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The jellium model of simple metal clusters has enjoyed remarkable empirical success, leading to many
theoretical questions. In this review, we first survey the hierarchy of theoretical approximations leading
to the model. We then describe the jellium model in detail, including various extensions. One important
and useful approximation is the local-density approximation to exchange and correlation effects, which
greatly simplifies self-consistent calculations of the electronic structure. Another valuable tool is the semi-
classical approximation to the single-particle density matrix, which gives a theoretical framework to con-
nect the properties of large clusters with the bulk and macroscopic surface properties. The physical prop-
erties discussed in this review are the ground-state binding energies, the ionization potentials, and the di-
pole polarizabilities. We also treat the collective electronic excitations from the point of view of the clus-

ter response, including some useful sum rules.
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I. INTRODUCTION

The theoretical description of metal clusters has re-
cently undergone a sort of phase transition. Until less
than a decade ago, metal clusters were either small mi-
cromolecules consisting of a few atoms, treated with
molecular physics and quantum-chemical methods, or
small particles in the mesoscopic domain, which were
essentially pieces of bulk metal and could be described
using the approaches of solid-state and statistical physics
(Kubo, 1962; Denton et al., 1973; for a review, see
Halperin, 1986). With the discovery of electronic shell
structure in free alkali clusters by Knight er al. (1984,
1985), a new era has started in which emphasis is put on
the quantized motion of the delocalized valence electrons
in the mean field created by the ions. The detailed ionic
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structure often does not seem to affect very much the
properties of alkali and other simple metal clusters. Car-
ried to the extreme, this behavior suggests the jellium
model, which is defined by a Hamiltonian that treats the
electrons as usual but the ionic cores as a uniform posi-
tively charged background. This naturally leads to a
description of the electron density in terms of single-
particle wave functions that extend over the entire clus-
ter. The mean field of the electrons can either be calcu-
lated self-consistently in the simple spherical jellium
model (Ekardt, 1985a, 1985b), yielding the correct shell-
closing numbers of electrons in many cases, or be phe-
nomenologically parametrized including the effects of de-
formations (Clemenger, 1985a, 1985b) in analogy to the
nuclear shell model. In this way, using relatively simple-
minded approaches to the many-body problem, a wealth
of experimental data on simple metal clusters can be
classified and often be theoretically reproduced at least
semiquantitatively (see de Heer, Knight et al., 1987, for a
review).

Metal clusters today provide a convenient and relative-
ly inexpensive tool for studying the properties of finite
fermion systems with increasing sizes all the way from
atomic to mesoscopic dimensions, and hopefully soon to
the macroscopic domain as well. The recent observation
by Pedersen et al. (1991) and other groups of the so-
called supershell structure in alkali clusters with up to
three thousand atoms represents a milestone in this de-
velopment.

This review article is devoted to some of the theoreti-
cal approaches used for the description of simple metal
clusters. It has been conceived and prepared in close
contact with Walt de Heer, whose review on experimen-
tal techniques and results appears as an adjacent article
in this issue. De Heer also discusses many theoretical
models and physical pictures and compares their results
to the experimental data. The present article is meant to
provide some background of the theory, mainly based on
the microscopic mean-field and density-functional ap-
proaches. We shall be discussing the results of different
theoretical models and approximations and, of course, we
also have to look at experimental data in order to assess
the differences. But for the detailed comparison between
experiment and theory, we recommend that the reader
consult de Heer’s review.

We cannot possibly give an account of all theoretical
aspects of metallic clusters. This would be a truly inter-
disciplinary task, involving atomic, molecular, and solid-
state physics, quantum chemistry, and many aspects of
nuclear physics as well. The author of this article is, in
fact, a nuclear physicist and a certain bias in the selection
of the presented material cannot be denied.

One of our aims here is to build bridges: from sophisti-
cated quantum mechanics to simple phenomenological
models on the one hand, and from atoms and ‘“‘simple”
molecules to the infinite bulk metal on the other hand.
We also put some emphasis on semiclassical approxima-
tions and asymptotic expansions for very large particle
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numbers N. As a matter of fact, in order to describe the
structure of clusters with many thousands of atoms one is
strongly encouraged by the sheer numerical size of the
quantum calculations to use statistical or quasiclassical
methods. Besides, it is our belief that even for medium-
sized systems in which microscopic effects play an impor-
tant role, semiclassical approaches often allow for a more
transparent interpretation of many phenomena than the
purely microscopic theories and therefore offer better in-
sights into the important physical mechanisms.

The jellium model has proven to be an almost ideal
theoretical instrument for approaching the above goal: it
is simple enough to be applied to spherical metal clusters
containing up to several thousand atoms, but still allows
for a self-consistent microscopic description of the aver-
age field felt by the valence electrons, correctly rendering
many of the observed shell structures. At the same time
it allows one to extract parameters from finite clusters
that can be directly compared to those of the bulk or of
plane metal surfaces for which it has been applied al-
ready over twenty years ago (Lang and Kohn, 1970,
1971, 1973). Its success in describing the “supershell”
structure in very large alkali clusters, for which none of
the more structural models have any chance to compete,
speaks for itself.

The obvious flaw of the jellium model is its complete
neglect of ionic structure. In order for the model to work,
several conditions must be satisfied. First, the valence
electrons must be strongly delocalized, a condition met in
metals that are good conductors. Second, the ionic back-
ground must respond very easily to perturbations, to per-
mit the electronic single-particle energies to determine
the structure. This is obviously most likely to be satisfied
when the valence electron has an s-wave character with
respect to the ionic cores, since then there is no direc-
tionality to the binding.! Thus the jellium model has its
main applicability in the group Ia metals, particularly
sodium, potassium, and the heavier alkalis, and to some
extent the Ib metals such as copper and silver.

Even in elements that slow the jellium behavior most
clearly, the model cannot compete quantitatively with ab
initio* quantum-chemical methods or molecular dynam-
ics in explaining many finer experimental details of mi-
croclusters with some 20 or fewer atoms where these
structural methods can be applied. For detailed accounts
of the techniques and achievements of some of these
methods, we refer the reader to the recent literature:
Bonaci¢-Koutecky, Fantucci, and Koutecky (1991) have
presented an extensive and very valuable review on
quantum-chemical methods, and a comprehensive review
on the molecular dynamics method has been given by
Galli and Parrinello (1991).

I'This is certainly not a sufficient condition; cf. the structure of
elemental hydrogen.

2We use the term ab initio meaning a calculation using the full
electron Hamiltonian with the unmodified Coulomb interac-
tion.
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The jellium model on one side and the quantum chemi-
cal approaches on the other side represent two almost di-
ametrically opposed points of view, a situation that has
led to a great deal of debate. Even their relative degrees
of difficulty can be debated. Quantum chemistry has a
clear and simple concept of treating the many-body prob-
lem, but in practice is computationally very complex and
requires sophisticated approximations even for small
molecules. The jellium model is an easy-to-use and rather
effective tool for the largest clusters also, but its limita-
tions are hard to exceed and its physical applicability is
difficult to judge. Even though researchers on both sides
seem to agree that either approach has its merits and its
limitations, the question remains when and where to use
them for those cluster sizes in which both methods can
be applied. We tend to believe that, ultimately, this
dispute can only be resolved empirically. Careful analy-
ses of the ab initio results in terms of mean-field quanti-
ties are certainly also very useful in partially settling
these questions.

In Sec. IT we try to given an overview of some of the
facets of the quantum many-body problem posed by the
phenomena seen in metal clusters. We shall go through
the successive approximations and simplifications used in
the various approaches, starting from the purely micro-
scopic ab initio description and ending up with semiclas-
sical mean-field theory. We hereby hope to give the unin-
itiated reader a guide to the various theoretical ap-
proaches that one meets when scanning through the
literature on metal clusters. Some of the general and
more formal aspects of mean-field and linear-response
theory have been put into appendices.

Section III deals extensively with the microscopic jelli-
um model and its results. We hope to demonstrate that
in its recent deformed versions, it yields results that are
strikingly close to those of quantum chemistry and
molecular dynamics. An important approximation for
dealing with the jellium Hamiltonian is the local-density
approximation (LDA). We also review briefly some at-
tempts to go beyond the LDA and some extensions of the
jellium model that aim at a partial inclusion of the ionic
structure without sacrificing its simplicity.

There is a wealth of interesting experimental data on
the electric dipole response of metallic clusters, and we
devote the whole of Sec. IV to their description, using
J

. N P2 Zpii N 1
A=3 iyt +3

a=1 i=12m =

(Ze)Z zZ
=L
2TR,—R, T 2

i=1

where M, P,, R, are the mass, momenta, and coordi-
nates, respectively, of the nuclei, m, Po,» Tq, are those of
the electrons in the ath atom, and self-interactions must
be left out of the double sums. This constitutes a system
of N(Z +1) charged particles interacting via the
Coulomb forces. Although the Hamiltonian (2.1) is ex-
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linear-response theory. Results of microscopic and semi-
classical jellium model calculations are compared to
those of the quantum chemical and to the structural
models employing pseudopotentials. We also establish
links between microscopic theories and their classical
counterparts, and discuss the coupling of collective sur-
face and volume modes.

The final section, Sec. V, is devoted to very large metal
clusters. In Sec. V.A we discuss, after some general con-
siderations on shell structure, one of the most fascinating
aspects: the so-called supershell structure and its ex-
planation in terms of a semiclassical quantization of the
electronic orbits. Average cluster properties and their
asymptotic behavior are discussed in Sec. V.B, in order to
provide links from the microscopic to the macroscopic
world. Starting from self-consistent semiclassical calcu-
lations, we show how to extract the asymptotic large-N
expansion of the energy and other observables, and how
some of the coefficients in these expansions are directly
linked to properties of the bulk metal.

It should be clear from our emphasis that we have not
been able to review and discuss all relevant theoretical
papers on simple metal clusters. In particular, concern-
ing the structural approaches, we have simply cited
several important references without a detailed discus-
sion. We apologize to all whose work is not assessed ap-
propriately or not mentioned at all.

Il. FROM THE QUANTAL MANY-BODY PROBLEM
TO SEMICLASSICAL JELLIUM DROPS:
A HIERARCHY OF APPROXIMATIONS

This section is an introduction and guide to the
different levels of sophistication of theoretical approaches
to metal clusters and to the various approximations used
in different contexts. We also take the occasion here to
review some selective literature on those approaches that
will not be further discussed in the remaining sections.

A. The quantal many-body problem

Let us start by writing down the exact Hamiltonian for
a neutral cluster consisting of N nuclei with Z electrons
each:
] ,

actly known, it is impossible to solve the corresponding
Schrodinger equation.

Luckily, the different scales of nuclear and electronic
masses allow a rather clear separation of their treatment.
According to the Born-Oppenheimer hypothesis, the dy-
namics of the nuclei may either be neglected altogether,

z 2
+1ls ¢

2 j=1 Irai_rBj|

Ze?
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as in the quantum-chemical approaches (see Sec. I1.B), or
treated classically as a slow, adiabatic motion (see Sec.
II.C), whereas the electrons must be treated quantum
mechanically.

Considerable simplification is achieved by explicitly
treating only the w valence electrons of each atom quan-
tum mechanically and including the core electrons with
the nuclei as ions of charge —+we. The assumption
“atom =ion+w valence electrons” generally works quite
well, even for materials in which the valence electrons are
not strongly delocalized, and provides the basis for a
large proportion of calculations for molecules and clus-
ters. The total Hamiltonian then is reduced to that of N
interacting ions (A 1) and wN interacting valence elec-
trons (A 1) in the external field V; provided by the ions:

A=A,+A,, 2.2)
with
N P2 1 N ( )2
ﬁ,zzl iy 2.3)
a=1 |2 2 BlFa)=1 |Ra—RB|
wN p2 1 wN eZ
A= ’—'+V(r,-)+— —t, (2.4)
o igl 2m ! 2;(;&:2):1 |, — 1]
where the ionic potential
N
Vi(r)=73 Vps(lr,-—Ral) . (2.5)
=1

couples the electronic and ionic degrees of freedom. Al-
though the core electrons are no longer explicit degrees
of freedom in the wave function, they still influence the
valence electrons by screening and Pauli exclusion effects.
The ion potential ¥, in Eq. (2.5) is a smoothed function
that includes the influence of the core electrons, and is
called a “pseudopotential” in physics and an “effective
core potential” in chemistry. (See Appendix A.2.d for
further discussion.)

Even when the nuclear (or ionic) part of H is ignored
or treated by classical equations of motion (Sec. I1.C), the
electron-electron interactions in Eq. (2.1) or Eq. (2.4) still
constitute an unsolvable quantal many-body problem.
The most common method for dealing with it is the
mean-field approximation, which has been widely used
for treating many-fermion systems in all branches of
physics: one determines self-consistently an average po-
tential in which the electrons move as independent parti-
cles.

One starts from a Slater determinant built of electronic
single-particle wave functions and determines these by an
energy variational principle. This leads to the familiar
Hartree-Fock (HF) approximation (see Appendix A.l).
Thus the average part of the electronic repulsion is in-
cluded in the mean field (or potential), which, due to the
nonzero range of the Coulomb interaction, is nonlocal.
Extensions of the HF approximation are obtained by in-
clusion of many-particle/many-hole excitations and their
interactions in perturbation theory. This constitutes, at
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least formally, the scheme for a complete microscopic
treatment of the many-electron problem and is the basis
of the quantum-chemical approaches (see Sec. I11.B).

An alternative version of the mean-field approach is
obtained in the framework of the density-functional
theory, in which exchange effects and correlations going
beyond the HF approximation can be included approxi-
mately in a local mean field. A major part of the micro-
scopic calculations for metal clusters so far has been done
using density-functional theory by solving the so-called
Kohn-Sham equations (see Appendix A.2 for a brief out-
line of density-functional theory). In principle, density-
functional theory applies only to static ground-state
properties. But some information about excitation pro-
cesses, like ionization potentials and electron affinities,
can be gained from static calculations just by combining
energy differences of clusters with different numbers of
electrons.

The mean-field concept allows one to describe most of
the electronic shell effects and many other static proper-
ties of metallic clusters, at least semiquantitatively, and
provides the common basis for the approaches sketched
in Secs. II.C-IL.E below and discussed more extensively
in the remaining sections III-V.

Collective excitations of the valence electrons in metal
clusters have been both observed and theoretically dis-
cussed extensively. The microscopic framework for their
description within mean-field theory is the random-phase
approximation (RPA); its practitioners call it the time-
dependent local-density approximation (TDLDA) in the
context of density-functional theory. See Sec. IV.A. and
Appendix B for the formal basis of this theory. In
essence, it is a linear-response theory using particle-hole
excitations from the determinantal ground state as the
basic degrees of freedom. RPA theory was originally
developed for infinite electronic systems in solid-state
physics, but has been used successfully also for finite fer-
mion systems in molecular and nuclear physics, where
collective excitations play an important role. It has re-
cently been extensively used for analyzing the optical
response of metal clusters, starting from ab initio
quantum-chemical or density-functional results for the
ground state. In Sec. IV.B we review the corresponding
literature and compare the different predictions.

B. Quantum chemistry

The ambitious goal of the quantum-chemical ab initio
approach is to treat all the electronic degrees of freedom
in Eq. (2.1) fully quantum mechanically. This can only
be done at the cost of “freezing” the positions R, of all
nuclei. The Born-Oppenheimer approximation thus is
used to vary adiabatically the positions of the nuclei, let-
ting the electrons adjust their motion at any time to the
instantaneous external field of the nuclei, until the total
static energy is minimized. This is a strict zero-
temperature treatment; no zero-point motion of the nu-
clei is included.
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Since the quantal many-electron problem is too com-
plicated for an exact solution, one starts from the
Hartree-Fock (HF) approximation (see Appendix A.l)
for the electronic wave functions to obtain a self-
consistent mean field; the correlations are then included
perturbatively in a hierarchy of n-particle/n-hole
configuration interactions or, alternatively, by superpos-
ing several Slater determinants (“multiconfigurational
HF”’). The pure ab initio treatment of all electrons is lim-
ited to very small clusters (N < 10); for larger systems fur-
ther simplifications, using density-functional methods
and/or pseudopotentials, must be made.

A detailed discussion of the quantum-chemical ap-
proaches and their results is outside the scope of our
present review. We refer the reader to a very recent and
exhaustive review article by Bonaci¢c-Koutecky, Fantuc-
ci, and Koutecky (1991) on the theory and application of
quantum-chemical methods for the description of metal
clusters. As a few selected references for the history and
development of these methods for metal clusters, let us
just mention here Marinelli et al. (1976), Beckmann
et al. (1980), Fantucci et al. (1984), Garcia-Prieto et al.
(1984), Martins et al. (1985), Rao and Jena (1985), Bous-
tani et al. (1987), and Bonafi¢-Koutecky et al.
(1988—1991). Later in this review we shall compare some
ab initio predictions to the results of other approaches.

C. Molecular dynamics and static pseudopotential models

In this subsection we briefly review density-functional
calculations which investigate explicitly the ionic
geometry of metal clusters, making use of pseudopoten-
tials. We start with the most up-to-date, fully dynamic
theory, and then discuss its static limits and some of its
precursors. It is important to note that, for many pur-
poses, and indeed for our applications here, the dynamics
of the ionic motion is irrelevant to the quantities calculat-
ed. We shall discuss only properties of the clusters that
are static with respect to the ionic motion. The quality
of the results will depend on the form of the Hamiltonian
and the approximations used to treat the electronic part.
In principle, all that is required here of the dynamics is to
locate the stable structures.

The molecular-dynamics (MD) method, developed by
Car and Parrinello (1985), includes the dynamics of the
ions by solving their classical Newton equations, coupled
to the quantum-mechanical Kohn-Sham equations for
the electrons (see Appendix A.2.e). This goes beyond the
quantum-chemical approaches in that it is able to treat
the systems dynamically (although only in the adiabatic
limit due to the basic restrictions of density-functional
theory; see Appendix A.2.). It also allows one to extract
thermodynamic properties of complex molecular sys-
tems, at least approximately. The price one pays is that
not all electrons can be treated fully quantum mechani-
cally. Instead, the valence electrons are treated in
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density-functional theory, most frequently in the local-
density approximation (see Appendix A.2), and the core
electrons are represented by pseudopotentials (see Ap-
pendix A.2.d).}

On large computers, the MD method is usually com-
bined with the simulated annealing technique of Kirkpa-
trick et al. (1983): the finite temperature is used as a
technical means to allow the system to relax into the
lowest minimum of its Born-Oppenheimer energy surface
and thus to determine the optimal ground-state geometry
of the ions.* This is very time consuming but crucial in
view of the fact that the number of isomeric minima to
which the simpler steepest-descent method can lead in-
creases very rapidly with the number of ions (Hoare and
Mclnnes, 1983). In view of the above remarks, we shall
refer to these calculations as pseudopotential calcula-
tions, emphasizing the approximation in the Hamiltoni-
an, rather than as Car-Parrinello or MD calculations,
which would emphasize the search for the stable struc-
tures.

As examples of MD calculations for the ionic structure
of small metal clusters and their thermal properties, we
mention that Ballone et al. (1989) studied Na,, and
Na (K, clusters; Nay clusters with N <20 were investi-
gated by Rothlisberger and Andreoni (1991). Jones
(1991) has investigated the ground-state geometries of
small Al clusters with N up to 10. The fission of a small
doubly charged sodium cluster was investigated in MD
calculations by Barnett ez al. (1991).

The pseudopotential approach represents today
perhaps the most effective tool for treating molecules and
clusters containing up to several tens of atoms with their
full ionic structure, in the adiabatic limit also for the in-
clusion of their dynamics. For a recent comprehensive
review on the pseudopotential approach we refer the
reader to Galli and Parrinello (1991). A short status re-
port on MD calculations for small metal and semicon-
ductor clusters was given by Andreoni (1991).

Generally, it can be said that the ionic ground-state
structures of small metallic clusters obtained in MD cal-
culations are practically identical to those found in ab in-
itio quantum-chemical calculations.

Another approximation scheme to include electron-ion
correlations dynamically is the so-called “effective medi-
um theory” developed some time ago by Ngdrskov and
Lang (1980) and Ndrskov (1982). The effect of an
“embedding” electron density p, on the binding of an

3The name “ab initio molecular dynamics,” which is often
used in the literature, should not be mistaken as indicating an
all-electron theory, which in this dynamical form would be im-
possible even for small clusters. It is merely used to indicate
that ab initio pseudopotentials, derived from first-principles
quantum-chemical calculations, have been employed.

4A modified version of the simulated annealing method was
used by Manninen (1986b) to calculate the ionic ground-state
structures of Na microclusters with N <8.



682 Matthias Brack: The physics of simple metal clusters

atom is first studied microscopically in density-functional
theory with LDA, leading to an energy functional of the
atom that depends on p, as an external parameter. Then
this functional is used for a metal to include in each
Wigner-Seitz cell the effects of the (superposed and aver-
aged) electronic density tails of all neighboring cells. In
this model, the Wigner-Seitz radius and the cohesive en-
ergy of a given metal can be explicitly calculated.

So far the effective medium theory has been applied
mostly to metallic bulk and surface properties, particu-
larly to the process of melting. For a recent review, we
refer the reader to Jacobsen and Ngrskov (1988).
Christensen et al. (1991) have presented the first applica-
tion of the theory to small Cu clusters. The electronic
shell effects were calculated from a tight-binding Hamil-
tonian and included in a way that is reminiscent of the
shell-correction theory of Strutinsky (1968) (see end of
Sec. V.B.1). Their model allows one to describe in a self-
consistent, albeit approximate, way the interplay of ionic
and electronic shell effects. Nielsen et al. (1992) have
used it to simulate the melting of a Cu cluster with 16 727
atoms. This method appears rather promising, but no
calculations for simple metal clusters have been reported
so far.

As precursors to MD or simulated annealing calcula-
tions, many static investigations of the structure of small
clusters have been performed over the last decade, using
more or less sophisticated pseudopotentials. Since the
ionic structure requires a fully three-dimensional solution
of the electronic Kohn-Sham equations, and the optimal
geometry of the ions must, in principle, be searched sys-
tematically by minimizing the total energy, even purely
static investigations are very complex and time consum-
ing. With the present-day generation of computers, this
is most elegantly done by the simulated annealing tech-
nique.

We discuss some of the results of static structural cal-
culations when comparing them to other calculations in
later sections. Let us mention here some approximate in-
vestigations in which the ionic structure has been
simplified. Small cubic crystals were studied by Ifiiguez
et al. (1986). Martins et al. (1981) and Baladron et al.
(1985) introduced a spherical averaging of the pseudopo-
tentials in order to have spherical symmetry. Manninen
(1986a) imposed spherical symmetry only on the elec-
tronic density; he minimized the classical part of the total
energy (the “Madelung energy”’), varying the full three-
dimensional geometry of the ions. A systematic series of
studies with spherically averaged pseudopotentials (the
“SAPS model”) was started by Ifiiguez et al. (1989, 1990)
and Loépez et al. (1990) and recently extended to include
simulated annealing (Borstel et al., 1992). For the appli-
cations of the spherically averaged pseudopotential mod-
el to metal clusters, we refer the reader to the recent re-
views of Balbas and Rubio (1990) and of Borstel et al.
(1992). Finally, we note that a semiclassical version of
the spherically averaged pseudopotential model using
variational trial densities (see Sec. V.B) was developed by
Spina and Brack (1990).
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D. Jellium model

The most dramatic but efficient simplification is to ig-
nore the ionic structure totally, replacing the charge dis-
tribution of the ions by a constant background charge in
a finite (spherical or deformed) volume. This is the
three-dimensional, finite-size version of the jellium model
which was successfully used long ago for the description
of metallic bulk and surfaces properties (Lang and Kohn,
1970-1973). The self-consistent mean field of the elec-
trons can be calculated microscopically in this model in-
cluding the shell effects due to their quantization. It re-
quires, however, the density of the ions (or, correspond-
ingly, the Wigner-Seitz radius r,) as an external parame-
ter, which characterizes the nature of the metal.

The total neglect of the ionic structure is better
justified than one might think at first sight: the pseudo-
potentials (see Appendix A.2.d) have no singularities and
their sum in V; [Eq. (2.5)] is, indeed, a rather smooth
function. This is the combined effect of screening and
the Pauli principle, coming from the inner core electrons
that fill the lowest orbitals in the Coulomb-like potentials
of the individual nuclei. We refer the reader to textbooks
on solid-state physics (e.g., Ashcroft and Mermin, 1976)
for a more detailed discussion.

For finite clusters, a wealth of papers initiated by
Ekardt (1984a, 1984b) and independently by Beck (1984a,
1984b) has shown that a self-consistent and essentially
parameter-free microscopic jellium model calculation can
account qualitatively, and in many cases even quantita-
tively, for many experimentally observed properties of
metal clusters, in particular those of alkali metals (see the
review of de Heer, 1993). Deformations of the jellium
background (axial or triaxial) or a finite temperature of
the electrons can be included at reasonable cost in the jel-
lium model. The self-consistent jellium model will be re-
viewed in Sec. IIT and some of its applications in Secs. IV
and V.

The justification of the jellium model for the descrip-
tion of clusters is, and probably will remain, an object of
much debate and research. However, its undoubted vir-
tue is that it can also be applied to large clusters with
many hundreds or thousands of atoms, where the more
structural models cannot be used for practical reasons.
The most beautiful example is the explanation of the
“supershells” in large alkali clusters, which we shall dis-
cuss in Sec. V.A.

E. Phenomenological shell models

Many shell and single-particle effects do not depend
very crucially on the microscopic self-consistency of the
total mean field, such as is obtained by iteratively solving
the Hartree-Fock or the Kohn-Sham equations. One
may therefore give up the self-consistency by simply
parametrizing the total average potential in an easy-to-
use form and then solving just once the Schrodinger
equation, in order to obtain single-particle spectra and
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wave functions. This leads, of course, to a considerable
gain in numerical simplicity. The cost of such simplicity
is a less fundamental description, since contact with the
two-body interaction is lost and the parameters of the
model have to be determined by fits to experimental ob-
servables. The advantage is a greater flexibility, allowing
closer contact with the measured data.

The prototype of such a phenomenological shell model
is the Woods-Saxon potential, which was successfully in-
troduced into nuclear physics by Maria Goeppert-Mayer
(1949) and independently by Haxel, Jensen, and Suess
(1949). After inclusion of a strong spin-orbit coupling
term, it became possible for the first time to explain the
so-called magic numbers of nucleons responsible for the
extra stability of certain nuclei like 39°Pb!% (cf. Sec.
V.A.1). The nuclear shell model has been successfully
used to explain many single-particle properties of spheri-
cal nuclei, despite the lack of an underlying Hartree-
Fock basis in the context of realistic nucleon-nucleon in-
teractions. After the discovery of nuclear deformations
through low-lying rotational excitations, Nilsson (1955)
introduced a shell model for deformed nuclei, which is
based on an axially deformed harmonic-oscillator poten-
tial including a spin-orbit coupling term and an attractive
term proportional to the square /? of the single-particle
angular momentum operator that simulates a steeper
wall. The Nilsson model was very successful in explain-
ing the ground-state deformations of many nuclei and
their single-particle excitations (Mottelson and Nilsson,
1955; see also Bohr and Mottelson, 1975). It is rather re-
markable that one is able to predict shapes with a model
that uses only a single-particle Hamiltonian, and a very
oversimplified one at that. The explanation for nuclear
physics seems to be that self-consistency in shape be-
tween particle density and the potential field is a very
powerful constraint, and that shell closure effects can
occur as a function of deformation as well as of particle
number (see also Sec. V.A.1).

Clemenger (1985a, 1985b) adapted the Nilsson model
to small axially deformed Na clusters by dropping the
spin-orbit term and readjusting the coefficient of the /2
term. This model has since been frequently used in metal
cluster physics and is usually referred to as the
Clemenger-Nilsson model. The model seems to work
quite well in reproducing the overall shapes of clusters as
calculated by pseudopotential or ab initio methods. We
shall not discuss it here any further; it is well explained
and extensively used in the reviews by de Heer, Knight
et al. (1987b) and de Heer (1993). Reimann et al. (1993)
have proposed an extension of the Clemenger-Nilsson
model, fitted to spherical Kohn-Sham spectra, and ap-
plied it to large deformed sodium clusters with N <800
(see Sec. V.A.1).

The three-dimensional harmonic-oscillator potential
without /2 term was used by Saunders (1986) to describe
triaxially deformed clusters.

Nishioka et al. (1990) have introduced a spherical
Woods-Saxon potential for Na clusters particularly in
connection with calculations of the so-called supershell
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structure, which we shall discuss in Sec. V.A. They
determined the parameters of their potential by fitting it
directly to the Kohn-Sham potentials obtained in the
self-consistent jellium model calculations of Ekardt
(1984b) for Na clusters with N <192. Clemenger (1991)
has adapted the Woods-Saxon potential to a variety of
metals and studied the scaling properties of the super-
shell structure as a function of the Wigner-Seitz parame-
ter r;. Frauendorf and Pashkevich (1993) have adapted
the Woods-Saxon potential to deformed clusters with
N <300.

The omission of the spin-orbit term in all these shell
models for metal clusters seems to be empirically justified
by the fact that no strong evidence of spin-orbit splittings
has been observed so far. This can be theoretically un-
derstood considering the relativistic effects in a jellium
potential. First, relativistic effects in atoms and mole-
cules are generally much smaller than in nuclei. Second-
ly, the Thomas term, which one obtains from a nonrela-
tivistic reduction of the Dirac equation for fermions
moving in a spherical electrostatic potential V(r), is pro-
portional to (1/r)dV /dr. In atoms, this is strongest near
the center where the potential is proportional to 1/7 and
thus affects most strongly the electrons in the lowest or-
bits. In clusters, V' (7) is flat in the interior so that dV /dr
is practically zero. In the surface, where the gradient is
large, the extra factor 1/r gives an extra suppression,
which varies as N ~!/3. Detailed relativistic Kohn-Sham
calculations (Schone, 1991) confirm, indeed, the smallness
of spin-orbit splittings within the jellium model.

