q ^ 1.2.) When the TtfIp] gradient corrections 
are omitted, 1 + 8' 5 5 unphysically large values y q 2-3 are obtained. 

In order to describe deformed nuclei, we have to use a constraint 
since in a semiclassical model a l l nuclei are spherical in their 
ground states. In ref. 15 the constraint was introduced by starting 
from a deformed LDM "generating surface" with sharp edges, such as 
i t has been used in shell-correction calculations for fi s s i o n 



barriers. It was then assumed that the diffuse densities have a 
constant surface thickness, so that they can be described simply by 
replacing (r-Rq) in eq. (3.18) by the normal distance from the gener
ating LDM surface (see the details in ref. 15); hereby the density 
profiles of eq. (3.18) were, for the reasons just given above, 
restricted to asymmetric Fermi functions (yq ^ 1 but p j q = 0). 

In figure 5 we present the semiclassical fission barriers of 
20^pu obtained for four different Skyrme forces. The (c,h) family of 
shapes 2 2 was used for which c i s the main elongation parameter and h 
is a "necking" parameter. The cross indicates the location of the 
empirical LDM saddle point as i t i s known from shell-correction c a l 
culations. 2 2 We see that the forces S I I I 3 5 and Ska 5 9 give too high 
fission barriers by a factor of % 2. For the SIII force, this had been 
known from constrained HF calculations. 6 0 

10 

deformation (C) 
Fig. 5. Semiclassical fission barriers for 2 0 i fPu. For each 

elongation c, the energies are minimized with respect 
to the neck parameter h. Four different Skyrme forces 
were used; the cross indicates the empirical LDM 
saddle point. 

In fact, i t was a puzzle for quite some time that HF calculations 
consistently led to too high fission barriers even with effective 
f o r c e s 6 0 ' 6 1 which otherwise gave good results for ground state proper
ties of both spherical and deformed nuclei (see a review a r t i c l e 6 2 on 
the status of fission barrier calculations up to 1979). Due to the 
excessive computer times required by the constrained HF calculations 
for heavy nuclei, i t was practically not possible to r e f i t the forces 
taking e x p l i c i t l y the fission barriers into account. This became, 
however, p o s s i b l e 6 3 ' 1 **'15 with the semiclassical method described 



above which i s more than I O j times faster i f one i s not interested in 
the shell effects. As we see from f i g . 5, we can well distinguish the 
average barriers predicted with the different forces. 

The Skyrme force SkM which was f i t t e d to reproduce the giant 
nuclear monopole and quadrupole resonances 5 1 and therefore has an 
incompressibility K00 of 216 MeV, compatible with eq. (2.12), gives 
a somewhat too low barrier. (The forces SIII and Ska have higher 
values of K00; which leads to s t i f f e r surfaces and thus to higher 
surface energies.) The force SkM* was e x p l i c i t l y adjusted with semi-
cla s s i c a l calculations to reproduce the LDM saddle point energy 1 5; 
i t was shown at the same time to yi e l d excellent binding energies 
and r a d i i for stable spherical nuclei in HF ca l c u l a t i o n s 1 6 (see the 
results shown in figs. 3,4 and table 1 above). 

In f i g . 6 we present a microscopical test of the semiclassical 
results. The corresponding HF calculations were done in r e f . 1 6 The 
figure shows the f u l l HF result, obtained with the SkM force, with 

-1800 

-1810 

E [MeV] 
— - E E T F 

- { I
H F 

• LD Saddle 

- \ * E ^ 1 E 

\ x 

\ I \ • 

X 

1.. I I 
50 100 150 Q [barn] 

Fig. 6. Fission barrier of 20**Pu, calculated with the SkM 
force. The exact and Strutinsky-averaged HF r e s u l t s 1 6 

are shown along with the semiclassical ETF r e s u l t . 1 5 

Q i s the total quadrupole moment. The cross in a 
c i r c l e indicates the LDM saddle point. The crosses 
show the results after inclusion of the sh e l l -
correction energy <5jE. 

2 minima and 2 maxima. Also shown i s the selfconsistently Strutinsky 
smoothed HF energy, calculated as discussed in sect. 2.3. The semi-
clas s i c a l ETF result i s shown by the dashed line (adjusted at Q = 0). 



