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Life above the boiling point of water? 
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Summary. Various extremely thermophilic archaebacteria exhibit optimum growth at above 8 0 ° C . Pyrodictium is the 
most thermophilic of these organisms, growing at temperatures of up to U 0 ° C and exhibiting optimum growth at 
about 105°C. All of these organisms grow by diverse types of anaerobic and aerobic metabolism. 
Key words. Archaebacteria; thermophilic bacteria; Pyrodictium. 

I. Introduction 

1 or a long time, thermophilic bacteria with temperature 
optima above 45 °C have been recognized to be widely 
distributed in soils, self-heated hay, and geothermally 
heated areas. Most of them show an upper temperature 
limit of growth between 60 and 8 0 ° C a n d are members of 
genera also containing mesophiles, such as Bacillus and 
Clostridium. About 15 years ago, bacteria living in the 
hot springs of Yellowstone National Park were observed1 

and the first extremely thermophilic organism with a 
temperature maximum at 85 °C was isolated4. Since that 
time, various extremely thermophilic bacteria with tem­
perature optima well above 80 °C were obtained which, as 
a rule, do not grow at 60"C or below. Pyrodictium, the 
most extreme thermophilic organism existing in pure cul­
ture does not even grow at 82°C or below". Almost all of 
these organisms (one exception10) belong to the methano-
genie and S'-metabolizing archaebacteria11, the proper­
ties of which are reviewed here. 

2. Habitats 

All the extremely thermophilic, methanogenic and S°-
dependent archaebacteria isolated have been found in 
geothermal areas. Sulfur is formed there by the oxidation 
of H 2 S and by the reaction of H 2 S with S()2. Both of these 
gases are often present in volcanic exhalations22. Liquid 
water is one important requirement for life3. The maxi­
mum temperatures for liquid water are pressure-depen­
dent, and in deep-sea hydrothermal areas 2500 m below 
the surface water temperatures may exceed 300 ° C \ Ter­
restrial solfataric springs and mud holes exhibit tempera­
tures of up to 100°C. They include neutral to weakly 
alkaline (pH 7-9) springs rich in CI as well as acidic 
sulfate-rich water- or mudholes u ,\ The examination of 
soil profiles within solfatara fields in Iceland, Italy and 
the Azores showed that these water-containing soils typi­
cally consist of two layers which have quite different 
properties; there is an oxidized, strongly acidic ochre-
colored upper layer of about 15 30 cm in thickness over-



Figure I. Isolate H 10 grown at 100°C. E M micrograph, Pt-shadowing. 
Bar 1 urn. 

laying a reduced, bluish-black lower zone exhibiting a 
slightly acidic pH of between 4 and 6.5. In addition to 
their presence in natural habitats, extremely thermophilic 
archaebacteria also thrive within boiling outflows of geo-
thernial powerplants in Larderello, Italy, and Krafla, 
Iceland. 
With respect to their growth requirements, e.g. pH, salts, 
possible substrates and high temperatures, extremely 
thermophilic archaebacteria appear to be well adapted to 
their natural environment. They are usually found to 
proliferate at temperatures between 60 and 9 8 ° C (table 
1). We obtained isolate fcGeo 3' from the Krafla geother-

mal power plant. This organism resembles Thermopro-
teus in shape (fig. 1) and metabolism but differs from the 

Figure 3. Methanothermus fervidus. E M micrograph, thin section. Bar I 
urn. 

Table 1. Growth temperatures of extremely thermophilic archaebacteria 
Species Growth temperature 

Minimal Optimal Maximal 
Methanothermus sociabilis 60 88 97 
Acidianus infernus 60 88 95 
Staphylothermus marinus 65 92 98 
Sulfolobus acidocaldarius 60 80 90 
Pyrococcus furiosus Vc-1 70 100 103 
Isolate H 10 75 100 102 
Thermodiscus maritimus 75 88 98 
Thermofdum librum 70 80 95 
Thermoproteus neutrophils 70 85 97 
Thermococcus celer 75 88 97 
Pyrodictium occultum 82 105 110 

Figure 2. Extremely thermophilic ore-leaching 
isolate TH2. E M micrograph, Pt-shadowing. Bar 
1 urn. 

latter by its much lower GC-content and its upper growth 
temperature limit of 102°C. The marine archaebacterium 
Pyrococcus furiosus shows a temperature optimum of 
growth at 100 °C (38 min doubling time0). Pyrodictium 
grows at the highest temperatures found for any orga­
nism in the laboratory, exhibiting an optimum at 105 °C 
and a maximum of approximately 110°C. Due to its 
adaptation to the extremely high temperatures of its bio-
tope, this organism is unable to grow at temperatures 
below 8 2 ° C 7 . 

