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ABSTRACT 

We review the development of the theory of the fission barrier over the 
past forty years. Special emphasis is put on the shell-correction method of 
Strutinsky and its foundation and numerical verification from microscopical 
Hartree-Fock calculations. The different practical realisations of the 
method and its applications to the calculation of deformation energy sur­
faces are reviewed. The influence of the different shape degrees of free­
dom of the nucleus on the form of the fission barrier is discussed. Finally, 
we summarize some more recent developments concerning both experimental and 
theoretical aspects of the double-humped fission barrier. 

INTRODUCTION 

These notes cover the contents of six lectures presented at the 
Winter Course on Nuclear Theory for Applications, held at the ICTP in 1978. 

Almost a l l of what was discussed in the lectures has been published 
before extensively; we shall therefore not repeat here details of mathema­
tical derivations or numerical computations. For these, we refer to the l i ­
terature* The main purpose of these notes is to give the reader an intro­
duction to the different physical models which are employed in the theory 
of the fission barrier. With the help of illustrative examples, we shall 
summarize the results of different calculations and give an impression 
of their reliability and their agreement with experimental results. 

1. HISTORICAL REVIEW OF THE FISSION BARRIER 

1.1. Discovery of Fission 

A nice historical account of the discovery of fission is given in the 
book of Hyde, 1964, p.3 (with detailed references). Fermi and collaborators 
in Rome (1934/5) bombarded uranium (Z - 92) with paraffin-slowed neutrons. 
They tried to explain the resulting radioactivity as coming from a new 
element ( z • 93) or even several "transuranium" elements. However, too 
many activities were seen and the radiochemical properties were too un­
expected to be explained in this way. The situation remained confused, 
until in 1939, Hahn and Strassmann
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 and Meitner and Frisch
3

 recognized 
the new process as the fissioning of the nucleus into (normally two) 
fragments. 

Immediately after the discovery of fission, Meitner and Frisch
3

 also 
gave a qualitative theoretical explanation of the process using the analogy 
of a charged liquid drop. S t i l l in the same year, 1939, two independent 
theoretical papers appeared, using and developing the same basic picture: 
a short one of Fraenkel [Fr39], and an extensive one of Bohr and Wheeler 
[BW39], which became and remained a classic for many years to come. 

1.2. The liquid drop model 

This model uses an idealization of the nucleus as a uniformly charged 
liquid drop. The attractive nuclear forces are summarized by a (classical) 
surface tension. The stability or decay (fissioning) of the nucleus is 
governed by the interplay between this attractive surface tension and the 
repulsive Coulomb force. 

This same model underlies the semi-empirical mass formula developed 
by Weizs*acker[We35] and Bethe[BB36,Be37] (see also [BK37]), in which the 
total mass (binding energy) of a nucleus is written in the form 
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with 

and Here a
v
 and a

g a r e
 the so-called volume and surface energies, > 

the asymmetry coefficients, the terms with C, and C are the Xirect and 
exchange Coulomb energies, P(N,Z) is a (relatively small) pairing energy 
( * ±2 MeV) and 6E the so-called shell-correction energy. All terms but 6E 
are smooth functionsof N and Z and constitute the main part (£ 99* in a 
heavy nucleus) of the binding energy. We express this by writing (1.1) in 
the form 

(1.2) 

The LDM accounts for a l l terms included in E
T D M

 (except for P(N,Z) which 
we include for convenience). 



In the application of this model to the fission process, one is in­
terested in the deformation energy, i.e. the difference Efj)jJ(8) between the 
energy at a given deformation (we summarize a l l possible deformation para­
meters by 6) minus that of the spherical shape 6 » 0. To this difference, 
only the surface and Coulomb terms contribute in E

L D M
; the volume term 

falls out due to the fact that nuclear matter is (almost) incompressible. 
The deformation energy is thus written as the sum of a surface and a Coulomb 
energy: 

(both normalized to zero at 3 * 0 , i.e. spherical shape). 

We come back to the parametrization of the nuclear shape (i.e. the 
exact meaning of 6 ) in lesson 4. 

In his book on "Theories of Nuclear Fission", 1964, Wilets presents 
the LDM and results of deformation energy calculations very extensively, 
summarizing both the original papers! BW39, Fr39 ] and later extensions, 
the last of which [CS63] containing large-scale numerical computer cal­
culations. Not mentioned there is another important paper [ SL63]. 

The c r i t i c a l parameter in the LDM is the so-called "fissionability" 
(or f i s s i l i t y ) parameter X, defined as the ratio of the Coulomb energy and 
twice the surface energy of a charged sphere with radius R

Q
: 

wi th 

X - E
C d

, ( o ) / 2 E
M
( o ) (1.4) 

(1.5) 

Here T is the surface tension. Using the experimentally known A-dependence 

of the nuclear radius 

Km r.A^ t r. <* A.i f*, a.6) 

we can relate T to the surface term in the mass formula (1.1): 

X « a t (^x t r)A*r.\ 0.7) 

Combining eqs.(1.5)-(l.7) we see that the f i s s i l i t y Darameter X, apart from 
the relatively weak I^-dependence of T , goes like Z^/A. One therefore 
frequently puts 

X s ( z V A ) / f r A ) e , i t . (..8) 

With the above constants and the empirical values a
g
 - 18 MeV, K G = -2.5, 

one obtains 

( Z 7 A )
C f l i

 * .
 ( 1

.
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In most early LDM calculations, one used the multipole expansion 
of the deformed nuclear surface [BW39]: 

(1.10) 

The fa^y} thus represent one possible set of deformation parameters 3« 

Main results of LDM calculations: 

1) For X < 1 , the spherical configuration (all a ^ * 0) is a stable 
local minimum. Thus, the LDM predicts spherical groundstates for a l l 
stable nuclei. For X > 1, the spherical shape becomes unstable against 
quadrupole ( A 2 O ) deformation, the nucleus then is spontaneously deforming 
itself until i t fissions. Thus, the LDM predicts spontaneous fission for 
a l l nuclei with X> 1. (N.B. A heavy actinide nucleus has X - 0.8, i.e. 
(Z

2

/A) s 40 ). 

2) For 0.7 X < 1 the deformation energy surface,
 E

LDM(
a

AiP **
as

 a saddle 
point with positive energy Ef relative to the ground state. This result is 
qualitatively already found i f only a.20 and â Q deformations are used, see 
Fig. 1.1. The saddle point has always positive (prolate) quadrupole defor­
mation. Along a static path over the saddle point (way of steepest descent), 
one obtains thus a fission barrier with height E^. Numerical calculations 
including multipoles up to X = 16 in eq.(1.10) lead to [CS63] 

E
£
 « 0.83 E

S w r f
M ( H - X ) * , O . W « X * i . (1.11) 

In Table 1.1 we show a comparison of the calculated values of Ef with the 
experimental barriers measured up to ^ 1960 (assuming a single-h,umped 
form of the barrier). The agreement is bad. Whereas E^™* varies from ̂  15 
to ^9 MeV, the experimental barriers are a l l around ^ 5 . 5 to 6.5 MeV. 
The LDM thus gives the wrong quantitative behaviour of the barrier heights. 

3) For X > 0.39, the deformation energy is always stable against rotationally 
asymmetric (p t 0) and reflection (left/right) asymmetric (X odd) defor­
mations. In other words, only the parameters a^

o
 with X even are different 

from zero. As a consequence, the LDM cannot explain the asymmetric mass 
split in fission. 

The main failures of the LDM (no static deformations, wrong fission barriers, 
no asymmetric fission) are due to the missing of quantum mechanical effects 
(shell effects). As a hint we may take the order of magnitude of the empi­
rical shell-corrections 6E to the goundstate masses [MS66]: 

\SB\ » I d M l * 5-4S HtV. (K,2> 

This is very small compared to the total binding energies of heavy nuclei 
(^ 1000 - 2000 MeV), but i t becomes important when compared to the heights 
of the fission barriers E^! 

The LDM provides thus a nice qualitative description of the fission 
process, but for a quantitative theory the shell effects have to be included. 



1.3 The (deformed) shell model 

The shell model [HJ49, Ma49] emphasizes the quantum mechanical struc­
ture of the nucleus as a system of Z protons and N neutrons. The mutual 
nuclear interaction between the neutrons (protons) is summarized by an 
average potential V (V ) in which the particles are assumed to move indep­
endently. For each Bina (n or p), a Schrodinger equation is solved 

(1.13) 

to obtain the levels £. and wavefunctions of the individual nucleons. In 
the g.-s., the lowest N(Z) states are f i l l e d . The potentials V

n
(r) and 

Vp(r) contain a local (central) and a spin-orbit part. V
p
(j) includes also 

a Coulomb potential. 

In connection with fission, we are mostly interested in the extension 
of the shell model to deformed nuclei, which was introduced by Nilsson [Ni55]. 
In the Nilsson model, the potentials V

n
 and V

p
 are deformed along with the 

shape of the nucleus. The solutions of the Scnrodinger equation (1.13) then 
depend also on the deformation parameters; this gives the familiar Nilsson 
level schemes, see Fig. 1.2. 

