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In this thesis, we investigate electronic transport 
through molecular quantum dots weakly cou-
pled to source and drain leads. To describe the 
electronic spectrum of the molecule that forms 
the quantum dot, the Pariser-Parr-Pople Hamil-
tonian for conjugated molecules is introduced 
and adapted to the case of a benzene molecule. 
The generalized master equation (GME), which 
is the equation of motion for the reduced den-
sity matrix (RDM), is used to calculate the current 
through the system and the conductance. Trans-
port through a benzene molecule is investigated 
in two configurations, para- and meta configura-
tion, which are defined by the lead molecule cou-
pling. Interference between degenerate states 
leads to a suppression of the linear conductance 
when changing from the para to the meta con-
figuration and to current blocking in the meta 
configuration for certain bias voltages. In pres-
ence of parallel polarized ferromagnetic leads, 
this effect can be used to obtain control over the 
molecules net spin by all-electrical means. In the 
last chapter, cotunneling processes are described 
by means of an effective Kondo Hamiltonian, and 
the results are compared to a theory which is ex-
act to fourth order in the tunneling Hamiltonian.
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Chapter 1

Introduction

1.1 Interference of massive particles

Self interference of massive particles is fascinating. In the 1960s, Richard Feynman [1]
described it as a phenomenon “which has in it the heart of quantum mechanics,” and
it didn’t lose any of its attraction up to the present day. In fact, when the journal
Physics World recently asked for suggestions for the most beautiful experiment ever in
science [2], Young’s original double-slit experiment to demonstrate interference with
light from 1804 [3] was ranked among the top 5, but its application to electrons in
vacuum [4] was cited more often than any other. In this experiment, a beam of
electrons is shot through an apparatus containing an electron biprism which acts as
an effective double slit and the electrons are detected at an observation plane. In later
experiments, only one electron was in the apparatus at a time [5, 6]. The beauty of
these experiments lies in the fact that one can actually observe the emergence of the
interference pattern in time as the electrons hit the observation screen one by one.
Every electron is detected before the next electron enters the apparatus, such that
interactions between the electrons can be excluded as a possible explanation. After 10
or even few 100 electrons, the observed pattern looks more or less random, but after
a few thousand electrons, a clear modulation in the intensity on the screen can be
seen as a manifestation of single particle interference (Figure 1.1). Since then, particle
interference has been demonstrated with neutrons, atoms [7, 8] and molecules as large
as carbon-60 [9] and carbon-70 [10]. Mesoscopic rings contacted to leads and threaded
by a magnetic flux provide the solid-state analogous of the experiment described above
[11, 12].

Interference of electrons in single molecule junctions is a novel effect and has some
analogies to interference on double slits. It manifests itself as perfect destructive in-
terference that causes complete blocking of the current through the junction and has
been predicted for molecules with discrete rotational symmetry such as benzene or an-
nulene rings. The symmetry assures the presence of degenerate states, to which clock-
wise and counter-clockwise angular momenta can be assigned, so that the two paths
around the molecule exhibit a certain phase difference depending on the arrangement
of the contacts. In the last years, this “intramolecular interference” has been inves-
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Figure 1.1: Single electron build up of interference pattern over 20 minutes. At the
beginning of the experiment, bright spots indicating electrons occur at random posi-
tions. When a larger number of electrons is observed, clear interference fringes can be
seen. Pattern after (a) 8 electrons; (b) 270 electrons; (c) 2000 electrons; (d) 60,000.
Images reprinted with kind permission from [6].
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tigated by several groups in setups with strong lead molecule coupling, using models
[13, 14] or density functional theory [15, 16] to describe the molecule and a Green’s
functions scattering approach that premises strong lead molecule-coupling to calculate
transport properties. In the complementary situation of a molecule weakly coupled
to leads, a generalized master equation approach for the reduced density matrix turns
out to be more convenient to describe intra-molecular interference [17, 18, 19]. This
thesis provides an overview over our work on electron interference effects such as cur-
rent blocking and negative differential conductance in transport through benzene and
multiple quantum dots. The use of interference to obtain control over the molecules
(or quantum dots) spin degree of freedom by all-electrical means, a highly desirable
property for spintronics and spin based quantum computing applications, is proposed.

At this point, it is worth stating that this research on transport through molecules was
not driven by the beauty of interference effects. Instead, it was (and still is) motivated
by the quest for new electronic devices equipped with new functionalities and based
on new materials that provide potential alternatives for the conventional metal oxide
semiconductor field effect transistor (MOSFET) technology, which has opened new
fields in engineering, applied and fundamental science. One of the most prominent
and promising of these new fields is molecular electronics.

1.2 Molecular electronics

The central idea in molecular electronics is to establish electronic devices based on
molecular films, groups of molecules or even single molecules. One of the major themes
in electronics is therefore to build up electronic circuits in which molecular systems act
as conducting elements and to understand or even design the current voltage charac-
teristics of such junctions. These novel molecular building blocks can for example act
as switches, gates, rectifiers or memory elements or provide new functions that need
to be characterized and understood [20].

Aviram and Ratner were the first to propose a molecular rectifier based on a single
organic molecule back in 1974 [21]. However, the field of molecular electronics emerged
only after modern nanoscale fabrication techniques made it possible to construct single
molecule junctions. In 1997, Reed et al. [22] attributed a current voltage curve
measured in a break junction experiment to a single 1,4 benzene dithiol molecule.
Since then, huge experimental and theoretical efforts have been made and created a
diverse and rapidly growing research field.

1.2.1 Measurements of single molecules

Many experimental techniques are available to measure and control current through
molecules. On one hand, there are experiments in which current through a large
number of molecules organized in self-assembled, highly ordered films is measured.
These films are placed on one electrode and then another electrode is placed on top
of it. On the other hand, there are a number of techniques that allow to contact and
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to measure the conductance of a single molecule. Since the latter are more related to
the subject of this thesis, we will describe some of them here in more detail.

Scanning tunneling microscopy (STM) [23] has played a unique role in the field of
molecular electronics. First, it allows to image single molecules lying on conducting
substrates or different orbitals of the very same molecule with submolecular resolution.
In the same setup, one can measure the current through the molecule as a function of
the molecular position. The STM tip can also be used to place metal atoms in contact
with a single molecule on the substrate with atomic precision. An open challenge
in this approach is to reliably contact the metal atoms and to exclude effects on the
conductance coming from the molecule substrate coupling [24]. In other approaches,
one end of the molecule is lifted from the substrate by the tip of the STM and current
through the molecule from the tip to the substrate can be directly measured. The tip
can be pulled away until the contact on one end of the molecule breaks away. After-
wards the tip is lowered again until a new single molecule junction forms. Breaking
and forming of contacts is observed in the current as steplike features. The repeating
of this cycle (see Figure 1.2) allows the statistical analysis of many single molecule
junction measurements in short times. If the STM tip and the substrate are coated
with an insulating layer, the sample can be placed in an electrolyte whose surface
potential can be controlled with a third electrode, acting as a gate. Metal ions can be
introduced to the electrolyte, so that the current through the molecule is controlled by
gate induced reversible chemical binding reactions to the metal ions [25]. Also without
metal ions, potential control of the electrolyte enables to change the charge state of the
molecule [26]. A gate electrode in molecular junctions is in general highly desirable,
since it allows to oxidize or reduce the molecule, and three terminal devices can act
as spectroscopic tools that allow to determine excitation and addition energies of the
molecule.

Therefore, different techniques to fabricate molecular three terminal devices have been
delveloped [27] in addition to STM. The electromigration technique consists in break-
ing a narrow and thin metalwire by a large current density to form two physically
separated electrodes. The formation of the gap can be imaged using transmission elec-
tron spectroscopy. Although some control over the breaking process could be achieved
by a feedback mechanism, the resulting geometry or size remains uncontrollable. Ad-
vantages of devices made by electromigration on top of Al/Al2O3 gate electrodes is
the large gate coupling and the planar geometry (see Figure 1.3 (a)) that offers a large
stability for systematic studies of effects as functions of gate voltage, magnetic field
or temperature. Molecules can be deposited on the sample from solution either before
the gap formation or afterwards. If the gap has about the same size as the molecule,
the molecules can form chemical bonds to both electrodes. However, in general only
few of the prepared samples show signatures of single molecule conductance.

A shadow mask technique can be used to evaporate two gold electrodes on top of a
gate electrode as illustrated in Figure 1.3(b). If the tilt angle of evaporation is high
there is no overlap between the source and drain shadows. Reducing the tilt angle
decreases the source drain gap. The advantages of this technique include the ones of
the electromigration techniques, in addition one has precise control over the gap size
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[28].
Recently, it has been possible to include a gate voltage also in mechanically controlable

break junctions (MCBJ) experiments [29]. In an MCBJ setup, a thin metallic wire with
predefined break points is placed on a substrate. The hole geometry is now bended
with a pushing rod so that the wire breaks, see Figure 1.3(c) . The huge advantage of
this approach is that the distance of the emerging gap can be controlled with picometer
(!) resolution by the pushing rod. The gate coupling, however, is typically orders of
magnitude smaller than in the techniques with planar configuration, which makes it
difficult to access several charge states of the molecule.
In Figure 1.3(d) a sketch of the dimer contacting scheme reported by Dadosh et al.
[30] is depicted. In this approach, a dimer structure consisting of two colloidal gold
particles connected by a dithiolated molecule is synthesized in solution. This dimer
structure can be trapped electrostatically between two gold electrodes (with a gap
much larger than the actual size of the molecule) on top of a gate electrode. The
advantage of this approach is that it allows to fabricate single molecule devices with
high certainty and well defined contacts to the molecule. However, the gold particles
screen the gate potential efficiently, and spectroscopic features of the gold particles are
sometimes superimposed on the conduction characteristics of the molecule.
With all these methods, molecular junctions have been realized and current-voltage
characteristics could be assigned to a single or very few molecules. However, there
are a number of problems that have to be overcome to assure future success of the
whole field. First of all, the placement of the molecule inside the nanogap between the
contacts is basically uncontrolled. A large number of samples have to be prepared to
obtain at least a few where the formation of a molecular junction can be identified.
Related to this is the problem that the conductance of a molecule depends crucially
on its local environment. Still, there is a lack of a technique that can provide reliable
and well defined molecule-electrode contacts. Although the molecules themselves can
be produced identically in large numbers, visions of building millions of atomically
identical electronic devices seem to be doomed because they cannot be fabricated in
a controlled way. In this sense there is still a long way to go, or as Fang Chen put it
in the summary of her recent review article [24]:

Future techniques that can fabricate molecular junctions with molecule-
electrode contacts that are well defined on the atomic scale and that can
characterize the atomic-scale structures of the molecule-electrodes contacts
will contribute enormously to the field of molecular electronics.

1.2.2 Theoretical approaches

Similar to the variety of experimental techniques, also a number of theoretical concepts
to describe transport through molecular devices have been developed. One one hand,
numerical approaches to transport based on the combination of ab initio methods
like density functional theory (DFT) with nonequilibrium Green’s function techniques
have become standard to study transport at the nanoscale [31, 32]. These methods
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Figure 1.2: Forming and breaking of a molecular junction with an STM tip. The tip
is pushed into contact with molecules adsorbed on an electrode. Pulling away the
tip subsequently breaks molecular bridges which can be seen as steps in the current.
Image reprinted with kind permission from [24].

Figure 1.3: Schematic images of different molecular three-terminal device techniques
(see text). (a) Electromigrated thin metal wire. (b) Angle evaporation technique. (c)
Gate mechanical break junction. (d) The dimer contacting scheme. Image reprinted
with kind permission from [27].



1.3. SPINTRONICS AND SPIN-QUBIT APPLICATIONS | 13

take into account not only the molecule itself, but also the atomistic structure of lead-
molecule interfaces. They are appropriate to investigate quantum transport through
molecular bridges strongly coupled to leads. Complex structures with a large number of
atoms can be described. However, they fail to describe transport through a molecule
weakly coupled to leads, since they are not able to account for effects arising from
Coulomb interaction properly. In nanoscale objects with a small number of electrons,
this interaction provides the dominant energy scale and therefore plays a crucial role.
That is why, on the other hand, approaches to transport are used that explicitly incor-
porate the Coulomb interaction in the molecule. Powerful many-body techniques such
as the numerical renormalization group (NRG) or the density matrix renormalization
group (DMRG) scheme have been developed and applied to the problem of quantum
transport. They can treat a broad parameter regime ranging from weak and to lead-
molecule coupling. However, only very simple models with a limited number of degrees
of freedom can be investigated with these techniques because of the complexity and
the rather large computational costs of these methods.
In semi-quantitative approaches, a realistic model for the molecule that includes the
degrees of freedom relevant for a particular molecule and transport situation is consid-
ered. Specific features in the current voltage characteristics such as Coulomb blockade,
spin blockade, the Franck-Condon effect or negative differential conductance are re-
lated to very different excitations, that can be of electronic or vibrational nature. In
the weak lead-molecule tunneling limit, one calculates the eigenstates of the model for
the isolated molecule and essentially considers them unperturbed by the contact to
the leads. With this approach, one tries to cope with the complexity of real molecules
as well as with the Coulomb interaction, at the cost of a limited ability to describe
intermediate or strong lead-molecule coupling. At the simplest level, transport is de-
scribed in terms of transition rates between molecular states, where the lead-molecule
coupling is treated perturbatively, yielding so called Pauli rate equations. In more
general approaches, also coherences between molecular states are taken into account.
In chapter 3, we provide a technical derivation of the equations for the latter case. The
application to molecular systems includes e.g. the works [33, 34, 35, 36, 37]. Draw-
backs of such approaches are that details of the lead-molecule interface can usually
not be taken into account and these models can have a large number of parameters,
which in general is not desirable.
Thus, the main challenges in molecular electronics are on the experimental side to
provide well defined molecule-electrode contacts, and on the theoretical side to im-
prove the limited correspondence between experimental and theoretical studies. Of
course, the support of new ideas to drive the design of molecular junctions with novel
functionalities is a main task for all scientists working in the field.

1.3 Spintronics and spin-qubit applications

Until recently, the spin of the electrons was ignored in mainstream charge-based elec-
tronics. In spintronics, the spin degree of freedom is either brought into play in com-
bination with the charge of the electrons or used exclusively in new devices, that have
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many potential advantages such as nonvolatility, increased data processing speed, de-
creased electric power consumption and increased integration densities. To realize
such devices, technical issues such as spin injection or the control, manipulation and
detection of spin polarization and spin currents have to be resolved [38, 39]. Within
this work, we address possible solutions of some of these tasks.
In particular, quantum dots can be used for spin-based quantum computation. The
unit of information in quantum computing, a quantum bit (qubit) can be formed in
principle by any quantum mechanical two level system. In analogy to the classical bit,
two states, denoted as |0〉 and |1〉 are required. The possibility to form coherent su-
perpositions of these basis states allows the application of new algorithms that exceed
classical algorithms in performance by far (polynomial instead of exponential scaling)
for some problems [40]. In spin based qubits, the two possible values of the Sz compo-
nent of the electron spin form the basis. In quantum dots (based on single molecule
junctions or made from other materials), the electron number can be precisely con-
trolled and, more important, they provide the possibility of coherent manipulation of
single spins, the essential mechanism in spin based quantum bits. Electric control of
the spin is particularly appealing, because electric fields are easy to generate locally in
contrast to magnetic fields [41]. It can be realized either via a mechanism that takes
advantage of the spin orbit-coupling [41, 42, 43, 44, 45] or of tunneling-induced spin
splitting in the Kondo regime [46].
In this thesis, we propose a new mechanism for all-electric spin control that relies on the
current blocking occurring in single molecule based quantum dots due to interference
between degenerate states [19].

1.4 Thesis outline

The outline of this thesis is as follows: In chapter 2, we introduce the Pariser-Parr-
Pople model for conjugated molecules and adopt it to the physics of benzene. The
numerical treatment of the model is described shortly. In chapter 3, we discuss elemen-
tary physics in quantum dots and we introduce the theoretical framework based on a
generalized master equation (GME) for the reduced density matrix to describe trans-
port through quantum dots or molecules weakly coupled to leads. In chapter 4, we
present the results of our transport calculations for benzene. The concept of interfer-
ence single electron transistors (ISETs) is introduced. We also discuss the robustness
of interference effects. In chapter 5, we propose the use of interference blockade in
ISETs to obtain control over the molecules (or quantum dots) spin degree of free-
dom by all-electrical means. In chapter 6, we leave the sequential tunneling regime
and develop a simple theory based on the T -matrix formalism to describe cotunneling
processes in quantum dots.



Chapter 2

The Pariser-Parr-Pople (PPP)
model for conjugated molecules

In transport through molecules, signatures in the current or differential conductance
are directly related to the electronic spectrum of the isolated molecule. The full Hamil-
tonian of such a molecule, however, is by far too complicated to deal with analytically,
and therefore simpler models have to be derived, reflecting the relevant properties of
the molecule.
In the 1950s, Pariser and Parr [47] and Pople [48] developed a model for the π-electron
system of hydrocarbon molecules. It was derived starting from the complete many-
body Hamiltonian and using a set of systematic approximations to separate the elec-
tronic from the nuclear motion and subsequently eliminate the σ-part of the electronic
system, which is considered to determine the backbone of the molecule and not to
participate in transport. Linderberg and Öhrn rederived this model in second quan-
tization in 1968 [49]. Recently [33], Hettler et al. were the first to use this model to
calculate the I-V -characteristics of a benzene junction.