3. Metabolism 

The extremely thermophilic methanogens grow exclu­
sively by formation of methane from H 2 and C 0 2 , both 



Table 2. Iincrgy-yiclding reactions of extremely thermophilic archaebacteria 
Mode of* nutrition Metabolism Energy-yielding reaction Example 
Lithoautotrophic Methanogcncsis 4 H 2 + C 0 2 - C H 4 + 2 H 2 0 M ethanothermus soeiabilis 

Methanothermus fervidus 
M ethanococcus jannaschii 

S/H Autotrophy H 2 + S - H 2 S Pyrodictium occultum 
Thermoproteus neutrophilus 
Thermoproteus tenax* 
Acidianus infernus** 

S-oxidation 2S + 3 0 2 + 2 H 2 0 - > 2 H 2 S 0 4 Sulfolobus acidocaldarius* 
A cidianus infernus** 

Pyrite oxidation 4FeS 2 + 150 2 + 2 H 2 0 - 2 F e 2 ( S 0 4 ) 3 + 2 H 2 S 0 4 Isolates TH2*; Kra23; VE2 

Heterotrophic S-respiration Organic [H] + S->H2S Thermoproteus tenax * 
Desulfuroeoceus mobilis 
Thermofilum pendens 

Unknown anaerobic Yeast extract->C0 2 + ? Thermodiscus marítimas 

Fermentation 
O-respira lion 

Yeast extr.-> acetate, isovalerate, C 0 2 4- ? 
Organic [HI + 0 ? ->2H?0 

Staphylothermus marinus 
Sulfolobus aeidocaldarius* 

* facultatively autotrophic. ** facultatively aerobic. 

gases present in volcanic exhalations18. The sulfur-depen­
dent archaebacteria are able to obtain metabolic energy 
either by the oxidation or by the anaerobic reduction of 
elemental sulfur, or require S° for anabolic reactions (ta­
ble 2). Anaerobic conditions in the volcanic environment 
are maintained by the escaping gases (e.g. C O , , S0 2 , H 2 0 , 
H 2 , CO). 
The aerobic and facultatively aerobic acidophilic repre­
sentatives of the genera Sulfolobus and Acidianus thrive 
by formation of sulfuric acid either autotrophically or 
mixotrophically, depending on the isolate4 1 4-2 5. Some 
Sulfolobus strains can also grow organotrophically3. 
Some recent extremely thermophilic isolates9 (table 2) are 
able to grow autotrophically on sulfidic ores, solubilizing 
heavy metals at temperatures of up to 95 °C (fig. 2). 
Acidianus infernus is able to grow anaerobically via the 
formation of H 2S from H , and S° (table 2) 8 , 4 . 
The strictly anaerobic Thermoproteus tenax can grow 
autotrophically on H 2 and S° or heterotrophically on 
yeast extract, carbohydrates and simple organic com­
pounds by means of sulfur respiration24. Pyrodictium oc­
cultum is an obligate S/H autotroph (table 2)15. 

The heterotrophic anaerobic S°-metabolizing archaebac­
teria consume organic material in the solfataric and hy­
drothermal areas19. Some fermentative organisms arc 
also present in such biotopes, e.g. Staphylothermus ma­
rinus1. Methanogenic bacteria are also very efficient S°-
reducers, some of them (e.g. Methanothermus) sharing 
the habitats of S°-metabolizing archaebacteria M u \ 

4. Morphology 

The sulfur-metabolizing archaebacteria are variously 
coccoid, rod- or plate-shaped (table 3). Coccoid and 
plate-shaped cells are often highly variable in size even 
within the same culture. The rod-shaped Thermoproteus 
and Thermofilum form 'normal' cells of about 1 5 jam in 
length or filaments more than 100 urn long depending 
upon growth conditions19. Cell division usually takes 
place by constriction (e.g. Thermococcus) or budding 
(e.g. Thermoproteus), but never by septa formation. Me­
thanothermus species are gram-positive and show a rigid 
cell wall composed of pseudomurein (fig. 3). All S°-mc-
tabolizing archaebacteria are gram-negative with enve-

