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Abstract: We have obtained ptol and du/dR for n+d*-rpp using the most recent version of the Paris NN 
interaction. The model consists of the impulse approximation, p-wave pion and rho-meson 
rescattering folIowing 633 excitation, and s-wave xescattering constructed from the Koltun-Reitan 
Iagrangian plus off-shell extrapolations. The rho mass distribution is described using the square of 
the Paris f: heiicity amplitude, and monopole form factors have been included in the interna wNN 
and &VA vertices. Recoil corrections to the impulse approximation are also considered and turn out 
to be important. Results are obtained with the Paris and Reid interactions as a function of the pNd 
coupling constant, (Y@ = f$/f,, and cutoffs A, (varied between 1.7 and 2.0 and between 1.0 and 
1.4 GeV respectively). Reasonable agreement with the experimental otot can be obtained with 
either potential within the parameter ranges considered. Results for du/dn, parametrized in the 
form do/da = flfXZrrf(yo + ‘yz ax? 8 + ‘y4 ws4 B +. . -1, reveal that high partial waves (Ia, > 31 play 
a significant rote, particularly in y+ This coefficient is particufarly sensitive to ** and may ultimately 
provide a constraint on that parameter. 

Pion-induced disintegration of the deuteron, v*d + pp, and the inverse process 
have recently generated considerable theoretical and experimental interest. 
Theoretically, this interest has a dual motivation. On the one hand, these reactions 
are simple enough to be treated within the framework of detailed microscopic 
models and as such, provide a significant test of current understanding of elemen- 
tary rrN processes, particularly the off-shell RN interaction and the pNA vertex. On 
the other hand, it is hoped that a good understanding of the simple processes wiil 
provide the basis for analyses of more complicated meson-nuclear processes. Some 
progress has already been made in this direction le3). 

Experimentally, data for the total absorption cross section and the unpolarized 
part of the differential cross section have been obtained for c.m. momenta from 
threshold up to about 2.7 pion masses. Several compilations of these data now exist, 
which combine results from both the a--production and absorption reactions 4-8). 

* Work supported in part by German 3undesmin~sterium fur Forschung und Technologie. 
** Also at CERN, Geneva. 
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The data for the total cross section exhibit a resonant structure, with a peak of about 

12 mb near a c.m. momentum of about 1.6 pion masses. Recently, the empirical data 

have been extended so as to include the polarization parameters E-9). 

Several theoretical studies of pionic deuteron disintegration have been carried out, 

based on rather different approaches. Alberg et al. lo) employ a field-theoretic 

formalism which, however, omits two-pion exchange processes. Moreover, it does 

not predict the correct static limit for the one pion exchange interaction, a most 

peculiar feature. 

A second approach, that of Niskanen ‘l), is based on a coupled channels formalism 

that permits multiple rescattering diagrams to be included to all orders. In principle, 

this is probably the best approach, but it is unfortunately fraught with complexities of 

sufficient magnitude to make it necessary to handle each partial wave contribution to 

the T-matrix separately. This limits somewhat the number of partial waves that can 

be handled within a feasible calculation. Although not significant for the total cross 

section, such a limitation may be important for the differential cross section, which 

we have found is significantly influenced by the inclusion of high pp partial waves. 

Moreover, it is not at all a trivial procedure to avoid double counting within the 

coupled-channels formalism when the rescattered pions are supplemented with 

other mesons. 

As an alternative to these approaches, Brack, Riska and Weise 12) (BRW) 

proposed a model which is relatively simple and at the same time incorporates the 

major dynamical features thought to be relevant in pionic deuteron disintegration. It 

is based on the three T-matrix contributions depicted in fig. 1: the impulse approxi- 

mation (IA), a p-wave rescattering mechanism involving the excitation of an 

intermediate A33 resonance followed by either one-pion exchange (OPE) or the 

isovector-vector part of two-pion exchange [27r(l-) exchange], and an s-wave 

rescattering mechanism based upon the phenomenological, zero-range lagrangian of 

Koltun and Reitan 13) (KR). The rescattering contributions are necessitated by the 

kinematics of the reaction which require a large momentum transfer between the two 

nucleons in order to conserve both energy and momentum. This is difficult to achieve 

with the impulse approximation alone, and in fact, the impulse approximation does 

not even yield the right order of magnitude for the cross section. Inclusion of the 

p-wave rescattering mechanism not only yields the right order of magnitude but also 

reproduces the observed resonance structure, which is clearly associated with the 

intermediate A33 resonance. The s-wave rescattering mechanism is necessary to 

obtain the low-momentum part of the cross section correctly. 

BRW employed this model in conjunction with the Reid potential to compute the 

total cross section for r+d+ pp. Using reasonable values for cry,, the ratio of the pNA 

and TNA couplings, and A, the cut-off in the ?rNN form factor, they obtained a 

good fit to the empirical data. Subsequently, Chai and Riska 14), utilizing essentially 

the same model, have carried out calculations of the differential cross section and 

polarization parameters for pp + rr+d. 
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Fig. 1. Contributions to the T-matrix as discussed in the text. The wavy line in diagram (b) represents 

OPE plus 27r(l-) exchange (see text for notation); the circular shaded areas in diagrams (b) and (c) 

represent the extended structures of the lrNN and TNA vertices; the elliptical shaded area in diagram (c) 

represents the effective rrrrNN s-wave vertex. 

The present work is based upon the BRW model but modifies it in several respects 

with the idea of improving the representation of the physics underlying the relevant 

processes. These modifications may be summarized as follows: 

(a) We have improved the description of the A33 resonance in ref. ‘*) by replacing 

the BRW form for the As3 propagator by a form that preserves the relativistic result 

for the resonant TN scattering amplitude in the (3,3) channel. In addition, the effect 

of crossed Born terms on the effective TNA coupling and the As3 width have been 

examined in some detail. 

(b) The model for the s-wave rescattering contribution has been supplemented 

with form factors that permit the on-shell, phenomenological parameters appearing 

in the KR lagrangian to be extrapolated off-shell in a simple manner. We have 

further improved the s-wave rescattering model by utilizing more recent values for 

the TN scattering lengths to fix the parameters on-shell. 

(c) The combination of helicity amplitudes in the 27r(l-) exchange part of the 

p-wave rescattering mechansim has been modified so as to include second-order 

rescattering terms. 

(d) We have included approximate recoil corrections, based upon both the 

pseudoscalar and pseudovector forms for the rNN vertex, in the impulse approxi- 

mation matrix element. These corrections have a significant effect both on the total 

and the differential cross section. 
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(e) Finally, we have studied the effect of distortions of the pion-wave induced by 
elastic rd scattering on the rd disintegration process r5,16). 

With these modifications we have employed the BRW model to compute the total 
cross section for the pion absorption process and the unpolarized differential cross 
section, parametrized in the usual power series form 

-g = &- (7% + y2 cm* 8c.m. + y4 cm4 &.,. + - * -1 , (1.1) 

for the pion production process. Our main purpose in these calculations has been to 
uncover the dependence of the cross section on the various features of the model 
utilized. Thus, we have carried out a spectrum of calculations spanning a range of 
choices for the relevant parameters. In place of the phenomenological Reid potential 
employed in ref. I*) to represent the deuteron wave function and the NN interaction 
in the relative pp state, we have adopted the dispersion-theoretic Paris potential 17) 
which rests on a solid theoretic foundation and thus, is more appropriate for use in 
calculations based on microscopic models. For comparison purposes a number of 
results have also been obtained with the Reid potential. 

Following a brief summary of the relevant cross section formulae in sect. 2, the 
extended BRW model is described in sect. 3, with particular attention paid to the 
present modifications. Sect. 4 contains numerical results for both total and differen- 
tial cross sections together with an interpretation of these. Finally, the last section is 
devoted to discussion and conclusions. 

2. The cross section for lrcd + pp 

It is most convenient to evaluate the pion absorption cross section in the laboratory 
frame, where the deuteron is at rest and the incoming pion can be represented by a 
plane wave of momentum k and energy o = dk2 + m”, (m, is the pion rest mass). In 
this frame, 

(2.1) 

where P and p are the c.m. and relative momenta in the outgoing pp state, El and E2 
are the (relativistic) energies of the outgoing protons, A4 is the nucleon mass, Bd the 
deuteron binding energy, and T’ri the matrix element of the T-matrix between the 
initial and final nucleon states. The sum here is to be carried out over the allowed spin 
states of the deuteron and the outgoing pp state (the factor 4 ensures that the initial 
spin states are averaged over). 

