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1. Introduction

The allocation of risk capital in financial firms for the purpose of performance measurement and risk-
return optimization is well established in theory as well as in practice. Throughout this paper, we will
use the terms risk capital and economic capital synonymously for an estimate of the amount of equity
a firm needs to cover potential losses generated by its business. In contrast to regulatory capital,
which is calculated using externally given rules and methodologies, economic capital represents an
internal estimate of the risks. While the use of economic capital and its decomposition into a sum of
single contributions of sub-businesses has become a standard approach in many banks (see Rosen
and Saunders, 2010) and insurance companies (see Myers and Read, 2001), the academic world is
still discussing methodological aspects and, to an extent, even the very significance of this concept.

There are several strands of literature which deal with risk capital allocation from various points
of view. Most articles can be attributed to the mathematical finance context, in which rigorous
arguments and axiomatics form the main focus (e.g. Denault, 2001; Kalkbrener, 2005; Tasche, 2004;
Buch and Dorfleitner, 2008). Another strand of literature has a definite insurance-linked perspective
(e.g. Dhaene et al., 2003; Furman and Zitikis, 2008; Gatzert and Schmeiser, 2008) and seeks to
explore the advantages of risk capital allocation for insurance companies. A third strand looks at
risk capital allocation from a more financial economics point of view (e.g. Merton and Perold, 1993;
Stoughton and Zechner, 2007) and is therefore more closely related to the question concerning why
capital allocation is a sensible procedure from an economic perspective.

In any case, a sound risk capital allocation framework requires at least two theoretical fundaments,
namely a proper definition of a risk measure and an allocation principle. The combination of these
two items yields a concrete allocation rule. In addition, several ad hoc allocation rules, like e.g. the
covariance allocation rule!, exist without explicit reference to the combination of a risk measure and
an allocation principle. Much attention has recently been given to coherent risk measures (Artzner
et al., 1999), which have several economically favorable properties, and to the gradient allocation
principle (Tasche, 2008; Rosen and Saunders, 2010), also sometimes called the Euler allocation
principle. The gradient allocation principle is well-suited to firms with homogeneous sub-businesses
consisting of a continuum of single contracts, whereas in the case of few large single contracts
an incremental allocation (Merton and Perold, 1993) seems to be more appropriate, where the
risk capital allocated to sub-businesses is derived from looking at the firm with and without the
sub-business under consideration and allocating economic capital proportional to the difference in
overall risk capital.

While many contributions examine technical aspects of risk capital allocation rigorously and in

!See e.g. Kalkbrener (2005), who also points out the shortcomings of this allocation rule. Urban et al. (2004) use the
covariance principle for calculating relative weights of each segment independently of the overall portfolio risk
measure.



great detail, the actual economic justification remains mostly verbal. Typically, it is stated that the
allocation is necessary to control risks ex ante by assigning limits to individual business units and
its necessity for performance measurement is emphasized. On the other hand, risk capital allocation
is also subject to criticism. In fact, Griindl and Schmeiser (2007) argue that capital allocation is
completely senseless and that firms should rather refrain from using it. Even if one does not wish to
follow this argument, the question emerges concerning why the optimum amounts of every line of
business are not more adequately directly optimized by the headquarters.

The contribution of Stoughton and Zechner (2007) is the first to actually consider an economic
optimization problem. The authors show that if the firm as a whole pursues maximization of
the economic value added it is consistent with allocating capital to the sub-businesses, which are
characterized by private information of managers, and allowing them to maximize the economic
value added, based on the allocated capital. However, due to the restriction to normally distributed
risks and a very specific incremental Value-at-Risk allocation rule, which is largely identical to the
covariance allocation, their results are only of limited usefulness in terms of practical application.

This paper focuses on financial firms with different lines of business, for which the managerial
decision concerns whether to expand or reduce rather than to create newly or abandon completely.
We do not restrict ourselves to certain specific risk measures or distributional assumptions. Our
approach comprises banks and insurance companies, both of which are subject to risk capital
allocation. In banks the economic capital to be allocated could cover market, credit, and operational
risk (Alessandri and Drehmann, 2010; Breuer et al., 2010; Embrechts et al., 2003) or classically
credit risk in a portfolio context (Rosen and Saunders, 2010), while in insurance companies risk
capital could be allocated for different lines of insurance contracts (Urban et al., 2004).

This paper contributes to the literature by developing a justification of risk capital allocation
with a rather mathematical finance argumentation, which is well suited to the many extensively
axiomatic contributions made on risk measures and economic capital found in the literature. To our
knowledge there is no contribution, which argues without restricting the probability distribution
of losses and the risk measure chosen that capital allocation could be reasonable when pursuing a
maximization problem. In this paper we fill the gap by developing a procedure concerning capital
allocation that is designed to maximize the RORAC of a company. Our analysis is based on the work
of Tasche (2004) who, however, is not able to state a maximization problem due to assumptions,
which are too simplistic. We assume that the segment managers have superior knowledge concerning
the possible profits induced by segment reductions or expansion, while the risk of the portfolio is
calculated centrally by the headquarters. Based on this we question RORAC maximization utilizing
naive risk capital allocation and develop a more sophisticated rule for RORAC maximization.

