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1. INTRODUCTION

In these lectures we shall discuss the use of density functionals
for calculating static nuclear bulk properties such as average binding
energies, density distributions and their moments, and deformation
energies.

The idea of expressing the total energy of a nucleus as a
functional of the local density p(r) and to formulate with it a
variational principle
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has been used as early in the history of nuclear physics as 50 years
ago, namely in the pioneering work which_ led to the famous semi-
empirical Bethe-Weizs&dcker mass formula. ,2 Sophist.ication of the
energy density functional EIp]was developed along with the under-
standing of the nuclear force3-5 and led to the so-called energy
density formalism.%:7 The theoretical justification of the vari-
ational approach eq. (1.1) came from outside nuclear physics in form
of the now well-known theorem by Hohenberg and Kohn. 8

Whereas the main difficulty of density functional calculations
in solid state physics and quantum chemistry lies in the develop-
ment of sufficiently accurate exchange and correlation energy func-
tionals, their applications in nuclear physics are further strongly
handicapped by the fact that the basic nucleon-nucleon interaction
is only partially known and, due to its$ repulsive core, cannot be
used directly in a perturbation expansion. We refer to the litera-
ture for comprehensive discussions of our present knowledge of the
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nucleon-nucleon interaction? and its use in Brickner theorylor11
calculations for nuclear matter and finite nuclei.!Z2:

The energy density variational calculations performed until the
late sixties, in which mostly the Briickner G-matrix in the local
density approximationlls12 was used, have been reviewed by Lombard. ’
Typically, the experimental binding energies of spherical nuclei
could be reproduced to within ~ (1-10) MeV and their radii within
~ (1-4) %. (The shell effects, which cannot be included in this
formalism, contribute about + (1-15) MeV to the total energy and
less than 1 % to the radii.) The density profiles obtained with
these calculations were as a rule rather poor. This deficiency can
be traced back mainly to the use of an insufficient kinetic energy
density functional: mostly, the Thomas-Fermi relation r==Kp5/3 was
used, sometimes a gradient correction with adjustable coefficients
was added. The corresponding large errors in the kinetic energies
were partially made up by readjustments of the nuclear force para-
meters, but. this could not help to improve the resulting density
profiles.

Several recent developments which took place over the last

10-15 years allow to reassess now the energy density formalism in

a much more rigorous and quantitative way.l15/16 The developments

are the following:

1. Phenomenological effective nucleon-nucleon interactions, which
may be understood as mathematically simple parametrisations of
a density-dependent effective G-matrix, can be constructed and
used in the Hartree-Fock (HF) approximation to reproduce sur-
prisingly well nuclear ground-state energies, densities, radii,
deformation energies (in particular also fission barriers of
heavy nucleil®s18)and some properties of highly collective exci-
tations such as the nuclear giant resonances.17/18 (see ref. 19
for a review of such effective forces and their applications in
HF (plus RPA) calculations.) In particular, the Skyrme type
effective interactions 3¢20 allow to write the nuclear part of
the HF energy as a functional of local one-body densities only,
which makes them especially well-suited for the use in density func-
tional methods.

2. The Strutinsky method?! not only proved to be an efficient pheno-
menological tool for fission barrier calculations (see, e.g.ref.22),
but it also provides a quantitative way23 to extract an average
part of the HF energy which is semiclassical in its nature and
can be calculated by density functional methods. This allows to
‘avoid the very difficult problem of describing the shell effects
by density functionals; it was demonstrated!5s23 that the shell
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effects can be included perturbatively at the end of a self-
consistent semiclassical calculation without any significant loss
of accuracy compared to an exact HF calculation.

3. The extended Thomas-Fermi (ETF) model, based on a semiclassical
f expansion of the partition function or the Bloch density,Z“ was
reintroduced into nuclear pl’xysicszsv26 and successfully used to cal-
culate the average energy of nucleons in realistic potentials.27 It
was, in particular, also shown26-28 that this average energy is
identical to that obtained with the microscopical Strutinsky averag-
ing method. From the same ETF model, density gradient expansions of
the kinetic energy density functional t[p] and a spin-orbit density
functional J[p] can be derived; they have recently been extended to
include contributions from nonlocalities of the average nuclear
potential such as variable effective nucleon masses and spin-orbit
potentials.29/30 The ETF functional for t[p] was furthermore demon-
strated in microscopical test calculations29+30 to reproduce very
accurately the average kinetic energy of finite nuclei.

The strategy of the density functional method discussed in these
lectures is thus the following: We use effective Skyrme type forces,
as they are determined in HF calculations, without touching their
parameters. We then use the density functionals t[p] and J[p] deter-
mined from the ETF model once for all, without readjusting any of
their coefficients, in variational calculations for the average
nuclear properties of interest. In this way, the semiclassical reslts
can at any time be tested against microscopically averaged HF results
and possible deficiencies of the density functionals can be disent-
angled from possible deficiencies of the Skyrme forces themselves.
The shell effects, wherever they are of importance, are added pertur-
batively at the end of the semiclassical variational calculation in
terms of the corresponding average mean fields.

These lectures will be structured as follows: In section 2 we
discuss in some more detail the above mentioned newer developments,
in order to provide the basic justification of the semiclassical-
variational method. In section 3, we shall present - after a dis-
cussion of the ETF-Euler variational equations - the results for
static nuclear bulk properties obtained in semiclassical calculations
with a restricted, but flexible variational space of trial nuclear
densities. We shall also shortly discuss there the expansion of
the semiclassical nuclear binding energies in a liquid drop model
(LDM) type series, which allows to link the phenomenological LDM
or droplet model parameters back to those of the Skyrme force. In
section 4, we shall finally discuss some extensions of the semi-
classical density functional method.
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2. FOUNDATION OF THE SEMICLASSICAL VARIATIONAL METHOD FROM THE
SKYRME-HF FORMALISM

. The Skyrme-HF Energy Density

We shall briefly outline here the structure of the energy den-
sity obtained with effective forces of the Skyrme type. They have
mathematically a zero range; however, velocity dependent terms mock
up the finite (but short) range of the nuclear force. This allows to
write the nuclear part of the HF energy as a functional of local
one-body densities only. Correspondingly, the total HF energy is
written in the form

= [Prl€g (F)+Eq, (FN. (2.1)

Coul

The nuclear (Skyrme) part
Y - Sy 2
Equy (T) =Egy, L9 (F), T (T), T, (F)] (2.2)

is a simple functlonal of the local nucleon denSitles;%ér), kinetic
energy densities 1q (r) and spin-orbit densities J (r) (@ = n, p for
neutrons and protons, respectively) defined by

=2y _ = 2 q

oq(r) = gltpv(r,s,q)l n, (2.3)
- - - . 2 q

Tq(l‘) = %vapv(r,s,cnl n, (2.4)

-I‘q(’r') =(-i)§s'\p:(i",s',q)$\pv('F,s,q)x<s'|3ls> ., @

where wv(;,s,q) are the single-particle wave functions with orbital
and spin quantum numbers v and s, respectively, and n4 are the occu-
pation numbers (equal to 1 or O in the pure HF case, or Vv if pairing
correlations are included in the BCS approximation32). The Coulomb
energy density is the sum of the direct term and the exchange term,
the latter taken in the well-known Slater approximation which has
proved sufficiently accurate for all practical purposes33;

oF 3413

3, 3 )
€ (T) =2 o(r)Z/d :L_.,l T 2( ) e,R (. (2.6)
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We refer to the original paper of Vautherin and Brink20 for the
derivation and the exact form of the functional S%ky(;)- (For the
extended form of Skyrme forces where the density dependent term con-
tains a variable power of p, see e.g. ref. 34.)

As an illustration we give here the expression of Esky(?) for
the case of a symmetric nucleus with pp = pp = p/2 etc.:

2 _ﬁ _3_ 2 .1_ 1 2+
Ey(T) =gm T+ g0 76 3h +3t)To 30 1o (2.7

. ;—4(%- 5t)(30)7+ 2 W, T Fo.

The HF equations, obtained by varying the wave functions
Jd = ® (?,s,q), take the form of Schrddinger equations with variable
effective nucleon masses and spin-orbit potentials:

~

H:qu:=[-6-2
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The local potentials Vq(?), effective masses ma(?) and spin-orbit
-> F, .
potentials Wq(r) are given by the relations

2 _OEF)_9E o € 13 (2.9)
= =, = -V Y A ’
Vo (1) 69q( r) 6Qq v a(qu) ¥ a(Aqq)

2 -
_h”__ E(F) 2.10)

2m:(F) - b'l'q(?") ’
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where €(T) is the sum of the nuclear and the Coulomb energy density.