Momentum and energy conservation constrain the relative momentum p to a 
function of k and I%, the angle subtended by @ relative to k^ in the laboratory frame. In 
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particular, neglecting the deuteron binding energy, 

(2.2) 

with E = k*/E*, E denoting the total energy in the laboratory frame. Inserting this 

into (2.1) and performing the integrals over P and p yields the differential cross 

section in the laboratory frame, 

da -2: ~(M+tw) 1-4(p/E)*~ cos* 811 

d&b - (4r)*k l-s cos*e, , 
3 z I TtiI’ 3 (2.3) 

where alab is the solid angle corresponding to 6$, and we have approximated 

E = o + 2M. The corresponding cm. quantity is easily derived from (2.3) using the 

relationship between 6~r and the c.m. scattering angle, 8,.,., 

We obtain 

~0s’ el = ~0s’ e,.,./(i - E sin* e,.,.) . (2.4) 

du du d&,, dcr cos t9, -=--=- 
don,.,. d&b da,.,. d&b cos &.,. 

(I- c COS* e,) . (2.5) 

Since E G 0.02 for the momenta of interest, eqs. (2.2)-(2.5) can all be expanded in 

powers of E. Thus, we arrive at the simple power series expression for do/dL&,, eq. 

(1.1). The total cross section is just 

(2.6) 

the factor of $ arising from the indistinguishability of the final protons. 

The empirical cross sections are usually given as functions of the 7rd c.m. 

momentum, rather than the laboratory momentum. Moreover, the p-wave rescat- 

tering process involves the momentum in the c.m. of the r-nucleon system. For 

quantitative calculations, it is necessary that the relativistic relations connecting 

these three momenta be fully preserved. Since this point has not been adequately 

appreciated in the literature, particularly in ref. I*), we have devoted an appendix 

(appendix A) to a simple derivation of the relevant relations. 

3. Contributions to the T-matrix 

The model for the total T-matrix comprises the three contributions depicted in fig. 

1, i.e., the impulse approximation (IA), the p-wave rescattering term, and the s-wave 

rescattering term: 

Tfi = <$ppIfi~ + tip + Gsl$d) . (3.1) 

In this section we discuss each of these three contributions in some detail, 
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3.1. THE IMPULSE APPROXIMATION 

The IA contribution is obtained from the non-relativistic reduction of the pseu- 

doscalar or pseudovector coupling rNN lagrangian acting between plane wave Dirac 

spinors. For absorption on the ith nucleon (i = 1,2), this is given by 

L (3.2) 

where k and w are the pion lab momentum and energy, Ui and ri* are the spin and 

isospin matrices, r* is the pion field, and pi and pi are the incoming and outgoing 

nucleon momenta. The parameters LY and p here reflect the ambiguity inherent in the 

rNN vertex for off-shell nucleons. They assume fixed values once the form of the 

vertex is specified. In particular, for psedudoscalar coupling (PS) we have 

1 
ff=q, p=; (3.3) 

and for pseudovector coupling (PV), 

(Y=o, p=1. (3.4) 

In ref. 12) the PV form was employed with the recoil term neglected (p = 0). This 

gives for the corresponding T-matrix contribution, after specializing to the case of an 

incoming r+, 

tiIA(k 2 r) = -f [eik’r’2(ul - k)fi71++e-ik’r’2(a2 * k)di~~+], (3.5) 
m, 

where the two terms arise from pion absorption on the left and right nucleon lines 

respectively. 

The recoil terms in (3.2) are expected to be small for w CM and k > 0. Near 

threshold, however, where k -0, they are the dominant contribution to Lrr~N and 

cannot be neglected. Even for large k, they may provide a significant contribution to 

the T-matrix, since w is an appreciable fraction of M, and the momenta pi andpl must 

be treated as derivative operators when evaluating coordinate space matrix ele- 

ments. In general, it is difficult to assess the importance of these recoil terms since this 

would involve differentiation of both the initial and final-state nucleon wave- 

functions. However, if we neglect correlations in the final state+, we find 

$Pi+Pl)=+p, (3.6) 

where p is the relative momentum in the outgoing pp state and the + or - is chosen 

according to whether i = 1 or 2. The significance of this simple relation is that p 

operates only on the final-state wave function. 

’ In fact, it has been shown in ref. “) that final-state pp correlations are not of extreme importance, so 

they may be safely neglected when evaluating recoil corrections. Such conclusions can also be drawn by 
comparison with the calculation of Shimizu et al. 34), who have included final-state correlations. 
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Using (3.6) in (3.2), we obtain for the IA contribution to the T-matrix, in place of 

(3.51, 

&A(k, r) = -$- eik’%l ’ I [(l-a;)k+P$pz7~+ 

+ e-ik. r/2 w2,‘[(l-++?;P]&+]. (3.7) 

It should be emphasized that this is only an approximate relation, not only because 
final-state correlations have been neglected in (3.6), but also because the non- 
relativistic form for LmNN, eq. (3.2), is strictly valid only for plane wave states; it is not 
at all clear how (3.2) would be altered if a relativistic deuteron wave function were 
employed in place of the plane wave Dirac spinor used to obtain that relation. 
Nevertheless, we believe that eq. (3.7) can yield at least some indication of the 
influence of recoil corrections on the 7rd disintegration cross section. 

3.2. p-WAVE RESCATTERING 

As depicted in fig. lb, the p-wave rescattering mechanism involves the excitation 
of a 633 resonance, which subsequently decays through emission of either a single 
off -shell pion or a pair of pions that transfer large momenta to the other nucleon. The 
analogous process with an intermediate nucleon line in place of the resonance is also 
possible, but since this is already counted in the IA contribution to the T-matrix 
through inclusion of initial- and final-state correlations, it has to be omitted here. By 
virtue of its isospin structure, the crossed diagram constructed by interchanging the 
two TNA vertices in the diagram shown is identically zero. Of course, the incident 
pion in fig. lb may be attached to either nucleon line, and these two contributions 
must be summed coherently. 

In position space the p-wave rescattering contribution to the T-matrix is 

(3.8) 

where k,N is the n-N c.m. momentum, f& is the effective coupling at the external 
ANT vertex+, Dd is the Aj3 propagator, ?rI,, is the effective NA-NN transition 
potential with the A on the l.h.s., S and T are the transition spin and isospin 
operators, and Js is the total aN c.m. energy. We employ the form 

Dd’ = MA ---&-$T4(s, knN) (3.9) 

’ No t-channel cutoff factor is to be included in the external TNA vertex, since the external pion is 
on-shell. Proper use of knN in the nNA vertex increases cr$ot by about 2 mb as compared to the BRW 
result. 
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for the A33 propagator, where Md = 1232 MeV and r, are the A33 mass and width. 

For the A33 width, we adopt the form 

(3.10) 

To account for relativistic corrections in the 433 propagator, we write 

f~ias)=f*“(s)--$$. (3.11) 
A s 

Several choices are possible for f*(s), The simplest one assumes f* to be independent 

of s and relates it to the Chew-Low model i8), i.e. 

fe2/4r = 0.32, (3.12) 

although the A-width comes out slightly too large at s = Mi in this case. A relativistic 

description of the As3 part of the TN c.m. amplitude+ gives f*2/4r = 0.37 (MN/&). 

We shall adopt eq. (3.12) as a “standard” value, but discuss alternative choices in 

sect. 5. 

The role of crossed Born terms in the TN c.m. amplitude in the 3, 3 channels 

requires additional discussion. We have already mentioned that the isolated crossed 

Born term in the p-wave rescattering amplitude should be omitted in order not to 

double count with two-nucleon correlations explicitly taken into account. On the 

other hand, diagrams of the type shown in fig. 4a also contribute and could simply be 

incorporated by multiplying fi& by the appropriate u-channel form factor so as to 

treat the nucleon poles correctly. However, the diagram of fig. 4b, which is of the 

same order, also appears in the two-nucleon system, and partly cancels fig. 4a. In 

essence, it is not legitimate to include left-hand cut contributions to the p-wave 

rescattering amplitude unless one takes into account related two-body diagrams at 

the same time+‘. With such partial cancellations present (but not under complete 

control quantitatively), we prefer to omit u-channel cut corrections, as well as 

their two-body analogues and retain the simplest treatment, eqs. (3.8)-(3.12). The 

role of u-channel cut contributions to the A -width will be discussed separately 

in sect. 5. 