2.1 Derivation of the Pariser-Parr-Pople model

In the following, we give a short overview of the derivation of the Pariser-Parr-Pople
(PPP) model for benzene.
The general Hamiltonian for a molecule is

H = T n({Rα}) + T e({ri}) + V n−n({Rα}) + V e−n({Rα}, {ri}) + V e−e({ri}), (2.1)

where {Rα}, {ri} denotes the set of coordinates for the nuclei and for the electrons,
respectively. T n, T e are the kinetic parts of the nuclei and electrons, and V n−n, V e−n

and V e−e are the potential terms due to the Coulomb interaction between the nuclei
and electrons. We separate the motion of the nuclei from the electronic problem (Born-
Oppenheimer approximation) by factorizing the wavefunction in an electronic and a
nuclear part:

Ψ({Rα}, {ri}) = χ({Rα})φ({Rα}, {ri}). (2.2)
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In particular, we assume that T n({Rα})φ({Rα}, {ri}) ≈ 0 and therefore an effective
(so called Born-Oppenheimer) Hamiltonian for the electronic problem can be derived
that does not contain T n. Moreover, we have to consider the specific form of the
molecular system to be investigated. Within the PPP-model, the focus is on molecules
which consist of carbon and hydrogen atoms. We consider the inner core electrons of
carbon as strongly bound to the nuclei. We thus forget about their dynamics and
concentrate on the four valence electrons of carbon. Three of them are in sp2-hybrid
orbitals in one plane, symmetrically arranged so that the angle between two orbitals
is 120 degrees. These orbitals point in the direction of the neighboring (either carbon
or hydrogen) atom and overlap with the corresponding orbital of this atom. Such
molecular bonds between s- and p-hybrid orbitals, where the orbitals point along the
connecting axis, are called σ-bonds, the electrons in the orbitals σ-electrons. The
one remaining valence electron is in a p-orbital perpendicular to the molecular plane.
Orbitals of neighboring atoms also overlap to form bonds, but the binding is different
and is called π-bond. Accordingly, we call these electrons π-electrons. In the PPP-
model, the σ-electrons together with the core electrons play the role of screening the
Coulomb interactions between the π-electrons and between the π-electrons and the
nuclei, which are dressed with the 1s core electrons and with the σ-electrons. The
electronic problem we are dealing with then reads

[T π + V π−ion + V π−π + V ion−ion] φ̃({Rα}, {ri}) = Eel φ̃({Rα}, {ri}), (2.3)

where V π−ion, V π−π and V ion−ion are effective potentials that model the interaction
between π-electrons and the ions, which consist of the nuclei plus the core and σ-
electrons. The positions of the nuclei {Rα} enter only as parameters in φ̃. The
Hamiltonian in equation (2.3) provides thus a model for the π-electron system of the
molecule in the limit of one pz-orbital per carbon atom, which can be occupied by
at most two electrons with opposite spins (see Figure 2.1). In general, the explicit
form of the effective potentials is not taken into account in π-electron models. Instead
they are parametrized to fit experiments (see section 2.2). In second quantization, this
Hamiltonian for the many-electron problem of the molecule can be written as

H =
M
∑

i,j=1

∑

σ

(

T π
ijσd

†
iσdjσ + V π−ion

ijσ d†iσdjσ

)

(2.4)

+
∑

ij

∑

σσ′

V π−π
ijklσσ′d

†
iσd

†
jσ′dkσ′dlσ + V ion−ion,

where d†iσ, djσ are creation or annihilation operators for π-electrons on site i or j and
σ =↑, ↓ is the spin degree of freedom. M is the number of carbon atoms or sites.
In the spirit of the jellium model, we now approximate each ion to be a hole with the
same spatial symmetry as the electron. More explicitly, we define the charge density
operator ρ(r) to be

ρ(r) =
M
∑

i,j=1

[

∑

σ

p∗z(r − Rj)pz(r − Ri)d
†
jσdiσ − |pz(r − Ri)|

2δij

]

, (2.5)
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Figure 2.1: The relevant orbitals for the PPP-model in benzene

where the second term describes holes at the positions Ri with the spatial structure
of pz-orbitals in carbon atoms. We can thus rewrite the Hamiltonian (2.4) in the
approximated form:

H = T + V,

where T is the kinetic term and

V =

∫ ∫

dr1 dr2ρ(r1)
e2

4πǫ0|r1 − r2|
ρ(r2). (2.6)

The definition of V includes in principle multicentered integrals. In the approximation
of two center integrals we obtain the Pariser-Parr-Pople (PPP) Hamiltonian for an
isolated molecule:

H = b
M
∑

i=1

∑

σ

(

d†iσdi+1σ + d†i+1σdiσ

)

+ U
M
∑

i=1

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

(2.7)

+
1

2

∑

i6=j

Vij

(

ni↑ + ni↓ − 1
)(

nj↑ + nj↓ − 1
)

,

where we have introduced the parameters b, U and Vij. Additionally niσ = d†iσdiσ is
the electron number operator for the orbital on site i with spin σ. The single-particle
contribution b is defined as

b =

∫ ∫

dr1dr2
e2

4πǫ0

p∗z(r1)pz(r1 + d) (|pz(r2)|
2 + |pz(r2 + d)|2)

|r1 − r2|
(2.8)

+

∫

dr1p
∗
z(r1)

(−▽)2
~

2

2m
pz(r1 + d),

where d is the vector pointing to the next neighboring site. If two electrons are on the
same site, they must have different spin due to the Pauli principle. This is why the
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on-site Coulomb interaction (the U -term) only involves electrons with opposite spin.
It reads

U =

∫ ∫

dr1dr2
e2

4πǫ0

|pz(r1)|
2|pz(r2)|

2

|r1 − r2|
. (2.9)

Finally, the intersite Coulomb interaction (Vij-term) is between electrons on different
sites independent of the electron spin. It has the form

Vij =

∫ ∫

dr1dr2
e2

4πǫ0

|pz(r1)|
2|pz(r2 + dij)|

2

|r1 − r2|
, (2.10)

where |dij| is the distance of two carbon atoms and can be estimated by the C−C bond

length (1.4
o

A) and the geometry of the molecule. In this work, we want to calculate
transport properties of the molecule in a three terminal setup. Therefore, we include
the effect of a gate electrode into this model. The energy shift due to the gate is
assumed to be linear in the gate voltage and proportional to the number of electrons
N on the system:

Hgate = N (µ0 − eκVg) = ξ
M
∑

i=1

∑

σ

d†iσdiσ, (2.11)

where κ is a conversion factor, and the zero of ξ is defined as the point where the gate
voltage is equal to the equilibrium chemical potential µ0 of the leads. Eventually, we
arrive at the final definition for the PPP-Hamiltonian HPPP = H +Hgate:

HPPP = ξ
M
∑

i=1

∑

σ

d†iσdiσ + b
M
∑

i=1

∑

σ

(

d†iσdi+1σ + d†i+1σdiσ

)

(2.12)

+ U

M
∑

i=1

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

+
1

2

∑

i6=j

Vij

(

ni↑ + ni↓ − 1
)(

nj↑ + nj↓ − 1
)

.

In solid state theory, a formally equivalent Hamiltonian with nearest neighbor hopping,
on-site and intersite Coulomb interaction is also known as the extended Hubbard
model.

2.2 The parameters of HPPP

Typically, the parameters b and U are not explicitly calculated. Instead, the parametriza-
tion of the PPP model is optimized by fitting its prediction to the known experimental
excitation energies of benzene in the gas phase. Bursill et al. [50] estimated U and b
to be 10.06eV and −2.539eV, respectively. Other groups find slightly different values
[51, 52], but in the same order of magnitude. For the intersite interaction, an inter-
polation between long range 1/r behavior and short range behavior which models the
shape of the atomic orbitals is made. One example of such an interpolation is the
Ohno parametrization [53]

Vij =
U

√

1 + α|dij|2
, (2.13)
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where α =
(

4πǫ0U
e2

)2
, thus ensuring that Vij →

e2

4πǫ0|d|ij
as |dij| → ∞.

Experiments on organic molecules have shown that the so-called addition energy, which
is the difference between the ionization potential and the electron affinity, is heavily
reduced in single-molecule junctions compared to its gas phase value [54, 55, 28]. This
observation is attributed to a screening of the Coulomb repulsion on the molecule
due to the polarizable environment, namely the metallic leads and also the dielectric
substrate that forms the base in many single-molecule junctions. Kaasbjerg et al.
gave a quantitative estimate of this effect for an OPV-5 molecule in a single molecule
junction, and showed that the reduction of the addition energy is not only due to this
effect, but also due to a closing of the HOMO-LUMO gap in polarizable environments
[56]. Accordingly, we expect a reduction of the parameters of HPPP compared to their
gas phase value, in particular of the on-site interaction U .

2.3 Numerical diagonalization of HPPP

Since for every site there are four different possible configurations (|0〉, | ↑〉, | ↓〉, | ↑↓〉),
the Fock space has the dimension 4M (= 4096 for benzene), which requires in general
a numerical treatment. In this section, we describe briefly how to represent both the
states and the operators in an organized and manageable way that allows book-keeping
of the states and can be implemented numerically. Any state in the localized basis can
be written as a series of creation operators acting on the vacuum state |0〉. The anti-
symmetry of this wave-function is assured by the fermionic commutation relations of
the operators. The ordering of the operators has to be established to define the states
uniquely. Conventionally, we order the operators first by their spin index and then by
their site index, so that for a generic state with three spin up and three spin down
electrons

d†i↑d
†
j↑d

†
k↑d

†
i′↓d

†
j′↓d

†
k′↓|0〉, (2.14)

i < j < k and i′ < j′ < k′. This state can be as well represented in occupation
number representation (see Table 2.1) as a vector with 2M entries viσ, where the first
M entries ni↑ correspond to the spin up orbitals at site 1 to M and the entries M + 1
to 2M to the spin down orbitals. niσ can either be 1, if there is an electron created in
this orbital, or 0 if there is no electron. The above state (let’s say for example M = 6,
{i, j, k} = {2, 3, 5} and {i′, j′, k′} = {1, 3, 5}), would have n2↑ = n3↑ = n5↑ = 1 and
n1↓ = n3↓ = n5↓ = 1. In Dirac notation it would read |011010101010〉. The states
can most easily be labeled with a unique key number by transforming the “binary”
number n1↑ . . . n6↑n1↓ . . . n6↓ = 011010101010 into an decimal number, in this case

0 · 20 +21 +0 · 22 +23 +0 · 24 +25 +0 · 26 +27 +0 · 28 +29 +210 +0 · 211 = 1706. (2.15)

In this way, every state in the localized basis can be encoded in an integer number from
0 to 4M −1 = 22M −1. This number can be used for book-keeping. The impact of any
operator that consists of combinations of creation and annihilation operators on these
states can easily be described, just by taking into account the fermionic commutation
relations, so that we obtain the matrix representation of these operators (e.g. HPPP,
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Slater determinant: d†2↑d
†
3↑d

†
5↑d

†
1↓d

†
3↓d

†
5↓|0〉

occupation numbers:
site i: 1 2 3 4 5 6
ni↑: 0 1 1 0 1 0
ni↓: 1 0 1 0 1 0

binary: 011010101010

key: 1706

Table 2.1: Different representations of a localized state

d†iσ, diσ) in the localized basis. Since the Hamiltonian conserves the particle number
and the z-component of the spin, it is convenient to sort the states according to
these quantum numbers, to obtain a block structure in the matrices. Afterwards, the
Hamiltonian can be diagonalized with the help of standard software packages (Matlab,
LAPACK, etc.) and all other operators are transformed to the eigenbasis.
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Figure 2.2: Spectrum of HPPP calculated for the parameters U = 10eV , b = −2.5eV .
Only nearest-neighbor intersite interaction is taken into account with the value V =
6eV . The states are sorted according to their particle number on the x-axis. For
N = 6, the π-electron system is filled and the molecule is neutral. Upper panel:
Spectrum for ξ = 0. Lower panel: Spectrum for ξ = −4.5eV . This demonstrates the
influence of a gate electrode on the spectrum of the molecule. The energies of states
with different particle numbers are shifted with respect to each other.





Chapter 3

Transport through interacting
quantum dots

Quantum dots are small electronic islands in which the motion of the electrons is
confined in all three spatial directions. Due to the small (nanometer) length scales,
the Coulomb interaction between the electrons becomes important and gives rise to
intricate effects in experiments where electron transport through the island is studied.
In this chapter, we introduce the physics of Coulomb-blockade in quantum dots, which
is needed to understand the results of this work discussed in later chapters.
Quantum dots have been realized in several different ways, for example in semicon-
ductor heterostructures, where metallic electrodes could be defined on top of a two
dimensional electron gas, or in other approaches, where carbon nanotubes or single
molecules were used to bridge the gap between two leads. Molecules are characterized
by a discrete vibrational spectrum, which can serve as a fingerprint of the molecule in
the current-voltage characteristics obtained in single-molecule junctions [55]. However,
the interplay between electronic and vibrational degrees of freedom is not the topic
of this thesis. Instead, we focus on transport through nanoscale objects with a rather
complex electronic spectrum (see e.g. Figure 2.2) that can be attributed either to a
molecule or for example to a complex multiple quantum dot structure, and discuss
effects arising from the electronic problem only.

Figure 3.1: Sketch of a quantum dot setup. The quantum dot (QD) is weakly contacted
to source and drain leads and capacitively coupled to a gate electrode.
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3.1 Quantum dot physics

3.1.1 Sequential tunneling - Coulomb blockade

In a typical setup, one has source and drain leads with a continuous density of states
weakly coupled to central conducting system with a discrete energy spectrum, usually
called “quantum dot,” the latter capacitively coupled to a gate electrode, see Fig-
ure 3.1. Weak coupling means that electrons can tunnel between leads and dot, but
it implies also that the time between two tunneling events is large compared to the
duration of a tunneling event, so that the number of electrons N on the dot is well
defined. This regime is called sequential tunneling regime. Quantum dot devices are
often called “single electron transistors”, because the underlying physics can be un-
derstood in terms of single electron tunneling events. This is not to say that quantum
dots can be described within a single-particle picture, because the Coulomb interac-
tion, which is an archetypal example of a many-body interaction, plays a crucial role
in these systems.
To understand if a tunneling process is possible, we have to take into account Pauli’s
exclusion principle and to analyze the energetics of the overall system before and after
the tunneling. Essentially, the energy is conserved by the tunneling.
We label the states in the spectrum of the dot with the particle number N and with
a running index i = 0, 1, 2... for each particle number, so that EN

0 is the N -particle
ground state, EN

1 is the first excited state, and so on. Consider now the situation
where the dot is in the N -electron ground state before the tunneling event. The
(non-interacting) leads are filled with electrons up to their Fermi energy EF

s/d which
coincides with the electrochemical potential µs/d at zero temperature. An electron
with energy ǫ ≤ EF

α from lead α can tunnel in the N + 1-particle ground state on the
dot, when the condition EN+1

0 − ǫ = EN
0 is fulfilled. It is now convenient to introduce

the N +1-particle chemical potential of the dot as µN+1 = EN+1
0 −EN

0 . The condition
for adding one more electron in a quantum dot with N -particles from a lead with
Fermi energy EF

α reads then
EF

α ≥ µN+1. (3.1)

To realize electron transport through a quantum dot, electrons must be able to tunnel
onto the dot from one lead (lets say source) and to tunnel out into some unoccupied
state in the other (drain) lead. Under the constrictions that the tunneling out process
requires unoccupied states above the Fermi energy in the leads, and that the tunneling
process is elastic, we find the condition to go from the N +1- to the N -particle ground
state by tunneling out in the drain as µN+1 ≥ EF

d . The leads will relax into the thermal
equilibrium configuration very fast, in any case before the next tunneling event will
take place. The condition to transport an electron from source to drain lead at zero
temperature therefore reads

EF
s ≥ µN+1 ≥ EF

d . (3.2)

If this condition is fullfilled, one can speak of a transport channel available in the bias
window. A sketch of the chemical potentials of leads and dot in a blockade situation
and at resonance where current can flow is given in Figure 3.2.
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Figure 3.2: Sketch of the electrochemical potentials of leads and dot. In a blockade
situation, the N -particle chemical potentials of the dot are not in the transport window
between µs and µd (panel a). This can be achieved by varying a gate voltage (panel
b). In this situation, current from the source to the drain lead can flow as a series of
sequential tunneling events where the electron number on the dot changes back and
forth between N and N − 1.

As it can be seen from the definition of Hgate in equation (2.11), the chemical potential
of the dot is linear in the gate voltage Vg. The Fermi energy of the leads, on the other
hand, can be shifted by the bias voltage Vb. For convenience, we always split the bias
symmetrically, such that the Fermi energy of the source is by µ0 + Vb

2
, the one of the

drain by µ0−
Vb

2
. Thus, the conditions EF

s = µN+1 and µN+1 = EF
d can be represented

by two lines with slope ±2κVg that cross each other at the point

Vg =
EN+1

0 (ξ = 0) − EN
0 (ξ = 0)

eκ
, Vb = 0 (3.3)

in a Vb-Vg-plot. Together with similar conditions from situations where the dot is
filled with a different number of electrons, one gets a diamond-shaped pattern. Inside
the diamonds, transport is blocked and the electron number can not change. On the
outside, current can flow as a series of sequential tunneling events that change the
number of electrons on the dot by ±1. The current-voltage characteristics of quantum
dots are typically presented in such “charge stability diagrams,” where the current is
color-coded and plotted against both gate and bias voltage. Very often the differential
conductance dI/dV is plotted instead of the current. The resulting graph is called
“stability diagram.” The width of a diamond on the Vg-axis depends on the gate
coupling factor κ. However, since also the slope of the lines depends on this factor, the
height of the diamonds depends on the energy spectrum of the quantum dot only and
not on external coupling parameters. In particular, the N -particle addition energy UN

can be assigned to the height of theN -particle diamond divided by the charge quantum
e. UN is defined as the difference of the ionization potential IP = EN−1

0 −EN
0 = −µN

and the electron affinity EA = EN
0 − EN+1

0 = −µN+1 and can be expressed as

UN = IP − EA = EN+1
0 + EN−1

0 − 2EN
0 . (3.4)
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In this way, current measurements as a function of both gate and bias voltage act as
spectroscopic tool and provide detailed information about the central quantum dot
system. The fact that µN+1 > µN and that one therefore sees consecutive diamonds
in the stability diagram is a consequence of the Coulomb repulsion of the electrons.
That is why the diamond structures we discussed above are referred to as Coulomb
diamonds. The energy needed to fill the quantum dot with one more electron is called
addition energy.
Within the so-called “constant interaction model”, the addition energy is associated
with the charging of a capacitor and given by the classical expression

EC =
e2

2C
, (3.5)

where C is the capacitance of the device. As such EC is known as charging energy.
This model yields a diamond structure where all diamonds have the same height and
width, given that the single-particle level spacing ∆(N) is negligible compared to EC .
It works well for metallic and semiconducting quantum dots containing a large number
of electrons. Sometimes, e.g. for nanotubes, this model is extended to incorporate also
the discreteness of the single particle level spacing, which yields diamonds of different
sizes EC + ∆(N). In benzene however, the complicated interplay between electron
hopping, on-site and intersite electron interaction makes it impossible to estimate the
electronic spectrum just by taking into account the constant interaction model on top
of the single-particle spectrum. We find that apart from the particle-hole symmetry, no
regularities in the diamonds can be observed and that all the diamonds have different
sizes. We keep in mind though, that Coulomb interaction and charging of the molecule
leads to the characteristic diamond pattern.
At zero temperature, the chemical potential in the leads coincides with the energy
of the highest occupied state, the Fermi energy. At finite temperatures, this is no
longer true, since there are occupied states in the leads in an energy range of a few
kBT above the chemical potential and unoccupied states in the same range below the
chemical potential. To observe Coulomb blockade effects, the temperature must be so
small that the energy scale kBT associated with the temperature is much smaller than
the addition energies UN . If this is true, it is convenient to express the condition for
transport not in terms of the Fermi energy, but in terms of the chemical potential of
the leads:

µs & µN+1 & µd, (3.6)

where the & symbol indicates that the onset of transport is already a few kBT before
the actual resonance. At zero temperature, the current-voltage curve would increase
step-like (“Coulomb staircase”) when a new channel enters the bias window, resulting
in δ−like peaks in the differential conductance. At finite temperatures these steps are
smeared out (the peaks in the dI/dV are broadened) over an energy range of ∼ kBT .
So far, only ground state transitions have been considered. Of course, a sequential
tunneling process can as well involve one or more excited states. Again, one has
to compare the energies of the system before and after the tunneling. Defining a
generalized N + 1-particle chemical potential as µN+1

ij = EN+1
i − EN

j , one finds that
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Figure 3.3: Charge stability diagram obtained for benzene with the parameters as used
in Figure 2.2. Only ground states and first excited states are included. Ground state
transitions mark the borders of the the red diamonds. Inside, no current can flow and
the charge on the dot is stable. The six-electron diamond around zero gate voltage,
corresponding to the neutral molecule, is by far the largest.
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a tunneling process from an N -particle state with energy EN
j to an N + 1-particle

state with energy EN+1
i is possible if µs & µN+1

ij and the reverse process is possible

if µN+1
ij & µd. In stability diagrams, one can therefore see additional lines indicating

peaks in the dI/dV that correspond to transitions between excited states. These lines
cross the borders of the charge diamonds, however, they are not seen inside, because
inside the diamonds only groundstates can be populated. This can be understood
by the following argument: Imagine that one has prepared the quantum dot in an
excited N -particle state with energy EN

j and the bias voltage is zero, meaning that

µs = µd = µ0. Now, after two consecutive tunneling events (from EN
j to EN±1

i and then

from EN±1
i to EN

j′ ), the dot will be in a state with energy EN
j′ , with j′ ≤ j. This follows

from the conditions (for the case from going to N+1) µs ≥ µN+1
ij and then µs ≤ µN+1

ij′ ,

which implies µN+1
ij′ ≥ µN+1

ij and therefore j′ ≤ j. In general, tunneling events can only
decrease the energy of the central system with respect to the Fermi energy of the leads.
In other words, even if the quantum dot is in an excited state at some initial time,
consecutive tunneling events that do not contribute to the stationary current (one can
also think of other relaxation processes) will bring it into the ground state, from where
sequential tunneling is energetically forbidden at small bias values. Only if the bias
is high enough so that current can flow, this will lead to a finite average population
of excited states if the condition µs ≥ µN+1

ij is fulfilled, and the lines indicating this
condition in the stability diagram will be observed in a measurement.
The charge stability diagram of benzene with the parameters as in Figure 2.2 is shown
in Figure 3.3. For clarity, only groundstate transitions and groundstate-first excited
state transitions are taken into account. The latter are only visible outside the stable
Coulomb diamonds.

