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I. Introduction 

We have recently shown [11 that the energy density method using r e a l i s t i c 

Skyrme forces can successfully be used to calculate not only average 

nuclear ground state properties such as binding energies, densities and 

r a d i i , but also f i s s i o n barriers which are in close agreement with the 

averaged part of Hartree-Fock (HF) resu l t s . An important ingredient hereby 

are the ETF(Extended Thomas-Fermi) functionals for the ki n e t i c energy and 
4 

spin-orbit densities, in which contributions from orders up to J\ in the 

semiclassical expansion must be included in order to correctly describe 

deformation energies [2,3]. 
In section II we s h a l l present the newest results of these calculations, 

emphasizing in par t i c u l a r the f i s s i o n barriers obtained with different Skyrme 

240 

forces for the standard test nucleus Pu . The deformation energies are 

analyzed in terms of surface, curvature and Coulomb energy contributions to 

make contact with l i q u i d drop and droplet model parametrizations. We s h a l l 

show that, in f a c t , the results of our va r i a t i o n a l calculations are compatible 

with the droplet model [4j relations i f a non zero curvature energy c o e f f i 

cient i s allowed f o r . 

In section I I I we show e x p l i c i t l y how, using a suitable coordinate system 

adapted to the nuclear deformation, the symmetric l i q u i d drop(let) parameters 

can easi l y be determined very accurately using the leptodermous expansion. 

The l a t t e r i s demonstrated to work well even beyond actinide saddle point 

configurations. The dependence of the central nuclear density on incompressi-

b i l i t y , surface and curvature energy coe f f i c i e n t s i s worked out and the A 

dependence of the incompressibility i s discussed for a model Skyrme force 

(SVII). 



I I . Results for ground state properties and f i s s i o n barriers 

Our goal being: ( i ) To calculate the average part of the deformation 

energy along the f i s s i o n path with an accuracy of the 

order of 1 MeV > 

( i i ) to compare i t to the mean HF value obtained with the 

same force 9 

( i i i ) not to use other extra parameters than those of the 

force adjusted in a HF Calculation, 

we use the ETF approximation. In order to f u l f i l l the above requirements, 

we showed in a previous paper [ 2 l that i t i s necessary to consider the 

4th order terms in the expansion of nucleon and kine t i c energy densities 

in powers of ft. In f i g . 1 we r e c a l l our results obtained with deformed 

harmonic o s c i l l a t o r densities. There the following routine was adopted: 

Fig. 1 



Start from the Strutinsky averaged density 

compare the ETF kin e t i c energy (density) 

(where f E y p Lfl i s the functional containing derivatives of g up to order 4) 

to the Strutinsky averaged kinetic energy (density): 

Even for large deformations (as encountered in f i s s i o n ) the agreement 

between these 2 q u a n t i t i es i s within the Strutinsky plateau uncertainty 

(~1MeV). The local v a l i d i t y of the ETF functional was also investigated and 

i t s a b i l i t y to describe the surface was found to be very good [2] . This 

aspect has then been extensively studied in r e a l i s t i c calculations; a 

t y p i c a l example i s shown in f i g - 2. Here we compare the proton and neutron 
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density p r o f i l e s for Pb as obtained with the functional, to the exact HF 

ones for the force SkM [5] . As in a l l calculations presented below, we 

use the f u l l 4th order ETF functional as derived by Grammaticos and Voros [^3 ^ 

i.e . for the general case including eff e c t i v e mass and spin orbit potentials. 

The semi-classical solution has been obtained by r e s t r i c t i n g the v a r i a t i o n a l 

problem (Euler Lagrange equation) to a minimization of the t o t a l energy in a 

limited space spanned by Fermi-functions, which means a minimization with 

respect to two parameters (for protons and neutrons each), namely the central 

density and the surface diffuseness. This simple choice has been tested and 

j u s t i f i e d by considering somewhat more complicated functions such as: 

The gain i n binding energy, for a heavy system,is then less than 3 MeV 

(to be compared to about 1500 - 2000 MeV). Other r a d i a l shapes were also t r i e d 

and found to be worse than the Fermi-function. 



The outer part of the HF surface t a i l i s surprisingly well reproduced. 

This success could not be reached without the inclusion of the 4th order 

terms i n the functional. Attempts had been made by other authors to 

simulate these higher order effects by readjusting the Weizacker c o e f f i c i e n t , 

but t h i s lead to a less nice reproduction of the outer t a i l and furthermore 

i s not applicable for deformation energies. The somewhat less good agreement 

in the inner part of the surface i s probably due to our re s t r i c t e d choice of 

a Fermi-function. That the surface region i s well described, gives us confidence 

in t h i s method for describing a process such as f i s s i o n which i s sensitive to 

the rearrangements in the surface. 