The agreement of the two average curves i s better than 1 MeV at a l l 
deformations included. This gives once again a nice confirmation of 
the semiclassical method. It shows in particular also that the slight 
overbinding of the ETF results discussed above 8 MeV in this 
nucleus) does not affect the deformation energies noticably. The 
crosses in f i g . 6 show the results obtained after adding the she l l -
correction energy 6^E to the average curves; they reproduce the exact 
HF values within less than 0.5 MeV. 

An interesting result i s that in the semiclassical variational 
calculations, the density parameters P 0 Q * Yq and Rq found for the 
spherical shape vary only very l i t t l e with deformation; in fact, only 
an error of ^ 0.5 MeV would be made for the r e a l i s t i c force SkM* i f 
they were kept constant. 1 5 The influence of the asymmetry of the sur
face, governed by the parameters Yq, on the fission barrier i s shown 
in f i g . 7, where the barrier of 2 0 1 fPu has been calculated once with 
Yq = 1 and once with the variational values Yq ^ 1. The difference 
is seen to be ^ - 0.8 MeV at the saddle, corresponding to a decrease 

I 

Ifl 1.2 1.4 1.6 m 1.8 2.0 

Fig. 7. The same as f i g . 5 with force SkM*. The curves ETF show 
results obtained with the f u l l 4th order functional x[p] 
the curves "T + K" those with the phenomenological func
tional of Treiner and Krivine.** 8 Dashed curves are 
obtained with Fermi function densities (Yq = D * solid 
curves with asymmetric density profiles (Yq ! ) • 



of % 0.3 MeV of the surface energy (see sect. 3.3). This difference 
i s typical for forces which give approximately correct average fission 
barrieres. 

We also show in f i g . 7 the results obtained for the same force 
SkM*, but with the simplified functional t[p] of Treiner and Krivine l 4 8 

where T l f was omitted and the Weizsacker coefficient was multiplied 
by two. It leads to an overestimation of the barrier height. 

The corresponding variational values of yq were found to be 
Yp a 3.2 and Y u - 2.3, reflecting a too steep t a i l of the densities. 
A similar calculation with the MTF functional 1* 6 (in which the 
Weizsacker term i s multiplied by ̂ 4) gives a fission barrier of over 
30 MeV for 20** Pu. This i l l u s t r a t e s the problem discussed above in 
sect. 3.1 with readjusted functionals x[p] without 4th order gradient 
terms. 

3.3 Calculation of LDM parameters for Effective Forces 

An interesting application of the variational ETF calculations 
with parametrized densities i s the determination of the LDM para
meters for a given effective force. Nuclei with A ̂  40 are "lepto-
dermous",5"+'63 i.e. the ratio of the surface diffuseness a to the 
bulk radius R i s small: 

(X/R *< 1 . (3.19) 

The expansion of the nuclear binding energy in powers of a/R i s the 
underlying technique of the liq u i d drop model. 6 3 If asymmetry and 
compression effects are taken into account by further expansions in 
powers of the small parameters 6 and e, defined by 

c %n~" Ppp / ^ 

1 (FTRFTJ 
E - - T P 0 0 ' ( 3 - 2 1 ) 

one obtains the droplet model. 5 3' 5 i f 

The "leptodermous expansion" in powers of a/R was recently 
adapted to the total energy of an a r b i t r a r i l y deformed nucleus within 
the Skyrme-ETF fomalism. 1 5' 6 1 + We refer to the recent review a r t i c l e 1 5 

for the details and quote here just some of the main results. (For 
earlier calculations of surface energies from ETF results see ref. 30; 
similar analyses based on semiclassical 1* 8' 5 5 and HF calculations 6 5"" 6 7 

may also be compared.) 



For symmetric nuclei (N=Z;6=0) the expansion in powers of ot/R 
leads to 

c A A 2 / 3 A 1 / 3 

E = O
V
A + Q

S
A + Q

C
A + Qq • ... (3.22) 

The dependence of the a n on the deformation and the force parameters 
can be exactly separated. For their spherical part, one then expands 

1 ? 
AV = •YK^E' + ... (3.23) 

A S = A~ - 3ASE • -|-ASE2 + ... (3.24) 

A = A°° - 3D E + 4-A E 2 + ... (3.25) 
c c c 2 c 

etc. Minimizing the energy with respect toe (fixing the surface 
parameters a and y of the densities, which vary only very l i t t l e 
for f i n i t e nuclei), one obtains the smooth variation of e with A 
which reflects the effect of compression of the nucleus by the 
surface tension: 

