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Abstract: We consider the influence of higher-order terms in the leptodermous expansion used to extract 

the incompressibility K, of infinite nuclear matter from data on the breathing mode of finite nuclei. 

The terms we calculate are the curvature term Z&A -2’3, the surface-symmetry term Z& Z2A-“3, 
the quartic volume-symmetry term Z&Z+‘, and a Coulomb-exchange term. Working within the 

framework of the scaling model we derive expressions for their coefficients in terms of quantities 

that are defined for infinite and semi-infinite nuclear matter. We calculate these coefficients for 

four different Skyrme-type forces, using the extended Thomas-Fermi (ETF) approximation. With 

the same forces we also calculate the incompressibility K(A, I) for a number of finite nuclei, fit 

the results to the leptodetmous expansion, and thereby extract new results for the same coefficients. 

The comparison of the two calculations shows that the leptodermous expansion is converging 

rapidly. Of the new terms, the term K,Z4 is quite negligible, the curvature term should be included, 

and we discuss to what extent the other higher-order terms are significant. 

1. Introduction 

There has recently been a considerable revival of interest in the question of the 

incompressibility of nuclear matter, prompted in the first instance by the belief that 

it is of crucial importance for the very occurrence of supernova explosions; for a 

summary of the current situation, see ref. ‘). Clearly, it is of the greatest importance 

to see how much information on nuclear-matter incompressibility can be extracted 

from laboratory nuclear physics. This is a challenge not only to the experimentalist 

but also to the theoretician, since there has to be an extrapolation from finite nuclei 
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to infinite nuclear matter. (Actually, in the astrophysical context this. extrapolation 
is particularly tenuous, since one is dealing with nuclear matter that is much more 
neutron-rich than is ever the case for stable nuclei.) 

Experimental information on the incompressibility of nuclear matter comes from 
a variety of sources. Thus, Sagawa et al. ‘) investigated the sensitivity of the lead 
isotope shifts (of the r.m.s. charge radius) to KY, the incompressibility of symmetric 
infinite nuclear matter, and found that 217 MeV worked much better than 269 MeV. 
Looking at the details of the charge-density differences between several lead isotopes, 
Cavedon et al. ‘) found their results to be compatible with K, = 228 MeV; K, = 

209 MeV would definitely be too low. [A similar study by Co’ and Speth “) required 
a K, of about 345 MeV, but this conclusion was criticized by Bartel e# al. ‘) on the 
grounds that pairing had been neglected.] 

However, the traditional and most prolific source of information has been the 
giant isoscalar monopole resonance, the so-called breathing mode. Two different 
procedures can be used for extracting values of K, from the measured energies. 
Firstly, we have the approach of making RPA calculations 6), or semi-classical 
approximations thereto ‘), of the breathing mode in several finite nuclei for various 
effective forces characterized by different values of K,. The force that has the best 
agreement with experiment then determines the best value of K,. A value lying in 
the range 215 to 230 MeV appears to be quite consistent with the data in this 
approach 6,7). 

The second, more direct approach ‘), defines a finite-nucleus incompressibility 
K(A, I) in terms of the corresponding breathing-mode energy, &, thus 

K(A, I) = (M/h*)(r*)E;, (1) 

where I = (N-2)/A is the neutron-excess parameter, and then makes use of the 
fact that according to the scaling model of the breathing mode the following 
leptodermous expansion is possible: 

K (A, I) = K, + &,A-“3 + K,,I* + &oulZ2A-4’3 + . . . . (2) 

Fitting eq. (2) to the breathing-mode data then permits in principle a determination 
not only of K,, but also of the other parameters, J&r, I&,, etc. At the same time, 
Blaizot “) expresses Z& and Z& in terms of properties of infinite nuclear matter 
(INM) and semi-infinite nuclear matter (SINM), properties that can be calculated 
directly for different effective forces. 

Treiner et al. 9, have raised the question of higher-order terms, in particular a 
curvature term, in the leptodermous expansion (2). If all terms of the next order in 
the small parameters I2 and A-1’3 are included we have 

K(A, I) = K,+ &#I3 

+ K,, I* + &ou,Z2A-4’3 + K414+ &sZ2A-“3 + I(cvA-*13 (3) 
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A curvature term &,Aw2j3 was in fact included by Sharma et al. lo) in a fit of recent 
high-precision measurements of breathing-mode energies; they found K, = 300 MeV 
and K$= -750 MeV. Their numerical fitting procedure using a limited set of finite 
nuclei was later tested 11) by using model calculations of K(A, I) for different 
Skyrme-type forces whose asymptotic values of K, and Z& are known (see also the 
results presented in the present paper), confirming thereby the results of ref. lo). 