F. Semiclassical and classical approaches

One more simplification can be made that leads to a
considerable gain of efficiency in treating very large sys-
tems: the neglect of shell effects. This is done automati-
cally by the explicit use of semiclassical approximations
to the kinetic-energy functional T,[p] (see Appendix
A.2.a). The density-functional formalism can then be ex-
ploited for direct density-variational calculations: one no
longer varies many electronic single-particle wave func-
tions, but one single function, the electronic density p(r)
(or, if relevant, two spin densities). By doing this one
sacrifices the single-particle structure, and thus shell
effects, but the advantage is an enormous gain in simpli-
city and calculational speed, and this can still give
significant results for average properties of the con-
sidered system. The famous prototype of such a model is
the Thomas-Fermi (TF) model of the atom.

Extensions of the Thomas-Fermi model (the TFW
model, ETF model, etc.; see Appendix A.2.a) were
developed long ago and have been successfully used for
finite fermion systems in many branches of physics. The
variation of the density p(r) can either be done exactly,
leading to an Euler-Lagrange type (integro-) differential
equation, or in restricted variational spaces using trial
density functions. In fact, the first self-consistent jellium
model calculations for spherical metallic clusters were
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carried out using such a semiclassical density-variational
method by Cini (1975).

Many average properties of metal clusters can be de-
scribed in such density-variational calculations, which we
shall review in Sec. V.B. A more formal and fundamen-
tal interest of this approach is the possibility of connect-
ing the microscopic models to purely classical ones. In
the large-N limit, the clusters become classical spheres or
drops, and a systematic expansion, the so-called ‘“lepto-
dermous” expansion, can be developed to determine the
surface and curvature energies from semiclassical theory.
This leads to the self-consistent foundation of a liquid-
drop model similar to that in nuclear physics (see, for ex-
ample, Myers and Swiatecki, 1969). Likewise, the
asymptotic behavior of electronic ionization potentials
and affinities and their classical limits, which have re-
ceived miuch attention in the literature, can be studied
rigorously using this technique. These recent develop-
ments will also be reviewed in Sec. V.B.

Just as for the static energetics of finite fermion sys-
tems, so for their linear-response behavior one can obtain
links to classical models by the use of semiclassical and
large-N limits of the RPA method. An approximate
theory extracted from the RPA under the assumption of
local currents (Reinhard et al., 1990) leads to the connec-
tion with classical hydrodynamics (or, to use a more ap-
propriate term, Fermi-fluid dynamics). From this point
of view, several aspects of surface plasmons can be dis-
cussed qualitatively, and the physics becomes more trans-
parent than in the purely microscopic RPA approach.
Section IV.C is devoted to these topics.

E[p]=T,[pl+E.lpl+ [ {V,mp

Here T,[p] is the (noninteracting) kinetic-energy density
and E, [p] the exchange-correlation energy density (see
Appendix A.2); the fourth term is the direct (Hartree)
Coulomb energy of the electrons. V;(r) is the ionic back-
ground potential, related to the background jellium
charge density p,(r) by

p(r')
— 2f |r1 (3.2)

The jellium density is usually assumed to be uniform, i.e.,
pr(r)=p;, inside the cluster and zero outside. The po-
tential (3.2) here replaces the ionic potential (2.5) used in
the pseudopotential models. The E; in Eq. (3.1) is the
electrostatic energy associated with the jellium back-
ground. It does not depend on the electron density but is
included so that E[p] (3.1) represents the total binding
energy of the cluster. The density p(r) must be normal-
ized to the total number wN of valence electrons:

[ ptn)d*r=uwn, (3.3)

where w is the valence factor (number of valence elec-
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The gross structure of the shell effects in the single-
particle spectrum and the total energy of a finite fermion
system can also be described rather well by semiclassical
techniques that are based on the quantization of classical
trajectories. The well-known prototype of this idea is the
old Bohr-Sommerfeld quantization rule. In its modern
version, it has become very successful in explaining the
beating pattern of the so-called supershells in large alkali
clusters. This will be discussed in Sec. V.A.

. THE SELF-CONSISTENT JELLIUM MODEL

A. Basic concepts

The basic idea of the self-consistent jellium model is to
replace the distribution of the ionic cores by a constant
positive background or jellium density’ p;, in a finite
volume and to treat only the valence electrons explicitly
in the mean-field approximation, either microscopically,
as described in this section, or semiclassically (see Sec.
V.B). The jellium background may be spherical, ellip-
soidal, or arbitrarily deformed.

Almost all jellium calculations so far have been per-
formed within density-functional theory, the formal as-
pects of which we have summarized in Appendix A.2.
(For some recent Hartree-Fock calculations, see Sec.
ITT.C.1.) In density-functional theory the total energy of
the cluster is expressed as a functional of the local elec-
tron density p(r):

Jd3r+E, . 3.1)

[
trons per atom).

If the electron density is written in terms of single-
particle wave functions ¢;(r) as

wN
pr)=3 [g;(r)] (3.4)
i=1
—which is always possible for physical (i.e., non-
negative and normalizable) densities due to the so-called
Coleman theorem (Gilbert, 1975)—then the noninteract-
ing kinetic-energy functional T [p] is

Ts[P]:fT(r)d3r———f ( S Ve, (r)]? ]d3 (3.5)

SThroughout this paper, we denote by p the particle densities
and not the charge densities. The charges (in multiples of e) ap-
pear explicitly in all formulae with their correct signs.
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By a variation of the energy E[p] (3.1) with respect to
the @ (r), one then arrives at the so-called Kohn-Sham
equations, whose solutions will be discussed in Sec. III.B.

A direct variation of the energy with respect to the
function p(r) is also possible if one is satisfied with semi-
classical approximations for the kinetic-energy functional
T,[p]. This is at the cost of neglecting the shell effects,
but has the advantage that one is varying only one func-
tion p(r) instead of wN wave functions ¢;(r), and still al-
lows one to obtain average cluster properties self-
consistently. We shall discuss this approach and the cor-
responding calculations in Sec. V.B.

Most applications of the jellium model to metal clus-
ters so far have been restricted to the local-density ap-
proximation (LDA) for the exchange-correlation (xc)
functional E, [p]. As discussed in Appendix A.2.c, this
approximation consists in using locally the exchange-
correlation energy per electron e, (p) obtained in many-
body calculations for an infinite system of electrons with
constant density p, i.e., e, .(p) is taken at the local value
p=p(r) everywhere in the finite system. By construction,
this approximation is exact in those regions of space
where the density p(r) is constant, and it is badly justified
where the density varies strongly, such as in the surface
region of metal clusters. In spite of its simplicity, the
LDA in connection with the Kohn-Sham approach has
met with considerable success in almost all branches of
physics.®

Metal clusters (besides metal surfaces) present perhaps
one of the most crucial testing grounds for the LDA,
since their surfaces are typically much steeper than those
of atoms or small molecules. However, the success of the
LDA in conjunction with the jellium model in describing
surface energies and work functions for metal surfaces
(Lang and Kohn, 1970, 1971; Monnier et al., 1978)—at
least for alkali-like metals—has encouraged, and to some
extent also justified, its application to metallic clusters.
We shall briefly discuss some extensions of the LDA in
Sec. IT1.C below and, in particular, report there on an en-
couraging test of the exchange part of the LDA function-
al by means of a Hartree-Fock calculation for finite metal
clusters (Sec. III.C.2).

One essential point of the jellium model is that it con-
tains only one single parameter, namely, the Wigner-Seitz
radius r;, which characterizes the metal. It is related to
the jellium density p, by
—1

Pro= (3.6)

Otherwise, the model is completely free of parameters,
since the electron density is determined variationally.
Usually, one takes the bulk value for r, corresponding to
the ionic lattice in the crystal. Naturally, this is only

6See, for example, Jones and Gunnarsson (1989) or Dreizler
and Gross (1990) for its applications to electronic systems, and
Sprung (1972) for a discussion of the LDA in nuclear physics.
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justified for large clusters. In the jellium model, however,
we have no way to determine the finite-size variation of r,
theoretically, so that the simplest choice is that of the
bulk value.

A remark about the internal consistency of the jellium
model might be appropriate here. If we consider the
inner part of a large neutral cluster and neglect the sur-
face effects, the energy per electron e(p) as a function of
the (constant) density p is given by

_ an
e(p) 2 <P +e,.(p), (3.7)

where the first part is the kinetic energy per electron [see
Eq. (A19) of Appendix A.2.a]. The Coulomb energies
cancel exactly if the density p is chosen to be equal to the
jellium density p;o, which must be done to ensure charge
neutrality. If we now search for a minimum of e(p) in
Eq. (3.7) with respect to varying p (and, with it, p,), we
find it for values 7, ~4-4.3 a.u., depending somewhat on
the detailed LDA exchange-correlation functional used.
For example, for the functional of Gunnarsson and
Lundqvist (1976) [see Eq. (A.33) in Appendix A.2.c],
which has often been used for metal cluster calculations,
this minimum is at r,=4.08 a.u. Very similar values are
obtained with all other exchange-correlation functionals
in the literature. In such a variational calculation there
is, of course, only one metal that has a stationary value of
its density in the bulk region. It is perhaps no coin-
cidence that the jellium model works best for alkali met-
als, in particular sodium, with »; values close to this
minimum. It has, indeed, already been observed by Lang
and Kohn (1970) that good surface energies are obtained
in the jellium model only for metals with », 2 4 a.u. (see
also Sec. V.B.2). In fact, the model completely breaks
down for r; $2.3 a.u,, in that it gives negative surface en-
ergies for the corresponding metals (e.g., aluminum).
This should not be forgotten when applying the jellium
model to finite clusters, in particular when their shape is
not kept spherical. A negative surface energy means that
the cluster is not stable against deformation, so that, in
the jellium model, the energetically most stable
configuration for a finite aluminum system is not a sphere
but alu-foil!

B. Kohn-Sham-LDA calculations

The variation of the energy E[p] (3.1) with respect to
the single-particle wave functions @}(r),

E =0 3.8
5pF (1) [p(r)] (3.8)

with the subsidiary condition that the @,(r) be normal-
ized, leads to the Kohn-Sham equations (see Appendix
A2)

{7+ Vis(D)}@i(r)=g;¢;(r) . (3.9)

T is the kinetic-energy operator; the local potential
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Vks(r) is a sum of three terms:
Vis(D)=Vislp(n) =V  [p(r) ]+ Vylp(r)]+ V(1) ,
(3.10)

of which the first is due to the exchange and correlation
contributions:

)
= E .
Sp(r) xc[p] ’

Viulp] is the Hartree potential of the electrons, given in
the square brackets in Eq. (3.1) above, and V; is the jelli-
um potential (3.2). The constants €; in Eq. (3.9) are the
Lagrange multipliers used to fix the norm of the ith state;
their interpretation as single-particle energies is not
justified in general as discussed in Appendix A.2.

Since Vy and V,  depend on the density p(r), the
Kohn-Sham equations (3.9) are nonlinear in the ¢; and
must be solved by iteration until self-consistency is
reached (i.e., un.il the results do not change any more
upon iteration). In general, (3.9) are partial differential
equations in the three spatial coordinates and their solu-
tion is not trivial. However, if symmetries are assumed
or imposed, the problem simplifies considerably. A large
majority of Kohn-Sham calculations so far have been
performed assuming spherical symmetry of the clusters.
The calculation then becomes one-dimensional and is rel-
atively easy to do, even for clusters with up to N =3000
electrons (Genzken and Brack, 1991). We review spheri-
cal Kohn-Sham calculations in Secs. III.B.1; their exten-
sion to finite temperatures is discussed in Sec. II1.B.3 and
their application to very large clusters in Sec. V.A.2.

When major electronic shells are only partially filled,
the mean field tends to be deformed, as is well known
from nuclear physics (see also Sec. V.A.1). The spherical
jellium model therefore must be generalized to include
deformed ionic background densities, in order to mini-
mize the total energy of such “nonmagic” systems. In an
average sense, this simulates the nonspherical distribu-
tions of the ions known from ab initio and molecular-
dynamics calculations. In Sec. III.B.2, jellium calcula-
tions in two and three dimensions are reviewed, corre-
sponding to axially and nonaxially deformed clusters, re-
spectively.

Vielp(r)] (3.11)

1. Spherical jellium model

In the spherical jellium model, the ionic background
density p;(r) is that of a uniformly charged sphere with
radius R;:

pr(N=p;®(r—R;), R;=r N3, (3.12)
in which the value of R; is fixed by the number N of ions.
The ionic potential V;(r), which replaces the sum of indi-
vidual ionic potentials (2.5), is then easy to evaluate and
is given by
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2
wNe? r
Vir)=— 2R, ‘3— R_I for r <R,
2
=~% for r >R, , (3.13)
and the ionic energy E; is simply
3 (wNe)?
E, =00l
1= R, (3.14)

If the electron density is also assumed to have spheri-
cal symmetry, the total Kohn-Sham potential (3.10) is
spherical and the single-particle states ¢;(r) will have
good angular momentum quantum numbers /;,m;, their
angular parts being given by Y,imi(9,¢) in polar coordi-

nates (r,0,¢). Equations (3.9) can then be reduced to ra-
dial Schrédinger equations for the radial parts Rni,i(r) of

the wave functions and solved numerically on a one-
dimensional mesh in the variable r (Beck, 1984a, 1984b;
Ekardt, 1984a, 1984b). As a variational precursor of this
model we mention that of Martins et al. (1981). In their
treatment, which is not fully self-consistent, they re-
placed the Kohn-Sham potential (3.10) by a simple varia-
tional square-well potential.

During the last eight years, many papers have been
published with results of spherical jellium model calcula-
tions. We cannot cite them all here; many of them are
referred to when we compare their results with experi-
mental data or with results of other models. The results
of several groups have been summarized by Balbas and
Rubio (1990). All authors, except those cited in Sec.
II1.C, used LDA functionals for the exchange-correlation
part of the energy.

As an illustration, we show in Fig. 1 (upper part) the
Kohn-Sham potentials of three alkali clusters with
N =40, obtained in some early jellium model calculations
by Chou et al. (1984). Their shape is similar and scales
essentially with the Wigner-Seitz radius r,. The
minimum near the surface is related to the fact that the
electronic density always has a maximum there as a
consequence of the Friedel oscillations (Lang and Kohn,
1970). Some of the Kohn-Sham single-particle levels g;
are shown in the lower part of Fig. 1 directly as functions
of rg; their positions for the respective metals are marked
by the dashed vertical lines.

The successes and failures of the spherical jellium
model have been discussed extensively by de Heer (1993)
while comparing its results with experimental data. Let
us summarize here some general trends and add a few re-
marks:

(i) Spherical-shell closings: The most prominent “mag-
ic numbers” observed in mass abundances, ionization po-
tentials, and electron affinities correspond to the filling of
major spherical shells and are in general correctly repro-
duced for alkali metals, some noble metals, and, to some
extent, also for Al clusters. A problem exists with the
atomic numbers 34 and 40: The self-consistent jellium
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FIG. 1. Potentials and electronic single-particle energies ¢; for
three alkali clusters with N =40, obtained in the self-consistent
spherical jellium model by Chou et al. (1984): upper part, total
Kohn-Sham potentials versus radius r; lower part, electronic
Kohn-Sham levels €; of the 1d —1g shells vs Wigner-Seitz radius
r,. Values for the three metals Li, Na, and K, respectively, are
indicated by the vertical dashed lines.

model for Na clusters (and, to a lesser extent, for Li clus-
ters) gives N=34 as a stronger spherical shell than
N =40, contrary to experiment. This is due to too large a
splitting between the 1f state and the 2p state lying above
it (see Fig. 1 above). Some remedies for this failure are
discussed in Sec. III.D below. The phenomenological
Clemenger-Nilsson model does better here (see also de
Heer, 1993), but this is just due to a suitable choice of the
I? term. Similarly, a Woods-Saxon-type potential is
better, since it is flat in the inner part and does not exhib-
it the “Friedel dip” near the surface (see Fig. 1), which in
the self-consistent model leads to some extra attraction
for higher-/ states and thus pulls the 1f state down more
than the 2p state. (Similar discrepancies are found for
larger spherical shells and subshells; we refer the reader
to Sec. V.A.2 in connection with very large alkali clus-
ters.) In general, it can be said that the detailed ordering
and spacing of single-particle levels near the Fermi sur-
face, and therefore the correct prediction of “magic num-
bers,” can be rather sensitive to the radial shape of the
potential. Of course, the ionic structure also plays a role
when it comes to these details. Indeed, Kohn-Sham cal-
culations by Borstel et al. (1992) including the ionic
structure schematically in the so-called spherically aver-
aged pseudopotential model (see Sec. II.C) also yield a
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reduction of the 2p-1f gap.

(ii) Deformed-shell closings: In principle, the imposed
spherical symmetry does not allow one to treat clusters in
the regions between the major spherical shells. From the
analogous situation in nuclei, we know that such clusters
are deformed (see also the general discussion on shell
effects in Sec. V.A.1). This is, indeed, the case and will be
discussed in the next subsection.

(iii) Ionization potentials (IP) and electron affinities
(EA): The jellium model with LDA gives a reasonable
qualitative description of these quantities, namely their
approaching the bulk work function W like 1/R for large
N and their sawtooth-like behavior at major shell clos-
ings. (For an extensive discussion concerning the asymp-
totic slopes of IP and EA plots versus 1/R;, see Sec.
V.B.3.) However, in Na and K, the average values of the
IP are too large. This is related to the bulk values W,
which are too large in the jellium model, as is well known
since the pioneering calculations of Lang and Kohn
(1971). It can partially be remedied by inclusion of the
ionic structure via pseudopotentials (Lang and Kohn,
1971; Monnier et al. 1978). Moreover, the finer details of
IPs and EAs are not correctly explained in the spherical
jellium model; the experimentally observed odd-even
staggering is missing and the amplitude of the shell fluc-
tuations is exaggerated by a factor of up to two. For
small clusters (N < 12), the ab initio and the pseudopoten-
tial models with local-spin-density approximation
(LSDA) clearly give a better quantitative description.
Some of the fine structure is partially improved in the
spheroidal model discussed below. [An improvement
over the LDA results, both for neutral and for the partic-
ularly critical negatively charged clusters, was obtained
in jellium model calculations using a nonlocal weighted-
density approximation to the xc energy (WDA; see Sec.
III.C.4) by Rubio et al. (1989, 1991a) and Balbas et al.
(1989, 1991). On the other hand, very recent Hartree-
Fock plus perturbation-expansion calculations by Guet
et al. (1993) seem to confirm the validity of the LDA for
both exchange and correlation effects, by yielding almost
identical ionization potentials to those of the Kohn-
Sham-LDA approach for a series of Na clusters.]

(iv) Dipole polarizabilities and photoabsorption cross sec-
tions: We discuss these quantities and their description
in the jellium model extensively in Sec. IV.

It is clear that in clusters with up to N ~20 atoms the
jellium model is not quantitatively competitive with
quantum-molecular methods or spin-dependent LDA cal-
culations with pseudopotentials. For very large clusters
with hundreds or thousands of atoms, however, the jelli-
um model will presumably remain the only tractable way
to make theoretical predictions. The agreement obtained
recently with the experimentally observed supershell
structure (see Sec. V.A) is, indeed, very encouraging. It
is therefore interesting to ask to how small a size the jelli-
um model can be extrapolated.

Some points of comparison with respect to ab initio
and pseudopotential theory will be mentioned here.
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First, the basic starting assumption of delocalized single-
particle wave functions seems to be rather well satisfied
for alkali-metal clusters. For example, in the
configuration-interaction (CI) calculation of Nag by
BonacCi¢-Koutecky et al. (1991), the leading ground-state
configuration has an amplitude of 0.91 in the CI wave
function. This is despite the fact that correlation effects
are known to be crucial to obtain binding of alkali-metal
clusters. Evidently the LDA is a rather good approxima-
tion. Secondly, the electron densities in these more mi-
croscopic calculations are seen to concentrate on the
interstices of the ionic lattice rather than on the atoms or
on the lines between neighboring atoms. This shows a
degree of delocalization not present in ordinary chemical
binding. Also, the large-scale nodal structure of the
single-particle wave functions exactly duplicates that of
the jellium model. This is particularly striking in the
highly symmetric clusters such as Nag(7,), where the oc-
cupied s and p jellium states as well as the empty s and d
orbitals can be identified with the corresponding molecu-
lar orbitals. Finally, Rothlisberger and Andreoni (1991)
have compared the spherically averaged densities and
mean potentials of their pseudopotential calculations
with those of the spherical jellium and phenomenological
models. We shall come back to this comparison in the
context of the deformed jellium models discussed in the
next section.

2. Deformed jellium model

Some of the shortcomings of the spherical jellium mod-
el can be removed, or at least reduced, by relaxing the
spherical shape of the clusters. Indeed, as discussed ex-
tensively by de Heer (1993), there is good evidence that
clusters are deformed in regions between the major
spherical shell closures. The deformed shell model of
Clemenger (1985a, 1985b) allows one to interpret the fine
structure of mass abundance spectra and the splitting of
the dipole resonances in sodium clusters in the mass re-
gions 8 <N <18 and 20< N <40. In this model (see the
Appendix of de Heer, 1993, for details) the potential de-
pends on a deformation parameter, and the equilibrium
(ground-state) shape of each cluster is calculated simply
by minimizing the sum of occupied single-particle ener-
gies with respect to this parameter. Obviously, such a
model is not self-consistent in two respects: First, the
density distribution of the electrons is not guaranteed to
have the same shape as that of the potential (although
this is approximately the case at the shapes of minimal
total energy; see, for example, Bohr and Mottelson,
1975).

Second, the sum of single-particle energies is far from
representing the total binding energy of an interacting
system. As is well known from HF theory [cf. Eq. (A15)
in Appendix A.1l], the sum of occupied ¢; contains the
potential energy twice, and there is a priori no reason to
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expect it to have the correct deformation behavior.” The
errors introduced by just summing the occupied ¢; in-
crease with the number of particles; this gives an upper
limit to the usefulness of the simple Clemenger-Nilsson
model in determining the correct ground-state deforma-
tions. This situation is well known in nuclear physics:
the breakdown of the Nilsson model in describing the de-
formation energies of heavy nuclei, in particular at the
large deformations occurring in the fission process, has
made it necessary to correct for its missing self-
consistency. An approximate but very powerful tool for
achieving this was introduced by Strutinsky (1968); his
shell-correction theory is mentioned briefly at the end of
Sec. V.A.1.

It is therefore of basic theoretical interest to verify the
phenomenological potential of the Clemenger-Nilsson
model by microscopic, self-consistent calculations in the
framework of density-functional theory. In the deformed
jellium model, one wuses the spirit of the Born-
Oppenheimer approach underlying the quantum-
chemical and molecular-dynamics calculations (see Secs.
II.B, II.C): one varies the shape of the jellium density
distribution and lets the electrons adjust themselves in
the corresponding deformed ionic potential (including
their interaction and exchange-correlation effects in
LDA, as usual). The ground-state configuration is then
found by minimizing the total energy with respect to the
jellium shape. Practically, one parametrizes the shape of
the jellium density in terms of one or several deformation
variables. These variables take the roles of the ionic posi-
tions R, of the ab initio approaches [see Eq. (2.1)]. Al-
lowing for a sufficient number of shape degrees of free-
dom for the jellium therefore should bring this model
closer to the more realistic approaches, the main
difference being that here only the averaged geometry of
the ions is varied.

One technical problem in the deformed jellium model
is that the background jellium potential V;(r) is no
longer a simple analytical function as in the spherical
case; cf. Eq. (3.13). It must therefore be calculated nu-
merically either by direct integration over the jellium
density or by solving the Poisson equation. Similarly, the
Kohn-Sham equations become more complex with de-
creasing symmetry of the cluster and have to be solved in
two or three spatial dimensions explicitly.

The existence of axially deformed equilibrium shapes
within the framework of the self-consistent jellium model
has been confirmed in Kohn-Sham calculations for
spheroidal clusters by Ekardt and Penzar (1988, 1991;
Penzar and Ekardt, 1990). These authors use an axially
symmetric ellipsoidal jellium density with constant

In a pure harmonic-oscillator model, from which the
Clemenger-Nilsson model does not much differ, one can obvi-
ously exploit the virial theorem to correct for this double count-
ing. But realistic self-consistent potentials are quite different
from harmonic-oscillator potentials.
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volume and half-axes z,, p, given in terms of a single de-
formation parameter 8, restricted by —2 <8 <2, and the
cluster radius R; (3.12)

245 |
'2?3] Ry, po=

1/3

2-% R;. (3.15)

2+8

Zog—

The electronic density is assumed to have axial symme-
try, too, and the Kohn-Sham equations are solved in
spheroidal coordinates, again using the LDA functional
of Gunnarsson and Lundqvist (1976) for the exchange-
correlation energy [see Eq. (A33) in Appendix A.2.c].
The total energy of the cluster must be calculated for
each deformation 8, and the ground state is found by
minimizing the resulting energy with respect to 8. The
shell structure obtained by this model for the IPs and
EAs of Na and Cu clusters is somewhat reduced by the
deformation effects, but still exaggerated with respect to
experiment. An interesting result is that the odd-even
staggering in these quantities, a striking feature observed
in clusters up to N =92, can to some extent be explained
by polarization effects of the odd electrons. The results
of Ekardt and Penzar (1991) for collective photoabsorp-
tion spectra obtained in the axially deformed model are
discussed in Sec. IV.B.

Nonaxial deformations of small sodium clusters have
recently been investigated in the self-consistent Kohn-
Sham framework by Lauritsch et al. (1991). Here, a tri-
axial ellipsoid with constant volume was assumed for the
jellium density; for reasons discussed in Sec. III.D.1
below, the jellium density was given a diffuse surface with
a width of one atomic unit. The Kohn-Sham equations
(in the LDA) were then solved numerically on a three-
dimensional mesh for each given deformation of the jelli-
um background. Potential-energy surfaces of these triax-
ially deformed clusters were presented as functions of the
two quadrupole degrees of freedom 8 and y introduced
by Hill and Wheeler (1953): =0 measures the overall
quadrupole deformation (8=0 corresponding to spherical
shape), and y measures the axis ratios of the ellipsoid
(y=0° giving prolate axial, ¥ =60° oblate axial, and
0° <y <60° triaxial shapes).

As an example we show in Fig. 2 the Born-
Oppenheimer energy surface of Na,¢ in the (B,7) space,
obtained with the model of Lauritsch et al. (1991). It has
its minimum at 8=0.38, ¥ =33°, corresponding to a tri-
axial shape. This supports the predictions of Saunders
(1986) using the triaxial harmonic-oscillator potential
[see also Fig. 4(a) of de Heer, 1993]. The shapes of the
other clusters with 8 <N <20 of that model are
confirmed, too, in the self-consistent jellium model: Na,,
has a triaxial shape, whereas Na,,, Na4, and Na, are ax-
ially deformed. Thus while filling the 1d shell, there is a
transition from spherical (N =8) to prolate (10) to oblate
(18) shapes; the crossover goes through 0° <y <60°, lead-
ing to triaxial shapes (12, 16). The case N =14 is rather
critical: the two axial minima (prolate and oblate) are
nearly degenerate and their energy difference depends
crucially on details of the model (see Lauritsch et al.,
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07 (y=0°)

FIG. 2. Deformation energy surface of Nas obtained by Lau-
ritsch et al. (1991) in the triaxially deformed self-consistent jelli-
um model. 3 and y are the Hill-Wheeler quadrupole deforma-
tion parameters. The contour lines correspond to increments of
0.01 Ry of the total energy of the cluster. The lowest energy
(E=—1.393 Ry) is found for #=0.38, y =33°, corresponding to
a triaxially deformed ground state.

1991). In fact, this difference has been found to be very
sensitive to hexadecapole deformations (Hirschmann
et al., 1993). The same transition, prolate— triaxial
—oblate, is again expected on the grounds of the phe-
nomenological shell models for 20 <N <40 while filling
the 1/ and 2p shells.

In recent photoabsorption measurements on positively
charged Na clusters by Liitzenkirchen et al. (1993), the
transition from prolate to oblate shapes in the regions
12<N <20 and 20<N <40 has been observed. For
N >40 (i.e., filling the 1g shell), however, the shapes seen
to be oblate again (see also Borggreen et al., 1993); it is
a challenge to explain this in further self-consistent calcu-
lations.

An interesting result of Lauritsch ez al. (1991) is the
occurrence of several almost degenerate isomers with
different spherical, axial, or nonaxial shapes, separated by
barriers of ~0.5-1 eV. Indeed this shape isomerism re-
calls that found in ab initio quantum-chemical and
molecular-dynamics calculations, although the heights of
the barriers between are overestimated in the jellium
model due to the missing residual interactions. Never-
theless, these results show that a lot of qualitative, aver-
aged features of the ab initio approaches can also be ob-
tained in the self-consistently deformed jellium model
even for small clusters.