3 • A-1/3 «3 • A-2/3 

e t A , ~ ^ 9 ^ ^ 9 0 , ^ 3 • ( 3 ' 2 6 ) 

It was shown15 that for the r e a l i s t i c force SkM*, eq. (3.26) i s 
needed to describe the A-dependence of the central density p Q 

correctly, whereas the droplet model expression 5 1* 

E
D M
( A ) = (3A

S
/K J A"

1/3

 , (3.27) 

which just contains the leading term of eq. (3.26) leads to large 
overestimations of e in particular for medium and lighter nuclei. 
The surface compressibility parameter a g, which i s neglected in the 
droplet model, i s known to play an important role for the compressi
b i l i t y of f i n i t e n u c l e i 1 8 ' 3 6 ' 6 8Which nowadays i s known from the 
measurement of the nuclear breathing mode. 

In table 3 we l i s t the coefficients of the expansions in 
eqs. (3.24) and (3.25) ( a l l in MeV), obtained from semi-infinite 
(symmetric) nuclear matter calculations with the variational ETF 
method (asymmetric Fermi profiles with yq ^ 1 were used). 1 5 The 
various Skyrme forces already mentioned above were used as well as 
the energy density of Tondeur 6 9 which i s very similar to that of a 
Skyrme force. Table 3 also contains the effective curvature energy 
a c defined by 



a c = AR - 2K.7 ( 3- 2 8 ) 

which i s obtained 5 1* i f the lowest order contribution from e i s 
included in eq. (3.22). 

In the r e a l i s t i c case one has to include also the Coulomb energy 
and to expand everything also in powers of the asymmetry parameter 
6 eq. (3.20). We refer to the droplet model of Myers and Swiatecki 5 1* 
for this procedure. In table 4 we l i s t the coefficients (in MeV) of 
the surface energy which are obtained i f i t i s expanded to second order 
in the asymmetry parameters (for a fixed value of e) 54* 

AS = A~ -I- HX2 + 2PT6 - G52
 ; (3.29) 

hereby x i s the so-called "neutron skin" parameter: 
RJQJ Ro 

9DL 

P J - 6)A1'3
 +0(A" 1 / 3) (3.30) T = 

'0 
with I = (N-Z)/A. We also give in table 4 the volume asymmetry energy 
J and the "surface stiffness coefficient" Q of the droplet model, 
defined by 

Q = . — , (3.31) 

H F ) 

(3.32) 

as well as the quantity J 

J . - L ( P . F ) 
of which a theorem derived by Myers and Swiatecki 5 1* t e l l s that i t 
should be equal to J. The same 5 effective forces as in table 3 were 
used; on the top line (quoted "DM") we also give^the droplet model 
values. We see that for a l l forces, the theorem J = J i s f u l f i l l e d 
within less than 3 % which may be considered as a test of the numeri
cal calculations. (To obtain the results in table 4, pure Fermi 
functions with Yq = 1 were used, because the above droplet model ^ 
relations do not apply to density profiles with asymmetric surfaces. ) 

In summary i t can be said that the variational ETF calculations 
can be used to j u s t i f y and test the droplet model or similar exten
sions of the simple LDM. Some of the shortcomings of the droplet 
model have been discussed and some extensions and improvements have 
been proposed. 1 5 The main conclusion i s that the variational ETF 
formalism with i t s 8 - 1 0 Skyrme force parameters i s more powerful 
than the droplet model, even i f the lat t e r i s extended to include 
some 20 or more phenomenological parameters. 
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4. EXTENSIONS OF THE SEMICLASSICAL METHOD 

4.1. Partial Resummation of the Wigner-Kirkwood R Expansion 

One of the unpleasant features of the n-expanded densities P E T F (*) 
and T

E T F ( r ) eqs. (2.26), (2.27) i s their divergence at the classical 
turning points. It i s the reason why they cannot be used directly in 
an iterative procedure to calculate the selfconsistent average HF 
potential. One way to circumvent this problem i s the construction of 
the ETF functional T E T F [ p ] and i t s use in a density variational cal
culation, as we have discussed i t extensively above. 