Before proceeding to thi s subject, let us compare the binding energies 

and r a d i i fromHFand semi-classical calculations. Table 1 shows results obtained 

Nucleus BEXP B E T F EXP 
r 
c 

HF 
r 
c 

ETF 
r 
c 

(r -r ) 
n p 

<r -r ) 
a p 

o 
n 

a 
P 

1 6o 127.6 131.5 116.9 2.73 2.79 2.78 - 0.03 - 0.03 0.450 0.443 

4 0Ca 342.1 347.9 333.3 3.49 3.50 3.45 - 0.04 - 0.04 0.448 0.458 

A 8Ca 416 428.1 412.6 3.48 3.52 3.52 0.16 0.17 0.491 0.431 

5 6 N i 484. 495.5 477.8 3.75 3.75 3.79 - 0.05 - 0.05 0.451 0.462 

9 0 Z r 783.9 794.8 782.9 4.27 4.28 4.27 0.07 0.08 0.478 0.442 

Sn 971.6 975.2 971.7 4.60 4.59 0.08 0.08 0.482 0.440 

Sn 1102.7 1123.7 1107.6 4.71 4.73 0.24 0.25 0.527 0.425 

Ce 1172.7 1180.8 1174.8 4.88 4.89 4.87 0.14 0.14 0.499 0.433 
280 

Pb 
1636.5 1652.7 1636.7 5.50 5.49 5.52 0.18 0.17 0.513 0.426 

Table 1: The semiclassicat binding energies, B , contain shell-effects. 



for some spherical nuclei with the force SkM. Since the semi-classical binding 

energies do not contain s h e l l fluctuations, a comparison with HF values cannot 

be straightforward. However, we picked up s h e l l corrections from a table 

and added them to the semi-classical values. For the charge r a d i i , we took 

into account the same Gaussian proton form factor as in the HF calculations. 

Both on r a d i i and binding energies, the agreement i s seen to be very good. It 

i s worth noting that the semiclassical values are closer to the experimental 

ones than the HF values for the special case of the force SkM considered here. 

As a matter of f a c t , the mean deviation i s about 3 MeV a l l over the range con

sidered here. For a more comprehensive analysis of the properties of the SkM 

force see the contribution of P. Quentin i n t h i s meeting and a forthcoming 

paper . In table 1 one also reads the diffuseness parameters of the best 

Fermi-function. Clear isospin effect i s observed depending e s s e n t i a l l y on 

the compressibility of the force and i s present for any Skyrme force (see ref. Cl7 )-

The neutrons experience a more diffuse surface, although the Coulomb force 

would tend to counteract t h i s e f f e c t , as seen for the symmetric nu c l e i . Note 

also that the proton skin thickness stays almost constant in agreement with 

experimental observations. 

In order to study deformed nuclear density d i s t r i b u t i o n s , we use an 

" i n t r i n s i c " coordinate system which w i l l be described i n the next section. 

The half density surface i s parametrized according to the $c,hj prescription 

of ref. I S ] which i s known to be adequate for t y p i c a l saddle-point deformations 

of actinides. Using the SIII force we show in f i g . 3 how the f u l l inclusion 

of 4th order terms (curve SC4) provides a l i q u i d drop f i s s i o n barrier close 

to the average part of the HF curve, whereas a r e s t r i c t i o n to only 2nd order 

terms would have led to a large underestimation of the barrier height. Our 

results show in an independent way that the well-known defect of the HF-Skyrme 

calculation of f i s s i o n barriers [lO] has to do with the force i t s e l f rather 

than with technical problems associated to the HF method such as basis 



truncations and spurious energies which are not encountered in the semi-

c l a s s i c a l calculations. 
a 

Anyhow, we see in f i g . 4 that there exists Skyrme force, the SkM 

force, which leads to an average f i s s i o n barrier height of about 2.5 MeV, thus 

lower than the l i q u i d drop [^7 value of 3.5 MeV. The location of the saddle 

point in the fc,h] deformation space i s moreover very close to the l i q u i d 

drop prediction [9] . HF calculations have now been performed for th i s force 

[ &3 and comparisons with our ETF calculation show a nice agreement. 

An interesting aspect of the semi-classical approximation, based on the 

fact that s h e l l fluctuations are smoothed out, i s that i t permits a direct 

access to the liquid-drop properties of the e f f e c t i v e force under consideration. 

In the following we s h a l l in a very simple way extract some liquid-drop 

parameters and check t y p i c a l relations stated by the droplet model of Myers 

and Swiatecki [^] . The mass formula we start from has the following form: 

(For further information on t h i s structure and the parameters for 1=0, see 

the next section) . 