Usually, the force parameters to,tl,tz,t3,a etc. are deter-
mined by fits of experimental groundstate properties of a series
of (mostly spherical) nuclei. However, most of them are related to
each other, and restricted in their range of values, by imposing
the more or less well established saturation properties of infinite
nuclear matter, such as the binding energy per nucleon E/A (i.e the
volume energy of the mass formula), the saturation density p., the
effective mass m:: or the nuclear matter incompressibility K_.
Imposing their empirical values, the choice of the force parameters
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is greatly restricted, although still innumberable parameter sets
can be found in the literature.l9/35 The parameter o of the density
dependent term in the Skyrme functional eq. (2.7) is rather strongly
restricted by the values of K& and m:. In fact, if values in the
ranges

210 MeV = K s 240 MeV

07 < m#/m < 08
‘are imposed, as they are required in order to fit the giant mono-
pole and quadrupole resonances by RPA calculations,l17/18 one finds

that g must be of the order

116 £ a2 1/3 . (2.13)

(2.12)

Having imposed "reasonable" nuclear matter properties alone
guarantees, of course, in no way that a force will have good sur-
face properties of finite nuclei, which then are adjusted by actual
HF calculations and fits to experimental data. Even more it must
be considered a great success that good fits to many data were
obtained, considering the fact that the nuclear matter properties
fix already five combinations of the typically 7-8 Skyrme parameters.
For detailed comparisons of HF (+BCS) results to experimental data,
we can only refer here to the abundant literature.l7-19,35-37

It might be worth spending a few words on the nature of this
HF + Skyrme formalism. Although it formally is a Hartree-Fock pro-
cedure, it may well go beyond this framework what the physics is
concerned. Due to the fact that the Skyrme force is a parametrized
G-matrix (and can be derived qualitatively from a Briickner
G-matrix13), short-range correlations are built into it from the
very beginning. But also long-range correlations can be contained
in what above is called the HF energy, because the HF equations (2.8)
can be understood as Kohn-Sham equations,38 generalized to include
nonlocal parts of the potential. Noting that, in fact, the mean
fields in eq. (2.8) are nothing but functional derivatives of a
parametrized energy density, one recognizes that due to the
Hohenberg-Kohn theorem® all kinds of correlation energies may be
contained in the energy Egp eq. (2.1)

2.2 Separation of Shell Effects

The direct application of the Skyrme energy functional eq. (2.2)
to the density variational method is handicapped bg the presence
of the kinetic energy and spin-orbit densities t,(r) and 3 (). 1n
principle, we know from the Hohenberg-Kohn theorém® that there exist
unique functionals t[pJ]and J[p] which allow to express these densities
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in terms of the local nucleon densities p (¥). However we do not
know these functionals and there is little chance to determine them
exactly. They certalnly ust be nonlocal, since the shell effects
contained in T (¥) and J (r) are not local, but global properties
of the nucleusq39 40

This problem can be overcome by averaging out the shell effects
and expressing the average of the energy by a.functional of the
average densities Pq (r). This can be justified by means of
Strutinsky’s energy averaging method?! which, in fact, allows to
decompose the exact HF energy in a rather unique way into an average
and a fluctuating ("shell-correction") part2l-23.

E, = EHF 4-61En ~~61Ep ) (2.14)

HF

Hereby the average energy Egp is practically calculated in the same
way as the exact energy Epp through egs. (2.1) - (2.6), but replacing
the quantum mechanical densities egs. (2.3) - (2.5) by the averaged
densities obtained by means of the Strutinsky averaging occupation
numbers ﬁg ,28

~ - 2 ~q
pq(r) = vzlslspv(r,s,q)l n, , (2.15)
etc. The shell-correction energy 61Eq in eq. (2.14) is defined by
- 290 _~q
t51Eq = g e,ln; -n’) , (2.16)
where é‘% are the eigenvalues of the average HF Hamiltonians ﬁgF

defined through egs. (2.8) - (2.11) in terms of the averaged densities,
i.e.

Al 89 = Al 2, I 199

£909 2.17)
HE ; . ( )

V

Formally, eq. (2.14) just represents the lowest two terms of a Taylor
expansion of the HF energy around the average parts of the densities.
(See ref. 23 for a discussion and further literature on this subject.)
In extended numerical calculations23 it has been checked that the
missing higher order terms in eq. (2.14) are negligible for all
practical purposes. In particular if the averaging by means of the

is done selfconsistently (see also the next subsection), the two
sides of eq. (2.14) are equal to within less than A 0.5 MeV even in
heavy, strongly deformed nuclei (corresponding to an ccuracy of
better than 10-3).
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Two important conclusions could be drawn from these numerical
results?3: .
1) The averaged HF energy Byr has all the properties of a LDM type,
semiclassical energy.
2) The selfcon51stency is only important for the average quantities
(EHP' HHF' p , etc); the shell effects can, in fact, be added
perturbatlve?y.

This provides us with a strong motivation to replace the above
sketched microscopical selfconsistent calculations of E by a
semiclassical calculation. For its realization, it was important to
quantitatively secure the equivalence of the Strutinsky averaging
procedure with a semiclassical expansion of the energy, as will be
discussed in the following subsection.

2.3 Strutinsky Averaging as a Microscopical Link to the ETF Model

Strutinsky?! and Tyapin*! surmised that the numerically
Strutinsky-averaged energies not only correspond to those obtained
in the Fermi gas theory, but that they contain also inhomogeneity
corrections such as they are obtained in the so-called extended
Thomas-Fermi (ETF) model.42

Bhaduri and Ross25 proposed to calculate the average energy of
nucleons in various model potentials by employing a fi-expansion of
the partition function, which actually had been developed long ago
by Wigner and Kirkwood,2* and demonstrated the closeness of their
results to those of a numerical Strutinsky averaging. (We shall
discuss the Wigner-Kirkwood expansion and the ETF relations derived
from it in section 2.4.) For harmonic oscillator potentials, the
exact equivalence of the Strutinsky averaging method and the semi-
classical N-expansion was proved analytically.26:28 For realistic,
deformed Woods-Saxon type potentials including spin orbit fields,
the two methods were shown numerically?’ to yield identical energies
to within n 1-1.5 MeV (out of several GeV), which is roughly the
uncertainty in either method.

It is thus well established that - at least as energies are
concerned and with the numerical accuracy practically required -
the microscopical Strutinsky averaging procedure is equivalent to
a semiclassical fi~expansion. Therefore it seems natural to use the
ETF functionals t[p] and :ip] obtained from the same fi-expansion
(see next section) in order to calculate the average HF energy Eyp
in a semiclassical, and thus much more economical way.

That the energy EHF - which was obtained microscopically in
ref. 23, as explained in sect 2.2 - can be expressed as a functional
of the average densities (¥) eq. (2.15) is again a consequence of
the Hohenberg-Kohn theorem. The iterative inclusion of the
Strutinsky occupation numbers ﬁg in the HF cycle has, in fact, been

338



formulated in a strictly variational way,23 including a proper con-
straint in the energy to be made stationary (and found to be mini-
mized in actual calculations). The Hohenberg-Kohn theorem® applies
therefore to this variational averaged system as well as it applies
to any variational system of Fermions interacting through a 2-body
force.

2.4 The ETF Model and its Density Functionals

We shall in the following sketch the semiclassical Ti-expansion
developed by Wigner and Kirkwood,2% which provides a convenient tool
to derive the ETF functionals t[p] and 3[p] which we are interested
in. For the sake of a simple notation, we shall presently restrict
ourselves to the case of N nucleons (one kind only) in a given local
(HF) potential V(@) . Let @, and ¢, be the eigenfunctions and eigen-
values of the corresponding Schrddinger equation:

Fltpv= [T+ VIFlle, = €9 . (2.18)

Next we define the Bloch density matrix

C(F,7;B) = gkp:(F')\Pv(T")e-Bc", (2.19)

where the sum goes over the complete spectrum (including an integral
over the continuum, if present). From C, we obtain by an inverse
Laplace transform the usual density matrix

o(FF) = L [%C(F,F‘;B)]

Ceioe (2.20)
- #/d[ie”’%t(i“,'r";ﬁ) ,
C-ioe

-
from which in turn, the local densities p(;) and t(r) can be deter-
mined

N
o(T) = VZ_1 I\pv('r‘)|2= o (F,F) , (2.21)

(2.22)
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In eq. (2.20), A is the Fermi energy which is fixed by the particle
number conservation

/o(t'")dar =N . (2.23)

The idea of Wigner and Kirkwood was to expand C(;,;‘;B) around
its value obtained in the Thomas-Fermi approximation:

3/2 —BV(r—;t)e - -ZTmrf:\_ (?-F')Z

(2.24)

CTF( T..IFIB) = znr«rf'.'ZB

One makes the ansatz

CIFFB) = C(FFB) x {1+, +ﬁ2x2 +..} 229

thus expanding the ratio of the exact to the TF Bloch function in
> >,

powers of fi. The x, are functions of r,r and 8 which contain com-
binations of n gradients acting on V(¥). Uhlenbeck and Beth“2 worked
out a recursive scheme to obtain the X, successively (see also

ref. 43). By Laplace-inverting the series eq. (2.25) back term by
term, one obtains an expansion of the density matrix eq. (2.20) and
thus of p(?) and r\r), to which only even powers of h (i.e. xp

with even n) contribute. We quote here the results up to order 2

- 1 2m \3/2 1312 a
0 _(T) = == (=) (A=V(T))" x BO(\-V(T))x
3n? ( f ) (2.26)

1 2,13
«{1- 3 2 [AV()\ VIZ e (BVEN- VL),

T ( )5’2()\ VTN x BIN-V(F)) x

(-' - L.
ETF - HZ
(2.27)

2

8

x {1-

In the lowest order terms we recognize the TF expressions; the n2-
corrections lead to the well-known divergencies at the classical
turning points ?A given by A = V(?A)° (Due to the step functions,
both densities are identically zero outside the classically allowed

region.)

2
%[%wa-vrz -%(evﬂ(x-vﬁ]}
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In spite of their turning point divergencies, the densities
egs. (2.26), (2.27) can be shown"3 to lead to finite energies and
particle numbers, even if the B* terms are included. This shows that
the ETF densities are rather to be understood as distributions
with well-defined integrals and moments (see also ref. 44). The
energies so obtained form a rapidly converging asymptotic series

EETF = ETF + E2 + E‘. +... (2.28)

The sum of the first three terms (i.e. up to order fi*) converges
typically to within A 1 MeV and agrees, as mentioned in section 2.3
above, with the energy obtained by Strutinsky averaging:

EETF = ESfr = gcv n, . (2.29)

We shall not discuss here the technicalities of including effective
mass and spin-orbit contributions, which can be done starting from
a Hamiltonian of Skyrme type eq. (2.8); they can be found in the
literature.2%,43

Before coming to the construction of the ETF density functionals,
we mentlon that a . way of removing the turning point divergencies in
pETF(r) and TETF(r) by partially resumming the Wigner-Kirkwood series
eq. (2.25) will be discussed in sect. 4.2 below.