Another way to solve the turning point problem i s the use of 
par t i a l resummations of the Wigner-Kirkwood expansion of the Bloch 
density matrix C eq. (2.25). Bhaduri 7 0 noticed that a l l terms which 
contain powers of the f i r s t gradient of the potential, VV(r), can 
be summed up to i n f i n i t e order in Ti. In this way one obtains for the 
local Bloch density 

C (P^P) = CTF(R,F';P)E24ML {1 * h \ } , (4.1} 

where C t f i s given by eq. (2.24) and the n n contain second and higher 
order gradients of V(r). The nice feature of eq. (4.1) i s that i t leads, 
after Laplace inversion, to densities p(r) and T(r) which are well-
behaved everywhere i n space, being in particular f i n i t e at the classical 
turning points and f a l l i n g rapidly to zero in the c l a s s i c a l l y forbidden 
region. Noting that the exponential factor appearing in eq. (4.1), in 
fact, i s the Laplace transform of the Airy function, we see that in tft* 
lowest order in eq. (4.1) (i.e. neglecting Ti 2* Hi+/ etc.) one obtains 
by eq, (2.20) the folding product of the TF density matrix with an Airy 
function 

X 
9(R,R') = A(R) /^(R.FJX-E) AIL-O(R)ELDE , (4.2) 

where 

. , 5 , . „ ( ^ T ) . (¾^3{(VV(R)I2}-': 

It can be shown71 that this result eq. (4.2) i s identical to that of 
a loca l l y linear approximation to the potential V. 

The above procedure can be extended to sum up also a l l terms 
containing second order gradients to a l l powers; this corresponds to 
a lo c a l l y harmonic approximation to V ( r ) . 7 1 (Nonlocal potentials can 
be treated in the same way.) 



The densities obtained after these partial resummations have some 
unphysical oscillations in the interior part of the nucleus. They can 
be damped out i f the Laplace inversion eq. (2.20) i s not done analyti
cally, but with the saddle point method, hereby using only the saddle 
point 8 Q > O on the real 8 axis. 7O This implicitly is a semiclassical 
approximation; as shown by Jennings,261*+3 the average (or ETF) part of 
the densities p(r), T(r) comes from contributions in the inverse 
Laplace transform from the region around 8 = O, whereas poles (or 
saddle points) of C(r,r';B) far from the real 8 axis - they usually 
Iy on or near the imaginary 8 axis - lead to the fluctuating part 
(shell effect). 

The combined method of partial re summation of C(r,r';B) and using 
the saddle point method (with real B 0 > 0) for the Laplace inversion 
leads thus to well-behaved semiclassical densities p(r) and x (r) 
(see ref. 72 for a discussion of some technical details and model 
examples). These densities can be used directly to calculate the 
average HF-Skyrme potentials eqs. (2.9) - (2.11) and thus, in an 
iterative cycle, to reach selfconsistency. 

Compared to the variational ETF method discussed in the main parts 
of these lectures, the present method has the advantage that one does 
not need to know the functional x[p] . Numerically, the densities 
tend to become unstable since hihger and higher gradients of the 
potential are implicitly taken during the iterative cycle. They there
fore have to be regularized e.g. by a f i t to smooth parametrized 
densities. 7 3 It was found that when the same form of the densities 
was used as in eq. (3.18) above, the partial resummation method leads 
to very similar results as the variational ETF method using the 
functionals T e t f [ p ] and 3 E Tp[p]; in particular the LDM and droplet 
model parameters reported in tables 3,4 above are closely repro
duced,7"4 thus implicitly providing a quantitative confirmation of the 
ETF functionals. 

4.2. Semiclassical Description of Hot Nuclei and Nuclear Matter 

Excited nuclear systems with temperatures larger than ^ 3 MeV 
contain no shell effects and are therefore ideal objects for semi-
classical investigations. Such hot compound nuclei can be produced 
in heavy ion and high-energy hadron induced reactions. 7 5 In astro
physics, there has recently been an increased interest in the 
equation of state of hot nuclear matter. 7 6' 7 7 

The microscopical mean f i e l d (HF) theory can easily be generalized 
to f i n i t e temperatures in the s t a t i s t i c a l approximation.7® Here one 
minimizes no longer the total i n t r i n s i c energy E, but the Helmholtz 
free energy F 



F = E - TS (4.4) 
where the entropy i s given by 

S = -ELN QJNN Q + ( 1 ~N Q)*N(1 - NQ)] 
qv v v v v 

(4.5) 

in terms of the occupation numbers 

(4.6) 

(We put the Boltzmann constant k = 1 and measure the temperature T in 
units of MeV.) 