The remainder of this paper is structured as follows: Firstly, we present the general organizational

framework for capital allocation and return maximization in Section 2. Afterwards, we introduce



our specific model in Section 3 and derive certain requirements for the existence of a company-wide
optimal RORAC. Moreover, we propose an explicit control strategy that directs a firm to the optimal
RORAC. We then give a numerical example in Section 4, showing how a classical risk allocation
rule to sub-businesses can impede a company in attaining its optimal RORAC and elaborating the
success of the afore-mentioned control strategy. Practical aspects are discussed in Section 5 and
Section 6 concludes our paper.

Notice that the proofs of all lemmas, theorems, and corollaries can be found in the appendix.

2. General organizational framework

We consider a firm with n lines of business (subsequently called segments), in which each segment
conducts a certain amount of business. Let the vector u = (uy,...,u,) € R symbolize the amount
of business of each segment. We call u the porifolio and U C R"™ the set of all portfolios. Let the
future profits of segment k = 1,...,n stemming from an amount of business u; be represented by
the discrete-time process (Y} (uy))i=1,2,.. of integrable random variables on the probability space
(2, F,P) with natural filtration (F*);>0. To be precise, Y}!(ux) denotes the profits generated by
segment k in the period (¢t — 1,¢). Note that the portfolio u can change over time. Since the firm’s
overall profit consists of the profits of each segment, we can add up Y*(u) := 33—, V{{(ux), so that
Y? denotes the total profit of the firm in the corresponding period.

The risk capital of a portfolio u for time interval (s, h) is assumed to be o((Y*(u))i—st1,..1)-
Formally, ¢ is a multi-period risk measure, i.e., a mapping of the set of all tuples of random variables
(Yt (u),...,Y"(u)) into the real numbers R. For further details on the construction of such a
multi-period risk measure, see e.g. Artzner et al. (2007); Frittelli and Scandolo (2006). If o is
sub-additive, the firm’s overall risk o((Y*(u))i=s+1,...») will be lower than the sum of the segments’
stand-alone risks >-7_; o((Y}(ug))t=s+1...n)- This motivates the definition of an allocation principle,

which fully proportions the firm’s overall risk to the individual segments.

Definition 2.1. Let P be defined as a set of tuples (Y°TL,... Y ), with u € U, where U is a
non-empty set in R™ and s < h. Given a risk measure o, an allocation principle on P is defined as

a mapping A? : P — R™ with

A(YsH YR )

AL(YstL Y )

such that



The expression AS(YSH ... Y™ u)/uy, =: a,(:’h) (u) is referred to as the per-unit risk contribution

of segment k for time interval (s, h).

The capital allocation can be seen as a means to split up the diversification benefits stemming
from the pooling of the segments’ risks. It should be noted that the risk capital allocated does
not coincide with real capital invested to fund the business in the segments. Since we consider
financial firms, we can assume that the investments are financed to a large extend through debt,
while equity in the form of economic capital is only essential to cover the risks of the investments.
Therefore, risk capital allocation in a financial institution requires a different approach than classical
capital budgeting in non-financial firms (Saita, 2007). The economic capital is merely allocated
virtually to express each segment’s contribution to the overall risk and to provide a benchmark for
the profitability of each segment’s business.

Next, we introduce a return function for a certain time horizon h (possibly infinity), linking the
yield and the risk dimension of the firm. Formally, given the information set F*, let rg}i ’gh) :U—R
denote the return of portfolio u for the time interval (s,h) with s < h. In general, the return
depends on the expected profits E(Y*+1(u) | F*),...,E(Y"(u) | F*) and the risk arising from the

profits Y 1 (u),...,Y"(u) for all periods up to time h. Notice, however, that given the information
set F? the return function rg/s ’Qh) is deterministic.

The natural managerial control problem is to maximize the return rg’gh) at time s for a given

time horizon h. We embed this maximization problem into a general systems framework. Therefore,
we consider the profits Y+ (us+1), ... Y (u**!) as the state variables, which can be controlled by
the choice of the portfolio u*t! at time s. If the return function is known to the headquarters, it can
directly optimize the return by solving the above-mentioned control problem using e.g. a stochastic
control theory approach. In this case, division managers and capital allocation become superfluous
therewith.

Therefore, in the remainder of this paper we examine decentralized firms. That is, we assume
that only the headquarters can evaluate the risk o((Y*(u®));=s+1,.. ) of the whole portfolio at
any time s, i.e., risk modeling and risk calculations take place at the headquarters. On the
other hand, the expected profits E(Y*+(u)|F?),...,E(Y"(u)| F*) are unknown at the corpo-
rate level except at the present portfolio extent u®. We can assume, however, that the expected
profits E(Y; T (ug) | F#), ..., E(Y*(ug) | F*) are known to the kth segment for uj in some neigh-
borhood of ug, i.e., the amount of business currently undertaken. This conveys the idea that the
segments have more extensive knowledge than the headquarters about which profit margins can be
generated by signing additional business of the same kind due to their direct negotiations with their
business partners.