In Fig. 3 we show the energy per particle for the region
of sodium clusters with 8 <N <20, obtained in self-
consistent Kohn-Sham-LDA calculations in three succes-
sive approximations with decreasing symmetry. The up-
permost line corresponds to the spherical jellium model.
The next-lower line gives the energies obtained in the axi-
ally symmetric model, whereas the lowest line is that ob-
tained in the triaxial jellium model. The latter two differ
only for the two nonaxial clusters with N=12 and 16.
(Odd values of N have no significance in these calcula-
tions, in which the spin degrees of freedom were not in-
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FIG. 3. Total energy per electron E /N vs N for sodium clusters
with 8 <N <20, obtained by Hirschmann et al. (1993) in the
self-consistent triaxial diffuse jellium model of Lauritsch er al.
(1991): X, spherical model; O, axial (spheroidal) model; +, tri-
axial (ellipsoidal) model; A, semicalssical spherical model (cf.
Sec. V.B).

cluded explicitly; the results therefore do not exhibit any
odd-even effects.) One observes that quite an appreciable
gain in energy is brought about by the deformation of the
clusters, except close to the spherical closed-shell num-
bers 8 and 20. Also shown in Fig. 3, by the dotted curve,
is the result of a semiclassical density-variational calcula-
tion (see Sec. V.B). It is seen to interpolate nicely be-
tween the microscopic curves and represents, in fact, a
rather good approximation to these results including de-
formation, although in the semiclassical approximation
all clusters remain spherical.

It is of interest at this point to compare the jellium
model results to those of pseudopotential calculations
that include the ionic structure. In Fig. 4 we show the
spherically averaged total Kohn-Sham potentials ob-
tained by Rothlisberger and Andreoni (1991) for the clus-
ters Na,y and Na,,; and compare them to those obtained
by Hirschmann et al. (1993) in the diffuse jellium model
of Lauritsch et al. (1991). Although the pseudopotential
results show important oscillations, their average trend is
rather well reproduced by the jellium model.

In Fig. 5 we compare the spherically averaged elec-
tronic densities obtained in the two approaches for the
clusters Na,g (which is oblate axially deformed in the jel-
lium model) and Na,,. The pseudopotential (left part) are
given for three different temperatures; the jellium results
(right part) at T=0 only. The agreement between the
T=0 results is almost quantitative, which is rather
surprising in view of the potentials shown in Fig. 4
above. It shows that the electrons average out the ionic
structure of the pseudopotentials by their motion, so that
their density distribution is almost unaffected and is very
well reproduced by the jellium model.

The single-particle energies for Na clusters in the re-
gion 8 <N =20 are shown in Fig. 6. Here we compare
the Kohn-Sham levels g; obtained in the spheroidal jelli-
um model of Ekardt and Penzar (1988), the triaxial jelli-
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FIG. 4. Spherically averaged total Kohn-Sham potentials for
the sodium clusters Na;, and Na,,: dashed lines, results of
molecular-dynamics (MD) calculations by Réthlisberger and
Andreoni (1991); solid lines, self-consistent jellium model results
by Hirschmann et al. (1993), using the diffuse-surface jellium
model of Lauritsch et al. (1991). Note that Na,, is spherical in
the jellium model, whereas Na,, is prolate axially deformed.

um model of Lauritsch et al. (1991), and those of the
MD results of Rothlisberger and Andreoni (1991) using
the Car-Parrinello method. The jellium model results
agree astonishingly well with the pseudopotential results
where the ionic structure is included.®

An interesting detail that can be observed in Fig. 6 is
the relative closeness of the 1p and 1d type levels around
N =14. Since they have opposite parity, a static octupole
(or more generally, any left-right asymmetric) deforma-
tion would mix these levels, which could lead to a lower-
ing of the energy. Such situations are known also from
atomic nuclei. Hamamoto et al. (1991) have shown that
an octupole instability in typically quadrupole-deformed
regions are a rather general trend of finite fermion sys-
tems and can lead to shell effects of comparable impor-
tance to those induced by the nonaxial quadrupole defor-
mations.

In conclusion we can say that the jellium model is able
to describe surprisingly well the average trends of poten-
tials, energy levels, and densities in the structural pseudo-
potential calculations, when a sufficiently flexible defor-
mation is included, even for such small clusters as
Nag—Na,, This is encouraging for the application to
larger systems in which molecular dynamics becomes
more and more time consuming and one is bound to rely
on the jellium model predictions.

8A similar study of Kohn-Sham levels, obtained in pseudopo-
tential calculations for Mg clusters with 8 <N <20, was recent-
ly presented by Delaly et al. (1992), who also confirm the gen-
eral trends of the jellium model predictions.
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] part (a), results of molecular-dynamics (MD)
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results of the self-consistent jellium model as in
Fig. 4 above, at zero temperature. (Note that
g Na,g is oblate axially deformed in the jellium
i model.)
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3. Finite-temperature effects

In many experiments, clusters are produced at finite
temperatures of up to several hundred Kelvin or even
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FIG. 6. Kohn-Sham single-particle levels in Na clusters with
8 <N <20, calculated in different models. (a) molecular-
dynamics (MD) results (Réthlisberger and Andreoni, 1991); (b)
spheroidal jellium model (Ekardt and Penzar, 1988); (a) triaxial
diffuse-surface jellium model (Lauritsch et al., 1991). From
Hirschmann et al., 1993.
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more (see Sec. III.A of de Heer, 1993). The manifesta-
tion of shell structure in the abundance spectra of
cluster-beam experiments is thought to be a result of eva-
poration of neutral atoms by the hot clusters: the closer
the number of valence electrons gets to a number corre-
sponding to a filled major shell, the more stable the clus-
ter will be and the smaller the probability for evaporation
of a further atom, so that finally at the time of
detection—when the beam has cooled off—the closed-
shell species are the most abundant (Bjgrnholm et al.,
1993).

The question therefore arises to what extent a finite
temperature affects the magnitude of the electronic shell
effects themselves. Shell effects are weakened at finite
temperature for two reasons. Most of the excitation en-
ergy will be in the structural degrees of freedom, namely,
in the vibrations, distortions, and liquefaction of the clus-
ter. The amount of phase space associated with high-
symmetry shapes that produce electronic shell closures
will then be reduced. Independent of this, the occupation
of the electronic orbitals will be smeared out as in the
Fermi-Dirac distribution. This will also smooth out shell
effects, as is well known from nuclear physics (Bohr and
Mottelson, 1975; Brack and Quentin, 1981).

At first sight, one might think that even several hun-
dred degrees are small on the scale of the electronic
single-particle energies, so that this second effect should
be negligible. This is certainly true for clusters with
fewer than a hundred atoms, in which the main spacing
between electronic levels corresponds to several thousand
degrees. However, in very large clusters in the mass re-
gion N =1000-3000, which now have become available
in expansion sources, the spectra are much more
compressed and the temperatures in question do have a
noticeable effect. Furthermore, the detailed shape of the
abundance spectra depends in a rather subtle way on first
and second differences of the total free energies with
respect to the atomic number, so that the temperature
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smearing effects can, indeed, become visible (Bjgrnholm
et al., 1991; Pedersen et al., 1991).

The effects of occupation-number smearing were ad-
dressed recently in finite-temperature Kohn-Sham-LDA
calculations for sodium clusters in the spherical jellium
model (Brack, Genzken, and Hansen, 1991a, 1991b;
Genzken and Brack, 1991). The electrons were treated as
a canonical system in the heat bath of the ions, and the
appropriate density-functional theory for 7'>0 (see Ap-
pendix A.2.) was used. The canonical partition function
was calculated exactly in terms of the Kohn-Sham
single-particle energies, and the relevant thermodynami-
cal quantities were derived from it self-consistently.
Since the most important results of these calculations
concern the supershell structure in very large alkali clus-
ters, we shall discuss them in Sec. V.A.2 below.

Only the temperature of the electrons can be treated
rigorously in the jellium model; the ions are not accessi-
ble microscopically. This is a serious restriction, since a
dominant fraction of the thermal energy in cluster beams
is carried by the ions. However, the ionic part of the
thermal energy can be assumed to be a smooth function
of the particle number. Therefore the shell-structure os-
cillations coming from the valence electrons and their
temperature dependence can also be studied in the jelli-
um model.

C. Beyond LDA

In this section we review a few approaches that go
beyond the local-density approximation. The discussions
here are brief and outline only the basic ideas. Results
for experimentally measured observables, as far as they
have been obtained, are discussed and compared to those
of Kohn-Sham-LDA calculations in Secs. II1.B and IV.B.

We first review two sets of calculations that were per-
formed explicitly to test the LDA by computing the ex-
change exactly in the Hartree-Fock approximation and
by computing explicitly the leading correlations in finite
clusters.

1. Hartree-Fock calculations

Since the Coulomb exchange is treated exactly in
Hartree-Fock theory, the standard LDA exchange func-
tional Eq. (A.31) can, in principle, be easily tested with
HF calculations. It is just a question of numerical effort
to treat the jellium model in a HF approximation; due to
the nonlocal nature of the Fock potential I7F (see Appen-
dix A.l), the calculations become considerably more
complicated and time consuming than in the Kohn-
Sham-LDA approach.

The problem is that the HF approximation is known to
be rather poor for metallic systems, since the correlations
are responsible for an appreciable part of their binding,
and one must include corrections. A compromise, al-
ready suggested by Kohn and Sham (1965), consists in
adding a LDA (or LSDA) functional for correlations
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only to the total HF energy. However, the inclusion of
LDA correlations along with a HF treatment of the ex-
change goes against the empirical “rule of thumb” that
exchange and correlation effects should always be kept
together at the same level of approximation (see, for ex-
ample, Jones and Gunnarsson, 1989). To be more
specific: once one goes beyond the HF approximation,
Pauli and other types of correlations (also of RPA type;
see Appendix B) cannot be disentangled, and therefore
adding a correlation functional to HF risks double count-
ing.

HF calculations for spherical sodium clusters within
the jellium model were performed by Hansen (1989),
Guet and Johnson (1992), and by Hansen and Nishioka
(1993). Hansen (1989) investigated the addition of corre-
lations in LDA. Since these authors addressed them-
selves mainly to the electric response properties of sodi-
um clusters, we shall discuss their results in Sec. IV.B
below.

2. Explicit evaluation of long-range correlations

Starting from the HF approximation, one can in prin-
ciple include all correlations that go beyond the simple
exchange systematically in perturbation theory, as is
done in the quantum-chemical approaches (see Sec. I1.B).
In an infinite system, the results can be expressed in
terms of an effective mass of the electron, which has both
a momentum and an energy (or frequency) dependence.
The momentum dependence (“k mass”) is due mainly to
the nonlocality of the exchange (Fock) potential (see Ap-
pendix A.1), which is due to the finite range of the
Coulomb force and tends to reduce the effective mass.’
The energy dependence (“w mass”) comes predominantly
from the coupling of the electron to collective vibrations
through the long-range correlations and tends to increase
the effective mass. Pictorially speaking, the electron is
“dressed” by a plasmon cloud that increases its inertia.
The two effects have a tendency to cancel each other in
infinite systems, so that the net effective mass can become
close to the free mass (see, for example, Mahan, 1981).

For finite systems there is no unique way to define an
effective mass; it is more appropriate to speak of the self-
energy of the electron and of the screened Coulomb in-
teraction. The effect of the correlations can also be stud-
ied by looking at the density of the “dressed” single-
particle levels, the so-called quasiparticle energies. In the
pure HF approximation without long-range correlations,
this density is known to be too low at the Fermi energy,
resulting in too large an energy gap between the highest

9Note that this effect is automatically included in a full
Hartree-Fock calculation. The pseudopotentials are often an-
gular momentum dependent, which introduces an additional
momentum dependence to the delocalized electron energies.
This effect is not accounted for in the jellium model.
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occupied and the lowest unoccupied orbitals. The corre-
lations tend to close this gap.

We shall not go into the gory details of many-body
theory or use any diagrams here. Let us just mention
that an appreciable part of the long-range correlations
can be obtained, in both homogeneous and —with con-
siderably more effort—inhomogeneous systems, by sum-
ming an infinite series of bubble diagrams, i.e., by iterat-
ing the process of creating particle-hole pairs around the
Fermi surface and destroying them again. (This is exact-
ly the basic excitation process used in the RPA method;
see Appendix B.1.) These RPA correlations are the dom-
inant part of the correlation effect included in most LDA
exchange-correlation energy functionals. A systematic
approach to the inclusion of these correlations in the
electron propagator is given by the so-called GW approx-
imation (Hedin and Lundquist, 1969).

Reinhard (1992) has recently checked the LDA by
computing explicitly the RPA-correlation contributions
to the ground-state energies and rms radii of closed-shell
Na clusters (N =8, 20, 40, and 80) in the jellium model
using a pseudopotential-folded positive charge density
(see Sec. D.2 below). He started from the Kohn-Sham
approach including only the exchange-energy LDA func-
tional (thus omitting explicitly the correlation energy).
He compared his results to those obtained in the stan-
dard Kohn-Sham-LDA approach, employing the correla-
tion energy functionals of Gunnarsson and Lundqvist
(1976) and of von Barth and Hedin (1972) (see Appendix
A.2.c), thus using exactly the same methods for treating
the RPA correlations as the respective authors of these
two functionals. The differences were smaller than 10%
for Nag and smaller than 19 for all larger clusters. This
surprising agreement seems to be a strong confirmation
of the validity of the LDA, at least for global properties
such as energy and radii, even for very small jellium
spheres.

The jellium-HF calculations of Guet and Johnson
(1992) have recently been extended (Guet et al., 1993) to
include the RPA correlations in the ionization potentials
of alkali clusters with N=9, 21, and 41. Here the elec-
tronic self-energies were calculated with the fully
screened Coulomb interaction by iterating the Dyson
equation to all orders. Again, the results were in the
same good agreement with those of Kohn-Sham-LDA
calculations, i.e., within a few percent for N =9 and less
than one percent for the larger systems (see also Sec.
II1.B.1). In a similar earlier work, Saito et al. (1990)
evaluated the electronic self-energies only to first order in
the screened Coulomb interaction and investigated the
quasiparticle energies in closed-shell alkali clusters up to
N=40. They concluded that their treatment gave a
better agreement of the quasiparticle energies with exper-
imental ionization potentials than the Kohn-Sham-LDA
results. The iteration to all orders performed by Guet
et al. (1993) reduces the discrepancy with the Kohn-
Sham-LDA results appreciably. In fact, these authors
show that the inclusion of the lowest-order diagram alone
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overestimates the correlation effect by as much as 50%.
Saito et al. (1990) also compared their results to those
obtained with the self-interaction correction (see Sec.
II1.C.3 below).

Bernath et al. (1993) also addressed the question of the
density of quasiparticle energies in Na,,. Their approach
is more phenomenological in the sense that they used an
approximate RPA method to obtain the lowest-order
contribution to the self-energy, using a fitted separable
interaction and selecting its leading multipolarities.
(Physically speaking, this corresponds to an explicit cou-
pling of the valence electrons to surface dipole, quadru-
pole, and octupole vibrations.) They found that the origi-
nal HF single-particle spectrum, as obtained by Hansen
and Nishioka (1993), is compressed— without, however,
reducing much the “bandgap” at the Fermi surface—in
the direction of the Kohn-Sham-LDA spectrum. They
also extracted an w-dependent effective mass that was
found to be of the order of 40% larger than the free-
electron mass.

Here we should also mention recent work by Koskinen
et al. (1992), who did a configuration-mixing calculation
in the jellium model for small Na clusters with N <10,
using nuclear shell-model codes. The jellium Hamiltoni-
an including the full electron-electron interaction was di-
agonalized in a (partially truncated) many-particle space
constructed from a set of harmonic-oscillator single-
particle states, including the orbits 1s, 1p, 2s, 1d, 2p, 1f,
2d, and 1g. Up to N =4 the full space, containing up to
6164 configurations, could be diagonalized. This ap-
proach goes beyond both HF and Kohn-Sham-L(S)DA; it
becomes exact in the limit of an infinite set of single-
particle orbits. Both ionization potentials and total bind-
ing energies were calculated and their convergence upon
increasing the configuration space was demonstrated. In
those cases where convergence could be approximately
reached, a close agreement with Kohn-Sham-LSDA re-
sults was obtained. Koskinen et al. (1992) also calculat-
ed the photoabsorption cross sections for Nag—Na,, with
similar results to those for the Kohn-Sham-LDA-RPA
calculations discussed in Sec. IV.B.2. In particular, they
obtained a splitting of the resonance in Nay and Na,,
showing that a sufficiently large single-particle
configuration space, even in a spherical basis, can de-
scribe the effects of a deformed mean field.

All these recent results yield a rather positive test of
the Kohn-Sham approach using the LDA, even for very
small jellium spheres. The question therefore remains to
what extent one should expect these correlation effects
amongst the valence electrons to depend on the presence
of the ionic structure or the core electrons, or how much
the results might be modified by additional correlations
between the valence electrons and the other charges.

As far as the jellium model is concerned, one is en-
couraged to conclude that extensions beyond the LDA
might not be important. At least, it seems that the errors
made in the LDA to the exchange-correlation energy are
much smaller than those due to overall neglect of the ion-
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ic structure in the total energy functional.

For completeness, however, we shall review below
three extensions of the LDA that have been studied ex-
tensively for atoms within the Kohn-Sham approach and
partially applied recently to metal clusters.

3. Self-interaction correction

One serious breakdown of the local-density approxima-
tion to the exchange energy affects the asymptotic
behavior of the Kohn-Sham potential for Coulombic sys-
tems. In HF theory, where the Coulomb exchange is
treated exactly, it is well known that the mean field
asymptotically falls off like 1/r far outside the surface of
a spherical system; this is simply the field of the remain-
ing spherical charge distribution seen by one electron
that is taken far away. This is no longer so in the Kohn-
Sham theory when the exchange is treated in the LDA.
As stated at the end of Appendix A.1, the Hartee poten-
tial ¥ (A9) contains spurious self-interaction contribu-
tions of the electrons, which are exactly canceled when
the Fock potential (A10) is added to it. However, with
the LDA one makes a crude approximation to the Fock
potential, whereas the Hartree potential is left intact, so
that this cancellation no longer takes place. As a conse-
quence, one obtains too much screening and the Kohn-
Sham potential falls off much faster than 1/7.

A “‘self-interaction correction” to remedy this failure
of the LDA has been proposed by Perdew (1979) and fur-
ther elaborated and tested for atomic systems by Perdew
and Zunger (1981) with considerable success. It makes
the Kohn-Sham potential state-dependent and thereby
complicates the self-consistent calculations appreciably;
the Kohn-Sham orbitals @;(r) are no longer orthogonal
and must, at least in principle, be reorthogonalized.
Since the exchange corrections apply only to electrons
with parallel spins, one must start from the spin-
dependent LDA to use the self-interaction correction
properly.

The self-interaction correction scheme cannot be sys-
tematically improved or extended in terms of perturba-
tion theory; it is rather an ad hoc prescription that one
must take or leave. We refer the reader to Dreizler and
Gross (1990) for a detailed discussion and some varia-
tions of the scheme, and to Moullet and Martins (1990)
for some comparisons in atoms and diatomic molecules.
For metal clusters the self-interaction correction has so
far been used only in the LDA-jellium model; cf. Stampfli
and Bennemann (1987), Saito et al. (1990), and Pacheco
and Ekardt (1992) (cf. Sec. IV.B).

4. Weighted-density approximation

The weighted-density approximation (WDA), intro-
duced by Alonso and Girifalco (1977) and Gunnarsson
et al. (1977), makes use of an explicitly nonlocal func-
tional for the exchange-correlation energy E, [p] in
terms of approximated forms of the pair-correlation (i.e.,
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the two-electron-correlation) function. It can be con-
structed (Przybylski and Borstel, 1984a, 1984b) to give
the correct asymptotic 1/7 falloff of the Kohn-Sham po-
tential for a neutral atom or cluster. We refer the reader
to Dreizler and Gross (1990) for a discussion of the
WDA and its application to atomic and molecular sys-
tems.

Using the WDA with an approximate pair-correlation
function developed by Chacén and Tarazona (1988),
Balbas et al. (1989, 1991) and Rubio et al. (1989, 1991a)
studied the static properties of metal clusters, in particu-
lar for negative ions in which the LDA is known to be
doubtful. Both for ionization potentials (see Sec. III.B.1)
and for static electric polarizabilities (see Sec. IV.B.1),
they obtained a considerable improvement in the agree-
ment with experiment over the results obtained in the
LDA.

5. Gradient expansions of the xc functional

Another way of including nonlocal effects for exchange
and correlations consists in expanding the exact, nonlocal
energy functional in terms of gradients and higher-order
derivatives of the density p(r). This was proposed from
the beginning of the density-functional theory by Hohen-
berg and Kohn (1964). (Applied to the kinetic-energy
functional T[p] this leads to the extensions of the
Thomas-Fermi model discussed at the end of Appendix
A.2.a.) They also suggested that one study the partial
resummation of the series obtained by the gradient ex-
pansion; this idea has received much attention in the
literature and led to the so-called generalized gradient
approximations (GGA).

Although nonlocal effects are included in this ap-
proach, it has the advantage that it still leads to a local
xc potential in the Kohn-Sham equations. We refer the
reader again to Dreizler and Gross (1990) for an exten-
sive review of a large variety of gradient expansions and
the techniques used to derive them. Some recent versions
of generalized gradient-approximations that have been
used for atoms, small molecules, and metal surfaces were
proposed by Langreth and Mehl (1983), Perdew (1986),
Perdew and Wang (1986), Becke (1988), Engel et al.
(1992), and Perdew et al. (1992); for a recent review see
Perdew (1991a, 1991b). The asymptotic falloff of the xc
potential obtained in the generalized gradient approxima-
tion has recently been discussed by Ortiz and Ballone
(1991).

No results with generalized gradient approximation
functionals seem to be available yet for jellium model cal-
culations of finite clusters. Delaly et al. (1992) recently
used the functionals of Perdew (1986) and Becke (1988) in
pseudopotential calculations for magnesium clusters with
N <20.

A more systematic use of generalized gradient approxi-
mation functionals for metal clusters would be highly
desirable, since their steep surfaces give a crucial test for
the validity of density-gradient expansions. Some prelim-
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inary studies (Brack, 1988) using the semiclassical
density-variational method (see Sec. V.B) seemed to indi-
cate that the variational use of such functionals—which
often have been tested only perturbatively using, for ex-
ample, HF densities—can lead to instabilities of the sur-
face of small jellium clusters. However, Perdew et al.
(1992) with their new generalized gradient approximation
functional found stable solutions in semi-infinite jellium.
We note in this context that the density-gradient expan-
sion of the kinetic energy up to fourth order gives no
problems and has been quite successfully used in varia-
tional calculations for both metal clusters and atomic nu-
clei (see Sec. V.B).

D. Extensions of the jellium model

The most significant shortcoming of the jellium model
is its lack of ionic structure. We review here very briefly
a few attempts to include schematically some effects of
the ionic geometry without losing the simplicity of the
jellium model. Some of them are simple phenomenologi-
cal ad hoc patches (Sec. III.D.1) and some have a more
solid basis built on pseudopotential theory (Sec. II1.D.2).

1. Simple patches

Lange et al. (1991), in an attempt to simulate the effect
of an oxygen ion embedded in NayO clusters, introduced
a modification of the jellium density by adding a bump at
its center. They observed that in Kohn-Sham-LDA cal-
culations this improves the situation of the spherical shell
closings that we discussed above in Sec. IIL.B.1: the gap
between the 1/ and 2p levels is reduced and thereby the
stability of the N =34 cluster is reduced in favor of the
N =40 cluster. Similarly, the stability for N =186 is re-
duced in favor of N =196 or 198. A partial remedy for
some of the systematic failures of the spherical jellium
model can thus be achieved. Essentially, the trick con-
sists in an increase of the surface diffuseness of the
Kohn-Sham potential, which pushes states with higher
angular momentum / upwards with respect to those with
smaller /.

Yannouleas and Broglia (1991b) introduced a similar
perturbative correction of the jellium potential,
representing the “nonjellium behavior” of small clusters,
which could be fitted to the position of the surface
plasmon. This helped to repair the lack of red shift of
the dipole resonance systematically obtained in all
jellium-LDA calculations (see Sec. IV.B.2).

Such simple patches represent little more than punctu-
al remedies obtained by fitting ad hoc parameters and
have no predictive power at all. They show, however,
that some of the results of the jellium model are very sen-
sitive to modifications of the jellium density distribution.

A more systematic variational approach was taken by
Rubio et al. (1991b) in spherical Kohn-Sham-LDA cal-
culations. These authors introduced a parametrization of
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the jellium density with a diffuse surface and determined
the diffuseness parameter by minimization of the total en-
ergy for each cluster. The resulting diffuseness was found
to be of the order of ~1 a.u. for all clusters in the range
8<N=40. The effects of the increased surface
diffuseness of the clusters are very beneficial to several of
their properties (see also Balbas and Rubio, 1991). As in
the case of Lange et al. (1991), the shell-closing situation
is improved in the right direction, 34—40. At the same
time the ionization potentials of Na clusters, which are
systematically too high in the standard jellium model (see
Sec. IIL.B.1), are reduced. Furthermore, the increased
spillout of the electrons increases the static dipole polar-
izabilities and reduces the surface-plasmon energies;
these effects, too, bring the theoretical results closer to
experiment (cf. Sec. IV.B).

The introduction of a diffuse surface of the jellium den-
sity also has the technical benefit of easing the numerical
calculations in the ellipsoidally deformed self-consistent
jellium model (see Sec. III.B.2). Lauritsch et al. (1991)
used a Fermi function with a constant diffuseness of 1
a.u.

Although the diffuse jellium surface can be determined
variationally, as was done by Rubio et al. (1991b), so that
no fit parameter is needed, it has not yet been given a mi-
croscopic justification.

2. Structureless pseudopotential models

A step towards the inclusion of pseudopotential effects
has been taken by Reinhard et al. (1992) and Genzken
et al. (1993), who relate the diffuseness of the jellium den-
sity to the ionic pseudopotentials. They use a convolu-
tion of the steplike jellium density with the ionic density
distribution corresponding to a “soft-core” pseudopoten-
tial of the type introduced by Ashcroft (1966) [see Eq.
(A34) in Appendix A.2.d], which is just a surface delta
function peaked at the radius » =r,. This leads to analyt-
ical expressions for the jellium density and the back-
ground potential ¥;(r) that can easily be incorporated in
spherical Kohn-Sham-LDA calculations. The empty-
core radii , determined from bulk and surface properties
are taken from the literature, and thus no new parame-
ters have to be determined either variationally or by ad
hoc fits. The results of this pseudopotential-folded jelli-
um model for alkali clusters are similar to those found by
Rubio et al. (1991b) mentioned above: one obtains at the
same time an increase in the static electronic polarizabili-
ty and a corresponding decrease in the dipole resonance
energies (cf. Sec. IV.B), as well as a reduction of the ion-
ization potentials and electron affinities.

A similar and more systematic approach has been pro-
posed by Perdew er al. (1990) in their “stabilized jellium
model,” which is an extension of the “pseudojellium
model” introduced earlier by Utreras-Diaz and Shore
(1984, 1989). The effects of the ionic cores, represented
again by the empty-core pseudopotential of Ashcroft
(1966), are included here in a modified exchange-
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correlation energy functional. This approach retains all
the simplicity of the jellium model and has been used suc-
cessfully for metal surface properties, yielding work func-
tions and surface energies in good agreement with experi-
ment (cf. Sec. V.B.2). Due to an explicit ionic structural
term in the energy functional, this model also yields the
correct cohesive energy of bulk metal-—a quantity that is
not accessible in the simple jellium model. Brajczewska
et al. (1993) have recently calculated binding and ioniza-
tion energies of Al, Na, and Cs clusters with 1 =N =20
using the stabilized jellium model and solving the Kohn-
Sham-LSDA equations. In particular for aluminum,
which is not accessible in the standard jellium model,
they found a reasonable agreement with experimental
ionization energies.

IV. ELECTRIC DIPOLE RESPONSE
OF METAL CLUSTERS

A. Linear-response theory

Linear-response theory is the most convenient tool for
studying the interaction of a system with an external, not
too strong field. In connection with metal clusters, it has
been extensively used to calculate static dipole polariz-
abilities and photoabsorption cross sections. In the
present section we address calculations that have been
done using the random-phase approximation (RPA) or
the equivalent time-dependent local-density approxima-
tion (TDLDA). (The formal aspects of these theories are
presented in Appendix B.) In addition to discussing jelli-
um model results, we shall also review some ab initio and
pseudopotential model calculations.

In Sec. IV.B we review the recent literature and discuss
agreements and discrepancies between the theoretical
and experimental results for the static polarizabilities and
the resonances in the photoabsorption cross sections.
Section IV.C is devoted to a presentation of RPA sum-
rule relations and the classical limits of the RPA, leading
to the well-known results of the Mie theory (1908) for
surface plasmons in metallic spheres, and of a transpar-
ent physical picture of the coupling of surface and
volume plasmons.

The two observables of metallic clusters that so far
have been investigated by these methods and compared
to experiment are the static electric dipole polarizability
and the photoabsorption cross section. The static dipole
polarizability of a microscopic system is defined as in
classical physics: one applies an external, static electric
field E, and expands the total energy up to second order
in E;. The coefficient of the quadratic term is then the
polarizability. Formally this is achieved by including the
electric dipole operator D

N z
D=e 3 (i) (4.1)

in the variational equation via the Lagrange multipliers

—

K=(hgshy, A, ):
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In Eq. (4.1), i runs over the number Z of ‘active” elec-
trons: in ab initio approaches these would be all elec-
trons; in pseudopotential or jellium models, Z =wN is the
number of valence electrons. By solving Eq. (4.2), one
obtains the ‘“‘constrained” ground state ¥, from which
the polarizability tensor & (made diagonal by choosing a
suitable coordinate system) is found either from the term
linear in A of the induced dipole moment (hence “linear
response”) or from the quadratic term in the total ener-

gy':
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(4.3)

If one is dealing with a spherical system, the above
definition has the formal inconvenience that the external
field breaks the spherical symmetry, which complicates
the solution of the variational equation (4.2). However,
since only the linear response at A=0 is required, this
difficulty can be circumvented by a multipole expansion
of the wave function. The linear response, i.e., the
lowest-order change in the ground-state wave function
(or density), will always have the same multipolarity as
the external field, and therefore it is sufficient to consider
only the corresponding multipole (here: the dipole) com-
ponent of the wave function or density, for which the
variational equation still can be written in the spherical
variable r. For the calculation of atomic dipole polariz-
abilities, this technique was used by Mahan (1980), who
modified the equations originally derived from the RPA
by Sternheimer (1957; see also earlier references quoted
therein).