3.1.2 Cotunneling

When the coupling between quantum dots and leads becomes stronger, the time be-
tween two tunneling events decreases. At some point, two or more tunneling events
overlap, and these so-called cotunneling events cannot be regarded as consecutive indi-
vidual tunneling processes. In a cotunneling process, an electron tunnels in or out the
dot, leaving the dot in an intermediate virtual state, which can have a higher energy
than the initial state. From this intermediate state, the dot changes back into the
state where it was before or to any other energetically accessible state. Cotunneling
of two electrons can leave the number of electrons on the quantum dot unchanged, or
change it by ±2. Furthermore, cotunneling can be either elastic or inelastic. Elastic
means that the energies of the initial and final electron states in the leads are the
same, inelastic means that these energies are different. In the latter case, this energy
has been transferred to the dot and leaves it in an excited state. In quantum dots,
this energy transfer can only be in discrete amounts given by the dots’ spectrum. In
transport experiments, inelastic cotunneling events can be observed as horizontal lines
in the stability diagrams inside the Coulomb diamonds at bias values that correspond
to the excitation energy. A more detailed introduction to cotunneling in interacting
mesoscopic systems can be found in the textbook by Bruus and Flensberg [57].
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3.1.3 The Kondo effect

For even larger dot-lead coupling, the Kondo effect can be observed in quantum dots. It
is an interesting many-body phenomenon, widely studied in condensed matter physics,
which arises from the interplay between delocalized and localized electrons. It was
first used by Jun Kondo in 1964 to explain the low-temperature resistivity minimum
observed in certain magnetic alloys [58]. He explained that particular feature in terms
of an anti-ferromagnetic exchange interaction between the spins of the delocalized
conduction electrons and the spins of the electrons localized at the magnetic impurities.
The Kondo effect has created enormous attention since, with the help of modern nano
fabrication methods, it was observed in quantum dot structures with intermediate
dot-lead coupling [59]. In quantum dots in the Coulomb blockade regime filled with
an odd number of electrons, the interaction of the delocalized lead electrons with the
unpaired spin on the dot leads to a sharp conductance peak at zero bias when the
temperature is lower than a characteristic energy scale, the Kondo temperature TK ,
which is related to the dot-lead coupling strength and to some intrinsic properties of
the leads like the density of states and the width of the conduction band. It has been
observed in a variety of quantum dots made out of a wide class of materials, e.g in
semiconducting [59], nanotube [60] and single-molecule [61] quantum dots.

A series of tutorial articles on different aspects of Coulomb blockade physics can be
found in the book edited by Grabert and Devoret [62]. A recent review on single-
electron effects in transport through nanoscale devices like quantum dots or single
molecule junctions is e.g. [63]. In Figure 3.4, the results of a measurement on a single-
walled carbon nanotube (SWCNT) quantum dot [64] are shown. Coulomb diamonds
as features of sequential tunneling as well as cotunneling lines and Kondo resonances
can be clearly seen.

3.2 Model Hamiltonian

After having provided some ideas of the phenomenology of quantum dots in the pre-
vious section, we want to give a more qualitative description of the current-voltage
characteristics. To do so, we introduce the Hamiltonian of the overall system as

H = HQD +Hleads +HT, (3.7)

where HQD describes the quantum dot structure. In the case of a benzene junction
HQD = HPPP. The effect of the gate voltage is already incorporated in HQD (see
chapter 2). Hleads describes both the source and drain contact as a Fermi gas of
noninteracting particles

Hleads =
∑

α k σ

(ǫk − µα)c†αkσcαkσ, (3.8)

where α = L,R stands for the left or right lead. As a convention, we identify the
source with the left and the drain with the right lead and, and in particular µs = µL,
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Figure 3.4: Bias spectroscopy plot of a single-walled carbon nanotube (SWCNT) quan-
tum dot for −10V < Vg < 10V (upper panel) that shows clear features of sequential
tunneling, cotunneling and the Kondo effect. The Coulomb diamonds are seen for
almost every added electron (285), and 88 odd-occupancy diamonds exhibit a zero
bias Kondo resonance. Lower panel: blow-up of five Coulomb diamonds that show
inelastic cotunneling and for odd occupancy Kondo resonances. Experiment by Holm
et al. [64].
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µd = µR. The chemical potentials µα of the leads depend on the applied bias voltage
µs,d = µ0 ± eVb

2
, so that the difference in the chemical potentials of the leads is given

by the bias voltage µs−µd = eVb. In the following we will measure the energy starting
from the equilibrium chemical potential of the leads µ0 = 0. The coupling to source
and drain leads is described by the tunneling Hamiltonian

HT = t
∑

αkσ

(

d†ασcαkσ + c†αkσdασ

)

, (3.9)

where we define d†ασ as the creator of the electron with spin quantum number σ = ±1
2

in the carbon atom (in case of a molecular junction) or quantum dot (in case of coupled
multiple quantum dots) which is closest to the lead α. To avoid confusion with the
reduced density matrix σ(t) introduced in the next section, we will use from now on
the letter τ for the quantum number of the operator Sz.

3.3 Generalized master equation - The dynamics

of the reduced density matrix

The electron dynamics of the quantum dot is obtained by solving the equation of
motion for the reduced density matrix (RDM). In this section, we give a derivation
of this generalized master equation (GME), mainly following [17, 18, 65, 66] and the
textbook of Blum [67]. Our starting point is the Liouville equation for the time
evolution of the density matrix ρ(t) of the overall system consisting of the leads and
the dot. The tunneling Hamiltonian HT is treated as a perturbation. We calculate
the time dependence of ρ(t) in the interaction picture, i.e. we define

ρI(t) = UI (t, t0)ρ(t0)U
†
I (t, t0), (3.10)

with the time evolution operator UI (t, t0), given by

UI (t, t0) = exp

(

i

~
(HQD +Hleads) (t− t0)

)

exp

(

−
i

~
(HQD +Hleads +HT) (t− t0)

)

,

(3.11)
and t0 being some reference time. Using (3.11) and (3.10) the equation of motion
becomes

i~
∂ρI(t)

∂t
=
[

HI
T(t), ρI(t)

]

, (3.12)

with HI
T(t) = exp

(

i
~
(HQD +Hleads) (t− t0)

)

HT exp
(

− i
~
(HQD +Hleads) (t− t0)

)

. By
integrating over time, we get

ρI(t) = ρI(t0) −
i

~

∫ t

t0

dt1
[

HI
T(t1), ρ

I(t1)
]

, (3.13)

and reinserting (3.13) into (3.12) yields

ρ̇I(t) = −
i

~

[

HI
T(t), ρI(t0)

]

+

(

i

~

)2 ∫ t

t0

dt1
[

HI
T(t),

[

HI
T(t1), ρ

I(t1)
]]

. (3.14)
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The dynamics of electron transport is determined by the chemical potentials of the
two leads, but more notably by the configuration of the central system. That is
why, from now on, we treat the time evolution of the reduced density matrix (RDM)
σ = Trleads{ρ

I(t)}, which is formally obtained from (3.14) by tracing out the lead
degrees of freedom: σ̇ = Trleads{ρ̇

I}. The trace over lead states in equation (3.14)
reads

σ̇(t) = −

(

1

~

)2 ∫ t

t0

dt1Trleads

[

HI
T(t),

[

HI
T(t1), ρ

I(t1)
]]

. (3.15)

The first term in equation (3.14) drops out, because leads and dot can be seen at as
statistically independent at time t0, which is natural if HT is switched on a that time.
Under the trace, the product HI

T(t)ρI(t0) vanishes, because HT changes the number
of particles in the leads. Up to this point, the equation is exact.
To simplify equation (3.15), several well defined approximations can be made. First,
the leads can be considered as large, macroscopic objects compared to the dot. The
influence of the central system on the leads is only marginal, because of the difference
in size and the tunneling between leads and dot is weak. From now on, we treat the
leads as reservoirs which stay in thermal equilibrium and we write the density matrix
of the overall system as a product of the system and leads density matrices

ρI(t) = σ(t)ρleads = σ(t) ⊗ ρsρd, (3.16)

where ρs and ρd are time independent and given by the thermal equilibrium expression

ρs/d =
exp

(

−β
(

Hs/d − µs/dNs/d

))

Zs/d

, (3.17)

with β = 1
kBT

the inverse temperature. It can be formally shown that the factorization
(3.16) corresponds to a second order treatment in the perturbation HT [67].
Second, we see that equation (3.15) is nonlocal in time, which means that σ̇(t) at the
time t depends on σ(t1) at all times between t0 and t. An equation local in time is ob-
tained by introducing the Markov approximation which replaces ρI(t1) = σI(t1)⊗ρsρd

by σI(t)⊗ρsρd. This means, that the time evolution of σI(t) is determined by σI(t) at
the same time only. This approximation is motivated by the following argument: Equa-
tion (3.15) contains two-time correlation function of the form Trleads{ρleads

∏

Bleads},
where

∏

Bleads is a product of two lead operators at different times. These correlation
functions rapidly decay on the time scale of the dot dynamics so that they can be
replaced by δ-functions [37]. In particular the Markov approximation becomes exact
in the stationary limit (t → ∞) we will focus on. Since we are interested in the long
term behavior of the system, we set t0 → −∞, replace t1 by t− t2 and finally obtain
the generalized master equation

σ̇(t) = −

(

1

~

)2 ∫ ∞

0

dt2Trleads

[

HI
T(t),

[

HI
T(t− t2), σ

I(t)ρleads

]]

. (3.18)

The reduced density operator σ is defined on the Fock space of the quantum dot,
yet we can neglect coherences (off-diagonal elements of the density matrix) between
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states with different particle number, since they are decoupled from the dynamics
of the populations. Coherences between states with same number of particles but
with different energy can be neglected, when their energy difference is larger than the
lead-dot coupling strength. Under this conditon, they are irrelevant due to their fast
fluctuation compared to the dynamics of the system. If two states are either exactly
degenerate or their energy difference is large, then the secular approximation can be
applied, meaning that only coherences between degenerate states are kept. In case
of quasi degenerate states, where the energy difference is smaller than the lead-dot
coupling strength, also coherences between these states must be taken into account.
We will discuss such cases in chapter 4.
Here, we show the GME for the case where the secular approximation is valid. To
proceed, we project equation (3.18) into the subspace of N -particle and energy E. To
do so, we introduce the projection operator PNE :=

∑

ℓτ |N E ℓ τ〉〈N E ℓ τ |. The sum
runs over the orbital and spin quantum numbers ℓ and τ , respectively. We find for the
block of the density matrix with energy E and particle number N , σNE = PNE σPNE

the GME

σ̇NE = −
∑

ατ

Γα

2

{

PNEdατ

[

f+
α (HQD − E) −

i

π
pα(HQD − E)

]

d†ατ σ
NE + (3.19)

+PNEd
†
ατ

[

f−
α (E −HQD) −

i

π
pα(E −HQD)

]

dατ σ
NE +H.c.

}

+
∑

ατE′

ΓαPNE

{

d†ατf
+
α (E − E ′)σN−1E′

dατ + dατf
−
α (E ′ − E)σN+1E′

d†ατ

}

PNE,

where ΓL,R = 2π
~
|tL,R|

2DL,R are the bare transfer rates with the constant densities
of states of the leads DL,R. Terms describing sequential tunneling from and to the
lead α are proportional to the Fermi functions f+

α (x) := f(x − µα) and f−
α (x) :=

1 − f+
α (x), respectively. Still in the sequential tunneling limit, but only in the equa-

tions for the coherences, one finds also terms proportional to the function pα(x) =
−Reψ

[

1
2

+ iβ
2π

(x− µα)
]

, where ψ is the digamma function. These terms are some-
times called energy non-conserving terms, because they describe virtual transitions to
states that are not energetically accessible. In contrast, the terms proportional to the
Fermi function reflect exactly the condition in equation (3.6) that was derived using
energy conservation. Both the Fermi functions and the digamma function result from
the trace over the leads degrees of freedom [65, 67, 68].
A closer analysis of the master equation allows also to formulate an expression for the
current operator. We start from the definition of the time derivative of the charge on
the quantum dot:

d

dt
〈Q〉 = Tr

{

N̂ σ̇
}

= 〈 IL + IR 〉 (3.20)

where Q =
∑

iτ d
†
iτdiτ is the operator of the charge on the quantum dot, N̂ is the

particle number operator and IL,R are the current operators at the left(right) contact.
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Conventionally, in the definition of IL,R we assume the current to be positive when it
is increasing the charge on the molecule. Thus, in the stationary limit, 〈 IL + IR 〉 is
zero. We write this expression in the basis of the subspaces of N particles and energy
E:

〈 IL + IR 〉 =
∑

NE

Tr
{

N̂PNEσ̇PNE

}

=
∑

NE

Tr
{

Nσ̇NE
}

. (3.21)

Further we insert (3.19) in (3.21) and take advantage of the cyclic properties of the
trace to find :

〈 IL + IR 〉 = (3.22)

∑

NE

∑

ατ

NΓαTr

{

−
[

f+
α (HQD − E)d†ατσ

NEdατ + f−
α (E −HQD)dατσ

NEd†ατ

]

+
∑

E′

PNE

[

f+
α (E − E ′)d†ατσ

N−1E′

dατ + f−
α (E ′ − E)dατσ

N+1E′

d†ατ

]

}

.

Notice that the energy non-conserving contributions drop from the expression of the
current operator. Still they contribute to the average current, because they determine
the solution of the GME, which is entering in the current formula in any case. Since
E and E ′ are dummy variables, we can switch them in the summands containing E ′.
Applying the relation:

∑

NE′

Tr {PNE′ g(E ′)} = Tr {g(HQD)} ,

where g(E ′) is a generic function, we substitute E ′ with HQD in equation (3.23).
Further we can conveniently rearrange the sum over N , arriving at the expression for
the current:

〈 IL + IR 〉 =
∑

NE

∑

ατ

ΓαTr

{

d†ατσ
NEdατ

[

−Nf+
α (HQD−E)+(N+1)f+

α (HQD−E)
]

+dατσ
NEd†ατ

[

−Nf−
α (E−HQD)+(N−1)f−

α (E−HQD)
]

}

.

(3.23)

This relation can be further simplified in order to identify the current operators. The
one corresponding to the left contact is e.g.

IL = ΓL

∑

NEτ

PNE

[

dLτf
+
L (HQD − E)d†Lτ − d†Lτf

−
L (E −HQD)dLτ

]

PNE. (3.24)

With this relation we can calculate the stationary current as the average 〈IL〉 =
Tr{σstatIL} = −〈IR〉, with σstat as the stationary density operator which is obtained
by setting σ̇NE = 0 in equation (3.19) and solving the remaining equation for σNE

under the condition that Trσ = 1.
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3.4 GME and current in the non-secular approxi-

mation

Coherences between states with different energies can become important, when the
difference in their energies has the same order of magnitude as the coupling to the leads.
In this case the secular approximation cannot be applied. We report here the general
expression for the generalized master equation and the associated current operator
in the Born-Markov approximation and under the only further condition (exact in
absence of superconductors) that coherences between states with different particle
number are decoupled from the populations and vanish exactly in the stationary limit:

σ̇N
EE′ = −

i

~
(E − E ′)σN

EE′ + (3.25)

−
∑

ατF

Γα

2
PNE

{

d†ατ

[

−
i

π
pα(F −HQD) + f−

α (F −HQD)

]

dατ+

dατ

[

−
i

π
pα(HQD − F ) + f+

α (HQD − F )

]

d†ατ

}

σN
FE′

−
∑

ατF

Γα

2
σN

EF

{

d†ατ

[

+
i

π
pα(F −HQD) + f−

α (F −HQD)

]

dατ+

dατ

[

+
i

π
pα(HQD − F ) + f+

α (HQD − F )

]

d†ατ

}

PNE′

+
∑

ατFF′

Γα

2
PNE

{

d†ατσ
N−1
FF′ dατ

[

+
i

π
pα(E ′ − F ′) + f+

α (E ′ − F ′)+

−
i

π
pα(E − F ) + f+

α (E − F )

]

+ dατσ
N+1
FF′ d

†
ατ

[

+
i

π
pα(F ′ − E ′) + f−

α (F ′ − E ′)

−
i

π
pα(F − E) + f−

α (F − E)

]}

PNE′

where σN
EE′ is, differently to equation (3.19), in the Schrödinger picture. Equation (3.19)

represents a special case of equation (3.25) in which all energy spacings between states
with the same particle number are either zero or much larger than the level broadening
~Γ. Equation (3.25) is derived in the weak coupling limit and bridges all the regimes
from exact degeneracies to weakly and completely broken degeneracies.
The problem of a master equation in presence of quasi-degenerate states in order to
study transport through molecules has been recently addressed in the work of Schultz
et al. [69]. The authors use a different approach, denoted “singular coupling limit”
in the literature, to derive an equation for the density matrix in presence of quasi-
degenerate states.
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The current operators associated to the master equation just presented read:

Iα =
Γα

2

∑

NEFτ

PNE

{

d†ατ

[

+
i

π
pα(E −HQD) + f−

α (E −HQD)

]

dατ

+ d†ατ

[

−
i

π
pα(F −HQD) + f−

α (F −HQD)

]

dατ

− dατ

[

+
i

π
pα(HQD − E) + f+

α (HQD − E)

]

d†ατ

− dατ

[

−
i

π
pα(HQD − F ) + f+

α (HQD − F )

]

d†ατ

}

PNF.

(3.26)

Nevertheless, within the limits of derivation of the master equation, this formula can
be simplified. Actually, if E − F ≤ ~Γ, then F can be safely substituted with E in
the argument of the digamma functions and of the Fermi functions, with an error of
order E−F

kBT
< ~Γ

kBT
which is negligible (the generalized master equation that we are

considering is valid for ~Γ ≪ kBT ). The approximation E ∼ F breaks down only
if E − F ∼ kBT , but this implies E − F ≫ ~Γ which is the regime of validity of
the secular approximation. Consequently, in this regime, terms with E 6= F do not
contribute to the average current because they vanish in the stationary density matrix.
Ultimately we can thus reduce the current operators to the simpler form:

Iα = Γα

∑

NEτ

PNE

{

+ d†ατ

[

f−
α (E −HQD)

]

dατ

− dατ

[

f+
α (HQD − E)

]

d†ατ

}

,

(3.27)

which is almost equal to the current operator corresponding to the secular approxi-
mation. The only difference is here the absence of the second projector operator that
allows contributions to the current coming from coherences between different energy
eigenstates.

3.5 Extension to fourth order

One can extend this so-called Bloch-Redfield approach to fourth or higher orders in
HT to describe cotunneling, pair tunneling and other effects [37]. A different approach
to derive the GME is a real-time diagrammatic approach developed by Schoeller et al.
[70, 71, 72]. Following this theory, one traces out the leads degrees of freedom at the
earliest possible stage and derive a formally exact equation of motion for the reduced
density matrix (RDM) of the system. Koller et al. [73] showed the equivalence of this
diagrammatic approach with the Bloch-Redfield approach described above.
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While these theories have the advantage of being exact to a desired order, they are
rather involved and already at fourth order in HT the number of diagrams is quite
large such that a continuation to higher orders seems to be unpractical.
In this thesis, the focus is mainly on effects arising from sequential tunneling processes
which correspond to second order in HT. Cotunneling processes are described with a
simpler approach based on the T -matrix formalism in chapter 6.





Chapter 4

A benzene interference
single-electron transistor

Interference effects strongly affect the transport characteristics of a benzene single-
electron transistor (SET) and for this reason we call it interference SET (ISET). In this
chapter, we discuss transport through such a device, where the molecule is attached to
the leads in two different configurations. In both cases, we assume that tunneling on
and off the molecule is only possible from the pz-orbitals localized at the atoms that
are closest to source and drain leads. In PARA configuration, atoms on opposite ends
of the molecule are coupled to the leads (we label them as atoms 1 and 4, counting
clockwise around the molecule and starting at the atom which is closest to the source),
whereas in META configuration the contact atoms are atoms 1 and 3 (see Figure (4.1)).