HF calculations at f i n i t e temperature are relatively easy to 
perform; i t i s sufficient to replace the HF occupation numbers n^ in 
eqs. (2.3) - (2.5) by the occupation numbers eq. (4.6). Such calcula
tions have been performed with Skyrme forces by different groups. 7 7' 7 9" 8 

Hereby i t must be assumed that the parameters of the Skyrme force 
themselves do not depend on T. This could in principle be checked by 
performing a Bruckner G-matrix calculation at f i n i t e temperature; 
this has, however, not been endeavoured so far. 

A well-known effect of the smoothing of the Fermi surface brought 
about by the occupation numbers eq. (4.6) i s the washing out of the 
shell effects; the above mentioned HF results showed that beyond a 
c r i t i c a l temperature T c ^ (2.5-3) MeV (which i s roughly the same for 
a l l systems) the shell effects have disappeared. Systems at such 
temperatures are thus ideal objects for studies within a semi-classi
cal framework. It i s therefore obvious to try to apply the methods 
developed above to nuclei at T > 0. Thomas-Fermi calculations at 
f i n i t e temperature are by now s t a n d a r d . 7 6 ' 8 2 ' 8 3 However, we shall see 
in the following that i t i s not easy to construct the appropriate ETF 
functionals for T > 0. 

The Wigner-Kirkwood expansion discussed in sect. 2.4 can easily 
be extended to f i n i t e temperatures. To do so, i t i s sufficient to know 
that the inclusion of the Fermi occupation numbers eq. (4.6) in the 
HF case i s identical to a convolution of the spectral density with the 
function f T(E) = A- Cosh" 2(E/2T). 2 3 Thus, due to the convolution theo
rem, the Bloch density eq. (2.19) i s multiplied for T > O with the 
Laplace transform of f T(E) 

Note that this result i s s t i l l exact within the HF framework. Pro
ceeding now as in the T = O case, i.e. replacing the "cold" Bloch 

CT(r,?';|3) =C(f,f';P) 
TtPT 

SIN(IRPT) (4.7) 



density C by i t s Wigner-Kirkwood expansion eq. (2.25) and doin^ the 
inverse Laplace transforms term by term, one finds the expressions 
for the densities PETF (̂ ) a n ^ T E T F (r) at T > O and that of the 
entropy density a(r) defined by 

S = /D3R A(R) = - § F • «.8> 

The resulting expressions are up to order R2 (for a local potential, 
with effective mass m*),8J| 

J t*\ 1 /2M*\3/2 f T
3 / 2 T tr>\ 

1 fr^ 3 3/2 
+ 24 2 S r K R 3 / % 2 ^ ) ( V V ) 2

+ R 1 / 2 J 3 / 2 ( N ) A V ] } 

r T /7?» 1 / 2/T)*\ 5 /2 r 5/2 

T " F ( r ) - 5 2 ( T T ) {R / 2J 3 / 2(N) -

" 4 IHF I ? T " 1 ' 2 ^ 3 / 2 ^ ) ( V V ) 2 • I T 1 7 2 J V 2 ( J I J A V J J 

E T F ' ~ 2 ^ 1 ^ / ' I 3 - 3 / 2 - M - . H l / 2 

+ 57 W FF T"3J,„ (T1) (VV)2 - T " 2 J 1 / 2 ( N )AV ] } 

(4.10) 

2 (4.11) 

24 2 ^ t l r 3 j - 3 / 2 ( T L , ^ V , 2 - r 2 j - i / 2 ' 

. - X - V I ^ (4.12, Tl T 

and Jv(T)) a r ^ the Fermi integrals 

J (N) = A ^ .DX <4-13> 
V 1 1 / 1 • EXP(X-Ti) 

To lowest order in eqs. (4.9) - (4.11) we recognize the well-
known TF expressions. At this order i t i s possible to eliminate the 
quantity n numerically from the above densities; this defines the 
exact TF functionals at T > 0: 

T ™ [ 9 ) = T J F I H ( 9 ) ] • < 4 ' 1 4 ) 

O T F [ 9 1 = Cr T p[ Tl ( 9 ) ) , (4.15) 



where n(p) i s obtained from inverting the function /2 (n) in the 
leading (TF) term of eq. (4.9). Unfortunately, this procedure cannot 
be extended in an obvious way to include correctly a l l the -correc
tions. We are thus forced to make further approximations. Two possible 
ways shall be discussed in the following. 