Tahlc 3. Morphology of extremely thermophilic archaebacteria 
Shape Genus Size (urn) Comments 
Rods 

Coccoid 

Methanothermus 

Thermoproteus 

Thermofilum 

Sulfolobus 

Acidianus 

Desulfuroeoceus 

Thermococcus 

Staphylothermus 

Pyrodictium 

Thermodiscus 

0.3-0.5 0; 1-3 urn 

0.4 0.5 0; 1 iOOum 

0.15-0.2 0; 1-100 .um 

0.8 2 0; irregular 
Aerobic: 1 1.5 0; 
anaerobic: 0.5 1 0; irregular 

0.5-1 0 
10 
0.5 1 0 

Plates: 0.2 thick; 0.3 2.5 0 
Filaments: 0.04 0.08 0; up to 40 long 

Gram-positive; pseudomurein 
covered by S-layer 
Spheres protruding terminally; 
true branchings 
Spheres protruding terminally; 
rarely true branchings 

O. mobilis is flagellated 

Tuft of flagella 

Grows in aggregates. Growth of 
giant cells (10 mn 0) in the 
presence of 0.2% yeast extract 

Plate- to dish-shaped cells; network 
formed; grows like a mold 

0.2 thick; 0.3 3 0 
Plate- to dish-shaped 



Figure 4. Acidianus infernus. E M micrograph, thin section. Bar 1 urn. 

lopes composed of protein subunits which cover their 
cytoplasmic membranes (fig.4) , M \ Some coccoid (fig. 5) 
and rod-shaped isolates (fig. 1) are motile by means of 
Hagel la. Pyrodictium forms pellicles consisting of 
networks of fibers 0.04 to 0.08 urn in diameter17, which 
entrap the cells during exponential growth (fig.6). 

5. Prerequisites and limits of extremely thermophilic life 

Since some extremely thermophilic bacteria grow even in 
super-heated water, the question whether there is a 

general upper temperature limit for life arises. It depends 
primarily on the thermostability of cell components. The 
S°-metabolizing archaebacteria, which arc the most ther­
mophilic organisms known, are able to grow within a 
range of temperatures spanning approximately 30 °C (ta­
ble 1). This relatively narrow range may be due to the 
intrinsic properties of the cell material, e.g. the fluidity of 
the membranes and the optimal conformation of en­
zymes and nucleic acids. Possibly on account of this phe­
nomenon, extremely thermophilic S°-metabolizersdo not 
grow at temperatures below 6 0 - 8 2 ° C , depending on the 
isolate (table 1). On the other hand, they are able to 
survive for years at low temperatures17. The molecular 
stabilization mechanisms enabling growth at very high 
temperatures of up to 110°Care still unknown. 
At temperatures of the order of 100°C even some low 
molecular weight compounds such as A T P and N A D 
hydrolize quite rapidly (half life below 30 min in vitro; 
Stetter, unpublished) and some thermolabile amino 
acids, e.g. cystein and, less markedly, glutamic acid, are 
decomposed2. The survival of organisms growing at these 
temperatures may be ensured by successful re-synthesis 
of sensitive compounds. This suggestion is in line with the 
observations that (a) maximal and optimal growth tem­
peratures of Staphylothermus marinus are about 7°C 
lower in minimal medium than in full medium7 and (b) 
that Pyrodictium is rapidly killed at 110°C in the absence 
of substrate (Stetter, unpublished). 
Under 'black smoker' conditions (e.g. 250°C; 26 MPa) 
existing within hydrothermal deep-sea vents5, macro-
molecules and simple organic molecules, e.g. amino 
acids, are highly unstable (e.g. D N A : half life 20 us in 
vitro) 2 2 1. Even the 'heat-stable' proteins of Pyrodictium 
are rapidly decomposed under such extreme conditions2. 
Despite an early report of bacterial growth at 2 5 0 ° C life 



under these conditions does not seem possible2 0 2 1. A l ­
though the upper temperature limit for life is still unclear, 
it is probably much lower than 250°C, possibly in the 
range between 110 and I50°C, at which heat-sensitive 
molecules could be successfully resynthesized. 
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