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Monte Carlo simulations of a single polymer chain ander an external force 
in two and three dimensions 
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The deformation behavior of a single polymer chain subjected to an external force was studied by 
Computer simulations. Both random walks and self-avoiding walks were investigated. The simula
tions were performed in two and three dimensions using the bond fluctuation model. The projection 
of the end-to-end vector in the force direction as a function of the applied force was compared to 
the scaling function obtained from renormalization group studies, covering the füll interesting force 
regime. The differences in the crossover between the linear force and Pincus-scaling regime were 
studied. 

P A C S number(s): 64.70.-p, 05.40. +j, 83.10.Nn, 83.20.Jp 

I. INTRODUCTION 

The excluded volume or self-avoiding effect of polymer 
chains is one of the most discussed problems in polymer 
physics. The theoretical understanding has made great 
progress and the mathematical techniques are well devel-
oped. They can be read in many publications or surveys, 
cf. [1-3,6]. 

If an ex terna l force is applied to a single polymer chain 
the deformation behavior of such a chain is quite different 
from a Gaussian one [4,5]. A scal ing Solution of this p r o b -

lem was first given by Pincus using the b lob picture [7]. 
However, such a scaling discussion can only describe the 
l imi t ing cases of weak and strong forces but not the be
havior between both regimes. To get the behavior over 
the füll force r änge it is necessary to use a more deta i led 

mathematical analysis. 
The starting point is the parti t ion function of a contin-

uous chain wi th both ends subjected to an external force 
i n opposite directions: 

Z ( f ) = Z0 J ddRP(R, L, l) exp{f • R } (1) 

P ( R , L , l) is the exact Green's function of the excluded 
volume chain. L is the "contour length" of the chain, l 
the elementary step length, and R the vector connecting 
both chain ends. fkßT represents the applied force. ZQ 
Stands for the number of configurations of the excluded 
volume chain without any further constraints and d is 
the dimension of space. 

Using E q . (1) the mean value of the projection of the 
end-to-end vector in force direction (Rf) can be calcu-
lated as 

<*/> = 
1 dF Ö l n ( Z ( f ) ) 

kBT df df 
(2) 

F is the free energy as a function of the force: F = 
—Ar^Tln (Z(f)). The Green's function of the excluded 
volume chain can be presented in the following scaling 
form, see for example Refs. [1 and 6]: 

(3) 

The Green's function of a free excluded volume chain 
is isotropic. Thus, the function h is only a function of 
the absolute value of the end-to-end vector. X is defined 
as 

( R 2 ) = N2ul2 = Xld , (4) 

where v is the cri t ical exponent and N the number of 
segments. For large x the function h{x) can be approxi-
mated in the following manner [6]: 

h(x) - x"exp(-Dxö) , (5) 

where D is introduced for a proper normalization of the 
moments. The exponents S and K scale according to the 
following scaling relations [9,10]: 

8 = 
1 - v 

K = 
1 - 7 + ud - d/2 

(6) 

where 7 is a cri t ical exponent [6,8]. 
We now assume that the external force has only a com-

ponent i n z direction. Furthermore, we define / = fX. 
In three dimensions (d = 3), we get, after performing the 
angle integrations, 

/ 
Jo 

Z ( f ) ~ 4 ? r / d x x 1 + K e x p ( - D x d ) ^ s i n h ( x / ) (7) 

If this integral is dominated by a sharp maximum, we can 
use a saddle point approximation. This approximation is 
good i f / » 1, i.e., 

f>X~1 or / > 
1 

N"l 
(8) 

The saddle point approximation yields the well-known 
result for the averaged deformation in direction of the 
forces: 
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(Rf) ~-^Zx Nl (fl) -1 
(9) 

In the case of / < l/(Nl/l) the saddle point approxima
t ion is no longer valid. A better way is to expand here 
the exp function of E q . (1). The result is 

(Rf) = ±(R2)f = ±N2»l2f (10) 

Note that E q . (7) is only correct in three dimensions, 
but the scaling laws Eqs. (9) and (10) are also valid i n 
two dimensions. 