An important point in most droplet model studies i s that the curvature 

terms are neglected- This i s also the case in the newest macroscopic-micro

scopic computations, which exhibit an extremely good agreement with empirical 

data, of ground state masses and f i s s i o n barriers by Moller and Nix f t l ] with 

a model i n which the mean curvature energy i s i d e n t i c a l l y zero. This i s at 

variance with our model using Skyrme forces, as v i s i b l e i n f i g . 5 where we 

have plotted the quantity (E/A-av>A agains-tA . The ordinate at o r i g i n 

provides the surface energy, a g , while the slope measures the curvature energy, 

a , which c l e a r l y here i s not zero. The surface asymmetry coe f f i c i e n t i s 
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Fig. 5 

determined by using the fact that the central density asymmetry 

<f = ^n~J^^j*n +j£ J depends l i n e a r l y on the isospin I when the t o t a l 

number of nucleons, A, i s kept constant. This linear behaviour predicted 

by the droplet model i s also found to be exact in our energy density 

formalism, see f i g . 6. For the sake of c l a r i t y the Coulomb interaction i s 



not included. An alternative way to get the surface asymmetry coe f f i c i e n t 

i s to look at the va r i a t i o n of the neutron skin thickness t ( t = R - R , 
n p 

where the r a d i i are the equivalent sharp surface r a d i i ) upon the variable (T, 

which according to the droplet model i s also l i n e a r , a statement here con

firmed. The surface asymmetry coe f f i c i e n t extracted from the slope dt/dS i s 

in f u l l agreement with the previous estimate (see f i g . 6). F i n a l l y the 

curvature asymmetry co e f f i c i e n t can also be, with a larger uncertainty, 
2 

deduced from the slope dE/dl for a given A. It i s interesting to note 

Coulomb effects ind. - a 
not incl. - b 
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that the quadratic dependence of E on the isospin i s v e r i f i e d even for larger 

values of I as seen i n f i g . 7. In table 2 we have written a l l the c o e f f i c i e n t s 

we calculated by these simple methods and compared them to the output of a 

least squares f i t of the function E C A ^ I ^ t o the calculated binding energies 

of a randomly chosen ensemble of n u c l e i . Note that the root-mean-square-

errors (RMS) for these f i t s are less than 0.06 MeV. A good agreement 

between the two methods i s observed, thus unambigously showing the strong 

analogy between the elaborated droplet model and the energy density formalism 

such as the present ETF model. A systematic a n a l y t i c a l derivation of t h i s 

analogy, r e s t r i c t e d so far for symmetric nuclei (1=0), i s the object of 



the following section. A last observation which w i l l be useful for the 

following i s given i n f i g . 8 where we show the nuclear part of the t o t a l 

binding energy against the half-density surface. One sees that, at least for 

changes of surface areas not larger than those occurring up to t y p i c a l saddle 

point deformations, the nuclear energy i s approximately proportional to the 

surface. We also checked the selfconsistency effect of the Coulomb energy 

HF 

on the e f f e c t i v e surface energy g j and found i t to be i n fact very small. 

The omission of the Coulomb energy in the minimization would reduce the 

e f f e c t i v e surface energy by about 0*3 MeV for the SkM force and less than 

0.1 MeV for the SIII force. That the nuclear energy i s d i r e c t l y proportional 

to the surface area, seems to contradict our previous claim that curvature 

energy was non-zero. There i s , i n fact no contradiction since along the 

f i s s i o n path i t turns out that the mean curvature of the deformed shape 

increases approximately l i n e a r l y with the surface up to the liquid-drop 

saddle point (see table 5 below). 

Force k*[fm" 1]| a*[MeV] J*[MeV] as[MeV] Q[MeV] ajMeV] a c s[MeV] 

SIII 1.29 -15.86 
i 

28.16 18.30 
18.3 

49.4 4.87 
50 5.0 

23.4 
21.3 

SkM 1.33 ! -15.78 30.75 17.18 
17.2 

i 
38.9 6.09 23.7 
35.5 6.4 36.5 • 

Table 2. Droplet model parameters of the forces SIII and SkM. 

* calculated for infinite nuclear matter 

the lower values are from the droplet relations (see text) 



I I I , Leptodermous expansion of the t o t a l energy of symmetric nuclei 

CL. I n t r i n s i c nuclear shape coordinate system 

The experimental fact that the nuclear surface d i f f u s i v i t y i s nearly 

independent of the nucleon number and thus of the curvature allows to 

approximate the nucleon densities to be functions e s s e n t i a l l y only of a 

coordinate along the normal d i r e c t i o n to the equivalent sharp l i q u i d 

drop surface, once i t s deformation has been fixed- It i s thus natural to 

introduce a system of c u r v i l i n e a r coordinates such that two of the coordi

nates describe the sharp surface for each given shape of the nucleus, while 

the t h i r d measures the distance from the surface- Such a coordinate system 

has been introduced i n ref- [42]; f ° r completeness we r e c a l l here i t s main 

features-

Restricting ourselves to a x i a l l y symmetric nuclear shapes, we start 

from c y l i n d r i c a l coordinates (p,z',<p) i n which the nuclear sharp surface 

i s described by a function p = f ( z ' ) (see Fig. 9 ) - from any point P(p, z') 

we go over to the coordinates (u,z) defined for each given shape function 

f ( z ' ) by 

2 ; - Z + (JL C0S*( 

•Aw; 
(1) 