2.4. a) The functional t[p] for a local potential

From egs. (2.26) and (2.27) it is possxble to eliminate algebrai-
cally the Fermi energy )\, the potential V(r) and its derivatives,
hereby consistently retaining all terms of order #i2 and neglecting
those of higher orders in fi. The result is (for one kind of nucleons)

- (2.30)
tlp] = T Lol + 1ol
with the well-known Thomas-Fermi relation
2/3
T lol=xp>", = —(3 2) (2.31)

and the second order gradient correction
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- 12
T,le] = 315 (-%?-) + %AQ . (2.32)

The first term in T,[P] is the so-called Weizsdcker correction; this
authorl derived it in a somewhat ad hoc manner and obtained it with
a 9 times larger coefficient. This coefficient has subsequently given
rise to a lot of discussion.t By now it is clear that various alter-
native semiclassical expansion procedures30+/41/42 lead to exactly
the same relations and coefficients. (For a recent review in which
these alternative expansions are discussed and related, see ref. 45.)
The coefficient 1/36 of the Weizsicker term is thus well established
in the framework of semiclassical expansions (and for smooth poten-
tials V(r)). The second term in eq. (2.32) does not contribute to
the integrated kinetic energy and has therefore often been ignored;
it does however contribute to the total Skyrme energy through the
terms containing tp, see eq. (2.7).

Going up to order fi* in the expansion of Peprr and Tgpp and pro-
ceeding in the same way, one obtains the next correction t1,[p] to
the functional, containing up to fourth derivatives of p. The some-
what lengthy expression for T,[p] is given in refs.29:31, When inte-
grating over the whole space, the fourth and third derivatives of p
can be eliminated by partial integration, and the expression simpli-
fies to

, -213 Vo4 V0y2
/TAIQ]‘P" =3:—m(3n2) /9"3 [8(%9-) -27(—92) —AaQ:' (2.33)

Similarly, one obtains + 2 (%2)2] d3r.

3 1 2 Vo \b
/Qralold F= %(3“2) /9“3 [’7(—92) --v‘Q a0 \ 2(2.34)
-3(5) 5 +30 () ).

This procedure can in principle be continued ad libitum, includ-
ing higher and higher gradient corrections. However, the terms T1,[p]
with n 2 6 diverge for densities which decay exponentially in the
tail region. Therefore, the terms up to fourth order must be con-
sidered as the converging part of an asymptotic series for t[p]; we
shall denote this part by Tgpppl[e]:

TETF[Q] = Tn:lol + TZ[Q] + T,.[Q] . (2.35)

The above derivation of the functional TETF[p] is strictly
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speaking not allowed at the classical turning points, where TETF(;)
and pETF(;) are singular. It holds, however, at any other point.
(In the classically forbidden region, Tgpple] holds trivially since
Tppp and Pprp there are identically zero!) One may therefore hope
to be able to use TETF[D] everywhere in space by analytical conti-

nuation.

The functional Tgrp[P] given by egs. (2.31)-(2.35) has been
tested numerically w1th the help of microscopically Strutinsky
averaged densities f (¥) and r(r), defined as in eq. (2.15), for
different spherical and deformed potentials.29/3l The results of
these tests may be summarized as follows (for a more detailed
discussion, see ref. 31):

1) The functional Tgpplp] eq. (2.35) reproduces the total Strutinsky
averaged kinetic energy within less than ~ 1.5 MeV, corresponding
to a few parts in Lp“ for heavy nuclei. This holds independently
of the radial shape of the potential, of its deformation and of
the particle number, as it should be expected from the Hohenberg—
Kohn theorem.

2) The functional also reproduces the integral qj;rd3r, as it occurs
in the Skyrme energy, within less than 1 MeV (using realistic
Skyrme parameters to determine G).

3) The terms due to T [p] are essential for obtaining the correct
deformation energies, in particular the fission barriers.

The points 1 and 3 are illustrated in figure 1 (taken from ref.3l).
It shows the kinetic energy for 112 particles in a deformed harmonic
oscillator potential as a function of the deformation parameter
q-—w;A; which measures the frequency ratio. The different curves
are obtalned in terms of the Strutinsky averaged density p(r)
eq. (2.15) through the ETF functional eq. (2.35)

- 2
T, (9] = %/d% T [§(7F)] (2.36)

whereby the index n shows where the functional (2.35) has been
truncated (e.g. n = 2 means TF plus 2nd order gradients included).
The reference quantity of the test is the microscopically Strutinsky
averaged kinetic energy T defined by

~ 2
T= zh—m/'f('r’)dar , (2.37)

whereby ;(?) has been averaged analogously to S(?) eq. (2.15). It is
seen that the full functional Tgrplp] up to 4th order reproduces
the energy T exactly within the accuracy of the drawing; the energies
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Fig. 1. Kinetic energy of 112 particles in axially deformed
harmonic oscillator potential with frequency ratio
q = wj/wy, obtained with the ETF functional t[p] up
to various orders of gradient corrections (see text).
T is the microscopically Strutinsky-averaged kinetic
energy; the dashed curve shows the exact kinetic
energy T which includes shell fluctuations.

T and Tu[g] agree in fact within less than 0.1 MeV at all deforma-
tions. The 4th order terms T“[p] still contribute 10 - 15 MeV to the
total kinetic energy and are seen to be important for obtaining the
correct deformation dependence. Fig. 1 also contains the exact
kinetic energy T (shown by a dashed curve) which contains shell
effects. It would of course be hopeless to try to reproduce this
exact energy by a local gradient expanded functional, even if the
exact quantum mechanical density p(?) is put into the functional

31
TETF[o].

We might add here some remarks concerning simplified functio-
nals tlp] of the form
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a 2
tlp] = KQSB + r]-31—6-s—§-) (2.38)

with an adjustable coefficient n, as they have repeatedly been used
in the literature.%’46~%8 1t may be hoped, indeed, to mock up the

4th order terms Tk[p] by choosing n > 1 such as to fit the functional
eq. (2.38) to the correct total kinetic energy. However, it is not
obvious, then, that the same value of n can be used for all potent~-
ials, all deformations and all particle numbers.

In order to illustrate this, we have calculated the quantity

J&r {151 +1,[5))
/& ,15]

(2.39)

from the results obtained in ref. 31 for the harmonic oscillator
potential. In figure 2, the number n eq. (2.39) is plotted against
the particle number N (crosses) and against the deformation para-
meter q (circles), It is seen to be rather constant with values
n=1.4-1.5 for not too small particle numbers. Similar values
are also obtained for a deformed Woods-Saxon potential. The value
n=1.4 - 1.5 is, however, about three times smaller than what typi-
cally has been used*6~48; the reasons for this will be discussed in
sect. 3.1 below.

05 10 1S q 20 25 30 35
\J 1

T ¥ LB L]
mn Harmonic Oscillator
17 .
MN(N) q=10 4
15 |
13 M) N=12
1 1 1
0 S0 N 100 150.

Fig. 2. The parameter p eq. (2.39) obtained for deformed harmonic
oscillator potentials is plotted against particle number N
(crosses, values on lower axis; evaluated for q = 1) and
against deformation q (circles, values on upper axis,
evaluated for N = 112 particles).
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This result should be used with caution. We cannot expect this
procedure of mocking up the 4th order contributions by a single para-
meter to work for nonlocal potentials. (Indeed, n is dependent on the
effective mass of the force.%6) Furthermore, problems arise with the
surface of the densities, if such adjusted functionals as eq. (2.38)
are used in variational calculations (see sect. 3.1).

2.4.b) The functionals t[p] and 3[9] for Skyrme-type nonlocal
potentials

For velocity-dependent Skyrme forces, one has to generalize the
functional Tgpp[p] , since it receives explicit contributions from
the nonlocal parts of the HF-potential. Rewriting the Skyrme-HF
Hamiltonian (see eq. (2.8)) in the form

2

Sky - " zf;nv FIF)T + V(F) - iW(R)- (vx3), (2.40)

where f(;) = m/m*(?), the Wigner-Kirkwood expansion eq. (2.25) can
be readily obtained. (The Bloch density C is in .this case a 2 x 2
matrix, the Xn With n > 1 containing the Pauli matrices oi.) The
second-order contribution to the kinetic energy density functional

then becomes ’
1 (%0)" 1 1 (Vo9f) 1
R e L i

192 1 2me W
- o(F) 7 (B3R e ().

The spin orbit density only gets contributions from the 12 and higher
terms. The lowest-order expression is

-Tl01 = (B) T oW = (EX)oW . 2.42)

(a semicla551cal spin-orbit correction equivalent to eq. (2.42) for
m = m* has been derived earlier by Stocker et al.“9)

Carrying through the expansion to 4th order with effective mass
and spin-orbit is extremely tedious. It has been done with an
algebraic computer code by Grammaticos and Voros30; we refer to
their papers for the explicit expressions for 1,[p] and 3u[p] . Again,
after suitable partial integrations, the relevant contributions to
the total energy only contain first and second derivatives of the
densities pq(?). The corresponding expressions are given in ref. 15.
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Note that for Skyrme forces f(?) =1+ Bp(r), and W(r) is pro-
portional to Vo(r), so that the functionals t[p] and Jlp] ultimately
only contain the density p and its gradients. We also recall to the
reader that the equations in this section hold for either proton or

neutron densitie§ ang notafor the total densities T = Tn + Tp ’
p=p_ +p and I =J_ + J_.
n jo) n P

2.5 Summary

Let us summarize at this point the main steps of the derivation
and justification of the semiclassical variational method.

1) HF calculations with effective Skyrme interactions allow to cal-
culate a vast amount of nuclear ground-state properties, defor-
mation energies and (with RPA) giant resonances to a satisfactory
degree.

2) The HF energy can be split, by means of the Strutinsky averaging
procedure, in a selfconsistent average part EHF and a shell-correc-
tion part, see eq. (2.14).

3) The averaged energy EHF and the corresponding selfconsistent
average densities Sq(?) can be obtained in a strictly variational
way. gerefor by virtue of the Hohenberg-Kohna;heorem, EHF and
thus T (r) and (r) are unique functionals of pq(r)

4) The Strutinsky averaging method is practically equivalent to a
semiclassical fi-expansion of the enerqy,27 which in turn leads to
the ETF density functionals tlp] and Flpl.

