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ABSTRACT 
The atomic force microscope (AFM) can profile surfaces similar to the scanning tunneling microscope (STM) at 

resolutions down to the atomic level. To investigate carbon-black particles and subsequently styrene-butadiene-rubber, 
filled with carbon black, a STM was modified to run as an AFM. An optical detection system is used to measure the 
deflection of the cantilever. Atomic resolution was achieved by forces in the order of 5 • 10~8 N on mica with the AFM. 

Structural investigations of carbon-black particles of different dimensions with the AFM agree with the data of 
the manufacturer. The model of the microstructure of such particles, built up of 1-3 nm large, tilted domains of 
graphite structures, could be confirmed. This surface roughness is probably an important parameter for the strengthening 
mechanism of carbon black in elastomers. 

INTRODUCTION 
Carbon black is economically the most important active filler for technical products made 

from natural rubber. Its wide range of applications is a very interesting topic in material 
science. The filler-rubber interactions are both physical and chemical, ranging from weak 
Van-der-Waals forces to strong covalent linkages. The portion of each kind is still unknown. 1 , 2 

A reinforced elastomer consists primarily of polymer and filler; and in order to combine 
these materials effectively, their individual characteristics must defined first. Carbon-black 
fillers interact with their surroundings by means of their surfaces, which are very large due 
to the small size of the carbon-black particle. 3 Therefore it is important to get more information 
about the surface structure of carbon black. 

To reach this aim an A F M was built up. Since the advent of the scanning tunneling 
microscope (STM) in 1981, 4 this new field of research has made rapid progress. The success 
of this tool spurred the development of a wide variety of other scanning probe techniques, 
in particular the atomic force microscope (AFM). 5 

The power of the A F M is its ability to study the surface structure of both conductors 
and insulators. This instrument can profile surfaces similar to the STM at resolutions down 
to the atomic level. The idea of the A F M is to bring a sharp tip, located at the end of a 
microfabricated cantilever, into close proximity with the sample, and to move this fine tip 
over the sample to map the contours of the surface. 

The STM detects the tunneling current between the tip and the sample. In the A F M , forces 
between tip and surface are detected by measuring the deflection of a flexible cantilever. 
The total force, acting on the cantilever, caused by the tip-sample interaction may be regarded 
as due to two independent parts. 6 One is the short-range (less than a few angstrom) repulsive 
force, resulting from charge overlap between tip and sample: this force is localized, and 
involves only a few of the nearest atoms of the sample. The other part is the long-range (up 
to hundreds of angstroms) attractive force, called the Van-der-Waals force, resulting from 
induced dipole-dipole interactions: this force is nonlocalized, and is due to many thousands 
of the nearest sample atoms. 

In order to achieve a high resolution with the A F M a repulsive force is necessary. Only 
the repulsive force is able to distinguish two points on a surface separated by atomic distances; 
in contrast the attractive force is only able to resolve structures of the order of the tip 
radius r . 7 
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Our primary use for this instrument is to study the morphology of carbon-black particles 
of different dimensions, adsorbed on mica. 

EXPERIMENTAL 
AFM DESIGN 

Our instrument is a variation of an earlier STM 8 and can be used as an A F M or a STM. 
The design of our atomic force microscope is sketched in Figure 1. The center of our instrument 
is a stainless steel block (14.5 X 6 X 5 cm) with a slit of 1 cm. Two invar manufactured 
differential screws are used for the mechanical approach. 

The sample is mounted on a single tube piezo scanner. The scanner itself is fixed to the 
differential screw 1. Differential screw 1 provides the rough approach (50 jam per turn) 
towards the tip. The fine approach is obtained by the second differential screw (DS 2), which 
is positioned at the end of the steel block. So the small lift is reduced again by the decreasing 
spread along the slit. This way the gap can be mechanically controlled within very high 
accuracy (better than 5 nm). This accuracy is sufficient to bring the sample close enough to 
the cantilever to allow the piezoelectric transducer9 to accomplish the final approach. 