A final comment concerns recoil corrections to the external TNA vertex appearing 

in eq. (3.8). The form employed there is the correct one as derived from the 

Rarita-Schwinger formalism in the TN c.m.s., where the isobar is at rest. In 

principle, recoil corrections due to nucleon motion can be obtained from the fully 

relativistic formalism 30). Unfortunately, the Rarita-Schwinger description is not 

+ We are grateful to E. Oset for discussions on this point; see also ref. **j. 
++ This remark applies in particular to models which use the full empirical TN scattering amplitude in 

the rescattering diagram 16) without considering further its underlying structure. 
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unique for an off-shell isobar so that any particular form of recoil corrections is 
difficult to justify+. We therefore use eq. (3.8) throughout. 

In our model for the NA-NN transition potential, we include one- and two-pion 
exchange terms. Isospin conservation requires that the exchange be of isovector 
character; thus, the two-pion exchange terms must have the spin-isospin structure of 
the p-meson. This motivates the notation 

pr2(r) = VT2 (r) + VL (r) , (3.13) 

where the terms on the right are the one-pion exchange (OPE) and isovector-vector 
two-pion exchange [27r(l-) exchange] pieces respectively. 

3.2.1. One-pion exchange. The first term on the r.h.s. of eq. (3.13) is obtained 
from the usual, non-relativistic OPE interaction between two nucleons by just 
replacing one set of spin and isospin matrices by transition spin and isospin operators. 
In momentum space, this yields 

(3.14) 

where 4 = (qO, q) is the 4-momentum transferred by the exchanged pion. In principle 
the evaluation of (3.8) with the Fourier transform of (3.14) for Gr2(r) would require a 
loop integration over the energy transfer qo. Such an integration would greatly 
complicate the resulting cross-section expressions and, moreover, would require 
detailed information regarding the spectrum of correlations in the deuteron wave 
function. However, since ~~~~ 141, it is a reasonable approximation to simply fix q. at 
some value within the kinematically allowed range, thereby avoiding the integration. 

In ref. r2), BRW adopted the value q. = 0. We prefer the choice, q. = &, since it 
lies midway in the kinematically allowed range and maximizes the phase space 
available to the outgoing nucleons. Unfortunately, the cross-section results are not 
independent of qo; we found that imposition of the static limit (q. = 0) yields cross 
sections approximately 2 mb less than ours at the peak. 

The TNA and rNN vertex functions appearing in eq. (3.14), f*(q) and f(q), 
respectively, are normalized to the empirical coupling constants at the pion pole. If 
these coupling constants are inserted in place of the vertex functions in (3.14) and the 
resulting expression Fourier transformed to position space, we obtain 

where CL2 = rnt -qg, and 

ST2(r) = 3Sr. ia * i-S1 * u2 (3.16) 

is the NA tensor operator. 

’ We note that a galilean-invariant TNA coupling would lead ta corrections in rtof of the order of 10%) 

according to ref. 33). 
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The exchanged pion is far off -shell, however, since it carries a large momentum but 
little energy, and hence, it is necessary to take account of the extended structure of 
the vertex functions. Because the baryons are not far from their mass shell, this is 
most simply accomplished with the aid of form factors that are functions only of the 

squared 4-momentum of the pion. In the present calculations, we employ form 
factors of the type: 

(3.17) 

that are normalized at q2 = rni to the empirical coupling constants,f*/4r = 0.08 and 
f* = 2fi The form of these factors has some theoretical basis 19,*‘) and is such that the 
factors may easily be incorporated in eq. (3.15) with the use of a partial fraction 
separation during the Fourier transformation from momentum space. 

Unfortunately, reliable values for the cut-offs, A,, and AZ, in eq. (3.17) are not 
available. Detailed microscopic calculations 19) indicate that both cut-offs are of the 
order of 1 GeV. In addition, an upper limit for A, of about 1.5 GeV is suggested by 
one-boson exchange models for the NN interaction *I), but this is not necessarily 
definitive+. In view of these uncertainties, we have calculated cross sections for 
several values of the cut-offs within a range we regard as physically reasonable, In 
practice it is not necessary to distinguish between the two cut-offs A, and AZ since 
they are comparable and merely multiply the internal vertices; thus we choose 
A*,=A,. 

3.22. Two-pion exchange. The other contribution to cl*(r), the 27r(l-) exchange 
piece, is depicted diagramatically in fig. 2. 

It can be represented non-relativistically in r-space as a distributed mass exchange 
with the spin-isospin structure associated with an exchanged p-meson: 

1+-$+-+(+‘2. (3.18) 

Here p*(t) is the appropriate mass distribution function, which ideally, should be 
obtained from a dispersion theoretic calculation of the AN+ mr, J” = l- helicity 
amplitude. In the absence of such a calculation, we assume that p*(t) is related to 
p(t), the mass distribution characterizing the 27r(l-) exchange part of the NN 
interaction, by a constant scaling factor, CY~, equal to the ratio of the effective pNA 

and pNN couplings; i.e., 

P*(t) = W(t) * (3.19) 

p(t) is, in turn, related to the square of the NN + 7rn, J” = l- helicity amplitude f! (t) 
through simple kinematic and threshold factors, 

’ A value A, = 1.2 GeV is obtained in a recent dispersion relation analysis *‘). 
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Fig. 2. Contributions to the isovector-vector two-pion exchange [2n(l-) exchange]. The elliptical shaded 
areas intersecting the pion lines indicate that the exchange may be either resonant or non-resonant. 

Diagram (e) is the Born term. 

Eq. (3.19) is clearly an approximation, because it ignores any additional t- 
dependence in p*(t) not contained in eq. (3.20). On the other hand, if (3.19) is 
replaced by a &function distribution, 

p”(t) = ap (3.21) 

where mp is an average “p-meson” mass and 

(3.22) 

with p(t) given by eq. (3.20), the total cross section results are altered by only a few 
percent. This suggests that the specific form of p*(t) is not very important, provided 
its overall normalization is preserved. 

The value of the scaling factor LY, in eq. (3.19) is a matter of some debate. The static 
quark model predicts either CY,, = 1.7 or (Ye = 2.0 depending upon whether the quark 
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model value or the Chew-Low value is adopted for the ratio f”/J A value in this 
range is further supported by considerations based on the electromagnetic NA 
transition form factor 22), if analysed in the vector dominance model, which is 
expected to work better for the Nd transition form factor than for the nucleon form 
factor itself. On the other hand, Kisslinger 23) has recently proposed the value 
(Ye 2: 1.0 on the basis of the p-exchange Born contribution to TN+ rd. Since this 
debate has not yet been definitely resolved, we have obtained results using several 
different values for (Y@. 

There are also several choices available for f?(t), which differ primarily in the 
associated PNN coupling defined by eq. (3.22). So as to be consistent with our choice 
for the nucleon-nucleon potential, we employ the amplitudes recently obtained by 
the Paris group 24) using dispersion theoretic methods. These amplitudes correspond 
to an effective pNN coupling of &47r = 4.9 and are nearly identical to the ampli- 
tudes obtained previously by HGhler and Pietarinen 25). 

Among the contributions tof! (f) is the iterated OPE term depicted in diagram e of 
fig. 2. Since this term is already included in the OPE contribution to &&, by virtue of 
the final-state correlations, it must be removed from V& to avoid double counting. 
Thus, the helicity amplitude to be inserted in eq, (3.20) is not the full amplitude, but 
the amplitude with the Born term subtracted. In ref. I’) the necessary subtraction is 
accomplished before squaring so that the resulting amplitude, If! (t) -fn&t)1’, is 
positive definite. Such a procedure conforms with the usual definition of the p-meson 
mass distribution but, when employed in connection with (3.20), leads to the 
omission of certain contributions to V &. This is made evident by reference to fig. 2. 
Clearly, the inclusion of diagrams b and c in V’;z requires that the Born subtraction 
be effected after squaring. The resulting amplitude, If’(t)l’ - ]fuOJf)/*, is no longer 
positive definite, but it need not be so since it now contains terms in addition to those 
ordinarily associated with p-exchange. 

These additional terms are associated with 2nd”order rescattering processes of the 
type considered explicitly in coupled channel treatments of r+d + pp. With their 
inclusion in VT2 we obtain cross sections that are approximately 2.5 mb less at the 
peak than those obtained with the BRW prescription for jf?(r)~‘. Although the 

inte~retation of this result is not altogether clear, we believe that it provides a 
qualitative measure of the influence of multiple rescattering processes on 7rd 
disintegration. 