Figure 4.1: Schematic representation of the two different setups for the benzene SET.
In PARA configuration, atoms on opposite ends of the molecule are coupled to the
leads, whereas in META configuration the contact atoms are next-nearest neighbors.
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Strong differences are visible in the stability diagrams obtained for the two config-
urations. Striking are the selective reduction of conductance and the appearance of
regions of interference driven current blocking with associated negative differential
conductance (NDC) when changing from the para to the meta configuration.
NDC and current blocking caused by interference take place any time a SET presents
an N -particle non-degenerate ground state and two degenerate N + 1-particle ground
states (or two N −1-particle ground states) such that the ratio between the transition
amplitudes γiα (i = 1, 2, α = L,R) between those N - and N + 1-particle states is
different for tunneling at the left (L) and at the right (R) lead:

γ1L

γ2L

6=
γ1R

γ2R

. (4.1)

Due to condition (4.1) there exist linear combinations of the degenerate N +1-particle
states which are coupled to one of the leads but not to the other. The state which
is decoupled from the right lead represents a blocking state for the current flowing
L → R since electrons can populate this state by tunnelling from the left lead but
cannot tunnel out towards the right lead. Viceversa the state decoupled from the left
lead is a blocking state for the current R → L. Typically these two blocking states
are not orthogonal and thus cannot form a valid basis set together. The basis set
that diagonalizes the stationary density matrix (what we call in the manuscript the
”physical basis”) contains at large positive biases the L→ R blocking state and is thus
different from the physical basis at large negative biases which necessarily contains the
R → L blocking state. More generally the ”physical basis” depends continuously on
the bias. Thus only a treatment that includes coherences in the density matrix can
capture the full picture at all biases. By neglecting for simplicity the spin degree of
freedom, the 7-particle ground state of benzene is two times degenerate while the 6-
particle one is non-degenerate. If we choose for the 7-particle states the eigenstates of
the z-projection of the angular momentum we obtain the relation:

γ1L

γ2L

=
γ1R

γ2R

e4iφ, (4.2)

where φ is the angle between the left and the right lead. Thus in the meta configuration
(φ = 2π/3) the condition (4.1) is fullfilled while in the para (φ = π) the amplitude
ratios are equal. This condition implies that, in the para configuration one of the
7-particle states is decoupled from both leads at the same time and can thus (in first
approximation) be excluded from the dynamics. In contrast, in the meta configuration,
the linear combination of uniformly distributed eigenstates of the angular momentum
creates states with a peculiar interference pattern. The position of their nodes allows
to characterize them as different blocking states.
Notice that no asymmetry in the tunnelling rates, which are proportional to |γiα|

2,
is implied by (4.1). This fact excludes the explanation of the physics of interference
SET in terms of asymmetric couplings, which is used very often to explain NDC in
quantum dots. NDC can occur when the bias gets large enough so that a transport
channel involving an excited state can enter in the bias window in addition to the
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ground state channel. In general, the current increases in this situation. If the excited
state is coupled asymetrically to source and drain leads, namely there is a large tunnel
rate into the dot, but a small tunnel rate out, it will get an average population close to
one and the current will actually decrease. It will decrease because it is composed of
the transition rates between molecular states multiplied with the average population
of the initial state, so that a redistribution of average probabilities in favor of the
excited state, which can only be depopulated by a process with a small rate, leads to
a smaller current. Current suppression in sequential tunneling systems always goes
along with (almost) exclusive population of one particular state.
NDC and current blocking for benzene junctions have also been predicted in the work
of Hettler et al. [33], but in the para configuration and in presence of an external
electromagnetic field. In the para configuration one of the two degenerate 7-particle
ground states is decoupled from the 6-particle ground state at both leads at the same
time. More specifically, due to a selection rule derived in section 4.2, tunneling is
only possible from symmetric to symmetric (with respect to the plane through the
contact atoms and perpendicular to the molecule) and from anti-symmetric to anti-
symmetric states in para configuration. The electromagnetic field however, couples
symmetric and anti-symmetric states. The blocking situation comes about when an
excited 7-particle symmetric state gets populated and decays into the anti-symmetric
7-particle ground state by emitting a photon. This state can neither be depopulated
via tunneling nor decay any further and acts therefore as a blocking state.
In our work NDC occurs despite the absence of an external field and with no asymmetry
in the tunnelling rates.
In the following sections, we will discuss the symmetry properties of the isolated ben-
zene molecule and discuss the results of our transport calculations in terms of these
symmetries. At the end of this chapter, we will show that the surroundings of the
molecule in an SET setup will break the exact symmetry and therefore lift the exact
degeneracies that give rise to the interference effects. We therefore cannot use the
secular approximation any more. Our conclusion will be that also quasi-degeneracy of
two states (meaning E ′ − E . Γ) can cause interference and NDC.

4.1 The D6h point group

Benzene has a high symmetry and belongs to the D6h point group. This group consists
of all the symmetry operations that map the molecule onto itself and it obeys the four
conditions necessary to define a group in a strict mathematical sense: the completeness
of the group, the validity of the associative law, the existence of a unit element and the
existence of an inverse element for each element of the group. 24 different symmetry
operations can be distinguished. These are

1 unity operation, denoted as E in the Schoenflies system,

5 rotations about the symmetry axis perpendicular to the molecule by the angles
±2π

6
, ±2π

3
, and π, denoted as C6, C3, C2, where in Cn the rotation angle is ±2π

n
,
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Figure 4.2: Symmetry planes and axes for the D6h point group. Image generated with
the Crystal -package for Mathematica by Jörg Enderlein [74].

1 reflection about the plane of the molecule, σh,

3 reflections about planes perpendicular to the molecule and through two carbon
atoms on opposite ends of the molecule, σv,

3 reflections about planes perpendicular to the molecule and perpendicular to the
connection of two neighboring carbon atoms, σd,

3 rotations about axes lying in the molecular plane and in the plane through two
carbon atoms on opposite ends of the molecule by the angle π, C ′2,

3 rotations about axes lying in the molecular plane and in the plane perpendicular
to the connection of two neighboring carbon atoms, C ′′2 ,

4 improper rotations (rotations about the axis perpendicular to the molecular
plane by angles of ±2π

6
, ±2π

3
, followed by an reflection about that plane), S6

and S3,

1 inversion i about the center of the molecule (which is actually the improper
rotation S2).

All symmetry planes and symmetry axes contain the center of the molecule. In the
above list, these symmetry operations are already divided into classes, each corre-
sponding to a physically distinct kind of symmetry operation such as rotation of π
about equivalent twofold axes, or rotation of ±2π/6 about a six-fold axis. We make
use of the mathematical power of group theory to classify the molecular orbitals by
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their belonging to so-called irreducible representations of the point group. The irre-
ducible representations completely determine the transformation of the orbitals under
classes of symmetry operations and also specify their degeneracy. Group theory is em-
ployed as well for following the degeneracies of the energy levels when the symmetry
of the molecule is lowered by the surroundings in a SET setup.

For strict mathematical definitions of the concepts of groups, classes, reducible and
irreducible representations of groups and the conventions of the Schoenflies symmetry
notation, we refer to the textbook on group theory by Dresselhaus, Dresselhaus and
Jorio [75].

4.2 Symmetry of the benzene eigenstates

In this section, we will review the symmetry characteristics of the eigenstates of the
interacting Hamiltonian of benzene, focusing on the symmetry operations σv and Cn

which have a major impact on the electronic transport through the molecular ISET.

Table 4.1 shows an overview of the states of the neutral molecule (the 6 particle states)
sorted by Sz and symmetries. The eigenstates of the interacting benzene molecule
have either A-, B- or E-type symmetries. While orbitals having A or B symmetries
can only be spin degenerate, states with an E symmetry show an additional twofold
orbital degeneracy, essential for the explanation of the transport features occurring in
the meta configuration.

Transport at low bias is described in terms of transitions between ground states with
different particle number. Table 4.2 shows the symmetries of the ground states (and
of some first excited states) of interacting benzene for all possible particle numbers.
Ground state transitions occur both between orbitally non-degenerate states (with A
and B symmetry), as well as between orbitally degenerate and non-degenerate states
(E- to A-type states).

The interacting benzene Hamiltonian commutes with all the symmetry operations of
theD6h point group, thus it has a set of common eigenvectors with each operation. The
element of D6h of special interest for the para configuration is σv, i.e., the reflection
about the plane through the contact atoms and perpendicular to the molecular plane.
The molecular orbitals with A and B symmetry are eigenstates of σv with eigenvalue
±1, i.e., they are either symmetric or antisymmetric with respect to the σv operation.
The behavior of the E−type orbitals under σv is basis dependent, yet one can always
choose a basis in which one orbital is symmetric and the other one antisymmetric.

Let us now consider the generic transition amplitude 〈N |dατ |N+1〉, where dατ destroys
an electron of spin τ on the contact atom closest to the α lead. It is useful to rewrite
this amplitude in the form

〈N |dατ |N + 1〉 = 〈N |σ†
vσvdατσ

†
vσv|N + 1〉, (4.3)

where we have used the property σ†
vσv = 1. Since in the para configuration both

contact atoms lie in the mirror plane σv, it follows σvdασ
†
v = dα. If the participating
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N # ↑ # ↓ # states # states with a
certain symmetry

6 6 0 1 1 B1u

4 A1g

2 A2g

5 1 36 2×6 E2g

4 B1u

2 B2u

2×6 E1u

16 A1g

20 A2g

4 2 225 2×36 E2g

22 B1u

17 B2u

2×39 E1u

38 A1g

30 A2g

3 3 400 2×66 E2g

38 B1u

30 B2u

2×66 E1u

2 4 225

1 5 36
...

0 6 1

Table 4.1: Overview of the 6 particle states of benzene, sorted by Sz and symmetry.
Orbitals with A- and B-type of symmetry show no degeneracy, while E-type orbitals
are doubly degenerate.

states are both symmetric under σv, equation (4.3) becomes

〈N, sym|σ†
vdατσv|N + 1, sym〉 =

= 〈N, sym|dατ |N + 1, sym〉 (4.4)

and analogously in the case where both states are antisymmetric. For states with
different symmetry it is

〈N, sym|dατ |N + 1, antisym〉 =

= −〈N, sym|dατ |N + 1, antisym〉 = 0. (4.5)

In other terms, there is a selection rule that forbids transitions between symmetric
and antisymmetric states. Further, since the ground state of the neutral molecule
is symmetric, for the transport calculations in the para configuration we select the
effective Hilbert space containing only states symmetric with respect to σv. Corre-
spondingly, when referring to the N particle ground state we mean the energetically
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N Degeneracy Energy[eV] Symmetry Symmetry behavior
(at ξ = 0) under σv

0 1 0 A1g sym
1 2 -22 A2u sym
2 1 -42.25 A1g sym
3 4 -57.42 E1g 2 sym, [2 antisym]
4 [3] [-68.87] [A2g] [antisym]

2 -68.37 E2g 1 sym, [1 antisym]
5 4 -76.675 E1g 2 sym, [2 antisym]
6 1 -81.725 A1g sym
7 4 -76.675 E2u 2 sym, [2 antisym]
8 [3] [-68.87] [A2g] [antisym]

2 -68.37 E2g 1 sym, [1 antisym]
9 4 -57.42 E2u 2 sym, [2 antisym]
10 1 -42.25 A1g sym
11 2 -22 B2g sym
12 1 0 A1g sym

Table 4.2: Degeneracy, energy and symmetry of the ground states of the isolated
benzene molecule for different particle numbers. We choose the on-site and inter-site
Coulomb interactions to be U = 10 eV, V = 6 eV, and the hopping to be b = −2.5 eV.
Notice, however, that screening effects from the leads and the dielectric are expected
to renormalize the energy of the benzene many-body states.

lowest symmetric state. For example in the case of 4 and 8 particle states it is the
first excited state to be the effective ground state. In the para configuration also the
orbital degeneracy of the E−type states is effectively cancelled due to the selection of
the symmetric orbital (see Table 4.2).
Small violations of this selection rule, due e.g. to molecular vibrations or coupling to an
electromagnetic bath, result in the weak connection of different metastable electronic
subspaces. We suggest this mechanism as a possible explanation for the switching
and hysteretic behavior reported in various molecular junctions. This effect is not
addressed in this work.
For a simpler analysis of the different transport characteristics it is useful to introduce
a unified geometrical description of the two configurations. In both cases, one lead is
rotated by an angle φ with respect to the position of the other lead. Hence we can
write the creator of an electron in the right contact atom d†Rτ in terms of the creation
operator of the left contact atom and the rotation operator:

d†Rτ = R†
φd

†
LτRφ, (4.6)

where Rφ is the rotation operator for the anticlockwise rotation of an angle φ around
the axis perpendicular to the molecular plane and piercing the center of the benzene
ring; φ = π for the para and φ = (2π/3) for the meta configuration.
The energy eigenstates of the interacting Hamiltonian of benzene can be classified also
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in terms of their quasi-angular momentum. In particular, the eigenstates of the z-
projection of the quasi angular momentum are the ones that diagonalize all operators
Rφ with angles multiples of π/3. The corresponding eigenvalues are phase factors
e−iℓφ where ~ℓ, the quasi-angular momentum of the state, is an integer multiple of ~.
The discrete rotation operator of an angle φ = π (C2 symmetry operation), is the one
relevant for the para configuration. All orbitals are eigenstates of the C2 rotation with
the eigenvalue ±1.
The relevant rotation operator for the meta configuration correspond to an angle
φ = 2π/3 (C3 symmetry operation). Orbitals with an A or B symmetry are eigen-
states of this operator with the eigenvalue +1 (angular momentum ℓ = 0 or ℓ = 3).
Hence we can already predict that there will be no difference based on rotational
symmetry between the para and the meta configuration for transitions between states
involving A- and B-type symmetries. Orbitals with E symmetry however behave quite
differently under the C3 operation. They are the pairs of states of angular momenta
ℓ = ±1 or ℓ = ±2. The diagonal form of the rotation operator on the two-fold
degenerate subspace of E-symmetry reads:

C3 =

(

e−|ℓ|· 2π
3

i 0

0 e|ℓ|·
2π
3

i

)

(4.7)

For the two-fold orbitally degenerate 7-particle ground states |ℓ| = 2. This analysis
in terms of the quasi-angular momentum makes the calculation of the fundamental
interference condition (4.2) given in the introduction easier. In fact the following
relation holds between the transition amplitudes of the 6 and 7 particle ground states:

γℓR ≡ 〈7gℓτ |d
†
Rτ |6g〉 = 〈7gℓτ |R

†
φd

†
LτRφ, |6g〉 = e−iℓφγℓL (4.8)

and (4.2) follows directly.

4.3 Transport calculations

The results discussed here are obtained by solving equation (3.19) in the stationary
limit σ̇NE(t) = 0 and using the result in the formula for the current in chapter 3. As
input in equation (3.19), we need the eigenenergies of the isolated molecule described
by HPPP, and the matrix elements 〈NEℓτ |d†ατ ′′|N − 1E ′ℓ′τ ′〉 of the operators d†ατ that
create an electron in a pz-orbital at the contact atom to lead α, written in the eigenbasis
of HPPP . The symmetries of the eigenstates are reflected in these matrix elements.
They act as transition amplitudes for the tunneling event from the state |N − 1E ′ℓ′τ ′〉
to |NEℓτ〉. The sequential tunneling rates are of second order in these amplitudes.
In Figure 4.3 we present the stability diagram for the benzene ISET contacted in the
para (upper panel) and meta position (lower panel). Bright ground state transition
lines delimit diamonds of zero differential conductance typical for the Coulomb block-
ade regime, while a rich pattern of satellite lines represents the transitions between
excited states. Though several differences can be noticed, most striking are the sup-
pression of the linear conductance, the appearance of negative differential conductance
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Figure 4.3: Stability diagram for the benzene ISET contacted in the para (above) and
meta (below) configuration. Dot-dashed lines highlight the conductance cuts presented
in Figure 4.4, the dashed lines the regions corresponding to the current traces presented
in Figure 4.5 and Figure 4.7, the dotted line the region corresponding to the current
trace presented in Figure 4.6. The parameters used are U = 4|b|, V = 2.4|b|, kBT =
0.04|b|, ~ΓL = ~ΓR = 10−3|b|.

(NDC) and the strong suppression of the current at the right(left) border of the 7 (5)
particle diamond when passing from the para to the meta configuration. All these
features are different manifestations of the interference between orbitally degenerate
states and ultimately reveal the specific symmetry of benzene.

4.3.1 Linear conductance

We study the linear transport regime both numerically and analytically. For the an-
alytical calculation of the conductance we consider the low temperature limit where
only ground states with N and N +1 particles have considerable occupation probabil-
ities in a certain range of the gate voltage. Therefore only transitions between these
states are relevant and we can treat just the terms of equation (3.19) with N and
N + 1 particles and the ground state energies Eg,N and Eg,N+1, respectively. A closer
look at (3.19) reveals that the spin coherences are decoupled from the other elements
of the density matrix. Thus we can set them to zero, and write (3.19) in a block
diagonal form in the basis of the ground states of N and N +1 particles. Additionally,
since the total Hamiltonian H is symmetric in spin, the blocks of the GME with the
same particle but different spin quantum number τ must be identical. Finally, since
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around the resonance the only populated states are the N and N + 1 particle states,
the conservation of probability implies that:

1 =
∑

n

σN
nn +

∑

m

σN+1
mm , (4.9)

where σN
nn is the population of the N -particle ground state and n contains the orbital

and spin quantum numbers. With all these observations we can reduce (3.19) to
a much smaller set of coupled differential equations, that can be treated analytically.
The stationary solution of this set of equations can be derived more easily by neglecting
the energy non-conserving terms in (3.19). These are contained in the elements of the
GME describing the dynamics of the coherences between orbitally degenerate states.
With this simplification we derive an analytical formula for the conductance close to
the resonance between N and N + 1 particle states as the first order coefficient of the
Taylor series of the current in the bias:

GN,N+1(∆E) = 2e2
ΓLΓR

ΓL + ΓR

ΛN,N+1

[

−
f ′(∆E)

(SN+1 − SN)f(∆E) + SN

]

(4.10)

where ∆E = −Eg,N+Eg,N+1−(µ0+κeVg) is the energy difference between the benzene
ground states with N and N + 1 electrons diminished by a term linear in the gate
voltage. The derivation of this formula is rather lengthy but not difficult and thus not
given here. Interference effects are contained in the overlap factor ΛN,N+1:

ΛN,N+1 =

∣

∣

∣

∑

nmτ

〈N,n|dLτ |N+1,m〉〈N+1,m|d†Rτ |N,n〉
∣

∣

∣

2

∑

nmατ

∣

∣

∣〈N,n|dατ |N+1,m〉
∣

∣

∣

2 , (4.11)

where n and m label the SN-fold and SN+1-fold degenerate ground states with N and
N + 1 particles, respectively. In order to make the interference effects more visible we
remind that d†Rτ = R†

φd
†
LτRφ, with φ = π for the para while φ = 2π/3 for the meta

configuration. Due to the behavior of all eigenstates of Hben under discrete rotation
operators with angles multiples of π/3, we can rewrite the overlap factor:

ΛN,N+1 =

∣

∣

∣

∑

nmτ

|〈N,n|dLτ |N+1,m〉|2eiφnm

∣

∣

∣

2

2
∑

nmτ

∣

∣

∣
〈N,n|dLτ |N+1,m〉

∣

∣

∣

2 , (4.12)

where φnm encloses the phase factors coming from the rotation of the states |N,n〉 and
|N + 1,m〉.
The energy non-conserving terms neglected in (4.10) influence only the dynamics of
the coherences between orbitally degenerate states. Thus, equation (4.10) provides an
exact description of transport for the para configuration, where orbital degeneracy is
cancelled. Even if equation (4.10) captures the essential mechanism responsible for
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the conductance suppression, we have derived an exact analytical formula also for the
meta configuration and we present it later on.
In Figure 4.4 we present an overview of the results of both the para and the meta con-
figuration. A direct comparison of the conductance (including energy non-conserving
terms) in the two configurations is displayed in the upper panel. The lower panel illus-
trates the effect of the energy non-conserving terms on the conductance in the meta
configuration. The number of pz electrons on the molecule and the symmetry of the
lowest energy states corresponding to the conductance valleys are reported. The curve
can be continued to negative gate voltages (notice that b < 0) by mirroring about
Vg = 0 and replacing the number of electrons N by 12−N . The symmetries displayed
in the upper panel belong to the (effective) ground states in the para configuration,
the corresponding symmetries for the meta configuration are shown in the lower panel.
Figure 4.4 shows that the results for the para and the meta configuration coincide
for the 10 ↔ 11 and 11 ↔ 12 transitions. The ground states with N = 10, 11, 12
particles have A− or B−type symmetries, they are therefore orbitally non-degenerate,
no interference can occur and thus the transitions are invariant under configuration
change. For every other transition we see a noticeable difference between the results
of the two configurations (Figure 4.4). In all these transitions one of the participating
states is orbitally degenerate. First we notice that the linear conductance peaks for
the 7 ↔ 8 and 8 ↔ 9 transitions in the para configuration are shifted with respect
to the corresponding peaks in the meta configuration. The selection of an effective
symmetric Hilbert space associated to the para configuration results in different ground
state energies of the 4 and 8 particle states in the two configurations, since in the para
configuration the first state participating to transport (the effective ground state) is
in reality the first excited state. This leads to a redefinition of ∆E for transitions
involving these states and therefore to a change in the peak position.
In addition, the total degeneracy is reduced from 4 to 2 by cancelling the orbital
degeneracy. The degeneracies SN, SN+1 of the participating states as well as the ground
state energy are both entering the degeneracy term of equation (4.10)

∆ = −
f ′(∆E)

(SN+1 − SN)f(∆E) + SN

. (4.13)

In this term, the degeneracies give rise to two effects. First, they shift the maximum of
the conductance peak away from the resonance at ∆E = 0. This happens because the
symmetric (with respect to ∆E = 0) function f ′(∆E) is multiplied with an asymmet-
ric, steplike function in the denominator. If the degeneracy of the N +1-particle state
SN+1 is higher than SN, the maximum will be shifted to the side where N -particles
are on the quantum dot. This shift is found to be 1

2
kBT ln SN+1

SN
, proportional to the

temperature and to the logarithm of the ratio SN+1

SN
. The second point is that large

degeneracies, entering in the denominator, will in general lead to smaller values of ∆.
The maximum value of this function ∆ for the transition 6 ↔ 7 is given in table 4.3.
The most striking effect regarding transitions with orbitally degenerate states partic-
ipating is the systematic suppression of the linear conductance when changing from
the para to the meta configuration. The suppression is appreciable despite the con-
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ductance enhancement due to the energy non-conserving terms (see Figure 4.4, lower
panel). Thus, we will for simplicity discard them in the following discussion.
The conductance suppression is determined by the combination of two effects: the
reduction to the symmetric Hilbert space in the para configuration and the interfer-
ence effects between degenerate orbitals in the meta configuration. As we can see
from Table 4.3 on the example of the 6 ↔ 7 transition peak, ∆max is higher in the
para configuration but not enough to fully explain the difference between the two
configurations.

