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A generalization of the sum rule approach to collective motion at finite temperature is presented. The m 1 and m-1 sum 
rules for the isovector dipole and the isoscalar monopole electric modes have been evaluated with the modified SkM force 
for the 2°spb nucleus. The variation of the resulting giant resonance energies with temperature is discussed. 

Recent experimental developments in the domain 
of  light projectile induced reactions (e.g. P3' [ 1] ) as 
well as heavy ion reactions [2] make it important  to 
quantitatively describe the behaviour of  nuclear giant 
resonances when increasing the excitat ion energy. As 
a natural extension of  the zero excitat ion energy case 
one may describe relevant strength functions in the 
statistical approximation through finite temperature 
RPA calculations. This has been performed for the di- 
pole mode in the schematic force model  and recently 
with more realistic forces but within a non fully self- 
consistent approach [3] .  The technical difficulties as- 
sociated with such RPA calculations provide an incen- 
tive to develop a tractable yet  sufficiently accurate 
method to grasp the bulk of  the phenomenon under 
study. 

In the zero temperature case the sum rule approach 
has been shown to be well suited to that purpose (see 
e.g. ref. [4] ). Moreover it has appeared that a semi- 
classical determination of  some sum rules, such as the 
inverse energy weighted sum rule, yielded very good 
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approximations to quantal (i.e. H a r t r e e -Foc k )  results 
[5,6].  The finite temperature generalisation of  such 
an approach implies an extension of  some basic results 
to the non zero excitat ion energy case. It is the aim 
of  this letter to discuss such a generalisation and to 
provide some illustrations of  the methods in the par- 
ticular cases of isovector dipole and isoscalar mono- 
pole electric modes. 

For  a statistical mixture defined by its density 
matrix 

D = ~ P n  In) (hi, (1) 
n 

whose dynamics is governed by a hamiltonian H with 
eigenvectors In) and eigenvalues En, the kth order mo- 
ment  of  the strength function associated to a given 
operator Q may be defined as 

m k ( a ) =  ~ I(nlOlP)12Pn(Ep - En) k . (2) 
n ,p¢n  

For all moments  which can be expressed in the pure 
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state case as expectation values of  operators O k involv- 
ing a sum of products of  powers of  H and Q one still 
has in the non zero temperature case 

mk(Q) = tr(DOk).  (3) 

This is the case for positive odd k values. One finds for 
instance 

~ [(n tQ [p)12 Pn(Ep - E n) 
n,p 

=51tr{D[Q , [H, Q] ] } , (4) 

In the pure case the m_ 1 moment is known to be pro- 
portional to the static polarisability a associated to the 
operator Q. For a statistical mixture (1) corresponding 
to a canonical (or grand canonical) thermodynamical 
equilibrium, i.e. with 

en  = z - 1  e x p ( - / 3 E n ) ,  (5) 

it can be shown [5] that the static polarisability a*  1 

is given by 

[(nlQlp)l 2 
°t= 2 C Pnn*p -~p -- En  

The first term of  the rhs in eq. (6) is equal to 2m_ 1- 
The two other terms are vanishing at zero temperature, 
leading thus back to the well-known result mentioned 
above. This is still the case however, even at finite tem- 
perature, whenever the operator Q has no diagonal 
matrix element between eigenstates of H, i.e. if Q 
breaks a symmetry of  such states. These two extra 
terms are also vanishing if the set of  states In) can be 
considered as resulting from a harmonic oscillator in the 
"coordinate variable" Q - Z n Pn (n [Q[n), due to the 
constancy o f (n  IQ In) in such a case. In so far as the 
RPA provides a reasonable estimate of the collective 
motion under study and the operator Q a satisfactory 
ansatz for the collective operator, it is expected that 
even when Q does not break any symmetry of  the 
eigenstates of  H, one has approximately 

i 
m_ 1 ~ ~0t .  ( 7 )  

*t  Of course the polarisability mus t  be unders tood in the fin- 
ite temperature  case as resulting from a constraint  with re- 
spect to Q on the variational solutions corresponding to 
the Helmholtz free energy (H)-TS and not  to the energy 
(H>. 

We will discuss quantitatively below the validity of  eq. 
(7) on a typical example. 

In what follows we will evaluate for the 208pb nu- 
cleus the temperature dependence of  the m 1 and m_ 1 

sum rules for the isovector dipole and isoscalar mono- 
pole electric modes. Calculations will be performed 
in the independent particle (Hartree-Fock)  approxima- 
tion using the modified SkM force which has recently 
been shown [7] to provide an excellent description 
of  both static and low energy dynamical properties. As 
for the operators Q we take with usual notation 

D = ~ "= Oiz i - - ~  0 i z i , (8 )  

for the dipole mode (0 i being the third isospin compo- 
nent) and 

A 

M = ~ r 2 , (9) 
i= l  

for the monopole mode. 
The m 1 sum rule is computed as indicated in eq. 

(4). One finds in the Hart ree-Fock approximation 

h 2 
ml(D)  - 2m NZ + ¼ (t 1 + t2 ) f Pn (r)pp(r) d3r , (10a) 

2h 2 
m 1 (M) = ~ f [Pn(r) + pp(r)] r 2 d 3 r .  (10b) 

In this approximation, the evaluation of  m 1 moments 
necessitates only the knowledge of the one-body re- 
duced diagonal (i.e. local) densities Pn(r) and Op (r). 
Their variational determination (minimizing the 
Helmholtz free energy) has been performed with the 
energy density method using the extended Thomas-  
Fermi kinetic energy density functional r[p] (up to 
fourth order in h) with four-parameter "modified 
Fermi" density profiles [8] 

pq(r) = PqO{1 + exp[(r -Rq) /~q]}~q , q = n, p. 
(11) 

The results of  this semi-classical approximation have 
been shown to very well reproduce on the average those 
of  full Har t ree-Fock calculations [7,8]. At finite temper- 
ature, a suitable modification of the extended Thomas-  
Fermi method has also been shown recently [9] to 
yield a good reproduction of microscopic Hartree-  
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Table 1 
Parameters of the variational semi-classical density parameters as functions of the temperature T (in MeV) with the notation of 
eq. (11). The Pq0 (q = P, n) are reported in units of fm -3, the aq in fm while the "rq are dimensionless. The Helmholtz free energy 
F (in MeV) and the energy TS (in MeV), where S is the entropy, are also reported. 