Since the segment managers have only partial information available, it is generally unlikely that

they will be able to achieve the optimal portfolios directly in advance. In theory, the search for



the optimal portfolio could be intermediated by a Walrasian auctioneer who sets and adjusts risk
prices until an equilibrium is obtained. Nevertheless, we pursue the approach of economic capital
allocation, which is by far more common in financial institutions due to its straightforwardness in

terms of implementation.

At each instant of time s, the headquarters calculates the future return rgf ’gh)
company-wide risk of the current portfolio u® and allocates each segment its per-unit risk contribution
(s,h
a
k

and the corresponding

), Afterwards, each segment’s manager can control the kth amount of business by setting up a

new value of uzﬂ. The main input he or she has available at time s are the per-unit risk contribution

a,(j’h), the company-wide return rg}i ’;) (u®) as communicated by the headquarters, and the segment’s
expected profits for the future periods E(Y T (us™h) | F#), ... E(Y(uiTh) | F*) for uit! in some
p p p k 3 E \Ug k
+1

neighborhood of uf. It is now desirable to control the next portfolio u*
performance judged by the criterion rgf’gh)
Within the general framework, there are many possible control strategies, which can be used to

in such a way that the

becomes as large as possible.

search the optimal portfolio, depending inter alia on the profit process Y* and the specification of
the return function. Without further assumptions, it is clear that the convergence to the optimal

portfolio of a strategy cannot be guaranteed, as the optimal return may change arbitrarily.

3. RORAC optimization using gradient allocation in a stationary setting

In this section we first specify the general model and show that gradient allocation can be linked to
the search for the optimal portfolio. Finally we derive a converging control strategy and incorporate

risk limits.

3.1. Model specification

We commence specifying the model with a restriction of the profit process:
Assumption 3.1. The profit process (Y'(u))i=1,2,.. is strictly stationary for each u € U.

Notice that due to the stationarity of (Y*(u));=1,2,., the company-wide expected profit M (u) :=
E(Y*(u) | F*) and each segment’s expected profit My (ug) := E(Y{(uy) | F*) become independent of

the time ¢ and the information set F*, s < t. Therefore, we drop the time index on these terms. By
the same token, when specifying the return function r;’ph)
of a single period only. Moreover, the stationarity condition of the profit process also motivates

, it suffices to consider the expected profit

using a one-period risk measure.

Assumption 3.2. There exists a coherent one-period risk measure p such that p(Yt!(u)) =
o(Y'(u)t=st1,...n)-



Notice that p(Y**!(u)) is also time-independent. Therefore, we drop the time index in the following
and define py (u) := p(Y**1(u)). Next, we specify the return function by using the return on risk
adjusted capital (RORAC) linking the yield and the risk dimension of the firm.

Assumption 3.3. The return function ry,, : U — R is defined as ry,, : u IE((;,/((Z))))

The RORAC represents the ratio of the expected profit margin due to business to the extent
given by u and the economic capital due to the corresponding risk of the portfolio u. Furthermore,
we have to specify a capital allocation rule according to Definition 2.1. Using RORAC as the return
function, it is illustrated below in Subsection 3.2 that it is natural to employ gradient allocation,

sometimes also called Euler allocation, which is defined as follows.

Definition 3.1. Let X (u) be an integrable random variable on (2, F,P) depending on the portfolio .
Let Px , be defined as a set of tuples (X, u), with p(X(u)) being homogeneous and differentiable in
uw € U. The mapping AS : Px,, — R™ defined as

AL (X, u) = u * Vp(X (u))

is called the gradient allocation principle associated with p. Here, x denotes the Hadamard or

component-wise product. Thus, A%(X, u) is a vector.

Notice that as gradient allocation is well-defined for homogeneous functions only, we first need to
further restrict the process (Y*(u))¢=12,.. by splitting it up into the (deterministic) expected profit

and a homogeneous risk-bearing part.

Assumption 3.4. The (random) function X} (ux) = Y (ug) — My(ug) is homogeneous with respect
toug forallk=1,...,nand allt =1,2,....

We call X!(u) := > 7_; Xi(ug) the profit fluctuation of portfolio u. Notice that due to the
stationarity of the profit process, the risk px(u) := p(X*(u)) is independent of the time . Using
gradient allocation, we can only allocate the risk capital of the profit fluctuations px(u) instead
of the total risk capital py (u). However, due to the translation invariance of p we have py (u) =
px(u) — M(u). Thus, an allocation of the profits A?(Y,u) can be naturally constructed as the
expected profits My (uy) bear no risk:

Assumption 3.5. The allocation principle of the firm is defined as
(Y,u) — AL (X, u) — M (u),

where M (u) := (M (uy), ..., My(u,)).



Notice that Assumptions 3.4 and 3.5 imply that at the headquarters level, only the risk of the
profit fluctuations is distributed among the segments. That is, the segments receive their per-unit
risk contribution related to their fraction of the profit fluctuation X*. Once these contributions are
calculated, the actual required and allocated economic capital is determined by subtracting each

segment’s expected profit.

8.2. Linking gradient allocation and the control problem

In this subsection, we link the concept of gradient capital allocation to the control problem of

maximizing the return. Notice that the RORAC can be written as

mvelt) = ) px ) — Mw)

Given the notion of a per-unit risk contribution of the profit fluctuation ay(u) := (A% (X, w)), /uk
one can define the marginal RORAC of segment k.