The main purpose of the present note is to extend the work of ref. “) by expressing 
the new coefficients, I&, Ic;ss and I&, in terms of properties of INM and SINM. 
Thus by calculating scaling-model compressions of both SINM and finite nuclei 
for different forces we can test the rate of convergence of the expansion (3), and 
thereby decide which terms should be retained in fitting the breathing-mode data. 
It must be stressed that all the considerations of this paper suppose the validity of 
the scaling model, the limitations of which are discussed in refs. 7,11). 

The forces we consider all have the Skyrme form, 

(4) 

Specifically, we consider the SkM*, RATP, SkA, and S3 parametrizations, all of 
which are conveniently summarized by Brack et al. 12) (hereafter referred to as 
BGH). The energies of all systems, i.e., finite nuclei, INM, and SINM, are calculated 
in the semi-classical extended Thomas-Fermi (ETF) approximation, without any 
shell corrections. We use the full fourth-order expansions (in powers of h) of 
the kinetic-energy and spin-current densities, TV and Jq, respectively, as given by 
Grammaticos and Voros 13,14). The energy density 8(r), which gives the total 
energy as 

E ETF= I g(r) d3r, (5) 

becomes a function of the nucleon densities, ps, and their gradients: see BGH ‘*) 
for more details (we follow them in omitting terms in J’,). 

2. Calculation of the coefficients of the leptodermous expansion 

We suppose that the density distributions of neutrons (q = n) and protons (q = p) 
in finite nuclei (always supposed to be spherical) take the generalized Fermi form 

(6) 
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The equilibrium values of all the parameters appearing here are determined by 
minimization of the total energy. In SINM the distributions are given by 

(7) 

[The generalization from the ordinary Fermi distribution, 7” = yP= 1, skews the 
distribution in the surface; this has a significant effect on the equilibrium 
densities 12*15), and thus on the calculated incompressibility ‘).I 

The scaling model of nuclear compressions supposes that at all points the densities 
are shifted from their equilibrium values according to 

p,(r) + h3p,(hr) , (8) 

where the same scaling factor A is applied to the neutron and proton distributions. 
The finite-nucleus incompressibility is then given by 

K(A,I)= -$(A) 
[ 1 h=l 

=cJ #f [ 1 dpf eq’ (9) 

where pc = pen + pep, e is the energy per nucleon of the system in question, and the 
right-hand side of the second expression is evaluated at the equilibrium values of 

pen and pep. Note particularly that the derivative in this latter expression is a total 
one, so that a variation of density at all points is implied, consistent with the scaling 
of eq. (8). 

We have for the total energy 

E~eA=e”(p,,S,)A+4~R2b,(p,,S,)+87TRbl(pc,6,)+..., (10) 

where 

SC = ( PC” - PC,)/ PC 9 (11) 

e”( pc, 8,) is the energy per nucleon in INM, while bO and br relate to SINM, as 
described in sect. 5 of BGH r2). Also, following eq. (5.15) of BGH, we have 

R = ( po/pc)“3( r,,A1’3 - coao) + O(A-1’3) . (12) 

Here p,, is the equilibrium density of symmetric INM, and r. = (3/47rp,) 1’3. Also co 
and a, are determined from symmetric SINM at equilibrium, a, being the value of 
aP= a, in eq. (7), and 

I 

CO 
co = dy{(l+ey)-Y+(l+e-y)-Y-l}. (13) 

-co 

Then 

c = c”( pc, 6,) + 4mri( pal PJ~‘~~~( pc, S,M-“3 

+8~ro{(PolPc)1’3bl(Pc, 6,) - CO~O( P~/PJ~‘~~~( pc, &))A-“’ , (14) 
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in which it should be realized that not all the A-“3 dependence has been shown 
explicitly, since pc is slightly A-dependent. Setting 

E = (PC - Po)/Po (15) 

(this is -3 times the E of the droplet-model literature i6), we expand (14) in terms 
of .e and 6,: 

em(p,,6,)=a,+~K,&2-~K’&3+~jK”&4$.’. 