An alternative approach would be to use the T = 1 r1 * 72 part of the Paris NN 
potential and convert it directly to the NA + NN transition interaction by simply 
employing an overall scaling factor. This would reduce the number of parameters 
and introduce instead an additional phenomenological short-range piece. On the 
other hand, much of the short-range NA interaction is cut out by short-range 
correlations in the deuteron and in the final-state pp wave function; we also prefer 
that the model be flexible enough that the pNA coupling strength can be handled 
explicitly. 
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3.3. s-WAVE RESCATTERING 

The s-wave rescattering contribution to the T-matrix, illustrated in fig. lc, involves 
an effective s-wave ~TNN vertex composed primarily of three dynamical constit- 
uents: t-channel (r- and p-exchange and a u-channel term comprising R-exchange in 
combination with other short-range pieces. Fig. 3 depicts these processes diagrama- 
tically. All three processes can be conveniently represented on a phenomenological 
level with the aid of the zero-range lagrangian of Koltun and Reitan 13), 

(3.23) 

Here t = (w - qO)’ - (k - q)2 is the 4-momentum transfer in the ~TN t-channel, $ and 
4 are the nucleon and pion field operators, and r is the momentum canonically 
conjugate to 4. The first term of this lagrangian, the isoscalar piece, summarizes the 
r-exchange and u-channel processes illustrated in fig. 3; the other term, of isovector 
nature, describes the p-exchange. 

(a) 
0 -exchange 

(bl 
G-exchange 

(0 
p -exchange 

Fig. 3. Contributions to the effective mrNN s-wave vertex. 

As discussed by Hamilton 26), the time derivative operator r = (r; acts symmetric- 
ally, yielding a factor w + qo. 

The phenomenological couplings, hr and A*, in eq. (3.23) are functions oft that are 
related on-shell to simple linear combinations of the empirical rrN s-wave scattering 
lengths: 

Ar(t = 0) = --$2,(a~+2a3), 

hz(t = 0) = $z,(a~-u~). 
(3.24) 

Using the most recently determined values for al and a3 [refs. 27Y28)], these expres- 
sions yield hI(t = 0) = 0.0065 and A2(t = 0) = 0.046. The small size of the former with 
respect to the latter clearly indicates substantial cancellation between the CT- 
exchange and u-channel contributions to AI, at least on-shell. Because of their 
smooth energy dependence, the values given by eq. (3.24) will be used throughout 
the energy range of interest to us. 
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If we neglect the t-dependence of A1 and AZ by inserting their on-shell values into 
eq. (3.23), we obtain 

X e ( ip. r’2(az . i) J2 
-1 

2~ 1~2+ - i - ZT cm + 4ON’l x 72)+] 

-e -ik. r/2 (uyt)JZ ~A,T,++~~(~+~U)(T~XT~)+ 
C II 

(3.25) 

for the s-wave rescattering contribution to the T-matrix in r-space. However, 
because the pion exchanged between the two nucleons in the rescattering process is 
far off-shell and hence, t is significantly less than zero, we cannot neglect the 
t-dependence of the couplings. To describe this t-dependence, it is necessary to 
reconsider the dynamical contributions to L, in somewhat more detail. The contri- 
bution from p-exchange has a particularly simple dependence on t, just (ms - t)-‘, 

where mp is the p-meson mass. This suggests an off-shell extrapolation of AZ of the 
form 

2 2 

A2(f)=A+7A2 
mp 

mp m~+&2-m2,+q2y 
(3.26) 

where AZ on the r.h.s. is given by eq. (3.24) and in the second, approximate equality 

the average value q. = $w has been used and the angle-dependent term in (k - 4)’ 
dropped. 

The isoscalar coupling is more difficult to treat due to the more complicated 
structure of its dynamical contributions. In analogy with p-exchange, the t-depen- 
dence of the a-exchange amplitude is just (mz- t)-‘; however, the u-channel 
amplitude cannot be described unambiguously in so simple a fashion. Rather than 
embark on a complicated analysis of this amplitude, we assume that it has a 
sufficiently short effective range that it does not influence the off-shell behaviour of 
A I in the momentum range considered. Considering the fact that a large part of this 
contribution involves NR intermediate states, such an assumption is not altogether 
unjustified. 

With this assumption, the off-shell structure of A 1 can be cast in the form 

C 
2 

Al(t) = -tm, m, 
usr+aoy 

mcr -t I 

[ 

2 

= -$m, asr + a, m, 

I m2,-t$w2-m2,+q2 ’ 
(3.27) 

where 3a,, and 3a, are the short-range and u-exchange contributions to the on-shell 
amplitude al + 2~~. We choose m, ~4.2 mrr for the w-meson mass. In the second 
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(a) (b) 

Fig. 4. (a) Crossed nucleon Born contribution to the external TNA vertex. (b) A diagram of the same 
order that partly cancels (a) (note the time-ordering of the sNN vertices). 

equality the same approximations have been employed as in eq. (3.26). Following 
Hamilton 26), we adopt the value a, = 0.22 m,’ so that 

asr=$(a1+2a3-3a,)=-0.23m;‘. (3.28) 

The vertex functions A 1(t) and AZ(f), given by eqs. (3.26) and (3.27), respectively, 
specify the off-shell extrapolation of the ~vNN vertex involved in the s-wave 
rescattering process. To describe the off -shell structure of the p-wave ?rNN vertex in 
this process, we employ a form factor of the type given by eq. (3.17). All three 
functions are easily incorporated in eq. (3.25) for the s-wave rescattering contribu- 
tion to the lrmatrix my means of partial fraction separations. 

Because of the &dependence in eq. (3.27), the approximate cancellation on-shell 
between the a-exchange and u-channel contributions to A1 is destroyed off-shell 
with the result that A r and AZ can be of the same order of magnitude. Although this 
might be expected to significantly alter the T-matrix contributions given by eq. 
(3.25), it has little effect on the cross sections except near threshold, where the s-wave 
rescattering mechanism dominates in the absence of recoil terms. 

3.4. MATRIX ELEMENTS 

To obtain the matrix elements of the various T-matrix contributions discussed 
above, we have adopted a formalism rather different from that of ref. ‘*), where 
matrix elements must be evaluated separately in each partial wave of the relative pp 
state. In the present formalism the initial and final nucleon states, together with the 
incoming pion wave function, are decomposed into partial waves and recoupled in 
such a way that the relevant matrix elements can be easily evaluated in arbitrary 
angular momentum channels. Details of this procedure together with explicit 
expressions for the matrix elements may be found in appendix B. 

4. Results 

In this section we report the results of total and differential cross section cai- 
culations for r+d*pp using the model described in the previous section. Most of the 
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results were obtained with the Paris NN interaction; however, we have also included 

some results obtained with the Reid potential for comparison purposes. The 
deuteron wave functions derived from the Paris interaction were kindly supplied to 
us by the Paris group, while those derived from the Reid potential were taken from 
ref. 29). To obtain the relative pp wave functions, we solved the Schrodinger equation 
with correlations in each partial wave with angular momentum Ipp c 2, neglecting the 
weak tensor coupling of the 3P2 and 3F2 states. For 1,, > 2, the appropriate spherical 
Bessel functions were employed. If correlations are extended to the f-waves, the 
calculated cross sections are altered by less than 1% over the whole range of 
momenta considered. 

For calculation of the total cross section, the partial wave expansion of the relative 
pp state may be safely truncated at I,, = 4; inclusion of higher partial waves perturbs 
the total cross section result almost imperceptibly. In differential cross section 
calculations, however, higher partial waves exert a significant influence. In this 
connection we note that the particular parametrization of da/d0 by means of a 
power series in cos’ 8 has major disadvantages. A 
would be in terms of a Legendre expansion, 

more natural representation 

(4.1) 

The U’S converge quite well as the number of partial waves included in the relative pp 
state is increased. This is not true for the y’s: if expressed in the form yi = Cjli Aijuj, 
the expansion coefficients A, increase rapidly with both i and i. Thus, for example, 
the coefficient y4 receives significant contributions from higher partial waves via the 
ug and us coefficients. Although eq. (4.1) is clearly a superior parametrization to eq. 
(1. l), nearly all the empirical results are parametrized according to eq. (1.1); hence, 
we employ the power series form in the present calculations. It is then necessary to 
include partial waves up to f,, = 6 to ensure convergence in y4. 