/ 

with 
(2) 



Thus, as i l l u s t r a t e d i n Fig. 9, the new coordinate u i s the distance 

of P(p,z') perpendicular to the surface (taken to be positive outside 
the 

and negative i n s i d e ) , whereas z i ^ z ' coordinate of the projection of 

P(p,z') onto the surface along the normal. The system of c u r v i l i n e a r 

coordinates (u, z,(j>) i s orthogonal. Calculating the Jacobian of the 

above transformation, one finds that the volume element i s given by 

where 

and R,j, R£ are the main curvature r a d i i given in terms of f ( z ) and 

a(z) eq. (2) by 

The range of the variable z i s z ̂  and that of u i s -1*2^ u < ». 

Thus the volume V Q inside the surface described by p = f ( z ) ( i . e . u = o) 

n o 

The surface area i s given by 

J 1. 



For the following i t i s also interesting to define the mean curvature 

H and the Gaussian curvature G: 

(8) 

The surface integral of H, which we in the following just c a l l the "mean 

curvature" Z, i s 

3 
(9) 

The surface integral over G i s constant : 

as a special case of the Gauss-Bonn^ law. Eq. (10), which holds for any 

connected smooth shape, can e a s i l y be proven by substituting x = f ' ( z ) 

and integrating over x. For separated shapes (after s c i s s i o n ) , the value 

w i l l of course be 8tf. 

Our approximation to the semiclassical nucleon densities i s that 

they only depend on the variable u. As found in the va r i a t i o n a l calcu

lations of re f s . [ i ; 3 1 x Fermi functions minimize rather well the semi-

c l a s s i c a l Skyrme energy in the spherical case. We thus parametrize the 

densities as follows 

(10) 

( i d 

3 p l r ) r Split) r 

4 + e * p C * 7 ) 



Thus, we allow the protons and neutrons to have different (but " p a r a l l e l " ) 

surfaces with a radius difference 2A. This leaves us, together with an 

ove r a l l scale parameter (e.g. 2c = " z,j), with 6 parameters, two of 

which are eliminated by the p a r t i c l e number conservation 

(12) 

The other 4 parameters are determined v a r i a t i o n a l l y by minimizing the 

t o t a l energy 

(13) 

with the subsidiary conditions eq. (12). In calculating the Skyrme energy 

density c t p n * Pp] with the semiclassical k i n e t i c energy density functionals 

x [p] and $[p] (see re f s . [6,-13]), we need also the f i r s t and second 

derivatives of Pq<P)« In the present coordinates, one obtains simply 

(14) 

b. Leptodermous expansion of the energy for symmetrical nuclei 

We now proceed to calculate the t o t a l energy for symmetric nuclei (with 

la. 0 0 

2, - 8 * 



i n the "leptodermous" approximation, i . e . i n the l i m i t where the curvature 

Rp i s everywhere large compared to the surface d i f f u s i v i t y 0r = of = : 

(16) 

This approximation should be well f u l f i l l e d for heavy nuclei up to t y p i c a l 

saddle point deformations which for actinide nuclei have almost no neck. 

In the l i m i t (16), the lower l i m i t of the u-integration i n eq. (15) (which, 

in f a c t , i s the only reason for the integral not to separate i n u and z!) 

can be p r a c t i c a l l y replaced by -«> for a l l contributions except the one 

which gives the volume energy. We therefore separate the l a t t e r out in 

writing 

E = ctvA * AE, ov * £W/s>., d 7 ) 

where yQ i s the density at the centre. The correction E i s then 

AE * 2itjvt*jdu ̂ ( M ) [£Cfl-Qv§^)^ . ( 1 8 ) 

The leptodermous approximation (to be checked numerically below) thus 

consists in writing 2!E, which contains only contributions near the surface, 

i . e . i n a region ~0(& y £ +(X , as 

A E * 2lt|dl jd* j(u,2)[ £[j>]- QvfM] . (19) 

2, -oo 

Since the integral now separates, we obtain with eqs. (4, 7, 9, 10) 



where the c o e f f i c i e n t s bg, bj and can be obtained once f o r a l l f o r a 

given energy density as functions of £>0><X and the force parameters and do 

not depend on deformation and nucleon number A. The main A dependence (ex

cept a very weak one through >̂0 and oc ) and the entire deformation depen

dence are contained i n S and C. 