Overlap factor Degeneracy term
Λ ∆max [1/kBT ]

PARA 2C 0,1715
META 1

2
C 0,1111

Table 4.3: Overlap factor and maximum value of the degeneracy term in the para and
the meta configuration for the 6 ↔ 7 transition peak. It is C = |〈6g|dLτ |7gℓτ〉|

2, where
τ and ℓ are the spin and the quasi angular momentum quantum numbers, respectively.
The values of ∆max are proportional to 1/kBT .

The second effect determining linear transport is the interference between the E-type
states, which is accounted for in the overlap factor Λ. The overlap factor is basis
independent, thus we can write the transition probabilities for the 6 ↔ 7 transition
as |〈6g|dLτ |7g ℓ τ〉|

2 = C, where τ and ℓ are the spin and the quasi-angular momentum
quantum number, respectively. The transition probabilities have the same value, since
all four 7 particle states are in this basis equivalent. This can be seen by taking
advantage of the symmetry properties of the molecular states with respect to the σv

operation and to the rotation operator Rφ for rotations about a discrete angle φ = nπ
3

,
as introduced in Section 4.2. The starting point is the generic relation between these
two operators:

Rφσv = σvR−φ. (4.14)

We can now apply both sides of this relation to the 7 particle ground states |7g, ℓ = ±2〉:

Rφσv|7g, ℓ = ±2〉 = σvR−φ|7g, ℓ = ±2〉. (4.15)

The 7 particle ground states |7g, ℓ = ±2〉 are eigenstates of each Rφ, and the corre-
sponding eigenvalues are phase factors:

Rφ|7g, ℓ = ±2〉 = e∓2·iφ|7g, ℓ = ±2〉. (4.16)

Thus, equation (4.15) becomes

Rφ

(

σv|7g, ℓ = ±2〉
)

= e±2·iφ
(

σv|7g, ℓ = ±2〉
)

. (4.17)

Yet, according to equation (4.16), this equation can only be valid if

σv|7g, ℓ = ±2〉 = λ|7g, ℓ = ∓2〉. (4.18)
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and, since σ2
v = 1, λ can only be a phase factor. For the calculation of the transition

probabilities we use further the property σ†
vσv = 1. Since the left contact atom (atom

1) lays in the reflection plane σv, it is: σvdLσ
†
v = dL. Also, since the symmetry of the

6 particle ground state is A1g, it is: σv|6g〉 = |6g〉. Under these considerations, we can
write for the transition probability to the state |7g, ℓ = 2〉:

|〈6g|dL|7g, ℓ = 2〉|2 = |〈6g|σ
†
vσvdLσ

†
vσv|7g, ℓ = 2〉|2 = (4.19)

= |〈6g|dLσv|7g, ℓ = 2〉|2 = |〈6g|dL|7g, ℓ = −2〉|2 = C.

Under the C2 rotation the symmetric 7 particle ground state does not acquire any
phase factor. Under the C3 rotation however, the two orbitally degenerate states
acquire different phase factors, namely e

4π
3

i and e−
4π
3

i, respectively. Thus the overlap
factors Λ for the 6 ↔ 7 transition are:

Λpara =
1

8C
· |4C|2 = 2C,

Λmeta =
1

8C
·
∣

∣

∣2Ce+
4π
3

i + 2Ce−
4π
3

i
∣

∣

∣

2

=
1

2
C.

We see that Λ is four times larger in para configuration. The linear conductance is
determined by the product between the overlap factor and the degeneracy term. It is
the destructive interference between degenerate E-type orbitals, accounted for in the
overlap factor Λ, that gives the major contribution to the strong suppression of the
conductance in the meta configuration.

Analytical formula for the linear conductance including the
energy non-conserving terms

In the derivation of the conductance formula (4.10) we neglected the energy non-
conserving terms in the equation (3.19). Since in the GME they appear only in the
dynamics of the coherences between orbitally degenerate states, equation (4.10) is
exact for the para configuration, where the orbital degeneracy is cancelled. This is not
the case in the meta configuration where the orbital (quasi-)degeneracy is essential
for the description of interference. Thus we derived a generic analytical formula for
the conductance, taking into account the energy non-conserving terms. Again, we
give here just the result, because the derivation is lengthy and does not lead to new
insights. It reads

GN,N+1(∆E) = e2ΓΛN,N+1∆

[

1 +
aux(SN, SN+1)12Λ2

N,N+1 (f±(∆E))
2

16Λ2
N,N+1 (f±(∆E))2 + ω2

]

. (4.20)

Here, it is Γ = ΓL = ΓR. ΛN,N+1 and ∆ are the overlap factor and the degen-
eracy term introduced in Eqs. (4.11), (4.12). The auxiliary function aux(SN, SN+1)
in the correction term is zero if there are no orbitally degenerate ground states in-
volved in the transition. If one of the participating states is orbitally degenerate it is
aux(SN, SN+1) = 1. The sign in f±(∆E) is defined as follows: f+(∆E) has to be used
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if the N particle ground state is orbitally degenerate. If instead the N + 1 particle
ground state exhibits orbital degeneracy, f−(∆E) has to be inserted. The energy non-
conserving terms are included in the factor ω = ωL|Vb=0 = ωR|Vb=0. It is defined only
if a degenerate state is participating in transport. In case that e.g. the N particle
ground state has two degenerate orbitals |Ng, 1〉, |Ng, 2〉, ωα with α = L,R reads

ωα =
∑

E′,l

[

i

π
pα(Eg,N − E ′)

]

〈Ng, 1|d
†
Lτ |N − 1, E ′ l〉〈N − 1, E ′ l|dLτ |Ng, 2〉 (4.21)

+
∑

E′,l

[

i

π
pα(E ′ − Eg,N)

]

〈Ng, 1|dLτ |N + 1, E ′ l〉〈N + 1, E ′ l|d†Lτ |Ng, 2〉,

where pα(x) = −Reψ
[

1
2

+ iβ
2π

(x− µα)
]

and ψ is the digamma function, as defined
in Section 3.3. The presence of these terms reduces the efficiency of the destructive
interference due to a renormalization of the energies of the states involved. In this
expression, a particular choice of the basis is implied, such that 〈Ng, i|d

†
Lτ |N − 1, E ′ l〉,

〈Ng, i|dLτ |N + 1, E ′ l〉, i = 1, 2, are real and do not depend on i. We will discuss this
and the effect of renormalization on the non-linear current in chapter 5.

4.3.2 Negative differential conductance (NDC) and current
blocking

Interference effects between orbitally degenerate states are also affecting non-linear
transport and producing in the meta configuration current blocking and thus NDC at
the border of the 6 particle state diamond (Figure 4.3). The upper panel of Figure
4.5 shows the current through the benzene ISET contacted in the meta configuration
as a function of the bias voltage. The current is given for parameters corresponding
to the white dashed line of Figure 4.3. In this region only the 6 and 7 particle ground
states are populated.
At low bias the 6 particle state is mainly occupied. As the bias is raised, transitions 6 ↔
7 occur and current flows. Above a certain bias threshold a blocking state is populated
and the current drops. For the understanding of this non-linear current characteristics,
we have to take into account energy conservation, the Pauli exclusion principle and,
in addition, the interference between participating states. For the visualization of
the interference effects, we introduce the transition probability (averaged over the z
coordinate and the spin σ):

P (x, y;n, τ) = lim
L→∞

∑

σ

1

2L

∫ L/2

−L/2

dz|〈7g n τ |ψ
†
σ(r)|6g〉|

2 (4.22)

for the physical 7 particle basis, i.e., the 7 particle basis that diagonalizes the stationary
density matrix at a fixed bias. Here τ is the spin quantum number, n = 1, 2 labels
the two states of the physical basis which are linear combinations of the orbitally
degenerate states |7gℓτ〉 and can be interpreted as conduction channels. Each of the
central panels of Figure 4.5 are surface plots of (4.22) at the different bias voltages a-c.
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Figure 4.4: Conductance of the benzene ISET as a function of the gate voltage. Clearly
visible are the peaks corresponding to the transitions between ground states with N
and N + 1 particles. In the low conductance valleys the state of the system has a
definite number of particles and symmetry as indicated in the upper panel for the
para, in the lower for the meta configuration. Selective conductance suppression when
changing from the meta to the para configuration is observed.



54 | CHAPTER 4. A BENZENE INTERFERENCE SET

The 7 particle ground states can interfere and thus generate nodes in the transition
probability at the contact atom close to one or the other lead, but, in the meta
configuration, never at both contact atoms at the same time.

Energetic considerations are illustrated in the lower panels of Figure 4.5 for two key
points of the current curve at positive biases. The left panel corresponds to the reso-
nance peak of the current. Due to energy conservation, electrons can exit the molecule
at both leads. On the contrary the entry is allowed only at the right leads. The cur-
rent is suppressed when transitions occur to a state which cannot be depopulated (a
blocking state). Since, energetically, transmissions to the 6 particle state are allowed
at both leads, each 7 particle state can always be depopulated and no blocking occurs.

The current blocking scenario is depicted in the lower right panel of Figure 4.5. For
large positive bias the transition from a 7 particle ground state to the 6 particle
ground state is energetically forbidden at the left lead. Thus, for example, the c panel
in Figure 4.5 visualizes the current blocking situation yielding NDC: while for both
channels there is a non-vanishing transition probability from the source lead to the
molecule, for the upper channel a node prevents an electron from exiting to the drain
lead. In the long time limit the blocking state gets fully populated while the non-
blocking state is empty. At large negative bias the blocking scenario is depicted in the
panel a that shows the left-right symmetry obtained by a reflection through a plane
perpendicular to the molecule and passing through the carbon atoms atoms 6 and 3.
We remark that only a description that retains coherences between the degenerate 7
particle ground states correctly captures NDC at both positive and negative bias.

In contrast to the 6 → 7 transition, one does not observe NDC at the border of the 7
particle Coulomb diamond, but rather a strong suppression of the current. The upper
panel of Figure 4.6 shows the current through the benzene ISET contacted in the meta
configuration as a function of the bias voltage corresponding to the white dotted line
of Figure 4.3. The middle panels show the transition probabilities between each of the
7 particle and the 6 particle ground state.

The lower panel of Figure 4.6 shows a sketch of the energetics at positive bias corre-
sponding to the “expected” resonance peak. Here electrons can enter the molecular
dot at both leads, while the exit is energetically forbidden at the left lead due to Paulis
exclusion principle. Thus, if the system is in the 7 particle state which is blocking the
right lead, this state cannot be depopulated, becoming the blocking state.
On the other hand, transitions from the 6 particle ground state to both 7 particle
ground states are equally probable. Thus the blocking state will surely be populated
at some time. The upper plot of the b panel in Figure 4.6 shows the transition prob-
ability to the blocking state that accepts electrons from the source lead but cannot
release electrons to the drain.
As just proved, in this case the current blocking situation occurs already at the res-
onance bias voltage. For a higher positive bias, the transition probability from the
blocking state at the drain lead increases and current can flow. This effect, though,
can be captured only by taking into account also the energy non-conserving terms in
(3.19). We study the influence of these terms in detail in chapter 5.

In the para configuration, the current as a function of the bias voltage is shown in
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Figure 4.5: Upper panel - Current through the benzene ISET in the meta configuration
calculated at bias and gate voltage conditions indicated by the dashed line of Figure
4.3. A pronounced NDC with current blocking is visible. Middle panels - Transition
probabilities between the 6 particle and each of the two 7 particle ground states for
bias voltage values labelled a − c in the upper panel. The transition to a blocking
state is visible in the upper (lower) part of the c (a) panels. Lower panels - Sketch
of the energetics for the 6 → 7 transition in the meta configuration at bias voltages
corresponding to the resonance current peak and current blocking as indicated in the
upper panel of this figure.
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Figure 4.6: Upper panel - Current through the benzene ISET in the meta configuration
calculated at bias and gate voltage conditions indicated by the dotted line of Figure
4.3. No NDC is visible. Middle panels - Transition probabilities between each of the
7 particle and the 6 particle ground state for bias voltage values labelled a − c in
the upper panel. Lower panel - Sketch of the energetics for the 7 → 6 transition in
the meta configuration at bias voltage corresponding to the expected resonance peak.
(compare to Figure 4.5).
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Figure 4.7: Left panel - Current through the benzene ISET in the para configura-
tion calculated at bias and gate voltage conditions indicated by the dashed line of
Figure 4.3. No interference effects are visible. Right panels - Transition probabilities
between the 6 particle and the symmetric and antisymmetric 7 particle ground states.

Figure 4.7. The current is given for parameters corresponding to the white dashed
line of Figure 4.3. In this case, no interference effects are visible. We see instead the
typical step-like behavior of the current in the Coulomb blockade regime.
The panels on the right are the surface plots of

P (x, y; τ) = lim
L→∞

∑

σ

1

2L

∫ L/2

−L/2

dz|〈7g τ ; (a)sym|ψ†
σ(r)|6g〉|

2. (4.23)

The upper plot shows the transition probability to the symmetric 7 particle state,
the lower to the antisymmetric. Remember that in the para configuration only the
symmetric states contribute to transport, which means that orbital degeneracies or
coherences between orbitally degenerate states do not play any role in the transport.
Thus in the para configuration, no interference triggered current blocking or NDC can
occur.
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4.4 Reduced symmetry

In this section we study the effect of reduced symmetry on the results presented pre-
viously. To do so, we generalize the model Hamiltonian by taking into account the
perturbations on the molecule due to the contacts and the bias voltage. The contact
between molecule and leads is provided by different anchor groups. These linkers are
coupled to the contact carbon atoms over a σ bond thus replacing the corresponding
benzene hydrogen atoms. Due to the orthogonality of π and σ orbitals, the anchor
groups affect in first approximation only the σ orbitals of benzene. In particular the
different electron affinity of the atoms in the linkers imply a redistribution of the den-
sity of σ electrons. Assuming that transport is carried by π electrons only, we model
the effect of this redistribution as a change in the on-site energy for the pz orbitals of
the contact carbon atoms:

H ′
PPP := Hcontact = ξc

∑

ασ

d†ασdασ, α = L,R (4.24)

where R = 3, 4, respectively, in the meta and para configuration, L = 1 in both setups.
We also study the effect of an external bias on the benzene ISET. In particular we
release the strict condition of potential drop all concentrated at the lead-molecule
interface. Nevertheless, due to the weak coupling of the molecule to the leads, we
assume that only a fraction of the bias potential drops across the molecule. For this
residual potential we take the linear approximation Vb(r) = −Vb

a
(r · r̂sd/a0), where

we choose the center of the molecule as the origin and r̂sd is the unity vector directed
along the source to drain direction. a0 = 1.43

o

A is the bond length between two carbon
atoms in benzene, a is the coefficient determining the intensity of the potential drop
over the molecule. Since the pz orbitals are strongly localized, we can assume that
this potential will not affect the inter-site hopping, but only the on-site term of the
Hamiltonian:

H ′
PPP := Hbias = e

∑

iσ

ξbi
d†iσdiσ (4.25)

with ξbi
=
∫

dr pz(r − Ri)Vb(r)pz(r − Ri).

Under the influence of the contacts or the bias potential, the symmetry of the molecule
changes. Table 4.4 shows the point groups to which the molecule belongs in the
perturbed setup. This point groups have only A- and B-type reducible representations.
Thus the corresponding molecular orbitals do not exhibit orbital degeneracy.
No interference effects influence the transport in the para configuration. Thus we do
not expect its transport characteristics to be qualitatively modified by the new set up
with the corresponding loss of degeneracies.

In the meta configuration on the other hand, interferences between orbitally degenerate
states play a crucial role in the explanation of the occurring transport features. Näıvely
one would therefore expect that neither conductance suppression nor NDC and current
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PARA META
Contact perturb. D2h C2v

Bias perturb. C2v C2v

Table 4.4: Point groups to which the molecule belongs under the influence of the
contacts and the external bias potential.

blocking occur in a benzene ISET with reduced symmetry. Yet we find that, under
certain conditions, the mentioned transport features are robust under the lowered
symmetry.

The perturbations due to the contacts and the bias lead to an expected level splitting
of the former orbitally degenerate states. Very different current-voltage characteristics
are obtained depending on the relation between the energy splitting δE and other two
important energy scales of the system: the tunnelling rate ~Γ and the temperature
kBT . In particular, when δE ≪ ~Γ ≪ kBT , interference phenomena persist. In
contrast, when ~Γ < δE ≪ kBT interference phenomena disappear, despite the fact
that, due to temperature broadening, the two states still can not be resolved. In this
regime, due to the asymmetry in the tunnelling rates introduced by the perturbation,
standard NDC phenomena, see Figure 4.9, occur.

In the absence of perfect degeneracy, we abandon the strict secular approximation
scheme that would discard the coherences in the density matrix between states with
different energies. We adopt instead a softer approximation by retaining also coher-
ences between quasi-degenerate states. Since they have Bohr frequencies comparable
to the tunnelling rate, they influence the stationary density matrix. Formulas for
the GME and the current taking into account these coherence terms are presented in
section 3.4.

Figure 4.8 shows from left to right closeup views of the stability diagram for the setup
under the influence of increasing contact perturbation around the 6 ↔ 7 resonance.
The orbital degeneracy of the 7 particle states is lifted and the transport behavior for
the 6 ↔ 7 transition depends on the energy difference between the formerly degenerate
7 particle ground states. In panel a the energy difference is so small that the states are
quasi-degenerate: δE ≪ ~Γ ≪ kBT . As expected, we recover NDC at the border of
the 6 particle diamond and current suppression at the border of the 7 particle diamond,
like in the unperturbed setup.
Higher on-site energy-shifts correspond to a larger level spacing. Panel b displays the
situation in which the latter is of the order of the level broadening, but still smaller
than the thermal energy (δE ≃ ~Γ ≪ kBT ): no interference causing NDC and current
blocking can occur. Yet, due to thermal broadening, we cannot resolve the two 7
particle states.
Eventually, panel c presents the stability diagram for the case δE > kBT > ~Γ: the
level spacing between the 7 particle ground and first excited state is now bigger than
the thermal energy, thus the two transition lines corresponding to these states are
clearly visible at the border of the 6 particle stability diamond.

