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Summary. The numerical Solution of two-point boundary value problems and 
problems of op t imal control by shooting techniques requires integration routines. 
B y solving 15 real-life problems four wel l -known integrators are compared relative 
to re l iabi l i ty , fastness and precision. H i n t s are given, which routines could be used 
for a problem. 

1. Introduction 

In recent years a series of refined numerical methods has been developed for 
the Solution of ini t ial value problems in ordinary differential equations. The large 
number of published integration routines necessitates a comparison of all these 
methods. Enright et al. [46], H u l l [23], and Davenport et al. [10] have tested 
and compared integration routines by solving carefully selected ini t ial value 
problems. 

In applications many nonlinear two-point boundary value problems and prob
lems of optimal control arise. Convenient methods for the numerical Solution of 
these problems are shooting algorithms. Since these require a repeated compu-
tation of ini t ial value problems, integration routines also play an important role. 

In this paper the authors have tested the suitability and the behaviour of 
certain integrators for a multiple shooting method. They are mainly interested 
in a comparison of integration routines, which help a user select a method for a 
particular problem. Secondly several boundary value problems and optimal con 
trol problems are proposed and treated, which are realistic and representative of 
real-life applications. This may stimulate further comparisons of algorithms for 
solving boundary value problems. 

In order to compare the integrators, 15 two-point boundary value problems 
are solved, which arise in different application areas: mathematics, physics, 
engineering, space science and economics. This report is concerned only with 
non-stiff problems. A l l the selected examples are solved by means of a multiple 
shooting technique described, for example, in Stoer and Bulirsch [40]. In this 
algorithm a modification of Newton's method due to Deuflhard [11] is used. 

It may be recalled that in multiple shooting, sequences of ini t ial value prob
lems must be solved with iteratively determined ini t ial values (for realistic prob-



lems about 100 ini t ial value problems in every iteration involving numerical 
differentiation). Because of the artificial character of these ini t ial values the 
integration routines have to overcome harder difficulties than in the Solution of 
natural ini t ial value problems. In addition, the singularities of the Solutions of 
nonlinear ordinary differential equations depend on the init ial values (movable 
singularities). That is why the integration routines must be reliable, fast and 
precise. 

2. Integration Routines 

The results of the investigations of 20 routines in [16] suggested the following 
four integrators: 

D I F S Y l : Bulirsch-Gragg-Stoer extrapolation method. 

This is an extrapolation algorithm based on the midpoint rule with Gragg stabili-
zation [21]. It was first published by Bulirsch and Stoer [6]. In Hussels [24] an 
improved stepsize control was implemented. 

V O A S : Adams-Sedgwick method of variable order and variable step. 

This is an implementation of a variable order variable step Adam's method 
developed by Sedgwick [39]. 

R K F 7 : Runge-Kutta-Fehlberg method of seventh order, 
R K F 4 : Runge-Kutta-Fehlberg method of fourth order. 

These are Runge-Kut ta methods with built-in estimators for the local error, 
see [16]. They are based on the formulas of Orders seven and four, respectively, 
developed by Fehlberg [18, 19] and England [17]. 

3. Multiple Shooting Method 

A detailed description of the multiple shooting method for the Solution of a 
two-point boundary value problem 

y' = f(t>y)\ y' [*, b]-+KN, /: [a, b] x R " - * R * (2.1.a) 

r(y{a),y{b)) = 0; r: R ^ x R ^ I R * (2.1.b) 

may be found e.g. in [40] and [7]. 
Here the interval [a, b] is suitably subdivided 

a = t1<t2... tM_x<tM — b (M nodes). 

Denoting y(t; tjt s7), j=\, M— 1 the Solution of the ini t ia l value problem 

y'=i(t>y)\ y(tf)=s,-> <e [*y,</+1] 

the A^-vectors s ; have to be determined so, that the following N(M— 1) con
ditions hold: 

continuity conditions (for M > 2) 

Fj(sj9sj+1): =y(tj+1; tjts,)-sj+1 = 0 / = ! , . . . , AT —2 (2.2.a) 



boundary conditions 

*5if-i(si, SM-I) ' = r(svy{tM; tM_v sM_1)) = 0. 

The conditions (2.2) define a System of N(M— 1) nonlinear equations 

(2.2.b) 

F{s): = 
FM__2{SM-2> SM—l) 

FM-I(SI> SM~l) 

-0 with s: = (2-3) 

This System is solved numerically by the modified Newton-method: 

sk+1=sk+XkAsk 0<Xhgi, 

As"=-DF (s*) _ 1.F(s*) {DF(s) denotes the Jacobian matrix). 

(2.4.a) 

(2.4.b) 

A good strategy for choosing the Xk has been developed by Deuflhard [12]. Start-
ing the process (2.4) the following initial data must be available 

6; 7 = 1, M — 1 . 