4.2.a) Low temperature expansion 

In the l i m i t n»l, i.e. for T « ( X - y ) , the Fermi integrals can 
be expanded in a series of decreasing powers of n 8 5 

J V ( T ) ) = • V ( V L ) ^ V + . . . ] . (4.16) 

The leading terms of the J v(n) give then just the old expressions 
P E T F ^ ) A N D T E T F ^ at T = 0, eqs. (2.26), (2.27); the next terms 
give corrections of order T 2. From these expressions one obtains 
the corrected functionals: 

where 

2M#„,. V T 2 

C J E T F I 9 ] = 2A(9)T , 
(4.18) 

As in the T = O case, higher order corrections would contain inverse 
powers of p and must therefore be l e f t out. 

The total free energy density then becomes 

J-(^) = J-I 9I=E(P)-K(P)T 2, (4.20) 

where e[p] i s the f u l l ETF energy density functional described in 
sect. 2 for T=O. Note that the spatial integral of a(p) i s nothing 
but the TF approximation to the well-known level density parameter 

QO = 6~9 ( X ) / ( 4- 2 1 ) 

where g(X) i s the average single-particle level density (of one 
kind of particles). The functional eqs. (4.19), (4.20) has been 
used by several a u t o r s 8 6 ' 8 7 to discuss thermal properties of nuclei. 
In the case of a variable effective mass m*(r) = m/f(r), two correc
tion terms to eq. (4.19) arise which remain f i n i t e ; they have been 
shown, however, not to modify the numerical results very much. J 

The problem with the above relations i s that the low-temperature 
expansion T << (X-V) i s only j u s t i f i e d i n the interior part of the 
nucleus (or in i n f i n i t e nuclear matter), where X-V i s of the order 



of 30 - 40 MeV and the approximation holds up to f a i r l y high tempe
ratures. In the nuclear surface, however, X-V quickly becomes smaller, 
going through zero at the classical turning points which s t i l l are in 
the surface region where the density i s a few percent of i t s saturation 
value. Thus in the very region where one i s interested in going beyond 
the TF approximation, namely in the surface region, the Iow-T expansion 
breaks down. It i s thus not surprising that unsatisfactory results 
have been obtained with the functional (4.20). 8 8' 8 9 

4.2.b) Gradient-corrected f i n i t e T functional 

Since the Iow-T expansion breaks down in the surface, one might 
try to use the exact relations (valid for a l l T) at least in the TF 
approximation given above, and to add the gradient correction terms 
T 2 [ p ] and T 4 [ p ] known from the T = O case in an ad hoc manner. This 
leads to the functional 

TETF* 1 9 1 = x T F 0 f 9 1 + T 2 I 9 ] + \ [ 9 ] (4.22) 
T>0 

where T T F [p ] i s the exact f i n i t e T functional in eq. (4.14). Since 
we cannot know any gradient corrections to o[p] at T = O we w i l l use 
o rTFlP] E C J - (4.15) along with T E T F * [ p ] . This procedure has been pro
posed by Barranco and Treiner88,89;they used, however, a readjusted 
Weizsacker term in T 2 [ p ] and omitted T 4 [ p ] which, as we have seen in 
sect. 3, i s to be used very cautiously. 

4.2.c) Comparison of numerical results 

We shall in the following be using both approximate ETF functio
n a l , eqs. (4.20) and (4.22), including in a l l cases the f u l l , unre-
normalized "cold" correction terms T 2 [ p ] , T 4 [ p ] , as well as J 2 [ p ] 
and J 4 [ p ] discussed in sect. 2. We also shall quote results obtained 
with the pa r t i a l resummation method described in sect. 4.1 which can 
be generalized to f i n i t e temperatures without difficulties. 7**'8 1+ In 
fact, for that purpose i t i s sufficient to replace the exact Bloch 
density C in eq. (4.7) by that obtained with the partial resummation 
method. Since the Laplace inversion there i s made numerically by the 
saddle point method, i t causes no problem to take into account the 
temperature dependent factor in eq. (4.7) exactly (i.e. without Iow-T 
expansion). We shall f i r s t test the different approximations using 
the force SIII for which HF calculations at T > O have been per
formed 7 9 and can be used for comparison. 