4.1. THE TOTAL ABSORPTION CROSS SECTION 

In fig. 5 the total absorption cross section obtained with the Paris potential is 
illustrated as a function of the c.m. momentum for various values of the parameters 
(Y,, and A,. The solid curves here correspond to the choice LYE = 1.7, the dashed curves 
to (Ye = 2.0. In none of the results illustrated were recoil corrections included. Note 
that an increase in the cross section induced by a decrease in the pNd coupling cyp can 
be offset by a decrease in the form factor cut-off A,. This indicates, as observed 
already in ref. ‘*), that the dynamics responsible for the total cross section are largely 
governed by the tensor interaction, so that the effect of 2~(1-) exchange can 
be simulated by a renormalization of the 7rNN form factor. This is not true for 
the differential cross section, however, as will be made evident in the next 
subsection. 
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Fig. 5. o,,+~~ without recoil corrections versus qc.m. = k,d for the Paris potential and various values of the 
parameters Q@ and A, The solid curves were obtained with q, = 1.7, the dashed curves with q, = 2.0. The 

empirical values are from refs. 4’6). 

Fig. 6 illustrates the interaction dependence of the cross section for two values of 
A,. In this figure results obtained with the Paris potential are indicated by solid lines, 
Reid potential results with dashed lines. Again, recoil corrections have not been 
included. As a function of the cm. momentum, the qualitative behaviour of the cross 
sections derived from the two potentials is similar, though the Reid results lie 
somewhat above the Paris results for a particular choice of parameters. With either 
potential the empirical results can be fit reasonably well near the peak; using the 
Paris potential and (Ye = 1.7, a value A, = 1.2 GeV is required. A somewhat lower 
value is required if the Reid potential is employed. 

The influence of recoil corrections of the type discussed above in connection with 
eq. (3.2) is exhibited in fig. 7. All three curves in this figure were obtained with the 
Paris potential and the parameters ayp = 1.7 and A, = 1.2 GeV. Comparing the two 
curves labelled “no recoil” and “PS recoil”, we see that the inclusion of pseudoscalar 
recoil corrections in the expression for firA has little effect on the total cross section 
except at low energy. This result is peculiar to the total cross section and arises from a 
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Fig. 6. fl&.rpp without recoil corrections for the Paris potential (solid curves) and Reid potential {dashed 
curves) using up = 1.7 and two values for A,,. 

fortuitous balancing of effects among different partial wave contributions to the cross 
section. On the other hand, the influence of pseudovector recoil terms is quite 
pronounced even at high energy. Of course, we should not overlook the approxima- 
tions upon which our treatment of the recoil terms has been based (e.g., the use of 
plane wave Dirac spinors in the non-relativistic reduction). Our results indicate the 
magnitude of recoil effects, but should not be regarded as definitive. 

We have studied the relative importance of the different mechanisms incorporated 
in our model for pion absorption by computing the cross sections arising from 
different contributions to the T-matrix. The results are shown in fig. 8 for the case of 
no recoil corrections (solid lines) and pseudovector recoil corrections (dashed lines). 
In both cases, it is clear that the resonance structure of the cross sections arises from 
the p-wave rescattering mechanism and that this mechanism provides the largest 
contribution to the cross section near the peak. p-wave rescattering cannot wholly 
account for the magnitude of the peak, however; if the IA contribution is not 
included, we get only two thirds of the required magnitude, despite the fact that the 
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Fig. 7. o‘,+r,~ versus qc.m. = knd for the Paris potential and the parameters a,, = 1.7 and A, = 1.2 GeV 
using various models for the recoil corrections. The curve labelled “no recoil” was obtained with a = p = 0 
in eq. (3.7), while the curves labelled “PS recoil” and “PV recoil” were obtained respectively with the 

pseudoscalar and pseudovector choices for these parameters. 

IA contribution alone yields a relatively small, non-resonant cross section in the peak 
region. This underscores the importance of interference terms in the total cross 
section. 

As expected, the influence of recoil terms on the cross section is evinced most 
dramatically in the results obtained with the impulse approximation alone. Without 
recoil corrections, the IA cross section is flat everywhere, increasing strongly with 
momentum near threshold but never exceeding 2 mb. When pseudovector recoil 
terms are added, not only is the cross section increased in magnitude, but its 
momentum dependence is reversed, so that instead of increasing with momentum, it 
decreases. Near threshold, inclusion of recoil corrections makes the IA term the most 
important contribution to the T-matrix. 

In the absence of recoil terms, the threshold behaviour of the cross section is 
governed primarily by s-wave rescattering, as a comparison of the upper two solid 
curves in fig. 8 reveah. This process also influences the cross section in the peak 
region through interference with the p-wave rescattering process. Note that the 
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Fig. 8. Paris potential cross sections for q, = 1.7 and A, = 1.2 GeV arising from different contributions to 

the T-matrix as depicted in fig. 1. The solid curves were obtained with no recoil corrections, the dashed 
curves with pseudovector recoil corrections. 

interferences between the s- and p-wave rescattering terms and the s-wave rescat- 

tering and IA terms are both destructive. 

Fig. 9 illustrates the contributions to the total cross section from different partial 

waves in the relative pp state. As in fig. 8, the solid curves were obtained without 

recoil corrections, the dashed curves with pseudovector recoil corrections. In both 

cases, the dominant contribution near threshold comes from the p-wave, which in 

this momentum region, arises primarily from the action of s-wave rescattering and 

recoil terms on the deuteron s-wave and the s-wave of the pion. The p-wave also 

makes a significant contribution in the peak region, but in the absence of recoil terms 

is dominated there by the d-wave contribution, which is associated primarily with the 

tensor interaction operating on the deuteron and pion s-waves. 

The major significance of the d-wave contribution, however, is not its magnitude, 

but the fact that it accounts for nearly all the difference in the Paris and Reid cross 

sections exhibited in fig. 6. We can understand this result in terms of the tensor 

interaction associated with the d-wave. The tensor interaction acts differently on the 
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Fig. 9. Contributions to ~,,+pp from different partial waves in the relative pp state for the Paris potential 
and the parameters a0 = 1.7, A, = 1.2 GeV. The solid curves were obtained with no recoil corrections, the 

dashed curves with pseudovector recoil corrections. 

Paris and Reid deuteron wave functions, in part because of the different d-state 
probabilities characterizing the two wave functions (note that the pp d-wave is 
connected with the deuteron d-state, as well as the s-state, via the tensor force), but 
more importantly perhaps, because of the different short-range properties of the two 
wave functions. The tensor interaction is peaked around 1 fm. Thus, its contribution 
to the T-matrix is sensitive to the short-range part of the deuteron wave functions 
through the overall normalization, which, except for the d-state probability, is 
interaction independent. Compared with the Reid deuteron, the Paris deuteron has 
more of its wave function concentrated at short range and therefore, less around 
1 fm. Consequently, the tensor interaction makes a smaller contribution to the 
T-matrix with the Paris deuteron, and the Paris cross section is smaller. 

Of the remaining partial wave contributions, only that from the pp f-wave is 
significant. This contribution arises from the action of the tensor on the deuteron 
s-wave and pion p-wave and is seen in fig. 9 to be quite sizeable in the peak region. 
The s-wave makes only a small contribution to the cross section near resonance, 
while that of the g-wave and higher partial waves is almost negligible. 

Comparison of the dotted and solid curves in fig. 9 reveals that recoil terms exert 
their strongest influence on the pp p-wave contribution, which is significantly 
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increased by their inclusion. The d-wave contribution is also affected, decreasing 
somewhat as recoil terms are added. For the pseudovector case shown in the figure, 
the increase in the p-wave contribution greatly outweighs the decrease in the d-wave 
contribution, so that recoil terms increase the total cross section overall. For the 
pseudoscaiar case, on the other hand, the p-wave increase is more moderate and is 
largely offset by the decrease in the d-wave contribution. Thus, including recoil terms 
of pseudoscalar type has little overall effect on the cross section. 