W i t h the following abbreviations 

dy(ti+x;tj,sf) 

A: 8 r 

8 s, 

B: 

7 = 1, . . . , M - 1 , 

(2.4.b) can be written in more detail (the Ä-index is omitted): 

0 TM-2 

0 
3 

As2 

A sM_2 

_A %/_!_ A V^M-l 

The zl s ; allow a recursive determination by 

A s—G^A s H 1 + Ff^ j=2, . . . , M-1 

£ : =^4 + BGM_XGM_2... Gx iteration matrix, 

co : = — (FM_1+BGM_1FM_2-\ + BGM_1 ...G2F1). 

(2.4.b') 

with 

(2.5.a) 

(2.5.b) 

(2.6.a) 

(2.6.b) 

A, B and the G ; are computed by numerical differentiation. This requires the 
calculation of N trajectories. The use of Broyden's approximation formulas [3] 
reduces Computing time up to 30%. It is apparent that the choice of a reliable, 
fast and precise integration routine plays an important role in multiple shooting. 



Remark. The piecewise constructed function 

y(t):=y(t;tjfSi) for *€[*,-, / = ! , . . . . , M - l 

is called a trajectory. In particular for s,=S/ 

y (t) is the starting trajectory. 

4. Numerical Examples 

To compare the four integration methods, problems were chosen from the 
areas of mathematics, physics, technical science, economics and space science. 
These examples include boundary value problems, integral equations, eigenvalue 
problems and problems of optimal control. The problems ränge from simple ones 
of theoretical nature to highly complex ones. 

A l l examples were transformed into two-point boundary value problems (ex
amples 1-11) or into boundary value problems with switching functions (examples 
12-15). They were solved by the Standard multiple shooting algorithm B O U N D -
S O L and its modified version especially trimmed to handle optimal control 
problems. 

The experiments were run on the T R 440 of the Leibniz-Rechenzentrum der 
Bayerischen Akademie der Wissenschaften. The computations were performed 
in F O R T R A N single precision with a 38 bit mantissa (examples 1-11) and in 
F O R T R A N double precision with an 84 bit mantissa (examples 12-15). 

The statistics of the comparisons include the following parameters: 

a) Parameters concerning the problem: 

N : Number of differential equations. 

M : Number of nodes for the multiple shooting method. 

N T : Number of trajectories. 

T O L : Tolerance for the ini t ial value methods. 

O V H B : Overhead time for B O U N D S O L , i.e. the difference between the total 
time and the time spent in solving ini t ial value problems. 

E P S : Relative tolerance for B O U N D S O L (1. 1 0 —6 for all examples). 

b) Parameters concerning the comparison of the methods: 

T I M E : Total time to solve the problem. 

O V H M : Overhead time for M E T H O D , i.e. the difference between the time 
solving the init ial value problems and the time spent in evaluating the 
functions. 

N F C : Number of function calls. N F C depends on the number and position 
of the nodes. A proper choice of the nodes, depending on a special inte
gration routine, can produce a 30% reduction in Computing time. A n 
optimal choice for all four routines is not possible because of the dif-
ferent kinds of stepsize control. 



c) Parameter concerning the final assessment: 

N C T : Exact time of solving an example by one method in per cent of the 
average time of the four methods. 
Because of the different length of the problems a final assessment of the 
methods and their properties is difficult. To overcome this difficulty, 
" a normed Computing t ime" N C T is introduced. Thissimply calculated 
number has the advantage of being independent of the Computer 
used, and of the Computing time. For the single examples the N C T 
is not important, it is only used for the final comparison in the con-
clusion (see Chapter 5). 

Example 2. A Standard test problem (N=2). 
This linear two-point boundary value problem is discussed in [40], p. 205 

(see also Pereyra [30] and Daniel and Martin [9]): 

_y" + 400j> = — 400 cos 2 {nt) — 2 n2 cos (2 nt) 

y(0)^y{\) = 0. 

Single shooting technique wi l l fail to solve this problem [40]. Since the Solution 
has one exponentially increasing and one exponentially decreasing component, 
the following transformation is introduced: 

y1=y 

y2 = 20y+y'. 

Nodes: 0, 0.25, 0.5, 0.75, 1. 
Zero initial data 

T I M E O V H M N F C N C T 

D I F S Y l 2.5 1.1 3901 39 
V O A S 4.6 3.7 2222 72 
R K F 7 3-2 1.8 4684 50 
R K F 4 15-2 8.7 22635 238 

Example 2. A singular bifurcation problem (N=2). 

— u"+ [ K ) 3 ] ' = * u> u{0) = u{i) = 0. 

This problem has been studied by Küpper [27]. It approximates the partial 
differential equation of the model of a continuous vibrating string considered 
by Fermi et al. [20]. As discussed in [27], for Xe [8, n2] the problem has a positive 
Solution which is Symmetrie and bifurcates from the tr ivial Solution at X=n2. 
Outside of [8, n2] the problem has no positive Solution. 

The Solution at 2 = 8. is calculated. For this parameter value the problem 
possesses a numerical singularity at t = 0. For that reason a series approximation 
in the first subinterval is used. 

