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The deformation behavior of statistical coils in the condensed state 
were studied by computer simulations. The simulated systems c o n ­
sisted of single and double chains, each wi th (N - 1 ) segments, wh ich 
could rotate about their junctions. Van der Waals interactions were 
considered between all junctions. Equilibrium conformations were 
obtained by potential energy minimization using a modified Newton 
algorithm. During the simulated deformation, all initial coils trans­
formed into a highly oriented fibril and a residual co i l . Combin ing the 
behaviour of several coils, the energy increased nearly linearly wi th the 
extension ratio and due to this the retractive force was independent of 
the extension rate. £ 1994 Academic Press, Inc. 

I N T R O D U C T I O N 

The general scheme of the process of cold drawing of 
polymers is that after a region of elastic behaviour many 
glassy or semi-cristalline polymers begin to neck and yield 
depending on the conditions of temperature and draw ratio. 
The tensile stress tends to be independent of the draw ratio 
until strain hardening appears. The material is oriented 
from a quasi isotropic state to its natural draw ratio within 
the necking region. Numerous attempts have been made to 
describe the mechanism for the plasticity of polymers based 
on the concepts of adiabatic heating, production of free 
volume under stress, and the theory of Newtonian viscous 
flow of Eyring. For a summary, see Ward [ 1 ] and 
Argon [2 ] . Morphological studies by electron microscopy 
showed that the neck consists of deformation zones, shear 
bands, and similar states [3 ] . Another morphology which is 
closely related to shear bands are crazes. Michler [4] and 
Hopfenmüller [5] found that shear bands can be regarded 
as collapsed crazes. 

Altogether it is obvious that necking is a non-
homogeneous problem, so that the well established theories 
of affine deformation of polymers (Kuhn , G r ü n , Flory) are 
not very suitable. They, too, afford that during the deforma­
tion process the neck is in a quasi l iquid phase which should 
result from the production of heat during deformation [6 ] . 
But Zachmann [7] has shown that the arising heat is much 

too low to melt the material into a kind of elastic phase. The 
model of Robertson [8] depends on a shear field which 
increases the free volume and thereby allows increased 
site-change processes. 

As a first step to describe the inhomogeneous deforma­
tion of solid polymers we constructed statistical chains on 
the computer. The segments of the chains were allowed to 
rotate freely about their junctions. Additionally we con­
sidered van der Waals interactions between all junctions. 
After achieving equilibrium conditions by minimizing the 
potential energy the chains were deformed by applying 
stepwise forces or extensions to them. After each step the 
chains could relax by minimizing the energy. The conforma­
tions obtained are similar to the analysis of the deformation 
behavior of a collapsed linear coil in a poor solvent by 
Halperin et al. [18] , but the origin of the deformation 
mechanism is different. Whereas in the case of Halperin's 
analysis the created surface energy is the only reason for the 
shape of the deformed coil, we generalized the problem. The 
potential energy due to van der Waals interactions as well 
as nonsaturated van der Waals bonds at the surface of the 
coil determine the deformation behavior. 

C O M P U T E R S I M U L A T I O N 

The following assumptions have been made to carry out 
the simulations. 

Assumptions 

For our simulations we used systems with Z chains. Each 
chain consisted of {N—\) segments, which could freely 
rotate around their junctions. Nevertheless one can say, one 
segment is one monomer; it is better to think of something 
like Kuhn's statistical segment. The conformation of such a 
coil is therefore described by Adjunctions under the influence 
of several intra- and intermolecular interactions. We have 
considered: 

• the elasticity within one segment (molecule bond) 
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• van der Waals interactions between all junctions of 
one chain 

• van der Waals interactions between all junctions of 
different chains 

• external forces. 

The conformations were obtained by energy minimization 
using a modified Newton algorithm. This algorithm com­
putes the nearest relative minimum to the starting confor­
mation in the direction of decreasing energy. This means 
that our simulations take place at T=0K. The time for 
finding a minimum in energy was not restricted. In other 
words the deformation velocity is nearly zero. Because of 
these two reasons we also neglected entropical effects (by 
the way, the coil-strand transition model (Kreitmeier [10], 
Gör i tz [11]) showed that entropy is also negligible at 
reasonable finite temperatures). In this paper we do not 
focus on rotation potentials and on fixed angle bondings. 
We have made simulations with fixed bond angles. The 
results are, apart from zig-zag chains, the same as without 
them. Furthermore, we believe that rotation or torsion can 
be neglected in a first attempt, because the possible changes 
can be ruled out by a larger statistical segment. Nevertheless 
we will check these assumptions in further investigations. 
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F I G . 1. Model chains for the computer simulations. 