The e x p l i c i t expressions for the co e f f i c i e n t s b p are given i n the 

following. Because of the e x p l i c i t z dependence (through R^, Rg) of the 

Laplacian (see eq. 14) we have to s p l i t up the t o t a l energy density. 

Writing 

where the functions ^ and ̂  may only depend on ̂  and ^ , one gets 

(21) 

- 00 

(22) 

In eqs. (22), the primes on p denote derivation with respect to u. In 

ar r i v i n g at t h i s r e s u l t , we have neglected a term 



whose deformation dependence i s more complicated than that of the above 

simple invariants C,S or a constant. However, t h i s term i s seen to be 

exactly zero i n the spherical case and n e g l i g i b l y small otherwise. 

In order to sort out the deformation and nucleon number (A) dependence 

of S and C, we must now impose the conservation of A. In the leptodermous 

expansion we get 

The contributions of order expC-l^/cc) are p r a c t i c a l l y n e g l i g i b l e for not 

too l i g h t nuclei (A£20). In the spherical case we have V = (4*/3)R^2' 

2 

S = 4ft Ri/2 a n c l c = * * R i / 2 ' w * i e r e R i / 2 ̂ s t* i e " s h a r P M o r ^slf density radius 

which i s adjusted to keep A constant. For the deformed case we introduce 

in the usual manner the shape functions and B^, which are normalized 

to unity for the spherical case, by defining 

(24) 

(25) 

With that we get 

(26) 

from where we f i n d i n a very good approximation 

A'8«. 

Here the radius r i s defined by o 1 



We now can insert R^2 eq.(2?) into eqs.(25) and arrive with eqs. (17,20) 

at the leptodermous expansion of the total energy: 

E - avA * as
A
V!

 • acA
v> * a. • o(f), m 

where 

a, = 4«
 r
; B

s
 b„

 (29) 

a
c
 = 8 ft r„ 8 C b„ oo) 

a. = 4* k - jit W, b„
 (3,) 

-1/3 

The terms of order A and lower contribute less than 1 MeV to the total 

energy of heavy nuclei and are thus practically unimportant. The deformation 

dependence of the energy (28) is entirely contained in the shape functions 

Bs and Bc- The main A dependence of the energy is also separated out in 

eq.(28); a very smooth variation is, however, s t i l l coming from the b̂  and 

r Q through their dependence on J>p and 01 which are determined for each 

nucleus by the variational equation (13). 

C. Dependence of the central densityffn on the nucleon number A 

The deviation of the central density J>0 of f i n i t e nuclei from the saturation 

d e n s i t y p ^ o f i n f i n i t e nuclear matter has t r a d i t i o n a l l y been estimated from 

the saturation condition i t s e l f ft42]. The l a t t e r i s automatically f u l f i l l e d 

i f we write the energy density of i n f i n i t e nuclear matter i n the form + ) 

This form implies that ( $>*)2 £*( p*)= y K * which i s found to be f u l f i l l e d 
within ^ 5 % for the Skyrme force dicussed in the next section. 



Here K w i s the nuclear incompressibility defined by 

For a given Skyrme force a ^ and are uniquely given constants. 

Now, the v a r i a t i o n a l equation for a f i n i t e symmetric nucleus (without 

Coulomb force), v i z . 

(33) 

(34) 

with the Lagrange m u l t i p l i e r A for nucleon number conservation, can be 

solved e a s i l y at the centre of the nucleus using the functional ̂ ( p ) 

eq. (32), i f the surface contributions are a l l exponentially small there. 

Then, the only parameter to be varied i s p , and eq. (34) takes the form 
"* o 

a?-*- T e + f v c e 1 - o ;

 6 " I " - p T " • ( 3 5 ) 

The A dependence thus comes i n only through the Fermi energy A . The l a t t e r 

•*1 /3 
i s found from eq. (28) with /I = dE/dA. To lowest order in A one obtains 



which i s the usual droplet model result Expanding the c o e f f i c i e n t s 

a^ and a § around the saturation density : 

-2/3 
one gets up to order A 

with 

(38) 

a* - Qe- + j~ ar [or * 3pwa{ Go] . ( 3 9 ) 

As we w i l l show i n the next section, eq. (38) does not reproduce very 

well the central density J>Q found numerically with the energy density method. 

The reason for t h i s i s not the inadequacy of the leptodermous expansion as 

such, but the fact that the Fermi type densities used above (and i n the 

droplet model) are not exactly solutions of the Euler equations (13). Thus, 

the lo c a l v a r i a t i o n at the centre, eq. (35), does not lead to the same 

result as the global v a r i a t i o n , eq. (13), of the t o t a l energy with respect 

to the parameters of the Fermi function. 