In the independent particle model, the total energy is 

(1.14) 

Strictly, the justification of the shell model is given in Hartree-Fock 
theory, where eq.(l.l4) is not equal to the total binding energy (see lesson 
2). Hbwever, for harmonic oscillator potentials (and thus also approximately 
for the Nilsson model), the total energy is s t i l l proportional to (1.14). 

A comprehensive description of the Nilsson model is given in the book 
of Preston and Bhaduri. 

Minimisation of the energy E(3) (1.14) with respect to 3 leads to the 
groundstate deformation 3

Q
. Good agreement with the experimental deformations 

of rare earth and actinide nuclei is obtained
1

*
2

. From the Nilsson spectra 
e.(3 ) at the groundstate, other properties such as spin, magnetic moment 
and single particle spectra of odd-A nuclei can be derived. 

When extended to large deformations, the model f a i l s . The deformation 
energy (1.14) was found to increase too steeply and not to lead to any 
reasonable fission barrier

3

 (see also [NT69]). Similar results were also 
found in the two-center shell model (e.g.[SG71]). 

The reason for this breakdown is the lack of self-consistency of the 
used average deformed potentials and of the expression (1.14) for the total 
energy. At small (groundstate) deformations, the experimental spectroscopic 
information allows to parametrize the shell model potentials sufficiently 
well. But when extrapolating to large deformations, the results depend 
very crucially on the parameters and on the way in which the potentials 
are deformed. 

Myers and Swiatecki [MS66] discussed the connection between the non-
uniformities of the shell model spectra and the magnitude of the empi­

rical hell corrections 6E in (1.1). Large gaps in the spectrum ("magic" 
nucleon numbers) lead to increased binding (negative 6E). This is not only 
restricted to spherical nuclei [St66,67]; deformed shells exist as well 

The first quantitative prescription to calculate 6E from the spectrum 
£^ was given by Strutinsky [St66-68]« 

1.4 The shell-correction method (SCM) ("Strutinsky method") 

Strutinsky defines the shell-correction 6E for each kind of particles 

»pen) SB (1.15) 

i.e. the difference between the sum of occupied levels and its average part 

(1.16) 

(The precise definition of the average energies Ep(
n
) will be given in 

f the nucleus is tnen the LDM energy pli lesson 4 ). The total energy of 
the shell-corrections: 

us 

(1.17) 

This means a renormalization of the average parts of the single-particle 
energies by the LDM energy. One is thus combining the correct average energy 
of the LDM with the (at least at small deformations) correct fluctuating 
part 6E of the shell model energy (1.14). 

1

 B. Mottelson and S.G. Nilsson, K.gl. Dan. Vid. Selsk. Mat. Fys. Skr. ]_
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 D. Bes and Z. Szymanski, Nucl. Phys. 28 (1961) 42. 
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 S.A.E. Johansson, Nucl. Phys. 27 (1962) 529. 

The theoretical quantitative justification of eq.(1.17) can be given 
in the Hartree-Fock theory and will be discussed in lesson 3. 

Main Results of SCM calculations: (Details see lessons 4-6) 

1) Explanation of the fission isomers, which had been known long ago [Po62] 
but not understood, in terms of a double-humped fission barrier which turns 
out for most actinide nuclei. 

2) Quantitative agreement between theoretical and experimental barrier 
heights; usually within ̂  1-2 MeV (except for neutron-poor lighter actinides; 
so-called "Th-anomaly"). 

3) Ground-state deformations in excellent agreement with experimental ones. 
The g.s. mass corrections 6E(^M) agree with the empirical ones within 
^1-2 MeV (except sometimes in the Pb

2

08 region; so-called "Pb-anomaly"). 



4) Qualitative explanation of mass asymmetry of the fission products due to 
shell effects, both at the outer saddle point and at the scission point 
(see lesson 6). 

5) Prediction of a possible island (or several) of stable nuclei with 
Z 114-126 or larger; "superheavy nuclei"? 

In summary, the Strutinsky method brought a break-through in the theory 
of the fission barrier, allowing for the fir s t time a quantitatively 
satisfactory calculation of barrier heights and giving the explanation 
of the fission isomers as shape isomers. In this method, both the LDM 
and the shell model are given their balanced role. 

1.5 The Hartree-Fock method (HF) 

The HF method allows to calculate nuclear properties starting from 
an effective nucleon-nucleon interaction

 v

e f f ^
r

l ~
r

2 ^ ' Thi
8

 i
s a

 basically 
microscopic, quantum mechanical theory, in which only the parameters of the 
interaction V

e
ff are adjustable. The HF method is the subject of lesson 2. 

Fission barriers were calculated with the HF method using the Skyrme 
force [VB72] for the f i r s t time in 1973 [FQ73b, 74]. The obtained barrier 
heights do not agree with the experimental ones as well as those calculated 
with the shell-correction method; the reasons for this are mostly understood. 

Nevertheless, i t was a very essential step to prove that the double-
humped barrier can be obtained in a purely microscopical approach. 

Extensive numerical calculations, starting with the "Reid soft core 
potential" V(rj,r

2
) [Re68], were done in order to derive effective potentials V

e f f ^
r

l
, r

2 ^
 w

hich describe nuclear ground state properties well in the Hartree-
Fock (HF) approximation (see below) [Ne70, CS72]. 

Another possibility is to design phenomenological effective inter­
actions V

A
ff which have a simple mathematical form and adjustable parameters 

[Sk56, 59; Wi58, BB68, Mo70, KC73, NV70, EM72, Go75]. The most successful 
Hartree-Fock calculations were done in the last decade with the so-called 
Skyrme forces [Sk56,59], ^-discovered by Vautherin and Brink[Va69, VB72, 
Va73] and further developed by the Orsay group [FQ73a,b; BF74, F175, Qu75a]. 
For extensive reviews of the results, see [F175,76; Qu75a,b]. A lecture 
series on the Skyrme forces was given in Trieste by Vautherin

1

. 

More recently, Gogny [Go73,75] developed a phenomenological force 
which allows also the self-consistent inclusion of pairing effects (Hartree-
Fock- Bogolyubov method). This is probably at present the most refined 
effective force, which reproduces many nuclear groundstate properties 
extremely well. 

The connection between the phenomenological Skyrme-type forces and 
the ones derived from the more basic Bruckner-LDA-HF-calculations [Ne70, 
CS721 was made by Negele and Vautherin [NV72,75] : they justify not only 
the form, but also the approximate values of the parameters of the Skyrme 
force (see also [Ne75l). 
X

D. Vautherin, Trieste lectures 1975 (IAEA Vienna, 1975, SMR-14/39) 

2. HARTREE-FOCK (HF) THEORY OF NUCLEAR BINDING ENERGY 

2.1 Effective nucleon-nucleon interaction: ^eff^r)*T2^ 

In the following, we summarize the HF theory; to study i t , see e.g. 
the text book of G.E. Brown

1

. 

With
 v

e
f f ( l ] >I2̂

 w e 1 0 6 3 1 1

 the interaction (potential/'force") which 
acts between two nucleons (placed at tj and r

2
) in the nuclear medium, 

i.e. in the presence of the other nucleons of the same nucleus. 

v

e f f thus contains not only the basic interaction between the nucleons 
considered; i t also summarizes the influence of the mutual interactions with 
a l l other nucleons of the same nucleus: Reduction of a many (A » N + Z)-body 
problem to a two-body problem. 

Different from ^eff is the basic, so-called "free" nucleon-nucleon 
interaction V ^ j , ^ ) which acts between two isolated nucleons. With V one 
attempts to describe the scattering of two free nucleons by fitting 
phase shifts (phenomenological potentials V: e.g. Hamada and Johnston 
[HJ62]and Reid [Re68]. Theoretically, V can be derived from meson exchange 
processes (see e.g. [BJ76]). 

The way from the free potential V(n,r2) to the effective one, 
^eff^

r

l»
r

2^» *-
n a

 finite nucleus is long and di f f i c u l t : One has to solve 
a many (A)-body problem, which can only be done approximately. A succesful 
theory was developed by Bruckner [Br55, Da67] for infinite nuclear matter; in 
the so-called "local density approximation" (LDA) [BG58, Be71] i t could be 
applied to finite nuclei. 

2.2 Hartree-Fock Approximation (HF) 

We start from an effective two-body potential
 v

eff(
r

l»
r

2^' *
n

 general, 
i t depends not only on the distance Tj-T2 between the nucleons, but also on 
their velocities and on the local density p ^ J j J ^ J L ) °f the nucleus. 

The HF approximation consists in extracting from V an average one-
body potential Vfl-p(r) in which the nucleons move independently. The wave-
function

T

 is written as an antisymmetrized product of single-particle wave-
functions 4>̂ (r) : 

$w"Jr ^ M W t a . V - w ( S 1 » W aeHiMMinanO. ( 2 . 0 

The Hamilton operator is 

The HF energy is then 

(2.2) 

(2.3) 



2-3 Density matrix p 

8-> • g < « , t > < t , P i (2.4) 

Jot>, | 3> is an arbitrary basis; <a|i> are the expansion coefficients of the 
wavefunction ^ ( r ) in this basis: 

In terms of p^, the H F energy (2.3) can be written as 

E H * " $ T « ' f t - * i $ £ ^ A r * ft" ' 

or, using matrix notation (tr = trace) 

The matrices T
 Q
 and V „ * are the basic matrix elements: 

otp otp»Y° 

] 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

^.E. Brown, "Unified Theory of Nuclear Models", North Holland 1967 

Ŵe neglect spin and isospin coordinates and consider N nucleons of one kind 
only (e.g. neutrons). 