R0 = equilibrium distance of the van der Waals inter­
action 

k = determines the range of the van der Waals inter­
action 

"Fexu = external force on junction / of chain a. 

Since a covalent bond is much stronger than the van der 
Waals interaction, we neglect van der Waals interactions 
between successive junctions along a chain (j— i + 2 in the 
second sum of the second term). 

We choose in our simulations one segment to consist of 
three monomers. Using average values of bond energy and 
bond length the resulting parameters are, 

The Energy of the Coil 

Figure 1 shows the model chains. The following notations 
are used: 

• ax¡: vector to junction / of chain a 

• "R, : vector to junction i of chain a in the initial state. 

T o describe the van der Waals interaction mathematically 
we have chosen Morse-potentials (Fig. 2); the elasticity 
within one segment is specified by a Hookean spring. The 
total potential energy U of our system is 

V= I {f t (% + i - % | - S o ) 2 

+ Í aF(ext),,.-rR,-%)} 

N N r 

Z N N 

+ D I I I 
b = a+l i=l j= 1 

with 

E: Young's modulus of a spring 

S0 = equilibrium segment length 

D = bonding energy of the van der Waals interaction 

£ = 60 Ç^, S 0 = 4 Â , Z> = 0.1eV, A 0 = 3 Â , k = 5. 
A 2 

With this choice of k the Morse potential is similar to 
the Lennard-Jones potential. Modifications of these 
parameters in a reasonable range have no influence on the 
qualitative results of the simulations. 

Concept of the Simulations 

To evaluate the conformations we used energy minimiza­
tion according to a modified Newton algorithm [13]. To 

F I G . 2. Morse potential u = D(\-exp(5-5(r¡RQ)))2-D. Total 
energy for two bonds at position ( • ) is greater than for bonds at 
positions (*). 
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F I G . 3. (a) Retractive force versus elongation for method (a) and method (b) - for a three-segment chain. See text for explanation. 
(b) Conformations for a three-segment chain for positions I, II, III, IV of Fig. 3a. 

obtain better and faster results we calculated the derivatives 
and used the routine E 4 0 L B F of the N A G Fortran Library 
Mark 13. The simulations were performed on a C O M -
P A R E X and on several S U N (Sparc Station 1) computers. 
To obtain an initial coil we arranged the segments in 
statistical manner, determining the direction of one segment 
by random numbers. After placing a segment we minimized 
the energy. This procedure supplies statistically arranged 
chains with interactions in equilibrium. In some way the 
coils are collapsed because of the energetic interactions. 

Two computer experiments were made: 

(a) Increasing the elongation in every iteration step and 
energy minimization afterwards. Computing the retractive 
force of the system in every iteration step. 

(b) Increasing the external force on one junction in 
every iteration step and energy minimization afterwards. 
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F I G . 4. Retractive force versus elongation for method (a) 
method (b) for a 50-segment chain (cf. text). 

Computing the elongation of the system in every iteration 
step. 

In both experiments the coils were held tight in space by 
fixing one or several junctions. 

R E S U L T S 

For a better understanding of simulations with many 
segments (large N) we describe the general behaviour with 
one chain consisting of three segments (four junctions). 

Figure 3a shows the result of both methods, 
experiment (a) and (b), for this chain. The draw direction in 
case (a) respectively the direction of the external force on 
junction 4 in case (b) is identical with the x-direction. In 
both methods junction 1 was fixed. In case (a) the simulated 
curve describes the behaviour of the retractive force of the 
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F I G . 5. Retractive force versus elongation for a superposition of 20 
simulated chains (method (a)). 



system during the stepwise elongation. The force increases 
and decreases. In case (b) the curve is calculated by 
gradually increasing the external force. If the retractive force 
on the coil begins to decrease while increasing the external 
force (cf. case (a)) the elongation of the coil jumps. When 
the retractive force reaches the external force level again the 
rapid elongation stops. 