Definition 3.2. Let M be partially differentiable in U. The function ry,,(ug |u) : U — R defined as

OM (u) /
D Mk(uk)
, u w) :u =
v,p(uk | w) } ax (u) — Bla\/lT(ku) ap(uw) — Mj (ug)

is called marginal RORAC of segment k given portfolio u associated with Y and p.

This ratio expresses the expected additional profits in relation to the additional risk capital for
the additional business. It is natural to postulate that a suitable allocation principle should state
that a business extension is useful for every segment k& whenever its marginal RORAC is higher than
the present RORAC. Based on this idea we follow Tasche (2008) and define the notion of RORAC

compatibility of an allocation principle.
Definition 3.3. An allocation principle AP is called RORAC compatible if there holds:

1. For all portfolios w € U and k =1,...,n there is some €, > 0 such that

ryp(uk|u) > 1y ,(u) = ry,(u+Teg) > ry,(u)

holds for all 0 < T < €, where ey denotes the kth unit vector.

2. For all portfolios uw € U and k =1,...,n there is some e > 0 such that

ryp(ur|u) <ryp(u) = ry,(u—Ter) > ry,(u)

holds for all 0 < T < €, where e} denotes the kth unit vector.



The following theorem, which has been proven for linear profit functions in Tasche (2004), links

the concepts of RORAC compatibility to the gradient allocation principle:

Theorem 3.4. Let px : U — R be partially differentiable in U with continuous derivatives. Then
AP is RORAC compatible if and only if AP(Y,u) = AG(X,u) — M (u).

Note that Theorem 3.4 can be considered as an additional justification for the gradient allocation
principle in the form of Assumption 3.5. Since firms strive to maximize their return as stated above,
the next lemma provides sufficient conditions to ensure that the RORAC ry,, has a finite global

maximum.

Lemma 3.5. Let U C ]Rgo be a closed convex set. Assume that there holds:
(a) The expected profit function M is differentiable, positive, and concave on U.
(b) The risk function px is differentiable and positive on U.
(¢) For allk =1,...,n there holds limy, o M} (uy) = 0.

Then, the RORAC ry,, either attains its global maximum in the interior of U where Vry,, =0, or

on some boundary point of U.

While the adherence to conditions (a) and (b) of Lemma 3.5 is straightforward in an economic
context, it is advisable to briefly discuss condition (c). This assumption corresponds to the decreasing
profitability of additional business of the same nature. Moreover, we assume that the marginal
profits will eventually converge to zero. We regard this assumption as uncritical from a theoretical
viewpoint as we assume an incomplete market, i.e., we implicitly assume that X (u) cannot be traded
on the capital market at a unique price. Such behavior also depicts the fact that one has to offer

better conditions when expanding into a market, which is becoming increasingly satiated.

3.3. Second-order condition

Definition 3.3 merely states that if a segment’s marginal RORAC exceeds the firm’s RORAC,
then there is an ¢ such that the expansion by € units increases the firm’s RORAC, i.e., that
ry,p(u + €xer) > ry,p(u), but provides no conditions on the size of €. In fact, this can lead to
over-expanding a section’s business and hence to a decline of the firm’s RORAC, as the example in

Section 4 demonstrates. The following theorem ensures that ceteris paribus a change of the portfolio
cannot reduce the firm’s RORAC.

Theorem 3.6. Let H(u) = [%} be the Hessian of px(u). Assume that ||H (u)|| is bounded on
a convez set U CRY. Let A > maxyey Amax(H (u)) be an upper bound for the largest eigenvalue of



H(u). IfucU,u+eeclU, M(u)>0,ry,(u) >0, and if for all k =1,...,n there holds

Ty p.A(€r | 1) > 1y p(u), (1)
where My ) M)
k(ug + €g) — Mg (ug
rypa(er [ u) == , (2)
r ekak(u) + %E%A — (Mk(uk + Gk) - Mk(uk))
with strict inequality in (1) given for at least one k =1,... n, then there also holds

ry,p(u +€) > ry,(u). (3)

There are two differences concerning equation (1) when compared to the requirement of Defini-

tion 3.3 which are worth mentioning. Notice that an expansion of the marginal RORAC yields

e M (ug)
epar(u) — e M} (uy)

ryp(ug | u) = (4)
The first change of equation (2) as compared to equation (4) concerns the valuation of the additional
expected profit generated by segment k by an expansion of €. While in equation (4) the additional
expected profit is estimated with the first-order approximation e;Mj (u), equation (2) uses the
actual increase of the expected profit My (ux + €;) — My(ug). The second change consists of the
additional term of %e%/\ in equation (1). Notice that this term is quadratic on e;. While it disappears
for small values of ¢, it decreases the marginal RORAC with the size of the expansion.
Returning to the aim of maximizing the firm’s RORAC, Theorem 3.6 gives rise to the following

control strategy:
Control Strategy 3.7. Let o € (0,0.5].