The "best" set of s.p. wavefunctions 4>.(r) is found using the Ritz variatio­
nal principle by minimizing the total energy E^, with respect to the indivi­
dual variations of a l l the <JK: 

(2.9) 

The second term in the brackets { } is a Lagrange multiplier which guaran­
tees the normalization of the <|>.(r). Performing the variation (2.9) leads 
to a set of equations: 

fV^i * (*T
 B

 • " H F equations" (2.10) 

In coordinate space, V
H
p is in general a nonlocal, velocity-dependent po­

tential, and the HF eqs. are very difficult to solve. (They are integro-
differential equations). 

In matrix notation, eq.(2.l0) means a diagonalization 

and the matrix H is defined from (2.7) as 

(2.11) 

(2.12) 

If V
e
f f does not depend on the density, then in eq.(2.l0) is equal 

to trvp . T in eq.(2.10) is the kinetic energy operator 

For the Skyrme force, the HF equations are relatively simple , of the type 
of a Schrodinger equation with an effective mass m*(r) and a spin orbit 
potential W

go
(r) : 

The potentials Uu
F
 and W

go
 and the eff. mass m* depend in a relatively 

simple way on the local density p(r) and the kinetic energy density x(r) 
and thus the wavefunctions 

(2.14) 

Through this dependence, the H F eqs. are non-linear and present a self-
consistency problem. It is solved by starting from an i n i t i a l set 

O
 K

 % F ( '
 W

so
( o )

> "
 H 5 s o

l
v

(
n

8 then eq.(2.13), from the <f>£ 
calculating (2.14), from them new H '

1

' etc.etc.... until convergence, 
i.e. H W = H ( N + 1 > (input = output). ( " H F iterations"). 

The ground state energy E^p and wavefunction $HF are obtained by 
including the N states <|>i with the lowest eigenvalues in the summations 
of eqs. (2.4) and (2.14). 

2.4 Deformation energies 

To obtain a solution with a given deformation, one has to add in 
eq.(2.10) an external field (constraint); otherwise one finds automatically 
a solution for which the energy is locally a minimum (ground state or 
eventually, an isomeric state). 

The shape of the nucleus may be characterized by the multipole moments 
of the density: 

(2.15) 

here q ^ is the matrix element <a|q^|6> of the multipole operator q ^ 

Let us choose for instance the quadrupole moment Q 2 0 * $ 2 * T * I E H F 

equation 

see the classical paper [VB72]. 

(2.17) 



is solved, one obtains a solution with a quadrupole moment Q
2
» The Lagrange 

multiplier X gives then the local derivative of the deformation energy at 
the point Q 2 (i.e. the negative driving force, which wants to bring the 
nucleus back to the minimum): 

(2.18) 

In this way, one can, however, only obtain those regions of the curve 
Ejjp(Q2) which have a positive curvature. To obtain the f u l l curves, one 
can use a quadratic constraint (for details, see [FQ73a]) . 

2.5. Main results of Skyrme-HF calculations : [F175,76; Qu75a,b] 

Note: The Skyrme force has J& adjustable parameters; for the pairing 
effects (in BCS approximation [Va73]) one more parameter is used. Thus, a 
total of 7 free parameters are used in a l l calculations. 

1. Ground-state masses (binding energies) are reproduced within 
^2-5 MeV for spherical and ^5-10 MeV for deformed nuclei. Nuclear radii 
(r.m. s.) f i t within ^2%; quadrupole moments of lanthanides and actinides 
within ^2-4%. 

2. Deformation energy curves: Have the correct qualitative properties. 
For Pu

2

*
u

, a double-humped barrier was obtained, see Fig. 2.1 [FQ73b,74]. 
The barrier heights are too big, compared to the experimental ones. The 
differences are (mostly) due to the following shortcomings of constrained-
HF-calculations: 

- The HF equations are solved by diagonalization (eq.2.11) in a finite 
(truncated) harmonic-oscillator basis [ Va73 ]. This leads to truncation errors 
in the total energy which affect the deformation dependence. 

~ Slater determinants (eq.2.1) are not good eigenstates of the 
centre of mass momentum and of the total angular momentum. This leads to 
spurious cm. and rotational energies, which also affect the deformation-
behaviour^ 

- For reasons of computer time, one must restrict the shapes to 
axial and left/right symmetry, which is known from Strutinsky-calculations 
to give too high barriers (see lesson 5). 

- For the Coulomb exchange energy, the Slater approximation was used 
[NV72, Va73]; i t was newly found to lead to an error which increases at 
larger deformations

1

. 

A l l the above deficiencies of the constrained HF method are (ideally) 
avoided in the Strutinsky method; see the following lessons. 

Nevertheless, the merit of these HF calculations was to demonstrate 
that fission barriers can in principle be obtained purely microscopically. 
The HF calculations could furthermore be used to test and justify numeri­
cally the Strutinsky method [BQ73, 75a-d], see lesson 3. 

*P. Quentin, private communication, 1978. 

3. THE BASIS OF THE STRUTINSKY METHOD 

3.1. Extraction of an average part of the HF energy : 

We want to extract a smooth part of the HF energy, which varies 
slowly with particle number and deformation, as does the LDM energy. This 
means we want to derive microscopically the LDM from HF theory with ef­
fective interactions. 

We saw in lesson 2 that the HF energy is given as a functional of the 
density matrix p (2.4), see expression (2.7) for E

R F
. The proposition 

of Strutinsky [St68,74,75] was to split p into a smooth part p which 
contains the average information (in the LDM sense) and an oscillating part 
6p : 

(3.1) 

Without specifying p quantitatively, Strutinsky derived [St68] what has 
been called the "energy theorem" [Be7l](see also [BD72, BK72a, BK72b])

 9 

which we will discuss below. We give here a slightly different derivation 
(see also [Di72]); a discussion of different derivations may be found in 
[Br74b, BQ75a]. 

To define p quantitatively, we use here Strutinsky
f

s energy 
averaging method, which was originally introduced in order to define the 
average part of the single-particle level density of a given potential 
[St66-68]; see details in lesson 4. The same technique may be used to 
extract average parts of expectation values of any single-particle operator 
[BD72, BQ73], using the average occupation numbers determined by a 
given s.p. spectrum ~ "™ ' 
in the next lesson. 

££. The precise definition will be given in eq.(4.13) 

The average density matrix p is' defined as 

(3.2) 

thus replacing the "HP" occupation numbers (1 below and 0 above the Fermi 
energy X ) in eq.(2.4) by the ti ^ . This means an energy smoothing around 
the Fermi level X in a range ± Mift , the distance of main shell spacing 
in the spectrum e^. 

The average part of any observable (J - we are always speaking within 
the independent particle, i.e. HF approximation - is given through p (3.2) 
and the corresponding operator (one-body) or 5(2) (two-body) in matrix 
form: 

0 • i r f a
w

 . a - t i - ( t r j?d ' r t ) j ? 

In terms of the HF matrix elements (e.g. one-body) 

<rf = < i | a<" u > 

we thus get 

0 « 2 <r, fij . 

(3.3) 

(3.4) 



The average density matrix in coordinate space p(r,r
f

) - the diagonal 
part of which is the ordinary density p(r) - is 

The average level density (see eq.(4.3))is 

The average part of the HF energy Eyp (2.7) is thus simply 

| - i r T f * itr(trU|f)f . 

(3.5) 

(3.6) 

(3.7) 

(If the interaction V depends itself on p , i t is understood in eq.(3.7) 
that i t has to be taken at the average value p ! ) 

By construction, E^p should behave like a LDM energy. Numerical 
checks see below. 

3.2. The Strutinsky Energy Theorem 

(see also [St68,74,75; BD72, BK72a,b; Di72, Be71, Br74b, BQ75a]). 

The aim is to derive from the microscopical HF-theory a quantitative 
expression for the fluctuating part 6E of the total nuclear binding energy, 
see eq.(1.2), that i s , for the shell-correction. 

The easiest way is to expand the HF energy functional E
H
p [ p ] eq.(2.7) 

around the average part of p : 

• M f l • W ^ r U * * U W • <3-8) 

This Taylor expansion is - hopefully ! - justified by the relative orders 
of magnitude of the average (LDM) energy (̂  1-2 GeV) and the shell* cor­
rection ( ± ^5-15 MeV). 

The fi r s t term on the r.h.s. of eq.(3.8) is identical to E
H F
 (3.7). 