Although the approach differs, there is a good correlation 
between both simulations. The second curve jumps when 
the first curve shows a peak. 

Let us discuss curve (a) in more detail: In the initial state 
(point I in Fig . 3a) all considered van der Waals interac­
tions (between the junctions 1 <-*3, 2<->4, 1 <-»4) are at 
their equilibrium distance R0. The segments are arranged 
like a helix (see also Fig. 3b, I). 

Between points I and II only the interaction l<-+4 
becomes stretched. The chain twists. If the point of inflection 
of the Morse-potential (Fig. 2) of this interaction is reached, 
the retractive force as the derivative of the Morse potential 
decreases with increasing elongation. At point II the chain 
is nearly planar (Fig. 3b, II) and the retractive force of 
interaction 1 4 is nearly zero. 

After point II the interactions 1 <-» 3 and 2 <-> 4 are 
stressed. Instead of changing both interactions simul­
taneously, after a certain elongation it is energetically more 
favourable for the system to stress only one interaction and 
relax the other. Thus, at point III the interaction 1 3 is 
nearly in equilibrium, whereas 2<->4 is highly elongated 
(see also Fig. 3b, III). The reason for this is due to the 
Morse potential. The energy for two bonds being around 
position • of Fig. 2 is greater than for one bond being 
at the minimum and one bond having left the potential 
(points *). 

Between points III and IV also 1 <-> 3 is stressed. Finally 
at point IV the chain is fully elongated and the segments 
themselves are loaded. Due to this the retractive force of the 
system increases very rapidly. 
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The conformations at the points I, II, III, and IV are 
shown in Fig. 3b. 

Let us consider the other case. In curve (b) the external 
force on junción 4 is increased. Starting at the initial state 
(point I) the interaction 1 <-»4 becomes stressed first. For 
every iteration step at the equilibrium elongation of the 
chain the external force is equal to the retractive force in 
absolute terms. Since after the point of inflection of 
the Morse-potential the retractive force decreases with 
increasing elongation the elongation must now jump to a 
higher level at which the external force is again equal to the 
retractive force. This jumping process repeats itself if the 
retractive force decreases between points II and III. 

N o w we describe a more complex simulation. Figure 4 
shows the results of both methods for one chain with 
50 segments. Again in case (a) the curve describes the 
behaviour of the retractive force of the coil-strand system 
formed during deformation, whereas in case (b) the force is 
given and thus the elongation only jumps to higher levels. 
The shape of the curves results from a permanent relaxation 

F I G . 6. Energy versus draw ratio derived from the superposition of 
20-chain simulations. 

F I G . 7. Conformational pictures of the simulation of two chains, each 
with 50 segments. Between each diagram there are 40 iteration steps. 



F I G . 8. Conformai pictures of the simulation of two chains, each with 
50 segments. Between every picture there are 40 iteration steps. 

and formation of van der Waals bonds during deformation. 
The retractice force increases very quickly, provided that 
the part of the chain between the fixed junctions is com­
pletely oriented and the segments themselves are stressed. 
Although the difference between the two approaches is 
significantly greater than in the case of three segments 
(because of the great number of changing van der Waals 
bonds the changing bonds are not the same in the two 
simulation methods) a good correlation exists. Curve (b) is 
nearly an envelope to curve (a). 

Since method (a) shows more detail, we used this in the 
following investigations. 

To obtain an approach to the real behaviour of polymer 
chains and to obtain better statistical results, we added the 
curves of 20 simulated chain deformations with numbers of 
segments between 30 and 50. Figure 5 shows the resulting 
force versus the extension ration curve and Fig. 6 shows the 
energy versus the extension ratio. After a phase of elastic 
(Hookean) deformation the force is on average independent 

of the extension ratio. The energy is nearly proportional to 
the extension ratio. It seems likely that the remaining 
fluctuations disappear if more chains are combined. 