In figure 9 we plot for 208pfc> the "effective level density para
meter" a e f f defined by 

S 2 

Q e f f = Jgi (4.23) 

versus the excitation energy E* 



Fig. 8. Effective level density parameter a e f f eg. (4.23) for 
2 0 8 P b versus excitation energy E* for 2 0 8 P b (SIII force 
used). The various approximations are: HF ( f u l l l i n e ) , 
p a r t i a l resummation method (dashed l i n e ) , modified ETF* 
functional with exact T dependence in the TF terms, 
eq. (4.22) (dashed-dotted line), and low-T-expanded ETF 
functional eq. (4.20) (dotted l i n e ) . a Q i s the level 
density parameter eq. (4.21). 

E*= E(T) - E(O) . (4.24) 

The relation (4.23) i s that of the Fermi gas theory which i s reached 
when the shell effects are washed out, 7 9 so that in this l i m i t a e f f 
tends to the level density parameter a Q defined in eq. (4.21). We 
see in f i g . 8, indeed, that the curves a eff(T) are approximately 
constant for E* j> 150 MeV (corresponding to T > 3 MeV). 

Whereas the HF result approaches the correct value a Q eq. (4.21) 
- for the slight variation at E* ,> 200 MeV see the discussion in 
ref. 79 - , the Iow-T expanded functional (ETF) leads to a value 
which i s more than 30 % too high. This i s the well-known failure of 
this approximation. 8 9 The modified functional eq. (4.22) (ETF*) gives 
an asymptotic value of a e f f only ~ 7 % higher than the HF result, 
which i s a considerable improvement. The result of the p a r t i a l re
summation method, in which the temperature dependence i s treated 
exactly, comes closest to the HF result and clearly i s an excellent 



approximation above E* c* 100 MeV where the shell effects have dis
appeared . 

In refs. 15,84 i t was also shown that the temperature dependence 
of the r.m.s. r a d i i obtained with HF i s very well reproduced by both 
the ETF* functional eq. (4.22) and the resummation method, whereas 
with the Iow-T expanded functional eq. (4.20) i t i s strongly exagger
ated above T c* 3 MeV. 

A question which has been much discussed in the literature i s 
how the fiss i o n barriers depend on temperature. 8 1' 8 6' 8 7' 9 0 The fission 
of an excited nucleus i s usually thought to be an isothermal process; 
therefore one has to look at the deformation behavior of the free 
energy F. Due to the well-known decrease of the free surface energy, 
the fi s s i o n barriers also decrease with increasing temperature. (The 
variation of the Coulomb energy with temperature i s not very impor
tant.) This was shown by explicit calculations of fission barriers 
with the variational ETF method at T > O. 1 5 

In table 5 we l i s t as a function of temperature the free surface 
energy a§ obtained with the three above methods for the SkM* force. 
It i s clearly seen that the Iow-T expansion leads to an exaggeration 

Table 5 

a 0 0 

S 
ETF * 

T ETF ETF * resum. a* Q k J 
C S 

O 17.51 17.51 17.63 10.3 35.4 -57.3 30.03 
1 17.30 17.33 17.53 10.0 35.3 -57.4 30.00 
2 16.64 16.85 17.22 9.6 35.0 -57.5 29.91 
3 15.50 16.08 16.70 8.7 34.4 -57.9 29.76 
4 13.78 15.08 15.70 7.7 33.5 -58.6 29.54 

LDM and droplet model parameters (all in MeV) for the 
force SkM* as functions of temperature T (in MeV). The 
free surface energy ag i s obtained in three approxi
mations discussed in the text;.the parameters a*r Q 
and k s are obtained with the ETF* functional eq. (4.22). 
For the volume asymmetry energy J, a l l approximations 
give the same result. 

00 

of the temperature dependence of a s. The partial resummation method 
(3rd column) reproduces the T-dependence found in HF calculations 
at T £ 2 MeV; the corrected functional T E T F * [ p ] eq. (4.22) comes 
rather close to i t , althoug the decrease of a£ with T here also i s 
somewhat too strong. We also give in table 5 the effective curvature 
energy a c eq. (3.28), the surface stiffness parameter Q and the sur
face asymmetry energy k s defined by 1 5* 5** 



a l l evaluated for semi-infinite nuclear matter with Fermi function 
profiles. It i s interesting to note that the absolute value of k s 

increases with T due to the inverse dependence of Q which decreases 
faster with T than the volume asymmetry energy J (given in the last 
column of tab. 5). 