M = 5 

N T = 6 
T O L = i . 1 0 - 6 
O V H B - 0 . 3 



Nodes: equidistant 
Init ial data: Solution at 2 = 8.5 (obtained by continuation) 

T I M E O V H M N F C N C T 
M =10 M =10 

D I F S Y l 1.2 0.6 2023 80 N T = 8 
V O A S 2.2 1.6 1667 147 T O L = 1. 1 0 —6 
R K F 7 1.6 0.9 2704 107 O V H B = 0.5 
R K F 4 1.0 0.4 1300 67 A = 8.5->A = 8. 

Example 3. An example due to Troesch (iV = 3)-

The two-point boundary value problem is given by : 

y ^ A s i n h {Xy)t 2 ^ 0 , 

>>(0) = 0, ^ ( l ) = i . 

This problem had been discussed by several authors (e.g. Scott and Watts [38], 
p. 74/75, where further references are listed). It describes the confinement of a 
plasma column by radiation pressure. The exact Solution of the problem in terms 
of Jacobian elliptic functions can be found in [40], p. I69. For the numerical 
evaluation of the Jacobian elliptic functions it is recommended to employ the 
computationally economic, rapidly convergent method of the arithmetic-geo-
metric mean [4]. Multiple shooting was used as a background procedure for 
comparison purposes only. 

The problem was solved by a modified continuation method [13], a t r ivial 
differential equation and a linear boundary condition for the homotopy parameter 
2 is added. 

The sensitivity of the problem is caused by a logarithmic singularity at 
t = tx>\ of the Solution of the associated ini t ial value problem. One might expect 
numerical difficulties for the multiple shooting method because tx depends on 
the parameter X and approaches 1 + as X increases. Indeed, the norm of the 
iteration matrix increased from 1. 1 00 to 1 . 1 0 9 as X varied from 1 to 17.5. There-
fore single precision computation had to be terminated. 

Nodes: 0, 0.3, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.92, 0.94, O.96, 0.97 ,0.98 ,0.99, 1. 
Init ial data: Solution at 2 = 7.25. 

T I M E O V H M N F C N C T 
M ==15 M ==15 

D I F S Y l 3.5 1.7 3393 48 N T = 8 
V O A S 11.4 9.0 5224 156 T O L = 1 . 1 0 -•6 
R K F 7 8.9 5 3 9114 122 O V H B - 0 . 8 
R K F 4 5.5 3-2 5212 75 A = 7.25->A = 7-5 

Remark. For small values of X V O A S or Runge-Kutta methods are faster 
than D I F S Y l , but for all X = 4 D I F S Y l turns out to be best. First of all, V O A S 
faüs at 2 = 9-75 then R K F 7 at 2=11.5 and R K F 4 at 2 = 14.0. The Standard 
multiple shooting algorithm suggests a new node be inserted which coincides 
wi th 1. in the first four digits. The last successful step for D I F S Y l is 2=17.5. 



Example 4. Artificial boundary layer problem (N=2). 
This linear problem was treated in Daniel and Martin [9], Lent ini and Pe-

reyra [28], and Pereyra [30]: 

jT&r: *<°>=0' ^>=VJTOT 
At t=0 the problem has a boundary layer of thickness ]/2. One expects serious 
difficulties for the stepsize control of the four routines as X approaches zero. 

Nodes: 0, | ] / l . i 0 - 7 , 0.01, 0.1. 
Init ial data: Solution at X = 1.10— 5. 

T I M E O V H M N F C NCT 
M = 4 M = 4 

D I F S Y l 0.7 0.4 1464 25 N T = 5 
V O A S 7.0 6.6 3615 222 T O L = l . 1 0 - 6 
R K F 7 1.4 1.0 2751 44 O V H B = 0 . 2 
R K F 4 3.4 3.1 7116 108 2 = 1-io-" 5 - ^ = l . 1 0 

Remark. Solving this example D I F S Y l is the most reliable and V O A S the 
most susceptible routine. The last successful steps has been for 

V O A S : A = l . 1 0 - 8 

R K F 4 , R K F 7 : 2 = 1 . 1 0 - 1 0 

D I F S Y l : 2 = 1 . 1 0 - 1 3 . 

The stepsize control of the routines Orders a new node which is too close to a 
given one. 

Example 5. An integral equation of the second kind (N=$). 

67iq)(s)= f (3 sin r sin s + 2 sin 2s sin 2r) {cp{r)-\-(pz{T))dr. 
0 

This equation has three different Solutions in addition to the tr ivial Solution 
(Pimbley [32]). Each of them can be obtained by multiple shooting, after trans-
forming the integral equation into a boundary value problem by : 

yi(t) = <p(t), 
t 

y* W = / sin r (99 (T) + (pz
 (T)) dr, 

0 

71 

yz (t) = j sin r (y (r) + (p3 (r)) dr, 
t 

t 

t 
31 Numer. Math., B d . 27 

yA{t)=J sin (2T) (<p(r) + <f^{r))dr, 
o 

y,(t)= / sin (2T) {<p{x) + ^(r))dx. 



Nodes: 0, 0.5, n\29 2, n. 
Init ial data: y=2 except for the given boundary values. 
Using the chosen data, multiple shooting yields the only positive Solution. 