+S~{J+~LE+~~ClsymE2-~Kby,E3+“ *) 

+~~~~+~~&+~vE*+. * *), (164 

bo(p,, 8,) =ao+$C~+&D~2-&G~3+* * * 

t-6f{T,+3AE+~rE2+...}, (16b) 

6,(p,,s,)=~,+3x&+~Y&*+‘.._ (16~) 

Eq. (16a) relates to INM, and all the coefficients are calculated anal~ically for 
the different Skyrme forces. The coefficients a,, J, M, K,, and L are familiar from 
the droplet-model literature r6), with J being the volume-symmetry coefficient, while 
K, appears already in eq. (3) as the incompressibility of symmetric INM. Neither 
a, nor M are involved in any of the final expressions (21) for the coefficients of 

eq. (3). 
Eqs. (16b) and (16~) both relate to SINM, with 

~0 = (1/4dhf, (174 

70 = (9,’ 167rr;)J2/ Q, (17b) 

PO = (m~~okJc”+ coao*o * (17c) 

Here asf is the droplet-model surface coefficient, Q the surface-symmetry stiffness 
coefficient, and ucV the curvature coefficient 16). These three quantities are defined 
with respect to the equilibrium configuration of SINM, while all the other coefficients 
of eqs. (16b) and (16~) represent derivatives of these quantities with respect to the 
limiting density pc. We describe below in more detail the way in which all the 
coefficients of eqs. (16b) and (16~) are determined by calculations on SINM. 
However, we comment here on the presence in (16b) of the C-coefficient, which 
according to the so-called “& = 0” theorem 16*17) should vanish: the point is that 
this theorem will not be strictly valid in the present calculation since the variations 
of the density are restricted by the parametrization (7). 

To proceed with the formal development, we substitute the expansions (16) into 
the expression (14) for the energy per nucleon of a finite nucleus. Minimizing with 
respect to pc (or E) and 6, for the given values of I and A determines the equilibrium 
values of pc and 6,. For the latter, the usual droplet-model expression 16), 

1 
6,= 

1+ (9~/4~)A-*‘3 
(18) 
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suffices in the present calculation, but for pc we need higher-order terms: 

pEq(A, I)=p,,+$[-L12+(LK&Kv+L2K’/2K:- U)14 
” 

+4m~A-1/3(2u0 - C) + Ae213 t8~ro{CLO-X-coaot2ao-C)> 

+~6~2r~(2~o-C)~(-l~~o-D+4C~/K”+K’(2~o-C)/2K~}] 

+4~r~,12A-“3{2(1+L/J)~o-A-%,,(2ao-C)/K, 

+(10~o+~-4C)L/K”-KrL(2~o-C)/K~~]~. (191 

From eq. (9) we then have, writing pEq(A, I) = p, 

K(A, 0 =9~2t(~2~f~~~~P~+(~-~o>~~“~f~~%~, 

+$(jI-po)2(d4e/dp~),+~~*]. (20) 

Noting that the scaled compressions (8) always leave S, unchanged at its equilibrium 
value (181, a long and tedious calculation leads to the following expression for all 
the coefficients of the leptodermous expansion (3): 

K,,=r$,,+L(K’/K-61, (2Ia) 

&= V+(K’/K~-6)U-3LzK’/K~+9L2/K” 

+ (K&m -K’K&,,‘Kv)L/Kv+L2(K”-K’2/Kv)/2K~, (21b) 

~~=4~r~{(22-2K’/K~)~o+D+(K’/K”-lO)C}, w-9 

K;,=~~~~[T+(K’/K,-~~)A+{~~-~K’/K,+(~~L-~~,,-~LK’/K,)/J}T~ 

-( lOai, -4C+ D)K’L/K: 

+(2ao-C)(K,K’~,,-K~K:,,f LKf2- LI(,K” 

+6LKvK’)/K:+L(44ao-12C+6D+G)/K,], (2ld) 

~=&rro[lOp,o-8X+ Y+K’(X-po)/i(, 

+coao(2uo(K’/K,-ll)--D+C(lO-K’fK,)}J 

~8~2r~~2~o-C)~42C-12~-124~o-2G+K’(2D+8~o-2C~/K” 