5) The ETF functional t[p] with gradient corrections up to fourth
order reproduces with high accuracy the average kinetic energy
of nucleons in realistic potentials

6) Combining 3) and 4) allows to express E 1n terms of p (r) only
by means of the ETF-functionals t[p] and J[p] and to perform
sem1c1a351cal density variational calculations in order to
optimize ¢ _(r).

7) After selfconsistency has been reached for EHF and pq(r), the
average mean fields egs. (2.9) - (2.11) can be used to calculate
the shell-correction energies §,E_ (2.16) by _solving once the
Schrédinger equation (2.17). Adding GlEq to Egp, thus incorporating
the shell effects perturbatively, allows to recover the (exact) HF
energy with sufficient accuracy.

8) In the case of purely local potentials, the contribution to the
total kinetic energy coming from the 4th order correction term
1,[p] may be simulated by multiplying the Weizsdcker term in
Tz[p] by a factor n % 1.4 - 1.5. However, this procedure does not
work for nonlocal Skyrme potentials (where n depends on the
effective mass m ), it also leads to unphysical variational
densities, as dlscussed in sect. 3.1 below.
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3. SEMICLASSICAL VARIATIONAL CALCULATIONS

Inserting the functionals Tgrplp] and EETF[D] in the Skyrme
energy density eq. (2.2) and making use of the variational defini-
tions of f. = m/m* and Wq by egs. (2.10), (2.11), we can now express
the total average energy of the nucleus as a functional of the
spatial densities Pq only. The idea then is, as discussed in the
introduction, to perform a variational calculation on the densities
Pg, including Lagrange multipliers Xq to ensure the correct particle
numbers (N and Z):

3 - 3
8/ {E1p,.01- N g (F1-Ao (1} =0 | 3.1

(Here E[pn,pp] contains both the nuclear and the Coulomb parts.) In
the following we shall discuss what happens if the variation is done
exactly, i.e. if the corresponding Euler-Lagrange equations are
solved.

3.1. Discussion of the ETF-Euler Variational Equations

In order to simplify the presentation, we shall again assume
only one kind of particles - realistically, one will obtain two
coupled differential equations for pn and pP - and leave out the
effective mass and spin-orbit contributions (i.e. put £ = 1 and
W = O). These restrictions do not affect the conclusions drawn below.

The Euler-Lagrange equation then becomes

2
{2k 4 Do) + D01} + Vipl= A (3.2

where the term in curly brackets comes from the variation of the
kinetic energy and the potential is

Vip] = i%gﬂ ) (3.3)

cf. eq. (2.9). The second-order kinetic term is

2 12
Dlo] = 3l6[‘VT°2’ LI ﬁﬁqﬂ-’ . (5.4
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The term D,[p] correspondingly contains 7 contributions with up to
4th order gerivatives of p.29s31 The equation (3.4) can in principle
only be solved numerically. However, it is possible to determine
rather easily the asymptotic behavior of the solution both inside
the nucleus and in the outer surface.

3.1 a) Asymptotic behavior in the outer surface

The fall-off of the density p (r) at large distance r (we shall
for simplicity assume spherical symmetry) is completely determined
by the gradient corrections in the kinetic energy functional t[p],
if they are included at all. We shall accordingly discuss it in three
steps.

1- Using toplp] only: If only Tpp[p] is used, eq. (3.2) reduces to

2
%n- : %x92’3+ Viel=X . (3.5)

If the potential V[p] contains only powers of p and no gradients,
the only solution of eq. (3.5) is p(¥) = p, and one obtains thus

a liquid drop model type constant density with a sharp cut-off at
the surface.

For Skyrme-like forces with a term bﬁp)2 in the potential
energy, eq. (3.5) leads to a density profile which near the sur-
face goes like3

olr) = Tgn?(L=R0) (3.6)

for spherical nuclei, where g is essentially determined by the
constant b in front of the (Vp)2 term. This density thus has to
be cut off at a finite radius r = R, and put equal to zero out-
side, and is therefore not very physical. It leads to the defi-
ciencies of the calculations reported in ref. 7 which we have
already mentioned in the introduction.

2- Using tTF[p]-+Tz[Q]: Berg and Wilets" pointed out that the in-
clusion of a Weizsdcker term in the variational equation eq. (3.2)
(with D, = O) leads to an asymptotic fall-off of the density with
the correct exponential form (in the spherical case):

1 -r/a :
olr) =2 3@ (3.7)

The range a is given by the Fermi energy A (which is always
negative) and the coefficient of the Weizsécker term:
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2
a = *’313 lm‘% . (3.8)

Unfortunately, this range is too small by a factor n 2-3 compared
with realistic nuclear surfaces. Consequently, the variational den-
sities fall off too quickly in the outer surface and lead to an
overestimation of the kinetic energy (which is partially compen-
sated by an overestimation of the potential energy). This was con-
firmed in numerical calculations by Bohigas et al.,%0 who solved
the Euler equations using the local functional Tqplp] + Tz[p]

egs. (2.31), (2.32) for a Skyrme force with me/m = 0.95 and without
spin-orbit force. The semiclassical energies obtained in this way
differed from the exact HF energies by ~ 0.4 - 0.6 MeV per nucleon,
thus by far more than the order of magnitude of the shell correc-
tions.

To overcome this defect - still in an attempt to solve the
relatively easy second order differential equation - several
authors used functionals of the type

2 12
T[Q] =(195/3 l(v_(’ﬂ +J‘AQ

(3.9)

where o and n were adjustable parameters.4/46-48,51 In particular
in the so-called MTF-functional,“® pn was chosen to be n 4-5, in
order to obtain realistic tails of the densities, see eq. (3.8).
This leads, however, to a drastic overestimation of the kinetic
energy - in particular its surface contributions - which was com-
pensated in ref. 46 by reducing the coefficient of the TF term
(i.e. a < k). In this way it was possible to fit the kinetic
energies of spherical nuclei quite well (see also ref. 47). How-
ever, the price to be paid for this is that o and B depend on the
nucleon number and on the force (in particular on mw). The latter
is obvious since the explicit effective mass and spin-orbit contri-
butions in 1T, [p], shown in eq. (2.41), are ignored in eq. (3.9).
Moreover, the 2MIF- functional¥6 completely fails to give reasonable
deformation energies due to a drastic overestimation of the surface
energy contributions (see the next section).

Treiner and Krivine“8 recently used another functional of the
type of eq. (3.9) with the original coefficient of the TF term
(i.e. a = k)and n = 2, and added the correct second-order spin-
orbit terms (see egs. (2.41), (2.42)). This functional still slightly
overestimates the surface energy, leading to a too high fission
barrier as compared to the one obtained with the full, unchanged
functional TgpplP] including the 4th order contributions (see
sect. 3.2). In fact, we have seen in fig. 2 above that a factor of
n=1.4 to 1.5 would lead to reasonable deformation energies if
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spin-orbit and eff. mass contributions are neglected. However,
the tails of the density distributions then become unrealistically
steep, as seen from eq. (3.8).

One faces thus a basic dilemma when using adjustable func-
tionals of the type of eq. (3.9): If one wants to obtain densities
with good tails, one needs n = 4-5; if one wants to obtain good
energies, and in particular deformation energies, one needs
n=1.4 - 1.5. (A similar dilemma exists also in atomic physics in
the so-called Thomas-Fermi Weizsdcker theory.52) We shall see in
the next section that this dilemma can be satisfactorily resolved
by using the full, unchanged functional TETF[p].

Using Terp[P] up to 4th order: The full fourth order equation (3.2)
was discussed in ref. 31. In this case the spherical solution of
p (r) falls off like

C
Q(l‘)r—_:_) 06 i (3.10)

the coefficient ¢ is given by

hZ

C= [-—ZF{BR

-2/3 312
2) B (3.11)

1
't.s'A] :

This result at first looks rather discouraging, since eq. (3.10)
is not the behavior we would like to expect from a nice density.
However, we do not know at which distance from the nuclear surface
the behavior r-® will be assumed. In order to investigate this,
let us take )\ = - 7 MeV. We then find from eq. (3.11) that

c = 0.03 fm3. If eg. (3.10) were to be true at a distance of

r = 10 fm in 208pb, the density then would be 3 x 10-8 fm=3 at
that point which is 4 orders of magnitude smaller than what it
would be for a Fermi function type density. This indicates that
eq. (3.10) is a purely mathematical result which is reached so far
outside the nuclear surface that it will have no physical meaning.
This is illustrated also in the semi-infinite nuclear matter cal-
culations presented in ref. 15.

Unfortunately, the highly non-linear, fourth order differential
equation (3.2) seems unaccessible to numerical solutions. Even in
the semi-infinite case, where it can be integrated once analyti-
cally, we did not succeed in solving numerically the resulting
third order equation. However, the results obtained with a
restricted variational space for the densities pq(?) presented
below are satisfactory enough, so that it is not necessary to
solve eq. (3.2) exactly.
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3.1.b) Asymptotic behavior inside the nucleus

The onset of the surface region, i.e. the deviation of the
density from a constant value in the interior of a heavy nucleus, can
also be estimated qualitatively without exactly solving the Euler
equation. For simplicity we shall ignore the Coulomb interaction and
the curvature effects, i.e. take the limit of a very large nucleus.
Since in the inner region the density is very near its saturation
value, we shall - following Skyrme,3 and Strutinsky and Tyapin53
who developed in this way a precursor of the droplet model - replace
the Skyrme energy density by a schematic one which, however, preserves
the correct saturation properties.