T I M E O V H M N F C N C T 

D I F S Y l 7-5 3-5 5361 96 M = 5 
V O A S 10.9 8.0 3411 140 N T =18 
R K F 7 5.8 3.0 3471 74 T O L = i . 1 0 - 6 
R K F 4 7.0 3.6 4379 90 O V H B = 0 . 8 

Example 6. Membrane theory (A7 = 2). 

This problem arises in the theory of stress distribution in a spherical membrane 
having normal and tangential loads (see Lent ini and Pereyra [28], Russell and 
Shampine [36], and Scott [37]). The following differential equation holds: 

y + (3 cot (0 + 2 tan (*)) / + 0.7y = 0 f 

3>(30°)=0 >'(60°) = 5. 

The sharp rise in y (t) and its derivatives may cause difficulties. The problem is 
scaled by a factor 1. 1 0—4. 

Nodes: 30°, 31°, 60°. 
Init ial data: y = 0, y' = TT/1800. 

T I M E O V H M N F C NCT 

D I F S Y l 7.9 4.4 15615 138 M = 3 
V O A S 5.3 4.5 3097 93 N T = 6 
R K F 7 4.3 2.6 6742 75 T O L - 1 . 1 0 

R K F 4 5-4 3-4 8796 94 O V H B = 0 . 2 

Example 7. Heat conduction (iV = 3). 

The equations for one-dimensional heat conduction with nonlinear heat gen-
eration are treated in N a and Tang [29] and Stoer and Bulirsch [40]: 

y'(0)=y(i)=0 

where X: heat generation constant 0 < X = 0.8, 
y: temperature distribution. 

The problem possesses a numerical singularity at t = Q. In actual computation 
the differential equation must be separated (see [40] and [34]). 



Nodes: 0., 0.1 (matching point), 1. 
Zero ini t ial data. 

T I M E O V H M N F C NCT 
M = 3 M = 3 

D I F S Y l 1.0 0.5 1573 82 N T = 7 
V O A S 1.7 1.3 804 139 T O L = 1.10— 6 
R K F 7 1.4 0.8 2132 114 O V H B = 0 . 2 
R K F 4 0.8 0.4 1008 65 A=0.8 

Example 8. Lubrication theory (N—2). 
The following nonlinear eigenvalue problem was treated by Cole et al. [8] and 

Keller [25]. It arises in the theory of lubrication and concerns the flow of a 
viscous compressible fluid through a very narrow gap. 

1 / sin^ t \ 
y'= — (sin 2* - X — ^ — j : —n\2^t^ n\2 

y{n\2)=y{-n\2) = \\ 

s is a parameter, X the required eigenvalue. 
This boundary value problem was solved numerically for s = 1/100. For this 

parameter value the Solution y approaches zero at £ = 0. 
The Single shooting method was performed in the backward direction (inte-

grating from TT/2 to — JT/2). In this case the norm of the iteration matrix was 
about 1.10 0. On the other hand, during forward integration the norm increased 
to 0.5i010, indicating high sensitivity of the problem. 

Nodes: — TZ/2, n\2 {M — 2, Single shooting). 
Ini t ial data: y = 1, X = 4/3. 

T I M E O V H M N F C N C T 

D I F S Y l 15-4 9.0 22627 125 M = 2 
V O A S 7-5 6.2 4017 61 N T = 5 

R K F 7 10.6 6.7 13326 86 T O L =1. 1 0 — 6 
R K F 4 15-7 10.1 19896 128 O V H B = 0 . 2 

Example 9. Nonsymmetric bending of elliptic cylindrical tubes (N=6). 
Recently Weinitschke [43, 44] studied the nonlinear problem of bending a 

thin-walled cylindrical tube with elliptic cross section. No assumptions are made 
of bending the tube about the minor or major axis. The differential equations are: 

/ T = a 2 / j/cos 2! + £ 2 s i n 2 ! ( s i n ß ( c o s ! + ^ s i n !) —cosß(y cos !—^s in £)) 
q sin | cos | 

— cos2 ! + £ 2 s i n 2 ! ^ ' 

/ " = ]/cos 2 ! + e 2 s i n 2 ! (cos ß (cos !+y e sin !) + sin ß (y cos ! — e sin !)) 