A n experimental verification of the results, especially 
of E q . (9), is, in contrast to the undeformed state, quite 
difficult. W i t h some idealizations the deformation of 
ideal chains, as they are represented in polymer melts, 
can be observed in the deformation behavior of polymer 
networks. Bu t the network chains cannot be separated 
from each other. Even totally swollen networks can only 
be regarded as semidilute. Real polymer networks ex-
hibit additionally a large polydispersity of the network 
chain lengths [12]. Another possibility to study the defor
mation behavior are flow experiments of dilute polymer 
Solutions in extreme shear gradients as already proposed 
by de Gennes [1]. B u t i n that case hydrodynamic ef-
fects must be included. Therefore, the Interpretation of 
such results would be quite difficult wi th regard to Pincus 
scaling. 

In this Situation Computer experiments are almost the 
only reliable and simple possibility to check the theo-
retical results. Computer simulations have shown their 
great possibilities, for example, in investigating the un-
stretched state of single random walks and self-avoiding 
walks ( B a u m g ä r t n e r , Binder, and co-workers [13]) or in 
calculating some aspects on the deformation of short 
chains, i.e., the transportation of force through the back-
bone, excluded volume contacts, etc., and the force fluc-
tuations i n time (Weiner and co-workers [14]). Also , the 
mechanical properties of networks were studied exten-
sively under various viewpoints (Gao, Weiner, and Ter-
monia [15]). Polymer melts and glasses were simulated 
mainly by molecular dynamics [16]. A t T = 0 K the me
chanical properties of polypropylene were computed by 
energy minimizations (Suter and co-workers [17]). Molec
ular dynamics simulations on the deformation of glasses 
show similarities between these short time (~ 1 ns) sim
ulations and laboratory measurements obtained on time 
scale Orders of longer magnitude [18]. Dickman and 
Hong [19] simulated the force between grafted polymeric 
brushes. 

Direct ly related to our topic is a work of Webman, 
Lebowitz, and Kalos [5]. They have observed the Pincus 
scaling in three dimensions. Also , the weak force regime 
has been obtained. The crossover region between both 
scaling regimes appears very narrow in contrast to the 
first order renormalization group calculations given by 
Oono et ah [4]. O n the other hand, this first order calcu-
lat ion is not very convincing wi th respect to this topic, so 
that a decision about these facts as well as a quantitative 
analysis over the füll force ränge are outstanding up to 
now. 

A problem, which arises in the comparison of the simu
lated results and the theoretical results, is due to the fact 
that the continuous chain model used so far is infinitely 
stretchable. The scaling behavior obtained in E q . (9) is 
no longer valid if the Pincus blobs [7] are of the order of 
the real Statistical segments [11], i.e., / ~ In this 
case the scaling law breaks down and the response of the 
chain is governed by the orientation entropy of r igid, free 
rotating, and independent Statistical segments, which can 
be described by means of a Langevin function. 

In this strong force region the microscopic properties 
begin to influence the behavior, therefore, it is interest-
ing to know the exact Solution for the bond fluctuation 
model. Generally for the case of a lattice model the poly
mer segment cannot rotate freely. Some corrections to 
the Langevin function appear i f the exact parti t ion func
tion for the lattice model is calculated regardless of the 
monomer interactions. 

Calculat ing the exact parti t ion function in the bond 
fluctuation model wi th the use of E q . (2) leads to 

<Ä,> = NCBFM(f) 

with (ii) 

(*0i 

- B F M (/) 

where bj is the projection of the bond vector in the force 
direction. k runs from 1 to MB, wi th Mß the number 
of bond vectors (for example, Mß = 108 in three di
mensions). The function £ B F M ( / ) is a generalization of 
the classical Langevin function for the bond fluctuation 
model and is easy to compute numerically. The function 
£ B F M ( / ) is appropriate to test the strong force proper
ties of a chain wi th excluded volume and the behavior of 
random walks simulated by the bond fluctuation model. 

II. SIMULATION 
OF T H E DEFORMATION BEHAVIOR 

OF A SINGLE CHAIN 

We used the bond fluctuation model in two and three 
dimensions. O n the lattice the monomers are represented 
by plaquettes, respectively, cubes of 2d places connected 
by a set of possible bond vectors (36 in two dimensions 
and 108 in three dimensions). The diffusion dynamics is 
simulated by randomly chosen jumps (accepted by check-
ing certain conditions) of the monomers in the spatial 
directions. B y forcing seif avoiding of the monomers ex
cluded volume is fulfilled (this leads automatically to cut 
avoiding for the used set of bonds). The Simulation was 
athermal since no interactions between the monomers 
were taken into account. For more details of the bond 
fluctuation model we refer to the original papers [20]. 