-(2vo-C){(K’/KJ*-K”/K,}]/K,. (2le) 

Eqs. (21a) and (21~) are as given by Blaizot *). 
The coe~cie~~~ of eqs. (16b) and (‘l&j. All these coefficients are defined with 

respect to SINM, for which we assume the density profife (7). The surface quantities 
a0 and 7. are given by SINM at equilibrium, according to 

CT~-~-(T~-LC/K~)~~= lim L_co _:(~‘(i,6.)-e”(p~,b.)p”(z,6,)}dz. 
I 

(22) 
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Here the density distribution p’(z, 6,) is just the total density given by (7), with pen 

and pcP determined by (11) for the specified value of a,, pc taking the equilibrium 

value pz of the density of INM for this value of 8,: 

PZ = PO{1 - (3UK)6%), (23) 

which is the A + XI limit of eq. (19). The quantity 8’( z, 6,) is then the energy density 

corresponding to this density distribution, for the given force. The calculation has 

to be performed for at least two values of 8, to extract a0 and TV. 

In determining the parameters a4, C,, and 7, of the density distribution (7) for 

which SINM is in equilibrium, it is to be noted that the quantity to be minimized 

is not the integral of eq. (22) but rather 

L 

up (6,) = prnm 
-I 

@‘(z, &)-P&Z, 8,) -P&Z, 6,)) dz, (24) 
-L 

where pn and pup represent the chemical potentials. This is discussed in ref. 18). 

The curvature quantity p. is likewise determined by the equilibrium configuration 

of SINM, being given as follows (see sect. 5 of BGH ‘“)). The ETF expressions 13,14) 

allow us to write the energy density as 

g(P) = S(P, (VP)‘)+ S(P, (vP)2)v2P+~(P, (VP)‘)(V’P)’ (25) 

where p is still a function of z, given by eq. (7), and we are making use of the fact 

that p. is calculated for the symmetric case, pn = pp. Then 

dp”W 
z{~“(Z)-po(z)a,}+@(z)- dz +2P(z)-d-7 

dp0(4 d2p0(z) dz 

I 
. 

All the other coefficients in eqs. (16b) and (16c), i.e., all the ones in E, can then 

be expressed as derivatives of the leading terms, a,, TV, and po, with respect to the 

scaling parameter A. The scaling calculations then proceed along the usual lines, as 

described, for example, in ref. 19). The only problem arises from the fact that while 

the kinetic-energy density r scales exactly as A’, in the ETF approximation the 

scaling behaviour is more complicated, although the difference in K (A, I) has been 

shown to lie in the range 2-5% (see table 4 of ref. 7)). We handled the derivatives 

arising from eq. (9) analytically (for SINM), using Macsyma. 

Coulomb term. So far we have neglected completely the influence of the Coulomb 

force. If we regard the nucleus as a uniformly charged sphere of radius R, then the 

classical expression for the Coulomb energy is 

E dir 
coul = 3Z2e2/5R. (27) 

Neglecting then surface and symmetry effects, we quickly arrive at the Coulomb 

term of eq. (3), with 

as given by Blaizot ‘). 

lcLcOvl = (3e2/5ro)(K’lK-8) (28) 
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Several corrections to this can be contemplated, the simplest to calculate being 
the exchange term. Using the Slater approximation for the density of the Coulomb 
exchange energy, 

8 ED”, = -t(3/7r)"3e2pz'3, 

we find, comparing with eq. (27), 

Gou,lE~:u, = -5(3/16~)~‘~2-~‘~ 

= -0.76Z-2’3 . (30) 

The overall contribution to K (A, I) will then be around -0.3&,,,, more or less 
independently of Z and N. Given the typical values of I(coul shown in table 2, the 
net correction to K(A, I) will fall in the range 1.4 to 1.8 MeV for any nucleus, 
according to the force, which is within the limits of present experimental error. We 
may reasonably expect the other corrections to the usual Coulomb term to be 
similarly small. 