1. For each k =1,...,n check if

TY,p(“i:_l ‘ “til) 7”Y,p(util) :

AV

a) If “=7 holds, set €} = 0.

b) If “>” holds, calculate e’,;’max = max e}, > 0 such that

TY,p,A(elltc |Ut_1) > 7"Y,p(ut_l) (5)

is fulfilled and uf ' + 62’max € U. Choose €, € [aez’max, (1- oz)e';;’max].

10



c) If “<” holds, calculate e}émin = mine, <0 such that
"y, (€ |u' ™) = ryp(u' ) (6)
is fulfilled and ul ' + €hmin € U+ Choose ¢, € [(1 — a)ef, i, @€l il

2. Set ut = ut~1 4 €.

It is noteworthy to show that this strategy guarantees convergence to the optimal RORAC, which

is carried out in the following corollary.

Corollary 3.8. Assume that the conditions (a)-(c) of Lemma 3.5 apply and u°P' := arg max,ecy ry,p(u)
lies in the interior of the conver set U C RY,. Then the sequential application of Control Strategy 3.7
leads to the optimal RORAC, i.e., lim;_ oo ut = uPt.

8.4. Risk limiting

The application of Control Strategy 3.7 implicitly assumes that the available economic capital of
the firm is unlimited. In fact, however, a natural limit for the economic capital is given by the
amount of equity in each period. Therefore, we extend the strategy by including risk limits. Let
Pt denote the maximal risk capital available for period (t — 1,t). First, we have to allocate the
maximal risk capital pl . to the individual segments such that > }_, pfnax’k, = plax- While there

are many possible rules for such a decomposition, we precisely propose the following:

ot _ AP(Y,ut™h) o ub g () — M (ub ) L
max,k py(util) max PX(Util) — M(utfl) max>

which implies that the maximal risk capital is allocated to the segments relatively to the portion of
the overall risk capital currently used.
The following theorem places restrictions on the individual values of €, in the control strategy to

ensure that the risk limit p . is maintained in the period (t — 1,t).

Theorem 3.9. If for all k =1,...,n there holds
up tag(u' ™) + ehar(u' ™) + 5(6)A < P + Mi(up), (7)

where uz = uz_l + 62,, then there also holds

py (u) = px (u') = M(u') < plyay.

Extending Control Strategy 3.7 to include such risk limits is straightforward. Equation (7) is

11



quadratic in €} and provides an additional bound for the maximal size e?max of an extension or
reduction of a segment’s business in steps 1(b) and 1(c) of Control Strategy 3.7.

Notice that for each single period the maximal risk capital is constant since it is governed by the
amount of equity. However, this amount can in principle be adjusted by issuing or repurchasing
shares. It is a task for the firm’s headquarters to expand or reduce equity in the long run in such a

way that the risk limit eventually nears the overall economic capital.

4. Numerical example

Consider a firm with two risky segments. Let the profit process of the firm be represented by

Yi(u) = p(u) + A(w)W*,

where
1 : 0
ploy = [T D) g A = |
log(uz + 3) 0.5us 0.866us
are constant, and W' is Gaussian 2-dimensional white noise for all t = 1,2, .... Notice that as u(u)

and A(u) are time-independent, the process (Y!(u))i=12,.. is strictly stationary. It is easy to verify
that

Mi(w) = pi(u),
M(u2) = p2(u2),
Xi(u1) ~ N(0,uf) iid,
Xo(ug) ~ N(0,u3) iid,
Corr(Xp,X2) = 0.5.

Moreover, let the risk measure p be the Value-at-Risk (VaR) at the 99.97% level .2

4.1. First-order approach

We first show that a traditional marginal RORAC expansion or reduction strategy without using
the insights of Theorem 3.6 can hinder the firm from being controlled optimally. Let the portfolio
be (u},ud) = (1.5,1.7) in the first period. Therewith,

px(u) = 343,/ (ul)? + 2Corr(X}, X3)ulul + (u})? = 9.2100.

2Note that the VaR is generally not a coherent risk measure since it fails to meet the sub-additivity property (see e.g.
Tasche, 2002). However, when restricted to the multinormal distribution it is in fact sub-additive (Artzner et al.,
1999).

12



The per-unit risk contributions of the profit fluctuation are then

ay(ut) = Opx (u) (u') =2.9067 and as(u') = 8%X(u)
U2

1
= 3.0304.
Dy (u”)

The RORAC for the present portfolio is
ryp(ut) = 18.451%.
Marginal RORAC analysis according to Definition 3.2 leads to
ryp(ut |u') = 20.775% and 1y, (uj |ut) = 17.647%.

We assume that the firm follows a marginal RORAC expansion or reduction strategy, respectively,
i.e., that segments whose marginal RORAC exceeds the firm’s overall RORAC will expand, while
segments whose marginal RORAC falls below the firm’s RORAC will reduce their business. Therefore,
segment 1 would expand and segment 2 would reduce. However, they do not know to which extent.

We assume an extension and reduction, respectively, to the new values (u?,u3) = (1.85,1.55).
The new RORAC is now

ry p(u?) = 18.410%

and thus has decreased slightly despite the intention for it being to increase. In fact the real optimum
of ry,,(u%P) = 18.508% at (uP', ug”") = (1.6555,1.6555) has been missed, as Figure 1(a) displays.