We have studied chains of (N + 1) = 20, 40, 60, 80, 
and 100 monomers on lattices wi th periodic boundary 
conditions. In two dimensions the lattice extensions were 
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FIG. 1. Comparison of (Rf) measured during the simula
tions (points) and i V £ ß F M ( / ) (solid lines). From bottom to 
top: (N + 1) = 20, 40, 60, 80, 100 monomers. 

40 x 120 up to 100 x 300. In three dimensions we used 
20 x 20 x 50 up to 48 x 48 x 176 lattices. The force was 
applied in y (d = 2) respectively z (d == 3) direction. The 
lateral dimensions of the lattices are large enough so that 
perturbations of the chain wi th itself over the periodic 
boundary conditions can be neglected. To improve the 
statistics we have per for med 100 independent simulations 
for each chain length. 

After creating and relaxing the chains we applied a 
force fkßT to the chain ends using the Metropolis al-
gorithm [21]. We increased the force / stepwise by 
0.0025a- 1 ( / < 0.05a" 1 ) , 0.005a" 1 (0.05a" 1 < / < 
0 .1a" 1 ) , 0 .01a" 1 (0 .1a" 1 < / < 0.4a" 1 ) , and 0.02a" 1 

( / > 0 .4a" 1 ) , where a is the lattice spacing. In = 2 
we added a regime wi th degree 0.001a" 1 ( / < 0.01a" 1 ) . 
After each step we allowed the conformation to relax for 
100 000 M C S (1 M C S , one Monte Carlo step, is one at-
tempted jump per monomer). Then the end-to-end vec
tor Rf i n the force direction was measured in intervals of 
500 M C S for a total amount of 150000 M C S . Thus, (Rf) 
is averaged over 30 000 samples. 

In a test of the M C algorithm the excluded volume 
constraints were suppressed and the S imulat ion results 

The integrations in Eqs. (13) and (14) were done numer-
ically applying NAG-rout ines (Mark 14) [22]. 

For the crit ical exponents v, and K that appear in 
Eqs. (13) and (14), we used the following values [6]: 

V = - , K = 0.625 , 8 = 4.0 , (15) 
4 

were compared with E q . (11) (see F i g . 1). The good 
agreement between the points and the exact function 
N £ B F M ( / ) confirms the applicability of the method to 
study chains under external forces. We also tested the 
assumption that for large enough forces the function 
£ B F M ( / ) describes the deformation of chains wi th ex
cluded volume [self-avoiding walks (SAW's)] . We verified 
this for strong forces ( / > a " 1 ) . 

III. RESULTS AND DISCUSSION 

In this section the results of the Simulation of SAW's 
wi l l be compared wi th the theoretical calculations. We 
use the numerically obtained function (Rf)(f) by In
tegration of the general scaling function P ( R , L,l) de-
scribed by Eqs. (3) and (5). [Corrections to the 
Cloizeaux-(Fisher-McKenzie-Moore) scaling E q . (5) can 
be taken into account i f the R is outside a certain interval 
[Ä*,i?**] [8]. R* is given by the relation 

v0(R2Jl)1/2~l , 

with = vol~2(d/27rl)d/2, where VQ is the excluded vol
ume strength. turns out to be of the order of the 
lattice spacing and is, therefore, not of interest for the 
considered force regime. The quantity i?** is far beyond 
the "downturn" regime where the finitely extensibility 
influences the behavior and is, therefore, also not inter-
esting.] It is quite complicated to calculate the value D 
of E q . (5) directly, but it is a single parameter which 
has to be the same for each chain length, so we introduce 
further reduced values / and x: 

x = D*x = D*^ and /== Z T * / ' = D~*Xf . 

(12) 

For d = 3, we get in this way 

1 I Io° d £ x 2 + K exp(-x < 5 )cosh(x/ ) \ 

^Xf' ~ 1 ^ / 0 ° ° dxx^" exp{-xs) i s i n h ( x / ) ~ * J ' 

(13) 

In the same manner we have for d = 2, 

(14) 

I ~ 

in two dimensions and 

v = 0.588 ± 0.001, K = 0.249 ± 0.011, 

8 = 2.427 ± 0.006, ( 1 6 ) 

in three dimensions. In Figs. 2(a) (d = 2) and 2(b) 
(d = 3) (xf) is plotted versus / in both the theoretical 

I 

dxx2^* exp(—xs) JQ* d(pexp[xf cos(</?)] cos(y?) 