TABLE 1 

Parameters of eq. (16) 

SkM* RATP SkA s3 

p. (fmm3) 0.1603 0.1598 0.1553 0.1453 

a, WW -15.17 -16.05 -15.99 -15.85 

4 WV) 216.6 239.5 263.1 355.4 

K’ (MeV) 386.1 349.8 300.1 -101.4 

K” (MeV) 1768.8 1451.9 1014.3 -903.0 

J (MeV) 30.03 29.26 32.91 28.16 

L (MeV) 45.78 32.40 74.62 9.91 

Ksr, (MeV) -155.93 -191.22 -78.45 -393.73 

KI,, (MeV) -330.47 -440.69 -174.54 -130.45 

M (MeV) 1.9 2.1 2.3 1.7 

U (MeV) 3.32 3.94 4.32 2.89 

V (MeV) 3.91 5.15 5.98 3.22 

CO -0.849 -0.876 -0.784 -0.454 

aoVm) 0.633 0.637 0.601 0.485 

a0 (MeV . fm-*) 1.050 1.125 1.106 1.030 

C (MeV . fmw2) 0.0624 0.186 0.133 -0.067 

D ( MeV . fm-‘) -32.94 - 35.75 -37.64 -45.40 

G (MeV . fmF2) 78.53 92.93 108.3 195.1 
7. (MeV . fm-‘) 3.424 2.527 4.827 1.809 

A ( MeV . fm-‘) 6.474 4.559 8.364 6.055 

r (MeV . fm-‘) -55.121 -46.345 -90.217 -15.567 

p. ( MeV . fm-‘) -0.1185 -0.1757 -0.1025 0.0943 

X (MeV . fm-‘) 3.525 3.723 3.512 2.816 

Y (MeV . fm-‘) 25.17 28.68 26.87 20.76 
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TABLE 2 

Coefficients of ieptode~ous expansion (3) (MeV) 

SkM* RATP SkA 53 

216.6 239.5 263.1 355.4 
-230.9 -260.6 -284.6 -375.4 

z0.1 -349.0 -4.70 -338.3 -4.94 -441.1 -5.14 -456.0 -6.07 

2% 496.8 38.3 312.6 -5.7 874.6 105.9 -19.3 383.4 
Kv -129.0 -140.7 -142.3 -149.2 

Jesuits. All the parameters of eq. (16), along with some other relevant parameters, 
are listed in table 1 for the four forces that we have considered. The corresponding 
coefficients of the leptodermous expansion (3) are then given in table 2. One 
conclusion can be drawn immediately: the term in &I4 will be totally negligible 
in all possible circumstances. 

3. Finite-nucleus incompre~ibilities 

Scaling calculations of K(A, I) for any finite spherical nucleus are almost as 
straightforward in the Skyrme-ETF approach as in the Skyrme-HF approach, the 
scale transformation (8) leading in the latter case to simple analytic expressions 
[see, for example, appendix 2 of ref. ‘), which can be evaluated as in BGH “)I. The 
only problem concerns the fact, noted in the previous section, that in the ETF case 
integrals containing the kinetic-energy density 7 have a slightly different scaling 
behaviour than in the HF method, the differences arising from gradients of the 
effective masses h/l:(r). The complicated derivatives that thus arose from eq. (9) 
were calculated numerically in the finite-nucleus case. We checked that the condition 

(31) 

was well satisfied numerically at the end of the variational calculation, this being 
a sensitive test of numerical precision. (Actually, eq. (31) is equivalent to the virial 
theorem.) 

Two different sets of finite-nucleus calculations were performed: 
fi) N=Z nuclei, Co~~o~~ force switches o# For such nuclei the leptode~ous 

expansion (3) reduces to 

K(A)=K,+jklsfA-‘i3+~vA-2’3 (32) 

so that a sensitive test of the convergence in powers of A-i’3 is possible. We computed 
the K(A) of 23 such nuclei with lOsAs6000 for all four of the Skyrme forces 
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TABLE 3 

Values of &r and K, (in MeV) extracted from calculations 
on finite nuclei with N = Z and Coulomb force switched off 
(see fig. 1). Corresponding SINM values in parentheses (from 

table 2) 