q sin ! cos ! 
~~~ cos 2 ! + * 2 s i n 2 ! ' 



where: 

! : angle 0 ^ ! ^ 2 T Z , 

/ ( ! ) : dimensionless stress function, 

ß (!): dimensionless angular deflection, 

b: minor axis, 

a: major axis, 
Rx: projection of the deformed axis to the x — z plane, 

assumed to be radius of a circle, 
Ryi projection to the y—z plane, 

D: flexural rigidity, 

1 JA : extensional stiffness, 

e = - , q=\-e\ 

Rx a* 
a = 

Ry' fÄDRx • 

Symmetry of the problem leads to the boundary conditions: 

ß(0)=ß(~) = arctany. 

/'(0) = 0,/(f)=0. 

Additionally, two integrals for the moments mx, my are computed: 
jt/2 

= - j f [((1 + C) cosß + 5 sinß) cos / - e ((1 + C) s i n ß - S cos ß) sin t] dt, n 
o 

W y = _ j ^ . j f[((i-C)sinß + Scosß)co$t+e((\-C)cosß-Ssinß)smt]dt 
o 

where: S = sin (2 arctan y)t C = cos (2 arctan y). 
In the simpler case of a cylindrical tube, e = i, Solutions have been obtained 

by means of a perturbation technique by Reissner and Weinitschke [33]. Quasi-
linearization has been successfully applied by Thurston [42]. 

The problem was solved for the parameters: 

e = 0.9, y = 0.25, a = 0.5. 

Nodes: 0., n\\, n\2. 
Init ial data: 

ß = arctan y 
ß' =7t2l}0 estimated from [33], 

/ ( < » — 1 / ( T ) — « / ( f )= f t 

/'(0)=0 /'(f) = 2/B /'(f)=2M, 
mx = 0, 



T I M E O V H M N F C N C T 

M = 3 
N T = 12 
T O L - 1 - 1 0 - 6 
O V H B = 0.4 

D I F S Y l 2.2 0.8 1317 93 
V O A S 2.7 1.7 806 114 
R K F 7 2.6 1.2 1387 109 
R K F 4 2.0 0.9 1064 84 

Example 10. A hydrodynamic problem (N=$). 
The problem describes a laminar boundary layer produced by the rotating 

flow of a viscous incompressible fluid over a stationary infinite disk. The external 
velocity should vary as some power of the radius: v~r~n; further the fluid is 
assumed to be interacting with a magnetic field represented by the parameter 5. 
A complete discussion of this problem can be found in K i n g and Lewellen [26]. 

The original Version leads to a two-point boundary value problem: 

VV>" + n WY- i + &2-sy)' = 0, 

~^y>&'+(n-i)y)'<P-s{0-- 1 )=0 

boundary conditions: 

y)(0)=:y)' (O) = 0(O)=O, 

y'(*/) = 0, 0(tf) = i 

where n and s are given parameters. 
For several parameters n, s, tf numerical Solutions of this problem were ob-

tained by Hol t [22] using a combination of quasilinearization and finite difference 
methods and by Roberts and Shipman [35] using a shooting method. 

In [35] the Solution is given for the parameters 

n=—0A, 5 = 0.2, tf=ii.}. 

Nodes: equidistant. 
Initial data: Solution at tf=\\.}. 

T I M E O V H M N F C N C T 
M = 1 1 M = 1 1 

D I F S Y l 10.0 6.4 13015 82 N T = 1 2 
V O A S 16.7 14.1 7326 138 T O L = l . i o — 6 

R K F 7 7-5 5-1 6876 62 O V H B = l . 3 
R K F 4 14.3 10.4 15352 118 ^ = 1 1 . 3 ^ = 1 2 . 

Remark. Changing the direction of integration in the multiple shooting algo-
r i thm a more favorable iteration matrix was obtained (see [13]). 

Example 11. Re-entry problem for an Apollo orbiter type vehicle ( iV=7). 

Of all the many difficult problems due to manned interplanetary travel per-
haps the most critical is that of returning the vehicle from outer space to the 
earth's surface. The chief problem with aerodynamic breaking is associated wi th 
the severe heating effects experienced by the vehicle. Therefore reentry trajec-
tories are searched which minimize this quantity. This optimal control problem 



leads to seven differential equations involving the adjoint variables Xv, A y , and 
the free total flight time T (cf. [40]). 

Physical differential equations: 

SQV gs\n y ' g ' l \ o r 

2 m

L w W ~ ( 1 + f ) 2 

SQV v cos y _ g cos y 
2m <4 W + R ( \ * > ( l + f ) 2 

(velocity), 

T (flight path angle), 

(normalized altitude). 

Hamil tonian: 

where 
Cw(u) 

CA (u) 

sinu 

cosu 

a 

o 

R 

S/m 

= 1.174 —0.9cos u, 

= 0.6sinu (u is the control variable), 

= - 0 . 6 Ay/a, 

= —0.9^A v /a , 

=209-, £ - 4 . 2 6 , e 0 = 2 . 7 0 4 1 0 - 3 , g = 3-2172 l 0 -4 , 

= 53 200. 

The boundary conditions are given by : 

v{0) =0.36 v(l) = 0.27, 

y(0) = - 8 . 1 ^ / 1 8 0 y(i) = 0., 

| (0) = 4/i? f ( l ) = 2.5/Ä, 

^ U = o . 

Nodes: Init ial data: 

V y T 

K K 

1. 0 . 2 7 0 0 E + 0 0 0.0 0 . 1 1 9 6 1 7 2 2 4 8 8 E - 0 1 0 . 2 3 0 E + 0 3 
- 0 . 6 0 0 0 E + 0 0 0.47 500000000E -f-00 - 0 . 3 5 1 0 0 0 0 0 0 0 0 E + 02 

0.762 0.2750E-fOO 0 . 7 0 6 8 5 8 3 4 7 0 5 E - 0 2 0 . 1 1 7 2 2 4 8 8 0 3 8 E - 0 1 0 . 2 3 0 E + 0 3 
- 0 . 3 9 0 0 E + 00 0 . 3 1 5 0 0 0 0 0 0 0 0 E + 0 0 - 0 . 6 5 700000000E + 01 

0.496 0.2880E + 00 0.24085543677E-01 0.10574162680E-01 0.230E+03 