Alternatively, a, can be obtained from the moment

m ~1(Dx,) of the RPA dipole strength function [see Sec.

IV.C below and Eq. (B13) in Appendix B.2]. This is the
most convenient way if one starts from a microscopic
RPA calculation. (Both ways may be combined to obtain
a rather sensitive numerical test of the numerical
methods; similarly, other sum rules discussed in Sec.
IV.C may be used for this purpose.)

In the long-wavelength limit, which is well fulfilled for
small- and medium-sized clusters, the photoabsorption
cross section o(w) is dominated by dipole absorption. It
can thus be obtained directly from the RPA dipole
strength function So(E) given in Appendix B.2, Eq. (B6),
evaluated for Q =D and averaged over the spatial direc-
tions:

10We assume here that the unperturbed ground state has no
permanent dipole moment. Furthermore, we treat only the
electronic response; in structural models, the ionic contribu-
tions must be added separately.
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Aro

o(0)="723 S, (E=fiw) . 4.4)

3c
This can also be expressed in terms of the imaginary part
of the dynamic polarizability a(w):

a(w)=ﬂ;-a—)lm[a(w)] . (4.5)

In the usual formulation of the TDLDA (see, for exam-
ple, Ekardt, 1984a), one calculates the dynamic polariz-
ability a(w) directly.

In principle, one encounters a fundamental problem in
the calculation of photoabsorption cross sections within
the framework of density-functional theory. As is well
known, the density-functional theory gives a priori no ac-
cess to excited states. Nevertheless, the TDLDA has
been quite successful for the calculation of the dipole
response of atoms (see, for example, Stott and Zaremba,
1980; Zangwill and Soven, 1980). As discussed at the end
of Appendix B.1, the time-dependent formulation of
density-functional theory is a highly nontrivial problem;
the TDLDA should therefore be used with some caution.
Gross and Kohn (1990) have proposed an explicitly
frequency-dependent exchange-correlation energy func-
tional that can be used for TDLDA calculations. To our
knowledge, this functional has not been used for finite
systems so far.

B. Linear-response calculations

Before discussing the dynamic response predicted by
RPA or TDLDA calculations, we examine the static di-
pole response. This already shows some of the inherent
limitations of the jellium model.

1. Static dipole polarizabilities

It is convenient to compare the dipole polarizability
calculated from the quantum theory with the classical
polarizability of a conducting sphere. This is given by

ag=R>. 4.6)

The static response in the jellium model is predicted to be
larger. The main reason for the increase is the so-called
electronic spillout, as observed by Snider and Sorbello
(1983a, 1983b) and by Beck (1984b). Snider and Sorbello
(1983b) showed in Thomas-Fermi-Weizsacker density-
variational calculations (cf. Sec. V.B.1) that the dipole
polarizability of a spherical metal cluster is given by

a=(R;+8)*, 4.7)

where 8 in the limit R;— o goes to a constant 8, that is
the position of the image plane relative to the jellium
edge for an infinite plane metal surface in an external
electric dipole field (Lang and Kohn, 1973). Therefore a
approaches its classical value (4.6) like a/ay—1
+38,/R;. Beck (1984b) showed in Kohn-Sham-LDA
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calculations that § in Eq. (4.7) is proportional to the elec-

tronic spillout AZ, defined as the number of electrons
outside the jellium edge:

AZ=4r [~ r’p(ridr . (4.8)

I

As discussed by de Heer (1993), the experimental po-
larizability of alkali clusters is much larger than the clas-
sical formula (4.6) and is not quantitatively reproduced
by the jellium response.!! 1In fact, the polariz-
abilities obtained in the jellium model are systematically
too small by ~15-20 % for Na and K clusters in the re-
gion 2<N <40. For Al clusters the situation is less
clear: here the jellium model tends to overestimate the
polarizabilities for N <40, whereas for 40 SN <60 there
seems to be a reasonable agreement (see Fig. 23 of de
Heer, 1993).

The lack of polarizability of alkali clusters found in the
microscopic jellium-Kohn-Sham-LDA calculations has
often been attributed to the LDA treatment of the ex-
change energy: the noncancellation of self-interactions
(see Appendix A.1) leads to too much screening and thus
a too fast falloff of the self-consistent Kohn-Sham poten-
tial, which in turn gives rise to an underestimation of the
density tail and thus of the electronic spillout. Indeed,
the self-interaction correction (see Sec. III.C.3), which
was introduced in order to correct this shortcoming of
the LDA, was found by Stampfli and Bennemann (1987)
to increase the polarizabilities of small Na clusters con-
siderably, thus removing a good part of the discrepancy
with experiment. This has recently been confirmed by
Pacheco and Ekardt (1992).

The weighted-density approximation (WDA), which is
tailored to yield the correct asymptotic ~1/r falloff of
the Kohn-Sham potential (see Sec. II1.C.4), has also been
reported by Rubio et al. (1991a) and by Balbas and Ru-
bio (1990) to increase the polarizabilities.

The relevance of the above self-interaction correction
and WDA results can be explicitly tested in Hartree-
Fock (HF) calculations, in which there is no problem of
spurious self-interaction contributions or of a wrong fall-
off of the average potential, since the exchange is treated
exactly here.

Guet and Johnson (1992) have performed HF +RPA
calculations in the spherical jellium model for closed-
shell Na clusters with N up to 92. They used the un-
correlated HF ground state and solved the RPA equa-
tions (including approximately the continuum contribu-
tions). They found that the static polarizabilities were in-

K resin (1989-1992) obtained a very good agreement of cal-
culated polarizabilities with experimental values. His method
makes use of approximate Thomas-Fermi solutions for the elec-
tronic densities and thus is an approximation to the microscopic
Kohn-Sham-LDA-RPA approach, which fails as described
above. The good agreement must therefore be considered as a
coincidence.
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creased over the Kohn-Sham-TDLDA results towards
the experimental values, but by a much lesser amount
than through the self-interaction correction. However,
the increase with respect to the LDA results is due only
to neglect of correlations (other than exchange) in the
ground state: the correlations lead to an increased bind-
ing of the electrons and therefore to a reduction of their
polarizability. This had been shown explicitly in earlier
results by Hansen (1989), who did HF calculations for
Nag and Na,, with and without explicit inclusion of an
LDA functional for the correlation energy. In fact, it is
more correct to compare the HF results to Kohn-Sham-
LDA calculations without correlations.

Hansen and Nishioka (1993) fully confirmed these re-
sults. They performed HF calculations in the spherical
jellium model for Na clusters with N up to 58 and com-
pared their results to Kohn-Sham-LDA calculations with
exchange only. They showed that the HF treatment, due
to the nonlocal and strongly state-dependent mean field,
leads to a considerably stronger binding of the single-
particle states, particularly the lowest ones, but at the
same time suppresses the inner part of their wave func-
tions. The two effects have a tendency to cancel, and the
resulting densities are close to the Kohn-Sham-LDA den-
sities.

This is shown in Fig. 7, where we display the densities
obtained by Hansen and Nishioka (1993), in the HF, the
Hartree (no exchange), and the Kohn-Sham-LDA (ex-
change only) approximations. It is very interesting to
note that, in spite of the correct asymptotic 1/r falloff of
the state-dependent HF potentials, the HF density tails
cannot be distinguished from the Kohn-Sham-LDA
tails—at least in the region shown in the figure. Thus

the exact treatment of the exchange does not increase the
spillout of the electrons, contrary to general expectations.
Consequently the static dipole polarizability also stays
the same. Indeed, applying a static external dipole field,
Hansen and Nishioka (1993) found the polarizability of
Nag in HF to be only marginally larger than in the
Kohn-Sham-LDA approach without correlations.

In summary, it appears from these HF results that the
local-density approximation for the exchange is surpris-
ingly good, even for small Na clusters. A similar con-
clusion could also be drawn by Reinhard (1992) and Guet
et al. (1993) for the correlation contributions, especially
of RPA type, to binding and ionization energies (see Sec.
II1.C.2). This contradicts the above findings with the
self-interaction correlation and WDA, and rather sug-
gests the conclusion that the failure of the jellium model
to yield the correct polarizabilities (and redshifts of the
photoabsorption resonances; see below) is due to the
neglect of the ionic structure.

Unfortunately, no ab initio quantum-molecular calcu-
lations have been done so far for the static polarizabilities
of metal clusters. However, density-functional results
with pseudopotentials including the ionic structure are
available. Moullet et al. (1990a, 1990b), who optimized
the ionic structure of Na,—Na, in a local-spin-density
(LSDA) treatment using nonlocal pseudopotentials, ob-
tained very good values for the dipole polarizabilities, in-
cluding the fine structure of the experimentally observed
values (e.g., the dip at N =4; see Fig. 22, Sec. V.C.1, of de
Heer, 1993). They showed that the comparison of experi-
mental and calculated values of a can be used to decide
which isomeric form of the ionic geometry is present in
the ground state, which is not always possible on grounds

P/pia

FIG. 7. Electronic densities (in units of the jel-

. lium density pjq) of spherical Na clusters: (a)
. N=8; (b) N=20; (c) N=40; (d) N=58. Solid

lines, Hartree-Fock results; dotted lines,
20 Kohn-Sham results in LDA with exchange

P/P;d

only; dashed lines, Hartree results (no ex-
change at all). The square profiles show the
jellium densities. From Hansen and Nishioka,
1992.
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of a minimization of the total energy alone. The results
of Moullet et al. (1990a, 1990b) depend to some extent
on the choice of the pseudopotential, but clearly show
that the inclusion of ionic structure improves the agree-
ment with experiment appreciably. It should be noted
that no self-interaction correction was included in their
calculation.

These results seem to suggest that a non-negligible part
of the observed polarizabilities comes from the nonlocal
effects associated with the pseudopotentials. Note that
the ionic core polarizability will also contribute and is
not included in any of these treatments.

Earlier results with structural models using pseudopo-
tentials had already indicated the above improvement.
Manninen (1986b), using a local pseudopotential, found
reasonably good agreement of the average polarizabilities
a of Na,—Nag with the experimental values. He used,
however, only an approximate expression for the energy,
derived perturbatively by minimizing the classical
Madelung energy. Furthermore, the absolute values of a
were improved by the choice of an unusually large pseu-
dopotential parameter 7. =4.0 a.u. He did not reproduce
the dip for Na,. Similarly, Rubio et al. (1990) found the
spherically averaged pseudopotential model to improve
the polarizabilities of Al clusters with N <40 over the jel-
lium model results.

The simple extensions of the jellium model that simu-
late a part of the ionic structure (see Sec. II1.D) also indi-
cate this trend: Rubio et al. (1991b) (see also Balbas and
Rubio, 1990) and Lauritsch et al. (1991) noticed that the
introduction of a diffuse surface of the jellium back-
ground density helps to increase the static polarizabilities
obtained in jellium-LDA calculations. In fact, by a vari-
ational determination of the diffuseness of the jellium sur-
face, Rubio et al. (1991b) obtained good agreement with
the experimental polarizabilities of Na clusters. Finally,
recent Kohn-Sham-LDA-RPA calculations by Genzken
et al. (1993) with a pseudopotential-folded diffuse jellium
density (cf. Sec. II1.D.2) also yielded the same results.

2. Dipole resonances and the dynamic response

The classical theory of dynamic polarizability predicts
a single dipole resonance at a frequency given by (Mie,
1908)

172

2 2
Z7e , 4.9)

mR3

OMie =

which, with R =r,Z'/3, is equal to 1/V/3 times the bulk
plasma frequency.

The linear response obtained in the jellium model fol-
lows the Mie result, but only in a qualitative way. This
was shown in self-consistent Kohn-Sham-TDLDA calcu-
lations by Ekardt (1984a, 1985a, 1985b) and Penzar et al.
(1990), in LDA +RPA calculations using semiclassical
potentials (cf. Sec. V.B.2) by Yannouleas et al. (1989,
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1990, 1993), and in full HF+RPA calculations by Guet
and Johnson (1992).12

The dipole absorption cross sections of spherical alkali
clusters obtained in all these jellium calculations usually
exhibit a dominant peak that exhausts some 75-90 % of
the dipole sum rule and is redshifted by 10—-20 % with
respect to the Mie formula (4.9). As will be discussed in
Sec. IV.C below, the centroid of the RPA strength distri-
bution tends towards the Mie resonance in the limit of a
macroscopic metal sphere. Its redshift in finite clusters is
a quantum-mechanical finite-size effect that is closely re-
lated to the electronic spillout.

Some 10-25 % of the dipole strength is typically found
at higher energies and can be interpreted as a reminis-
cence of a strongly fragmented volume plasmon (see Sec.
IV.C below). Often, the dominant peak is also fragment-
ed into two (e.g., Na,;) or more lines (e.g., Nayy). The
fragmentation of collective strength in spherical clusters
can be attributed to an interference of specific particle-
hole (or more complicated) excitations with the predom-
inant collective mode (Yannouleas et al., 1989, 1993;
Yannouleas and Broglia, 1991a). This fragmentation
may be compared to Landau damping in the solid, al-
though there it refers to a collective state lying in a
single-particle continuum.'?

When compared to experiment, all jellium calculations
yield an insufficient redshift of the Mie resonance. This
is directly connected to the lack of polariz-
ability via the sum-rule estimate E (see Sec. IV.C below).
Therefore a finite surface diffuseness of the jellium densi-
ty (cf. Sec. II1.D), or other corrections found to improve
the polarizability, will also improve the position of the di-
pole resonance.

There are other deviations from the single-resonance
Mie formula that are reproduced by the jellium model
calculations. In open-shell clusters one finds a further
splitting of the dipole resonance, which is a consequence
of their static deformation and can easily be described in
the phenomenological Clemenger-Nilsson model (Selby
et al., 1991; Bernath et al. (1991); see also Sec. VIII of de
Heer, 1993). It has also been obtained self-consistently in
the spheroidal jellium model with TDLDA calculations
by Ekardt and Penzar (1991). Very recently, the double-
peak feature in the photoabsorption cross section of posi-
tively charged clusters has been observed for K{; by
Bréchignac et al. (1992a), for Ag clusters in the region
10=N =16 by Tiggesbaumker et al. (1992), and for Na
clusters with 14 <N <48 (except N=21 and 41) by
Liitzenkirchen et al. (1992) and Borggreen et al. (1993).

12A self-consistent spherical jellium-Kohn-Sham-LDA +RPA
code was made available by Bertsch (1990).

13The same kind of fragmentation also occurs for the nuclear
giant resonances. It is much stronger there due to the spin-
orbit interaction. For a comparison of the situations in nuclei
and atomic clusters, we refer the reader to Reinhard et al.
(1992).
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The latter results confirm the transition of oblate to pro-
late ground-state deformations obtained in the deformed
jellium model when filling the 1d shell for 8 <N <18 (see
also the discussion in Sec. III.B.2). In larger clusters,
however, it is not easy to disentangle the effects coming
from static deformations and those from the fragmenta-
tion mechanism discussed above.

It can thus be said that the microscopic jellium model
with TDLDA or RPA calculations is able to describe the
correct qualitative trends of the observed resonances in
the photoabsorption cross sections of small clusters, in-
cluding effects of fragmentation and deformation split-
ting. The interpretation of the resonances as surface
plasmons, weakly coupled to volume plasmons, will be
discussed in Sec. IV.C below.

Some differences from experiment have been explained
by phenomenological corrections to the jellium model:
Blanc et al. (1991) showed that the use of an “effective
mass” of the electron, taken to be the known value for
bulk lithium, can fit the unusually large red shift of the
dipole resonance of Lig in terms of a corrected Mie fre-
quency. Similarly, an ad hoc “core-polarizability”
correction in the jellium-RPA calculation can explain the
deviation of the resonances observed in large potassium
clusters by Bréchignac et al. (1992b; see de Heer, 1993,
Sec. VIII). Such corrections introducing empirical bulk
parameters into finite systems have not, however, been
microscopically justified so far and therefore have little
predictive power.

The observed widths of the resonance peaks are even
more difficult to explain microscopically than their posi-
tions. Several processes can in principle contribute to the
width of the plasmon peak:

(i) Emission of an electron, i.e., autoionization (“‘escape
width”). This is only possible if the plasmon energy lies
above the ionization threshold.

(ii) Evaporation of a single neutral atom.

(iii) Interference of the collective state with specific
particle-hole states that lie close in energy (fragmenta-
tion; cf. “Landau damping” in the solid).

(iv) Coupling of the dipole oscillation to other collec-
tive electronic modes (for nuclear giant resonances called
“spreading width”).

(v) Coupling of the collective electronic vibration to
collective ionic vibrations (cf. phonons in a lattice).

Of these processes, only (i) and (iii) can be described in
the usual RPA, which includes one-particle/one-hole
(1p-1h) configurations only. The coupling to other col-
lective electronic modes (iv) would require at least a
2p-2h, and more generally an np-nh, treatment which be-
comes numerically very involved. Coupling to ionic
motion [(ii) and (v)] is strictly not possible within the jelli-
um model. The fragmentation (iii) has already been dis-
cussed above; in small clusters like Na,,, where a corre-
sponding splitting has been experimentally resolved, it
cannot be made responsible for the linewidth. Rather lit-
tle is known so far about the coupling to other electronic
vibrations (iv). To the extent that all higher-multipole
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collective electronic vibrations are expected at consider-
ably higher energies (see Brack, 1989; Serra et al., 1989a,
1989b) and that their coupling to the dipole mode would
require multi-particle-hole excitations, this mechanism is
not expected to give an important contribution to the ob-
served width (Bertsch and Tomanek, 1989).

The only processes that would give a true coherent
width due to decay into a continuum are the processes (i)
and (ii). However, electron emission (i) is not possible in
most (small) clusters, where the ionization threshold is
typically 1-2 eV higher than the observed plasmon peak.
(This is different from the case of nuclear giant reso-
nances, which lie high up in the nucleon continuum, so
that their widths include a large contribution from the
evaporation of a nucleon.) Evaporation of a monomer (i),
with a typical dissociation energy of about 1 eV, is ener-
getically possible and, in fact, believed to be the actual
decay channel of the observed surface plasmons. Howev-
er, its contribution to their width is expected to be on the
order of, at most, a few millielectron volts, if standard es-
timates of evaporation times are used (see, for example,
Selby et al., 1991), which are of the order of the inverse
Debye frequency and therefore cannot explain the ob-
served plasmon widths of about ~0.3-0.5 eV.

An appreciable contribution to the width can be ex-
pected from the coupling to collective ionic vibrations
(v), although the energy scale of the latter is of the order
of meV only. As we have discussed above, static defor-
mations of a cluster split the dipole peak into two or
three subpeaks. Therefore an incoherent superposition of
thermal (or quantum-mechanical zero-point) vibrations
of the ions will lead to an effective broadening of an oth-
erwise sharp dipole plasmon. A fully microscopic
description of this mechanism is outside the scope of an
RPA calculation, and one must therefore resort to simple
phenomenological models in order to estimate this effect.
To this end Bertsch and Tomanek (1989) proposed a
method that has been successfully used to estimate
spreading widths of nuclear collective vibrations (Gallar-
do et al.,, 1985; Bertsch and Broglia, 1986; see also
Bertsch, Bortignon, and Broglia, 1983). The ionic vibra-
tion was assumed here to be of (axially symmetric) quad-
rupole type. The coupling to the electronic motion was
described by parametrizing the static deformation energy
in terms of the empirical surface energy of the bulk met-
al. The thermal fluctuations of the cluster surface, which
led to a broadening of the electronic dipole plasmon
through deformational splitting, were estimated adibati-
cally via statistical Boltzmann factors. The resulting
width was found to be of the order of ~0.4 eV for small
sodium clusters at room temperature, in reasonable
agreement with the observed linewidths of dipole
plasmons (see Sec. VIIL.L of de Heer, 1993).

This model was taken up by Pacheco and Broglia
(1989) and further refined in a series of papers, taking the
zero-point shape vibrations into account as well (see
Pacheco et al., 1991, and references quoted therein). The
quadrupole motion was extended to include nonaxial de-
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formations, and the 3,7 deformation energy surfaces (cf.
Sec. II1.B.2) of the deformed clusters were calculated
within the Clemenger-Nilsson model. Penzar, Ekardt,
and Rubio (1990) treated the same effects self-
consistently in the spheroidal jellium model (see also
Ekardt and Penzar, 1991).

The mechanism of thermal line broadening due to
shape vibrations of the whole cluster predicts a tempera-
ture (T) dependence of the width of the form 'xV'T.
Experimentally, the temperature dependence of the
linewidth is, however, too poorly known to test this pre-
diction. Similarly, the form of the resonance would be
predicted to have a Gaussian falloff. Some experimental
dipole resonances, particularly for charged clusters, can
be fitted rather well with a Lorentzian shape; in other
cases the falloff seems to be steeper (see Sec. VIIL.L of de
Heer, 1993). In general, however, the experimental infor-
mation from photoabsorption measurements is too limit-
ed to decide on the precise line form of the resonances.

In large matrix-supported clusters the experimental
widths I' of the dipole absorption lines are nearly temper-
ature independent and can be fitted by an inverse-radius
law (see, for example, Kreibig and Genzel, 1985):

Ur
r=4 R
where R is the radius of the cluster and vy, the Fermi ve-
locity of the valence electrons. This fit does not, howev-
er, extrapolate to the observed widths in free clusters
with N <50, which are considerably smaller.

Equation (4.10) had been predicted by Kawabata and
Kubo (1966) from semiclassical response theory. Their
coefficient 4, however, does not fit the experimental one,
which seems to depend on the embedding matrix
(Kreibig and Genzel, 1985). Recently Yannouleas and
Broglia (1992) have rederived Eq. (4.10) with a larger
coefficient A. They used the so-called wall-dissipation
mechanism (Blocki et al., 1978), which has been studied
in nuclear physics in connection with fission and heavy-
ion dynamics; it is equivalent to Landau damping in the
solid and corresponds in large clusters to the fragmenta-
tion mechanism (iii) above.

In summary, it must be said that the decay mecha-
nisms of the collective dipole resonances in metal clusters
are, both theoretically and experimentally, still rather
poorly understood. More experimental information on
their temperature dependence and the detailed line form
is required to shed light on this problem and to test the
simple theoretical models developed so far.

(4.10)

3. General discussion

On a quantitative level, calculations including ionic
structure have achieved greater accuracy than jellium
calculations in reproducing the experimental dipole
response. Unfortunately, ab initio calculations of the dy-
namic dipole response are only available so far for Na
and Li clusters with Z =8 (see Bonaci¢-Koutecky et al.,
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1990, 1991). These calculations typically predict more
fragmentation of the strength function than the jellium
model,'* although in the “magic” 8-electron system the
results are similar, with a single dominant peak. It is also
found for this system that the RPA treatment essentially
reproduces the response obtained with more accurate
configuration-mixed wave functions.

The systematic lack of dipole polarizability and the
corresponding absence of redshift in the dipole reso-
nances, found in all jellium-LDA calculations for alkali
clusters, are closely related to each other by general
sum-rule arguments (see Sec. IV.C below). The origin of
this failure is not easy to pin down quantitatively, al-
though it is clear from the quantum-chemical calcula-
tions that the ionic core needs to be better treated. The
wrong asymptotic falloff of the Kohn-Sham potential due
to the LDA treatment of the exchange is another possible
error source. The self-interaction-corrected LDA results
and the WDA calculations discussed in Sec. IV.B.1 above
ought to give a partial answer to the problem of the LDA
exchange, but they seem to be contradicted by Hartree-
Fock results on the one hand and by the pseudopotential
model results, which include the ionic structure, on the
other hand. It is therefore very important to pursue
these theoretical investigations, both testing the LDA
and studying the role of the ionic structure more sys-
tematically.

Clearly, the experimental details of the electric
response of metal clusters serve as a crucial testing
ground for the theory. The calculated dipole strength
and its fragmentation depend rather sensitively, however,
on details of the models, such as the self-consistency of
the potential, the exchange-correlation-energy density
functional, or the pseudopotential used. A numerical
source of uncertainty stems from the fact that the space
of particle-hole configurations included in the calculation
must be restricted for practical reasons. This concerns,
in particular, the electronic states lying in the continuum,
which are often treated only approximately. Moreover,
the use of a restricted Gaussian basis set in ab initio and
pseudopotential calculations might easily lead to a nu-
merical underestimation of the electronic density tail and
thus of the polarizability.!> Therefore more systematic
and rigorous investigations of all these approximations
are definitely called for.

Finally, a few words concerning the terminology used
in the predominant jellium model literature might be ap-
propriate here. Terms like “surface plasmon,” “volume
plasmon,” “effective mass,” or “Landau damping” are
strictly defined for infinite systems only, and their usage

’

l4For the “nonmagic” clusters, the character of the fragmenta-
tion depends on the assumed ionic configuration to a degree
that allows one to determine the configuration from the empiri-
cal dipole strength function.

150ne numerical test of possible truncation errors is to check
the fulfillment of the energy-weighted sum rule; see Eq. (4.13)
below and Eq. (B7) in Appendix B.2.
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for small clusters may raise objections. However, the
qualitative behavior of the electric response of small al-
kali clusters, even with N <20, is dominated by the same
physics as the condensed-matter phenomena denoted by
these names, even if significant quantitative differences
exist (such as the relative positions of the unperturbed
particle-hole excitations, the plasmon peaks, and the con-
tinuum threshold). Clearly, the use of these terms for
small systems underscores the similarity of the physical
phenomena, but it should not cover the differences.

In purely microscopic language, the electronic
response is made up by (multi-) particle-hole excitations.
However, to the extent that individual particle-hole tran-
sitions often have little physical meaning, the use of mac-
roscopic or semiclassical pictures can help one gain a
better physical understanding. We hope to illustrate this
point of view in the following section.

C. Sum-rule approach

The results of microscopic RPA and TDLDA calcula-
tions are obtained in rather involved numerical codes and
are not always easy to interpret. Many of the global
response properties can, however, be analyzed and under-
stood in a transparent way in terms of sum rules that ap-
ply to the RPA response.

1. Sume-rule relations and classical limits

The sum-rule approach (Bohigas et al., 1979) allows
one to estimate the global features of an RPA spectrum,
such as its centroid and variance, in terms of simple—in
some cases even analytical—expressions (see Appendix
B.2 for the formal details). This approach has been wide-
ly used in nuclear physics, particularly in connection
with giant nuclear resonances (see, for example, Bohigas
et al., 1979; Gleissl et al., 1990). It has also been applied
to metal clusters by Bertsch and Ekardt (1985) and later
by many others (Brack, 1989; Serra et al., 1989a, 19890,
1990; Reinhard et al., 1990; Lipparini and Stringari,
1991), Reinhard and Gambhir (1992). Sorbello (1983)
discussed a “dipole force sum rule” that is closely related
to the RPA sum rules discussed here.

We define the RPA moment m; as

1 k
my=— [ dE E¥Im[a(E)] , (4.11)
T
where Im[a(E)] is the imaginary part of the dynamic po-
larizability function as calculated in RPA. Physically,
these moments can be related to energy-weighted mo-
ments of the photoabsorption cross section o (E) by

fic

2—2 (4.12)
T

m, = " E* 'o(E)E .
k f o o

However, one should bear in mind that some of the mo-
ments may physically diverge, even though they are finite

in RPA.
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We discuss in the following the most important mo-
ments m,; obtained for the electric dipole operator (4.1).
The linear moment m | is the simplest case; it is model in-
dependent, and the RPA value is exact. It is proportion-
alto Z:

_ #2e?

2m

m, Z, (4.13)
so that one obtains the famous Thomas-Reiche-Kuhn or
“f-sum” rule:

2,
[o(BdE=2724"C 7 . (4.14)

mc

Thus, theoretically, the integrated photoabsorption cross
section just measures the total number of electrons taking
part in the collective motion. Hence the experimental
determination of this integral helps to identify the collec-
tive nature of a resonance. The observed resonances in
alkali clusters typically account for at least 60% of the
total dipole strength (see Sec. VIII of de Heer, 1993).

The moment m; of the RPA response can be shown
(see Appendix B.2) to be the restoring force parameter
for translational oscillations of the electrons against the
ionic background. For the electronic Hamiltonian (2.4),
the only contribution to the restoring force of dipole os-
cillations can come from the external ionic potential V,
since both the kinetic energy and the Coulomb interac-
tion between the electrons are translationally invariant.
The corresponding expression for m; can easily be de-
rived using the techniques discussed in Appendix B.2 and
reads

2

m3(Dx ):

2 2
i 2

2
# d
m l f Vato) dxizp(r)dSr ’

(4.15)

where p(r) is the density of valence electrons. For a
spherical density p(r), Eq. (4.15) can easily be
transformed using the Poisson equation for V; to yield a
simple overlap integral of the electron density with the
ionic density p; (Brack, 1989):

2

2
BN 2 [ pitrptid’r .

m

Note that this formula holds for any form of ionic densi-
ty distribution, as long as the electron density is spheri-
cal, and is therefore not limited to the jellium model. For
the latter, using Egs. (3.6) and (3.12), one can rewrite Eq.
(4.16) further as

,ﬁ2
miy= "nT

2
e’z

3

2r,

AZ

V4

, (4.17)

where AZ is the electronic spillout defined in Eq. (4.8)
above.

To our knowledge, the experimental photoabsorption
cross sections have not been analyzed so far in terms of
their quadratic-energy weighted moments which are pro-
portional to m;. Such an analysis by means of the above
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equations might give some information about the overlap
of the electrons with the ionic charge distribution.