4.2. THE DIFFERENTIAL CROSS SECTION 

The power series coefficient ~y# in eq. (1.1) for the pion production differential 
cross section is shown in fig, 10 for the Paris and Reid potentials (indicated with solid 

0.2 04 0.6 0.8 10 12 1.4 16 1.8 2.0 

qpbt 

Fig. 10, ya without recoil corrections versus q_. = krrd for the Paris and Reid potentials using ap = 1.7 and 
two values of (1,. Notation as in fig. 6. the empirical values are from ref. *). 

and dashed lines respectively) and for two choices of the parameter A,. The 
results exhibited were all obtained with C+ = 1.7, but the results with a;, = 2.0 are 
very similar. None of the curves include recoil corrections. As can be seen, y0 can be 
increased somewhat by substituting the Reid potential for the Pa&s potential or by 
increasing A,. By and large, though, ‘yo is not very sensitive either to the parameters 
or the interaction, which is disconcerting in view of the large discrepancy between the 
calculated and empirical results. A possible explanation for this discrepancy may lie 
in elastic distortion effects not included in the present model. Such effects, induced by 
elastic rrd scattering prior to the absorption process, tend to increase the effective As3 
width that regulates the p-wave rescattering process and thus lower yo. We wil1 
consider this point further in the next section. 

Results for the coefficient 72 without recoil corrections are illustrated in fig, 11 for 
the Paris potential and various parameter choices. In this figure the solid curves 
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Fig. 11. yz without recoil corrections versus qe.,,. = k,d for the Paris potential and various values of a0 and 
A,. Notation as in fig. 5. The empirical values are from ref. *). 

correspond to LYE = 1.7, the dashed curves to (Y* = 2.0. By and large, the parameter 
dependence of y2 is similar to that of the total cross section, although the dependence 
on typ here is somewhat weaker. 

The interaction dependence of y2 is illustrated in fig. 12 where the solid curves 
indicate Paris potential results and the dashed curves Reid potential results, again 
without recoil corrections. This figure looks much like fig. 6, revealing that y2 and the 
total cross section have similar interaction dependence% In comparison with the 
empirical results, however, the calculated y2 lies too low at high energies for a 
parameter choice that yields a good fit to the total cross section. This is partly a 
consequence of the poor yo results, due to the approximate proportionality between 
LT,d+pp and the combination y~++yz (neglecting higher-order terms in the power 
series). Clearly, if we choose parameters to fit y2, the theoretical overestimate of y. 
would necessarily result in an overestimate of the total cross section. In addition to 
this insufficient magnitude, the y2 results also seem to be shifted slightly to the left 
relative to the empirical results. 

The coefficients y. and y2 both behave much like the total cross section as 
functions of the interaction and the parameters and thus, do not provide much new 
information. Far more interesting is the coefficient y4. In contrast to y. and ~2, y4 
turns out to be only weakly dependent on A,, and the interaction (Paris versus Reid). 
It depends quite strongly on the parameter o,, however. This can be seen in fig. 13, 
where we exhibit the y4 obtained without recoil corrections using the Paris potential 
for A, = 1.2 GeV and several values of c+ The strong LYE dependence manifested 
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Fig. 12. y2 without recoil corrections for the Paris and Reid potentials using cylt = 1.7 and two values of 
A,. Notation as in fig. 6. 

here, in combination with the weak A, and interaction dependences, makes y4 a 
discriminant among different models for the pNA vertex. At present, the empirical 
data do not permit a very fine discrimination, but they do limit the acceptable range 
of values for cyp. We note, in particular, that Kisslinger’s 23) value for cyp yields a y4 
that is large and positive in the resonance region. This is clearly inconsistent 
with the data. On the other hand, an CC@ value near 2.0 yields a y4 wet1 within the 
acceptable range. 

The effect of recoil corrections on the y coefficients is illustrated in figs. 14-16, 
Such corrections have only a moderate effect on yo, increasing it slightly, but have a 
rather iarge effect on ye. For the pseudovector case, y2 is doubled in the resonance 
region when recoil terms are added. This increase is large enough that with recoil 
terms included the right order of magnitude can be attained for both y2 and the total 
cross section with the same set of parameters, although the peak in the y2 results is 
still somewhat too low and shifted to the left relative to the empirical results. 
Unfortunately, as revealed in fig. 16, recoil terms also significantly influence y4, 
decreasing it substantially at low and intermediate energies. Clearly, any gain in the 
quality of the y2 fit obtained by in&ding recoil corrections must be paid for with a 
decline in the quality of the y4 fit. 
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Fig. 13. y4 without recoil corrections for the Paris potential and A, = 1.2 GeV using various values of (Ye 

The empirical values are from ref. 8). 

Aside from the convergence difficulties discussed at the beginning of this section, 

the cos* 8 power series expansion itself converges rather poorly. We found in 

particular, that although y4 > 7.5 for large (in magnitude) values of y4, for quite small 

values of y4, 76 may be as much as an order of magnitude larger than y4. In such a 
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Fig. 14. y0 versus qc.,,/m,, for the Paris potential and various models for the recoil corrections. 
Parameters and notation as in fig. 7. 
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Fig. 1.5. ~yz versus qc.m./m, for the Paris potential and various models for the recoil corrections. 
Parameters and notation as in fig. 7. 
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Fig. 16. y4 versus qs,,,/mT for the Paris potential and various models for the recoil corrections. 
Parameters and notation as in fig. 7. 
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case, we would expect the calculated y4 to be rather different from that obtained 
through a parametrization of empirical data neglecting sixth and higher order terms. 
This poor convergence is a peculiarity of the power series expansion, eq. (1.1); such 
difficulties do not affect the Legendre expansion, eq. (4.1). 

In view of these convergence problems, it is useful to treat the angular distributions 
directly. Representative results with q, = 1.7 are illustrated in figs. 17 and 18 for two 
values of T,, the laboratory kinetic energy in the pion absorption process, and for the 
Paris and Reid potentials respectively. Recoil corrections have not been included in 
these results except for the two dashed curves in fig. 17, which include pseudovector 
recoil terms. 
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Fig. 17. Angular distributions obtained with the Paris potential using op = 1.7 and A, = 1.2 GeV and 
1.4 GeV for T,, = 58 MeV (lower curves) and T, = 142 MeV (upper curves). The solid curves were 
obtained with no recoil corrections, the dashed curves with pseudovector recoil corrections. The empirical 
points denoted with solid circles are from ref. ‘) and correspond to T, = 56 and 143 MeV; the open 
circles, corresponding to T, = 60 MeV, and the X’S, corresponding to T,, = 142 MeV, are from refs. 6p) 

respectively. 
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Fig. 18. Angular distributions obtained with the Reid potential. Parameters and notation as in fig. 17. 

Despite the general lack of agreement between the calculated and empirical 

y-coefficients, the calculated angular distributions are not bad, at least when recoil 

terms are omitted. At T,, = 58 MeV, corresponding to CJ=.~. = 0.9m,, the Reid results 

with A, = 1.4 GeV nearly coincide with the data. The Paris potential with the same 

A, also yields approximately the right slope but underestimates the total cross 

section, so that the resulting distribution lies too low. 

At T, = 142 MeV, near the resonance peak in the total cross section, the cal- 

culated angular distributions are clearly influenced by higher terms in the power 

series parametrization of dcr/dLJ than are included in the empirical parametrization. 

At this energy, the y2 calculated with the Paris potential and the parameters cr, = 1.7 

and A, = 1.4 GeV is only about half the empirical y2 (see fig. 11). Nevertheless, the 

average slope of the corresponding angular distribution is nearly correct. Moreover, 

the curvature of the distribution is negative, even though the calculated y4 is small 

and positive. The origin of this apparent discrepancy lies in the next coefficient y6 

which is negative and an order of magnitude larger than y4 for this case. Evidently, 
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the y4 obtained through a least-squares fit of the empirical distribution mocks up the 
effect of several terms in the power series for the calculated distribution and may be 
completely unrelated to the calculated y4. 

When pseudovector recoil terms are included, the calculated y4 and y6 for a0 = 1.7 
are both negative and of the same order of magnitude. This leads to a large negative 
curvature in the resulting distributions, as seen in the dashed curves in fig. 17, that 
cannot be reconciled with the data. 

5. Discussion and conclusions 

The model outlined in sect. 3 incorporates the minimum number of -basic rrd 
mechanisms necessary in order to successfully describe the main features of the total 
and (with somewhat less accuracy) differential rrcd*pp cross sections. However, to 
obtain detailed quantitative agreement with experiment, further corrections have to 
be included. Estimates of effects not treated explicitly in the model will be presented 
in the following. 