— 0.2280E + 00 0.12600000000E + 00 - 0.34600000000E+01 

0.26 0.3300E+00 -0.21293016874E-01 0.82775H9615E-02 0.230E+03 
-0 .1070E + 00 -0.40000000000E - 0 1 0.0 

0.097 0.3607E+00 -0.12217304764E + 00 0.14019138756E-01 0.230E+03 
- 0 . 5 0 0 0 E — 0 1 - 0 . 5 5000000000E - 01 — 0 . 1 3 0 0 0 0 0 0 0 0 0 E —Ol 

0. 0.3600E + 00 -0.14137166941E+00 0.19138755981E—Ol 0.230E + 03 
-0 .6000E —01 -0.60000000000E — Ol —0.20000000000E+00 



T I M E O V H M N F C NCT 

D I F S Y l 113.5 39.6 67224 60 M = 6 
V O A S 194.4 143.1 46058 104 N T = 100 
R K F 7 129.2 58.6 65142 69 T O L = l - i o - ö 
R K F 4 313.7 137.9 166992 167 O V H B = 3-4 

Remark. In order to prevent an overflow of the right hand side using R K F 7 , 
the argument of the exponential function must be limited. 

Example 12. Optimal control of a mass production (iV = 3). 
This optimal control problem is due to Bauer, Neumann [2] and describes an 

automatic machine producing a mass article: 

v: production velocity: v € [0,1 ], 

OLV : articles produced per unit-time: oc > 0, 

1 — x: percentage of refuse: x € [0,1 ], 

(xxv: returns of the production per unit-time, 

k (v, t): production costs per unit-time: k (v, t) = \ v2 e T . 

The profit / is to be maximized: 
T 

I(x,v) = J [<xxv — k(v,t)]dt 
0 

under the restriction (depreciation): 

x— —bxv b>0, 

x(0) = i 

where a = 2., 6 = 0.08 and T = 1 0 . 

The associated two-point boundary value problem is given by 

p =v(0LX-±ve~T) p(0) = 0, 

x=—bxv x(ö) = \, 

K=v(K*>-*) **M=o 

with the control variable 

0, if v < 0 (this case does not occur in actual computation) 

v, i f i ? € [ 0 , l ] 
1, if 5 > 1 , 

t 

v=e T[x(<x-Xxb)] 

switching function: S=v — 1. 



Nodes: equidistant. 
Zero ini t ial data except for the given boundary values. 

T I M E O V H M N F C N C T 

D I F S Y l 6.1 1.9 2729 49 M = 3 
V O A S 7-3 4.6 1420 59 N T = 15 
R K F 7 17.0 1 1 3 4389 137 T O L = l - i o - 9 
R K F 4 192 12.5 5147 155 O V H B = 0.7 

Example 13. Optimal economic planning of a growing nation (N=7). 

This example describes the economy of a growing nation which suffers from 
great unemployment due to the business structure. A policy leading to füll 
employment and stable growth is required. The data used held for Algeria in the 
year 1961. 

The economical model due to Stoleru [41] includes one constrained control 
variable and one first-order constrained State variable. Using multiple shooting 
technique Wiek [45] has computed the associated two-point boundary value 
problem. The differential equations which consider two cases are given by (x€ [0,1 ] 
is the independent variable): 

Casel. On unconstrained arcs (g : — maeyxT—z < 0 ) : 

y =xuyTt 

z = a ( l — u)y T, 

K= — (Xy<x.u + X2<x(l — u)) T, 

\z=X=h=f==o. 

Gase 2. On constrained arcs (g = 0) the differential equations for Xy, Xz and Xr 

change to: 

X=(Xy-Xz)y*zT 

with the constants a = 0.25, o = }At A = B = 4, y = 0.125, and w = 0.45. The 
ad Joint variables Xz and Xr are discontinuous at the entry point xx of the con
strained arc: 

X+\x^x=X7\^Xl + hmoye^T. 

The control variable u satisfies: 

u = 

if x < xx (entry point); g < 0 

on the constrained arc; g = 0 

if x > x2 (exit point); g < 0. 



The boundary conditions are: 

y{0)=i y{\)=AevT, 

z(0) = a z{\) = BevT, 

Ay(0) = l , 

#|*=o = [ — ^ + A y j / + A 2 i + A r r] , = 0 = 0 (Hamiltonian), 

#U=0 . 

Nodes: Init ial data: 

0. y= i. z= 3.1 =0.2 T = 20. / 0 = 0.2 K= 1 
0.5 15- z= 6. A y =0.05 = 0.005 T=20. l0=0.2 K= 1 
1. y= 70. z=70 . Xy=0. K-= 0.005 7 = 2 0 . / 0 =0.2 K= 1 

T I M E O V H M N F C N C T 

D I F S Y l 29-0 190 11597 19 M = 3 
V O A S 42.4 32.9 4893 27 N T = 28 
R K F 7 94.9 84.8 14164 61 T O L = 9 
R K F 4 460.6 410.9 74486 294 O V H B = 3.0 

Example 14. Planar Earth—Mars transfer (N=9). 
In interplanetary space science it is required to pilot an ion rocket wi th 

minimal mass-loss. In this example a travel from the Earthian orbit to the Mar-
tian orbit is treated. Both orbits are assumed to be circular and coplanar. The 
influence of the gravitational field of the Ear th is neglected. This leads to an 
optimal control problem with two control variables: the thrust ß € [0, ß m a x ] (linear 
control variable) and the thrust angle ipE] — TC, TZ[ (nonlinear control variable). 

For the (normed) physical quantities (distance from the sun r, radial-veloc
i ty (o, tangential-velocity vy massw) the four differential equations hold: 

r=a>, 

r r2 r m r 

cov 

c = 1.872, 

Anax = 0.075, v = — Vß — cos w 