The second term contains the derivative of Eflp with respect to p - which 
is a matrix - and which is equal to the HF one-body Hamiltonian H

R
p (2.12) 

taken at the smooth value of p . We call i t 

(3.9) 

(3.11) 

Let us call the spectrum and eigenstates of ^jjpt £^ and $̂  respectively: 

• L t * v
M (
, ] $

;
 - e

f
|

t
. o . . 2 ) 

Using perturbation theory, we find easily that 

(3.13) 

[The 6n£ are defined in terms of the average spectrum z. and not identical 
to those obtained from the HF spectrum unless the averaging is done 
self-consistently by iteration; see below. We ignore the difference, 
however, which is again of higher order.] The quantity in eq.(3.13) is thus 
just the usual shell-correction (see lesson 4, eq. 4.14) : 

We arrive thus at the Strutinsky energy theorem 

(3.15) 

The important point is that a l l shell effects of lowest (i.e. first) 
order in 5p are given by expression (3.14); the remaining higher-order terms 
should be small ( 6 E 2 etc). 

The practical importance of this^is that 6Ej is given by the 
spectrum (e^) of an average potential Vjjp (3.12), which may be approximated 
by the standard (deformable) shell model potential Vg^ (which by con­
struction varies smoothly with N, Z and deformation!). With this assumption 
one does not need to know the effective interaction yeff for calculating 
<$E to lowest order. (The terms of <5E

2J
... depend explicitly onV

e
ff!)» If» 

furthermore, E H F is close to the L D M energy E L D M
 a n c

*
 t n e

 higher order terms 
6 E 2 , . . . are negligible,the approximation ( S C M • shell correction method) 

Lt>M 
(3.16) 

should replace a HF calculation, which in the later sixties was not avail­
able for fission barriers! 

[We left out here the pairing effects. In principle the energy 
theorem can be derived from HFB-theory,[see Ko73]]. 

The derivation of the energy theorem (3.15) given here is true for 
any density and velocity-dependent effective two-body interaction Veff• 

We have thus 

Now, the difference between V^p and v^p is of order 6p and thus small 
relative to V^p : 

3.3. Basic assumptions of the Shell-Correction Method (SCM) 

1. The average HF energy £ H F can be parametrized and well approximated 
by the LDM energy E

L T } M
 (in the form e.g. eq.(l.l)), both as a function of 

nucleon numbers N, Z and of deformation 8. In particular, i t should thus 



be a smooth function of N, Z and 3 (no shell effects). 

2. The average HF potential v^p can be well approximated by a phenome­
nological shell model potential V<;

M
 (Nilsson, Woods-Saxon etc). What counts 

is not so much the radial dependence of V
S M
( r ) , but that the shell-correction 

6Ej extracted from its spectrum is the same as that obtained from ^gp-

3. The higher-order shell-corrections (SEj*««»^are small compared to 
6Ej (i.e. [<SE21 ̂  1~2 MeV), so that they can be neglected. 

If these assumptions are true, the energy EgcM (3.16) replaces the HF-energy. 

3.4. Numerical test of the SCM with HF-calculations 

(see [BQ73-75], also [BK73]). 

Idea: Perform numerically the program used above to derive the energy 
theorem and check individually each term. 

Results: Figs. 3.1 and 3.2 show deformation energy curves obtained 
with HF calculations (interactions Skyrme III [BF74] and Negele-DME_[NV72]) 
with a constraint on the quadrupole moment Q 2 . The average energy E(« S^p) 
is seen to behave exactly like a smooth LDM energy. Shown also is the 
LDM energy E

L D
 with the parameters of [MS66]. The differences between E 

and could easily be removed by a re-adjustment of the LDM parameters. 

Fig. 3.3 shows shell-corrections 6 E J and 6 E 2 ; the latter is found 
as 6 E 2 • Ejjp ~ ®HF contains thus a l l higher-order terms. <SEj agrees 
for both interactions and also with the one found in a usual Woods-Saxon 

fotential [BD72] (no adjustment of parameters!) within M-l.5 MeV. 
6TE2J < 2 MeV everywhere; the oscillations are only ±^1-1.5 MeV. 

Fig. 3.4 shows the sum of 2* and higher order shell-corrections, 6E
2
, 

for 14 different nuclei with 100 ^ A ^ 250 in their groundstates. The 
average value of 6 E 2 is ^2 MeV and could easily be renormalized into 
the LDM energy; the fluctuations in 6E

2
 are less than±M MeV. 

More results, see [BQ73-75]. 

Conclusions: 

1) The series Eyjy - Egp + 6Ej • 6E
2
 + ... converges very rapidly. 

In nuclei with A l00?|6E
2
|is always less than ̂  2 MeV; its oscillations 

are less than fW-1.5 MeV. 

2) The shell-correction 6Ej is well reproduced by a phenomenological 
shell-model potential within ±^1-1.5 MeV; i t seems to depend l i t t l e on 
the effective interaction. 

3) The average energy iLp (f in figs. 3.2, 3.3 and 3.6 below) has the 
features of a LDM energy: Minimum at spherical shape, no rapid oscillations 
(shell structure). It can be fitted by a standard LDM energy within less 
than ̂  1 MeV. 

4) In light nuclei, <$E
2
 is not small, but of the same order as <5Ej 

(see [BQ75a,c]), Thus: attention for shell-correction calculations with 
not-self-consis tent potentials for light nuclei! 

5) Since a l l these differences of M-2 MeV seem to be rather random 
(not in phase as functions of N, Z and Q

2
) , they should normally not add up. 

Thus, in heavy nuclei, the total error (compared to a self-consistent HF 
calculation) should not exceed M-2 MeV. 

6) If the average quantities p, and are determined self-
cons is tent ly (by iteration), then |6E

2
fis less than 0.5-1 MeV for a l l 

N, Z and Q
2
 tested [BQ75b]. The approximation 

E * E
K p
 • <TE

4
(6f) (self-consistent) (3.17) 

converges thus extremely well. This is even the case for light nuclei, 
see e.g. *°Ca in Fig. 3.5! 

7) The ideal shell-correction method should thus use LDM parameters 
and shell-model potentials v" which are determined self-consistently from 
one and the same effective interaction V

e
ff. This needs to be done! 

8) A l l these results are derived from the HF framework. For tests 
with Migdal's theory, which exceeds in principle the HF-approximation, see 
[BK72a]. 

9) Se1f-consistency is important mostly for the average energy and 
potential. The shell-effects can be treated perturbatively. This motivates 
the use of semiclassical methods to solve the average self-consistency 
problem with a given interaction (see e.g. [BC76, CJ77]). 

4. PRACTICAL DETAILS OF THE SHELL-CORRECTION METHOD 

The "program" of a Strutinsky calculation is summarized in the f o l l ­
owing. 

1) Parametrization of nuclear shape {$.} 
2) Parametrization of LDM energy 
3) Parametrization of shell-model potential 
4) Calculation of the shell-correction $E; pairing correction {P 
5) Add up:

 E
^

f ( f i )
 .

 E u m (
J . ) . j c ^ ) , < j p ^ , ) V 

We cannot possibly mention a l l the different choices of parameters 
and potentials, which were used by different groups. Table 4.1 shows a l i s t 
of the most active groups (especially in the years 1968-1974) and their 
potentials. 

We go quickly through the above points, mention only the essentials 
and refer to literature for details. Good review articles, covering both 
technical details and results are [TN70, BD72, Ni72, Pa73, MN73 ]. 

Ŵe omit from now on the index "1" used in lesson 3 to denote the f i r s t 
order shell-correction 6Ej 



For illustrative examples, we shall use nomenclature and results of 
the Strutinsky group (Moscow-Copenhagen-Basel), published in [BD72]. 

4.1. Shape parametrization 

From the LDM studies, we have learned that the two most important 
degrees of freedom in the fission process are: 

1) Elongation of the nucleus (c) 
2) Neck-formation (constriction) (h) 

In accordance with LDM results, these deformations are always chosen 
axially symmetric (around the fission axis) and left-right (mass-)symmetric 
(with respect to a perpendicular plane through the neck). 

In the Copenhagen-Basel [BD72] and Los Alamos [Ni72] groups, these 
two degrees of freedom were parametrized such as to closely reproduce the 
family of optimized saddle-point shapes obtained in the numerical LDM 
calculations [CS63, SL63]. In the {c,h} parametrization [BD72], the LD 
fission path goes (for actinides) approximately along h * 0. The {c,h} 
shapes are shown in Fig. 4.1 by the solid lines. (Spherical shape: c - 1.0, 
h « 0). 

In Nilsson-model and related potentials, these two degrees are repro­
duced by a mixture of e

2
,
 e

4
 a n d e

6 **
e

^
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« Close to sphericity, 
c ̂ e

2
 and h ^e^. 

The other two important types of deformations, which do not occur in 
the statistical LDM and are pure shell effects, are: 

3) left/right (mass-, octupole-) asymmetry (<*) 

4) non-axial (tri-axial ellipsoid), ^-deformation 

The asymmetry (a) is defined quite differently from group to group (Lund: 
a mixture of and £ 5 ) . Y is always the traditional tri-axial deformation 
parameter. 

4.2. LDM energy 

At early stages, the classical parameters of Myers and Swiatecki [MS66] 
were used. Later (> 1969), a l l groups oriented themselves more or less 
towards the "droplet model" [My69, MS69] ; with details to be fourid in the 
different references. 

The essentials of the LDM deformation energy have already been 
discussed in lesson 1. 