Now since the functions My are known to the segments one could consider a more sophisticated
approach analogously to the first remark after Theorem 3.6 and replace the first-order approximation
of the additional expected profit eZHM 4 (ut) with the actual additional expected profit My (u}, +
ety — My(ul) both in the numerator and denominator of equation (4). In fact the values above of

the new (u?,u3) were chosen in such a way that the expected profit-corrected marginal RORAC

My (uj, + ;") — My (uf)
t+1 t t t+1 t
e agp(ut) — (Mg(up, +€,7) — My (uy,))

ri{’;(efjl |ut) =
of the extension was still higher than the original RORAC (segment 1: 18.834%) and the expected
profit-corrected marginal RORAC of the reduction was still lower than the original RORAC
(segment 2: 18.393%).
In the next period, the per-unit risk contributions become
9p% (u)

2
a1 (u?) = apai(lw (u?) = 3.0539 and as(u?) = T@(ﬁ) — 2.8794,
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(a) Sequence of portfolios generated by a first-order
marginal RORAC strategy. The boxes indicate the
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(b) Sequence of portfolios generated by Control
Strategy 3.7. The boxes indicate the feasible regions

feasible regions where r‘;{’;(e}; [u'™) > ryp(uf™h).
Notice that it is possible for a firm to swap between

portfolios 1 and 2 all the time.

according to equations (5) and (6). The sequence
of portfolios converges to u°P®.

Figure 1: Contour plots of the return function ry , as defined in Section 4 with different control
strategies.

and the marginal RORACs are
ry p(uf|u?) = 16.190% and 7y ,(ui |u?) = 20.397%.

This time, segment 1 would decline and segment 2 would expand. In fact, the new portfolio for

period 3 could be (uf,u3) = (1.5,1.7), where we started in period 1. Again, in this case the
expected profit-corrected marginal RORAC of the reduction was still lower than the RORAC
(segment 1: 17.769%) and the expected profit-corrected marginal RORAC of the extension was still
higher than the RORAC (segment 2: 19.546%).

Therefore, this example proves that a control strategy proceeding in the way described above
does not necessarily lead the firm to the optimum even under the assumption of a stationary profit

function.
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4.2. Second-order approach
In order to implement Control Strategy 3.7, we first have to constrain the feasible region. Let
U = {(u1,u2) : up > 1,us > 1}. Since the eigenvalues of the Hessian H (u) of px(u) are
)\1 =0 )
Ao = 25725((un)? + (u2)?)/ ((u1)® + (us)® + ugug)®?,
we can use the upper bound A = H(1,1) = 0.99016.

Starting again at (ui,ud) = (1.5,1.7), we choose €}, = 0.5627max or ef = 0'56,2;,min? respectively, for

each k = 1,2 at each time. In the first period, equations (5) and (6) yield

2 =0.24505 and €2 .. = —0.09530.

€1, max €2, min
Thus, we can calculate
ut = ul + %ﬁ%max =1.6225 and w3 =ud + %E%mm = 1.6523.
The new RORAC becomes 1"32/7 p(uz) = 18.506%. For the next period, the maximum step sizes become

3 —0.04645 and

6l,max

= —0.00363,

3
62,min
which leads to new values of

ud = ut + %e‘;’,max = 1.6457 and w3 = w3+ %6§,min = 1.6505,

and to a RORAC of ri)’/’p(u?’) = 18.508%. Figure 1(b) displays the progress of the portfolios u! for
t=1,2,3.

5. Practical aspects

In this section we will discuss several issues that are of importance when putting the concepts
of Section 3 into practice. Our paper focuses on financial firms and thereby comprises banks and
insurance companies. The following remarks are mainly valid for both types of firms, however, with

a certain emphasis on banks.

1. For practical applications it is realistic to use the sequential one-period model instead of the
general approach of Section 2. It represents the status quo in financial firms, being that there
is a RORAC to be optimized in each period, as banks tend to drive their business by sight

in order to prevent misjudgments caused by model errors. However, as Artzner et al. (2007)
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point out, the future beyond the current period can be accounted for by considering market
prices, or where these are missing, fair values of the assets when calculating the expected

profit and profit fluctuation.

. The risk measure p is in practice often chosen to be the Value-at-Risk (VaR). The economic
rationale behind this is that lodging economic capital of at least VaR_,, yields a probability of
default of at most «. Hence a firm can control its probability of default and therefore its rating.
However, as already mentioned above, it is a well-known fact that the VaR is not sub-additive.
Nevertheless, there are many possible distributions besides the normal distribution for which
the VaR is sub-additive at least in the tail region (see Danielsson et al., 2010), which is the
relevant case in the economic capital context, where the threshold o will generally be chosen

at a very low level.

. Many authors focus on the risk adjusted return on capital (RAROC), see e.g. Hallerbach
(2004), or the risk adjusted return on risk adjusted capital (RARORAC) instead of on the
RORAC. While in some cases this is simply another name for the same concept, there are
other cases where indeed the interest rate on the economic capital is added or the product of
the capital costs and the economic capital is subtracted in the numerator. In any case, such
conceptualizations are essentially just an additive translation of the objective function focused

upon here. Thus, our considerations also remain valid for these return functions.