m=-ß. 

The boundary values are given by : 

r(0) = l . 

Ö>(0) = 0. 

y(0) = l . 

w (0) = 1. 

The problem with free total flight time tf is yet unsolved 

r(</) = 1.525, 

o>(t,) = 0, 

= 0.8098, 



Nodes: equidistant. 
Initial data: Solution at t 5.0. 

T I M E O V H M N F C N C T 
M = 5 M = 5 

D I F S Y l 46.4 20.2 12203 53 N T =23 
V O A S 54.8 37-9 5870 63 T O L = 1 . l 0 - 9 
R K F 7 82.2 61.9 8967 94 O V H B = 2 . 3 
R K F 4 166.5 122.7 19470 190 // == 5 . 0 - ^ = 5 . 0 5 

Example 15. Heating constraint crossrange maximization problem for a Space 
Shuttle orbiter—type vehicle (N—14). 

Since the development of the Space Shuttle atmospheric entry of lifting ve-
hicles is studied. These lifting vehicles should be capable of considerable lateral 
ränge, which allows increased return frequencies from orbit to given landing sites. 
For maximum lateral ränge a heating constraint depending on velocity, altitude, 
and angle of attack is taken into account. 

The underlying mathematical model of this optimal control problem is due to 
Dickmanns [14], who also prepared init ial data for the unconstrained problem 
(no heating constraint) using an analytical approximate Solution. In [31] the 
numerical Solution of the constrained problem has been treated using multiple 
shooting techniques especially trimmed to handle ill-conditioned two-point bound
ary value problems (cf. [11]). A n extensive presentation of the whole model 
would be beyond the scope of this paper, it can be found in [13]. The heating 
constraint was pushed down from 2850°F to 1700°F by means of a continuation 
method. The special homotopy step reduces the level of the permitted skin 
temperature of the Space Shuttle from 2057 °F to 2000 °F. Using the modified 
continuation method [13] the System comprises 14 differential equations. 

The differential equations for the physical quantities (velocity v, heading 
angle %, flight path angle y, cross-range angle A, altitude h, down-range angle 6) 
are: 

X=CA 

' = CA 

2m 
at, sin u 

e ßhv — 
cos y 

2m 
e ßhvcosju-

R+h 

go l R 

cos y cos % tan A , 

\ 2 V 

R+hj ~ R+h cosy 3 

h=vsmy, 

6 cos ycos % 
R+h cos A 

where [i (aerodynamic bank angle) and cA (lift coefficient, constrained) are the 
two nonlinear control variables. The other quantities are constants. For a detailed 
discussion of the technical results see [15]. 



This example is one of the most complicated and most sensitive control Prob
lems to be solved so far by multiple shooting algorithm. 

Nodes and init ial data can be found in [31]. 

T I M E O V H M N F C N C T 

D I F S Y l 3850.6 795.9 346370 35 M = 11 
V O A S 3071.9 1672.7 146689 28 N T = 95 
R K F 7 7252.9 3970.7 384485 66 T O L = 1 - io-
R K F 4 F A I L 272 O V H B = 24.7 

Remark. R K F 4 did not succeed in 10800 sec (number of computed trajec-
tories: N T = 3 0 , number of function evaluations: N C F = 582396). To make the 
calculation of N C T for R K F 4 possible, the time was extrapolated to 30000. 

5. Summary of Results 

The 15 examples presented in this paper may be considered as representative 
two-point boundary value problems. They cover different degrees of difficulties. 
Some of the examples are rather simple and have been treated repeatedly in the 
literature (expl. 1, 3, 4, 6), others are extremely difficult (expl. 11, 13, 14, 15). 

The criteria for judging the four Integration routines are reliability, fastness 
and precision. 

a) Reliability. As far as reliability is concerned, D I F S Y l obtained the best 
results. D I F S Y l is not sensitive to the choice of nodes (expl. 3,4). It also runs 
well even in sensitive problems described by a large norm of the iteration matrix 
(cf. Chapter 3). A disadvantage of D I F S Y l is the increased Computing time, if 
D I F S Y l is used with zero init ial data in the case of a homogeneous differential 
equation. 

As can be seen from the examples (3,4), V O A S was the most sensitive inte-
grator. It does not allow large Integration intervals, and requires the greatest 
number of nodes. Nevertheless, V O A S proved to be more favourable in appli-
cations in optimal control problems. The small integration steps of V O A S yielded 
a secure and fast determination of the switching points. 

R K F 7 and R K F 4 are very reliable, except that the stepsize control of R K F 7 
did not avoid an overflow in the right hand side of example 11. Both of these 
integrators did not allow as large parameter values as D I F S Y l did in the ex
amples 3 and 4. 