It i s therefore more consistent to derive the central density£>Q from 

the v a r i a t i o n of the t o t a l energy as obtained i n the leptodermous expansion 

in eq. (28). Neglecting the Of dependence (which i s very weak, as shown i n 

sect, e below), we thus write 



-1/3 
Using eq. (37) we get to order A 

(41) 

If the density p r o f i l e i s chosen such as to maximize exactly the 

parameter b Q eq. (22) (which i s equal to the surface tension for semi-

i n f i n i t e nuclear matter), then the rate of change of the surface energy 

with respect to P would be equal to [4-] o o 

P - Q i ( f w ) * " I <*? (42) 

and the two solutions of g Q , eqs. (41) and (36) would be i d e n t i c a l . 

This i s however not the case, neither i f the Euler equation of f i n i t e 

nuclei i s exactly solved, nor i f one f i x e s the density to a Fermi 

function. In the case considered numerically below, the difference between 

the two sides of eq. (42) i s ~10 % (for other interactions i t may even be 

larger). 

A more accurate result for e, v a l i d also for l i g h t e r n u c l e i , i s 

-2/3 
obtained by expanding further up to terms of order A : 

(43) 

With eq. (43), the central densities found numerically are reproduced within 

less than W~^0 for A > 100, thus demonstrating the v a l i d i t y of the 

leptodermous expansion. 



cL IncompressibiIty of f i n i t e nuclei 

Based on these r e s u l t s , i t i s now easy to derive an expression for the 

incompressibiIty of f i n i t e n u c l e i , defined by 

(43.a) 

(see, e.g. ref. [ib] ). Analogously to eq. (40) we derive the parameters 

a v , a § , ... to obtain 

-1/3 
In expanding Kft eq. (43.b) consistently up to order A , one should also 

2 

respect the f i r s t factor on the r.h.s., which i s equal to (1-36) (and which 

was omitted in ref. fyfe] ), leading to 

(Here the derivatives a£, a^, etc. are taken at |u , as above.) Again, we 

w i l l see i n the next section that t h i s expression agrees very well with 

the numerical results for Kft eq. (43.a). 

e. Numerical tests of the leptodermous approximation 

Before presenting some quantitative tests of the quality of the leptodermous 

approximation, we s h a l l write down some e x p l i c i t expressions using the 

t r a d i t i o n a l parametrization of Skyrme forces, r e s t r i c t i n g ourselves hereby 

to symmetric nuclei without Coulomb inter a c t i o n . The energy density then has 

the e x p l i c i t form 



The semi classical functionals f [ f J and ;)lf>] are given in reis. [6, blunder the 

integral eq. (15), the expression for £f^Jcan be simplified using partial 

integrations so that only powers of and are needed. For the sake of 

simplicity, we give here only the results including the second order contribu

tions X
z
[g]and 3 rtj\Jof the semiclassical functionals. The energy density 

£[f]then takes the simple form [33 

with the constants defined by 

(46) 

The integrals entering the definiton of the surface tension b Q eq. (22) 

can all be done analytically [6J. This is no longer so for some contri

butions to the parameters b1 and b 2 in eq. (22). However, for a force with 

constant effective nucleon mass m s m (i.e. tf /? c0), all the leptodermous 

Integrals in eq. (22) can be done once for a l l and their explicit depen

dence on the density parameters po and * is known. Such a force has been 

published with the label S VII [45]; its parameters are given in Table 3 



of 4 , less than 1 % over the range considered here, i s so weak for the present 

case that we may replace i t by the value 0^= 0.412 (obtained by minimizing 

the surface tension b Q at J) Q * £m , which e a s i l y i s done a n a l y t i c a l l y ) , with

out aff e c t i n g the t o t a l energies by more than ~ 0.5 MeV. Then, the determi

nation of P can be done as described in sect. C above; the result quoted 

0.154 

0.150 

SkyrmeYI (N*Z=4A ; no Coulomb) 

(A) 

80 200 400
 A

 600 800 rooo 

Fig. 10 

i n eq. (43) then s t i l l reproduces the exact numerical values po(A) i n fig.AO 

within ^ 1 °/oo for A ? 100. The dashed l i n e i n the figure shows the central 

density obtained by applying the v a r i a t i o n a l equation l o c a l l y at the centre 

of the nucleus. As we stated in sect. C, the discrepancy comes here mainly 

from the difference between the leading term of eq. (43) and the t r a d i 

t i o n a l droplet model value eq. (36) of the quantity 

The values of the leptodermous integrals eq. (22), taken at p o * , 

are 

b Q = 0.9972 MeV fm" 2, b 1 = 0.3347 MeV fm" 1, b ? = 0.6692 MeV. (50) 

From them and t h e i r variations with we fi n d ( a l l quantities i n MeV): 

a = 17.61, 
s 

• c - . 9.97, 

a*= - 5.65, 

f - a c < f - ) 

10.8, 

22.0, 

1.1, 

= - 84.6; 

= 39.4; 

= 39.2. 

(51) 



Table 3 

Parameters and infinite nuclear matter properties of the Skyrme SVII force [45]. 