4.3. Shell model potential (deformed) V(r) 

1) Nilsson-model: (modified harmonic oscillator) with €2 - and y 
deformations: [St66-68, NT69, Mo72, MN73] 

2) Two-centre-model:(two joined harmonic oscillators):[GM71, SG71, 
SM72, AD72, MM73, Ju74]. 

3) "folded Yukawa potential" (a deformable density with sharp surface, 
folded with a short-range Yukawa force to generate a diffuse surface) : 
[Ni69, BF72, Ni72, MN73]. 

4) generalized Woods-Saxon potential with constant surface thickness". 
[DP69a,b; BD72, GP72, Pa73, BL74, Ju75, JH77]. 

Some main common points are: 

- The surfaces of constant potential V(r) (but, due to lack of 
self-consistency, not necessarily exactly of constant density!) are chosen 
to be the same as those of the drops (droplets) of the corresponding LDM. 

- The volume within an equipotential surface is independent of 
deformation (incompressibility of nucleus). 

In f i g . 4.2 we see an example of the single-particle levels 6^ for the 
deformed Woods-Saxon potential of ref. [BD72, Pa73]. 

4.4. The Strutinsky energy averaging method [St66-68; Ts69, BP73]. 

This is the main technical ingredient of a l l practical shell-correc­
tion calculations. There exists a wide literature of descriptions, c r i ­
ticisms and alternative suggestions. The situation up to spring 1975 is 
covered in [BQ75a]; we refer to this paper and to [Br74b] for most of that 
literature and present here only shortly the main points. 

One wants to define the average part of the total single-particle 
energy E

8 p
 of one kind of particle; 

E«r * 2 . (4.i) 

This is done over the level density 

q(e) « Z S(£-£i). (4.2) 
^ i 

The smooth level density g(E) is defined by averaging the exact one 
over an energy range Y with a certain averaging function f

M
(x): 

3 < E ) - i f « ' g f r t f . {!£) - i Z f „ ( ' - ? ) . 

(M is an even integer, see below). 

The function f
M
(x) has the following properties [BP73]: 

We give here the potentials of the main groups, with references for 
details: 

1)
 i s e v e n

 *
n

 X t has its maximum at x "
 0

 and goes to zero 
for x *

 00 



2) Folding an arbitrary polynomial P^(E) (of degree M) leaves this 
polynomial unchanged for any value of y : 

(4.4) 

3) In the limits y 0 and M
 00

 , f^X) gives a delta function: 

1

 •rH-*»o 

(4.5) 

In order to smooth out the shell effects in (4.2), one has to choose 
Y slightly larger than the distance "hft of the main shells in the 
spectrum: 

to. (4.6) 

Fig. 4.3 shows as an example the level density g(E) for a deformed 
Woods-Saxon potential [BD72]. The dashed lines are the averaged level 
densities g(E). 

The condition (4.4) guarantees that the results do not depend on y 
i f the (true) average part of g(E) is a polynomial of degree M. 

The averagesingle-particle energy E
g p
 is now given by 

(4.7) 

where the Fermi energy X is determined by 

(4.8) 

If the (true) average density g(E) is a polynomial of degree M
Q
, then 

the energy £ (4.7) will not depend on y as soon as M > M
Q
+2 and eq.(4.6) 

is f u l f i l l e d . If the spectrum e. is unl imited, then the function Egp 
(Y) 

has an ideal "plateau" in the region 

(4.9) 

This is the case for the harmonic oscillator potential (in 3 dimensions: 
M
Q
 • 2), see Fig. 4.4. It is also approximately true for Nilsson-model 

potentials: the plateau is constant within ^ ±0.2-0.3 MeV. 

For an arbitrary average density, the Strutinsky procedure appro­
ximates the average part locally into a Taylor series which stops after 
M/2 + 1 terms. The error is minimised by the "local plateau condition" 
[ BP73] for Y 

- r —
r

 * 0 
a y 

(4.10) 

and for M: 

(4.11) 

In Fig. 4.5 is an example where eqs.(4.10, 11) are only f u l f i l l e d for 
M y 16; this is rather exceptional. In most cases, local plateaux are 
found with 6 <M < 10 and hft ̂  y ^1.5 hft. 

In potentials with finite depth (e.g. Woods-Saxon), the range y may 
reach into the continuum region (E > 0). There, ideally the resonances 
should be included [RB72]. In praxis, one uses a r t i f i c i a l unbound states 
up to y + 20 MeV which are obtained by diagonalizing the potential in a 
harmonic oscillator basis. In doing so, the uncertainties in the plateau 
values of j?

s p
 are, usually not larger than ̂ 1-1.5 MeV. In some exceptional 

cases, especially at larger deformations with high local level density
1

*
2 

- see e.g. Fig. 4.6 at c - 1.6 and 1.72 - or for small nuclei where hQ 
is bigger than the distance of X from the continuum [SG77] (A 80-100), 
the uncertainty may be somewhat larger. 

^sp 

At the plateau point where eq.(4.10) is f u l f i l l e d , the smooth energy 
(4.7) can also be written as 

E
t f
 * Te;n; 

with the smooth occupation numbers n£ being defined by 

^.R. Chasman, Phys. Rev. Lett. _33 (1974)544 
2

V.S. Ramamurthy et a l . Phys. Lett. 62B (1976)124 

(4.12) 

(4.13) 

The shell-correction is thus 

E ,
r
 - E

$ p 

where 

ft 

(4.14) 

(4.15) 

I n

 Fig* 4.7 we show the values of 6n. in a typical case (the value 
of 6n. is the length of each vertical line, located at the energy £ ^ ) . That 
figure also demonstrates that the^shell-correction 6E is mostly determined 
by the levels inside an interval A ± *vy . Thus, the deep-lying levels do 
not contribute to 6E (4.14). 

Of various methods proposed as alternatives to the Strutinsky 
averaging (see references in [BQ75a] ) , the only one which completely avoids 
the continuum problem is the semiclassical method developed by Bhaduri and 
Jennings [BR71, Je76]. Detailed comparisons of both methods show that 
they lead to identical results within ^1-2 MeV [JB75b,c], thus essentially 
confirming the Strutinsky method using a r t i f i c i a l unbound states in finite 
potentials. 



Strutinsky and Ivanjuk [SI75] proposed a modified averaging method 
which uses^only bound states. Here, too, some uncertainties in the plateau 
values of E

g p
 of M-1.5 MeV are found. Improvements of this method seem, 

however, possible [SB77]
1

. 

4.5. Pairing correlations 

They have to be included in medium and heavy nuclei. This is done 
in the BCS formalism; a pairing correction is calculated (<5P) which is 
determined as the ocsillating part of the difference between a paired and 
an unpaired (A- 0) system. Definitions see [BP72, Pa73]. 

4.6. Numerical uncertainties in the shell-corrections (in praxis) 

a) due to numerical energy averaging: (this lesson) 

- in infinite potentials (Nilsson, square box) :|Ae| <0.5 MeV 
- in finite potentials (Woods-Saxon, folded Yukawa): 

for A ^ 100 : |Afi|usually £'1-1.5 MeV 
for light nuclei, or in situations with extremely high level 
density (e.g. at second barrier without mass-asymmetry): 
|Afi| maybe *\» 1.5-2.5 MeV (?) 

b) due to lack of self-consistency of potential used : 

(see lesson 3) 

- in heavy nuclei and deformations up to second fission barrier: 

x

see also Ivanjuk and Strutinsky, Kiev-preprint (1978) 

|A6E| £ 1-J.5 MeV 

- in light nuclei: up to several MeV! 
- at very large mass asymmetry and large separation (mostly in appli­

cation to heavy-ion-reactions) i1,2 

|A6E| up to several MeV! 

c) due to lack of self-consistency between potential and LDM: 

|A<5e| easily ^2-3 MeV; but smooth as function of N, Z and 
deformation! 

- "Pb-anomaly" : A6E ̂ -4 to -7 MeV !! (see lesson 5) 

This error can be removed by a renormalization of the LDM parameters. It does 
not occur, i f the potential V(r) and the LDM parameters are derived from the 
same effective interaction and self-consistently [BQ75b] (see also lesson 3) 
- but .this has not been done in the praxis so far! 

1

 P. Moller and J.R. Nix, Nucl. Phys. A281 (1977) 354 
2

 H. Gick et al., Z. Physik A282 (1977) 417 

5. RESULTS OF SCM CALCULATIONS 

In this lecture we will summarize the results of realistic deformation 
energy calculations using the SCM. As illustrations, we will show some 
typical results which we have taken - for pure convenience - from refs. 
[BD72, Pa73]. Unless particularly stated otherwise, a l l the results 
discussed here have been obtained independently and with excellent overall 
agreement by the different groups using different potentials, as discussed 
in sect. 4.3. 

We shall restrict ourselves to static aspects, since the dynamics of 
fission is s t i l l at a rather early theoretical stage. The only exception 
will be the fission l i f e time estimates (sect. 5.6), where a "minimal 
dynamical information" is needed in the form of inertial parameters; there, 
too,the static deformation energy is however the main ingredient. 

5.1. Deformation energy surfaces 

The basic problem in representing the deformation energy of a nucleus 
is that the deformation space {3}has an infinite dimensionality. One thus 
has to select the most important deformation degrees of freedom - mostly 
using intuition. 