We thus write 2
Elo] = o8 _(0) + 0(39)2 + zlm(rzlo]*«rh[o]) (3.12)

where the "volume part" gm(p) is taken to be
K 2
3 - °° — -
g lp)=ay+ Bo? (p-9.)" . (3.13)

This corresponds to a parabolic approximation of the saturation
curve near the saturation density p_, which certainly is good enough
for the following estimations. Writing

plr) =19 ylr), (3.14)

the Euler equation then becomes (neglecting the curvature contribu-
tion)

2
l'<1§°°(3y2 -Ly +1) -Zao“y"+%(Dzly]+0,.[y])=0.(3.1s>

where y" = d2y/dr2. The kinetic terms D, and D, play a minor role

in the following development and we shall therefore drop Du[p] imme-~
diately. To arrive at eg. (3.15) we have also neglected the fact that
the central density in finite nuclei is in general different from the
saturation density p, °% this has little bearing on the following
argument and shall shortly be discussed in sect. 3.3.

We now write

y(r) =1 - e(r'R)luz 1-¢(r) . (3.16)

Inside the nucleus, g(r) << 1 and we can expand eq. (3.15) in powers
of €. Keeping the linear terms in €, we obtain an equation for a:
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18 1 n
u=\/k—;(u9“+ 36 2m . (3.17)

For realistic Skyrme forces, bp_ = (10 - 13) MeV fm?, so that a turns
out to be of the order of A~ 1 fm. The Weizsdcker correction (the
second term in the brackets in eq. (3.17)) only contributes n~ 3 % to

this result; the term D,[p] in eqg. (3.15) would have contributed
even far less.

We learn from this that the asymptotic inner part of the nuclear
surface is mainly determined by the "surface term" a(vp)2 of the
Skyrme energy density and by the incompressibility K,; the kinetic
energy gradient terms play only a minor role here. The range q of
the inner surface part is A 1 fm and thus about twice larger than
the typical value of the diffuseness parameter of the density when
parametrized by a Fermi function. This tends to make the realistic
densities asymmetric around the half-density distance; the "shoulder”
of the surface is broader than the tail of the surface. This asymmetry
is, indeed, seen in the results discussed in sect. 3.2 below.

In order to summarize this section, let us repeat the main con-
clusions we have reached.

1- If the functional Tgrp[p] is used to solve the Euler-Lagrange va-
riational equation for the density, the gradient corrections to
TETF[p] completely determine the asymptotic fall-off of-the den-
sity in the extreme surface. In no order of its gradient expan-
sion can TETF[p] give a realistic exponential fall-off. In parti-
cular with the gradient terms kept up to 4th order, one obtains

a fall-off of the form 1/r6.

This latter result need not be in contradiction with the positive

numerical results quoted in sect. 2.4 in the sense that the mathe-

matical fall-off ~ 1/r® is only assumed at far distances outside

the nucleus which play no physical role, whereas a realistic sur-

face region is compatible with the 4th order functional TETF[p]'

3~ Heuristic functionals T[p] with only second order corrections and
adjustable coefficients can either reproduce energies or density
profiles, but not both at the same time.

4- Practically independently of the gradient corrections to t[p], the
inner asymptotic part of the surface is essentially determined by
a balance between the gradient term -\.(Vp)2 of the potential energy
and the incompressibility K,. As a consequence, the density profile
is in general asymmetric around its inflection point.

3.2 variational Calculations for Finite Nuclei

In the following we shall present some selective results of
variational semiclassical calculationsl5 obtained with a restricted,
but flexible variational space of trial nuclear densities. We shall
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be brief and refer the interested reader to the review article15 in
which these calculations have been discussed in detail.

For spherical nuclei we chose the radial densities to have the
form (see also ref. 55):

QOLH + 05y €XP (—rZIB:R:)]
r-Rq ¥
[1+exp (5™

We have thus 10 independent variational parameters Pogr P1qr Bgr @
and'yq, with respect to which the total energy is minimized; the
radius constants Rg are always determined to fix the nucleon numbers
Z and N. For p,; and v, = 1 we have the familiar Fermi functions
with central density pgq and surface diffuseness o . For Y, _ #1, the
surface is asymmetric; as we have discussed in sect. 3.1, we expect
Yq > 1 in realistic cases. For Piq # O, the Gaussian factor in

eqg. (3.18) allows for a depression or an enhancement in the central
region measured by Bq' for physical reasons we are interested only
in values 0.3 X B 1.0. (In fact, the energy was found to be
stationary for Bq = 0.5 in all cases where plq # O was favored at
all.lS,SS)

Qq( r)= (@=p,n) (3.18)
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Fig. 3. Comparison of the microscopical HF densities and the
variational ETF densities for *ca and 2%%b, obtained
with the Skyrme force SkM*.
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In figure 3 we compare the density profiles obtained for 40ca
and 208py yith microscopical HF results, both calculated with the
Skyrme force SkM*.15/16 An almost perfect agreement is obtained in
tﬁe surface and the tail region. In the interior part the ETF den-
sities reproduce nicely the average trend of the HF results. In fact
the possibility to build up a bump or a dip near the center, although
it does not affect the binding energies by more than a few hundred
keV, is important for obtaining this agreement. In particular for

Ca, we see that the central densities are enhanced by " 20 %. It is
worth underlining that this is not just a shell effect, but it must
be understood as a bulk effect which results from the compression of
th? nucleus by the surface tension. In heavy nuclei such as Pb,
this compression effect is overpowered by the Coulomb repulsion
between the protons, which leads to a slight depression at the center
(v 8 % for the proton and ~ 2 % for the neutron density of 208pp,)) ,

In table 1 we present the binding energies of a series of spheri-
cal nuclei (all in MeV). Bexp are the experimental values; Bgp and
Bprp the HF and the ETF results (with SkM*). (In both calculations,

a 1-body c.m. energy correction 16 has been included; it is not
included in all the other results presented below.) Note the nice
agreement between Byp and By especially for the B-stable nuclei.
The semiclassical energies Bgpp, which of course do not contain

Table 1
Bexp Bur Berr Bovm
16
0 127.6 127.7 128.0 127.4

40c, | 342.1| 341.1| 345.9| 340.4

48Ca 416.0 420.1 421.8 418.4

56Ni 484.0 485.4 483.9 483.1

90Zr 783.9 784.5 786.6 782.7

114Sn 971.6 969.2 976.0 967.9

132
Sn 1102.7 1110.7 1101.5 1108.3

140Ce 1172.7 | 1173.9| 1174.5 | 1171.6

208

Pb 1636.5 1636.4 1627.0 | 1633.7
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the shell effects, are larger than the averaged HF energies by

n 3-8 MeV. This effect of a slight overbinding was observed earlier
with other Skyrme forcesl* - it is larger by a factor of roughly 2
for the SIII force,35 presumably due to its larger incompressibility -
and must be considered as a slight defect of the ETF functionals.
Although the variational principle holds strictly for the "ideal"
(but unknown) exact functional €[p], the use of approximate functio-
nals can lead to violations of the variational principle and thus to
such overbinding effects. This slight deficiency of Bprr is, however,
healed after inclusion of the shell effects by the "expectation value
method" (EVM),56+57 which corresponds to performing a single HF
iteration using the variational ETF densities as an input. The so
obtained energies are shown in the last column of table 1 and are
seen to reproduce the HF energies to within less than n 1 MeV

(160, 40ca) to n 3 Mev (208pb).

In refs. 15,16 it was shown that also the HF neutron and proton
r.m.s. radii - and in particular their difference, the so-called
"neutron skin" - are also very accurately reproduced by the variatio-
nal ETF calculations (the shell effects are practically negligible
here) .

This excellent agreement between the ETF and the (averaged) HF
results for both energies and densities demonstrates the powerfulness
of the 4th-order corrected ETF functionals; it cannot be obtained
leaving out the T“[p] term, as discussed above.

In figure 4 we compare the variational ETF charge densities of
5 spherical nuclei to the experimental ones deduced from electron
scattering experiments. A very good agreement is found for the
average trends in all cases; the remaining differences are the typical
shell fluctuations. (These are overestimated in HF calculations with
most effective forces; see, however ref. 37 for a recent discussion
of this effect.) :

As already indicated above, the deviations of constant densities
in the nuclear interior - governed by the parameters f;, and Bq in
eq. (3.18) - have very little influence on the total energy of the
nucleus. This is demonstrated in table 2, where we list all the density’
parameters according to eq. (3.18) together with the minimized energies
Egrp Of the 5 nuclei shown also in fig. 4. For “0Ca and 298pb we also
give the results obtained when the densities were restricted to pure
Fermi functions (imposing y, = 1, p1g = O) or asymmetric Fermi func-
tions (with y, # 1, but Pig = O). It'is interesting to note that the
10 parameter variation lowers the total energy by only 2.3 MeV in
40ca (i.e. ~ 0.7 %) and by 5.1 MeV in 208pp (i.e. A 0.03 %) compared
to the 4 parameter variation with pure Fermi functions. Furthermore,
almost all of this gain in energy is already obtained with flat den-
sities (p1 ~ 0O) with an asymmetric surface ('yq # 1). As long as one
is interested in binding or deformation energies alone, it is thus
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Fig. 4. Comparison of semiclassical ETF charge densities (including
a proton form factor of 0.64 fm?) with the experimental
distributions extracted from electron scattering data 58
for five spherical nuclei.

perfectly sufficient to use 3-parameter densities (i.e. Fermi func-
tions to the power yg;) with a flat interior. The values of yq vary
only a little, from A 1.4 in light to ~ 1.5 in heavy nuclei. For
forces with larger K, , the y_ become smaller, as can easily be
understood on the basis of thg discussion in sect. 3.1 above. (For
the SIII force, e.g., yy v 1.2.) When the rq[p] gradient corrections
are omitted,48s55 unphysically large values Yq © 2-3 are obtained.

In order to describe deformed nuclei, we have to use a constraint
since in a semiclassical model all nuclei are spherical in their
ground states. In ref. 15 the constraint was introduced by starting
from a deformed LDM "generating surface" with sharp edges, such as
it has been used in shell-correction calculations for fission
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barriers.22 It was then assumed that the diffuse densities have a
constant surface thickness, so that they can be described simply by
replacing (r-R_) in eq. (3.18) by the normal distance from the gener-
ating LDM surface (see the details in ref. 15); hereby the density
profiles of eq. (3.18) were, for the reasons just given above,
restricted to asymmetric Fermi functions (yq # 1 but pjq = 0).