Multiple scattering of the pion in the elastic 7rd channel before absorption leads to 
a distortion of the pion wave. In the region of the 3,3 resonance, assuming 
A-dominance, a simple estimate of this effect can be obtained by observing that the 
difference between single and multiple rrd scattering (at least at forward angles) can 
be translated into an effective increase of the A-width of about 20%, with no shift of 
the A mass, in accordance with the measured total rrd cross section 31). Inclusion of 
such elastic broadening in our rd-pp calculation lowers the total cross section by 
about 15% in the peak region. Also, the angular distribution coefficient y. is reduced 
by roughly the same amount at qc.m. = 1.6m,, without affecting the low-momentum 
behaviour. 

A further increase of the A-width below resonance is provided by the crossed Born 
terms in the A + TN decay. While it has been argued in subsect. 3.2 that the leading 
u-channel corrections to the TNA vertex, fig. 4a, are partly cancelled by related 
two-body diagrams, fig. 4b, such cancellations do not occur to a significant degree in 
the case of the A width r, because of isospin selection rules. It is therefore legitimate 
to multiply r by the corresponding u-channel form factor, which according to 
ref. 32) can be converted into the approximate form (Mz -M*)/(s -iVf*), where 
& is the TN c.m. energy. Note that this factor reduces in the static limit to 
w~/o, the form familiar from Chew-Low theory, where On = Md -iVf. Inclusion of 
this effect lowers c+(rd+ pp) by about 10% in the peak region. 

The combined effect of distortions and u-channel corrections to the width reduces 
y. by about 25% in the region qc.m. = 1.5 - 1.8m,. While significant, this reduction is 
still not quite sufficient to completely remove the discrepancies shown in fig. 10 or fig. 
14. Replacement of the standard choice, eq. (3.12), for the TNA coupling strength by 
the strong coupling value f**/&r = 0.37 (AI/J s raises c(7rd + pp) by about 2 mb at ) 
the peak. 
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At low energies s-wave rescattering and recoil corrections to the impulse approx- 

imation dominate. Our off -shell extrapolation of the s-wave rescattering amplitude 

should be compared with other models, like that of ref. *O), where t-channel 

exchange of a p-meson does not appear explicitly. However, above qc.m. = OSm, we 
find no great dependence of the results on the particular form of the off-shell 

extrapolation, so that no attempts have been made to further refine the off-shell 

model. The recoil problem cannot be resolved satisfactorily in the present model; it 

ultimately requires calculations with a relativistic deuteron wave function. 

Our description of the 27r(l-) exchange AN+ NN interaction is made concep- 

tually consistent with the basic philosophy of the Paris potential by using the 

corresponding helicity amplitudes f’. One of the important parameters is then (Y,, 

the ratio of the pNA to pNN coupling strength. We have pointed out that our 
treatment of the squared helicity amplitude in the form ~f!~2-~fBorn~2 incor- 
porates already second-order rescattering processes which would otherwise appear 
in the coupled channels approach of Niskanen rr), and which account for a 20% 
reduction of cr(rd + pp) in the peak region. This example also demonstrates that the 
proper treatment of p-exchange cannot be made independent of the details of the 
particular coupled-channels scheme employed, if 27r exchange degrees of freedom 
are treated explicitly. 

This leads to the question about the importance of higher-order coupled-channel 
contributions. From a comparison with ref. ‘l), which can be made using the Reid 
potential, cutoffs A, = 1.4 GeV, and a strong pNA coupling, it appears that a large 

part of the coupled channel effects is already accounted for once second-order 

rescattering processes are included by a proper treatment of the squared helicity 

amplitude. The additional influence of the diagonal NA + NA interaction [V, of 

ref. “), not considered in our model] is to reduce cr(rd+pp) by about 10% in the 

peak region. The -yo and y2 coefficients obtained by Niskanen show similar dis- 

crepancies with experiment as ours, although these discrepancies are somewhat 

hidden in ref. *l) by treating ratios of the y’s. We find that, at the level of total and 

unpolarized differential cross sections, and in situations where a meaningful 

comparison can be made, higher-order coupled channel contributions (in addition to 

the second-order processes already taken into account) are not of great importance. 

Concerning the expansion in pp partial waves, we have gone considerably beyond 

earlier work and found that, at least for the coefficient y4 in du/dLI, it is absolutely 

necessary to incorporate angular momenta as high as I,, = 6 to obtain convergence in 

the 3, 3 resonance region. 

Questions of comparison with the coupled-channels approach and about the 

influence of partial wave truncation will be raised again in connection with polarized 

cross sections, to be discussed in the following paper 35). 

We mention that in the absence of recoil corrections, and if the subtraction of Born 

terms in the 27r exchange NA + NN interaction is made according to If? -fBorn12, our 

results for c+(rd + pp) and for the y-coefficients are consistent with those of Chai and 
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Riska 14), provided that a comparable set of cutoff parameters and pNA couplings is 
used. Again, more detailed comparisons will be made for the parameters related to 
polarized cross sections 35). 

One of the significant results of this work is that y4 depends sensitively on the pNA 
coupling parameter up, while its dependence on the rrNN and TNA vertex cutoffs A,, 
and AZ, as well as its sensitivity to the interaction used (Reid versus Paris), is quite 
weak. This feature is related to the particular combinations of short-range 
mechanisms in higher partial waves which contribute to y4. Thus, if higher-quality 
data for y4 were available, constraints could be imposed selectively on up; on the 
other hand, crtot and yz depend on both cyp and cutoffs in such a way that increasing cy,, 
can be compensated by increasing A,. We have found that small values of a,,, as 
suggested by some authors, lead to large positive values of y4 in the resonance region 
which seem to be inconsistent with presently existing (though poor quality) data. We 
therefore suggest that models with weak or zero isovector two-pion coupling to the 
NA system 10*16*23) be confronted with such more detailed investigations. 

Our conclusion is that values of the trNN and TNA cutoffs, A, = 1.2-1.4 GeV, 
together with a relatively strong pNA coupling, a,, = 1.7-2.0, are consistent with the 
main features of the ppc*dr’ differential and total cross sections, although 
difficulties in understanding quantitative details of du/dJI still remain to be resolved. 

We are grateful to R. Vinh Mau for useful comments and for providing us with the 
latest version of the Paris potential. We also acknowledge helpful discussions with F. 
Myhrer, D.O. Riska and K. Shimizu. 

Appendix A 

KINEMATICAL RELATIONS 

Consider a pion with laboratory momentum k and lab energy o = Jk’+mZ 
incident on an A-nucleon system of total mass MA. The invariant mass squared, 
evaluated in the lab system, is 

s=m~+A&+2wM~, (A.l) 

while evaluation in the TA c.m.s. yields 

s = khl. +E,.~.>* = rn2,+~: +2k,2,,. +2J(k:.,. +m:>(k%m. +Mi), 
64.2) 

where k,.,. is the rrA cm. momentum and w~.~. = JkL. + m$. Equating (A. 1) and 
(A.2), the standard relation 
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results. Hence, the following relations are obtained for kvd and knN, the vd and ?rN 
c.m. momenta, respectively: 

klrd = [M,,,‘&n: + Mk + 2oM,lk, (A.4) 

k,N = [M,,~m: +h4; + 2mM&, W-5) 

where MD = 2&-B,, is the deuteron mass (Bn is the deuteron binding energy). 

Appendix B 

EVALUATION OF MATRIX ELEMENTS 

In this appendix the matrix elements defined by eqs. (3.1), (3.7), (3.8) and (3.25), 
which are required for the evaluation of the ?rd disintegration cross section, are 
discussed in some detail. For the sake of simplicity, we omit the vertex form factors in 
the rescattering terms and replace the Zrr(l-) contribution to p-wave rescattering by 
a zero-width p-meson exchange. Neither simplification significantly affects the 
generality of the development. Inclusion of vertex form factors, after performing 
some partial fraction separations, just introduces additional terms of the same form 
as those considered; while incorporation of the full two-pion mass distribution 
merely complicates the notation. Although not discussed here, both the form factors 
and the two-pion mass distribution have been included in the numerical compu- 
tations. 

The IA term without recoil corrections, the p-wave rescattering term, and the 
s-wave rescattering term can all be treated together using the same formalism. The 
recoil terms, on the other hand, require a separate discussion due to the derivative 
operators present. For this reason we first develop the formalism with recoil terms 
excluded and afterwards indicate how these terms may be incorporated. 