To detect the vertical motion of the tip, which is proportional to the force the tip applies 
to the surface of the sample, we use an optical deflection system. A light beam of a laser 
diode is focused on the backside of the lever. A two segment photodiode detects the deflection 
of the cantilever by sensing the position of the reflected beam. With this setup cantilever 
displacements of less than 0.1 nm are measureable. 

Due to the geometric arrangement, the limiting factor of the vertical resolution is not 
the sensitivity of the photodiode but rather the sound and building vibrations. The effective 
noise level is approximately 0.04 nm root-mean-squarç in the frequency range from 10 Hz 
to 1 kHz. 

METHODS AND MATERIAL 

A l l reported measurements have been performed with repulsive forces in the range of 
5 • 10~9 to 5 • 10~8 N. The topography of the surface was mapped in the constant-force mode; 
feedback electronic was used to keep the deflection and thus the applied force constant. For 
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FIG. 1.— Schematic view of the A F M , used in this study. 



the experiments we used S i 3 N 4 cantilevers with a typical lever force constant of 0.06 N/m, 
a tip with a radius of curvature less than 40 nm and a length of 200 pm.10 

The carbon black samples were dispersed in toluene and then placed in an ultrasonic 
bath to scatter the carbon black agglomerates into aggregates. Afterwards a droplet (about 
0.03 mL) of this dispersion was placed upon a freshly cleaved mica surface and dried for 2 
days. We used mica as substratum because of its atomic flat surface. This way we avoided 
superposition of two topographical surfaces. This simple preparation method is a great 
advantage of the A F M in comparison to transmission electron microscope (TEM) or scanning 
electron microscope (SEM) investigations. Additionally, the use of an A F M allows three-
dimensional pictures of a sample mounted on any substratum. 

RESULTS 
The performance of the A F M was checked on mica. Mica, a layered insulator, has a 

surface consisting of S i 0 4 tetrahedra which cleaves along flat planes of atoms that can be 
revealed by the A F M (Figure 2). The nearly hexagonal array of dark spots in the image 
corresponds to depressions in the center of hexagonal rings of S i0 4 in these planes. This 
well defined hole-to-hole distance of 0.52 nm 1 1 could be used to calibrate the instrument. 
Figure 2 proves that the lateral resolution can be better than 0.3 nm. This demonstrates that 
the A F M is a powerful method for studying surface roughness with high resolution. 

Table I gives an overview of the investigated carbon blacks, manufactured by furnace 
technique. 1 2 The first column specifies the average diameter of primary particles; the second 
column gives the specific surface. The effects of these parameters are as follow: with in­
creasing specific surface the activity and the strengthening mechanism of carbon black in­
creases. The smaller the average diameter of primary particles, the greater the strengthening 
mechanism. 

FIG. 2. — Unaltered image of atomic corrugation on mica in air. The period of the hexagonal 
pattern is approximately 0.5 nm; image area is 5.0 X 3.8 nm2. 
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TABLE I 

CHARACTERISTIC DESCRIPTION OF THE MANUFACTURER12: 
ARITHMETIC AVERAGE OF THE PARTICLE^DIAMETER 

AND SPECIFIC SURFACE 

Carbon black 

Average diameter 
[nm] 

Specific surface 

N990 
N762 
N110 

300 
70 
20 

10 
29 

140 

CARBON BLACK N990 

The N990 carbon black is essentially different from all other sorts of carbon black. The 
primary particle diameter of 300 nm is very large in comparison to the other ones. In Figure 
3 it can be clearly seen that the single particles are linked to chainlike structures. This effect 
is caused by the attractive Van-der-Waals forces. In spite of the large scan area, 2450 X 2450 
n m 2 , the image shows individual particles. The average height of the aggregate3 can be 
estimated to be 250 nm and the lateral extension to be 300 nm. 