SkM* -210 (-231) -90 (-129) 
RATP -249 (-261) -90 (-141) 
SkA -275 (-284) -88 (-142) 
s3 -360 (-375) -120 (-149) 

discussed in the previous section, and show in fig. 1 the plots of y = {K(A) - &}A”3 

versus A-1’3, taking the value of K, from table 2. The y-axis intercepts of these 

plots give &, for the force in question, while the slopes give IL. 
The results thus obtained are shown in table 3, with the quantities in parentheses 

being the SINM values calculated as described in the preceding section, and given 
in table 2. The agreement between the two approaches is satisfactory, and indicates 
that the leptodermous expansion (32) is converging rapidly. In table 4 we show the 
degree of convergence for the extreme case of A = 20, comparing the predictions 
for K(A = 20) given by eq. (32) with the values given directly by the finite-nucleus 
calculations. It will be seen that the discrepancy lies in the range of l-2%, which 
is very small indeed. 

At the same time, the departure from linearity that can be discerned for A < 20 
shows the influence of terms O(A-‘) in the leptodermous expansion. Since the net 
value of these terms is seen to be positive, they can account at least partially for 
the discrepancies between our two approaches for calculating Z& and &. (These 
discrepancies would have been smaller if we had calculated nuclei with still higher 
values of A.) 

It will be seen that the empirical “law” &r= -K, found by Treiner et al. ‘) is 
well fulfilled for all four Skyrme forces investigated here. We should emphasize 
strongly, however, that this “law” appears to hold only within the scaling approxima- 

TABLE 4 

Comparison of leptodermous expansion (32) with 
exact finite-nucleus calculation of K(A) (in MeV) 

for A=20 

Eo. (32) Exact 

SkM* 127.1 128.9 
RATP 135.7 137.3 
SkA 149.9 150.8 
s3 206.5 208.6 
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tion for these forces; in dynamical calculations, which go beyond scaling, J&r tends 
to have much larger negative values ‘,‘l). 

The negative value for Ir(cV that we find with force S3 (as for the other three forces) 
is to be contrasted with the positive value found by Treiner et al. ‘) with this same 
force; compensating this is the much more negative value that they find for l&. 
The only explanation we can offer for this disagreement is that ref. ‘) does not use 
the full ETF method. We note that our value of Ic;c_ extracted from finite-nucleus 
calculations is well confirmed by the completely independent SINM calculation 
described in the preceding section. 

Having shown that the leptodermous expansion in powers of A-1’3 has converged 
sufficiently at the curvature term, we ask now whether even the curvature term is 
necessary. At this point we must realize that in practice it is impossible to draw 
graphs of the form shown in fig. 1, since one is limited to nuclei with A 6 250, and 
also one does not know in advance the value of K,; indeed, this is usually the 
principal quantity that one wishes to determine. (Another point is that the Coulomb 
force cannot be switched off in practice, but that is irrelevant for the moment.) 

In fig. 2, therefore, we take the same computed data as in fig. 1, limit them to 
A s 250, and plot K(A) against A-1’3, exactly as one would in analyzing real data. 

Since no deviation from linearity can be discerned for any of the four forces one 
might be tempted to drop the curvature term in fitting the leptodermous expansion 
to experimental data. However, the curvature term still exists, and even if it can be 
effectively absorbed into the surface term over the limited range of A-values avail- 
able, the result will be that the extracted value of &, must become more negative, 

A-113 

0.5 
I 

SkMa 

Y 

WleV) - 

-400 - 

RATP 

SkA 

0 
s3 

-500r 

Fig. 1. Plots of y = {K(A) - K,)A”3 versus A -‘I3 for N = Z nuclei with Coulomb force switched off, 

calculated with four different Skyrme-type forces. 
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0 0. I 0.2 0.3 0.4 0.5 

A- 113 

Fig. 2. Plots of K(A) versus A -‘P for same computed data as fig. 1, but with A G 250. 

which in turn will affect the value determined for K,. The extent to which this 
happens is seen in table 5, where we summarize the results extracted from the linear 
fit of fig. 2. For all four forces we see that K, is overestimated by about 5 MeV (the 
correct values of table 2, as given by INM, are shown in parentheses). We conclude 
that in analyzing real data the curvature term should be included, and the parameters 
determined by a least-squares fit. The curvature coefficient itself will be very badly 
determined by the data, and the principal effect of its inclusion will be to increase 
the error bars on K,. 