From the LDM calculations (see sect. 1.2) we know that elongation (c) 
and necking (h) are important collective modes during the fission process. 
A practical way towards an approximate solution of the multidimensional 
problem consists in calculating the deformation energy E(c,h) and minimizing 
i t at each point (c,h) with respect to other possible deformations. 

Fig. 5.1 shows as examples the energy surfaces E(c,h) obtained in 
ref. [BD72] for the nucleus Pû Ô for axially and mass symmetric shapes 
(Y"0i • 0 ). The contributions E

L
DM.* ^

E n a n <

* ^
E

P ( ^
n c

l
u

^ i
n

8 pairing) are 
shown separately; on the lower rVh.s. is the sum of the three, i.e. the 
total energy (normalized, as usual, to ELdm(°) " °)• Note that the inclusion 
of the shell effects moves the ground state minimum to a deformed shape 
(c =1.2, h 22 -0.15). At the same time, a secondary minimum is created 
(c ~ 1.4, h s 0) which lies about 2 MeV above the ground state and is 
separated between ground state and the fission valley by two saddles. 

This secondary minimum is found in most actinides and explains the 
nature of the long-known fission isomers [Po62] as shape isomers. Their 
deformation corresponds roughly to that of an ellipsoid with axis ratio 
2/1. The shapes of the four stationary points in this symmetric energy 
surface E(c,h) are shown in Fig. 5.2. 

Spontaneous fission from the second minimum is much more likely (only 
one barrier) than from the ground state (two barriers, lower energy). Thus, 
the fission l i f e times from isomers are typically lO^O-lO

22

 times shorter 
than those from ground states. 

We shall return later to some of the consequences of the existence of 
these fission isomers (sect. 5.4). 



5,2. Influence of non-axial and mass-asymmetric deformations 

When mass-asymmetric shapes (a/0, see Fig, 4.1) are included, one 
finds that in the region around the second saddle point and beyond i t , 
the energy is lowered by several MeV. The energetically most favorable 
path leads thus over a mass-asymmetric second saddle. This is a pure 
shell effect (in the LDM a is always zero!) and indicates the building up 
° * asymmetric fragments. 

Fig. 5.3 shows the second saddle region; in the upper part with a - 0 
and in the lower part after minimizing E with respect to a in each point (c,h). 
Note that the barrier height is decreased by ^2.5 MeV! The isomer 
minimum is stable (a • 0). The mass asymmetry thus increases rapidly 
between the isomer minimum and the outer saddle; beyond the saddle i t stays 
constant in such a way that the ratio of the nascent fragments approaches 
a more or less constant value as the nucleus approaches the scission point. 
This value agrees qualitatively well with the most probable mass ratio 
observed in the fragment distribution. (For a recent comparison, see [JH77]). 

This is particularly well demonstrated in a calculation using the two-
centre-model (see sect. 4.3) which is especially well suited for the shapes 
between saddle and scission point. Fig. 5.4 shows as an example the energy 
surface of U236 as a function of neck radius (D) and mass asymmetry [MM73]. 
One sees the valley which leads down from the saddle with an approximately 
constant mass ratio ( M40:96 near scission). The fact that this agrees 
well with the experimental (most probable, kinetic energy averaged) mass 
ratio, should of course be taken with caution. Here we considered only the 
potential energy ( i.e. static ) aspect of the problem, ignoring dynamical 
(inertial) effects which may play an important role especially on the way 
down towards scission! 

S t i l l , i t is interesting that the mass ratio of the future fragments 
is already indicated after the saddle point by a purely static shell effect. 

Another important deformation degree of freedom is the non-axial (y) 
deformation. In the same way as mass asymmetry lowers the second saddle, 
one finds that inclusion of Y'deformation lowers the f i r s t saddle by up to 
*v>2 MeV for actinides with A ̂ 232. This effect, which increases through the 
actinide region with increasing mass number, considerably improves the 
agreement between theoretical and experimental heights of the f i r s t barrier 
(see e.g. Fig. 11 in ref. [MN73](Rochester) p.125). 

Recently, an instability against y-deformation was also found around 
the second barrier [GB77, JH77]. It leads to a "second outer" saddle which 
is ydeforaed but mass symmetric and lies ^1-2 MeV higher than the usual, 
mass asymmetric but axially symmetric outer saddle. This "new channel" may 
affect the fission cross section at larger excitation energies (see [6B77]), 
especially in the mass-symmetric mode. 

5.3 Systematics of barrier heights 

We refer to the lectures of E. Lynn
1

 for the extraction of barrier 
1

E. Lynn, these proceedings 

heights from an analysis of fission cross sections. In Fig. 5.5 we see 
a comparison of the most up-to-date experimental barrier heights 
(E

A
 • inner, Eg • lowest outer barrier) with the theoretical values 

obtained using three different shell model potentials (see sect. 4.3). 

In general, there is a pretty good agreement, amongst the different 
theoretical results as well as between theory and experiment. A syste­
matic deviation is found for E^ in light actinides with low neutron number 
(N £ 140). This discrepancy, fi r s t observed in Th-isotopes, has obtained 
the name "Th-anomaly". Otherwise, the calculated barriers agree with the 
experimental ones within ̂ 1-2 MeV. As we have seen in the previous lesson 
(sect. 4.6), this is the general kind of uncertainty which we expect in 
SCM calculations; so we cannot expect the agreement to be much better. 

A possible explanation of the Th-anomaly may be the fact that in some 
calculations [MN73] a splitting of the second barrier into two small humps, 
separated by a shallow (third) minimum, has been found. This would com­
pletely change the analysis of fission cross sections (see Lynn's lectures). 
However, the fluctuations of this split second barrier are only of the 
order of M-2 MeV, and have thus to be taken with caution. Furthermore, 
i t seems that the picture of the triple-humped barrier (with a second 
minimum at ^2-3 MeV and a third minimum at ^4-5 MeV) is not compatible 
with photofission data of Th

2 3 2 2 , 3

 . (See lesson 6 for more discussion 
about Th). 

5.4 Physics of the fission isomers 

We quickly summarize here the kind of experiments that allow to learn 
about the nature and details of the fission isomers. Extensive reviews 
were given by Specht [Sp74 ]**. 

a) The fission cross sections (excitation functions) are modified by the 
isomers in a characteristic way: they show resonances which correspond to 
vibrational states in the second well. (See the lectures of Lynn for 
details). 

b) The rotational band built on the lowest 0
+

 state in the second well of 
p

u
240

 w a s
 measured in a rather spectacular experiment [SW72]. The deduced 

moment of inertia f is about 2.5 times larger than that of the g.s. band. 
This was the f i r s t direct evidence of the large deformation of an isomer. 
The measured value of ^ agrees well with the theoretical one, obtained 
from the single particle wavefunctions with the cranking model (although 
the latter one has an uncertainty of ^5-10%). A similar experiment was 
recently finished for U

2 3 6

 [BP77a]. 

c) The most direct determination of the deformation of an isomer was ob­
tained in a recent measurement of the quadrupole moments Q? of Pu

23

^ 
[HM77] and Pu

2 3 6

 [MS77] in the isomer state. The agreement of Q
2
 (within 

the experimental error limits) with the theoretical values [BL74] is excellent. 
1
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d) The only directly (and precisely) measured energy of the fission 
isomeric state known up to date is the one of U

z

3o, deduced from 
observed y-transitions between the 0

+

 state in the second well and the 
lowest 2* and 1" states in the ground state well

1

. The energy E j j - E j 
• 2.559 MeV agrees well with the theoretical values within their error 
limits. 

e) Spectroscopy in the isomeric well was attempted for Pu
2

^7 2
#
 Here, 

two isomeric states are known with half lives 100 ns and 1.1 ps. Since 
this is an odd-A nucleus, these states have spin J , K ^ 0. Their g-factors 
were measured with the spin-precession method in an external f i e l d . The 
spin assignments were, however, not unique. 

5.5. Ground-state masses 

The SCM can of course also be used to calculate the total ground-state 
mass (binding energy) of a nucleus. The empirical corrections 6M to the 
LDM energies were determined systematically for the f i r s t time by Myers 
and Swiatecki [MS66]. More recent compilations, using different versions 
of semi-empirical mass formulae or the droplet model

3

, may be found in 
Nuclear Data Tables'*. In Fig. 5.6 we see a comparison of the empirical 
values of 6M

3

 with the theoretical ones, obtained with the folded Yukawa 
potential [MN73]. The agreement is in general good, within ± M-2 MeV, 
except in the Pb region. Especially using a Woods-Saxon potential [BD72], 
one obtains a discrepancy of ^5 MeV for Pb208. 

This"Pb-anomaly" is much smaller, when one uses the Nilsson model. In 
the most recent mass f i t using Nilsson levels

5

, an agreement 
- 2 MeV £ (6M

tn
- 6Me

X
p) %

 + 2 M e V w a s

 reached (although here, too, the 
most systematic deviations occur around Pb

2 0 8

). On the other hand, the 
too large (negative) value of 6M obtained for Pb

2 0 8

 with the Woods-Saxon 
potential has been substantiated

6

 by HF-calculations [BQ75b] in which the 
exact total energy of Pb

2 0 8

 is reproduced. The discrepancy must therefore 
be due to the lack of self-consistency between the smooth (M>M) energy and 
the W-S. potential used. This is the point we made at the end of sect. 4.3 
above (point c). 