In figure 5 we present the semiclassical fission barriers of
204pyu obtained for four different Skyrme forces. The (c,h) family of
shapes22 was used for which c is the main elongation parameter and h
is a "necking" parameter. The cross indicates the location of the
empirical LDM saddle point as it is known from shell-correction cal-
culations.22 We see that the forces SIII35 and Ska%9 give too high
fission barriers by a factor of n 2. For the SIII force, this had been

known from constrained HF calculations.60

10

Barrier Height [MeV]

|
10 12 14 6 \ 18
deformation (C)
Fig. 5. Semiclassical fission barriers for 20%pu. For each
elongation c, the energies are minimized with respect
to the neck parameter h. Four different Skyrme forces
were used; the cross indicates the empirical LDM

saddle point.

In fact, it was a puzzle for quite some time that HF calculations
consistently led to too high fission barriers even with effective
forces60/61 which otherwise gave good results for ground state proper-
ties of both spherical and deformed nuclei (see a review article®2 on
the status of fission barrier calculations up to 1979). Due to the
excessive computer times required by the constrained HF calculations
for heavy nuclei, it was practically not possible to refit the forces
taking explicitly the fission barriers into account. This became,
however, possib1e63’1"'ls with the semiclassical method described
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above which is more than 103 times faster if one is not interested in
the shell effects. As we see from fig. 5, we can well distinguish the
average barriers predicted with the different forces.

The Skyrme force SkM which was fitted to reproduce the giant
nuclear monopole and quadrupole resonances51 and therefore has an
incompressibility Ke of 216 MeV, compatible with eq. (2.12), gives
a somewhat too low barrier. (The forces SIII and Ska have higher
values of K,; which leads to stiffer surfaces and thus to higher
surface energies.) The force SkM* was explicitly adjusted with semi-
classical calculations to reproduce the LDM saddle point energy  °;
it was shown at the same time to yield excellent binding energies
and radii for stable spherical nuclei in HF calculations!® (see the
results shown in figs. 3,4 and table 1 above).

In fig. 6 we present a microscopical test of the semiclassical
results. The corresponding HF calculations were done in ref.l® The
figure shows the full HF result, obtained with the SkM force, with

E [MQV] === EETF
_ ) _ [Ene
1800 {E
® LD Saddle
- x  E+84E

-1810

50 100 150 Qibarn]

Fig. 6. Fission barrier of 2ol’Pu, calculated with the SkM
force. The exact and Strutinsky-averaged HF results
are shown along with the semiclassical ETF result.!®
Q is the total quadrupole moment. The cross in a
circle indicates the LDM saddle point. The crosses
show the results after inclusion of the shell-
correction energy $,E.

16

2 minima and 2 maxima. Also shown is the selfconsistently Strutinsky
smoothed HF energy, calculated as discussed in sect. 2.3. The semi-
classical ETF result is shown by the dashed line (adjusted at Q = O).
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The agreement of the two average curves is better than 1 MeV at all
deformations included. This gives once again a nice confirmation of
the semiclassical method. It shows in particular also that the slight
overbinding of the ETF results discussed above (v 8 MeV in this
nucleus) does not affect the deformation energies noticably. The
crosses in fig. 6 show the results obtained after adding the shell-
correction energy GIE to the average curves; they reproduce the exact
HF values within less than 0.5 MeV.

An interesting result is that in the semiclassical variational
calculations, the density parameters po + ®g, Yg and Rq found for the
spherical shape vary only very little wlth geformation; in fact, only
an error of v 0.5 MeV would be made for the realistic force SkM* Lf
they were kept constant.!® The influence of the asymmetry of the sur-
face, governed by the parameters Yq, on the fission barrier is shown
in fig. 7, where the barrier of 2 %Pu has been calculated once with
Yo = 1 and once with the variational values Y., # 1. The difference
is seen to be v - 0.8 MeV at the saddle, corresponding to a decrease

\
(MeV) / 1

10 12 14 16 c 18 20

Fig. 7. The same as fig. 5 with force SkM*. The curves ETF show
results obtained with the full 4th order functional tlp]
the curves "T + K" those with the phenomenological func-
tional of Treiner and Krivine.“® Dashed curves are
obtained with Fermi function densities (Yq = 1), solid
curves with asymmetric density profiles (vgq #1).
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of n 0.3 MeV of the surface energy (see sect. 3.3). This difference
is typical for forces which give approximately correct average fission
barrieres.

We also show in fig. 7 the results obtained for the same force
SkM¥, but with the simplified functional t[p] of Treiner and Krivine®
where T, was omitted and the Weizs&dcker coefficient was multiplied
by two. It leads to an overestimation of the barrier height.

The corresponding variational values of yq were found to be
Yp = 3.2 and Yy ¥ 2.3, reflecting a too steep tail of the densities.
A similar calculation with the MTF functional%#6 (in which the
Weizsdcker term is multiplied by n4) gives a fission barrier of over
30 MeV for 204%pu. This illustrates the problem discussed above in
sect. 3.1 with readjusted functionals t[p] without 4th order gradient
terms.

3.3 Calculation of LDM parameters for Effective Forces

An interesting application of the variational ETF calculations
with parametrized densities is the determination of the LDM para-
meters for a given effective force. Nuclei with A 2 40 are "lepto-
dermous",54+63 j_ e. the ratio of the surface diffuseness ¢ to the
bulk radius R is small:

. ax/Re< 1 | (3.19)

The expansion of the nuclear binding energy in powers of a/R is the
underlying technique of the liquid drop model.63 If asymmetry and
compression effects are taken into account by further expansions in
powers of the small parameters § and ¢, defined by

-0
5 = —990"% % (Qo = Qn * Qop) (3.20)
_1 g
€ = --§- Q,, . (3.21)

one obtains the droplet model . 33754

The "leptodermous expansion" in powers of a/R was recently
adapted to the total energy of an arbitrarily deformed nucleus within
the Skyrme-ETF fomalism.l5/64 We refer to the recent review articlel®
for the details and quote here just some of the main results. (For
earlier calculations of surface energies from ETF results see ref. 30;
similar analyses based on semiclassical8’55 and HF calculations65-67
may also be compared.)
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For symmetric nuclei (N=Z;8=0) the expansion in powers of a/R
leads to

213 13
E = a,A + uSA + ucA +0Qy + ... (3.22)

The dependence of the a, on the deformation and the force parameters
can be exactly separated. For their spherical part, one then expands

1
a, =ay +% Koog? +... (3.23)
- A% _ 9. 2
a, = a3 3058 + zuse + ... (3.24)
a =a*-3a¢ +i'ciez+... (3.25)
c c ¢ 2 ¢

etc. Minimizing the energy with respect to e (fixing the surface
parameters o and y of the densities, which vary only very little
for finite nuclei), one obtains the smooth variation of € with A
which reflects the effect of compression of the nucleus by the
surface tension:

E(A) i 3ﬁsA-“3*3dc A—213

= — ~ . (3.26)
Koot 98 A3 + 98 A2

It was shownlS that for the realistic force SkM*, eq. (3.26) is
needed to describe the A-dependence of the central density po
correctly, whereas the droplet model expressions“

ey(A) = (3a /K ) AT, (3.27)

which just contains the leading term of eq. (3.26) leads to large
overestimations of € inparticular for medium and lighter nuclei.

The surface compressibility parameter dg which is neglected in the
droplet model, is known to play an important role for the compressi-
bility of finite nucleil8r36,68yhich nowadays is known from the
measurement of the nuclear breathing mode.

In table 3 we list the coefficients of the expansions in
egs. (3.24) and (3.25) (all in MeV), obtained from semi-infinite
(symmetric) nuclear matter calculations with the variational ETF
method (asymmetric Fermi profiles with ygq # 1 were used) .15 The
various Skyrme forces already mentioned above were used as well as
the energy density of Tondeur®? which is very similar to that of a
Skyrme force. Table 3 also contains the effective curvature energy
a, defined by
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a‘ = u“_ ﬁ
4 4 2K oo

which is obtained®* if the lowest order contribution from € is
included in eq. (3.22).

(3.28)

In the realistic case one has to include also the Coulomb energy
and to expand everything also in powers of the asymmetry parameter
§ eq. (3.20). We refer to the droplet model of Myers and Swiatecki®"
for this procedure. In table 4 we list the coefficients (in MeV) of
the surface energy which are obtained if it is expanded to second order
in the asymmetry parameters (for a fixed value of ¢)S%

a, = a® + Ht? + 2P1h - G6® ; (3.29)
hereby 1 is the so -called "neutron skin" parameter:
R,-R g
T = Tt £(1- 8)A 4 0IA™?) (3.30)

with I = (N-Z)/A. We also give in table 4 the volume asymmetry energy
J and the "surface stiffness coefficient" Q of the droplet model,
defined by

H
Q= (1-13) , (3.31)
37
as well as the quantity },
T = %(P + G—g‘) (3.32)

of which a theorem derived by Myers and Swiatecki®* tells that it
should be equal to J. The same 5 effective forces as in table 3 were
used; on the top line (quoted "DM") we also give, the droplet model
values. We see that for all forces, the theorem J = J is fulfilled
within less than 3 % which may be considered as a test of the numeri-
cal calculations. (To obtain the results in table 4, pure Fermi
functions with Yq = 1 were used, because the above droplet model 15
relations do not apply to density profiles with asymmetric surfaces. )
In summary it can be said that the variational ETF calculations
can be used to justify and test the droplet model or similar exten-
sions of the simple LDM. Some of the shortcomings of the droplet
model have been discussed and some extensions and improvements have
been proposed.15 The main conclusion is that the variational ETF
formalism with its 8 - 10 Skyrme force parameters is more powerful
than the droplet model, even if the latter is extended to include
some 20 or more phenomenological parameters.
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4. EXTENSIONS OF THE SEMICLASSICAL METHOD

4.1. Partial Resummation of the Wigner-Kirkwood F Expansion

One of the unpleasant features of the h-expanded densities DETF(ﬂ
and TETF(r) egs. (2.26), (2.27) is their divergence at the classical
turning points. It is the reason why they cannot be used directly in
an iterative procedure to calculate the selfconsistent average HF
potential. One way to circumvent this problem is the construction of
the ETF functional Tgpp[P] and its use in a density variational cal-
culation, as we have discussed it extensively above.