(ii) Real nuclei. Using each of the four Skyrme forces, we also calculated nine 
real spherical nuclei, 160, 40Ca, 48Ca, 56Ni, 90Zr, ‘12Sn, 132Sn, 14’Ce, and 208Pb, all 
with the Coulomb force left switched on. Since the primary object here is to study 

TABLE 5 

Effective values of K, and Kr (in MeV) extracted 
from plot of K(A) versus A-“’ for AS 250 (see fig. 
2). The values of K, in parentheses are from INM 

(table 2) 

KV & 

SkM* 220 (217) -245 
RATP 244 (240) -290 
SkA 268 (263) -320 
s3 360 (355) -410 
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the possible role of the surface-s~metry term &S12A-“3, we define the quantity 

z = {K(A, I) - K,-&A-1i3- &A-2’3-&,,,Z2A-4’3-K$,,12} (33) 

taking for KoOUl and K&, the INM values given in table 2, while for I& and K;, 
we use the values derived in fig. 1 and given in table 3. This quantity z is plotted 

against 12A-“3 in figs. 3a-d. We see from these values of z that while the surface- 

symmetry term might be significant for nuclei far from stability, such as 13*Sn, for 
stable nuclei it is probably still safe to neglect it, z being comparable to the errors 
in K(A, I): see, for example, fig. 2 of ref. I’). However, it will be advisable to include 
this term in future analyses of experiments with improved precision. 

For this reason we now examine the success that the surface-symmetry term has 
in fitting our computed data-points of figs. 3a-d. The straight lines in these graphs 
represent Ii&12A-1i3, with the SINM value of K&being taken (table 2). We see that 
the overall trends are well represented; indeed, considering the large cancellations 
that take place in eq. (33), the agreement is remarkably good, and usually it becomes 
still better if the Coulomb-exchange term is included, since this lowers all points 
by between 1.4 and 1.8 MeV (see the preceding section). 

IO 

SkM l 
(4 

tMt”) 

0 0.005 0.010 
12 A-ifs 

Fig. 3. Plots of z defined in eq. (33) versus I * A -“3. Solid lines represent 8&,12A-1’3. 
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Fig. 3-continued 

4. Conclusions 

Working within the context of the scaling model, we have considered the inclusion 
of higher-order terms in the leptodermous expansion of the incompressibility 
K (A, I) of finite nuclei, as used to extract the incompressibility of infinite nuclear 
matter, K,, from experimental data on the breathing mode. Specifically, we have 
introduced a curvature term &A-2’3, a surface-symmetry term KJ2A-“3, a quartic 
volume-symmetry term KJ4, and a Coulomb-exchange term, and derive expressions 
for all the coefficients in terms of quantities that can be calculated in INM and 
SINM, thereby extending the work of ref. “). In this way we have been able to 
calculate the new coefficients for four different Skyrme-type forces, using the ETF 
approximation. 

With the same forces we also calculate K(A, I) for a number of finite nuclei, and 
fit the results to the leptodermous expansion. The resulting values of the coefficients 
agree well with those determined from INM and SINM, indicating thereby that the 
expansion has well converged. We find, in fact, that the term in K4 is totally 
negligible, while the surface-symmetry and Coulomb-exchange terms should prob- 
ably be included in future analyses, should there be any significant improvement 
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in the experimental accuracy. As for the curvature term, the range of A-values over 
which data are available is too small to permit its experimental determination, but 
it should still be included in the analysis in order to establish realistic error bars 

on K,. 
We should emphasize that our conclusions have been established only within the 

framework of the scaling model. As discussed in refs. ‘,l’), the experimental breath- 
ing-mode energies of light nuclei cannot be reproduced in the scaling model. In a 
two-dimensional hydrodynamical approach, which reproduces those data quite 
well ‘) and which goes beyond scaling, the expansion (3) converges much more 
slowly and leads to larger negative values of the surface term I’), as is also the case 
in the empirical fit of the recent Gronigen data “*“). 

Nevertheless, the scaling evaluation of the coefficients in (3) gives a very valuable 
guide to the behaviour of different Skyrme-type forces in predicting breathing-mode 
energies, particularly for heavy nuclei where scaling reproduces the experimental 
energies very well, provided the coefficient K, is small enough, as in the case of 
force SkM*, for example. 

M.F. and J.M.P. thank Prof. W. Stocker for hospitality at the Universitlt Miinchen; 
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