J 0°° dxx1+K exp(—xs) J Q

2 7 r dcp exp[x/ cos(^)] 
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functions Eqs. (14) and (13) (solid line) and the simula-
tions (points). The only free parameter is D. We have 
fitted it so that the theoretical values match the exper-
imental ones. D does not change the behavior of the 
curves in the log-log plot in Figs. 2(a) and 2(b), but only 
shifts the values. W i t h D = 0.11 for d = 2 and D = 0.35 
for d = 3 we got the best agreement. Note that lat-
tice artifacts are also included in D . Thus, the presented 
values of D may differ from values of ofF-lattice calcula-
tions. A t low forces the Statistical fluctuations become 
larger. Nevertheless, it can be clearly seen that the shape 
of the theoretical curve — for instance, in the cross over 
regime — is in good agreement to the simulated values. 
A t strong forces the simulated values are below the theo
retical curve and the scaling breaks down since the chains 

are not infinitely stretchable. The Pincus-scaling E q . (9) 
should describe the deformation behavior in an interme-
diate force region N~ul~l < f < l~l. In the bond fluc-
tuation model — where / is the mean bond vector length 
— l~l is 0 .34a- 1 (d = 2) and 0 .37a" 1 (d = 3). A lower 
l imit for E q . (9) is given by the condition / > \/(Nul). 
In Figs. 3(a) (d = 2) and 3(b) (d = 3) (Rf) is plotted 
versus / for various chain lengths. 

In both figures the simulated (Rf) (points) can be fit
ted by a single proportional factor k in the scaling law 
E q . (9) (solid lines). We used k = 0.635 (d = 2) and 
k = 0.455 (d = 3). Due to the fact that the lower l imit 
of the ränge of validity is proportional to 1 /Nu the short 
chains reach this scaling law at higher forces. In contrast 
to that the upper l imit / ~ / _ 1 is independent of the 

D 1 / 5 X f force f (units of a l) 

10A 

A 
06 
V 

10u 

10 

[ I I I 

+ 20 monomers 
"T " T 1 

" x 40 monomers 
° 60 monomers 
A 80 monomers 
0 100 monomers 

-

, 
+ / 

1 I I 1 ,. 

(b) 

i i i 

10' 10u 

D ^ X f 
10A 2 5 

FIG. 2. (a) and (b) (xf) = D* "-^f- versus / = D~*Xf 
both the theoretical function (solid line) and the simulations 
(points) for various chain lengths in two (a) and three (b) 
dimensions. The parameters are K = 0.625, 5 = 4.0, D = 0.11 
for d = 2 and K = 0.249, S = 2.427, D = 0.35 for d = 3. 

10' -2 

+ 20 monomers 
x 40 monomers 
D 60 monomers 
A 80 monomers 
° 100 monomers 

v-1 5 10 

force f (units of a ) 

10̂  

F I G . 3. (a) and (b) Comparison of the projected 
end-to-end vector (Rf) of the simulated SAW's (points) with 
the linear response (Rf) = ^ ( R 2 ) / (dashed lines) and the 
Pincus-scaling law (Rf) = kNl (fl)^~l (solid lines) in two (a) 
and three (b) dimensions. k = 0.635 for d = 2 and k = 0.455 
for d = 3. 
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numbers of monomers. 
Also, the linear force behavior E q . (10) is drawn in 

these figures (dashed lines). There is no fit parameter 
( ( R 2 ) of the difTerent chain lengths were computed in 
a separate Simulation). Although the Statistical fluctua-
tions are large for small forces there is agreement between 
E q . (10) and the simulated points. 

The width of the crossover regime between the linear 
and the Pincus behavior difFers between two and three 
dimensions (Figs. 2 and 3). In the case of two dimen
sions it is rather broad, whereas in three dimensions it 
becomes narrower. From the theoretical point of view the 

use of the scaling function in connection wi th the more 
exact crit ical exponents enforces a more abrupt crossover, 
compared to the first-order calculation of Oono et al [4] 
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