During deformation all simulated coils formed a highly 
oriented fibril and a rest coil . 1 Figure 7 shows the deforma­
tion of a coil of two chains, each chain with 50 segments. 
Figure 8 shows another coil of two chains with 50 segments. 
Between each conformation shown in the pictures are 40 
iteration steps (one step = 0.2 Â elongation). In both figures 
each chain was fixed, but only one chain was drawn. In 
Fig. 7 the elongated chain forms the fibril, whereas in Fig. 8 
both chains of the coil are stretched and thus the fibril con­
sists of segments of both chains. The different behaviour 
results from the structure of the coils (entanglements). Both 
in Fig. 7 and Fig. 8 the residual coils are homogeneously 
deformed. 

C O N C L U S I O N 

The present paper shows that within our simulation 
restrictions an isotropic coil is not transformed to an 
ellipsoid. We obtain a highly oriented fibril and a more 
or less isotropic residual coil. Thus the deformation is 
inhomogeneous. The simulations provide a linear energy 
law and constant retractive force after a phase of 
homogeneous stretching. These results are interesting with 
respect to crazes or hard elastics. Measurements on 
crazes [3] and on hard elastics [12] have shown a constant 
retractive force at the interface of the crazes or the lamellae. 
In the coil strand transition a first hint for the suggestion of 
the craze formation can be seen. For crazes a flow of 
material from the relatively unstretched bulk into a highly 
oriented fibril is proposed. This seems to be equivalent to 
our coil-strand formation. 

Our future work will be focused on larger systems. In 
addition, the restrictions of zero temperature and slow 
strain rates are to be overcome. 

1 Coil-strand formation is not quite unknown in the wide field of 
polymer physics. In extensional flows in dilute solutions of polymers there 
exists a similar transition to a stretched coil (cf. Frenkel [14], DeGennes 
[15], Ryskin [16]) which also have been studied by computer simulations 
(Larson [17]). Nevertheless the two approaches are not the same. In the 
case of the dilute solution the reason for the transition is given by the 
balance of the nonlinear stretching force (due to the high gradients in flow: 
fF~¿2) and the entropie retractive force ( / v ~ (A — 1/A2)) (A being the 
extension ratio.) In contrast to that the simulations in the presented form 
do not consider entropie retractive forces at all. The retraction is due to 
energetic contributions which result from the "non-bonded, quasi long-
range" interaction of the segments of a coil in the collapsed state. 



R E F E R E N C E S 

1. I. M . Ward, Mechanical Properties of Solid Polymers (Wiley, 
New York , 1971). 

2. A . S. Argon, Polymeric Materials, edited by E. Baer and S. V. RadclifTe 
( A S M , Metals Park, O H , 1975), Chap. 8. 

3. E . J. Kramer, Adv. Polym. Sei. 52/53, 1 (1983). 

4. G . H . Michler , Colloid Polym. Sei. 267, 377 (1989). 

5. M . K . Hopfenmüller, dissertation, Universität Regensburg, 1986 
(unpublished). 

6. L . E . Nielsen, Mechanical Properties of Polymers, 3rd ed. (Reinhold, 
Chapman & Hal l , London, 1965), p. 98. 

7. G . Zachmann, in Kunststoffhandhuch, Bd. /, Grundlagen (Carl Hauser 
Verlag, München /Wien , 1975). 

8. R. E. Robertson, J. Chem. Phys. 44, 3950 (1966). 

9. J. A . Wohlrab, dissertation, Universi tät Regensburg, 1984 
(unpublished). 

10. S. Kreitmeier, 3rd Lausanne Polymer Meeting, EPS, 12J, ¡988 
Poster 52. 

11. S. Kreitmeier, D . Göri tz , Makromol. Chem. Macromol. Symp. 41, 253 
(1991). 

12. M . Wittkop, S. Kreitmeier, and D . Göri tz , in preparation. 

13. P. E. G i l l , W. Murray, Math. Programming 7, 311 (1974). 

14. J. Frenkel, Acta Physicochim. URSS 19, 51 (1944). 

15. P. C. DeGennes, J. Chem. Phys. 60 (12), 5030 (1974). 

16. G . Ryskin, J. Fluid. Mech. 178, 423 (1987). 

17. R. G . Larson, Rheol. Acta 29, 371 (1990). 

18. A. Halperin and E. B. Zhulina, Europhys. Lett. 15 (4), 417 (1991). 

Printed by Catherine Press, L td . , Tempelhof 41, B-8000 Brugge, Belgium 