Figure 4.9 shows closeup views of the stability diagram for the setup under the influ-
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Figure 4.8: Closeup views of the stability diagram around the 6 ↔ 7 resonance for
the system under contact perturbation. The perturbation strength grows from left
to right The parameter that describes the contact effect assumes the values ξc =
0.15~Γ, 2~Γ, 15kBT from left to right respectively and kBT = 10~Γ .

ence of the bias perturbation at the border of the 6 and 7 particle diamonds. The same
region is plotted for different strengths of the external potential over the molecule.
In contrast to the contact perturbation, the amount of level splitting of the former
degenerate states is here bias dependent. This fact imposes a bias window of in-
terference visibility. The bias must be small enough, for the 7 particle states to be
quasi-degenerate and at the same time bigger than the thermal energy, so that the oc-
curring NDC is not obscured by the thermally broadened conductance peak. A strong
electrostatic potential perturbation closes the bias window and no interference effect
can be detected.
Panel a of Figure 4.9 represents the weak perturbation regime with no qualitative
differences with the unperturbed case. The typical fingerprints of interference (NDC
at the border of the 6 particle diamond and current blocking for the 7 → 6 transition)
are still visible for intermediate perturbation strength (panel b) but this time only in a
limited bias window. Due to the perturbation strength, at some point in the bias, the
level splitting is so big that the quasi-degeneracy is lifted and the interference effects
destroyed. In panel c the quasi-degeneracy is lifted in the entire bias range. There
is NDC at the border of the 6 particle diamond, but is not accompanied by current
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Figure 4.9: Closeup views of the stability diagram around the 6 ↔ 7 resonance for
the system under the effect of the bias potential, displayed for different strengths of
the electrostatic potential drop over the molecule. The parameter that describe the
strength of the electrostatic drop overthe molecule assumes the values a = 25, 12, 0.6
from left to right respectively.

blocking as proved by the excitation line at the border of the 7 particle diamond (see
arrow): no interference occurs. The NDC is here associated to the sudden opening of
a slow current channel, the one involving the 6 particle ground state and the 7 particle
(non-degenerate) excited state (standard NDC).

Figure 4.10 refers to the setup under both the bias and contact perturbations. The
left panel shows the energy of the lowest 7 particle states as a function of the bias.
In the right panel we present the stability diagram around the 6 ↔ 7 resonance.
NDC and current blocking are clearly visible only in the bias region where, due to
the combination of bias and contact perturbation, the two seven particle states return
quasi-degenerate. Also the fine structure in the NDC region is understandable in terms
of interference if we take into account the renormalization of the level splitting due to
the energy non-conserving terms in the condition of quasi-degeneracy.

Interference effects predicted for the unperturbed benzene ISET are robust against
various sources of symmetry breaking. Quasi-degeneracy, δE ≪ ~Γ ≪ kBT , is the
necessary condition required for the detection of the interference in the stability dia-
gram of the benzene ISET.
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Figure 4.10: Combination of the bias and contact perturbations. Left panel - Energy
levels of the 7 particle ground and first excited state as functions of the bias volt-
age. Right panel - Stability diagram around the 6 ↔ 7 resonance. The perturbation
parameters are in this case ξc = 2~Γ and a = 12.
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Chapter 5

All-electric spin control in
interference single electron
transistors

Figure 5.1: Two examples of interference single electron transistors (ISETs): a benzene
molecular junction contacted in the meta configuration (a) and a triple quantum dot
artificial molecule (b). The source and drain are parallel polarized ferromagnetic leads.

Interference blocking in SETs is expected whenever a non-degenerateN particle ground
state and two degenerate N + 1 particle ground states contribute simultaneously to
transport and the ratio of the transition amplitudes between those N and N + 1 par-
ticle states is different on the left and on the right, equation (4.1). This condition is
rather general and can be fulfilled not only in benzene ISETs, but for example also in
triangular quantum dots (TQD) (see Figure 5.1), or other systems that show orbital
degeneracies.
In this chapter, we show that in ISETs in the presence of parallel polarized ferro-
magnetic leads the interplay between interference and the exchange interaction on the
system generates an effective energy renormalization yielding different blocking biases
for majority and minority spins. Hence, by tuning the bias voltage full control over
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the spin of the trapped electron is achieved. We present here our results showing spin
selective interference blockade, for both the benzene ISET and the TQD ISET. In the
TQD ISET, we also demonstrate the possibility of switching between components of
an excited triplet states by means of the bias voltage.
The system Hamiltonian for the TQD ISET is given by

HPPP = ξ
3
∑

i=1

∑

σ

d†iσdiσ + b
3
∑

i=1

∑

σ

(

d†iσdi+1σ + d†i+1σdiσ

)

(5.1)

+ U
3
∑

i=1

(

ni↑ −
1

2

)(

ni↓ −
1

2

)

+
1

2

3
∑

i

V
(

ni↑ + ni↓ − 1
)(

ni+1↑ + ni+1↓ − 1
)

,

where cyclic boundary conditions are implied. Notice the formal similarity to the PPP
Hamiltonian for benzene.
From what we learned in the previous chapter, we would conclude that the interference
blocking is a threshold effect and the current remains blocked until a new excited state
participates to the transport. However, as shown in Figure 5.2, panels a and b, the
current is blocked only at specific values of the bias voltage. In presence of polarized
leads, we observe current blocking at two specific bias values (panels c and d), and
the analysis of the stationary solution of the GME reveals two blocking states with
different spin projection. In the TQD ISET, we find analogous results.
The explanation for the blocking at specific biases only relies on the following observa-
tion: The blocking state (Figure 5.4) must be antisymmetric with respect to the plane
perpendicular to the system and passing through its center and the atom closest to
the drain; this state is thus also an eigenstate of the projection of the angular momen-
tum in the direction of the drain lead. The corresponding eigenvalue depends on the
symmetry of the atomic wave function with respect to the molecular plane: ~ or 0 for
symmetric or antisymmetric wave functions respectively. At positive (negative) bias
voltages we call this state the R(L)-antisymmetric state |ψR(L), a〉. But the coupling
between the system and the leads not only generates the tunneling dynamics described
so far, but also contributes to an internal dynamics of the system that distorts the
antisymmetric state, but leaves the systems particle number unchanged.

5.1 Effective Hamiltonian for the internal dynam-

ics

In fact the equation of motion for the reduced density matrix σ of the system (equa-
tion (3.19)) can be cast, to lowest non vanishing order in the coupling to the leads, in
the form:

σ̇ = −
i

~
[Hsys, σ] −

i

~
[Heff , σ] + Ltunσ. (5.2)

The commutator with Hsys in equation (5.2) represents the coherent evolution of the
system in absence of the leads. It vanishes in the secular approximation. The operator
Ltun describes the sequential tunnelling processes and it is defined as all the terms in
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equation (3.19) that contain the Fermi function. FinallyHeff renormalizes the coherent
dynamics associated to the system Hamiltonian. It includes all the terms containing
the digamma function in equation (3.19). The transition amplitudes γαi between the
N and N + 1 particle states like the ones introduced in equation (4.1) are contained
in both Heff and Ltun. Heff can be written as:

Heff =
∑

ατ

ωατLα, (5.3)

where Lα is the projection of the angular momentum in the direction of the lead α
and, for paramagnetic systems, it does not depend on the spin degree of freedom
τ . Moreover, ωατ is the renormalization frequency given to the states of spin τ by
their coupling to the α lead. Similar effective dynamics has been mapped into the
precession of a pseudo-spin around a pseudo-exchange field [69, 76]. In our case the
presence of parallel polarized leads mixes the orbital and the spin degrees of freedom.
Although Heff is diagonal for what concerns the spin, and thus spin accumulation
due to precession [68] of the spin degree of freedom is excluded, in the presence of
polarized leads, the spin up and the spin down undergo different effective dynamics.
In particular, we find that at the bias voltage where the blocking conditions for one
spin species are exactly fulfilled, the other spin species still feels a renormalization and
thus does not form a completely blocking state. This leads to a full population of one
specific spin species at that bias voltage.
For sake of simplicity we give in the following the explicit form of the transition
amplitudes γαi, of the operator Lα and of the associated frequency ωατ only for the
benzene ISET and for the ground state transition 6g → 7g that is characterized by
interference blocking. The argumentation is nevertheless very general and can be
repeated for all the systems exhibiting rotational symmetry. The transition amplitudes
read:

γαℓ = 〈6g00|dMτ |7gℓτ〉e
−iℓφα , (5.4)

where |7g ℓ τ〉 are the orbitally degenerate 7 particle ground states, ℓ = ±2 the z

projection of the angular momentum in units of ~ and dMτ destroys an electron of
spin τ in a reference carbon atom M placed in the middle between the two contact
atoms. Moreover, φα is the angle of which we have to rotate the molecule to bring the
reference atom M into the position of the contact atom α. The present choice of the
reference atom implies that φL = −φR = π

3
. In the Hilbert space generated by the

two-fold orbitally degenerate |7g ℓ τ〉 the operator Lα reads:

Lα =
~

2

(

1 ei2|ℓ|φα

e−i2|ℓ|φα 1

)

. (5.5)

To derive the explicit form of this operator, it is convenient to choose the arbitrary
phases of the states |7gℓτ〉 in such a way that the rotation of π around the axis passing
through the reference atom M and the center of the molecule transforms |7gℓτ〉 into
−|7g − ℓτ〉. In other terms

exp(iπLM

~
) = −τx, (5.6)
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Figure 5.2: Benzene ISET: polarized vs. unpolarized configuration. Panel a - Current
vs. bias and gate voltage for unpolarized leads. Panel d - Current vs. bias and gate
voltage for polarized leads (polarization P = 0.85). Panels b and c - Blow up of the
6 → 7 particle transition for both configurations. The unpolarized case shows a single
current blocking line and the trapped electron has either up or down polarization. The
polarized case shows two current blocking lines, corresponding to the different spin of
the trapped electron. The current is given in units of eΓ where Γ is the bare average
rate, and the temperature kBT = 0.01b where b is the hopping parameter
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Figure 5.3: Triple dot ISET: polarized vs. unpolarized configuration. Panel a - Current
vs. bias and gate voltage for unpolarized leads. Panel d - Current vs. bias and gate
voltage for polarized leads (polarization P = 0.7). Panels b and c - Blow up of
the 6 → 5 particle transition for both configurations. The selective spin blocking is
analogous to the one of the benzene ISET (5.2).
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Figure 5.4: Spin control. Panel a - Current (in units of eΓ) through the benzene ISET
vs bias and polarization at the 6 → 7 electrons transition. Panel b - Population of
the majority spin 7 particle state. The two zero current lines at high bias correspond
to the maximum or minimum population of the 7 particle majority spin state and
thus identify the spin state of the trapped electron on the molecule. Panels c and d
- Schematic representation of the spin selective blocking corresponding to the dashed
(c) and dotted (d) lines of the panels a and b.
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where τx is the first Pauli matrix. The relation is in fact an equation for LM and the
solution reads:

LM =
~

2

(

1 1
1 1

)

. (5.7)

We obtain Lα by rotation of LM in the molecular plane, namely:

Lα = e−
i
~

φαLzLMe
i
~

φαLz =
~

2

(

1 ei2|ℓ|φα

e−i2|ℓ|φα 1

)

. (5.8)

The frequency ωατ is defined in terms of transition amplitudes to all the states of
neighbor particle numbers:

ωατ =
1

π

∑

τ ′{E}

Γ0
ατ ′

[

〈7gℓτ |dMτ ′|8{E}〉〈8{E}|d
†
Mτ ′|7g − ℓτ〉pα(E − E7g

) +

〈7gℓτ |d
†
Mτ ′|6{E}〉〈6{E}|dMτ ′|7g − ℓτ〉pα(E7g

− E)
]

, (5.9)

where the compact notation |N{E}〉 indicates all possible states with particle number
N and energy E, pα(x) = −Reψ

[

1
2

+ iβ
2π

(x− µα)
]

where β = 1/kBT , T is the tempera-
ture and ψ is the digamma function. Moreover Γ0

ατ ′ = 2π
~
|t|2Dατ ′ is the bare tunneling

rate to the lead α of an electron of spin τ ′, where t is the tunnelling amplitude and Dατ ′

is density of states for electrons of spin τ ′ in the lead α at the corresponding chemical
potential µα. We model the polarization in the leads by spin dependent densities of
states:

Dασ =

{

Dα(1 + P ), σ =↑,
Dα(1 − P ), σ =↓ .

(5.10)

Due to the particular choice of the arbitrary phase of the 7 particle ground states,
ωατ is real and does not depend on the orbital quantum number ℓ. It depends instead
on the bias and gate voltage through the energy of the 6, 7-ground and 8 particle
states. In Figure 5.5 the black curve depicts ωLτ as a function of the bias in absence of
polarization: the frequencies corresponding to the two spin species coincide and thus
vanish at the same bias. The same condition,

ωLτ = 0, (5.11)

also determines the bias at which the current is completely blocked. In fact, at that
bias the effective Hamiltonian contains only the projection of the angular momentum
in the direction of the right lead (the drain) and the density matrix corresponding
to the full occupation of the 7 particle R-antisymmetric state (σ = |ψR, a〉〈ψR, a|) is
the stationary solution of equation (5.2). As we leave the blocking bias the effective
Hamiltonian contains also the projection of the angular momentum in the direction
of the left lead and the R-antisymmetric state is no longer an eigenstate of Heff . The
corresponding density matrix is not a stationary solution of (5.2) and current flows
through the system. The L↔ R symmetry of the system implies, for negative biases,
the blocking condition ωRτ = 0.
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ωL/R is also entering the formula for the linear conductance, equation (4.22). Also
there, interference effects are less pronounced due to the renormalization of the involved
states.
We concentrate here on the range of gate and bias voltages at which the dynamics
is restricted to transitions involving the |6g00〉 and |7gℓτ〉 many particle states of the
benzene ISET.
The seven particle states are spin and orbital degenerate. The general theory of the
GME would require a priori to keep a full 4x4 density matrix describing the 7 particle
subspace. In the presence of parallel polarized leads, though, the coherences between
different spin degrees of freedom can be neglected since spin is always conserved by the
electrons while travelling through the device. The GME can thus be written in terms
of the nine variables collected in the 1x1 matrix σ6g and the two 2x2 matrices σ7gτ with
τ =↑, ↓. Due to the rotational symmetry of the system it is more convenient to refer
to another set of variables, namely to describe the dynamics in terms of the occupation
probabilities W6, W7τ and the expectation values of the different projections of the
angular momentum for the system. The new set of variables is:

W6 = σ6g ,

W7τ = Tr{σ7gτ},

Lατ = Tr{Lασ
7gτ},

Lzτ = Tr{Lzσ
7gτ}.

(5.12)

The operator Lz is the generator of the set of discrete rotations around the axis per-
pendicular to the plane of the benzene molecule that bring the molecule into itself and
can be written within the 7 particle Hilbert space spanned by the vectors |7gℓτ〉 as
Lz = −~|ℓ|τz, where τz is the third Pauli matrix. The operator Lα generates, in the
same space, the discrete rotations around the axis in the molecular plane and passing
through the center and the atom closest to the contact α. Finally, the dynamics for
the variables introduced in equation (5.12) is given by the equations:

Ẇ6 = 2
∑

ατ

Γατ

[

−f+
α (∆E)W6 + f−

α (∆E)Lατ

]

, (5.13)

Ẇ7τ = 2
∑

α

Γατ

[

f+
α (∆E)W6 − f−

α (∆E)Lατ

]

, (5.14)

L̇ατ = −2Γατf
−
α (∆E)Lατ + 2

{

Γατf
+
α (∆E) + Γᾱτf

+
ᾱ (∆E) cos2[|ℓ|(φα − φᾱ)]

}

W6

+Γᾱτf
−
ᾱ (∆E) sin2[|ℓ|(φα − φᾱ)]W7τ − Γᾱτf

−
ᾱ (∆E)(Lατ + Lᾱτ )

+
sin[2|ℓ|(φα − φᾱ)]

4
ωᾱτLzτ , (5.15)

L̇zτ = −
∑

α

Γατf
−
α (∆E)Lzτ − 2 tan[|ℓ|(φL − φR)](ωLτ − ωRτ )(W7τ − LLτ − LRτ )

−2 cot[|ℓ|(φL − φR)](ωLτ + ωRτ )(LLτ − LRτ ), (5.16)

where Γατ = Γ0
ατ |〈6g00|dατ |7gℓτ〉|

2 is the tunnelling rate at the lead α involving the
ground states with 6 and 7 particles. Terms describing sequential tunnelling from
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and to the lead α are proportional to the Fermi functions f+
α (x) := f(x − µα) and

f−
α (x) := 1 − f+

α (x), respectively, and ∆E = E7g − E6g − eVg where E6g and E7g

are the energies of the 6 and 7 particle ground states. Finally with ᾱ we mean the
lead opposite to the lead α. By using the expression |ℓ| (to be substituted with 2 for
the 6 → 7 particle transition) we maintained the generality of the equations. The
replacement |ℓ| = 2 → 1 and the appropriate redefinition of ∆E is enough to treat the
6 → 5 transition. Another important generalization concerns the position of the leads.
The para (φL − φR = π) and ortho (φL − φR = π/3) configuration are also treated
within the same equations. In particular one can see that all the terms containing
the renormalization frequencies drop from the equations in the para configuration and
that the equations for the ortho and meta configuration coincide.
The spin splitting of the renormalization frequencies is obtained from equation (5.9).

By introducing the average bare rate Γ =
Γ0

α↑
+Γ0

α↓

2
, for simplicity equal in both leads,

and using the fact that benzene is paramagnetic we get:

ωα↑−ωα↓ = 2ΓPα
1

π

∑

{E}
[

〈7gℓ ↑ |dM↑|8{E}〉〈8{E}|d
†
M↑|7g − ℓ ↑〉pα(E − E7g

)

+〈7gℓ ↑ |d†M↑|6{E}〉〈6{E}|dM↑|7g − ℓ ↑〉pα(E7g
− E)

−〈7gℓ ↑ |dM↓|8{E}〉〈8{E}|d
†
M↓|7g − ℓ ↑〉pα(E − E7g

)

−〈7gℓ ↑ |d†M↓|6{E}〉〈6{E}|dM↓|7g − ℓ ↑〉pα(E7g
− E)

]

,

(5.17)

where one appreciates the linear dependence of the spin splitting on the lead polariza-
tion Pα. The first and the third term of the sum would cancel each other if the energy
of the singlet and triplet 8 particle states would coincide. An analogous condition, but
this time on the 6 particle states, concerns the second and the fourth terms. For this
reason the exchange interaction on the system is a necessary condition to obtain spin
splitting of the renormalization frequencies and thus the full all-electric spin control.

5.2 Interference blocking for excited states

In Figure 5.3, we see the current stability diagram for a triangular quantum dot ISET.
Interference is visible at the transitions involving an orbitally degenerate ground state,
that is at the transitions 2 ↔ 3, 3 ↔ 4 (low bias only), 4 ↔ 5 (low bias only) and
5 ↔ 6. In Figure 5.6, we show the current stability diagram for the transitions
involving 1 and 2 particle states. No interference is observed for low bias, since the
groundstates for N = 1, 2 show no orbital degeneracies. The dominant feature in this
plot is instead the region with strong current suppression at the border of the N = 1
diamond, starting a finite bias voltages. In the following, we will demonstrate that the
blocking of the current is due to interference blockade triggered by the first excited
2-particle state, which is a (spin) triplet state with additional orbital degeneracies.
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Figure 5.6: Part of the current stability diagram for the triple dot ISET. The current
is color coded, the scale is in units of eΓ. Superimposed are blue lines that indicate the
transport conditions, equation (3.2), for various channels. The 10 ↔ 20 ground state
transition is drawn as solid line, dashed and dot-dashed lines correspond to ground-
to excited state or excited- to excited state transitions. The parameters used here in
units of |b|: U = 5, V = 2, kBT = 0.002.