We learn from these results that the temperature dependence of 
surface properties depend rather crucially on the approximations 
made. In particular, the Iow-T expansion leads to rather bad results 
which strongly exaggerate the T dependence. The best agreement with 
finite-T HF results i s obtained with the p a r t i a l resummation method, 
and reasonable agreement with the corrected ETF* functional eq. (4.22)' 
in which the exact T dependence i s contained in the TF expressions 
for T[p] and a [ P ] . In the context of density functional theory 
there remains, however, s t i l l a challenge to find better functionals 
x[p] and a[p] in which the correct T dependence i s contained also in 
the gradient corrections. 

4.3. Application of the ETF Method to the Nuclear Breathing Mode 6 8 

We f i n a l l y want to mention b r i e f l y an application of the va r i 
ational ETF method to the calculation of the nuclear breathing mode 
energies. 6 8 We refer to the lectures of Holzwarth 9 1 and T r e i n e r 9 2 for 
detailed discussions of the nuclear giant resonances of which the 
breathing mode, corresponding to density compressional vibrations, 
has only recently been established experimentally. 

Starting from spherical nuclear ground-state densities described 
by simple Fermi functions, we can introduce compression modes by 
writing 

9 I l r ' " = " ,R-R5(t) ' "•- 2 6' , f ~ " q I ' M 

where the density parameters now are supposed to be periodically 
time dependent functions: 

^ ( T ) = \ + % S I N ( G ) t ) • <4-27> 

etc. We shall define two independent dimensionless (isoscalar) 
collective degrees of freedom by 

q p ( t ) = = 1 + 6 q 9 ( t ) , (4.28) 



q . ( t ) = = U 6 q a ( t ) ; (4.29) 
Q 

the r a d i i parameters Rq (t) shall for each set of values qp , (¾ be 
determined by the conservation of particle numbers. The variables 
qp and define a two-dimensional collective Hamiltonian ( i , j = p ,ot) 

Hcou 4 ^ B i j M j + T ^ K y { v 1 ) V 1 ) t E o ; ( 4 - 3 0 ) 

we have assumed small amplitude oscillations (6q^ « 1) and therefore 
used a quadratic approximation of the potential energy part. The 
compressibility modulus K iJ can easily be determined 6 8 from the var i 
ational ETF ground-state energies discussed in sect. 3.2, by 

K u = 9 H H ; ( 4 - 3 i ) 

shell effects in the K iJ are small (of the order of % 1 %) and can 
therefore be safely neglected. The i n e r t i a l tensor B iJ can be obtained 
from c l a s s i c a l hydrodynamics (which i s allowed for the O + mode91) in 
terms of the velocity fields v^(r): 

BJJ = A ^ V j VjCl3P ; (4.32) 

the latter can be found from solving the continuity equations 

^ + V • ( 9 V. ) = 0 ; V j(T) = V j(T) (4.33) 

(here p = p n + Pp) • Eq. (4.30) i s that of two coupled harmonic o s c i l 
lators (taking B iJ to be constant at qj^ = 1); i t i s solved by diago-
nalizing the secular matrix K iJ - ̂ 2 B i J . Of the two resulting fre
quencies WlfU2

 w e can identify the lower with the experimentally known 
breathing mode energy 

TlU 1 = E
0 4
 = E q m r ; (4.34) 

the second corresponds to a higher mode ( s t i l l to be found) . 

In figure 9 we show the results of the semiclassical calculations 
obtained in this way with the SkM* force; they are seen to reproduce 
perfectly the experimental peak energies within their error bars. 

This result i l l u s t r a t e s , as an example, the usefulness of the 
variational ETF approach also in dynamical applications. In fact, 
the breathing mode energies shown in f i g . 9 are practically identi-
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Fig. 9. Breathing mode (giant monopole resonance, GMR) energies 
versus nucleon number. Crosses are experimental peak 
energies with error bars, taken from ref. 36. The solid 
line shows the energies Rco (Bj) = Ho>i found from the ETF 
model cal c u l a t i o n s 6 8 with the SkM* force. 

cal with those which are obtained in microscopical RPA calculations 
at much higher cost. Furthermore, the interpretation in terms of 
o s c i l l a t i n g parameters of simple t r i a l densities gives a rather nice 
physical insight into the role of the couplings of surface and bulk 
contributions to the breathing mode.68 
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Note added in proof: 
The correct functionals x[p] and a[p] up to second order with 

temperature-dependent coefficients have meanwhile been derived in 
ref.93. 
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