However, these results for m; and m, can also be ex-
ploited in a different way. An estimate of the peak ener-
gy can be constructed from the ratio m;/mj,

E;=V'my/m, . (4.18)

As is known from general sum-rule relations (Bohigas,
et al., 1979), this gives an upper limit of the centroid E of
any strength function, which for a narrow collective reso-
nance is close to its peak energy (see Appendix B.2).
From Eqgs. (4.13) and (4.17) one gets for the spherical jel-
lium the spillout formula

172
B 72 e? Az
> _—’";s? 'z
1 AZ 12
= 1—== : 4.19
v3 oo Z ] ’ “.19)

here #iw, is the bulk plasma frequency. Note that in the
limit AZ=0, E; becomes exactly equal to the classical
Mie frequency (4.9) of the dipole surface plasmon, as dis-
cussed further below for the general multipole case.

Within the jellium model one thus obtains, through the
identification of E; with the energy of a surface dipole
plasmon, a simple and transparent explanation of its red-
shift with respect to the Mie frequency: it is due to the
quantum-mechanical spillout of the electrons over the jel-
lium surface. A more refined picture, in which couplings
of surface and volume plasmons are included, will be dis-
cussed further below. Note, however, that the direct
connection of the redshift with the electronic spillout is
justified only in the simple jellium model in which the
positive charge distribution has a sharp edge.

The energy E; has been widely used for estimating the
energies of giant resonances in nuclei. The physical
meaning of this upper estimate E; of E, as discussed also
in Appendix B.2, is that of a rapid, diabatic oscillation of
the valence electrons against the ions. The oscillation is
so fast that the self-consistent mean field of the electrons
remains that of the ground state; one therefore also
speaks of the ‘“‘sudden approximation” for the collective
electronic motion. The numerical evaluation of E; leads
one to values that are only marginally higher than the
dominant peak energies of TDLDA or RPA results
(Bertsch and Ekardt, 1985; Yannouleas et al., 1989;
Reinhard et al., 1990; Lipparini and Stringari, 1991).

Another very useful moment is m _,;. Unlike m, and
m 3, there is no closed formula for m_, but since it is
just one-half of the static polarizability [see Eq. (B13) in
Appendix B.2] it is easy to calculate in the RPA. We use
m; and m _,; to construct another estimate of the reso-
nance, E:

E=Vm,/m_, . (4.20)
Using Eq. (4.13), we can express E, for the dipole
response as
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E\(D.,)=\/#e’Z/ma, . 4.21)
One can say rigorously that a lower limit for the centroid
E of the strength function is given by the inequality
E>E,.

The physical significance of this lower limit of E is that
of a slow, adiabatic motion of the electrons, which adjust
their density (and with it their mean field) at any moment
to the external dipole field. It is important to note that
the terms ‘“‘diabatic” and ‘“‘adiabatic” here concern the
motion of the electrons only and are independent of the
adiabaticity of the ionic motion in the Born-
Oppenheimer sense.

If E, is identified with the peak position of the dipole
resonances, Eq. (4.21) is surprisingly well fulfilled by the
experimental results. It is therefore often used to predict
dipole resonance peak energies in terms of measured po-
larizabilities (see Sec. VIII of de Heer, 1993). Note that
Eq. (4.21) is exact for the peak energy of a Lorentzian
form of the cross section, for which E | coincides with the
mean value E.

The apparent difference between the two physical pic-
tures, leading to the rapid diabatic limit E; and the slow
adiabatic limit E, seems to be in contradiction with the
fact that both energies are close to the measured peak en-
ergies of the plasmon resonances (apart from splittings
and the overall absence of redshift). However, as has
been noticed in the theoretical calculations (Bertsch and
Ekardt, 1985; Brack, 1989; Yannouleas et al., 1989,
Reinhard et al., 1990), these two energies are surprising-
ly close for the dipole plasmons of alkali clusters; in fact,
their difference is smaller than the difference of either of
them from the measured peak energies. This shows us
that when the strength function is strongly concentrated
in a single resonance there is no distinction between adia-
batic and diabatic motion of the electrons with respect to
the ionic background.

For collective modes of higher multipolarity, the situa-
tion may become quite different. In the case of nuclear
collective quadrupole vibrations, for example, there is a
difference of almost an order of magnitude between E,
which can be approximately identified with the low-lying
shape vibrations, and E;, which is known to yield an ex-
cellent description of the high-lying quadrupole giant res-
onances (see, for example, Lipparini and Stringari, 1989;
Gleissl et al., 1990).

An interesting result is obtained if one takes the classi-
cal limit of the energy E; for a macroscopic metal
sphere, i.e., the limit Z— o of a spherical cluster. In
this limit, the jellium model is certainly a good approxi-
mation for the ionic density, and the electrons will have a
step-function-like density with the same radius. There-
fore their spillout (which is a purely quantum-mechanical
phenomenon) will be zero, and from the result (4.19)
above one finds that E; goes over into the classical Mie
frequency for the surface plasmon. Brack (1989) has
shown that the same limit holds for all electric multipole
vibrations described by the operators @, =er’P; (cosb):
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E(Qp ) —fio)lie=

(4.22)

in agreement with the expression derived by Mie (1908)
for surface plasmons of multipolarity L.

Similar considerations can be made for the energy E,
in Eq. (4.21), which involves the static polarizability. If
we assume that the polarizability for all multipolarities L
in the limit of large radii reaches its classical value

afa =R ! 4.23)

and combine this with the expression (see, for example,
Brack, 1989)

2,2
mi @) =2 L [ 1 Tpndy (4.24)

2

we obtain the same limit as in (4.22) for the energy E;:

1/2
L

2L +1

El(/Q\L)—>thi“°= fiw, for Z— oo .

(4.25)

We thus find that the two estimates E; and E; become
identical in the large-Z limit for spherical clusters. Since
their difference gives an upper bound of the variance o
through the inequality given in Eq. (B9) of Appendix B.2,
we learn from this result that the variance of the dipole
strength should go to zero in the macroscopic limit. We
shall further elucidate this point below in connection
with a discussion of the coupling between surface and di-
pole plasmons.

A warning must be given here. The limit “Z — o0 ” in
Egs. (4.22) and (4.25) should not be taken too literally,
since for macroscopic clusters or metal spheres the long-
wavelength limit and thus the use of a static dipole
operator is no longer justified. The above discussion ap-
plies, therefore, only up to the limit in which clusters are
still smaller than the wavelength corresponding to the
observed surface plasmon frequency, which is typically
about 500 nanometers for Na, corresponding to Z =~ 10,

In this respect we note that Serra et al. (1990) have
studied the electronic multipole response of spherical
metal clusters in jellium-Kohn-Sham calculations using
operators of the type j; (gr)Yo(60) and the simple sum-
rule approach. For small values of the momentum
transfer g they recovered the surface mode systematics
discussed above, whereas for large g the response was
found to be mainly determined by particle-hole excita-
tions. For intermediate g values, bulk oscillations were
found and their connection with the hydrodynamical
model predictions were established. In the limit of a big
sphere, they obtained an improved bulk-plasmon pole ap-
proximation for the dispersion relation, which includes
non-negligible exchange and correlation effects.
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2. Coupling of surface and volume plasmons

The simple sum-rule model using the two estimates E;
and E, is not quite satisfactory, in spite of many qualita-
tive successes and the limits discussed above, since it
works well only in the idealized case of a narrow reso-
nance that exhausts the m; sum rule for a given excita-
tion operator (cf. the so-called plasmon-pole approxima-
tion). As the experimental results and the fully micro-
scopic RPA and TDLDA calculations show, the reality
is often more complicated and presents one with frag-
mented collective strength (see Sec. IV.B.2). One can,
however, go one step further in the exploitation of sum-
rule relations and thereby come closer to the microscopic
RPA.

An approximate RPA treatment, which makes the as-
sumption of local currents (or velocity fields) and leads to
a secular equation for coupled harmonic vibrations de-
scribed in terms of local trial operators Q;(r), has recent-
ly been proposed by Brack (1989) and Reinhard et al.
(1990) and used for the calculation of dipole plasmons
and polarizabilities of alkali clusters. The ground-state
densities obtained in the self-consistent jellium-Kohn-
Sham method are the only ingredients; this approach
does not require any adjustable parameters. It is, in fact,
an extension of the fluid dynamics approach that has
been successfully used to describe nuclear giant reso-
nances (Bertsch, 1975; da Providéncia and Holzwarth,
1985; see also Lipparini and Stringari, 1989, for a recent
review. Both approaches and their relation to classical
hydrodynamics are briefly discussed in Appendix B.2.)

The static dipole polarizabilities obtained for sodium
clusters in the local-current RPA by Reinhard et al.
(1990) are in perfect quantitative agreement with those
resulting from the much more time consuming micro-
scopic linear-response calculations by Beck (1984b),
Ekardt (1985a, 1985b), and Manninen et al. (1986). In a
semiclassical version of the local-current RPA, the
correct average values of the polarizabilities have been
obtained in terms of extended Thomas-Fermi variational
densities (Brack, 1989; cf. also Sec. V.B).

In the following, we shall use the local-current RPA
picture to discuss some aspects of the physics of surface
and volume plasmons in metal clusters. (We refer the
reader to Appendix B.2 for the relevant formalism.) For
a given (electric) multipolarity L, the coupled intrinsic
modes of the cluster may be described by the following
trial set of local operators:

0,(r)=r"Y,4(0), (4.26)

where p; is an arbitrary real number > 1. By construct-
ing the restoring force and inertial tensors (B28), (B27)
corresponding to these modes and solving the secular
equation (B26), one obtains a spectrum of eigenmodes
from which the various sum rules can be evaluated.
Since the gradients of Q; are proportional to the velocity
fields, p; =L is the mode corresponding to incompressible
flow, with AQ; =A(rLY,;4)=0. Thus the operator Q;
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describes pure surface oscillations without compression.
In the large-N classical limit, this leads to the pure Mie
surface plasmon, as we see from the limits of E4(Q; ) and
E (Q;) in Egs. (4.22) and (4.25) above. Modes with
p;7L, on the other hand, lead to local compression of
the electron density. As shown by Brack (1989), the cou-
pling of any number of modes with p,L gives in the
classical limit a degenerate set of eigenmodes, all having
the volume-plasmon energy #iw,; the energy E;(Q;) con-
sequently has the same limit:

pl>

E4(Q;)—fiw, for Z—o (p,7#L) . (4.27)
(As in the previous section, the symbol « should in reali-
ty be a number not larger than about 10'°.) Note that the
surface and the volume modes are completely decoupled
in this limit: the volume modes cannot be excited by the
electric multipole operator (4.26) with p, =L. This result
is a generalization (to LF1) of that obtained by Jensen
(1937), who investigated the dipole eigenmodes of a metal
sphere using classical hydrodynamics in a variational
local-density scheme.

In finite clusters, these two types of modes are coupled
due to finite-size and quantum-mechanical effects (spill-
out of the electron density; kinetic, exchange, and corre-
lation energies). This coupling leads to the following
changes from the above classical result:

(i) The compressional volume-type modes are no longer
degenerate; the volume plasmon is fragmented into a
bunch of scattered eigenfrequencies. That part of the
volume plasmon which lies in the electron ionization con-
tinnum can, in fact, be found as a strongly Landau-
damped resonance, as shown by Ekardt (1985a, 1985b),
but it carries a negligible fraction (< 1073) of the total di-
pole strength.

(ii) The surface plasmon and parts of the fragmented
volume plasmon are shifted away from their respective
classical Mie frequencies. In the case of the dipole
modes, both are redshifted. The same redshift is found
for higher multipolarities in large clusters; for small clus-
ters, however, the kinetic-energy contribution to the re-
storing forces can lead to a substantial blueshift (Brack,
1989; Serra et al., 1989a, 1989b). This is exactly the
mechanism that shifts the nuclear quadrupole giant reso-
nance to higher energies and leads to a fundamental
difference between normal hydrodynamics and fluid dy-
namics (see Appendix B.2.c).

In the microscopic particle-hole excitation (RPA) pic-
ture, this coupling leads to fragmentation of the dipole
strength, discussed in Sec. IV.B above. The fragmenta-
tion of the surface-plasmon peak cannot always be
correctly described in the local-current RPA picture; ob-
viously, the strong coupling effects between particular
particle-hole excitations must be connected with nonlocal
currents. But the remaining strength of ~10-25 % lying
above the surface peak can be interpreted as the
remainder of a strongly fragmented volume plasmon.

Let us illustrate the picture of coupled surface and
volume modes for the dipole case L =1. For p;=1 one
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gets the dipole operator Q,; (in the z direction); the scal-
ing transformation (B21) then is a simple translation: the
dipole Mie plasmon is a pure translational oscillation of
all the electrons against the ionic background.

In Fig. 8 we show the dipole spectra obtained in the
local-current RPA approach from self-consistent Kohn-
Sham ground-state densities for spherical sodium clusters
of increasing sizes. The energies of the eigenmodes are
given as histograms; the height of the lines corresponds
to the percentage of the dipole m; sum rule carried by
each state. At the top of the figure we see Nag; the exper-
imental position of the surface plasmon (de Heer, Selby
et al., 1987) is indicated by an arrow. The dominant
peak of the theoretical spectrum is at ~2.75 eV and car-
ries 84% of the dipole strength; it is redshifted with
respect to the classical Mie surface plasmon, which lies at
3.4 eV and is indicated by a vertical dashed line in the
figure. (The fact that the redshift is not strong enough to
reach the experimental position has already been dis-
cussed in Sec. IV.B above.) The remaining strength of
16% is scattered over several states in the region
~3.5-5 eV; only two of them carry more than one per-
cent. These states contain the remaining strength of the
fragmented volume plasmon; their centroid is also sub-
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FIG. 8. Collective dipole spectra for sodium clusters, obtained
in spherical jellium Kohn-Sham plus local-RPA calculations
(Brack, 1989; Reinhard et al., 1990). Shown is the strength in
percents of the total dipole m, strength (normalized to 100%).
The lowest spectrum (Na,,) represents the classical limit, where
100% of the strength lies in the surface-plasmon (frequency
wé‘ff) and the volume-plasmon (frequency wy,) has zero strength.
For the finite clusters, the surface plasmon is redshifted and its
missing strength is distributed over the remainder of the strong-
ly fragmented volume plasmon.
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stantially redshifted with respect to the volume-plasmon
energy of 5.85 eV. [Note that in a microscopic RPA cal-
culation (Yannouleas et al., 1989) almost identical spec-
tra are obtained. The distribution of the fragmented
volume-plasmon states is somewhat different, and the
surface mode can be fragmented too, but the moments
mj3, m;, m_; and the variance o agree to within less
than 5% for the two calculations (Reinhard et al.,
1990).] At the bottom of Fig. 8, the limit N — oo is
shown, representing a macroscopic metal sphere with a
sharp surface: One surface plasmon at the Mie frequency
#iw, /V'3 that carries 100% of the dipole strength, and
one (infinitely degenerate) volume plasmon at #io, that is
fully decoupled and therefore has no dipole strength.
For clusters in between, the tendency is to reduce the
coupling between surface and volume modes and to in-
crease the dipole strength of the surface mode with in-
creasing N.

The distinction between volume and surface plasmons
is strictly possible only in the large-particle limit. For
smaller particles, their coupling and the increasingly
dominant role of the surface mix the two types of modes.
However, a look at the transition densities §p(r) corre-
sponding to some of the eigenmodes shown in Fig. 8 will
reveal why it is still meaningful to speak of surface and
volume modes even in relatively small clusters. The tran-
sition density 8p;(r) of the ith eigenmode defined by

op;(r)=—V-(pu;) (4.28)
in terms of its velocity field u; (see Appendix B.2.b) tells
us where the essential changes occur during the collective
vibration in each eigenmode.

Figure 9 shows the transition densities §p; along the z
axis obtained by Genzken (1992) for various cluster sizes
and for two typical eigenmodes: the lowest, most collec-
tive mode (shown by solid lines), and one of the fragment-
ed volume modes lying around 5 eV (shown by dashed
lines). These results were obtained both in semiclassical
calculations, using the model of Brack (1989) and shown
in the left parts (a), (b), (e), (f) of the figure, labeled ETF
(extended Thomas-Fermi), and microscopically as by
Reinhard et al. (1990), shown in the right parts (c), (d),
(g), (h) of the figure, labeled KS (Kohn-Sham). In the
semiclassical results, where the densities p(r) are con-
strained to be constant in the interior part of the cluster,
the separation can be clearly observed even in the small-
est cluster Nag: the lowest mode has all its transition
density peaked in the narrow surface region near the jelli-
um edge, whereas the higher mode has an appreciable
nonzero transition density in the inner volume region. In
the microscopic Kohn-Sham results, the shell oscillations
of the electronic densities partially blur the situation, but
the same trends can be observed at least in the larger
clusters. For microclusters like Na,, and Nay, it is no
longer possible to divide the electronic density distribu-
tion into a volume and a surface part due to the large
shell oscillations. Correspondingly, the two types of
modes are much more strongly mixed in these small sys-

Rev. Mod. Phys., Vol. 65, No. 3, July 1993

Matthias Brack: The physics of simple metal clusters

tems. Nevertheless, the notion of the two most predom-
inant physical types of collective oscillations, namely,
translational surface modes and compressional volume

modes, remains a useful concept. '®
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FIG. 9. Dipole transition densities (4.28) along the z axis for
spherical sodium clusters: left parts (ETF): semiclassical local-
RPA results (Brack, 1989); right parts (KS): Kohn-Sham re-
sults in local RPA (Reinhard et al., 1990); solid curves, lowest
eigenstate (dipole plasmon); dashed curves, state lying around 5
eV (belonging to the fragmented volume plasmon). From
Genzken, 1992.

16K resin (1991) has also used the picture of coupled surface
and volume plasmons, with the somewhat oversimplifying as-
sumption of a single volume-plasmon frequency.
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It is again instructive to compare the analogous situa-
tion in nuclear physics. The famous nuclear giant isovec-
tor dipole resonance, a strongly collective vibration of
protons against neutrons, can be interpreted in very simi-
lar terms. The two leading mechanisms are a compres-
sional mode (corresponding to the volume plasmon) pro-
posed by Migdal (1944) and by von Steinwedel and Jen-
sen (1950), and a purely translational mode (correspond-
ing to the surface plasmon) proposed by Goldhaber and
Teller (1948). In a hydrodynamic description one obtains
a good fit to the average energies of the experimental gi-
ant dipole resonances by taking a suitable combination of
the two modes (Myers et al., 1977). After explicit diago-
nalization of the two coupled modes, the lower of the two
eigenfrequencies fits the experimental resonances,
whereas the higher is larger by roughly a factor of two
and escapes experimental detection (Gleissl et al., 1990).
The microscopic HF+RPA theory has difficulty explain-
ing the finer details and the proper widths of these reso-
nances (see, for example, Liu and Van Giai, 1976), but an
analysis of transition densities supports the picture of the
above two classical modes.

Another measure for the coupling between surface and
volume plasmons is given by the variance o of the dipole
strength distribution. As discussed in Appendix B.2, an
upper limit of o can be given in terms of E;(Q,) and
E (Q); see Eq. (B9). Since both these energies go to the
same limit, ﬁwp]/l/ 3 for large N, o has to go to zero.
Note, however, that this variance should not be directly
identified with the experimentally measured linewidth I’
of the surface plasmon that we discussed at the end of
Sec. IV.B.2.

The theoretical RPA prediction of some 10-15 % of
the dipole strength, lying well above the surface plasmon
and containing part of the fragmented volume plasmon,
cannot be verified in the case of sodium due to a lack of
experimental data in that energy range. However, recent
photoabsorption measurements in small Ag clusters with
N =8-40 (Tiggesbaumker et al., 1992) systematically re-
veal some dipole strength lying clearly above the dom-
inant surface-plasmon peak, in qualitative agreement
with the RPA prediction. To the extent that the jellium
model can be trusted for small Ag clusters, this may
confirm the above picture at least qualitatively.

We finally point out that Barberan and Bausells (1985)
have discussed the coupling of surface and bulk plasmons
in connection with the inelastic scattering of electrons
from small metal spheres. Ekardt (1987) discussed in this
context wave-vector dispersion versus angular momen-
tum dispersion of the volume plasmons in small metal
clusters using spherical jellium-TDLDA-Kohn-Sham cal-
culations.

V. LARGE CLUSTERS: A STEP TOWARDS THE BULK?
In this section we deal with very large metal clusters

containing up to many thousands of atoms. We discuss
them from two complementary points of view: in Sec.
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V.A we focus on their shell structure and in Sec. V.B on
their average properties. In both contexts, we use the
self-consistent jellium model as a basis and semiclassical
methods as important tools: on the one hand, the quanti-
zation of classical trajectories helps one to understand
the so-called supershell structure, and on the other hand,
the semiclassical density-variational method allows one
to obtain average cluster properties regardless of their
size and thus to study them in the asymptotic limit
N— 0.

A. Shells and supershells
1. Shell effects in finite fermion systems

Quantization of a system of particles in a finite spatial
domain leads to discrete energy eigenvalues, which are
usually grouped into bunches of degenerate or close-lying
levels, called shells. The amount of bunching depends on
the symmetries and the integrability of the confining po-
tential. For fermion systems obeying the Pauli principle,
this leads to shell effects which are well-known in atoms
and nuclei: local minima in the total binding energy per
particle versus particle number or deformation,
sawtooth-like behavior of the particle separation energy
(ionization potential, electron affinity), or oscillations in
the radial density distribution. These effects can be de-
scribed theoretically in terms of independent (or weakly
interacting) fermions moving in a common potential. In-
versely, the experimental observation of shell effects sug-
gests the existence of a mean field in which fermions
(more generally, some quasiparticles with fermionic na-
ture) move more or less independently. In the case of
metal clusters, the observation of shell effects has been
very suggestive, indeed, of the single-particle motion of
the loosely bound valence electrons and has stimulated
the development and refinement of the mean-field-type
models described earlier in this review.

Shells of single-particle levels are a global phenomenon
in the sense that they depend more on the overall form of
the mean field (e.g., symmetry, steepness of the surface,
deformation) than on the finer local details of its radial
dependence (e.g., oscillations which themselves can be
connected to shell effects). For large alkali clusters, this
means that the inclusion of the ionic structure on top of a
jellium model calculation need not modify appreciably
the shell situation, provided that the (spherical or de-
formed) jellium density comes close to the averaged ionic
distribution and that the single-particle nature of the
electronic orbits is predominant. This may explain the
success of the jellium model in correctly explaining most
of the observed ‘“magic numbers” corresponding to
spherical-shell closings, in particular of the very large al-
kali clusters, which we discuss in the following subsec-
tion.

That shells are not only peculiar to spherical systems
has most clearly been formulated by Strutinsky (1968),
who pointed out the close connection between the oscil-
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lating part of the single-particle level density, 8g(E), and
the oscillating part of the total energy, i.e., the “‘shell
correction” 8E [see Eq. (5.1) below], both as functions of
particle number and of deformation. In fact, the mere ex-
istence of static nuclear deformations is due to shell
effects and could be accounted for theoretically by the
famous Nilsson model (Nilsson, 1955; Mottelson and
Nilsson, 1955)—which has been revived by Clemenger
(1985a, 1985b) in a simplified form (namely, leaving out
the spin-orbit interaction). The mechanism, which leads
to a spontaneous deformation of the mean field —even if
the basic two-body interaction is a central one—is just
another example of the Jahn-Teller effect (Jahn and Tell-
er, 1937): when a spherical / shell is only partially filled,
the system lifts the degeneracy of its ground state by al-
lowing the mean field to give up spherical symmetry, re-
sulting in an energy gain. However, the shell effects in
deformed systems are usually less pronounced than in
spherical ones. (See, for example, the smaller subpeaks in
the cluster abundances of Knight et al., 1985, which cor-
respond to deformed subshells, compared to the dom-
inant spherical-shell peaks.)

A very effective and successful method for investigat-
ing the shell structure in the total energy of a finite fer-
mion system, as a function of both deformation and par-
ticle number, has been introduced by Strutinsky (1968).
According to his basic theorem, the energy of an in-
teracting fermion system can be divided into a smooth
part E and an oscillating part, the energy shell correction
SE:

E=E+8E . (5.1

Whereas E varies slowly with particle number and with
the deformation of the system, the shell correction §E
contains all the oscillations coming from the shell bunch-
ing of energy levels. To a very good approximation, 8E
can be extracted from the sum of occupied single-particle
energies (or quasiparticle energies, see Bunatian et al.,
1972) ¢; of the averaged mean field, i.e., from
Eg, =3 N_.g;, by subtracting its suitably defined averaged
part (Strutinsky, 1968). Brack and Quentin (1981) have
numerically tested this approximation using Hartree-
Fock calculations with effective nuclear interactions, and
also investigated its extension to finite temperatures. In
practice, the average energy E can be taken from a phe-
nomenological liquid-drop model, whereas 8E can be
found from the single-particle energies €; of phenomeno-
logical shell-model potentials. [For an extensive review
on the Strutinsky method and its application to nuclear
fission barrier calculations, see Brack et al. (1972).] A
modified form of the Strutinsky renormalization idea was
discussed by Brack et al. (1991b) in their calculation of
thermal electronic properties of metal clusters.

The regular oscillatory behavior of both the single-
particle level density and the shell-correction energy
leads, in general, to shape isomerism: several local mini-
ma can exist in the multidimensional energy surface. A
famous example in nuclear physics are the fission iso-
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mers, which were correctly interpreted for the first time
by Strutinsky (1968) using the shell-correction formalism.
That shape isomers in metal clusters are found not only
in quantum-chemical and molecular-dynamics calcula-
tions, but also within the deformed jellium model, has
been discussed already in Sec. II1.B.2.

One should therefore use the term ‘“magic number”
with some care: it may not be taken as a synonym for
sphericity. This was justified in the first years after the
discovery of the nuclear shell model (Goeppert-Mayer,
1949; Haxel, Jensen, and Suess, 1949), when “magic num-
bers” like 82 and 126 had been recognized as the num-
bers of nucleons corresponding to filled major spherical
shells (where the strong spin-orbit coupling was an essen-
tial ingredient). Since enhanced stability also occurs in
deformed systems, the corresponding numbers of parti-
cles can also have “magic” character, e.g., the neutron
number N =146, which is characteristic of the most
stable fission isomers in actinide nuclei having large de-
formations corresponding to an axis ratio of ~2:1 (see,
for example, Bjgrnholm and Lynn, 1980).

Just recently, the Strutinsky shell-correction method
has been applied to large deformed sodium clusters by
two independent groups. Frauendorf and Pashkevich
(1993) used a deformed version of the Woods-Saxon po-
tential parametrized by Nishioka et al. (1990) to calcu-
late the ground-state deformations of Na clusters with
N =300, including axial quadrupole, octupole, and hexa-
decupole shapes. Reimann et al. (1993) improved the
Clemenger-Nilsson model by fitting the /? term to self-
consistent Kohn-Sham levels of spherical clusters. They
calculated the equilibrium deformations of spheriodal Na
clusters with 50 =N =850 and reanalyzed the experimen-
tal mass abundance spectra of Bjgrnholm et al.
(1990,1991), finding good agreement between the calcu-
lated and observed “deformed magic” numbers.

Many aspects of shell structure can be qualitatively,
and sometimes even quantitatively, described by semi-
classical methods. A very powerful tool for investigating
the gross shell structure in the single-particle level densi-
ty of a given potential in terms of classical trajectories
has been developed by Gutzwiller (1971) and by Balian
and Bloch (1972; see also earlier papers cited in these two
articles). Strutinsky et al. (1977) generalized this method
successfully for realistic nuclear potentials and explained
the behavior of the various isomeric valleys in contour
plots of the level density and the energy as functions of
particle numbers and deformation (see also Strutinsky,
1975). Nishioka et al. (1990) applied the same kind of
analysis to metal clusters, using Woods-Saxon-type po-
tentials, and discussed the ‘“‘supershell”” structure, which
will be the subject of the following subsection.

We shall not present here the details of the
Gutzwiller-Balian-Bloch theory and its applications to
metal clusters, but refer the interested reader to a forth-
coming review article by Bjgrnholm et al. (1993). Some
of the simplest aspects and results of this approach will
be referred to below in order to explain the observed shell
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structure in large alkali clusters. Reimann and Brack
(1993) have observed that the calculated ground-state de-
formations of spheroidal sodium clusters with
50 S N =850 (Reimann et al., 1993) can be explained in
terms of a family of classical rhomboidal planar orbits of
a particle in a spheroidal cavity, exactly as it was pro-
posed by Strutinsky et al. (1977) in the context of nu-
clear deformations on the basis of the Balian-Bloch
theory.

2. Electronic supershell structure in large alkali clusters

One of the salient features of the level density in a
steep confining potential is a beating pattern: the regular

2
2’:5 |A 3sin

us

4

88 141 (k) =2 (KR /m)'/? KL+

where R is the radius of the cavity. This superpo-
sition of two_sin functions with comparable ampli-
tudes 4;=(v"3/2)'"%, 4,=(1/v2)"/2, and wavelengths
L,;=3V3R, L,=4V2R leads to a beating of the level
density; up to a small term contributing less than 5%,
one obtains

2
88 (s14)(K) ~ (kR /) 2 2PR 4 cos(kE )cos kAL—%]
(5.3)
with
L=2(L,+L,), AL={L,—Ly) . (5.4)

Here the factor cos(kL) gives the fast oscillations in en-
ergy, representing the main-shell oscillations, and the
second cos factor gives the beating amplitude.