. From an economic viewpoint the restriction of assuming X to be linear with respect to u
literally means that we assume perfectly dependent business within each segment. For many
segments, like for instance a portfolio of various single loans, this restriction may appear to
be unrealistic. However, in credit risk modeling the risk of a segment indeed scales (almost)
linearly with the number of units held in well-diversified segments for many distributional
assumptions (see McNeil et al., 2005, Sec. 8.4.3). Therefore, this restriction can be assumed
to hold unless Xj(ug) is scaled down to values of uy close to zero. For many applications,

especially credit risk modeling, the latter assumption appears to be noncritical.

. When implementing risk limits, it is necessary to monitor the compliance with risk limits
preferably on a daily basis. If a segment’s loss exceeds its allocated risk limit pfnax’k, there

need to be safeguard procedures to be invoked immediately.

. In practice, as the overall risk limit pf . depends on the available equity, it also depends on
realized profits of the previous periods. Therefore, in the case of losses, the risk limit of the
next period will decrease unless the firm is able to raise additional equity. Vice versa, retained

profits yield an increase of the risk limits.
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7.

10.

The assumption of stationarity in Section 3 sounds quite restricted. However, notice that in
the end this restriction is only required for the risk limits and for the proof of the convergence
of the control strategy. It is clear that convergence of any strategy cannot be guaranteed in
an arbitrary non-stationary setting, as in such a setting the optimal return may also change
arbitrarily. Nevertheless, if the change in the profit Y is slow relative to the convergence of

the control strategy, the Control Strategy 3.7 still traces the moving optimal return.

. Although not considered explicitly in our notation, it is clear that it allows for updates of the

profit process and of the risk function. Correlation and risk regimes may change. Such changes
could be included in the profit process itself. In practice, however, the model will be updated
from time to time ad hoc by replacing the current process by a new one that suits empirical
data and new insights more appropriately. Such an update is also necessary if a new line of
business is established. It appears realistic that updates take place before the control strategy
has led the firm to the optimal RORAC. Therefore in most cases the firm will never actually

reach the optimum, even if it permanently is en route to it.

. A limitation of the approach’s implementation is the fact that in a gradient allocation framework

there may be spillover effects of one’s segment’s actions to the other segments. Although this
phenomenon could be interpreted as a kind of competitive setting, since the improvement in
one segment implies a higher benchmark for the other ones, this effect, which is present all
the time, can hamper the acceptance and viability of such a regime. Therefore, in practical
applications the integration of the entire risks of different organizational divisions needs to be

uncoupled to a certain extent.

Finally, it is helpful to put our approach into perspective to the financial crisis of 2007-10. In
this light, a concern regarding one-period models generally lies in their myopic risk governance.
In principle, a long-term perception of risks would have been appropriate without doubt.
However, even the myopic approach presented here may possibly have helped to prevent large
risk concentration in banks, e.g. by entering large quantities of CDO tranches on the asset
side of the balance sheets, because it would have set higher requirements for the yields of
the signed contracts due to the second-order correction term and the implementation of risk

limits.

6. Summary and Conclusion

This paper contributes to the literature on risk capital allocation by considering conditions that

are required for capital allocation to be a useful tool for obtaining the optimal value of a return

function of a decentralized financial firm. We regard the maximization problem as a managerial
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control problem and embed it into a general systems framework. Contrary to the majority of the
relevant literature, we do not restrict ourselves to considering a one-period model but rather employ
a discrete multi-period model. However, we derive significant results only in a specification with a
stationary profit process and a one-period return function, which is of the RORAC type.

Our results are as follows: In a classical capital allocation-based RORAC framework the headquar-
ters calculates the firm’s overall risk according to its risk model once every period. Simultaneously,
the headquarters also determines the overall RORAC and each segment’s per-unit risk contribution.
Therewith each segment can decide individually whether an additional business is profitable by
calculating the marginal RORAC of the business. Yet, traditional capital allocation with the gradient
approach in the marginal RORAC framework linearizes the embedded risk function, which can lead
to over-expansions and over-reductions of businesses and may even yield a reduction of the overall
RORAC.

The approach suggested by Theorem 3.6 is similar. However, instead of using the linear approx-
imation of the risk function for the calculation of the marginal RORAC, the risk is adjusted by
the additional quadratic risk correction term (RCT). This requires additional business to be more
profitable than in the naive capital allocation procedure. The size of this effect grows along with the
expansion, implying de facto limits for every segment’s expansion or reduction at every period. Now,
instead of venturing into all business whose marginal RORAC exceeds the overall RORAC, only
those businesses are undertaken whose marginal RORAC with RCT exceeds the overall RORAC to
prevent the overall RORAC from decreasing. Based on these results we develop a control strategy
that enables each segment to decide on expansions or reductions once a period. We can show that
the strategy does indeed lead to the optimal RORAC.

Finally, we also address risk limiting in a static form by the headquarters, which imposes additional
bounds on the expansion or reduction the segments may perform.

