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1. Introduction 

Circuit Simulation programs have proven to be most important C A D tools 

for the analysis of the electrical Performance of integrated circuits. Depending 

on the number of modeled transistors, these Simulators require the numerical So­

lution of initial value problems for very large, sparse Systems of differential (or 

even differential-algebraic) equations. For a survey see Refs. 1 and 2. 

Waveform relaxation (WR) has been proposed in Ref. 5 for the numerical 

Solution of these initial value problems. It applies the well-known Gauss-Seidel 

and Jacobi principles for the numerical Solution of Systems of algebraic equations 

on the function space level (see also Refs. 8 and 11). Each differential equation 

of the System, which models an integrated circuit, corresponds to one node in 

this network. In its simplest form, WR solves these equations as Single differential 

equations in one unknown, and these Solutions are iterated until convergence. If 

this kind of node-by-node decomposition strategy is used for circuits with even 

just a few tightly coupled nodes, the WR algorithm wil l converge very slowly. Its 

efficiency can be greatly improved by lumping together tightly coupled nodes and 

partitioning the System correspondingly. The relaxation principle is then applied in 

a blockwise manner. 

In practical applications, the groups of differential equations in the parti-

tioned system have to be solved numerically in each cycle of the WR iteration. 

As stiffness is a characteristic feature in VLSI applications, most circuit Simu­

lation programs (and the present note) use the stiffly stable backward differenti-

ation formulas for discretization (see Ref. 3). Other approaches, like Runge-Kutta 

related methods, can be applied in principle, too (see Ref. 9). 

The present note shows that in the linear case the discretized WR algo­

rithm is equivalent to the (algebraic) block relaxation method if the latter is 

applied to a properly defined linear system of algebraic equations (Section 2). 

Naturally the dimension of this system is greatly enlarged. However, the eigen-

value problem of the corresponding iteration matrix can be reduced to the original 

dimension. Consequently, estimates of the convex hull of its spectrum can be 

computed efficiently by an adaptive technique. This suggests a method for accel-

erating the rate of convergence for WR (Section 3). 
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2. The Discretized Waveform Relaxation in the Linear Case 

Valuable insight into the WR method can be gained by an investigation of 

the linear case 

(2.1) Cx = Fx + f , x ( 0 ) v 0 ' 0 ^ t ^ T . 

Here, C ("capacitance matrix") and F are constant (n x n )-matrices, and f is a 

constant vector. Let Equ. (2.1) be partitioned as motivated in Section 1: 

(2.2) C 

-11 

TM PP 

11 

p l 

lp 

PP 

where C. . and F. . are (n . x n.) -matrices (i = l,...,p) and n^+^^+n^ = n. The dimen-

sions of the other submatrices and the partition of the vectors f and x are de-

fined accordingly. Let the linear multistep formula 

(2.3) 
s 

k=0 k * k k=0 K * K 

be used, and let the interval 0 ^ t ^ T be subdivided by equidistant points 

(2.4) tl = l*h (1= 0,...,N), h = T / N . 

For the sake of simplicity the same (uniform) stepsize h and the same formula 

(2.3) is used for the discretization of all the differential equations. In reality, one 

of the advantages of the WR algorithm is to let different Subsystems be inte­

grated according to their individual dynamical properties. Hence, the last as-

sumption is somewhat art if icial . However, this simplification allows a concise 

description of the basic ideas and valuable first insights. Let Equ. (2.1) be dis­

cretized by (2.3): 

I _ a k C X i _ k = h - I ß k ( F x , _ k + f ) , 
k=0 k=0 i - k 

and let x ^ denote the approximation of x.(t^). Define 

a i a o 

s 1 0 

s 1 0. 

F ^ , B : = 
fV'ß i 'ßo 

3 S " B l ßo 



M ^ ( h , N ) : = C * A - h * F * B (*: direct product), 

z := ( x n , . . . , x 1 N ; . . . ; x n l , . . . » x ^ ) 1 e . 

Let the discretized WR Gauss-Seidel (Jacobi) method be applied to system (2.1), 

which is partitioned according to (2.2). It is easy to see that this algorithm is 

equivalent to the Standard algebraic block Gauss-Seidel (Jacobi) method if the 

latter is applied to the following system of linear algebraic equations: 

(2.5) M ( h , N ) * z = right hand side. 
TT 

For the definition of block (or group) iterative methods see e.g. Refs. 10 and 12. 

Throughout this paper, the index TT refers to the following partition of the ma-
2 

trices into p blocks: The diagonal blocks have sizes n . N x n ,N, n N x n N ; 
1 1 p p 

the dimensions of the off-diagonal blocks are chosen accordingly. Please note 

that the enlargement of the size of the matrices from n to n*N is for theore-

tical purposes only. In actual computations, the explicit formation of the matrix 

is unnecessary. Further, the eigenvalue problem for the corresponding itera­

tion matrix can be reduced to dimension n. This fact wi l l be proven (and ex-

ploited) in the following section. 