Another way to solve the turning point problem is the use of
partial resummations of the Wigner-Kirkwood expansion of the Bloch
density matrix C eq. (2.25). Bhaduri’0 noticed that all terms which
contain powers of the first gradient of the potential, VV(r), can
be summed up to infinite order in fi. In this way one obtains for the
local Bloch density

.....; 3( 2
lﬂ) CT(IIB)ezlomB vv)

7

{1+h2n2 +hl'n‘. LI

where Cpp is given byﬁgq. (2.24) and the n, contain second and higher
order gradients of V(r). The nice featurg of eq.(ﬁ.l)is that it leads.,
after Laplace inversion, to densities p(r) and t(r) which are well-
behaved everywhere in space, being in particular finite at the classical
turning points and falling rapidly to zero in the classically forbidden
region. Noting that the exponential factor appearing in eq. (4.1), in .
fact, is the Laplace transform of the Airy function, we see that in th¢
lowest order in eq. (4.1) (i.e. neglecting n,, Ny, etc.) one obtains
by eq. (2.20) the folding product of the TF density matrix with anAiry
function

A
OFF) = a(R) fo (RFN-E) Al-G(RIEIE , (.2
where
= TP’ 13 . L a -113
o(R) =0 (BF) = (B s viRiry 4.3

It can be shown’l that this result eq. (4.2) is identical to that of
a locally linear approximation to the potential V.

The above procedure can be extended to sum up also all terms
containing second order gradients to ail powers; this corresponds to
a locally harmonic approximation to V(r).’! (Nonlocal potentials can
be treated in the same way.)
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The densities obtained after these partial resummations have some
unphysical oscillations in the interior part of the nucleus. They can
be damped out if the Laplace inversion eq. (2.20) is not done analyti-
cally, but with the saddle point method, hereby using only the saddle
point B > O on the real B axis.70 This implicitly is a semiclassical
approxlmatlon, as shown by Jennings, 26+/43 the average (or ETF) part of
the densities p(r), T(¥) comes from contributions in the inverse
Laplace transform from the region around 8 = O, whereas poles (or
saddle points) of C(r,r”;B) far from the real 8 axis = they usually
ly on or near the imaginary B axis ~ lead to the fluctuating part
(shell effect).

The combined method of partial resummation of C(r,r”;8) and using
the saddle point method (with real By > O) for the Laplace lnverSLOn
leads thus to well-behaved semiclassical densities p(¥) and T(¥)
(see ref. 72 for a discussion of some technical details and model
examples). These densities can be used directly to calculate the
average HF-Skyrme potentials egs. (2.9) ~ (2.11) and thus, in an
iterative cycle, to reach selfconsistency.

Compared to the variational ETF method discussed in the main parts
of these lectures, the present method has the advantage that one does
not need to know the functional tlp] . Numerically, the densities
tend to become unstable since hihger and higher gradients of the
potential are implicitly taken during the iterative cycle. They there-
fore have to be regularized e.g. by a fit to smooth parametrized
densities.’3 It was found that when the same form of the densities
was used as in eq. (3.18) above, the partial resummation method leads
to very similar results as the variational ETF method using the
functionals TETF[O] and jﬁTF[°]7 in particular the LDM and droplet
model parameters reported in tables 3,4 above are closely repro-
duced,’" thus implicitly providing a quantitative confirmation of the
ETF functionals.

4.2. Semiclassical Description of Hot Nuclei and Nuclear Matter

Excited nuclear systems with temperatures larger than v 3 MeV
contain no shell effects and are therefore ideal objects for semi-
classical investigations. Such hot compound nuclei can be produced
in heavy ion and high-energy hadron induced reactions.’5 In astro-
physics, there has recently been an increased interest in the
equation of state of hot nuclear matter.76:77

The microscopical mean field (HF) theory can easily be generalized
to finite temperatures in the statistical approximation.78 Here one
minimizes no longer the total intrinsic energy E, but the Helmholtz
free energy F
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F=E-TS, (4.4)

where the entropy is given by

_ q q -n9 - ng
g‘;[nvln n? +(1-n3) (1 -nd)] (4.5)
in terms of the occupation numbers
nd - 1
v T €1-Aqy (4.6)
1+exp( T )

(We put the Boltzmann constant k = 1 and measure the temperature T in
units of MeVv.)

HF calculations at finite temperature are relatively easy to
perform; it is sufficient to replace the HF occupation numbers n% in
egs. (2.3) - (2.5) by the occupation numbers eq. (4.6). Such calcula-
tions have been performed with Skyrme forces by different groups.77"79'81
Hereby it must be assumed that the parameters of the Skyrme force
themselves do not depend on T. This could in principle be checked by
performing a Brickner G-matrix calculation at finite temperature;
this has, however, not been endeavoured so far.

A well-known effect of the smoothing of the Fermi surface brought
about by the occupation numbers eg. (4.6) is the washing out of the
shell effects; the above mentioned HF results showed that beyond a
critical temperature T, = (2.5-3) MeV (which is roughly the same for
all systems) the shell effects have disappeared. Systems at such
temperatures are thus ideal objects for studies within a semi-classi-
cal framework. It is therefore obvious to try to apply the methods
developed above to nuclei at T > O. Thomas-Fermi calculations at
finite temperature are by now standard.’6:82,83 However, we shall see
in the following that it is not easy to construct the appropriate ETF
functionals for T > O.

The Wigner-Kirkwood expansion discussed in sect. 2.4 can easily
be extended to finite temperatures. To do so, it is sufficient to knov
that the inclusion of the Fermi occupation numbers eq. (4.6) in the
HF case is identical to a convolution of the spectral density with the
function f4(E) = %- Cosh™2(E/2T) .23 Thus, due to the convolution theo-
rem, the Bloch density eq. (2.19) is multiplied for T > O with the
Laplace transform of fn(E)

.n..\, _;_;, HBT '
B) B) Sln(IBT) . ) (4.7)

Note that this result is still exact within the HF framework. Pro-
ceeding now as in the T = O case, i.e. replacing the "cold" Bloch
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density C by its Wigner-Kirkwood expansion eq. (2.25) and doing the
inverse Laplace transforms term by term, one finds the expressions
for the densities Pgrp(¥) and Tgrp(¥) at T > O and that of the

entropy density c(?) defined by
3 = oF
= = - == 4.8
S /Elra(r) oT (4.8)

The resulting expressions are up to order h? (for a local potential,
with effective mass m*), 8%

T o2y _ 1 (2m*32 31
L) = (2P (P75, 00

2 - -
. zf‘,,. (27775, @V + T, (1 av] }

N 1 (2m*\3/2 (52
TP = g () T T -

(4.10)

1 K% (3.1 vt ., 2112 :
"L 2m* [ET T3, (MIEV) + 6T Tia (n)av] } !
o 1 (2m*)372
%re(®) = 7 (57 TB/Z{%IM(“) -y, (e
) i o 3 (4.11)
+§11-+ 21:“* [JET 3I3/z(ﬂ)(VV) T T, L) J

N = ?x%i)_ (4.12)

and Jv(n) are the Fermi integrals

[ ] xv
T (n) =/ dx . (4.13)
vifl ¢ 1+exp(x-n)
To lowest order in egs. (4.9) - (4.11) we recognize the well-

known TF expressions. At this order it is possible to eliminate the
quantity n numerically from the above densities; this defines the
exact TF functionals at T > O:

TTT>:[0]=TTF[T](Q)] ; (4.14)
aplol=0 [nlel . (4.15)
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where n(p) is obtained from inverting the function J;/5(n) in the
leading (TF) term of eq. (4.9). Unfortunately, this procedure cannot
be extended in an obvious way to include correctly all the h2-correc-
tions. We are thus forced to make further approximations. Two possible
ways shall be discussed in the following.

4.2.a) Low temperature expansion

In the limit n>>1, i.e. for T<<(A-vy), the Fermi integrals can
be expanded in a series of decreasing powers of n 85

+1

v 2
7,(n) = ;‘}1—[1 eviven EnZs ]

The leadlng terms of the J,,(n) give then just the old expressions
pETF(r) and TETF(I) at T = O, egs. (2.26), (2.27); the next terms
give corrections of order T2. From these expressions one obtains
the corrected functionals:

(4.16)

ETF[Q] = TETF[Q] "%u(Q)TZ, (4.17)
(4.18)
where 0ETF[Q] = ZG(Q)T ’
173
alp) = 12(31t2) (2 )o'? . (4.19)

As in the T = O case, higher order corrections would contain inverse
powers of p and must therefore be left out.