If both the average energy and the average potential are derived self-
cons is tent ly from the same interaction, as was done in ref.[BQ75b], the 
Pb-anomaly does not exist; see the results discussed in sect. 3.4, esp­
ecially point 6), and eq.(3.17)! It is possible that the Th-anomaly dis­
cussed above is due to the same reason. 

X

P.A. Russo et a l . , Rochester 1973, Vol. I, p.271. 
2

R. Kalish et a l . , Phys. Rev. Lett. 32 (1974) 1009. 
3

W.D. Myers and W.J. Swiatecki, Ann. Phys. (N.Y.) 84 (1974) 186. 

^Atomic Data and Nuclear Data Tables, Vol. VJ_ (1975) 41 1. 
5

P.A. Seeger and W.M. Howard, Nucl. Phys. A238 (1975) 491 
6

see also Y. Yariv et a l . , Z. Physik A278 (1976) 225. 

5.6. Life time estimates for spontaneous fission 

We just sketch here a simple semiclassical method which allows to 
calculate l i f e times using WKB barrier penetration. The fir s t systematic 
studies of this kind were done by Ledergerber and Pauli

1

[PL73]. For 
more recent similar studies, see refs.

2

»
3 

If the fission path is represented as a one-dimensional trajectory 
q(c,h,a...) in the deformation space, the probability (width) V for 
barrier penetration between points qj and q

2
 is in the WKB approximation 

(see e.g. [BW39]) _± 

r « t u o f • e * ( S ) , 

where 1ia)̂  ^ I MeV (within a factor of ̂ 2) is the frequency of "assault" 
in the fission mode (q), and S is the action integral along the chosen 
trajectory: t* 

Here V(q) is the potential energy of collective deformation, i.e. the 
deformation energy obtained with the SCM along the path q(c,h,a...); 
Bq(q) is the inertial parameter which in the adiabatic approximation 
can be obtained using the "cranking model"

 H

; E is the total energy of 
the system. 

The most probable path is the one which minimizes the action S, i.e. 
the "least action trajectory". An example of such a trajectory is shown 
in Fig, 5.7 (from [PL73]). 

This method applies only i f one is well below the barrier; i t can 
therefore only be used with reasonable justification for spontaneous 
(g.s. or isomeric) fission. Hereby, qj is a point in the g.s. (or 
isomeric) minimum and q

2
 a point in the "fission valley" on the other side 

of the barrier at the same energy. The l i f e time is then given simply 

t v i r • 

Since Y is extremely sensitive to the barrier heights (through the ex­
ponential dependence), the inaccuracy in the latter ( M-2 MeV) leads to 
theoretical error limits in tj/2 °* several orders of magnitude. 

Fig. 5.8 shows the results obtained in [PL73] for ground state fission 
of the actinides. (Hereby, the LDM parameters a and K F I were readjusted in 
three different regions, as shown in the figure). There is a very clear 
correlation between theoretical and experimental values within each isotope 
series. 

Similar results were obtained by Randrup et a l .
2 

using a phenomenological (classical) inertial function B
q
(q) (instead of 

the cranking value) with one adjustable parameter. Extended l i f e time 
calculations with microscopical inertias B (q) using the Nilsson 
model will soon be published by the Warsaw group (Sobiczewski et a l . ) . 

1

 T. Ledergerber and H.C. Pauli, Nucl. Phys. A207 (1973) 1. 
2

 J. Randrup et a l . , Phys. Rev. £ n (1976) 229. 
3

 A. Sobiczewski et a l . , to be published. 

* D.R. Inglis, Phys. Rev. 96 (1954) 1059 and 103 (1956) 1786. 



6."H0T TOPICS" - SOME OPEN QUESTIONS 

We mention here some open problems related to the static barrier 
picture discussed above and its possible limitations. Rather than 
presenting a detailed discussion and reproducing many figures, ve shall 
just give some key arguments and refer to the relevant literature. 

6.1. Th-anomaly: triple-humped barriers? 

We have already mentioned (in sect. 5.3) the so-called Th-anomaly 
and a possible interpretation in terms of a triple-humped barrier [MN73]. 
If this interpretation is correct, one has to consider other possible 
consequences of the existence of a third minimum. In a recent experiment 
at Sac^ay

1

, a shape-vibrational resonance in the fission of the 
Th233 

compound-nucleus was investigated with high resolution. Some fine structures 
with rotational band-like nature were observed. The corresponding moments 
of inertia are larger than the typical values found in the second wells of 
Pu

2 4 0

 and U
2 3 6

 (see sect. 5.4.b) and would be compatible with the defor­
mation of the second saddle point, i f one interpolates between the values 
of the neighbouring even-A isotopes. However, in Th

2 3 3

, the blocking 
effect of the odd neutron has to be taken into account which will give 
larger moments of inertia, also in the case of rotational bands built on 
quasiparticle states in the usual second well. Thus, the values of ft do 
not prove the existence of a third minimum. 

A recent analysis of photo-fission data on Th
2 3 2 2

 seems to favour 
the usual double-humped barrier with the second minimum at ^ 3 MeV (and 
not one at *\*4.5 MeV). 

If the usual double-humped barrier picture is to be maintained in 
the lighter neutron-poor actinides, one has to explain why the calculated 
inner barriers are several MeV too low. It is possible that this defect 
is related to the "Pb-anomaly", which we attributed (in sect. 5.5) to the 
missing self-consistency between the LDM energies and the average po­
tentials used in the SCM calculations. 

6.2. Superheavy Elements? 

Already since the f i r s t successes of the SCM, one has speculated 
about the possibility, that an "island" of stable nuclei exists with 
Z * 114-126 and A ^ 300-350. Although the LDM part of the deformation 
energy does not give a stable ground state for such nuclei (X £ 50), a 
sufficiently strong shell effect (preferably at the spherically magic 
numbers Z - 114; N - 184,226) might produce a barrier which is high 
enough to lead to an experimentally detectable fission lifetime. Indeed, 
barriers of ^7-12 MeV were obtained in the calculations for such nuclei. 
However, the main problem is here the unreliability of extrapolating LDM 
and shell model potential parameters to unknown regions. Indeed, the 
different models and parameter sets give differences of several MeV in the 

1

 J. Blons et a l . , Phys. Rev. Lett. 35 (1975) 1749. The experiment was redone 
at Geel with even better resolution; the rotational structures seem to be 
confirmed (J. Blons et a l . , to be published). 

2

 M. Asghar, Z. Physik (in print). 

predicted barrier heights (which means ten or more orders of magnitude 
uncertainty in the l i f e times!). We refer to conference reports for details 
of these calculations (Ronneby, 1974 and r e f .

1

) . 

The use of the HF method with effective interactions might be more 
reliable for such extrapolations, since relatively few parameters (*W) are 
used here which are the same for a l l known nuclei from A ^ 16 to A ^ 250. 
But the constrained HF calculations are too time consuming - at least at the 
moment - for systematic studies for these superheavy nuclei, so that further 
approximations are necessary which lead to further uncertainties. 

As to the experimental searches for "superheavies", both in nature and 
in the laboratory (heavy-ion accelerators), which a l l have been negative so 
far, we also refer to the above-mentioned proceedings. 

6.3. Fragment mass and kinetic energy distributions 

We saw in section 5.2 that already at the second saddle, a preference 
for mass-asymmetric shapes exists due to the shell effects in the deformation 
energy. Although this is certainly connected to the asymmetric fragment 
masses, we cannot explain the mass distributions knowing the potential energy 
only. One should expect that dynamics play an essential role in the deter­
mination of the fragment distributions. 

Therefore, i t is rather astonishing that i t is s t i l l possible to explain 
the qualitative features of the fragment distributions reasonably well 
without doing dynamical calculations. We shall not discuss here the sta­
tistical model of Fong

2

 which is known since more than two decades. We w i l l , 
however, quickly mention the so-called static scission point models used in 
connection with the Strutinsky SCM

3

 **
 5

 . Here the scission configuration is 
described by two fragments (so far usually rotational ellipsoids) kept at a 
finite distance d (which is the distance between the closest points of the 
two surfaces). The total potential energy of this configuration, V ( N j , Z j , 
N

2»
z

2»^l»&2»d)» *
8

 calculated including interaction and shell-correction 
energies. Based on the arguments of Norenberg

6

 one assumes a partial 
equilibrium between collective degrees of freedom (here mainly the asymmetry 
determined by the nuclear numbers N^Z£ and the deformations 6̂ ) and 
negligible coupling between collective and intrinsic degrees (in constrast to 
the model of Fong, where total statistical equilibrium is assumed, also 
between collective and intrinsic degrees). The probability for a certain 
fragment distribution is then given either by a Boltzmann factor

1

* 
exp[-V(Zi,N£,3i)/T

co
ii] where the collective temperature T

c o
n is an 

adjustable parameter, or - which thermodynamically is probably more correct -
by minimizing the free energy

5

. In either case, the fragment distributions 
are determined by the static potential energy at scission (plus the assumed 
partial statistical equilibrium). 