b) Fastness. In order to compare the fastness of the four routines, the total 
amount of Computing time is considered. The number of function calls, which has 
been measured in [28] and [30], is not alone representative for fastness. Com
puting time must be paid, not the number of function calls. Even for complicated 
problems with a large number of Operations in the right hand side, the over-
headtime of the routines can not be neglected (see Table 1). 

As is seen in Table 1, the mean of the 0verheadtime for al l problems (in per cent) 
requires a larger portion of time than the time spent in the right hand side. Only 
in example 15 T F C is dominant in all routines. It should be mentioned that V O A S 



Table l . Splitting of the total Computing time (100%) averaged over all examples 

D I F S Y l V O A S R K F 7 R K F 4 

O V H M 47% 75% 61% 60% 
T F C 40% 18% 2 9 % 30% 
O V H B 13% 7% 10% 10% 

O V H M == percentage for the overheadtime of the routines; T F C = percentage for the 
time spent in the right hand side; O V H B = percentage for the overheadtime of Boundsol 

Table 2. Averaged normed Computing time in per cent of the R K F 7-average 

E x p l . l - i i Exp l . 12-15 Exp l . 1-15 

D I F S Y l 95 44 81 
V O A S 152 49 123 
R K F 7 100 100 100 
R K F 4 135 254 169 

needs the largest, D I F S Y l the smallest part of O V H M . The overheadtime of 
B O U N D S O L , however, is negligible. 

It is not possible to compare the four routines by adding the total Computing 
times for each problem. The various difficult ies and sizes of the problems caused 
Computing times ranging between a few seconds (expl. 1) and several hours 
(expl. 15). The normed Computing times N C T introduced in Chapter4 are com-
parable quantities. 

Table 2 includes the averaged N C T for each routine given in per cent of the 
R K F 7-average in each column. 

This table illustrates the fastness of each routine for the examples 1-11 with 
technical precision ( T O L = 1 . 1 0 — 6 ) , and for the sensitive optimal control prob
lems 12-15 with higher precision (TOL = 1.10—9) • Column three in Table 2 contains 
the averaged values over all problems. As is seen in examples 1-11 D I F S Y l , 
and R K F 7 run similarly fast, whereas in examples 12-15 D I F S Y l and V O A S 
are equivalent. R K F 4 is out of business. Hav ing considered al l problems, one 
would most l ikely prefer D I F S Y l . The above division of the examples into two 
groups, however, is unfavourable for R K F 4 , since R K F 4 was the fastest routine 
in the examples 2, 7, 9. 

c) Precision. In shooting methods, the precision is prescribed ' a pr ior i ' . A l l 
methods obtained the required precision. 

Rule of Thumb. In order to decide which routine should be applied for a par
ticular problem, the 15 examples are divided into four groups (according to their 
averaged total Computing time). 

Simple examples: 2, 7, 9 
Less difficult examples: 1, 3, 4, 5, 6, 8 

Difficult examples: 10, 12, 14 
Very difficult examples: 11 ,13 ,15. 



For these four groups the averaged normed Computing times for each routine are 
compared in Table 3. Again they are given in per cent of the RKF7-average in 
each column. 

Table 3. Averaged normed Computing time for the Classification in per cent of the R K F 7-average 

Simple Less difficult Difficult Very difficult 

D I F S Y l 77 104 63 58 
V O A S 121 165 89 81 
R K F 7 100 100 100 100 
R K F 4 65 163 158 374 

For simple problems (column 1) R K F 4 is the fastest routine, whereas for less 
difficult problems (column 2) one would prefer R K F 7 or D I F S Y l . In difficult 
and very difficult problems D I F S Y l and V O A S are the fastest routines. Among 
very difficult problems, where the part of Computing time spent in the right 
hand side dominates (see expl. 15), V O A S is faster than D I F S Y l . This is caused 
by the larger percentage of overheadtime of V O A S (see Table 1) (i.e. the smaller 
number of function calls). These Statements are summed up in the Figure 1 
which also includes the experience of the authors. 

Good 
behaviour 

Bad 
behaviour 

VOAS, 

— — 'DIFSYl 

Simple 
problems 

Complicated 
problems 

F i g . 1. Behaviour of the integration routines 

The results of these invest igat ions va l ida te the suggestions i n [16], tha t the 
four tested rout ines should be inc luded i n a p rogram l i b r a ry . The choice of a 
su i table rout ine for a pa r t i cu la r p rob lem is made easier b y the ske tch . 
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