The same pattern is also found for the density of ener-
gy eigenvalues in smooth potentials, provided their sur-
face is steep enough. (The pure spherical harmonic os-
cillator and Coulomb potentials have no well defined sur-
face region; correspondingly, their level densities do not
show any beating pattern.) In Fig. 10 we show the elec-
tronic level density obtained by Nishioka et al. (1990)
for a spherical Na cluster. They used a phenomenologi-
cal Woods-Saxon potential fitted to the self-consistent
jellium-Kohn-Sham results of Ekardt (1984b) and extra-
polated it to a size of N=3000. To emphasize the gross
shell structure, the discrete eigenvalue spectrum was
folded with a Lorentzian having a width of about a fifth
of the main-shell spacing. The shell oscillations around
the average level density and the beating pattern are evi-
dent in this figure. Nishioka et al. (1990) termed the
groups of main shells, separated by the interference mini-
ma, ‘“‘supershells” and discussed their stability against
variations in the radial dependence of the potential.
Clemenger (1991) has also used Woods-Saxon potentials,
related by simple scaling considerations in order to de-
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oscillations reflecting the main shells are modulated by
an oscillating amplitude of lower frequency. Such a pat-
tern was found by Balian and Bloch (1972) to be a very
general feature of quantal eigenmodes in a cavity with
reflecting walls. For the case of a spherical cavity, they
showed that this beating is the result of an interference of
the two most important classical trajectories responsible
for the oscillating part of the level density, namely, trian-
gles and squares. (Other orbits contribute, too, but with
smaller amplitudes; they are important only near the in-
terference minima.) Their contribution to the level densi-
ty g(k) as a function of the wave number k =V 2mE /#*
equals (see also Strutinsky, 1975)

37
kL, +—
47 4

] ) (5.2)

[

scribe different metals, to discuss the supershell structure.

This supershell beating is also present in the total ener-
gy of the system. In Fig. 11 we show the energy shell
correction for spherical sodium clusters with N up to
3000 obtained in self-consistent Kohn-Sham calculations
by Genzken and Brack (1991) and Genzken et al. (1992)
at various temperatures T, plotted versus N!/3. The shell
correction 8F(N) is defined here as the difference be-
tween the total free energy F(N) of a cluster with N
atoms and its average part F(N):

8F(N)=F(N)—F(N) . (5.5)

Strutinsky (1968) introduced a numerical energy-
averaging procedure to calculate E(N) at T=0 from the
single-particle energies €;, which can be extended to finite
temperatures (Brack and Quentin, 1981). A simple alter-
native way is to use a liquid-drop model expansion of the
total free energy of the type discussed in Sec. V.B.2:

F(N)=Fpy(N)=e,N+a,N*>*+a N/ . (5.6)
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FIG. 10. Electronic single-particle level density g(k) as a func-
tion of wave number k, evaluated in a spherical Woods-Saxon
potential corresponding to a Na cluster with N =3000, by
Nishioka et al. (1990).
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[In obtaining Fig. 11, a, and a, were determined at each
temperature by a simple fit such that 8F(N) is oscillating
around zero; the bulk energy was fixed at its theoretical
value e,=—2.2567 eV obtained for r,=3.96 a.u.
(Genzken and Brack, 1991).] The supershell beating is
clearly visible in 8F(N). Note, however, that the ampli-
tude of the shell oscillations is reduced with increasing
temperature, and the minima become less sharp than at
T=0. The “magic numbers” corresponding to filled
spherical main shells are given in the curve for 7=0 at
the corresponding minima.

Neither the level density nor the shell-correction ener-
gy OF(N) are directly observable. As discussed by
Bjgrnholm et al. (1990, 1991), the mass abundances in
expansion beams depend rather on the differences
AF(N)=F(N—1)—F(N) and A, F(N)=F(N+1)
+F(N —1)—2F(N), which are very sensitive to
temperature-smoothing effects for the larger cluster sizes.
In fact, these latter quantities were shown by Brack et al.
(1991a, 1991Db) to vanish almost completely for V R 600 at
temperatures 7 ~600 K or above, putting in doubt the
observability of the supershell structure, which only
starts at NV R 900, in supersonic expansion experiments.
Nevertheless, Pedersen et al. (1991) and Martin,
Bjgrnholm et al. (1991) have experimentally put the ex-
istence of supershells in Na clusters into evidence, and
Bréchignac et al. (1992c) observed them in Li clusters.
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FIG. 11. (Free) energy shell correction (5.5) vs N'/3 at three
temperatures, obtained in spherical jellium-Kohn-Sham-LDA
calculations by Genzken and Brack (1991). In the lowest part,
the “magic numbers” corresponding to filled major spherical
shells are indicated.

In order to make the beating pattern of the shell oscil-
lations visible in very large clusters, where thermal
suppression of the shell structure becomes important,
Pedersen et al. (1991) multiplied the logarithmic deriva-
tives of the mass yields by a factor depending exponen-
tially on N!/3. This is justified by the following argu-
ment. The temperature dependence of 8F(N) for a
spherical closed-shell system can be schematically es-
timated from the harmonic-oscillator model (Bohr and
Mottelson, 1975) to vary as

(g
sinht ’ fiw
Expanding for large temperatures and using #io < N ~1/3
this gives, indeed, a temperature suppression factor
< exp(—N'/3). Therefore, scaling up the experimentally
observed mass yields by the inverse factor just compen-
sates for this thermal compression.

In the upper part of Fig. 12 we have reproduced the
relevant figure of Pedersen et al. (1991), which shows the
first differences of the logarithmic experimental yields,
Alnly, averaged over a range N +K, with K;=0.03N in
order to eliminate statistical fluctuations and multiplied
by V'N exp(cN!/3). Here c is an adjusted constant con-
taining the effective temperature, and the extra factor
VN compensates for the decrease of the shell correction
at T=0 with increasing N (Bohr and Mottelson, 1975).
Note that in taking the differences AInly, one focuses on
the oscillating part of the mass yields, which is dominat-
ed by electronic effects, whereas the smooth ionic contri-
butions, as well as possible systematic experimental er-
rors, are canceled.

In the lower part of Fig. 12 we show the theoretical jel-
lium model results by Genzken and Brack (1991) for the
negative second difference of the total free energies,
—A,F(N), multiplied by the same enhancement factor
(with the value of ¢ readjusted by ~10%). In this quanti-
ty, too, the ionic contributions, which are only crudely
represented in the jellium model anyhow, are practically
canceled. The similarity of the two curves shown in this
figure is striking. In comparing them, one makes the im-
plicit assumption

Iy~exp{—AF(N)/kT} . (5.8)

SF(T)=08F(0)

(5.7)

Since A,F(N) is the free dissociation energy of one neu-
tral atom [up to the constant F(1), which cancels when
taking the second difference A,F ], the Boltzmann factor
on the right-hand side of Eq. (5.8) is a measure of the rel-
ative stability of the cluster N against evaporation of a
monomer,

NaN—>Na.N71+Na1 s (5.9)

in an evaporative ensemble at thermodynamic equilibri-
um. Although this is certainly a rather simplifying as-
sumption, which neglects dynamic and nonequilibrium
effects of the evaporation process (see Bjgrnholm et al.,
1991, 1993, for a discussion of this point), it seems to be
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supported by the qualitative agreement of the two curves
in Fig. 12. In any case, this result demonstrates that the
finite temperature of the valence electrons can play an
essential role in the mass yields.

Rather direct evidence of the electronic nature of the
observed supershells is also found from the radius incre-
ment AR =r,AN}’3 between two clusters with neighbor-
ing magic numbers N,. As can be seen from Figs. 11 and
12, AN}/® is almost constant within each supershell.
This becomes even more evident if one plots the quantity
N}73 versus the number of the magic shell, the “shell in-
dex” i, as done in Fig. 13 below: all points lie on portions
of straight lines with a slope of s=AN}®=0.61+0.01.
This can be easily understood from the results of Balian
and Bloch (1972) cited above, which lead to the form
(5.3) of the level-density oscillations. For a classical orbit
(with length L) that is planar, a simple one-dimensional
quantization can be used,

$pdg=#kL=nh (n>>1) (5.10)

which, after division by #ik, is equivalent to demanding
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FIG. 12. Supershell beats in large sodium clusters: (a) Loga-
rithmic derivative of the experimental mass yield of sodium
clusters from an adiabatic expansion source, by Pedersen et al.
(1991) (see this reference and the text for details); (b) second
differences of total free energy obtained in self-consistent spher-
ical jellium-Kohn-Sham-LDA calculations by Genzken and
Brack (1991). See the text for an explanation of the exponential
scaling factors.
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that L be a multiple n of the de Broglie wavelength
A=2w/k of the electron. Inserting in Eq. (5.10) the
Thomas-Fermi expression for the Fermi momentum of
the valence electrons, 27/kp=(327%/9)3r,=3.27r,,
and the average length responsible for the mam—shell os-
cillations from Eq. (5.4), L =5.42R =5.42r,N'/?, one
finds that the Wigner-Seitz radius 7, cancels, and one ob-
tains immediately the increment of the magic “shell ra-
dius” N (1)/ 3

3.27
——=0.603 .
5.42

This value agrees well with the experimental data. Actu-
ally, the result (5.11) is valid only for an infinitely steep
spherical potential well; in a realistic potential with a
diffuse surface, the “corners” of the classical trajectories
will be rounded off and AN}’ will be somewhat larger
than 0.603. This demonstrates that, indeed, the observed
main shells are the result of a quantization of the valence
electrons in their mean field. [Finer details of the shell
oscillations depend also on the quantization of the
motion perpendicular to the classical orbits, which is far
less trivial; see Gutzwiller (1971), Balian and Bloch
(1972), and Strutinsky et al. (1977).]

In Fig. 13, we have made a compilation of the *“shell
radius” N}/? versus shell index i for various experimental

=AN}3= (5.11)
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FIG. 13. “Shell radius” N}”® vs “shell index” i for spherical
clusters with “magic numbers” N,. IONIC SHELLS corre-
spond to complete ionic icosahedral or cubo-octahedral
configurations. ELECTRONIC SHELLS correspond to filled
major spherical shells of the valence electrons. “?”, see text for
the interpretation of the Al data. The solid lines are theoretical
curves with their slopes s indicated in parentheses. The various
symbols correspond to the experimentally observed most abun-
dant species: [0 (Na “cold,” MPI), Martin et al. (1990, 1991b);
O (Na “hoi,” MPI), Martin, Bjérnholm, et al., 1991); X (Na,
NBI), Pedersen et al. (1991); A (Li, Orsay), Bréchignac et al.
(1992c); V (Al, Lyon), Lermé et al. (1992); + (Al, LA), Persson
et al. (1991).
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and theoretical situations. The solid lines with slope
s=0.61 represent both the results of Nishioka et al.
(1990), using a Woods-Saxon potential with constant sur-
face diffuseness, and the self-consistent jellium model re-
sults of Genzken and Brack (1991) for Na clusters. Ex-
actly the same slope is also found for Li clusters (Genzk-
en et al., 1992), demonstrating its independence of the
Wigner-Seitz radius r; according to the above reasoning.
The rupture of the lines around i =14-15, corresponding
to N ~800-900, reflects a phase shift of the main-shell
oscillations by 180° when passing from one supershell to
the next, in accordance with Eq. (5.3) above. For Li, this
phase change occurs just above i=14 and for Na just
below i =14; this is due to the slightly increased surface
diffuseness for Li clusters compared to that of the Na
clusters.

The same phase shifts and slopes, within experimental
uncertainties, have been measured by three independent
groups. In Fig. 13 the experimental shell radii, found by
Martin, Bjgrnholm, et al. (1991) and Pedersen et al.
(1991) for Na clusters and by Bréchignac et al. (1992c)
for Li clusters, are shown by different symbols. (Not all
symbols are indicated on those points where they all
coincide.) They nicely confirm the theoretical predic-
tions, particularly for the Li clusters.

At first glance, it appears that self-consistency is not
very important for the global effect shown in Fig. 13: the
slopes s found for Na clusters with the phenomenological
Woods-Saxon and the self-consistent Kohn-Sham poten-
tials are identical. [This is not very surprising, since the
Woods-Saxon potential of Nishioka et al. (1990) was ex-
plicitly fitted to self-consistent Kohn-Sham potentials,
though only for smaller clusters.] However, the details of
the phase change around i =14-15 do depend on the po-
tential and most sensitively on its surface steepness,
which is not independent of N in the self-consistent
Kohn-Sham results (Genzken and Brack, 1991). Indeed,
in the latter the phase change occurs at lower cluster
sizes than for the Woods-Saxon potential, namely around
N ~800, which compares favorably with the experimen-
tal results of Martin, Bjgrnholm, et al. (1991) and
Bréchignac et al. (1992c).

It should be stressed that the counting of main shells,
i.e., the attribution of the shell index i to the major mini-
ma of the oscillations, is not quite unique in the region of
interference minima, since the oscillations there are less
regular than in the middle of the supershells and exhibit
minor subshells that are not easily distinguished from
what one should call main shells. (As mentioned above,
this is due to the contributions of more complicated clas-
sical trajectories.) Therefore, in establishing plots of the
type shown in Fig. 13, both from experimental and
theoretical results, a certain bias cannot be excluded.
The least one can say is that the experimental results are
compatible with the above interpretation of an interfer-
ence between triangular and squared orbits with compa-
rable amplitudes, and that a phase shift does occur in the
region where the amplitude of the shell oscillations is
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smallest.

As we have seen above, the average slope, s =0.61, is
very close to that found in an infinitely steep spherical
potential well, Eq. (5.11); it is slightly larger (although in-
side the theoretical and experimental uncertainties) due
to the diffuseness of the realistic potential. We show in
Fig. 13 the line corresponding to a pure spherical
harmonic-oscillator potential; its magic numbers vary as

No(i)=—;—i(i+1)(i+2) (i=1,2,3,...), (5.12)
giving a slope s =0.693. This is clearly outside the exper-
imental error bars and also quite different from the self-
consistent jellium model results.

A completely different slope of s =1.493 was found for
a series of magic numbers N, > 1500 observed by Martin
et al. (1990, 1991b); it can be attributed to the ionic
structure, as will be discussed in the following subsection.

One might also want to compare the spherical “magic”
shell-closure numbers N, found in the Kohn-Sham calcu-
lations directly with those observed in experiment. The
latter are typically given with an uncertainty of
~1-2 %, depending somewhat on the kind of analysis
done to the mass abundance data. Within these limits,
there is a rather good agreement found between experi-
ment and the jellium model predictions. There are a few
systematic differences, however. One example is that the
jellium model predicts a strong shell closure for N =186,
whereas the experiments point towards N =196 or 198;
similarly, N =254 is predicted and N =264 is seen experi-
mentally. These shifts of the shell closures can partially
be removed by the introduction of minor modifications to
the jellium density distribution (see Sec. II1.D.1).

In some recent experiments on Al clusters, Lermé
et al. (1992) found a very regular shell structure in a size
region of 600 <Z <2700 valence electrons; however, no
supershell beating could be observed in this region.
Moreover, the slope s for these shells is smaller by about
a factor of 2 than that found for Na and Li clusters:
s =0.3181+0.004. Earlier, Persson et al. (1991) had ob-
served similar shells for Al clusters with 400 <Z < 1300
electrons; they fall on a slope s =0.31540.006. Both sets
of data are included in the lower part of Fig. 13. If these
shells are to be attributed to quantized electronic orbits,
these cannot be single-turn trajectories but rather ones
that make two turns around the center before closing.
Lermé et al. (1992) have proposed five-cornered starlike
orbits that would lead to a calculated slope of s =0.33.
Indeed, these authors point out that, for a sufficiently
diffuse surface of the potential, the triangular and
squared orbits cannot close any more—as was also ob-
served by Nishioka et al. (1990). However, the surface
diffuseness needed to obtain the desired star orbits is
much larger than that of the fitted Woods-Saxon poten-
tial for Na clusters. Moreover, the potential of Lermé
et al. (1992), when used in a fully quantum-mechanical
calculation, does not give a shell structure that corre-
sponds either to the star orbits or to experiment (Genzk-
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en et al., 1992). The jellium model does predict an in-
crease in the surface diffuseness with decreasing 7, but
the effect is much smaller (see also Lang and Kohn,
1970). On the other hand, Persson et al. (1991) found a
reasonable agreement of their observed magic numbers
400 < Z <1300 with jellium model predictions. The situ-
ation is therefore not quite clear. More investigations on
Al clusters, for which the jellium model is definitely less
justified than for the alkalis, will be necessary to under-
stand these very interesting results. Very recently, Mar-
tin et al. (1992) have also observed a similar structure in
the mass spectrum of cold Al clusters with
250 <N < 10000 and interpreted them in terms of ionic
shells. We shall discuss this in the next section.

3. From electronic to ionic shells

It is easy to show that magic numbers for A F in very
large cold clusters must be determined by crystal struc-
ture rather than electronic shells. When an atom is add-
ed to a crystalline cluster, it may complete a layer or
start a new layer, and this gives a contribution to A F in-
dependent of the size of the cluster. On the other hand,
according to Strutinsky theory the fluctuation in the elec-
tronic energy contribution obeys the proportionality

8A1F~86F~6f§g— . (5.13)

0
From Eq. (5.2) and the relation g,~R? it follows that
this contribution decreases as R ~!/2 or N "1/ and is thus
small for very large clusters.

Indeed, some of the data on magic numbers in very
large clusters favor an interpretation as crystal faceting
effects. Martin et al. (1990, 1991b) found an interesting
transition of the shell spacings above N =~1500, using
photoionization time-of-flight mass spectroscopy for rela-
tively cold Na clusters. Up to this size, they observed
magic numbers falling exactly on the lower part of the
line with slope s=0.61 in Fig. 13, extrapolated up to
i=17 corresponding to N, =1430£20. (These results are
indicated by square boxes in the figure, but shown only
for i = 14 in order not to overload the lower part of that
line.) These magic numbers up to i=13 were later
confirmed in experiments in which the clusters were laser
warmed before ionization (Martin, Bjgrnholm, et al.,
1991). However, in the region 1980 S N 521 300, a total-
ly different spacing between the magic-shell radii was
found, corresponding to a slope s =1.49, as shown in the
upper left of Fig. 13. These shells were identified by
Martin et al. (1990, 1991b) as atomic shells correspond-
ing to icosahedral or cubo-octahedral close-packed ionic
configurations, as they are well known for van der Waals
clusters. Indeed, both these configurations lead to the
magic numbers

No(i)=%(10i3—15i2+11i—3) (i=1,2,3,...),

(5.14)
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giving the slope s=1.493. This atomic shell structure
has also been observed by the same authors for K and Ca
clusters with 1980 <N <8170 and in Mg clusters with
146 <N <2870 (Martin et al., 1991a, 1991b; Martin,
Naher et al., 1991).

The interpretation is that, at lower temperatures, there
might be a transition around N ~ 1500—-1800 from liquid
to crystalline clusters. This is consistent with the results
on “warm” clusters (Martin, Bjgrnholm et al., 1991),
where the average initial temperature of the cluster beam
is estimated to be ~500 K.

It constitutes a considerable challenge to verify the
above interpretation of a phase transition by theoretical
calculations. Of course, the ionic shell structures cannot
be described by the jellium model. On the other hand,
the large clusters discussed here are far beyond the reach
of purely microscopic treatments such as quantum-
chemical or molecular-dynamics theories. There is there-
fore a definite need to develop simplified models that are
able to describe the interplay between ionic geometry and
electronic shell effects in large clusters. Some interesting
steps in this direction have been taken recently by Maiti
and Falicov (1991, 1992) using perturbative pseudopoten-
tial calculations. The spherically averaged pseudopoten-
tial (SAPS) model (see the end of Sec. II.C) might also be
a promising tool for such studies.

The regular shell structure in large Al clusters dis-
cussed above in connection with Fig. 13 has recently been
observed by Martin et al. (1992). They interpreted it in
terms of subshells of close-packed octahedral ionic
shapes, correlating the maxima in the mass spectra with
the filling numbers corresponding to the addition of suc-
cessive triangular facets.

B. Semiclassical theory and large-N
expansions: links to the macroscopic world

The present section is devoted to a discussion of
density-variational calculations in the strict sense, i.e.,
where the density p(r) of the valence electrons is the
direct variational quantity in contrast to the single-
particle wave functions ¢;(r) varied in the Kohn-Sham
or Hartree-Fock methods. This becomes possible
through the use of explicit semiclassical approximations
to the kinetic-energy functional T[p] in terms of p(r)
and its gradients, instead of Eq. (3.5), which involves the
@;(r). The attribute ‘“‘semiclassical” is used to indicate
that expansions in powers of # are involved in deriving
the explicit functionals used for T [p(r)]. The two most
common functionals, that of the Thomas-Fermi (TF)
theory and its extensions, are presented in Appendix
A2.a.

With such an explicit functional T;[p(r)] for the kinet-
ic energy, the variation principle for the total energy can
be applied, according to the Hohenberg-Kohn theorem
(cf. Appendix A.2.a), by a direct variation of the density
p(r):
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=2 Elpn]—p [ p(r)d’r (5.15)

Sp(r)
where the Lagrange multiplier p fixes the number of elec-
trons and physically is understood as the chemical poten-
tial. This leads to a Euler-Lagrange-type differential
equation for the density which is nonlinear and whose or-
der depends on the number of gradient terms included.

The main advantage of this method is that one only
has to vary one density function p(r) (or, if spin degrees
of freedom play a role, two spin densities) instead of
many single-particle wave functions. This often gives
more physical insight than microscopic methods, since
the observables can be connected directly to the density
p(r) and other local functions and many mechanisms
may become more transparent.

The price one pays is that the functional 7 [p] forbids
the inclusion of shell effects. One can thus obtain only
average properties (total energy, density and its mo-
ments, ionization potential, electron affinity, polarizabili-
ty, plasmon energies, etc.) but in a parameter-free and
self-consistent way even for very large systems.

Due to the missing shell effects, the semiclassical re-
sults cannot usually be directly compared with experi-
ment. However, it is possible to treat shell effects pertur-
batively at relatively low cost, using the ideas developed
by Strutinsky (1968) in nuclear physics and sketched in
Sec. V.A.1 above. In fact, the semiclassical variational
results for the average energy E and for the average po-
tentials, from which the shell-corrections 8E can be ex-
tracted, represent the ideal input into a Strutinsky calcu-
lation in which the total energy is written in the form of
Eq. (5.1). Alternatively, the shell effects may be added at
the end of a semiclassical density-variational calculation
simply by solving once the Kohn-Sham equations using
the variational average potential ¥. With the latter
method one obtains not only the total energy, but also a
good approximation to the self-consistent Kohn-Sham
orbitals from which other observables can be calculated.
Both methods have proven useful in nuclear physics as
economical substitutes for fully microscopic Hartree-
Fock calculations (see, for example, Brack et al., 1985).
They have not been used in cluster physics so far, but
might prove useful for systematic calculations of very
large clusters in which the fully self-consistent micro-
scopic Kohn-Sham method becomes too time consuming.

Finally, the semiclassical density-variational method
gives access to a self-consistent determination of the
coefficients in liquid-drop-type asymptotic expansions of
the average energy and other variables in powers of
N ~'/3. This provides links between the finite system and
properties of the semi-infinite system (i.e., an infinite
plane surface), such as the surface energy and the bulk
work function.!” We refer the reader to Perdew (1988,

:0’

7The inclusion of ionic structure effects can here be rather
crucial; see Sec. V.B.2 below.
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1989), who demonstrated how the expressions for ioniza-
tion energies and electron affinities obtained by such
methods (cf. Sec. V.B.3 below) could be used to interpo-
late from the bulk all the way to single atoms.

1. Semiclassical density-variational calculations

The solution of the variational equation (5.15) for the
density p(r) can, in principle, be obtained directly in
coordinate space. This may, however, be numerically
very difficult due to the high degree of nonlinearity, in
particular if higher gradient corrections are included in
the energy functional. Reasonable approximations are
often obtained in a restricted basis of trial density func-
tions by minimizing the total energy with respect to some
variational parameters.

In the remainder of this section, we shall briefly men-
tion density-variational calculations of metal cluster
properties using the Thomas-Fermi (TF) functional
Trrlp] and its extensions (TFW, TFWD, ETF, etc.; see
Appendix A.2.a). Some of their results have already been
quoted in the earlier chapters of this review; some of the
papers are mentioned merely for historical reasons. Re-
sults of large-N expansions and liquid-drop parameters
will be discussed in the following two sections. In all
these calculations, exchange and correlation energies
were included in the local-density approximation. Only
spherical clusters have been treated so far.

The first jellium model calculations for metal clusters
altogether, of which we are aware, were done in 1975 by
Cini. He used the Thomas-Fermi-Weizsdcker kinetic-
energy density and a variational space of spherical
double-exponential trial densities. He discussed ioniza-
tion potentials (IP) and electron affinities (EA) and their
N dependence. Snider and Sorbello (1983a) used a very
similar model, varying the Weizsacker coefficient (dis-
cussed in Appendix A.2.a), obtained IPs and EAs, and
found the slope parameter a in the IP to be different
from 3/8 (see Sec. V.B.3 below for discussion). They
then applied the same model to the calculation of static
dipole polarizabilities by applying an external electrical
field (Snider and Sorbello, 1983b; Sorbello, 1983) and dis-
cussed a dipole force sum rule (see Sec. IV). Snider and
Sorbello (1984) extended their earlier model to the spin-
density formalism in order to study odd-even effects in
the IPs of microclusters.

Ifiiguez et al. (1986) did variational Thomas-Fermi-
Weizsacker-Dirac (TFWD) calculations both for the jelli-
um model and using pseudopotentials and obtained IPs,
EAs, and cohesive energies of small sodium clusters.

Kresin (1988-1991) used the Thomas-Fermi theory for
small metal clusters and developed an approximate
analytical solution of the Thomas-Fermi equation. He
discussed diamagnetism and later applied his model to
surface plasmons and static dipole polarizabilities of
spherical clusters (cf. Sec. IV).

Brack (1989) used the full extended Thomas-Fermi (4)
kinetic-energy functional, Eq. (A21), with three-
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parameter variational densities and found a rather accu-
rate reproduction of the average Kohn-Sham densities
and potentials by Ekardt (1984b), particularly in the sur-
face region. He studied dipole polarizabilities and mul-
tipole vibrations via sum rules and the “local RPA” ap-
proach discussed in Sec. IV.C.2 and Appendix B.2.c.
Spina et al. (1990) showed that these variational densities
reproduce very accurately the bulk work functions and
surface energies found by Tarazona and Chacén (1989),
who solved the full extended Thomas-Fermi (4) Euler
equation (see Appendix A.2.a) in the semi-infinite
geometry.

Spina and Brack (1990) used the same parametrized
trial densities in a semiclassical jellium model that in-
cludes schematic ionic structure through spherically
averaged pseudopotentials, with results similar to the mi-
croscopic spherically averaged pseudopotential model by
Ifiigues et al. (1989, 1990; see Sec. I1.C).

Serra et al. (1989a, 1989b, 1990) and Balbas and Rubio
(1990) also studied the multipole response of spherical
clusters in density variational calculations with an ap-
proximate TFWD functional (see Sec. IV).

Engel and Perdew (1991) were the first to solve the full
extended Thomas-Fermi (4) Euler equation for spherical
clusters directly in » space. They discussed the asymptot-
ic behavior of ionization potentials and electron affinities
(see Sec. V.B.3 below).

2. Liquid-drop model expansion of the energy

Density-variational calculations give a natural starting
point for the self-consistent determination of liquid-drop
parameters by means of a “leptodermous” expansion of
the total binding energy of a saturated fermion system.
This idea lies behind the famous mass formula for nu-
clear binding energies developed by von Weizsacker
(1935) and Bethe (1937); it was successfully further
developed from the basis of Thomas-Fermi theory by
Strutinsky and Tyapin (1964) and by Myers and
Swiatecki (1969). We shall only sketch here the principal
ideas and refer the reader to the literature for details. As
an application, we discuss the asymptotic behavior of
ionization potentials and electron affinities of metal clus-
ters in Sec. V.B.3 below.

Assume that the density is going to a constant value p,
in the interior of the system and that there exists a well-
defined surface region where p(r) drops from p, to zero.
Introduce a as a measure for the surface thickness and a
reference radius R (e.g., the average location of the sur-
face, measured from the center). When a <<R, the sys-
tem is “‘thin-skinned” or “leptodermous.” The basic idea
then is to perform a so-called leptodermous expansion in
powers of the small variable x =a /R around the leading
volume term, which is given in terms of a steplike density
profile. This expansion is asymptotic in nature and a
priori valid only for large enough systems.

That the electronic densities of large metal clusters
fulfill the assumption of leptodermicity very well is illus-
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trated in Fig. 14. It shows the density profile of Naycs,
obtained in self-consistent jellium model Kohn-Sham cal-
culations by Genzken and Brack (1991), overlayed with
the profile of an infinite plane surface taken from Lang
and Kohn (1970). The oscillations near the surface of the
spherical cluster reproduce rather accurately the Friedel
oscillations .of the semi-infinite profile that will be
reached asymptotically for N — co. The oscillations near
the interior of the finite cluster are due to the filled spher-
ical shells near the Fermi energy.!®

For a neutral spherical system with N particles and a
reference radius R =r,N 173 the above technique leads to
the liquid-drop model expansion of the total binding en-
ergy:

E(N)=a,N+a,N**+a N'3+ay+ - - . (5.16)

Here a, is the volume or bulk energy, which is defined as
the energy per particle of the infinite system with con-
stant density p:

a,=e,=G&[pol/po - (5.17)
The surface energy a, in Eq. (5.16) is given by
a,=4mrio (5.18)

in terms of the surface tension o, i.e., the energy per unit
area of an infinite plane surface. Not only a, but also the
curvature energy a., and the higher-order coefficients in
Eq. (5.16) can be obtained uniquely in terms of the densi-
ty profile perpendicular to the surface of the semi-infinite
system (see Myers and Swiatecki, 1969; Brack et al.,
1985).1°

Although extended Thomas-Fermi variational densi-
ties serve as a natural starting point, the leptodermous
expansion is not restricted to semiclassical theory and
can also be applied to microscopic densities obtained
within the LDA-Kohn-Sham approach. The Friedel os-
cillations in the semi-infinite density profile (Lang and
Kohn, 1970, see Fig. 14) do not disturb the principle of
the leptodermous expansion discussed here. Numerical-
ly, however, they lead to convergence problems in the
evaluation of the curvature energy a, (Stocker and Fa-
rine, 1985). Their relative contribution to the surface en-
ergy a, of metals is found to be only a few percent (Seidl,
Spina, and Brack, 1991; Engel and Perdew, 1991;
Fiolhais and Perdew, 1992).