The total free energy density then becomes

F(F) = Flol = €lo] - alp)T?, (4.20)

where €[p] is the full ETF energy density functional described in
sect. 2 for T = O. Note that the spatial integral of q(p) is nothing
but the TF approximation to the well-known level density parameter

)

2
a, = ]6[—'@()\) , (4.21)

where B(A) is the average single-particle level density (of one
kind of particles). The functional eqs. (4.19), (4.20) has been
used by several autors86:87 to discuss thermal propertles of nuclei.
In the case of a variable effective mass m*(r) = m/f(r), two correc-
tion terms to eq. (4.19) arise which remain finite; they have been
shown, however, not to modify the numerical results very much. 13

The problem with the above relations is that the low-temperature

expansion T << (A-V) is only justified in the interior part of the
nucleus (or in infinite nuclear matter), where A-V is of the order
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of 30 - 40 MeV and the approximation holds up to fairly high tempe-
ratures. In the nuclear surface, however, A-V quickly becomes smaller,
going through zero at the classical turning points which still are in
the surface region where the density is a few percent of its saturation
value. Thus in the very region where one is interested in going beyond
the TF approximation, namely in the surface region, the low-T expansion
breaks down. It is thus not surprising that unsatisfactory results

have been obtained with the functional (4.20).88,89

4.2.b) Gradient-corrected finite T functional

Since the low-T expansion breaks down in the surface, one might
try to use the exact relations (valid for all T) at least in the TF
approximation given above, and to add the gradient correction terms
T,[p] and 1, [p] known from the T = O case in an ad hoc manner. This
leads to the functional

Terral 91 = TTT>F0[ pl+tlo]l+glo] (4.22)

where Tg;o[p] is the exact finite T functional in eq. (4.14). Since

we cannot know any gradient corrections to o[p] at T = O we will use
opp[p] eq. (4.15) along with Tgppx[p]. This procedure has been pro-

posed by Barranco and Treiner88,89; they used, however, a readjusted

Weizsdcker term in t1,[p] and omitted t,[p] which, as we have seen in
sect. 3, is to be used very cautiously.

4.2.c) Comparison of numerical results

We shall in the following be using both approximate ETF functio-
nals, egs. (4.20) and (4.22), including in all cases the full, unre-
normalized "cold" correction terms Ty[p], t4[p] , as well as jz[p]
and J,[p] discussed in sect. 2. We also shall quote results obtained
with the partial resummation method described in sect. 4.1 which can
be generalized to finite temperatures without difficulties.74s8%4 In
fact, for that purpose it is sufficient to replace the exact Bloch
density C in eq. (4.7) by that obtained with the partial resummation
method. Since the Laplace inversion there is made numerically by the
saddle point method, it causes no problem to take into account the
temperature dependent factor in eq. (4.7) exactly (i.e. without low-T
expansion). We shall first test the different approximations using
the force SIII for which HF calculations at T > O have been per-
formed?9 and can be used for comparison.

In figure 9 we plot for 208pb the "effective level density para-
meter" a, ¢¢ defined by Sz

LE* (4.23)

a

eff

versus the excitation energy E*
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Fig. 8. Effective level density parameter a_ ¢ eq. (4.23) for
208pp, versus excitation energy E¥* for 208py, (SIII force
used). The various approximations are: HF (full line),
partial resummation method (dashed line), modified ETF*
functional with exact T dependence in the TF terms,
eq. (4.22) (dashed-dotted line), and low-T-expanded ETF
functional eq. (4.20) (dotted line). ag is the level
density parameter eq. (4.21).

E*= E(T) - E(0). (4.24)

The relation (4.23) is that of the Fermi gas theory which is reached
when the shell effects are washed out,’9 so that in this limit agff
tends to the level density parameter a, defined in eq. (4.21). We
see in fig. 8, indeed, that the curves agff(T) are approximately
constant for E* 2 150 MeV (corresponding to T 2 3 MeV).

Whereas the HF result approaches the correct value a, €q. (4-2”
- for the slight variation at E* 2, 200 MeV see the discussion in
ref. 79 - , the low-T expanded functional (ETF) leads to a value
which is more than 30 % too high. This is the well-known failure of
this approximation.89 The modified functional eq. (4.22) (ETF*) gives
an asymptotic value of agff only ~ 7 % higher than the HF result,
which is a considerable improvement. The result of the partial re-
summation method, in which the temperature dependence is treated
exactly, comes closest to the HF result and clearly is an excellent
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approximation above E* =~ 100 MeV where the shell effects have dis-
appeared.

In refs. 15,84 it was also shown that the temperature dependence
of the r.m.s. radii obtained with HF is very well reproduced by both
the ETF* functional eq. (4.22) and the resummation method, whereas
with the low-T expanded functional eq. (4.20) it is strongly exagger-

ated above T =~ 3 MeV.

A question which has been much discussed in the literature is
how the fission barriers depend on temperat:ure.m'86'87190 The fission
of an excited nucleus is usually thought to be an isothermal process;
therefore one has to look at the deformation behavior of the free
energy F. Due to the well-known decrease of the free surface energy,
the fission barriers also decrease with increasing temperature. (The
variation of the Coulomb energy with temperature is not very impor-
tant.) This was shown by explicit calculations of fission barriers
with the variational ETF method at T > 0.l5

In table 5 we list as a function of temperature the free surface
energy ag obtained with the three above methods for the SkM* force.
It is clearly seen that the low-T expansion leads to an exaggeration

Table 5
a® ETF*
s
T ETF ETF* | resum. a: Q ks J

17.51 17.51 17.63 10.3 |} 35.4 | -57.3 } 30.03
17.30 17.33 17.53 }.10.0 | 35.3 | -57.4 | 30.00
16.64 16.85 17.22 9.6 | 35.0 | -57.5 | 29.91
15.50 16.08 16.70 8.7 | 34.4 | -57.9 | 29.76
13.78 15.08 15.70 7.7 | 33.5 ]} -58.6 | 29.54

L N o)

LDM and droplet model parameters (all in MeV) for the
force SkM* as functions of temperature T (in MeV). The
free surface energy ag is obtained in three approxi-
mations discussed in the text;, K the parameters ag, Q

and kg are obtained with the ETF* functional eq. (4.22).
For the volume asymmetry energy J, all approximations
give the same result.

of the temperature dependence of a:. The partial resummation method
(3rd column) reproduces the T-dependence found in HF calculations
at T 3 2 MeV; the corrected functional Tgrp*[P] eq. (4.22) comes
rather close to it, althoug the decrease of ag with T here also is
somewhat*too strong. We also give in table 5 the effective curvature
energy a; eq. (3.28), the surface stiffness parameter Q and the sur-

face asymmetry energy kg defined bylS.,S5%
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sTCL 0 (4.25)

all evaluated for semi-infinite nuclear matter with Fermi function
profiles. It is interesting to note that the absolute value of kg
increases with T due to the inverse dependence of Q which decreases
faster with T than the volume asymmetry energy J (given in the last
column of tab. 5).

We learn from these results that the temperature dependence of
surface properties depend rather crucially on the approximations
made. In particular, the low-T expansion leads to rather bad results
which strongly exaggerate the T dependence. The best agreement with
finite-T HF results is obtained with the partial resummation method,
and reasonable agreement with the corrected ETF* functional eq. (4.22)
in which the exact T dependence is contained in the TF expressions
for T[p] and O[P]. In the context of density functional theory
there remains, however, still a challenge to find better functionals
tlp] and o[p] in which the correct T dependence is contained also in
the gradient corrections.

4.3. Application of the ETF Method to the Nuclear Breathing Mode 68

We finally want to mention briefly an application of the vari-
ational ETF method to the calculation of the nuclear breathing mode
energies.68 We refer to the lectures of Holzwarth®! and Treiner92 for
detailed discussions of the nuclear giant resonances of which the
breathing mode, corresponding to density compressional vibrations,
has only recently been established experimentally.

Starting from spherical nuclear ground-state densities described
by simple Fermi functions, we can introduce compression modes by
writing

ALY
r-RE(T)
1+exp(—4—‘ O(E(f) )

where the density parameters now are supposed to be periodically
time dependent functions:

(4.26)

pq(r,'r) =

c _ .
Qoq(t) = Qoq +690c| sin(wt) (4.27)

etc. We shall define two independent dimensionless (isoscalar)
collective degrees of freedom by

c

t

Q(f)=-9ﬂ(——) =1+08g(t), (4.28)
0 q 0
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(+ og(t) '
« )='-£----mq =1+8q.(t) ; (4.29)
the radii parameters Rg(t) shall for each set of values Qs 9y be
determined by the conservation of particle numbers. The variables
% and q, define a two-dimensional collective Hamiltonian (i,j = p,a)

21 .. 1
How =708, 6,9 + 70K, (6, - 1)g -1)+ E, ;w0

coll

we have assumed small amplitude oscillations (6gj << 1) and therefore
used a quadratic approximation of the potential energy part. The
compressibility modulus K;; can easily be determinedf® from the vari-
ational ETF ground-state energies discussed in sect. 3.2, by

K (4.31)

aqaq(f)

shell effects in the Kjj are small (of the order of ~ 1 %) and can
therefore be safely neglected. The inertial tensor Bjj can be obtained
from classical hydrodynamics (which is allowed for the Ot mode®l) in
terms of the velocity fields vi(r):

-2/ 3
Bu’ =AM pvivjdr ; (4.32)
the latter can be found from solving the continuity equations

9 .3 (a3y1-0. 2 ¢

ag, * ¥ lew) =0 Wir) = vir) (4.33)

(here p = pp + pp) - Eq. (4.30) is that of two coupled harmonic oscil-
lators (taking Bj; to be constant at gj = 1); it is solved by diago-
nalizing the secular matrix Kj5 - w 2B... Of the two resulting fre-
quencies w;,w, we can identify the lower with the experimentally known
breathing mode energy

fwg =Eg=Egyp s

the second corresponds to a higher mode (still to be found).

(4.34)

In figure 9 we show the results of the semiclassical calculations
obtained in this way with the SkM* force; they are seen to reproduce
perfectly the experimental peak energies within their error bars.

This result illustrates, as an example, the usefulness of the

variational ETF approach also in dynamical applications. In fact,
the breathing mode energies shown in fig. 9 are practically identi-
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Fig. 9. Breathing mode (giant monopole resonance, GMR) energies
versus nucleon number. Crosses are experimental peak
energies with error bars, taken from ref. 36. The solid
line shows the energles hw(B8y) = Aw; found from the ETF
model calculations®® with the SkM* force.

cal with those which are obtained in microscopical RPA calculations
at much higher cost. Furthermore, the interpretation in terms of
oscillating parameters of simple trial densities gives a rather nice
physical insight into the role of the couplings of surface and bulk
contributions to the breathing mode §8
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Note added in proof:

The correct functionals tlp] and olp] up to second order with
temperature-dependent coefficients have meanwhile been derxved in

ref.
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