T PpO OnO C~p an "rp "rn F TS 

0 0.0622 0.0911 0.532 0.661 1.42 1 . 5 7  -1608.9 0.0 
1 0.0621 0.0909 0.537 0.663 1.42 1 . 5 3  -1628.5 38.5 
2 0.0615 0.0899 0.542 0.662 1.37 1 . 4 2  -1685.2 149.5 
3 0.0605 0.0882 0.544 0.648 1.27 1.22 -1778.0 333.5 
4 0.0591 0.0857 0.543 0.627 1.11 0.96 -1908.4 602.0 

Fock results [10], in particular at temperatures above 
T ~ 2.5 3 MeV where the single-particle (shell) effects 
are washed out. The parameters of the densities eq. 
(11) are displayed in table 1 for temperatures varying 
from 0 up to 4 MeV. At a temperature higher than ~3 
- 4 MeV the grand canonical approximation cannot be 

considered to be valid any longer due to the importance 
of the particle emission phenomenon as quantitatively 
checked in recent calculations [11]. For the dipole 
mode one observes a very small decrease o f m l ( D  ) 
with an increasing temperature (~2% from 0 to 3 
MeV). The variation of (r 2), and thence of m 1 (M), is 
already known [I0] to be also very slow (~5% from 
0 to 3 MeV). 

To evaluate the m_ 1 moments we have also com- 
puted the corresponding polarisabilities a in a semi- 
classical approximation. Indeed a fully quantal deter- 
mination of a from constrained Har t ree-Fock calcula- 
tions is technically feasible a priori but is plagued by 
serious accuracy problems (e.g. at zero temperature 
the a value so calculated for the dipole mode has been 
found in ref. [ 12] to be at variance with a direct evalu- 
ation from the RPA strength function by ~15% where- 
as the Thouless theorem ensures their equivalence). It 
is our opinion that the numerical errors on a in con- 
strained Har t ree-Fock calculations are at least of the 
same order of possible shell effects on m _  1- For technical 

details concerning the evaluation of m_  1 moments the 
reader is referred to refs. [13,14] where the zero tem- 
perature evaluation of such moments is discussed in 
detail. In the dipole case (n ID In) is vanishing for sym- 
metry reasons and thus the m_  1 moment  is exactly 
equal to the polarizability divided by 2. In the mono- 
pole case this is a priori no longer the case. However. 
the extra contribution to m_  1 has been found to be 
negligible in the following approximate approach. The 

relevant one-dimensional Bohr hamiltonian has been 
evaluated in the scaling approximation (see, e.g. ref. 
[ 14] ) and diagonalized in a large harmonic oscillator 
basis. The resulting matrix elements (n [MIn)have then 
to be calculated. From the spectrum En, the probabili- 

ties Pn have been computed leading for all tempera- 
tures under consideration to very small terms 

t3[~n Pn((nlMIn)2)- ( ~n Pn(n[Mln))2 3. 

Resulting m_ 1 moments for both the dipole and the 
monopoie modes (in the latter case the scaling approxi- 
mation was used) are reported in table 2. 

As a suggestive way of condensing the results for 
m 1 and m _ l ,  t h e E  1 energies 

E1 = (ml/m_l) 1/2 (12) 

are displayed in fig. 1. These energies for the 208pb 
nucleus provide at zero temperature good estimates 

Table 2 
Inverse energy weighted sum rules m_ 1 for the dipole (D) and 
monopole (M) modes as functions of the temperature T (in 
MeV). Results are reported in units of fin 2 MeV -1 for D and 
fm 4 MeV-1 for M modes. For the breathing mode, the com- 

K~al(in MeV) in the scaling approximation is also pressibility 
reported. 

T m_l(D) m I(M) K~ fl 

0 7.11 2875 138.5 
1 7.17 2930 136.8 
2 7.31 3137 130.5 
3 7.50 3491 121.5 
4 7.96 4173 108.0 
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Fig. 1. Energies E 1 (in MeV) as functions of the temperature 
T (in MeV) for the dipole (D) and monopole (M) modes. 

of the location of the giant resonance for both dipole 
[5] and monopole [14] modes. When increasing the 
temperature these energies are found to decrease. 
This result is qualitatively consistent with the sche- 
matic model results of ref. [3] (in our case, however, 
the variation is less marked). It is also in agreement 
with the conclusions of ref. [2] even though the pos- 
sible occurrence of such giant resonances at rather 
high spin may lead to a deformation of the resonance 
structure due to various broadening effects as sketched 

in the phenomenological approach of ref. [15]. In our 
calculations, when the temperature increases, the vari- 
ation o f E  1 results from at least three effects: (i) the 
vanishing of the particle-hole residual interaction as 
noted in ref. [3], (ii) a decrease of the stiffness param- 
eters, (iii) a possible side effect on m 1 from the in- 
crease of resonance widths with increasing tempera- 
ture. In the monopole case the above variation (i) is 
not effective since the global effect of the part icle-  

hole residual interaction on the giant resonance energy 
at zero temperature is rather small and the variation 
of the stiffness parameter (i.e. the incompressibility) 
seems to be dominating. 
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