180nly oscillations due to shells with low angular momenta [
can be distinguished near the center. See also Thorpe and
Thouless (1970), who have discussed both types of density oscil-
lations in the nuclear physics context.

19Note that the direct determination of the coefficients a;, a.,
etc. by a least-squares fit of Eq. (5.16) to microscopically calcu-
lated energies is hampered by shell effects (see, for example,
Utreras-Diaz and Shore, 1989). This may be done with semi-
classically obtained average energies, if sufficiently large parti-
cle numbers are used (up to N X 10°; see Seidl, Spina, and Brack,
1991, and Fiolhais and Perdew, 1992).
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§ osl finite spherical cluster (N=2654)
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FIG. 14. Asymptotic behavior of electronic density: solid line,
electron density of a spherical sodium cluster with N=2654
atoms, from spherical jellium-Kohn-Sham-LDA calculations by
Genzken and Brack (1991). Dashed line, electron density profile
perpendicular to an infinite plane surface of sodium metal, ob-
tained in jellium-Kohn-Sham-LDA calculations by Lang and
Kohn (1970). The two curves are adjusted so that the jellium
edge is at the same location along the r axis.

For metal clusters, the leptodermous expansion of the
total energy has been studied by Seidl, Spina, and Brack,
(1991) with extended Thomas-Fermi (4) results using the
jellium model, and by Fiolhais and Perdew (1992), who
used both semiclassical and Kohn-Sham calculations for
the jellium and the stabilized jellium model (see Sec.
II1.D.2). Pseudopotential corrections to the surface ener-
gy have also been studied in extended Thomas-Fermi (4)
calculations by Spina et al. (1990).

The agreement of the calculated liquid-drop model pa-
rameters with experimental quantities depends on the
quality of the model used. The simple jellium model can-
not yield the correct cohesive energy of the bulk metal;
the volume energy e, here is just the energy per electron
of a structureless infinite gas with the r, value of the bulk
metal. Surface energies a; obtained in the jellium model
for metals with ;>4 a.u. (i.e., K, Rb, and Cs) agree
within 10-20 % with experimental values, as shown by
Lang and Kohn (1970) in Kohn-Sham calculations with
semi-infinite geometry. For metals with smaller r; the
agreement becomes worse; for r, <2.3 a.u. (e.g., for
aluminum), one even obtains unphysical negative values
of a;. This is greatly improved when the ionic structure
is accounted for. Lang and Kohn (1970, 1971) showed
that a perturbative inclusion of pseudopotentials allows
one to reproduce the experimental surface energies
within 10-30% for most metals. (See Monnier et al.,
1978, for a nonperturbative inclusion of pseudopoten-
tials.) The stabilized jellium model, which yields the
correct cohesive and bulk energies (cf. Sec. IIL.D.2),
reproduces these results more or less (Fiolhais and Per-
dew, 1992), although the ionic correction to a; has the
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wrong sign for r, >4 a.u. (i.e., where the simple jellium
model works best). Curvature energies a. have been ex-
tracted recently from experimental vacancy formation
energies by Perdew et al. (1991) and agree with the
values calculated by Fiolhais and Perdew (1992) within a
factor of less than two for r, =5 a.u. and three for r; <5
a.u.; no difference was found here between jellium and
stabilized jellium.

3. Asymptotic behavior of ionization potentials
and electron affinities

Since much experimental information is available on
ionization potentials IP and electron affinities EA of met-
al clusters, and their large-N behavior has received con-
siderable attention in the literature, we shall discuss here
their asymptotic expressions derived by the techniques
discussed above. They are defined by

IP=E(N,—1)—E(N,0), EA=E(N,0)—E(N,+1)
(5.19)

in terms of the total energy E (N,q) of a cluster with N
atoms and g excess electrons. When the above leptoder-
mous expansion was generalized for a charged system the
following expansion of E(N,q) was derived by Seidl,
Meiwes-Broer, and Brack (1991) and Seidl, Spina, and
Brack (1991) within the spherical jellium model, to the
leading orders in g << N:
(ge)?

E R —_ 0ul+
(N,q) gAg —-2RI

+(N +qle, +a,N?/*+ -+ . (5.20)

Here A@°" is the outer part of the Coulomb barrier of an

infinite plane metal surface, i.e., the work required to
bring a test charge from the jellium edge to infinity:

Ap®'=p( 0 )—@(0)

—=4rre? fo“’z[p(z)—poe(—z)]dz . (5.21)

The second term in Eq. (5.20) is just the classical electro-
static energy of a surface-charged metal sphere with ra-
dius R;.

With ¢ ==1 one finds from Eq. (5.20) the following
asymptotic expressions for IP and EA which are valid for
large N:

2
1P(N)=Wb+a;—+0(R;2), (5.22)

I

e2
EA(N)=W,,—BR— +O(R;?), (5.23)

I

where W, is the bulk work function given by

W, =Agp"'—e, . (5.24)

The “slope parameters” a and 3 in Eqgs. (5.22) and (5.23),
which dominate the size dependence in large clusters, re-
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ceive their leading contribution 1 from the classical
charging energy, i.e., the second term in Eq. (5.20).
Quantum-mechanical corrections due to the diffuseness
of p and to explicit kinetic, exchange, and correlation en-
ergy contributions, which are all contained in the
higher-order terms (indicated by dots) in the expansion
(5.20), lead to deviations of a and 8 from their common
classical value ;.

Perdew (1989) and Engel and Perdew (1991) derived
Eqgs. (5.22) and (5.23) starting from the variational equa-
tion (5.15) and expanding the chemical potential u as a
function of the cluster radius R;, leading to the same
1/R; corrections for IP and EA (see also Balbas and Ru-
bio, 1990).2° The numerical values obtained for « and 8
by Seidl, Meiwes-Broer, and Brack (1991) and Seidl, Spi-
na, and Brack (1991) in variational extended Thomas-
Fermi calculations with parametrized trial densities were
well confirmed by Engel and Perdew (1991) with fully
variational solutions of the extended Thomas-Fermi (4)
Euler-Lagrange equation.

The calculated values of @ and f for various simple
metals are close to, but not exactly equal to, 2 and £, re-
spectively; they depend slightly, but systematically, on
the Wigner-Seitz radius 7;. In the analysis of experimen-
tal results on IP and EA, similar values have been found,
although their correct values often cannot be extracted
from small clusters (see Secs. VI and VII of de Heer,
1993, and the discussion further below). Their approxi-
mate agreement with the values a =3 and = 2, obtained
from a classical image-charge argument (Smith, 1965;
Wood, 1981), has unfortunately led to a great deal of con-
fusion in the literature (see, for example, Haberland,
1992). As pointed out by Makov et al. (1988), Perdew
(1989), and de Heer and Milani (1990), this argument is
not physically justified: the classical image potential can-
not be applied to a point charge at distances of atomic di-
mensions from a metal surface. Therefore the approxi-
mate equality of the correct slope parameters with the
values 2 and 2, respectively, must be taken to be acciden-
tal. As clearly shown within density-functional theory,
the correct classical limit for a charge continuously dis-
tributed over a sphere leads to their common value 1
(Perdew, 1989; Seidl, Meiwes-Broer, and Brack, 1991).
The deviations from this value can be accounted for by
quantum-mechanical corrections, as mentioned above
(see also Makov and Nitzan, 1991). Actually, this should
not be so surprising, since the leading term of IP and EA,
namely the bulk work function W,, is also a purely
quantum-mechanical entity. There is no reason why the
next-order corrections to IP and EA should be explicable
by purely classical arguments.

Another confusion in the literature concerns the appli-
cation of the expansions (5.22) and (5.23) to measured
values of IP and EA of small clusters. Many experimen-

20In this derivation, the bulk work function W, is given by the
equivalent expression (5.25) discussed below.
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talists parametrized their data by truncating these
asymptotic expressions after the terms linear in N =173,
fitting their results by straight lines in a plot versus 1/R,
going through the measured bulk work function W, at
1/R;=0. This is dangerous, and the resulting slope pa-
rameters cannot be trusted for the following reasons: (i)
many experimental data for small clusters fall into a re-
gion where the higher-order terms in 1/R; cannot be
neglected, so that the curves are no longer straight lines,
particularly for EA; (ii) the shell oscillations are rather
strong and make the fits ambiguous; and (iii) there is
sometimes a rather large uncertainty in the measured
values of W, which affects the values of the slope param-
eters. Furthermore, a spillout correction has often been
included in the definition of the radius by setting
R;=r,N'”+a in the denominators of the 1/R; terms of
Egs. (5.22) and (5.23), using a more or less ad hoc chosen
value for a. This effectively includes higher-order terms
in N 173, albeit with a biased coefficient; it may improve
the local fits in a limited size range, but it also affects the
apparent values of the slope parameters.

The work of Engel and Perdew (1991) and Seidl, Spina,
and Brack (1991) shows that very large particle numbers
N 2 10 are needed in order to determine the asymptotic
slopes a and B uniquely. This can only be done, of
course, in semiclassical calculations. This also shows
that their determination from experimental data is not
easy, particularly in view of the shell effects.

Seidl, Meiwes-Broer, and Brack (1991) have shown
that the variational semiclassical results for IP and EA fit
the size dependence of the experimental data of simple
metal clusters surprisingly well on the average, although
the bulk limit W, is off by some 5-10%, which is a
well-known defect of the jellium model without pseudo-
potential corrections (Lang and Kohn, 1971). It is also
clear from their results that the quadratic and higher-
order terms in N ~!/? of the asymptotic expansions (5.22)
and (5.23) cannot be neglected when fitting data of clus-
ters with V < 100, in particular for the electron affinities.

In view of these results and in order to avoid the ambi-
guities outlined above, we strongly advocate the use of
the particular forms (5.22) and (5.23) in fitting the N
dependence of IP and EA data (cf. also the analysis of the
experimental data in Secs. VI and VII of de Heer, 1993).

Equation (5.24) for the bulk work function is not very
frequently used in the literature; it was derived by Mahan
and Schaich (1974) employing a theorem by Budd and
Vannimenus (1973) (see also Monnier et al. 1978). For
densities p(z) which solve the variational Euler equation
for the semi-infinite problem exactly, W, (5.24) is identi-
cal to the more widely used expression introduced by

Lang and Kohn (1970):
W,=Ap—p, . (5.25)

Here Ag is the full Coulomb barrier of the plane metal
surface

Ap=@(0)—@(— ), (5.26)
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which can be given in terms of simple integrals over the
density profile p(z), and u, is the bulk chemical potential
defined by

__d

= .27
Ky dpo (5 )

6lpol -

For approximate density profiles (e.g., parametrized trial
densities used in restricted variational calculations), it
turns out that the expression W, (5.24) is much less sensi-
tive to numerical errors or approximations than the stan-
dard expression W, (5.25); this has been investigated in
detail by Monnier et al. (1978) and by Perdew and Sahni
(1979).

In Fig. 15, taken from Spina et al. (1990), we illustrate
the asymptotic behavior of IP and EA. The crosses con-
nected by the solid lines represent the variational semi-
classical results obtained in the extended Thomas-Fermi
(4) approximation for spherical Na clusters with
8 <N <125000. The nonlinearity of EA in N !/3 is
clearly visible. Note also the correct limiting value of the
theoretical bulk work function W, which is different
here from W, due to the use of a restricted set of trial
density functions.

A surprising result is the curve labeled W* in Fig. 15.
The quantity W* is calculated with the same expressions
(5.21) and (5.24) which defined W, but using the finite-
cluster density profile p(r) of the actual cluster with elec-
tron number N, extrapolated to r = — «. The curve W*
is practically constant with the value W,. This means
that we can obtain the correct theoretical bulk work
function, to within a few percent, from a simple semiclas-
sical variational calculation (which, by the way, can be
done on a simple personal computer) for a microcluster
with as few as eight atoms.

In Fig. 16, taken from Seidl, Meiwes-Broer, and Brack
(1991), we show the difference between the ionization po-
tential and the electron affinity of Al clusters as a func-

Na (r=396)

20 A(2)

10 I | I I i

0 01 0.2 z"‘/3 03 04 0.5

FIG. 15. Ionization potentials I(Z) and electron affinities
A(Z) of sodium clusters with Z atoms, obtained in semiclassi-
cal ETF(4) density-variational calculations by Spina et al.
(1990), vs Z 173, The quantity W*(Z) and the two theoretical
values W and W’ for the bulk work function are defined and ex-
plained in the text. From Spina et al. (1990).
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FIG. 16. Difference between ionization potential (I) and elec-
tron affinity (A) of Al clusters vs N ~!/3; @, experimental results;
solid line, results of variational extended Thomas-Fermi(4) cal-
culations in the spherical jellium model. (From Seidl, Meiwes-
Broer, and Brack, 1991; see this reference for the experimental
data.)

tion of the inverse cluster radius. The dots are experi-
mental results and the solid line is the result of a semi-
classical density-variational calculation with the full ex-
tended Thomas-Fermi (4) kinetic-energy functional in the
spherical jellium model. Note that in the difference IP-
EA, the bulk work function (which is not correctly ren-
dered in the jellium model) cancels. This difference thus
focuses on the finite-size effects. The good agreement is
another example of the fact that the jellium model can
correctly reproduce average trends of finite-size
effects—in the present case even down to the dimer.

VI. SUMMARY AND CONCLUSIONS

In this review article we have given a survey of
theoretical approaches for the description of simple met-
al clusters. We have focused on mean-field theory ap-
propriate to finite fermion systems using the Hartree-
Fock (HF) and the density-functional methods, the latter
mainly in the local-density approximation (LDA). We
have extensively discussed the electric response proper-
ties and their description in the time-dependent LDA
and the random-phase approximation (RPA).

In many respects, the metal clusters appear as droplets
of a quantum Fermi liquid in which the valence electrons
are the dominant degrees of freedom and the ionic struc-
ture seems to have little influence. This is particularly so
for the observed magic numbers in alkali clusters with up
to N =3000 atoms, in which the picture of valence elec-
trons confined in a smooth—self-consistent or suitably
parametrized —potential also can account for the super-
shell structure.

In theoretical investigations of electronic shell struc-
ture, the jellium model is playing an important role due
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to its computational simplicity, which permits us to con-
nect small and very large cluster sizes in a unified picture.
It is very hard, if not impossible, to assess its limitations
in a quantitative manner from within the model itself.
For microclusters with up to N ~20 atoms, where ab ini-
tio quantum-chemistry or molecular-dynamics calcula-
tions are technically feasible, it has become evident that
details of the experimental ionization potentials, electron
affinities, polarizabilities, and fine structure of the photo-
absorption cross section do depend on the ionic geometry
and that such calculations give a better quantitative
description than the jellium model. But still, the average
trends of these observables can often be described
surprisingly well by the jellium model even for small clus-
ters. If deformations of the positive charge distribution
are included, the jellium model can also account for the
averaged ionic geometry, leading, for example, to a shape
isomerism similar to that found in the structural models.

For the static electric dipole polarizabilities and the
positions of the collective electronic dipole resonances,
the jellium model with LDA misses some 10-20 % of the
average experimental results. Two competing explana-
tions for this failure have been given. One of them in-
vokes the missing ionic contributions, the other points to
the failure of the LDA in yielding the correct 1/r falloff
of the total potential, which can be partially overcome by
self-interaction corrections or extensions of the LDA (the
so-called weighted density approximation, WDA). The
LDA, which has been used with considerable success in
many branches of physics, faces a rather crucial test in
calculations for metal clusters—as well as for plane met-
al surfaces—due to the steep surface of the electronic
density. We have discussed some recent calculations,
performed within the jellium model, using a HF basis
plus perturbation expansion and explicit evaluations of
RPA correlations. The results for ionization potentials
and polarizabilities are very close to Kohn-Sham-LDA
results and thus seem to confirm the validity of the local-
density approximation even in small alkali clusters. We
therefore tend to believe that the missing electronic
response is due to the missing ionic structure. Indeed,
explicit structural pseudopotential calculations for clus-
ters up to N ~10 tend to give significantly improved re-
sults, even within the LDA. When the ionic structure
effects are partially simulated in the jellium model by in-
troducing a diffuse surface of the positive charge distribu-
tion, the discrepancy is also removed. In any case fur-
ther theoretical investigations, both extending the LDA
and including ionic structure, will be necessary to settle
this question.

The interplay of electronic and ionic binding effects
contributes in an essential way to the richness of the
structural forms of matter, in both the inorganic and the
organic worlds. It dominates the smallest micro-
molecules, where a distinction between metals and non-
metals is hardly possible. But it is also important in very
large metal clusters with up to N=20000 and more
atoms, in which ionic shells corresponding to a dense
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packing of the atoms can be observed if the clusters are
sufficiently cold. These ionic structures have, however, a
different symmetry from that of the ionic lattice in the
bulk metal. Therefore the old question: *“ How many
atoms are needed to make a piece of bulk material?”’ is
still not answered. Apparently 20000 alkali atoms are
not enough.

The relative importance of electronic and ionic shell
effects in these large metal clusters depends crucially on
their temperature. This subject deserves more experi-
mental and theoretical attention in future research. A
description by first-principles ab initio methods is impos-
sible for such sizes. Approximate models, such as the
tight-binding or the Hueckel model, perturbative or
spherically averaged pseudopotential calculations, or the
effective-medium theory, must be applied and further
developed.

We have given some emphasis to semiclassical varia-
tional methods and a local-current approximation to the
RPA built on sum-rule relations, which allow one to
evaluate average static and dynamic response properties
for very large systems in which fully microscopic calcula-
tions are no longer possible. We think that these
methods might be helpful in future investigations, partic-
ularly in the mesoscopic domain. The large-N expansion
of the semiclassical results also yields direct contact to
volume and surface properties of the bulk metal. In this
connection, we have found that the jellium model is a
useful mediator between the microcosm and the macro-
cosm.
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APPENDIX A: MEAN-FIELD THEORIES

We start from the Hamiltonian of a system of N elec-
trons moving in an external potential V., (r) and in-
teracting through the Coulomb two-body potential:

y=[d’, [d---

pilr,r f d3ryV*(r',r,, . ..

Its diagonal part is the density p(r) which will be normal-
ized to the number N of electrons:

p(r)=p,(r,1) fp(r )d3r=N . (A3)

In both Hartree-Fock (HF) theory and density-
functional theory, to be sketched in the next two subsec-
tions, the density p(r) is written in terms of single-
particle wave functions @;(r):

N

pr)=73 l@:(r)]2 . (A4)
i=1

1. Hartree-Fock theory

In HF theory the ground-state wave function of an N-
body system is approximated by a Slater determinant ®
built from a complete orthogonal set {@,(r)} of single-
particle wave functions:

D(ry, 1y, . .. 1y)=detl@;(r;)]; =12 N - (AS)
The density matrix (A2) then takes the form
piIF 2 @) (r), (A6)

i=1

from which Eq. (A4) follows. The choice of the single-
particle wave functions ¢; is made by a variational prin-
ciple: One makes the expectation value of the total Ham-
iltonian (A1) between the Slater determinants (AS5) sta-
tionary with respect to the wave functions ¢;, subject to
the condition of their orthogonalization by means of
Lagrange multipliers ¢;:

(A0 —, [ |<p,-(r)|2d3r}=0. (A7)

)
Sgf(r)

The variation (A7) leads to a set of coupled integro-
differential equations of Schrodinger form:

21For the sake of simplicity, and since they will not really be
needed here, we do not exhibit the spin degrees of freedom.
They would, in fact, render the expressions for the exchange
(Fock) terms given in Appendix A.l below somewhat more
complicated; for that we refer the reader to any standard text-
book on many-body theory.
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N

A= 2 —+th(r )+~ S — . (A1
i=1 2 jfn=1 [r,.—rjl

The exact wave function W(r,,r,,...,ry) belonging to

this Hamiltonian generally cannot be calculated. From it

we define the one-body density matrix*! p,(r’,r):

S TN) . (A2)

[

(THV (D) + V(D)@ (0)+ Ppg,(t)=¢,,(r) (A8)

the so-called HF equations. Here Vy(r) is the Hartree
(or direct, or classical) Coulomb potential

Va(ry=e? [ T;L(Lr)—|d3 ' (A9)
and I/7F is the nonlocal Fock (or exchange) potential,
which is an integral operator and originates from the an-
tisymmetrization of the wave function ®. It is defined
(apart from spin complications) by
Ve, (r)= ——e2 f |r - ‘ @i (r)d . (A10)
Since both ¥V and VF depend on the wave functions, the
HF equations (A8) are nonlinear and must be solved self-
consistently; this is usually done iteratively. The biggest
complication in this procedure is the integral operator
I7F for the exchange.
The lowest energy obtained after convergence is usual-
ly called the HF energy Eyp, and the corresponding
Slater determinant is denoted by |HF ):

EHF=r[n£I}1<<I>|I/-?l<I>)=<HF|ﬁ|HF> . (A11)
The sum of Hartree and Fock potentials in Eq. (A8) is
usually referred to as the “HF potential,”
Vag=Vy+ Vg. Naturally, the HF energy may be bro-
ken up into its different contributions by writing

Eyp= [ (10 4V (r)p(r)+ LV (r)p(r)} +E

(A12)
where the kinetic-energy density 7(r) is given by
(1) ——2 Ve, (r (A13)
i=1
and E, is the exchange Coulomb energy corresponding

to Eq. (A10):

H
Ex=-—%e2f f pi

It is a well-known feature of the self-consistent mean-
field theory that the total energy is not equal to the sum
of occupied single-particle energies ;. Indeed, from Eqgs.
(A8) and (A 12) one easily verifies that

B, r)pit¥(r, 1)

- d3r'dr .
[r—r'|

(A14)




Matthias Brack: The physics of simple metal clusters 721

N
EHF=Zsi—%<HF|VH+VF|HF) . (A15)
1

Strictly speaking, the above expressions for Vy, f/\'F,
and E, contain unphysical contributions due to the in-
teraction of the electron in the ith state with itself, which
should have been omitted [see the condition ij in Eq.
(A1) above]. However, when one takes the sum of direct
and exchange terms in Eyg, these contributions cancel
exactly. Leaving them out of both potentials would
make the latter state dependent—as in simple Hartree
theory— and render the HF equations still more compli-
cated to solve. It is therefore standard praxis to keep
them in both potentials. [As is known from classical
physics, the inclusion of the self-interaction in the Har-
tree potential (or the corresponding classical Coulomb
energy) does not cause any harm for a continuous density
distribution p(r).] This point, however, becomes of cru-
cial importance as soon as different approximations are
made for the direct and the exchange terms of the
Coulomb energy, as is the case in most applications of
the density-functional theory.

2. Density-functional theory

Density-functional theory goes beyond the HF ap-
proach in that correlations are taken into account which
are not contained in the HF energy (A12). In principle,
this theory maps the full many-body problem for the
ground state of a correlated fermion system onto simple
mean-field equations. Practically, however, the exchange
and correlation contributions can only be evaluated ap-
proximately. Still, density-functional theory has had
considerable success in many branches of physics. For
recent reviews on density-functional theory and its appli-
cations in atomic, molecular, and solid-state physics, we
refer the reader to Jones and Gunnarsson (1989) and to
Dreizler and Gross (1990).

a. Hohenberg-Kohn theorem
and density-variational equations

The basic idea of density-functional theory is almost as
old as quantum mechanics and was used by Thomas
(1927) and Fermi (1928) in their famous work: to calcu-
late the total energy of a system by an integral over an
expression depending only on the local ground-state den-
sity p(r):

E= [ 6lp(r)]d*r=E[p] . (A16)
Mathematically speaking, the energy is assumed to be a
functional of p(r), denoted by E[p]. The formal basis of
the ensuing theory was laid by Hohenberg and Kohn
(1964) in their famous theorem, which they proved for a
nondegenerate electronic system. A more general proof,
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independent of ground-state degeneracy and of the so-
called V representability assumed by Hohenberg and
Kohn, was given by Levy (1979). The Hohenberg-Kohn
theorem states that the exact ground-state energy of a
correlated electron system is a functional of the density
p(r) and that this functional has its variational minimum
when evaluated for the exact ground-state density. This
means that, ideally, the variational equation

8
Sp(r)

using the Lagrange multiplier A to fix the number of par-
ticles according to (A3), would lead to a knowledge of the
exact ground-state energy and density —if the exact func-
tional E[p] were known (which, alas, it is not).

We do not need to go into further details about this
basic theorem and the general formalism of density-
functional theory, since this is the subject of many excel-
lent reviews. For further reference, let us just sketch the
main steps and give the most important formulae needed
in the main text. The usual way to break up the energy
functional (A 16) for the Hamiltonian given by Eq. (A1) is

Elp]=T,[p]+ [ {Veu(Dp(r)+ 1V p(r)]p(r)}d’r
(A18)

(A17)

E[p(r)]—A fp(r)d3r] =0,

+Exc[p] *

Here T,[p] contains that part of the kinetic energy that
corresponds to a system of independent particles with
density p; the external potential energy and the Hartree-
Coulomb energy are clear from the above. The last term
in Eq. (A18) is the so-called exchange-correlation energy;
it contains the exchange part of the Coulomb energy, i.e.,
E, in Eq. (A14) above, plus all the contributions due to
other correlations related to the fact that the exact wave
function is not a Slater determinant, including the corre-
lation part of the kinetic energy.

E, [p] is not known exactly for any finite interacting
fermion system, and it is a matter of state-of-the-art
density-functional theory to use more or less fancy ap-
proximations to it. The simplest but very successful ap-
proximation is the local-density approximation (LDA) to
be discussed in the Sec. A.2.c below. The same holds for
the kinetic-energy functional T,[p], which is not known
explicitly for many-fermion systems.

The famous Thomas-Fermi (TF) model of the atom
(Thomas, 1927; Fermi, 1928) represents a textbook exam-
ple of density-functional theory, in which the density is
varied directly according to Eq. (A17). Here one exploits
the fact that for a Fermi gas with constant density p, the
kinetic-energy density is proportional to p°’%; in the
local-density approximation one therefore has the
kinetic-energy functional

2
TTF[p]zf—mep5/3(r)d3r, x=%(372)2/3. (A19)

Using this functional for T;[p] in Eq. (A18), omitting the
exchange-correlation energy, and performing the varia-
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tion (A17), one arrives at the following equation for the
density:
5

2
S A )V () + V(=7

3 2m (A20)

which is equivalent to the well-known Thomas-Fermi
equation. [The latter is usually derived for the total po-
tential with ¥V, (r)=—Ne?/r, after eliminating the den-
sity p(r) with the help of the Poisson equation.]

Many improvements to the Thomas-Fermi theory have
been proposed over the time. Dirac (1930) introduced
the exchange-energy correction (A31) in the local-density
approximation discussed below. Von Weizsacker (1935)

# 1 (Vp)?
TETF[p]:—f KP5/3+_( )+

2m 36 p | 6480

The coefficient of the second term is nine times smaller
than that of the original Weizsacker term. Equation
(A21) has the correct coefficient in the limit of slowly
varying densities, whereas the Weizsicker coefficient (+
instead of &) is correct in the limit of rapid density oscil-
lations with small amplitude (see Jones and Gunnarson,
1989, for a detailed discussion). The terms in square
brackets in Eq. (A21) come from the #* terms of the semi-
classical expansion, and the dots stand for contributions
from the higher orders (6,8, . ..) in 7. (Note that up to
nth derivatives of the density appear originally under the
integral when expanding to order #"; the two highest
ones can, however, be removed by partial integration if
the density is assumed to be analytical and to vanish at
infinity.) Some of the gradient terms in Eq. (A21) have
also been derived in linear-response theory (Kohn and
Sham, 1965). Similar gradient corrections leading
beyond the local-density approximation have also been
derived for the exchange-correlation energy functional
E . [p] (see Sec. II1.C.5 for a brief discussion).

The series (A21) represents an asymptotic expansion of
the noninteracting kinetic-energy functional T, [p]. It is
semiclassical in the sense that it does not correctly repro-
duce shell effects but converges towards an average part
of the kinetic energy, which varies smoothly with the
number of particles and with the deformation of the sys-
tem, if a correspondingly averaged density is used. Guet
and Brack (1980) analyzed the convergence of Eq. (A21)
using smoothed densities obtained by the Strutinsky
averaging method (Strutinsky, 1968; Brack et al., 1972)
and found that including terms up to order #* [i.e., the
terms shown in (A21)] it reproduces very accurately the
average kinetic energy of a system of fermions in
harmonic-oscillator or Woods-Saxon potentials, indepen-
dently of particle number and deformation. The same
functional has also been tested for atoms in terms of HF
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derived an inhomogeneity correction to the kinetic-
energy functional leading to an additional term
(Vp)*/(4p) in the integrand of Eq. (A19). The corre-
sponding approaches are usually denoted by the letters
TFD, TFW, and TFWD, depending on the number of
terms included. In the so-called extended Thomas-Fermi
model (see, for example, Kirzhnits, 1957), a systematic
expansion of the kinetic-energy functional in terms of
gradients and higher derivatives of the density is derived
with semiclassical methods. Either by an expansion of
the density matrix in powers of # (Wigner, 1932; Kirk-
wood, 1933), or by a commutator algebra (Kirzhnits,
1957) which is fully equivalent, one arrives at the follow-
ing functional (Hodges, 1973):

4

2
8 —27 LY
P

Sp
p

A/
p

Ap
P

f

densities (see Murphy and Wang, 1980, and references
quoted therein). The finite-temperature extension of the
functional Tgrp[p] up to fourth order has been derived
by Bartel et al. (1985); from its 7—0 limit one obtains a
rigorous proof (see also Brack, 1984) of the correctness of
the functional (A21) in the classically forbidden region,
for which the above-mentioned # expansions are
mathematically not well founded at T=0.