In Figure 5.7, we present a current-voltage curve for unpolarized leads for a gate
voltage corresponding to the vertical dashed line in the stability diagram, Figure 5.6
(green line). For low bias, no current is flowing due to Coulomb blockade, and the
N = 2 ground state is the only populated state. Once the bias is high enough so that
E2

0 − E1
0 = µ2 ≥ µd = µ0 −

Vb

2
, electrons can tunnel out into the source, leaving the

dot in the N = 1 ground state. The dots chemical potential µ2 is indicated with the
arrow a in Figure 5.9. In this situation, electrons can tunnel in from the source to
populate again the N = 2 ground state, so that current can flow as a series of single
electron tunneling processes, that change the configuration of the dot from the N = 2
to the N = 1 ground state and back. If the bias is increased further so that also the
generalized chemical potential µ2

10 (indicated by the arrow b in Figure 5.9) is in the bias
window, µs ≥ µ2

10 = E2
1−E

1
0 ≥ µd, the current decreases and eventually vanishes at one

particular point. Interference blockade occurs when the first excited two particle state
can be populated via the transitions 20 → 10, 10 → 21, namely when the conditions
−Vb

2
< µ2

00 and Vb

2
> µ2

10 are fulfilled. The state 21 cannot be depopulated by tunneling

out into 10 on the right lead due to interference. Only when µ3
01 >

Vb

2
or −Vb

2
< µ2

11,
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Figure 5.7: I-V -curve at ξ = 4.7749|b| (corresponding to the white dashed line in Figure 5.6)
for unpolarized leads (green line) or parallel polarized leads (blue line, polarization P = 0.4).
The current is blocked at three different points.

other channels allow to depopulate the blocking state and current can flow. We see
in Figure 5.6 that the lines indicating these conditions encircle the region where the
current is blocked.
The mechanism for the blocking is the same as described earlier. Degenerate orbitals
of the state E2

1 interfere to form a state which is geometrically decoupled from the
drain lead and therefore cannot be depopulated. This blocking is perfect only at
one particular bias voltage, when the level renormalization induced by the internal
dynamics is not affecting the decoupling mechanism. In Figure 5.7, we also show an
I-V -curve for polarized leads (polarization = 0.4). In this case, the current is blocked
at three different bias voltages, and at each blocking bias a different component of the
triplet state (with Sz = −1, 0, 1) is trapped on the dot (see Figure 5.8). Also in this
situation the components of the triplet with different Sz undergo a different effective
renormalization.
We conclude that interference blockade in SETs can be used to prepare a quantum
dot in a specific triplet state with all electrical means.
The results presented in this chapter were obtained in collaboration with Andrea
Donarini and Milena Grifoni. They were published in

[19] A. Donarini, G. Begemann, and M. Grifoni, Nano Lett. 9, 2897 (2009).

Parts of this chapter are reproduced with permission from [19], in particular Figures
5.1 - 5.5. Copyright 2009 American Chemical Society.
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Figure 5.8: Populations of the relevant states for parallel polarized leads (P = 0.4) at
ξ = 4.7749|b|. Notice that at each current blocking point in Figure 5.7, the dot is in a
certain component of the triplet state.



76 | CHAPTER 5. ALL-ELECTRIC SPIN CONTROL IN ISETS

Figure 5.9: Spectrum of the triangular quantum dot for a specific gate voltage that corre-
sponds to the dashed white line in the stability diagram in Figure 5.6 ( ξ = 4.7749). Blue
lines indicate the energies of the states, the black dashed auxiliary lines are used to visualize
the (generalized) chemical potentials µ2 = µ2

00, µ2
10, µ2

11, µ3
01 corresponding to the arrows

a, b, c, d, respectively.



Chapter 6

Nonequilibrium cotunneling: an
effective Kondo Hamiltonian
approach vs. exact results

In the Coulomb-blockade regime, sequential tunneling transport is exponentially sup-
pressed and processes where two or more electrons tunnel simultaneously become the
dominant transport mechanism [77]. These are called cotunneling processes and have
received a lot of interest in recent years for several reasons. First, applications that
rely on Coulomb blockade in quantum dots are limited by cotunneling. Second, co-
tunneling processes can act as an additional tool in transport spectroscopy to identify
electronic and vibrational excitation energies in semiconducting [78, 79] or carbon
nanotube [80] quantum dots. More recently, the interplay of sequential tunneling and
cotunneling processes was in the focus of both experimental [78, 81] and theoreti-
cal works [34, 82]. This interplay comes about at high enough source-drain voltages,
when inelastic cotunneling processes can lead to a nonequilibrium population of ex-
cited states and therefore enable sequential tunneling processes inside the Coulomb
diamond (cotunneling assisted sequential tunneling).

To calculate the current and other observables in transport through quantum dots in
the Coulomb blockade regime, there are a number of techniques, each of them having
their advantages and (at least practical) limitations. A real-time transport approach
was developed by Schoeller, König and Schön [70, 71, 72] to describe nonequilibrium
transport properties of mesoscopic systems with strong Coulomb interaction. Follow-
ing this theory, one can trace out the leads degrees of freedom and derive a formally
exact equation of motion for the reduced density matrix (RDM) of the system. The
theory allows for a systematic expansion in the tunneling Hamiltonian HT, pinpointing
the different tunneling processes. More specifically, sequential tunneling processes are
attributed to contributions of second order in HT, cotunneling to such of fourth order,
and so on. The authors also established a diagrammatic representation of the various
terms entering in the equation for the RDM. Alternatively, exactly the same equation
can be derived within a Bloch-Redfield approach iterated to fourth order in HT.

In systems with normal metal leads (where the spin projection Sz is conserved) and
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without orbital degeneracies, a simple rate equation is sufficient to describe sequential
tunneling processes [37]. Within this so-called master equation approach, one calcu-
lates transitions between states of the quantum dot system with Fermi’s golden rule,
again treating HT as a perturbation. This approach can be generalized to higher order
tunneling processes by making use of the so called T -matrix

T (E) = HT +HT
1

E −H0 + i0+
T (E), (6.1)

where 0+ is a symbolic notation for an infinitesimal positive number. The T -matrix,
known from scattering theory, describes the propagation of particles from an initial
to a final state, where the particle can propagate directly or experience an arbitrary
number of scattering (in this case tunneling) events. In particular, transition rates
from the initial to the final state can be calculated up to a given order in HT. In the
quantum transport context, the T -matrix based approach was e.g. applied to a double
dot structure [34] or to molecular systems where electronic and vibronic degrees of
freedom can be strongly coupled [36]. Compared to the GME, it is relatively simple
and yields good agreement where additional effects due to level shifts and broadening
are irrelevant, namely in the regime where the tunneling induced level width is much
smaller than the temperature. It should be said that effects arising from interference
between (quasi-)degenerate states cannot be taken into account by a rate equation
approach based on the T -matrix. In systems where such effects are expected, the
concept of the GME must be used, because the dynamics of off-diagonal elements of
the RDM, responsible for coherence and interference, is not captured by simple rate
equations.
If one aims at describing cotunneling processes only, implying that the quantum dot is
in the deep Coulomb blockade regime, further simplifications are possible. In particular
it was recently shown by Schmaus et al. [83] for a multilevel quantum dot with odd
filling that a generalized Schrieffer-Wolff [84] transformation can be used to obtain an
effective cotunneling Hamiltonian. Transport can then be calculated using e.g. rate
equations or Green’s function techniques.
In this chapter, we show that an effective Kondo Hamiltonian can be obtainend by
eliminating linear contributions in HT from H and projecting the leading second or-
der contributions on a subspace with an odd number of electrons. This is equiva-
lent to a Schrieffer-Wolff transformation. Renormalization group techniques for the
Kondo model are available and give correct qualitative and quantitative predictions
for the current and conductance that include higher order tunneling processes. These
techniques can be applied when other excitations are well separated from the regime
covered by the low energy Kondo Hamiltonian. In this thesis, we do not use these
powerful but complex techniques, and restrict ourselves to fourth order rate equations
to describe various cotunneling processes. In particular, a comparison between exact
numerical results up to fourth order in HT and approximation schemes is made to
identify the validity and accuracy of the approximate methods.
We show here that sequential tunneling contributions can become relevant already
inside the Coulomb diamond, when excited states become populated via inelastic co-
tunneling and enable sequential tunneling processes. At this point, the cotunneling
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contributions to the rates can become negative, which would lead to an ill-defined set
of rate equations if the sequential tunneling contributions were not large enough to
assure positive definiteness of the rates. In section 6.5, we estimate the gate dependent
renormalization of the energy levels that define the inelastic cotunneling threshold, as
it was observed e.g. in [64].

6.1 Transport

In this chapter, we consider systems without orbital degeneracies and non-polarized
leads, so that a rate equation approach to transport is sufficient. As we want to
calculate cotunneling rates, we iterate the T -matrix to second order in HT. We label
the states of the quantum dot with their particle number N , the Sz-component of their
spin η and an additional quantum number l. The rate for a transition between two
states |N ′l′η′〉 → |Nlη〉 of the quantum dot system is then given by

Γ|Nlη〉〈N ′l′η′| = 2π
∑

f,i

∣

∣

∣

∣

∣

〈fNlη|HT +HT
1

EiN′l′η′
−HQD −Hleads + i0+

HT|iN ′l′η′〉

∣

∣

∣

∣

∣

2

Wiδ(EfNlη
− EiN′l′η′

). (6.2)

Here the sum goes over all possible initial and final states of the leads |iNlη〉 =
|Nηl〉|iL〉|iR〉, |fN ′l′η′〉 = |N ′η′l′〉|fL〉|fR〉, the former weighted by a thermal distribu-
tion function Wi. The rate equation describing the dynamical population probabilities
of the states is

ṖNlη = −
∑

N ′l′η′

Γ|N ′l′η′〉〈Nlη| P
Nlη +

∑

N ′l′η′

Γ|Nlη〉〈N ′l′η′| P
N ′l′η′

, (6.3)

where PNlη is the probability of finding the dot in the state |Nlη〉 and the stationary
solution is given by

∑

N ′l′η′

Γ|N ′l′η′〉〈Nlη|P
Nlη =

∑

N ′l′η′

Γ|Nlη〉〈N ′l′η′| P
N ′l′η′

, (6.4)

with the additional normalization condition
∑

Nlη

PNlη = 1. (6.5)

Equation (6.3) is very intuitive and sometimes just given heuristically. However, to
lowest (second) order in HT it follows directly from the GME, equation (3.19), by
neglecting off-diagonal elements of the reduced density matrix (RDM) and identifying
the occupation probabilities PNlη with the diagonal elements of the RDM. With the
help of the stationary solution, we calculate the current as

I = Isequential + Icotunneling, (6.6)
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with

Isequential =
∑

Nlη

∑

sm

(

ΓL
|N+1sm〉〈Nlη| − ΓL

|N−1sm〉〈Nlη|

)

PNlη
stat , (6.7)

Icotunneling =
∑

Nlη

[

∑

l′η′

(

ΓRL
|Nl′η′〉〈Nlη| − ΓLR

|Nl′η′〉〈Nlη|

)

]

PNlη
stat . (6.8)

Cotunneling rates that connect N - and N ± 2-particle states are not taken into ac-
count. These processes can be neglected, because they are not seen inside the Coulomb
diamonds and are of small magnitude outside. They were addressed in [85].
For the evaluation of equation (6.2), all possible configurations of the leads with dif-
ferent thermal weight have to be taken into account. We can write the possible initial
states as

∑

i

|iNlη〉 = |Nηl〉
∑

iL

|iL〉
∑

iR

|iR〉, (6.9)

and the final state follows from the initial state by summing over all possible tunneling
processes that connect |Nηl〉 with |N ′η′l′〉. Specifically it means that for the sequential
tunneling rates, we obtain

∑

f

|fN±1l′η′〉 = |N+1 η′l′〉
∑

kασ

ckασ

∑

iL

|iL〉
∑

iR

|iR〉+|N−1 η′l′〉
∑

kασ

c†kασ

∑

iL

|iL〉
∑

iR

|iR〉,

(6.10)
and for the cotunneling rates

∑

f

|fNl′η′〉 = |Nη′l′〉
∑

kk′

∑

αα′

∑

σσ′

c†k′α′σ′ckασ

∑

iL

|iL〉
∑

iR

|iR〉. (6.11)

The sum over k and k′ are recast into integrals with the replacements
∑

kα →
∑

α

∫

dǫk να, where να is the density of states in lead α. The expectation
value of pairs of lead operators is by definition given by the Fermi function:

∑

iL

∑

iR

〈iL|〈iR|c
†
kασck′α′σ′|iR〉|iL〉Wi = δαα′δσσ′δkk′ f(ǫk − µα). (6.12)

6.2 The Kondo Hamiltonian

In the deep Coulomb blockade regime, each diamond in the stability diagram corre-
sponds to an N -particle ground state. In such a situation, we can describe our system
by an effective low energy Hamiltonian

HN =
∑

lη

Elη|N lη〉〈N lη| +Hleads +HN
int, (6.13)

that includes only N -electron states in the quantum dot and transitions between those
via cotunneling events involving virtual excitations of N ± 1 particle states. We can



6.2. THE KONDO HAMILTONIAN | 81

derive this equation by lowest order perturbation theory [86]. If we write the state of
the system as the sum of the terms |N − 1〉, |N〉 and |N + 1〉, where |N〉 represents
all states with electron number N , then the Schrödinger equation can be written as





HN−1 N−1 HN−1 N

HN N−1 HN N HN N+1

HN+1 N HN+1 N+1









|N − 1〉
|N〉

|N + 1〉



 = E





|N − 1〉
|N〉

|N + 1〉



 , (6.14)

where HN N ′ = PNHPN ′ and PN is a projection operator onto the subspace with N
particles. There is no term in the Hamiltonian that connects the N − 1 and the N +1
spaces directly. The lead Hamiltonian is not written here, it gives contributions to
the diagonal of the above matrix only. We can now eliminate |N − 1〉 and |N + 1〉 to
obtain
(

HNN +HNN+1
1

E −HN+1N+1

HN+1N +HNN−1
1

E −HN−1N−1

HN−1N

)

|N〉 = E|N〉.

(6.15)
Contributions from states with N ± 2 are of higher order and are thus neglected in
equations (6.14), (6.15). The last two terms in equation (6.15) can be recast into the
form

HN
int =

∑

kk′

αα′

∑

σσ′

∑

ll′

ηη′

[

J ll′

αα′

2
τ ηη′ · τ σ′σ|Nlη〉〈Nl

′η′| +
P ll′

αα′

2
δηη′δσσ′|Nlη〉〈Nl′η′|

]

c†kασck′α′σ′ .

(6.16)
Details of the calculations are shown in section 6.5. The first term in equation (6.16)
looks like the famous Kondo Hamiltonian with an anti-ferromagnetic spin-spin in-
teraction, but generalized to two (or more) orbitals, while the second is a potential
scattering term. The assumption that N is odd reflects itself in the possible values of
η = ±1

2
for ↑, ↓. The expressions for the coupling matrix elements read

J ll′

αα′ = tαtα
′∗∑

s

〈Nl ↑ |dα↓|N + 1s〉〈N + 1s|d†α′↑|Nl
′ ↓〉

ENl′ − EN+1s + ǫk′α′ + i0+
+ (6.17)

tαtα
′∗∑

s

〈Nl ↓ |d†α′↓|N − 1s〉〈N − 1s|dα↑|Nl
′ ↑〉

EN−1s − ENl′ + ǫkα − i0+
,

P ll′

αα′ = tαtα
′∗∑

sσ

〈Nl ↑ |dασ|N + 1s〉〈N + 1s|d†α′σ|Nl
′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+
+ (6.18)

tαtα
′∗∑

sσ

〈Nl ↑ |d†α′σ|N − 1s〉〈N − 1s|dασ|Nl
′ ↑〉

EN−1s − ENl′ + ǫkα − i0+
.

The spin operator of the molecule can be expressed in terms of the vector of the Pauli

matrices, τ =

{(

0 1
1 0

)

,

(

0 −i
i 0

)

,

(

1 0
0 −1

)}

:

Sll′ =
1

2

∑

ηη′

|Nηl〉τ ηη′〈Nη′l′|. (6.19)
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Schrieffer and Wolff [84] were the first to obtain a result similar to equation (6.13)
starting from the single impurity Anderson model. They showed the relation between
Anderson- and Kondo like models using a canonical transformation. The equations
(6.17), (6.18) represent a generalization of their results to more complicated models
with more orbitals and more charge states.

6.3 Different approximations/approaches

In the following, we calculate the current and conductance based on equations (6.2)
and following. We use different approximation schemes of increasing complexity. The
theory by Koller, Leijnse et al. [73, 87] based on the real-time diagrammatic approach
[70] acts as a benchmark for our calculations. In this approach, kinetic equations for
the reduced density matrix exact up to fourth order in HT are developed. We refer to
it as KinEq-approach.

6.3.1 First Approximation - cotunneling only

Well inside the Coulomb diamonds, the current is dominated by cotunneling processes.
In a first approximation, we therefore neglect sequential tunneling contributions in
equation (6.2). This is the regime where the system can be described by the low-energy
Kondo Hamiltonian in equation (6.13). As a further simplification, we neglect the ǫk
energy dependence in the denominators of the coupling constants J and P . This is
justified for small (compared to the charging energy) bias voltages, so that the electrons
that tunnel to and from the leads have energies around the equilibrium chemical
potential and thus 1

EN+1s−ENl−ǫk
≈ 1

EN+1s−ENl
because of EN+1s − ENl ≫ ǫk, ǫk′ . The

sums over k and k′ in the expression for the rates are recast into integrals, so that we
obtain

Γαα′

|Nηl〉〈Nη′l′| = 2π

∫

dǫkνα

∫

dǫk′να′f(ǫk − µα)(1 − f(ǫk′ − µα′)) (6.20)

δ (ENlη − ENη′l′ − ǫk − ǫk′)

(
∣

∣J ll′

RL

∣

∣

2

2
(1+ τx)ηη′ + δηη′

∣

∣P ll′

RL

∣

∣

2

2

)

,

which can be solved easily to yield for example

ΓRL
|Nηl〉〈Nη′l′| = 2π νLνRnB (−(ENη′l′ − ENηl) − eVb) (−(ENη′l′ − ENηl) − eVb)

(
∣

∣J ll′

RL

∣

∣

2

2
(1+ τx)ηη′ + δηη′

∣

∣P ll′

RL

∣

∣

2

2

)

, (6.21)

where nB(x) = 1
exp(βx)−1

is the Bose Einstein distribution function. At low temper-

atures, −nB(−x)x ≈ θ(x)x. As a result, the differential conductance is finite but
constant as a function of Vb until inelastic cotunneling sets in. At this point, the
dI/dV increases steplike, because a new transport channel is available. The resulting
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nonequilibrium distribution of population probabilities generates typically a cusp in
the dI/dV on top of the step.
This approximation is valid for gate voltages inside the N -electron Coulomb diamond,
as long as the denominators of J and P are not vanishing, and for small bias voltages.
We refer to this approximation as AppI.

6.3.2 Second Approximation - cotunneling only

To get a more precise description of the cotunneling conductance, we take into account
in a second approximation the energy dependence of J and P . By shifting the inte-
gration variable ǫk → ǫk + µL in equation (6.21), we see that J and P now explicitly
depend on µL and therefore on the bias voltage. In the rates, one gets a summation
over expressions of the general form

Γ ∼

∫

dǫf(ǫ) (1 − f(ǫ+ µL − µR + ENl − ENl′))
1

ǫ− E1 ± i0+

1

ǫ− E2 ± i0+
,

where E1 and E2 depend on l and l′ and the summation indices in the expressions
for J and P . If E1 = E2, these expressions cannot be evaluated directly, because of
divergences stemming from second order poles. This problem was stated already in
1994 [88], and a regularization scheme has been developed and become standard within
the T -matrix approach to transport [89, 36]. In this regularization scheme, a finite
width γ ∼ Γ is attributed to the molecular levels which enters the denominators as
imaginary parts. This level broadening physically stems from the tunneling coupling,
but is not taken into account by the T -matrix approach. Thus the poles are shifted
away from the real axis so that the integral can actually be performed. The resulting
expression can be expanded in powers of γ and the leading term is found to be of
order 1/γ. Together with the prefactor of the rates, Γ2, this term is identified to be
a sequential tunneling term. It is excluded to avoid double counting of sequential
tunneling processes. The next to leading order term is of order γ0 and gives the
regularized cotunneling rate. At this point, the actual value of the broadening does
not matter and the limit γ → 0 can safely be taken. The calculation of the current
with regularized cotunneling processes and disregarding sequential tunneling rates is
referred to as AppII.