1

 Proceedings of International Symposium on Superheavy Elements, Lubbock, 
Texas, March 9-11, 1978. 

2

 P. Fong, Statistical Theory of Nuclear Fission, Gordon and Breach, N.Y., 
1969; see also Phys. Rev. CI6 (1977) 251 for recent references. 

3

 F. Dickmann and K. Dietrich, Nucl. Phys. A129 (1969) 241. 
* B.D. Wilkins et a l . , Phys. Rev. CU (1976) 229. 
5

 M. Prakash et a l . , Nucl. & Solid State Physics Symp. (India) 19B (1976) 
127. 

6

 W. Norenberg, Rochester 1973, Vol. I, p.547 and Vienna 1969, p.51. 



Such calculations reproduce many features of fragment mass and kinetic 
energy distributions, including shell effects, in a qualitative and in 
some cases even semiquantitative way (see especially the extended calcul­
ations of ref.** above). Clearly, a l l the shell effects, which play an 
essential role in these distributions for low-energy fission, are determined 
by the Shells in the fragments at the scission point, in particular also the 
asymmetry of the mass distribution (where i t occurs). Above in section 5.2 
we saw that the most probable mass ratio is also coming out as the result of 
a shell effect in the parent nucleus at the outer saddle. Thus, the 
asymmetric mass split seems to be affected very l i t t l e during.the descent 
from the saddle to the scission point. This was indeed confirmed in 
approximate dynamical calculations using the two centre model

1

. It was 
found there that at least the gross features of the mass distribution are 
mainly determined by the potential energy surface. 

The success of the static scission point model makes i t worth while 
investigating somewhat more its theoretical justification. In particular, 
the choice of the constant distance d has to be justified. The underlying 
assumption of the presence of a scission barrier must be checked and its 
dependence on the shape parametrization of the fragments must be investigated. 
Also, in a more rigorous thermodynamical treatment, the collective tempera­
ture T

c o
n and the intrinsic temperature T £

n t
 given to the fragments 

are not free parameters, but should be determined by the total energy 
balance of the system. Some promising work along these lines is under way

2

. 

It is interesting to note that many of the features of the fragments 
can be understood from purely static and statistic considerations at the 
scission point. The fissioning system seems to have lost most of its 
memory of what happened between the saddle and the scission point, except 
for the establishment of the partial equilibrium. 

6.4. The role of dynamics 

After the above discussion, one cannot withhold any longer the obvious 
question: where and how do the dynamical aspects come in at all? Certainly 
they must play a role in the descent between the saddle and the scission 
point. But the qualitative success of the static scission point model puts 
at least some boundaries on this role. In particular, i t seems to confirm 
the underlying assumption of this model that the fragments have a negligible 
pre-scission kinetic energy at the moment of the rupture of the neck. 
Recent measurements of long range a-particle emission in the fission of 
U236 

and Cf
2

^
2

 and their analysis
3

 also seem to confirm the assumption of a 
small pre-scission kinetic energy (<5 - 10 MeV). This is in contradiction 
with dynamical liquid-drop calculations'* which predict this energy to be 
larger and to increase with increasing mass number (̂ 20 - 50 MeV for 
actinides). 

The dissipation during the descent from the saddle must be small enough 
not to destroy the superfluidity of the lighter actinides, where the prefe­
rence for the formation of fragments with even Z is a well-known experimental 

Greiner, Phys. Rev. C13 (1976) 2404. 
5 

J.A. Maruhn and W. _ . . 
M. Prakash et a l . , Preprint Bombay (1978), and ref. * above. 
C. Guet et a l . , submitted to Journ. de Physique, Lettres (1978), and 
references therein. 
J.R. Nix, Nucl. Phys. A130 (1969) 241. 

fact
1

 (for low-energy fission). 

At this point we would have to enter into a discussion of dynamical 
theories, of the question: one-body or two-body viscosity, etc., which 
goes beyond the boundaries of our lectures. But this is the field where 
most theoretical work must be done in the near future. We conclude by 
referring to a recent article

2

 in which both macroscopic and microscopic 
dynamical models and dissipation mechanisms are discussed and many references 
to the recent literature can be found. 
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LDM energy surface as function of a2Q and â Q deformations for 
a nucleus with x • 0.8. Equidistance of contour lines in units 
of the surface energy E 

s u r f
( 0 ) . (From Wilets, 1964). 

82 < Z < 126. (From Vandenbosch Nilsson levels for protons, 
and Huizehga, 1973). 

240 
Fission barrier of Pu obtained with a constrained HF calcul­
ation with the force Skyrme III [FQ 736]. Dashed and solid lines 
correspond to different ways of including pairing. Dots (with 
arrows) give the energies (and slopes of the curve) at the two 
minima and the 2. saddle when the basis is increased (to demon­
strate convergence). For details see [FQ 74]. 

Exact HF energy (E
H
p) and its average part (E; E

H F
 in the 

text above) obtained with force Sky III. E^n shows the LDM 
energy (adjusted at Q2 0) obtained with the parameters of 
[MS 66]. 

Same as Fig. 3.1 with force Negele - DME. 

Shell-corrections 6Ej and 6E2 corresponding to the two 
previous figures, and 6E] from usual WS potential [BD 72] 
for comparison. 

Values of 6 E 2 for various nuclei in their ground-states. 

As in Fig. 3.1, but here E is calculated selfconsistently. 

Axially symmetric shapes as functions of elongation (c) and 
necking (h) parameters. The shapes along h • 0 correspond 
to the LDM fission valley in a typical actinide nucleus. The 
dotted curves include some left/right asymmetry (a + 0) typical 
at the second saddle (c ̂  1.6) [Pa 73]. 

Neutron levels ££ of the Pu
2
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0

 (N * 146) obtained with the 
deformed Woods-Saxon potential [BD 72, PA 73] versus elongation 
c (n • a • 0). Numbers in circles show "magic" numbers (note 
the deformed shell n - 146 at c - 1.4 which leads to the 
shape isomer in Pu^^Oi). odd parity states are dotted; the 
numbers inserted correspond to twice the K value (projection 
of ang. momentum along symmetry axis) . 

Density of single-particle states g(E) in P u
2

^ at different 
deformations c (h * a • 0). At the top, some nucleon numbers 
are indicated (magic numbers for c • 1). The dashed lines 
represent the uniform level density g(E). 

Shell-correction 6E for a spherical harmonic oscillator well 
with 70 particles, versus smoothing width y. The numbers in 
parentheses are M/2. Note that the length of the plateau 
increases with the number of levels (shells) included [BP 73]. 
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As in Fig. 4.4, for a spherical Woods-Saxon potential [SG 77]. 
The inserted plot Shows the stationary value 6E(y

0
) according 

to eq. 4.10 versus order M of curvature correction. 

As in Fig. 4.4, for Z - 94 
ent deformations c [BP 73]. 

protons in WS potential at differ-

Proton levels C£
F

 in deformed WS potential and values of the 
occupation number differences 6n^ 
Fermi level X [BP 73]. 

in a region 'Vtkuy around the 

240 
Deformation energy surface for Pu for symmetric shapes 

_ p
r o
ton and (a 0). Upper right: LDM energy. Left side: 

neutron shell-corrections 6Ep, 6E
n
 (including pairing). Lower 

right: total energy. Numbers along contour lines show energy 

240 
nucleus at the four stationary points in the 
Dashed line at second saddle: asymmetry a 0 

Shapes of Pu 
(c,h) surface, 
included. 

240 
Total energy of Pu in region including isomer minimum and 
outer saddle. Upper part: symmetric shapes. Lower part: 
energy minimized with respect to a in each point (c,h). 

236 
Potential energy surface of U calculated with the two-centre 
model [MM 73], as function of neck radius D and mass ratio. 
Energy contours in MeV (relative to g.-s.). The region between 
ground-state and second minimum (at ^1 MeV) is only indicated 
partially. The asymmetry reduces the second saddle from 8 to 
5.7 MeV. 

Comparison of experimental and theoretical barriers of actinide 
nuclei. The figure includes two newly measured barriers E^ 
of Pu^32 and p

u
Z34

 U 8
i

n
g g-delayed fission [D. Habs et a l . , to 

be published in Z. Physik A, 1968]. I am indebted to H. Specht 
for providing me with this figure prior to its publication. 

Comparison of experimental ^Mg^^ (top) and theoretical shell-
corrections <5Mt,

n
 (middle) to ground-state masses. (Bottom: 

6M
exp#

 - 6M
th
). From [MN 73]. 

240 
Potential energy surface of Pu obtained with WS potential 
[BD 72]. Upper part: as in Fig. 5.1. Lower part: as function 
of elongation c and asymmetry a. The solid heavy line is the 
projection of the least action trajectory onto the corresponding 
surfaces. Crosses show the locus of constant mass ratio 1.43 
of the nascent fragments (from [PL 73]). 

Comparison of calculated (dots) and measured (crosses) l i f e times 
for spontaneous fission. (From [PL 73]). 
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