*0 

(MeV f m3) 

*2 U 
0 

(MeV fm6) 

X 
o 

*, "2 *3 *0 

(MeV f m3) (MeV fm5) (MeV fm6) 

X 
o 

*, "2 *3 

- 1096.8 

i 

246.3 -147.8 112.0 17 626.0 0.62 0 0 1.0 

?-3 
(fm 3 ) (fm) 

I 

(MeV) 

a* 
V 

(MeV) 

0.14332 1.1854 366.23 -15.782 

along with the corresponding infinite nuclear matter properties. The results 

of the integrals in eq. (22) are then 

A ^_ I 

b 4 - oc*[-o.u?s * i i f f . * xfXf* , (48) 

b
t
= oC

,

[-2.C6a^f*
,

-3.2«3cp/-4>j3W^
,

l + (49) 

(The expression for t>0 is consistent with the result given 1n ref. [6].) 

It is now an easy matter to calculate the energy according to eqs. (28)-(31) 

and to minimize it with respect to J>Q and •(. 

Fig.HO shows the resulting values obtained for spherical nuclei with 

the Skyrme force S VII as functions of the mass number A + ) . The variation 

+ ) Here, as in the following/ a l l 4. order contributions to the semiclassical 
functionals tfy>3 and 3tf] have been included. 



With that, the Leptodermous expansion of the t o t a l energy eq. (28), after 

expanding out the A dependence using eq. (43), becomes 

E - q,-A * Q ? A
V i

 * «.* A*
J

 • «.* .
 < 5 2

, 

The expression for a has already been given i n eq. (39). The quantity a 

receives many contributions from expanding a , a o and a around 0m; i t s expression 
V S C J 

i n terms of the quantities i n eq. (51) i s straightforward but cumbersome and 

has not much p r a c t i c a l value, since the parameter a* can not be determined 

reasonably well i n any least-squares f i t , as we s h a l l see below. 

c a* 
V s a* 

c 
a* 
0 

a-1 a-2 

leptod. - 15.782 17.61 8.53 - 2.74 - -

0.004 - 15.789 17.56 8.57 - 10.01 4.6 8.7 

0.06 - 15.778 17.34 9.81 - 10.81 o
a) 

o
a) 

3.45 - 15.782a) 17.61a) 8.53a) - 16.24 o
a) 

o
a> 

0.51 - 15.782a) 17.61a> 6.40 0.47 o
a) 

o
a) 

0.30 - 15.782b) 17.61b) 6.17 2.48 o
b) 

o
b) 

Table 4- Liquid drop parameters of the expansion eq. (52) of the 

t o t a l energy obtained i n the exact v a r i a t i o n a l c a l c u l a t 

ion for symmetric nuclei with the force S VII (no Coulomb). 

( A l l results i n MeV),The f i r s t l i n e gives the parameters 

obtained i n the leptodermous expansion. The others give 

the results of diff e r e n t least-squares f i t s to the exact 

results for 24 nuclei ranging from A=80 to A=1000 (except 

in the last l i n e for only 21 nuclei with 200 ^A^1000). 

i s the root mean square deviation i n MeV. a_^ and a_£ 

are the co e f f i c i e n t s of terms proportional to A"Va and 

A"^3 , respectively. 

a) value fixed i n the f i t t i n g to 24 nu c l e i . 

b) value fixed i n the f i t t i n g to 21 nu c l e i . 



In Table 4 we l i s t the 4 parameters of eq. (52) obtained i n the lepto

dermous approximation along with the results of several least-squares f i t s 

to the t o t a l exact energies (obtained numerically from the v a r i a t i o n a l c a l 

culation without any further approximation). We see that, apart from the 

ambiguities of such f i t s themselves (especially concerning the constant 

term a*!), there i s an excellent agreement. This shows, that one i s i n 
o 

p r i n c i p l e able to determine s u f f i c i e n t l y accurately the three leading terms 

of the expansion (52) for a given Skyrme force just i n terms of the simple 

1-dimensional integrals eq. (22). (Which, of course, can be done also for 

a r e a l i s t i c force including a variable e f f e c t i v e mass.) 

To test the v a l i d i t y of the leptodermous expansion as a function of the 

deformation, we have made a calcu l a t i o n for A = 240 using the shape paramet-

r i z a t i o n (c, h) used i n connection with f i s s i o n barrier calculations 13]. In 

Table 5 we present various quantities as a function of the elongation para

meter c (h = 0). The spherical shape corresponds to c=1, the l i q u i d drop 

c 
neck radius 

(fm) B 
s 

B 
c 

R1/2(fro) 
- l e p t . 
K1/2 (fin) 

E - a yA 

(MeV) 
* E l e p t . 
(MeV) 

error 

(MeV) ! 