3. Accelerating the Rate of Convergence 

Let 

M = D + L + U , 
TT TT TT TT ' 

where is the block diagonal part, L^ the strictly lower block triangulär part, 

U the strictly upper block triangulär part. Here, the blocking refers to parti­

tion TT. The tibzAaLLori mcdbüx of. the. MocJc QauA6-SeMe£ meikod is 

(3.1) G := - ( D +L )"l*\J . 
TT TT TT TT 

G^ is a ( nN x nN )-matrix. Let the (n x n)-matrices C and F of Equ. (2.1) be 

split into 

C = D c + L c + U c , F = Dp + L p + Up , 

where and Dp are the block diagonal parts, L ^ and Lp the strictly lower 

block triangulär parts, U ^ and U r the strictly upper block triangulär parts. Here, U r 

the blocking refers to partition (2.2). Then 

D = D * A - h -D * B , 
TT C F ' 

L = L * A - h*L * B , 
TT C F ' 



U T T = U C * A " h - U F * B • 

With P as the permutation matrix of Prop. 3 of Chap. 12 in Ref. 4 

P T U P = A * TT - h-B * T I . 

TT C F 
This matrix is lower block triangulär with diagonal blocks 

<*0UC - h ß 0 U F • 
Similarly, 

P T ( D 7 r + L 7 r ) P = A * ( D c + L c ) - h - B * (Dp+Lp) , 

which is a lower block triangulär matrix with diagonal blocks 

( a Q D c - h ß 0 D F ) + . ( a Q L c - h ß Q L F ) . 

Consequently, 

P V P = - { P T ( D 7 r * L i r ) P } " 1 ( P T U i r P ) -

is a lower block triangulär matrix with diagonal blocks G, where 

(3.2) G : = - U a 0 D c - h ß 0 D p ) + ( a 0 L c - h&QLF)} ' 1 ( a Q U c - h3QUp) . 

This (n x n)-matrix is the Ji&AaUon maJbüx fo/i the. Mock QauM-SeJcLeJt method if 

applied to a Q C - h3QF . The blocking refers to partition (2.2). So the following 

theorem is proven: 

3.1 Theorem: Let X j , X f l be the eigenvalues of G (see Equ. (3.2)). Then 
X j , Xj (N-fold); . . . ; X n , X^ (N-fold) are the eigenvalues of G ^ , where 
G^ is the iteration matrix of the WR Gauss-Seidel algorithm (see Equ. (3.1)). 

A corresponding result for the WR Jacobi algorithm can be proven in a com-

pletely analogous manner. Theorem 3.1 extends Theorem 6.1 in Ref. 11 and gives 

a complete explanation of the background of these results. 

Chebyshev acceleration is a powerful tool for speeding up the 
iterative method (see Refs. 6 and 7). It depends on two parameters which can be 
chosen from knowledge of the convex hull of the spectrum of the iteration ma­
trix. Ref. 7 gives an adaptive procedure for estimating this cönvex hull. This 
suggests the following algorithm. 

3.2 Algorithm (Outline): 
Step 1) (Estimating the convex hull of the spectrum of G^) Perform block Gauss-
Seidel iterations (with Chebyshev acceleration) on the ( n x n)-matrix 01QC - hß^F» 
Here, the blocking refers to partition (2.2). Estimate the convex hull of the spec­
trum of G (see Equ. (3.2)). Theorem 3.1 immediately gives an estimate for the 

convergence of an 



convex hull of the spectrum of the ( n N x nN )-matrix . 

St£.p 2) Start WR Gauss-Seidel (with Chebyshev acceleration) based upon this 

knowledge of the convex hull of the spectrum of the corresponding iteration 

matrix and continue by iteratively improving the above estimates of the 

convex hull of this spectrum. 

Please note that Step 1) is relatively cheap. The basic assumption for Chebyshev 

acceleration is that the real part for any eigenvalue X of the iteration matrix 

satisfies Re(X) < 1 . I n view of Theorem 3.1 this can be guaranteed if the 

spectral radius p(G) < 1 . This is true if the stepsize h is sufficiently small 

and if the spectral radius of the Gauss-Seidel iteration matrix for C is less 

than 1. Note that C is strictly diagonally dominant in many practical applications. 

Experiments 

The following first numerical experiments give an Impression of the potential of 

the method. In the ring oscillator with n = 201 nodes all transistors were replaced 

by resistors with R ^ = 10*%*.; For the arising RC-network the matrices C and F 

in (2.1) are Symmetrie. Because of this symmetry, the WR SSOR method was used 

instead of the WR Gauss-Seidel methocL Then the eigenvalues of the corresponding 

iteration matrix are reaL The following table compares the asymptotic rates of 

convergence R^ for the WR SSOR method without and with Chebyshev accelera­

tion (cf. Ref*. 12). In (2.3) the backward differentiation formula with s = 4 , 

= 25/12 , ß n = 1 was used; stepsize h = 0.02 nsec. 

C p (pF) 

R 
oo 

without Ch . acc. 

R o o 

with Ch. acc. 

asymptotic accel­

eration factor 

0.005 6.62 8.01 1.21 

0.05 2.68 4.03 1.50 

0.5 0.59 1.62 2.75 

5.0 0.08 0.57 7.13 

The table indicates that for tightly coupled cireuits the asymptotic acceleration 

factor is quite high. 
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