C A R B O N B L A C K N762 

Figure 4 shows a typical 930 X 930 nm 2 scan on N762. In the vicinity of the arrow you 
can see that the carbon black agglomerate is composed of single particles. The particles with 

PIG. 3 — A F M image of surface topography of N990 carbon black on mica. The primary particles accumulate to 
agglomerates and form ramified structures. The diameter of the particles is 250-300 nm; grey scale spectrum covers 
560 nm; scan area is 2450 X 2450 nm2 (the axes are subdivided in five sections). 



FIG. 5. — A F M image (top view) of 4 single carbon-black particles (Nl 10) with diameters of 16-20 nm. On the 
left side there are 3 agglomerated particles. The grey scale spectrum covers 15 nm; scan area is 92 X 92 nm2. 
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FIG. 6. — A F M image of surface topography of two N762 carbon-black particles showing the idea of tilted domains. 
The grey scale spectrum covers 23 nm; reference height is 3.5 nm (left bottom corner); scan area is 123 X 123 nm2. 

Z i n n ] 

FIG. 7. — AFM image of surface topography to N762 carbon-black particles shown in Figure 6 
after rotation by 90°. No vibrations of the cantilever can be observed. 



FIG. 8. — Model of the microstructure of a single carbon-black particle.16 The perspective drawing shows the 
arrangement of the crystallites. The layer planes are tangential to the particle surface. 

their smaller diameter of 6 5 - 7 5 nm build up a structure which differs by far from the one 
seen with N990. 

Obviously the attractive force between the particles is bigger and therefore they build 
larger agglomerates. The particles pile up and form three dimensional structures. This dif­
ferent behavior is thought to be due to a different surface structure which implies higher 
attractive forces. 
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FIG. 9. — High resolution A F M image of the surface of a N762 particle. You can see clearly the tilted domains of 
about 2 nm extension in the lateral and about 0.2 nm extension in vertical direction. The grey scale spectrum covers 
1.9 nm; reference height is 0.5 nm; scan area is 24 X 24 nm2. 
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FIG. 10.— Eleven scan lines from high resolution AFM image of N762 particle surface shown in Figure 9. The 
spacing between two scan lines is about 0.2 nm. The dashed lines illustrate the crystallite planes in top plan view to 
help visualize real surface. 

CARBON BLACK Nl 10 

The single particle diameter of carbon black N110 is only about 20 nm, therefore the 
surface activity and the strengthening mechanism is high. This favors the agglomeration of 
particles. In spite of the small diameter of the single particles, the surface structure of those 
agglomerates is on a larger scale not homogeneous but very rough. 

In the next figure we choose another graphic representation, which is more plastic and 
gives a top view of the investigated surface. Figure 5 shows a small scan area of 92 X 92 
nm 2 on one of those agglomerates. Three particles lying close to each other can be observed. 
It seems that the particles are agglomerated because between the three bright spots there 
is only a very small neck in comparison to the single particle lying beside. The width of this 
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FIG. 12. — Amplitude of the 10th scan line from high resolution AFM image at N762 particle surface shown in 
Figure 9. The dashed lines illustrate the crystallites in vertical view clearly showing the tilt of the single crystallites. 
The vertical extensions of the steps are about 0.1-0.3 nm; lateral extensions are about 2 nm. 
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formation is about 20 nm, corresponding to the average diameter of one particle reported 
in the literature. Thus the length of a 3 particle formation should be 60 nm, vs. a measurement 
of approximately 50 nm. This also hints of agglomeration. The diameter of the particles can 
be estimated to 16-20 nm, which is in good agreement with the literature value. 

SURFACE STRUCTURE OF N762 

To get more data about the surface structure of carbon blacks we made small scans..on 
two particles of N762. The result of scanning a small area, 123 X 123 nm 2 , is displayed in 
Figure 6. The top of every particle can be recognized by the white spots. Figure 7 is identical 
to the previous image, only the presentation is rotated by 90°. No effects (respective jumps 
of the tip) of the scan direction can be recognized in this image. Hence no vibrations of the 
cantilever are present, demonstrating the high quality of the scan. The observed surface 
topography of Figures 6 and 7 suggests tilted domains of graphite structures. 