1.0 7.19 1.0 1.0 7.1935 7.1939 712.3 722.1 9.8 

,.2 6.45 1.0151 1.0168 7.1922 7.1927 723.0 733.0 10.0 

1.4 ] 5.73 1.0546 1.0654 7.1885 7.1890 751.7 761.7 10.0 

1.6 4.93 1.1146 1.1486 7.1822 7.1828 796.0 806.1 10.1 

1.8 3.90 1.1925 1.2750 7.1725 7.1733 854.5 865.0 10.5 

2.0 2.26 1.2745 1.4730 7.1576 7.1586 920.0 931.1 11.1 

Table S 

Various quantities obtained for A = 240 with force Skyrme SVII versus elongation c 

(see text for d e t a i l s ) . 



saddle point of actinide nuclei to c * 1.5. The second column shows the neck 

radius of the corresponding shape which i s strongly constricted at c = 2.0. 

The next three columns contain the shape functions E5 and B and the radius 
s c 

scaling parameter * r o m w h l c h t h e surface area S and the mean curvature 

C are obtained v i a eqs. (25). It i s worth noting that, with the values 

>̂o = 0.1492 fm" 3, 0(= 0.40* fm v a l i d for A = 240, the leptodermous 

result k J ^ * e q ' ^ 7 ) , shown i n the next column, reproduces the exact values 

-4 

within * 10 R,.̂  e v e n a * th© largest deformation. In columns 7 and 8 of 

table 5 we show the t o t a l energy minus the volume energy and the leptodermous 

result eq. (20) f o r A E , respectively; t h e i r difference i s shown i n the last 

column. Apart from a constant error of 10 MeV, which r e f l e c t s the d i f f i 

c u l t i e s i n determining the constant term of the energy expansion eq. (52) 

observed above, there i s only a small v a r i a t i o n of < 1.3 MeV over the whole 

range of deformation. This i s rather astonishing, observing the small neck 

radius of 2.26 fm at the largest deformation. Up to t y p i c a l saddle point 

deformations (c < 1.6), the error i n the deformation energy brought about 

by the leptodermous expansion i s even not larger than 0.3 MeV. 

Fig. 11 



In order to test f i n a l l y the expression given above for the incompressi

bi l i t y of f i n i t e nuclei K̂ , eq. (43.c), we present i n Fig. AA the numerical 

results of K A according to eq. (43.a) with the SVII force. The behaviour of 

K A versus A ^ 3 i s l i n e a r , showing that the A ^ 3 term i n eq. (43.c) i s very 

small. The results of Fig. \A give 

K A « K„-A*" 56S MeV. ( 5 3 ) 

With the values i n eq. (51) and with ^ J a * 1 = 5.8 MeV for SVII we obtain for 

the leptodermous expansion eq. (43.c) 

Ka - Ko - A** 553 MeV - A* < 6 MeV (54) 

-2/3 

Thus, the c o e f f i c i e n t of A i s , indeed, two orders of magnitude smaller than 

-1/3 
that of A , which i s i n excellent agreement with the exact result of eq. (53). 

*f. Conclusions and outlook 

Using the leptodermous expansion, we have demonstrated that the 

energy density formalism using Skyrme forces allows a quantitative deter

mination of the droplet model type parameters for symmetric n u c l e i . For 

asymmetric nuclei including the Coulomb in t e r a c t i o n , the analysis becomes 

more cumbersome, since d i f f e r e n t density parameters R j ^ / ,fo' ^ ^ a v e t 0 ^ e 

used for protons and neutrons. Recent results have shown that the difference 

i n the diffuseness parameters o<̂  i s c l e a r l y correlated to the isospin 

(N-Z)/A of the nucleus [1], which i s an effect not included i n the droplet 

model [ f r j . Apart from that, the essential droplet model relations for the 

asymmetry parameters, i n p a r t i c u l a r the e f f e c t i v e surface s t i f f n e s s Q^seem 

to be f u l f i l l e d at least q u a l i t a t i v e l y . A detailed analysis of the 

leptodermous expansion i n the asymmetric case i s presently under way. 



Concerning the deformation dependence of the t o t a l energy obtained i n 

the semi c l a s s i c a l energy density method, the leptodermous expansion has been 

shown here to be very accurate even beyond t y p i c a l saddle point deformations 

of heavy n u c l e i . A numerical test of the corresponding expansion of the Coulomb 

energy i s actually under way; i f i t holds equally well we may conclude that 

a f u l l v a r i a t i o n a l calculation i s not needed i n the deformed case. Instead, 

i t would be s u f f i c i e n t to calculate the droplet model parameters for a 

given force on one hand and the shape functions B e, and B _ . on the 9 s c conel 

other hand once for a l l and then use eq. (20) (including the Coulomb 

energy) to obtain the deformation energy. Work along these lines i s now 

in progress. 
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