6.3.3 T -matrix Approach

AppII fails when cotunneling assisted sequential tunneling processes become accessible.
This can happen well inside the Coulomb diamond, when excited N particle states are
populated via inelastic cotunneling. At the lines given by the resonance condition
of the generalized chemical potential of the dot with the chemical potential of the
leads (dashed lines inside the Coulomb diamond in Figure 6.1) the cotunneling rates
become negative which leads to an ill-defined set of rate equations, unless we include
also sequential tunneling terms and allow also states with N ± 1 to be populated.
For the calculation of the rates, we use equation (6.2). This is exactly the T -matrix
approach mentioned in the introduction.
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6.4 Results

We compare now the different approaches applied to a double quantum dot (DD)
system, filled with one electron. The Hamiltonian is given by

HDD =
2
∑

α=1

∑

σ

ξασd
†
ασdασ + b

∑

σ

(

d†1σd2σ + d†2σd1σ

)

+U
∑

α

nα↑nα↓ + V (n1↑ + n1↓)(n2↑ + n2↓). (6.22)

The parameters we use are (in units of |b|, b < 0): ξ = −Vg, U = 18.18, V = 9.32,
ΓL = ΓR = 2πνL|t

L|2 = 0.0178, kBT = 0.1136. The energies of the N = 1 states are
ENl = ±b which leads to an inelastic cotunneling threshold of ∆ = −2b.
In Figure (6.2), the conductance through the DD calculated with the KinEq approach
is plotted on a logarithmic color scale. We see the Coulomb diamond with N = 1.
Outside the diamond, there are additional lines that involve sequential tunneling be-
tween excited states and groundstates. Inside the diamond, at Vb = 1∆ the threshold
for inelastic cotunneling is clearly visible. Also the onset of the cotunneling assisted
sequential tunneling (see dashed lines in Figure (6.1)) can be seen. In Figures (6.3)
and (6.4), we plot the dI/dV versus bias voltage, calculated using the different ap-
proximation schemes at different values of the gate voltage.
We see that AppI yields good agreement with the KinEq approach only at small bias
voltages. Inelastic cotunneling can be described correctly only if ∆ ≪ EC , which is
not the case for the parameters here. This situation can be found e.g. in molecular
quantum dots, where the perfect degeneracies in the spectrum of the isolated symmet-
ric molecule are lifted by the asymmetric environment of the source-molecule-drain
junction.
AppII and KinEq agree nicely as long as gate and bias voltages are such that one is in
the innermost diamond defined by the dashed lines (see Figure (6.1)). At its borders,
the cotunneling rates can become negative and the rate equations ill-defined. It is not
valid outside of this region.
Inside the overall Coulomb diamond, the T -matrix approach and KinEq yield almost
exactly the same result. Small relative deviations (few per cent) between the two
approaches can be seen at the resonant lines, which can be attributed to the class of
diagrams not taken into account by the T -Matrix. Larger deviations occur outside of
the diamond (see Figure (6.5)).
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Figure 6.1: Sketch of the Coulomb diamond with one particle. Red lines indicate a
transition between states with zero and one particles, green lines between states with
one and two particles. Solid lines are for groundstate-groundstate transitions that
define the Coulomb blockade region, dashed lines involve excited states.

Figure 6.2: log10(dI/dV ) calculated with KinEq. One nicely sees the general resem-
blance to Figure (6.1). The onset of inelastic cotunneling processes at Vb = ∆ is clearly
visible.
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Figure 6.3: dI/dV as a function of bias voltage calculated with the different approaches
at Vg = 1V . AppII yields divergences in the conductance at resonances. The T -
matrix approach and KinEq are well behaved and include also sequential tunneling
contributions which are of order 1/Γ larger than the cotunneling rates.
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Figure 6.4: dI/dV as a function of bias voltage calculated with the different approaches
at the center of the diamond (Vg = 2V ). AppII and the T -matrix approach coincide
for a large bias range. AppI underestimates the conductance.
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Figure 6.5: Relative difference in current between KinEq and the T -matrix approach.
Deviations are seen at the position of the resonant lines (see Figure 6.1). Otherwise,
the agreement is almost perfect.
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6.5 Gate-dependent tunneling-induced level shifts

The coupling of the molecule to the leads has certain hybridization effects on the
molecular states, such as broadening of the otherwise delta-like levels, and in addition
a renormalization of the position of the energy levels. To see these effects within a
perturbative approach, a summation to all orders in HT over at least a certain class of
contributions has to performed [90]. Instead, if we follow Haldane’s scaling approach
[91], the shift of the energy level Elη can be calculated by taking into account all
possible fluctuations it can experience to lowest order in HT:

δElη =
∑

ασs

∫ D

−D

dǫ

2π
Re

[

Γα
(1 − fα(ǫ)) |〈N−1s|dασ|Nlη〉|

2

Elη − (EN−1s + ǫ)
+Γα

fα(ǫ)
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2

Elη − (EN+1s − ǫ)

]

,

(6.23)
where Γα = 2πνα|t

α|2 and D is the bandwidth of the lead conduction band. This shift
does not depend on η. Evaluating the integrals at T ≈ 0 yields

δElη =
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

Elη − EN−1s − µα

Elη − EN−1s −D
(6.24)

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln
Elη − EN+1s + µα

Elη − EN+1s −D

]

,

and in the infinite band limit D → ∞ we can approximate this as

lim
D→∞

δElη =
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

(EN−1s + µα − Elη)

eV
(6.25)

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln

(EN+1s − µα − Elη)

eV

]

−
∑

ασs

Γα

2π
ln

D

eV

[

〈Nlη|d†ασ|N−1s〉〈N−1s|dασ|Nlη〉

+〈Nlη|dασ|N+1s〉〈N+1s|d†ασ|Nlη〉
]

=
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

(EN−1s + µα − Elη)

eV

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln

(EN+1s − µα − Elη)

eV

]

−
∑

ασ

Γα

2π
ln

D

eV
〈Nlη|d†ασdασ + dασd

†
ασ|Nlη〉

=
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 ln

(EN−1s + µα − Elη)

eV

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
ln

(EN+1s − µα − Elη)

eV

]

−
∑

ασ

Γα

2π
ln

D

eV
.

The difference between two N particle energies entering in the inelastic cotunneling
rates is then gate dependent, but not depending on the exact value of D. The gate
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dependence leads to a tilting of the otherwise horizontal cotunneling line in the stability
diagram. This effect has been observed in a recent experiment by Holm [64].
It is very interesting to see the resemblance of this result with the result obtained
by Sonja Koller [90]. She followed the real-time diagrammetic approach by König et
al. [71], and obtained a renormalization by summing a given subclass of diagrams to
all orders in HT. Translated to our notation, her result for the renormalized energy
difference of two levels Elη − El′η′ + δElη − δEl′η′ reads

δElη − δEl′η′ =
∑

ασs

Γα

2π

[

|〈N−1s|dασ|Nlη〉|
2 Ψ

(

1

2
+ i

β(EN−1s + µα − Elη)

2π

)

+
∣

∣〈N+1s|d†ασ|Nlη〉
∣

∣

2
Ψ

(

1

2
+ i

β(EN+1s − µα − Elη)

2π

)

− |〈N−1s|dασ|Nl
′η′〉|

2
Ψ

(

1

2
+ i

β(EN−1s + µα − El′η′)

2π

)

−
∣

∣〈N+1s|d†ασ|Nl
′η′〉
∣

∣

2
Ψ

(

1

2
+ i

β(EN+1s − µα − El′η′)

2π

)]

,(6.26)

where Ψ is the digamma function and stems from the precise evaluation of integrals as
in equation (6.23) at finite temperatures. In the limit T → 0, her result agrees exactly
with ours.

Derivation of equation (6.16)

This section can be regarded as an appendix to this chapter. We derive the expression
for the effective Kondo Hamiltonian, equation (6.16). To evaluate equation (6.15), we
use the projection operators PN and PN+1 on the tunneling Hamiltonian:

HNN+1 = PNHTPN+1 =
∑

kσα

tα
∑

Nlη

∑

sm

〈Nlη|dασ|N+1sm〉c†kασ|Nlη〉〈N+1sm|, (6.27)

where lη and sm run over all possible N and N + 1 particle states, respectively. We
show here the calculation for HN→N+1→N

int := HNN+1
1

Ei−HN+1N+1−Hleads+i0+HN+1N in

some detail, while for HN→N−1→N
int we just added the result in equations (6.17) and

(6.18). We find:

HNN+1
1

Ei −HN+1N+1 −Hleads + i0+
HN+1N (6.28)

=
∑

kασ

∑

k′α′σ′

∑

ll′

∑

ηη′

∑

ss′

∑

mm′

tαtα
′∗
c†kασ|Nlη〉〈Nlη|dασ|N + 1sm〉〈N + 1sm|

1

Ei −HN+1N+1 −Hleads + i0+
|N + 1s′m′〉〈N + 1s′m′|d†α′σ′|Nl

′η′〉〈Nl′η′|ck′α′σ′

=
∑

kασ

∑

k′α′σ′

∑

ll′

∑

ηη′

∑

sm

tαtα
′∗ 〈Nlη|dασ|N + 1sm〉〈N + 1sm|d†α′σ′|Nl′η′〉

ENl′η′ − EN+1sm + ǫk′α′σ′ + i0+
c†kασck′α′σ′ |Nlη〉〈Nl

′η′|.
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To see the relation between equation (6.28) and equation (6.16), and to identify the
exchange scattering J ll′

αα′ and the potential scattering P ll′

αα′ , we perform the sum over
σ and σ′ in equation (6.28) term by term, for fixed ll′, αα′, kk′ and EN+1sm = EN+1s

for zero magnetic field. Still, we have to sum over m, in words over all the states
with different Sz in the multiplet with Energy EN+1s. Again, we show the calculation
explicitly for HN→N+1→N

int . We obtain

∑

σσ′

∑

ηη′

∑

m

tαtα
′∗ 〈Nηl|dασ|N + 1sm〉〈N + 1sm|d†α′σ′|Nη′l′〉

ENη′l′ − EN+1s + ǫk′α′σ′

c†kαsck′α′σ′|Nlη〉〈Nl
′η′|

= tαtα
′∗ 〈Nl ↑ |dα↓|N + 1s 0〉〈N + 1s 0|d†α′↑|Nl

′ ↓〉

ENl′↓ − EN+1s + ǫk′α′↑ + i0+
c†kα↓ck′α′↑|N ↑ l〉〈N ↓ l′|

+tαtα
′∗ 〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl

′ ↑〉

ENl′↑ − EN+1s + ǫk′α′↓ + i0+
c†kα↑ck′α′↓|Nl ↓〉〈Nl

′ ↑ |

+
∑

η

tαtα
′∗ 〈Nηl|dα↑|N+1s η+1

2
〉〈N+1s η+1

2
|d†α′↑|Nηl

′〉

ENηl′ − EN+1s + ǫk′α′↑ + i0+
c†kα↑ck′α′↑|Nηl〉〈Nηl

′|

+
∑

η

tαtα
′∗ 〈Nηl|dα↓|N+1s η−1

2
〉〈N+1s η−1

2
|d†α′↓|Nηl

′〉

ENηl′ − EN+1s + ǫk′α′↓ + i0+
c†kα↓ck′α′↓|Nηl〉〈Nηl

′|.

(6.29)

We want to write this in the form
[

J−+τ−σ′στ
+
ηη′ +J+−τ+

σ′στ
−
ηη′ +Jzzτ z

σ′στ
z
ηη′ +Pδσ′σδηη′ ]

c†kασck′α′σ′|Nlη〉〈Nl′η′|. Here, τ+ and τ− are linear combinations of τx and τ y, τ± =
τx ± iτ y. In particular τ · τ = τxτx + τ yτ y + τ zτ z = 1

2
(τ+τ− + τ−τ+) + τ zτ z. In the

following, we identify J+−, J−+, Jzz and P (for simplicity, the indices αα′ and ll′ are
omitted at the moment), and show that J+− = J−+ = Jzz = J . We do so by using
angular momentum ladder operators S+ =

∑

i d
†
i↑di↓ and S− =

∑

i d
†
i↓di↑, where i runs

over all the atoms of the molecule, and their impact on the multiplet states with spin
S and Sz = m is

S−|S,m〉 = ~

√

S(S + 1) −m(m− 1)|S,m− 1〉, (6.30)

S+|S,m〉 = ~

√

S(S + 1) −m(m+ 1)|S,m+ 1〉,

together with the commutation relations

[

S+, d†ασ

]

= δσ↓d
†
α↑, (6.31)

[

S+, dασ

]

= −δσ↑dα↓,
[

S−, d†ασ

]

= δσ↑d
†
α↓,

[

S−, dασ

]

= −δσ↓dα↑.
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Using equations (6.30) and (6.31), we get

〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl
′ ↑〉 (6.32)

= 〈Nl ↑ |S+dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓S
+|Nl′ ↓〉

= 〈Nl ↑ |dα↓|N + 1s 0〉〈N + 1s 0|d†α′↑|Nl
′ ↓〉,

and with this we find that

J+− = J−+ = tαtα
′∗ 〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl

′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+
. (6.33)

To identify Jzz and P , we introduce the shorthand notation, Mησ =〈Nηl|dασ|N+1sm〉

〈N + 1sm|d†α′σ|Nηl
′〉. Again with equations (6.30), (6.31), one can show that M↑↑ =

M↓↓ and M↓↑ = M↑↓. With |Nηl〉〈Nηl′| = 1
2

∑

η |Nηl〉〈Nηl
′| + ηSz

ll′ , the last two lines
of equation (6.29) can be rewritten as

1

ENl′ − EN+1s + ǫk′α′ + i0+

[

∑

σσ′

[M↑↑ −M↓↑]S
z
ll′τ

z
σ′σc

†
kασck′α′σ′+ (6.34)

1

2

∑

ησ

[M↑↑ +M↓↑] c
†
kασck′α′σ|Nηl〉〈Nηl

′|

]

,

from where we identify

Jzz = tαtα
′∗∑

m

[

〈Nl ↑ |dα↑|N + 1sm〉〈N + 1sm|d†α′↑|Nl
′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+
(6.35)

−
〈Nl ↑ |dα↓|N + 1sm〉〈N + 1sm|d†α′↓|Nl

′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+

]

,

P = tαtα
′∗∑

m

∑

σ

[

〈Nl ↑ |dασ|N + 1sm〉〈N + 1sm|d†α′σ|Nl
′ ↑〉

ENl′ − EN+1s + ǫk′α′ + i0+

]

. (6.36)

The remaining task is to show that Jzz = J+− or in other terms that

〈Nl ↓ |dα↑|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl
′ ↑〉 (6.37)

=
[

〈Nl ↑ |dα↑|N + 1s 1〉〈N + 1s 1|d†α′↑|Nl
′ ↑〉

−〈Nl ↑ |dα↓|N + 1s 0〉〈N + 1s 0|d†α′↓|Nl
′ ↑〉
]

,

which can be done again by using equations (6.30), (6.31). We use in particular

〈N S η|dα↑|N+1 S+
1

2
η+

1

2
〉 = (6.38)

√

(S + 1
2
)(S + 3

2
) − (η + 1

2
)(η − 1

2
)

√

S(S + 1) − η(η − 1)
〈N S η−1|dα↑|N+1 S+

1

2
η−

1

2
〉,

from where it follows that equation (6.37) is fulfilled.
The results presented in this chapter were obtained in collaboration with Jens Paaske,
Sonja Koller and Milena Grifoni. A publication is in preparation.
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Conclusions

We have investigated quantum transport through single molecule junctions with weak
lead-molecule coupling. In chapter 2, the PPP-Hamiltonian for conjugated molecules
was derived and specified for benzene. This model covers the excitations of benzene
relevant for transport, and it is known to give good agreement with experiments on
benzene in the gas phase. As the theoretical framework to describe transport through
the molecule, we have derived the generalized master equation (GME) for the reduced
density matrix (RDM) of the molecule to lowest non-vanishing order in the lead-
molecule coupling in chapter 3.

In chapter 4, we have presented the results of our calculations on transport through a
benzene interference single electron transistor (ISET), attached to the lead in para and
meta configuration. In both cases, transport is characterized by Coulomb blockade. In
meta configuration, we found that destructive interference of degenerate many-body
eigenstates causes a reduction of the linear conductance with respect to the para con-
figuration, and negative differential conductance (NDC) and current blocking at finite
bias voltages. We tested the robustness of the interference effects against breaking of
the exact symmetry of the benzene molecule, which is related to the presence of exact
degeneracies. As the condition for the interference effects to survive, we have found
the quasi degeneracy of two interfering states, meaning that the difference in energy
must be smaller than the molecule-lead coupling strength, δE ≪ ~Γ ≪ kBT .

The energetic analysis of the sequential tunneling processes together with the Pauli
exclusion principle in the leads and the interference-caused node in the transition prob-
ability of the blocking state would lead to the conclusion that current blocking is a
threshold effect. We find instead that due to the internal dynamics of the molecular
states induced by the coupling to the leads, the interference is perfectly destructive
and the current is blocked completely only at one specific bias voltage. In chapter
5, we proposed to use the characteristic blocking behavior to obtain control over the
molecules spin degree of freedom by means of the bias voltage. In the presence of
parallel polarized leads, different components of spin multiplets experience different
renormalizations, and thus the current is blocked at more than one specific bias voltage.
Every time the current is blocked, the molecule is in a specific state of the multiplet,
and the bias can be tuned to switch between different configurations. Spin control by
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all-electrical means is highly desirable for spintronics and spin based quantum com-
puting applications. In addition to benzene junctions, we propose other realizations
of ISETs. As necessary conditions, we identified the presence of degenerate orbitals
and the possibility to form superpositions of these orbitals that exhibit nodes at one
electrode and not at the other. In particular, these conditions are fulfilled for systems
with discrete rotational symmetry. We showed that qualitatively the same interference
effects as in benzene can be expected in a triangular arrangement of quantum dots.
Multiple quantum dots can be described by Hamiltonians formally equivalent to HPPP,
but with adjusted parameters.
In chapter 6, we left the sequential tunneling regime and investigated cotunneling
processes. We showed that in the deep Coulomb blockade regime the system can be
described by an effective Kondo Hamiltonian. We have derived different approximation
schemes for the cotunneling rates, all based on the T -matrix formalism and a master
equation approach, neglecting coherences. We compared these approximation schemes
to the exact fourth order calculations by Koller et al. [73] and discussed their regimes
of validity as well as their accuracy. The generalized master equation and the T -
matrix approach show good agreement where additional effects due to level shifts and
broadening are irrelevant, namely in the regime where the tunneling induced level
width is much smaller than the temperature.

Perspectives

In the end of this thesis, we want to give some stimulus for a continuation of our work.
Therefore, we list suggestions for future works and some of the problems that could
not be resolved in the framework of this thesis.

• An estimate of the reduction of the addition energy due to screening effects of
the electron electron interaction on the molecule in presence of polarizable envi-
ronments is highly desirable. To calculate this quantity, we suggest to implement
the approach of Kaasbjerg [56] for our model.

• Molecules are characterized by vibrations. The impact of these vibrational modes
on the interference effects is an interesting question that should be addressed.

• A simple method that can deal with degeneracies, and therefore with interference
effects in the cotunneling regime, is of great interest. Is it possible to general-
ize the T -matrix based rate equation approach to include coherences between
degenerate states?

• In benzene, a multi-orbital Kondo effect is expected. To gain a quantitative
understanding of the conductance in the Kondo regime, one can derive the pa-
rameters J and P in the Kondo model from the exact many-body eigenstates of
benzene and use them as an input for renormalization group (RG) calculations.
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