Using the extended Thomas-Fermi kinetic-energy
functional (A21), one can still perform the variation
(A17) directly. This leads to a nonlinear fourth-order
differential equation for the density. In the main text, we
refer to it as the extended Thomas-Fermi (4) equation, if
all explicitly shown gradient terms are included. The
asymptotic decrease of the solution for p(r) at large dis-
tances depends solely on the highest derivative term in-
cluded in Tgrelp]. In Thomas-Fermi theory, the density
of an atom is well known to fall off as » ~. Including the
second-order Weizsacker term (i.e., in the TFW or
TFWD approximation), one finds an exponential de-
crease, which, however, is too fast if the coefficient - is
used. Therefore in many Thomas-Fermi-Weizsacker (or
TFWD) calculations the coefficient of the Weizsacker
term has been treated as a fit parameter. Going up to or-
der 2m with m =2 in the expansion (A21), one finds
asymptotically [Guet and Brack, 1980 (note added in
proof)]

p(r)~p=3m/m =1 (m >2) (A22)
for a spherical system. The highest derivative terms in
the integrand of Eq. (A21), which have the slowest falloff,
vary as the density (A22) and therefore lead to finite con-
tributions to the kinetic energy at all orders 2m, contrary
to a rather widespread belief. Even though the asymptot-
ic decrease (A22) of p(r) is not realistic, the extended
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Thomas-Fermi density-variational method has been quite
successful at obtaining average energies, densities, and
other properties of finite fermion systems. [Obviously,
the asymptotic behavior (A22) of p(r) is only reached far
outside the physically important surface region, so that,
in practice, it affects the interesting observables very little
if at all (see also Engel and Perdew, 1991).] We refer the
reader to Jones and Gunnarsson (1989) and to Dreizler
and Gross (1990) for applications to electronic systems,
and to Brack et al. (1985) and Treiner and Krivine (1986)
for applications to nuclei.

b. Kohn-Sham equations

In order to avoid the difficulty of finding an explicit
density functional for the kinetic energy, Kohn and Sham
(1965) proposed to write the density p(r) in the form of
Eq. (A4) in terms of some trial single-particle wave func-
tions ¢;(r). This is, in fact, possible for any non-negative
normalizable density (Gilbert, 1975). The noninteracting
part of the kinetic-energy density can then be given in the
form 7(r) (A13) in terms of the same ¢;(r). The variation
(A17) of the energy functional can now be done through
a variation of the trial functions ¢;(r) with a constraint
on their norms, as in the HF variation (A7), except that
(®|H|®) here is replaced by E[p] (A16). This leads to
the widely used Kohn-Sham equations,

(T+Vgs(D)}g(r)=¢,¢,(r) , (A23)

in which the local potential Fgg(r) is a sum of three
terms:

Vis(D)=Vis[p(r) 1=V (1) +Vy[p(r) ]+ V, [p(r)] .
(A24)

The first two terms are the same as above, and the third
term is just the variational derivative of the exchange-
correlation energy:

V. lpr)]= SLEXC[,)] : (A25)

o(r)
Like the HF equations, the Kohn-Sham equations (A23)
are nonlinear due to the density dependence of Vg
(A24). The important difference, however, is that the po-
tential Vygg(r) is local and the Kohn-Sham equations
therefore are much easier to solve.

A remark is necessary concerning the interpretation of
the wave functions ¢;(r) and the energies g; obtained
from the Kohn-Sham equations: they do not have the
same physical meaning as in HF theory. The ansatz (A4)
for the density does not imply that the total wave func-
tion of the system here is taken to be a Slater deter-
minant. In fact, one does not know the total wave func-
tion in density-functional theory; the functions ¢;(r) are
just a variational tool to obtain the approximate ground-
state density. Likewise, the €; do not, in general, have
the meaning of single-particle energies. An exception is
made for the energies of the highest occupied Kohn-
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Sham level (ey) and the lowest unoccupied Kohn-Sham
level (eyyy) on either side of the Fermi energy. They can
be used to estimate ionization potentials and electron
affinities, respectively (see, for example, Levy and Per-
dew, 1985, and references quoted therein). The physics
of this is very similar to that of the so-called Koopmans
theorem, which is usually derived within HF theory but
applies also in density-functional theory. Apart from
some small rearrangement corrections due to the self-
consistent change of the mean field upon taking out the
last electron of an atom, the ionization potential is given
by

IP=E(N —1)—E(N)~—gpo=—¢y . (A26)

Similarly, the electron affinity is approximately found as

EA=E(N)—E(N+1)~—gy=—¢ey,,. (A27)

[In exact density-functional theory, —epo can be shown
to be identical to the ionization potential for atoms, or
the work function for bulk metal (see, for example, Alm-
bladh and von Barth, 1985). These ‘“‘ideal” statements
are, however, violated in practice by the use of approxi-
mate energy functionals using, e.g., the LDA (see the
next subsection) or the generalized gradient approxima-
tion (see Sec. III.C.5). If these approaches are combined
with the jellium model, a correction e?/2R; must be add-
ed to —epgo in order to obtain the IP of metal clusters
(Perdew, 1989). We refer the interested reader to an ex-
tensive discussion of the Koopmans theorem for solids
and atoms by Perdew (1985).]

The density-functional theory can easily be extended to
take the electron spin explicitly into account by introduc-
ing a spin-up density and a spin-down density. This
leads, instead of Eq. (A23), to two coupled equations for
the two spin densities. In metal clusters, there is so far
no evidence for any spin-orbit splitting effects. Therefore
the only place where the spin densities are needed here is
the case of an odd number of valence electrons, in which
one orbit is only occupied by a single electron. Since we
shall only discuss clusters with even N in this article, we
do not go into the details of the spin-dependent density-
functional theory and instead refer the reader to the
literature (Jones and Gunnarsson, 1989; Dreizler and
Gross, 1990).

Another extension of the density-functional theory
concerns the inclusion of a finite temperature 7 > 0 of the
electrons. Mermin (1965) derived the Hohenberg-Kohn
theorem and the Kohn-Sham formalism at T>0 for a
grand canonical system of electrons. Later Evans (1979)
showed that the density-functional theory also applies to
canonical systems. In essence, one goes over from the
(internal) energy E[p] (A18) of the system to the free en-

ergy Flp],
Flp]=E([p]—TS[p],

where S| is the noninteracting part of the entropy. The
exchange-correlation energy E, [p] will, in general, de-

(A28)
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pend on T explicitly (i.e., not only through the density).
The Kohn-Sham formalism then is obtained by including
in the definition of the densities (A4) and (A13) the
finite-temperature occupation numbers n;,

2
PO=3 g0, , )= Vg (), ,

(A29)
>n=N,

and by minimizing F[p] with respect to both the ¢; and
the n;. Since S; does not depend explicitly on the wave
functions ¢;, the variation of the latter gives exactly the
same form (A23) of the Kohn-Sham equations, the only
difference being that the potential Vg becomes tempera-
ture dependent. Variation of the n; gives their explicit
form in terms of the ¢;; the result depends on whether
one treats the system as a canonical or a grand canonical
ensemble. (In the latter case, in which the chemical po-
tential u is used to constrain the average particle number
N, one obtains the familiar Fermi occupation numbers.)
For an extensive discussion of the finite-temperature
density-functional theory and calculations for T >0, see
the review article by Gupta and Rajagopal (1982). Its ap-
plication to metallic clusters is discussed in Secs. III.B.3
and V.A.2.

c. Local-density approximation

The Kohn-Sham approach is very appealing since,
ideally, it allows one to reduce the correlated many-body
problem to the solution of a self-consistent one-body
problem of Hartree type. The reality is that only approx-

eS(p)=—0.0666 | (1+x3)log 1+% +1x—x

both are in atomic energy units (Ry) and are written in
terms of the electronic  Wigner-Seitz radius
rs(p)=(3/4mp)'/3.

A lot of research has been done in going beyond the
LDA and LSDA schemes. Both density gradient expan-
sions and explicitly nonlocal forms of E, [p] have been
developed and extensively studied (see, for example,
Dreizler and Gross, 1990, Chap. 7). Some of them are
briefly reviewed in Sec. III.C, although not much work
has been done with them for metal clusters so far. Bal-
lone et al. (1992) have performed variational quantum
Monte Carlo calculations for energies, densities, and
pair-correlation functions of electrons confined by a
spherical jellium potential, in order to test the LDA.

d. Pseudopotentials

The application of the Kohn-Sham method to complex
atomic molecules or clusters becomes very time consum-
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1 , 1

imate functionals for the exchange-correlation part of the
energy are at hand. The simplest and most frequently ap-
plied functionals for E, [p] make use of the local-density
approximation (LDA). One performs more or less sophis-
ticated many-body calculations for a hypothetical infinite
system of electrons with constant density p, whereby the
diverging Hartree energy is canceled by embedding the
electrons in a jelliumlike background of opposite charge
density. The resulting energy per electron is used to ex-
tract the corresponding exchange-correlation part e, (p),
which is a function of the variable p. The LDA for a
finite system with variable density p(r) then consists in
assuming the local exchange-correlation energy density
to be that of the corresponding system with density

p=p(r):

EchA[P]:fp(r)exc(p(r))d3r . (A30)

The extension to the spin-density formalism is straight-
forward; it is usually termed “local-spin-density” (LSD
or LSDA) formalism.

The exchange energy part of the local-density approxi-
mation was derived by Dirac (1930),

3

ELDA —_—
x el 2

1/3
i] e [[pn]*d% ,  (A31)

o

and is also often referred to as the Slater approximation.
The most commonly used correlation energy function-
als in cluster physics are those of Wigner (1934), with

W y—__ 0.88
¢ (p) r(p)+7.8 "’ (a32)
and of Gunnarsson and Lundqvist (1976), with
_nlp)
» X T a0 (433)

ing with increasing number of atoms. The variation of
the positions of all atoms and a simultaneous, fully self-
consistent treatment of all electrons in systems with more
than 10-20 atoms exceeds the capacities even of modern
computers. To restrict the number of degrees of free-
dom, one often exploits the approximate separability of
an atom into one or a few valence electrons and an ionic
core. The idea is to treat only the valence electrons ex-
plicitly by density-functional theory as interacting parti-
cles in the field created by the ions. The effects of the
core electrons (screening and the Pauli exclusion princi-
ple) are taken into account for each atom by introducing
a so-called effective core potential or pseudopotential
seen by the valence electron(s). Pseudopotential theory
thus makes the assumption ‘‘atom=ion-tvalence
electron(s),” which generally works very well; it has been
successfully used in atomic and molecular physics (see,
for example, Szasz, 1985, for an extensive review). For
metals like K and Cs, the assumption of a single valence
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electron and a structureless ion is less justified, since the
ionic cores of these atoms are highly polarizable.

There exist various pseudopotentials of different de-
grees of phenomenology in the literature—the most so-
phisticated ones, built on ab initio quantum-chemical cal-
culations, being nonlocal or semirelativistic and free of
adjustable parameters but also difficult to use in complex
molecules or clusters. At short distances from the atom-
ic nucleus, they are repulsive due to the Pauli principle,
which excludes the valence electrons from the states oc-
cupied by the core electrons. At large distances, they fall
off like the spherical Coulomb potential of the un-
screened effective charge of the ion. A peculiarity of the
pseudopotentials for simple metals like the alkalis is that
they are rather weak; this gives a qualitative understand-
ing of the relative success of the jellium model for these
metals.

An extremely simple but effective pseudopotential has
been introduced by Ashcroft (1966). It simulates the
main requirements by a simple Coulomb potential that is
cut off at the so-called empty-core radius r. and is set
equal to zero inside:??

2
_ we
Vps(r)—————r for r>r,

=0 for r<r, . (A34)

Here w is the number of valence electrons of the atom.
With an empirical parameter r, for each atom, the Ash-
croft pseudopotential has successfully been applied to
bulk and surface properties of many solids (see, for exam-
ple, Ashcroft and Mermin, 1976) and it is therefore very
popular in cluster calculations.

Another simple local pseudopotential has been pro-
posed and used for metal clusters by Manninen (1986b).
However, it should be mentioned that the pseudopoten-
tials used in quantum chemistry and in condensed-matter
physics are considerably more sophisticated. When in-
tended for self-consistent mean-field calculations, an im-
portant criterion for a pseudopotential is that of
“transferability,” i.e., the requirement that the valence
electron charge in the vicinity of the ionic core agree
with what would be calculated in an ab initio approach
(see, for example, Hamann, Schliiter, and Chiang, 1979).

e. Car-Parrinello equations

We shall finally sketch the equations derived by Car
and Parrinello (1985) for the so-called molecular-
dynamics (MD) method. One starts from the fact that, in
density-functional theory, the total energy of a cluster is
a functional E[p,R,] of both the electronic density p,
and thus the Kohn-Sham orbital functions ¢;, and the

22In some applications, the pseudopotential is put to a nonzero
constant value for r <r, (see, for example, Maiti and Falicov,
1991).
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positions R, of the ions (the latter entering the Kohn-
Sham equations through the pseudopotentials). Treating
both @; and R, as independent degrees of freedom, one
finds that the variational principle applied to the total
Lagrangian of the system leads to the following coupled
equations of motion (Car and Parrinello, 1985):

_ 8
Spf(r,t)

M, R,=—VR_ E[p,R,],

ipy(r,0)=— E[p,R]+SAxpi(r,1)
k

(A35)

where M, are the masses of the ions, p is a fictitious
“mass” of the electronic degrees of freedom (but not the
electron mass!), and the Lagrange multipliers A ensures
the orthonormalization of the Kohn-Sham orbits. In the
limit u <<M , no energy will be transferred from the elec-
tronic to the ionic degrees of freedom, in consistency
with the Born-Oppenheimer approximation. Solving
Egs. (A35) allows one to follow the time evolution of the
ionic coordinates and thus to describe their dynamics (or
thermodynamics); the valence electrons hereby follow
self-consistently and adiabatically the time-dependent
mean field. For p=0, the upper equation in (A35)
reduces with A, =8, ¢; to the stationary Kohn-Sham
equation (A23).

APPENDIX B: LINEAR-RESPONSE THEORY

1. RPA and TDLDA

The random-phase approximation (RPA) formulated
by Bohm and Pines (1953) can be derived as the small-
amplitude limit of the time-dependent Hartree-Fock
(HF) theory by linearizing the quantal equations of
motion. It is most successfully used to describe collective
small-amplitude excitations in many-body systems. The
essence of the RPA is to construct excited states as su-
perpositions of particle-hole excitations. We shall first
present it in the framework of HF theory (Appendix A.1)
and then discuss its application to density-functional
theory (Appendix A.2). We give only a few basic formu-
lae here; for a detailed presentation of the RPA formal-
ism, see, for example, Thouless (1961) or Rowe (1968),

Let |HF) be a Slater determinant that describes the
ground state (AS5) of the system in the HF approxima-
tion, where all “hole” states below the Fermi energy
(e, <Ep) are filled and the “particle” states above the
Fermi energy (¢, > Ep) are empty. To define a correlated
RPA ground state |[RPA ), one adds to |HF) a superpo-
sition of 2p-2h excitations:

IRPA)= (1+ 3 y?»""q
pp'hh’

;a;'ahah, [HF) .  (B1)

Excited RPA states |n ) are defined as linear combina-
tions of 1p-14 excitations from the ground state |[RPA ):

In)=3 (xf"afa, —y'ala,)|RPA) . (B2)
ph

In the above definitions, a' and a are creation and annihi-
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lation operators, respectively, for particle and hole states.
In principle, the sum in Eq. (B2) runs over all possible
1p-1h excitations; practically, one limits oneself to a
configuration space that must be large enough to give
convergence of the final results. The RPA amplitudes
xP" and y?", from which the coefficients y??" in (B1) can
be computed, are found from diagonalization of the total
Hamiltonian (including the two-body interaction V) in
the restricted space of 1p-1h states. Retaining only the
terms of first order in the x?" and y?", which is tan-
tamount to linearizing the equations of motion, one ar-
rives at the RPA equation that determines the excitation
energy spectrum #o,,:

X

n

Y,

X

n

—Y,

n

A B

B* 4* B3)

=fiw,

Here X, =x?" and Y, =y?" are the RPA amplitudes ap-
pearing in Eq. (B2), and 4 and B are the following com-
binations of antisymmetrized two-body matrix elements
of the interaction V-

A= AP =8 8,c,—e,)+(h'p|VIph) , B4
B=B"hPM={pp'|V|hh') .

(If one starts from a fully self-consistent HF basis for the
p and h states, the mean-field part of the interaction V
does not contribute, and only the residual interaction is
needed in the above matrix elements.)

Once one has solved the above RPA equations, the
spectrum {#w,,|n)} can be used to calculate the
response to an external excitation operator, as discussed
in Appendix B.2 below and in Sec. IV.

The use of the RPA within the framework of density-
functional theory is straightforward. Although the
ground-state wave function here is not explicitly taken as
a Slater determinant, it is still possible to use the Kohn-
Sham orbitals to create particle-hole excitations. This
method, usually called the time-dependent local-density
approximation (TDLDA), was developed for the calcula-
tion of atomic polarizabilities by Zangwill and Soven
(1980) and by Stott and Zaremba (1980). The TDLDA is
equivalent to the RPA if the residual interaction used in
the matrix elements (B4) is obtained from the energy den-
sity functional E[p] (A16) by a double variational deriva-
tive:

2

8
8p(r)?

Two caveats must be given here. First, there is a for-
mal difficulty in using the LDA in a time-dependent
theory. The Hohenberg-Kohn theorem and the density-
functional theory built upon it, as we have presented it in
Appendix A.2, is strictly limited to the static ground
state. The general formulation of a time-dependent
density-functional theory is a problem fraught with
difficulties, and in general the static functional E[p] can-
not be used by just inserting the time variable as a param-
eter of the density, p(r,?), except in the adiabatic limit of

Vieslo(r)]= Elp] . (B5)
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slow collective motion (Kohl and Dreizler, 1986). We
refer the reader to Gross and Kohn (1990) for a recent re-
view on time-dependent density-functional theory, in
which an explicitly frequency-dependent exchange-
correlation energy functional is also discussed.

Second, there is a danger of double-counting correla-
tions when using the standard exchange-correlation LDA
functionals in an RPA or TDLDA calculation, since
RPA correlations are usually already built into the
ground-state energy E[p] via these functionals. Strictly,
one should take these contributions out of the functional
E,.[p] before using it via Egs. (B3)-(B5) to obtain the
RPA excitation energies #iw,. This, however, is not easy,
since they are usually lumped together with other corre-
lations in a parametrized way. Numerically, their contri-
bution to the calculated RPA excitation energies #iw, is
not very large, so that this problem is not a very serious
one. But it would be definitely wrong to use the correlat-
ed RPA ground state (B1l) to evaluate the ground-state
energy. A partial remedy to this problem consists in
making use only of certain moments of the RPA strength
function whose values do not depend on the inclusion of
the RPA correlations in the ground state (see the follow-
ing subsection).

2. Sum rules and relations to classical hydrodynamics

a. Sum-rule expressions

It is often useful to discuss the global properties of a
spectral distribution in terms of its moments. Starting
from an RPA spectrum {#w,, |n )}, one defines the
strength function S, (E) for the linear _response of a sys-
tem to an external excitation operator Q:

So(E)=3 [{n|QIRPA)|*(E ~tiw,) , (B6)
n+0

where we have put the energy of the RPA ground state
|[RPA) (B1) equal to zero. The kth energy-weighted mo-
ment of the strength function is given by

m(0)= fO”Est<E)dE= S (7w, )¥|{n|QIRPA)?.

n#0

(B7)

Many useful quantities and relations can be derived from
these moments. For example, the centroid (i.e., the mean
energy) E and the variance o of the distribution (B6) are
given by

E=m,/my, o*=m,/my—(m,;/my)?. (B8)

Upper and lower bounds for these two quantities can be
given (Bohigas et al., 1979) by

E\SE<E;, 0%0,,=VE}—E} (B9)

in terms of the two energies E;, E; defined by
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172
, E\(0)= =
] I

(B10)

[ ml(Q) |1/2

These energies are particularly easily accessible for the
following reason. Under the assumption that w,, |n)
are eigenenergies and eigenstates of the total Hamiltoni-

n H of the system (which is the assumption of the RPA),
the moments m; and m; can be written as

Q)=i(RPAI[Q,[ﬁ,Q IRPA) , (B11)

0)=1(RPA|[[A,0],[H,[0,A]]]IRPA) . (B12)

According to a theorem proved by Thouless (1961), the
expectation values (B11) and (B12) can be evaluated
without loss of accuracy replacing the correlated RPA
ground state |RPA) by the uncorrelated HF ground
state |HF) belonging to the same Hamiltonian. [This
holds exactly for a density-independent Hamiltonian.
Applied to the Kohn-Sham formalism, the theorem must
be generalized to the case of a density-dependent Hamil-
tonian (due to the form of the exchange and correlation
energy functional in the LDA); it can, indeed, be shown
(Bohigas et al., 1979) to hold within the quasiboson ap-
proximation that is used in all practical RPA calcula-
tions.] Thus m; and m; can be evaluated as HF (or
Kohn-Sham) ground-state expectation values without ex-
plicit calculation of the RPA spectrum.

Similarly, the RPA moment m _; can be shown (Thou-
less, 1961; Marshalek and da Providéncia, 1973) to be
proportional to the static polarizability a,, of the HF
(or Kohn-Sham) ground state with respect to the external
field Q,

m_(0)=1ta,y(Q) .

Exploiting the above relations, it is thus possible to find
upper and lower bounds for the centroid and an upper
limit for the variance of an RPA excitation spectrum
merely from static ground-state wave functions.

Explicit expressions of m,; and m; for the electric di-
pole operator O =rY,;,(0) are given in the main text (Sec.
IV.C); sum rules for the momentum-dependent excitation
operators of the form j;(gr)Y;,(60) have been discussed
by Serra et al. (1990).

(B13)

b. Scaling model interpretation of moments m3 and m,

The energy E; in Eq. (B10) has a simple and transpar-
ent physical interpretation in terms of a scaling transfor-
mation (Bohigas et al., 1979), if the external excitation
operator Q commutes with the potential-energy part of
the Hamiltonian. This is the case for any Jocal operator
Q Q(r) in connection with a Coulombic system. One
may then define an anti-Hermitian ‘‘scaling operator” S
by

A

=[A,0]1=[T,0]=4(V-uw)+uvV, (B14)
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with

hZ
u(r)=——VQ(r) (B15)
m
The moment m,;(Q) is then easily shown by partial in-
tegration to equal

)-u(r)p(r)dr , (B16)

m

1 2ﬁ2 f
which is proportional to a hydrodynamical mass parame-
ter if u(r) is interpreted as a displacement (or static ve-
locity) field [see Eq. (B23) below]. On the other hand, the
moment m3(Q) can be expressed as

8,18, 41]HF)

m3(Q)=%(HF|[

<HF|ea§ﬁe*a5’|HF>

a=0

1
- B17)
2 d do? (
and is thus proportional to the restoring force parameter
related to a collective “deformation” variable a(¢).

The energy E; in Eq. (B10) is therefore identified with
the harmonic-oscillator energy #iw,,

E;=V'my/m,=#w,=VC/B , (B18)

corresponding to the lowest excitation of a collective
Hamiltonian H_(a),

H y(a)=1Ba*+V () (B19)

in the harmonic approximation. The collective potential
energy is the “scaled” HF energy

V()= (HF|eSfe ~°5|HF) (B20)

obtained by a unitary transformation of the ground state
|HF ) through the scaling operator e ~aS Since S, as well
as O, is a single-particle operator, all wave functions
@;(r) are transformed independently in the same way:

e ‘aﬁ(])i( )

r=g;(r,a) . (B21)

The collective mass parameter B and the restoring
force parameter C in (B18) are thus given by

B=2#m(Q), C=2m,;(Q). (B22)

The interpretation of u(r) as the displacement field be-
longing to the collective flow pattern generated by the
scaling transformation (B21) is verified by defining the to-
tal velocity field v (r,t)

vo(r,t)=a(t)u(r) . (B23)
Together with the scaled ground-state density
por,t)=p(r,a(t))=T |p;(r,alt))|?, (B24)
i
v, is, indeed, found to fulfill the continuity equation
%pa(r,t)+V-[pa(r,t)va(r,t)]=0 . (B25)
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Note that the above interpretation of the energy E; is
exact within the HF+RPA approach; the term “scaling
model” should therefore not be misunderstood as indicat-
ing a further approximation beyond those inherent al-
ready in an RPA calculation built on top of the HF
ground state. As already mentioned above, all these ar-
guments carry over directly to the case in which the HF
calculation for the ground state is replaced by a Kohn-
Sham calculation.

The physical meaning of the estimate E; for the collec-
tive vibrational energy now is clear: It corresponds to a
diabatic oscillation of the single-particle states (i.e., here
of the valence electrons) around their equilibrium
configuration; this oscillation is rapid, so that the mean
field (i.e., the HF or Kohn-Sham potential) is not
changed during the vibration. All wave functions scale
coherently according to Eq. (B21); no change of their no-
dal structure occurs.

In contrast to this, the energy E; in Eq. (B10) contains
the static polarizability [see Eq. (B13)] in its denominator
and thus corresponds to a slow, adiabatic motion of the
particles, which adjust their wave functions at any mo-
ment to the static external field 0.

c. Local-current RPA, fluid dynamics,
and normal hydrodynamics

Reinhard et al. (1990) have shown that the exact RPA
equations (B3) are obtained if one makes the energy
E 3(Q) stationary by a variation of the operator Q in full
particle-hole space. Taking Q to be a local function
Q(r), one is led to a nonlinear fourth-order differential
equation for the velocity field, i.e., the gradient of Q(r)
via Egs. (B15) and (B23) above, which is identical in
structure to that of the so-called fluid dynamics ap-
proach. This latter approach was initialized by Bertsch
(1975) and by Sagawa and Holzwarth (1978) for the
description of giant resonances in nuclei, and put in a
variational form by Krivine et al. (1980) and by da
Providéncia and Holzwarth (1983, 1985). The fluid-
dynamical equations have usually been solved for
simplified liquid-drop model densities with sharp surfaces
(see Lipparini and Stringari, 1989, for a recent review).

An alternative approach, which avoids the numerically
difficult solution of the full fluid-dynamical equations and
makes use of exact variational (HF, Kohn-Sham, or semi-
classical extended Thomas-Fermi) ground-state densities,
was recently proposed by Brack (1989) and Reinhard
et al. (1990) (see also Reinhard and Gambhir, 1992, for
an exhaustive presentation of the formalism). Here the
variation of E;(Q) is done on a set of local trial operators
{Q;(r)} and leads to a secular equation for coupled har-
monic vibrations generated by these operators:

det|#;; — (fiw, ’B;| =0 . (B26)

Here the mass tensor B;; and the restoring force tensor
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Fi;; are given by

B,;=(HF|[Q,,[#,0,]]1/HF) , (B27)

#,;=(HF|[[A,0,1,[A,[Q,,A]]]|HF) . (B28)

They are nondiagonal generalizations of the moments m
and m; in Eqgs. (B11) and (B12), so that the secular equa-
tion (B26) represents an extension of the simple sum-rule
expression E; (B10) to the case of several coupled modes.
For sufficiently simple operators Q;, the expressions (B27)
and (B28) may be evaluated analytically and lead to in-
tegrals involving only HF (or Kohn-Sham) ground-state
densities.??

Solving the secular equation (B26) then gives a spec-
trum of eigenenergies 7w, that represents an approxima-
tion to the RPA spectrum. The corresponding one-
phonon states |n ) exhaust the m; and m; sum rules for
any external operator that lies in the space spanned by
the trial set Q;. Evaluating the moment m _, also gives,
by virtue of Eq. (B13), the static polarizability. The only
restriction of this approach with respect to the full mi-
croscopic RPA is the choice of a (finite) set of local
operators Q;(r), i.e., the assumption of the local nature of
the associated velocity fields or currents.

In fluid dynamics, emphasis has been put on the
dynamical distortions of the Fermi sphere in momentum
space, which for uniform systems leads to zero sound
effects. These effects are fully included in the local-
current RPA if the kinetic-energy contribution to the re-
storing force tensor #;; (B28) is evaluated microscopical-
ly in terms of the scaled single-particle wave functions ¢;
(B21) through Eq. (A13) (cf. Brack, 1983). If, however,
the kinetic-energy density is evaluated in the Thomas-
Fermi or ETF approximation (see Appendix A.2.a), the
zero-sound effects are lost, since the momentum distribu-
tion is always spherical in the (extended) Thomas-Fermi
model, and one obtains standard classical hydrodynam-
ics. For pure electric dipole vibrations, or for monopole
vibrations described by the operator Q,=r? (leading to a
“breathing mode”), there is no difference in the restoring
forces obtained by fluid dynamics or ordinary hydro-
dynamics. For most other modes, however, the
differences can become important. A textbook example
is the nuclear giant quadrupole mode, in which hydro-
dynamics gives wrong values and the wrong dependence
on the nucleon number A4, whereas fluid dynamics leads
to an excellent description of the peak energies even with
the simple E; sum-rule expression (Bohigas et al., 1979;
Lipparini and Stringari, 1989; Gleissl et al., 1990).

23See Brack (1989) and Reinhard et al. (1990) for expressions

valid for multipole operators of the form Qi(r)=rpf Y;0(0) in
connection with the spherical jellium model.
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