Specific preparation methods made it possible to study carbon blacks intensively by X-
ray diffraction and transmission electron microscopy (TEM). On this basis many models have 
been proposed for the surface structure. 1 3 , 1 4 , 1 5 A model by Heidenreich1 6 illustrating crystallite 
orientation in carbon black is shown in Figure 8. For the sake of simplicity this is given as 
a cutaway view of a single spheroidal particle. X-ray diffraction studies have shown that 
most commercial carbon blacks are made of crystallites which average about four graphite 
layer planes. The layer planes are roughly parallel and equidistant. The stack height of the 
crystallites is in the range of 1.1-1.7 n m . 1 6 , 3 , 1 7 The horizontal extension is about 1.5-2.4 nm. 
The spacing of the layer planes is in the range 0.35-0.37 nm, being larger than in graphite. 
The thickness of the layer is 0.28 nm. In the following paragraphs we compare this model 
to our results. 

At a higher level of magnification (Figure 9) the surface forms a step-like structure. This 
arrangement, which covers all the carbon-black surface, arises from tilted domains of graphite 
structures. To study the microstructure in more detail, eleven scan lines of the A F M image 
in Figure 9 are shown graphically in Figure 10. Since the spacing between two scan lines is 
approximately 0.2 nm, the distance between the first and the last scan line is only 2.2 nm; 
the x-range is 24 nm. This different scaling is the reason for the elongated shape of the 
graphite planes shown in Figure 10. It can be used to imagine the lateral arrangement of 
the crystallites on the real surface. The dashed lines hint the contours of the crystallite 
planes. The similarity of single sections of adjacent scan lines determines the arrangement 
of the planes. If this parallel structure disappears from one to an other scan line, a change 
of crystallites takes place. The sketch gives an idea of the tilt of the crystallites. The lateral 
extensions could be estimated to be about 1.8-2.4 nm. 

Figure 11 shows schematically the scan lines of an A F M made on tilted crystallites of 
graphite planes. This picture is designed to give a clearer imagination of the measured surface 
and illustrate our interpretation of Figure 10. 

Figure 12 displays the 10th scan line of the high resolution A F M image to point out the 
tilt of the crystallites and to give an estimation of the vertical dimensions of the tilt. The 
vertical dimensions are usually in the order of 0.1-0.3 nm, corresponding to the thickness 
of a graphite plane, but the vertical dimensions range up to 1.5-2 nm, corresponding to the 
extension of a crystallite. 

The comparison with the model by Heidenreich (Figure 8) shows good agreement with 
the surface structure measured with the A F M . Every single particle is built up of stacks of 
small parallel-arranged layers of graphite. The dimensions of a layer range from 1.8 to 
2.4 nm. The stacks are concentrically grouped in the outer areas of a particle. To form a 
sphere they must be tilted, building up a step-like structure. This can be seen in our A F M 
measurements. 

CONCLUSION 
In this work the A F M was used for a systematic study of surface topography of carbon 

black. With the A F M the formation of agglomerates can be investigated and the diameter of 



single particles can be measured. Detailed images of the N762 surface corroborate a corru­
gation model for this carbon black. The step-like structure of the surface is clearly evidenced. 
In contrast to earlier investigations of the specific surface based on gas adsorption, the 
surface here is directly visible. To our knowledge, this is the first time that clear dimensions 
could be obtained for unmanipulated tilted graphite structures . 3 1 8 , 1 9 

The surface is increased based on the observed microstructure. Thus, more adhesion sites 
art available for additional crosslink points between natural rubber and carbon black. The 
edges of the graphite layers may play a further role. They prevent a slipping of the rubber 
molecules under extensionai force to a larger extent than in the case of a flat surface. A l ­
together, this leads to a better strengthening behavior of carbon black. 
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