B.l. MATRIX ELEMENTS WITHOUT RECOIL TERMS 

We begin by evaluating the isospin matrix elements. Since both the deuteron and 
the outgoing pp state are states of definite isospin, only one set of matrix elements is 
relevant: that with T = 0 in the initial state and T = 1 in the final state. To obtain 
these, we note that 

(T=1~JZ72+jT=0)=--(T=i/J271+~~=0)=1, fB.1) 

(T= llJ2(71x7,)IT=0)=2i, (B-2) 

(T=1~(W~~)T:+~T=O)=-(T=1~(~~~T2)T;+~T=0), 

=‘! 
3, 03.3) 
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where n and I;: are the ordinary and transition isospin operators acting an nucleon i. 
The first two relations yield 

(T = lIlii,,JT = 0)~ f[,ik’r’2(01 v k)-ewik”“(az. k)] , 03.4) 
m, 

for the IA and s-wave rescattering matrix elements, where 

Y&r)=( 12) c, 
at r 

03.6) 

and all other quantities are defined as in sect. 3. Using the third relation, eq. (B.3), we 
obtain for the combined contribution of n- and p-exchange to the p-wave rescatter- 

with 

(13.8) 

(B.9 

(B.10) 

and fz = apfP The A33 propagator fld and the NA transition tensor operator S& are 
given by eqs. (3.9) and (3.16) in sect. 3. 

For what follows, it is convenient to combine the two terms multiplied by different 
exponential factors in each of eqs. (B.4), (B.5) and (B.7) by projecting out the spin 
singlet and spin triplet contributions to the matrix elements using the appropriate 
projection operators. These are given by 

1 

and satisfy 

Ps=f[l-(cr,9Q>]; &=$[3+(al**zf], (B.11) 

fi@j = i)&*j f (B.12) 
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where i, j = S, T. Since the deuteron is a state of definite spin S = 1, we need 
only consider matrix element projections of the form 

(M)s~~s(T=lIMIT=o)~T, 

(k&=&T= l(MIT=O)&. 

For the IA and s-wave rescattering terms, the relations 

(B.13) 

(B.14) 

yield 

(MI_& = - f (e” r’2 + edik “2)~s(~2 - k)fiT, 
mrr 

~~~~~~~ f (eik’r/2_e-ik”/2)~T(u2 . k)& 
9 

m, 
(B.15) 

f (MJs = -i- Y(r)(e 
ik. r/2 -e -ik “*)&a, * ;,& ) 

mrr 

f (M& = -i- .Y(r)(e ik. r/2 + e -ik d2)fiT(,,, . ;)fiT , 

msr 

with the abbreviation 

y(r)~~2[Al+(w+qo)~]Yl(ar). (B.17) 

To obtain the corresponding projections of the p-wave rescattering matrix ele- 
ment, we note that 

Wl * u*)(C * b) = u2 * kd - fh * U2)(Ul * l&N) 

= a2 * kmN + z&l * k&I) - &rl * k&) , (B.18) 

%(+)(S: . kmd = 3h2. i)(klrN. i)-a2. kaN-k!&2(i)(~l . kWN) . (B.19) 

Here Si2 is the ordinary tensor operator, defined by 

&(i)=3(u1 * i)(uz. ?)-a1 * u2, (B.20) 

and with spin projections 
A 

&&2 = 0, 

1 
PTSl2 = s12. (B.21) 



We must now specify explicitly the initial- and final-state nuckon wave functions. 
The initial deuteron state is just a superposition of ‘S1 and 3DI wave functions: 

(3.23) 

Here u and w are the s- and d-state radial wave functions, Md is the total angular 
momentum projection in the initial state, and 

with x and Y denoting spin-l wave functions and spherical harmonics respectively. 
The outgoing pp wave function in a particular spin state can be cast in the form 

where S, I, and J are the spin, orbital and tots.1 angular momentum, p is the relative 
pp momentum, and ZQJ is the radial wave function. In the absence of pp correlations, 
uu reduces to the spherical Bessel function irk and eq. (B.25) becomes just the 
partial wave expansion of a plane wave coupled to a spin wave function. 

The next step is to combine the final-state nucleon wave function given above with 
the exponential factors appearing in the spin-projected matrix elements. We 
accomplish this by first expanding the exponential factors in partial waves and then 
coupling the expressions so obtained to the partia1 wave expansion, eq. fB.25), using 
the addition theorem for spherical harmonics. The result, with the quant~tioo axis 
fixed along the direction of k, is 
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where Jr is the total angular momentum of the final state plus incoming pion, and the 
choice even or odd in the sum over Z, is governed by the sign between the 
exponentials on the 1.h.s. This expansion is relatively simple but employs an angular 
momentum coupling scheme inconvenient for evaluation of the matrix elements. A 
more useful expansion can be obtained by recoupling the angular momenta so that S 
is coupled to the total orbital angular momentum L = I + l,,, rather than to 1 alone. 
The appropriate transformation is given by 

([(SZ)~~~~~~~ = (4~)-“*(-)s~~f~~ 

(B.27) 

with the notation 

6 = (2Ej + l)liZ (B,28) 

From the form of eq. (B.27) and the spin-projected isospin matrix elements, it is 
clear that matrix elements of the type ([S(EE,)L]J,M,181(11d)lM,), where 0 is one of 
the angular momentum operators appearing in eqs. (B.15) and (B.22), need to be 
considered, We evaluate such matrix elements using standard procedures. For the 
operators u2 - k, cr2 * i, and 3(a2 . i)(knN l ;) - CQ * krN we then obtain 

(B.30) 

(B.31) 

with 

for the reduced spin matrix element. The operator S&)(uz * knN) is not expressible 
as a single product of tensor operators and hence, is more complicated than the 
others, but it can still be treated within the same procedure. After some lengthy 
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angular momentum algebra, a relatively simple expression results for the matrix 
element: 

(B.33) 

We can now assemble the complete matrix elements from the isospin matrix 
elements, eqs. (B.15) and (B.22), the wave functions, eqs. (B.23), (B.26) and (B.27), 
and the angular momentum matrix elements, eqs. (B.29)-(B.31) and (B.33). The 
resulting expressions are as follows: 

(-)‘“‘2(2r, + 1) 

(B.34) 

(B.35) 

(flA4s(i)s=o = 8~ I Zen (-)Md”‘2fY~~d(B) 

x c t--j ([-+‘)/*(21,+ l)( :, ; 
I( 

1 1, 1 

l., odd 
Md o _Md 

x (R yro - diR,m’12) , (B.36) 
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where 

(3.38) 

and the radial integrals are defined by 

IB”40) 

with cp&)= u(r)/r and r&r)= w(rffr. Note in these expressions that we have 
combined the IA and p-wave rescattering matrix elements and performed the sums 
over & L, and &. 

3.2. RECOIL TERMS 

The recoil terms require a slightly modified treatment due to the derivative 
operators that they contain. In particular, since these derivatives act only on the 
relative outgoing pp state when final-state correlations are neglected, it is convenient 
for evaluation of the recoil matrix elements, to couple the pion wave function to the 
initial deuteron state rather than to the final pp state. Thus, instead of eqs. (3.23), 
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(B.26) and (B.27), we employ 

and eq. (B.25) without correlations to represent the initial- and final-state wave 
functions respectiveIy. Note in the above that L = l, + f& MT is the deuteron spin 
projection, and Ji is the total angular momentum of the initial deuteron plus 
incoming pion. 

The spin-projected isospin matrix elements for the recoil terms can be obtained in 
the same manner as before with the results 

(B.42) 

where V acts only on the relative outgoing wave function. From these expressions 
and eqs. (B.25) and (B.41) for the wave functions, it is clear that the relevant angular 
momentum matrix element is ((SI)JM 1 J u2 * vl[l(l,id)L]Jikfd). TO eVahate this 
matrix element, we again proceed as before. This yields 

((S1hffila2 ’ vlcl(kld)LIJiMd)= (->‘cJf1~M&4$.7J~ 

with eq. (B.32) and 

ew?ll~>ullvII~> , 
(B-43) 

(B.44) 

for the reduced matrix elements, where the derivatives act on the outgoing spherical 
Bessel function, j,(p). Finally, combining eqs. (B.25), (B.42) and (B.43) and 
performing the sums over Ji and fd, we obtain the complete recoil matrix elements: 

1 7.0 Id, (-F+1)‘2 

x [( I I, 1 

> kfd 0 -hf‘j 
.!&y -(-)Md(2r,+1)Lod$M @M*,L 

f 7 

L 1 12 1 
MT-Md -MT > ae , (B.45) 
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