In the future, and as a consequence of the financial crisis of 2007-10, it seems desirable to overcome
one-periodic modeling. However, any type of consideration of a hyperopic optimal strategy requires
a specification of the multi-period risk measure g, the general return function and the non-stationary
process (Y!);~o. It remains a big but promising challenge for further research to proceed in this

direction.

A. Proofs
Proof of Theorem 3.4. Sufficiency: We have

ory,p(u)
Ouy,

Opx (u) ) '

— (px(w) = Muw)) ™ (px (M) = M(w) P
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If ag(u) = 90x (W) then px (W) M (ug) > M(u)ax(u) implies that

ouy,

px (u) My (ug) — M (u)ag(u) > 0.

Equation (9) in conjunction with equation (8) implies that

Ory,p(u)

>0.
ouy,

Hence, there is an € > 0 such that for all 7 € (0,¢) we have

T‘y7p(u) < T‘y’p(u + Tek).

Analogously (by replacing “>” through “<”), part 2. in Definition 3.3 is proven.

Necessity: The proof of the necessity follows the steps of Tasche (2004) exactly with M (u) =

m'u.

O]

Proof of Lemma 3.5. Clearly, ry,, is pseudoconcave, as its numerator is concave and its denominator

is convex. Therefore, each local maximum of ry,, is also a global maximum on U (Cambini and

Martein, 2009). Since ry,, is defined on the convex set U, we have to consider two cases:

Case 1: U is compact. In this case, ry,, either attains its global maximum in the interior of U where

Vry,, = 0, or on some boundary point of U.
Case 2: U is not compact. Note that since

ory,p(u)

3 = My, (ui) (px (u) — My (ug)) ™"
ug,

- ) (25— ag ) ) (o () = M)

Uk

and by assumption (c)

Mi(ug) (2558 — My (ur) ) (px () — My (u)) =

My (ug)(px (u) — My (ug)) !

for uy sufficiently large, we have
Iry,p(u)

<0
ouy,

for uy, sufficiently large. Therefore, the return ry,, is reduced when increasing wy, if uy is

sufficiently large. Hence, we can safely ignore all portfolios exceeding a certain u; and thus

fall back upon Case 1.

19

O]



Proof of Theorem 3.6. Equation (1) is equivalent® to

Opx (u
Mk(uk + ek)px(u) — Mk(uk)px(u) — M(u)ek pa);i ) — % ,%M(’U,)A >0
Summing up over all k =1,...,n, we derive
M (u+ €)px (u) — M(u)px (u) — M(u)e'Vpx(u) — M (u)e'eA > 0, (10)

since M (u) = >-p_; Mi(ug). Clearly, as px is convex, H is positive definite and therefore A > 0.

€ H(v)e
7, the

Moreover, since by the Rayleigh-Ritz-Theorem (Horn and Johnson, 1990) A > max.o
inequality
IM(u)e'eA > LM (u)e'H(v)e

holds for all v € U. Therefore, equation (10) yields
M (u+ €)px (u) = M(u)px (u) = M(u)e'Vpx (u) — 3M(u)e' H(v)e > 0,

which is equivalent? to

M(u+ ¢) - M (u) .
px(u) +€Vpx(u) + 3¢ H(w)e— M(u+e) ~ px(u) — M(u)

(11)

Note that according to the Mean Value Theorem (Nocedal and Wright, 2006) there is some
v* € [u,u+ €] such that px(u+e) = px (u) + €' Vpx (u) + ¢/ H(v*)e. Letting v = v* in equation (11)
yields ry,,(u + €) > ry,(u). O

Proof of Corollary 3.8. We refer to the Convergence Theorem A from Zangwill (1969) to show that
a sequential application of Control Strategy 3.7 leads to the optimum. Clearly, the portfolio remains
constant at critical points of ry ,(u). Since ry,, is pseudoconcave, each critical point is a global

maximum (Cambini and Martein, 2009). Hence it suffices to show:

1. Compactness: By assumption (c) of Lemma 3.5, ¢, < 0 for wuy sufficiently large, since the

sign of ¢, follows the sign of arg&ifu) (cf. proof of Theorem 3.4). Therefore, to show that the

sequence of portfolios generated by Control Strategy 3.7 is bounded, we only need to show

*Notice that the denominator of the LHS of equation (1) must be positive: If it were negative, the numerator would
also have to be negative because the whole LHS needs to be positive since ry,,(u) > 0. However, if the numerator
of the LHS is negative, the denominator of the LHS is clearly positive, which is a contradiction.

1A similar argument to that in the footnote above shows that the denominator of the LHS of equation (11) has to be
positive.

20



that e is bounded if Irvo® - 0 Due to the concavity of M (u), there holds

Ouy,

Mk(uk + Ek) — Mk(uk) < EkM;;(uk)

Therefore, equation (1) yields

My, (uk)
ak(u) + %Ek/\ — M,;(uk

) Z erP ('LL) .

Clearly, the right hand side is bounded from below, since the strategy creates an increasing
sequence of return function values, and ry,,(u') > 0 as M (u') > 0. On the other hand, M} (us)

is bounded from above, and therefore € is bounded from above.
2. Adaption: Follows directly from the proposition of Theorem 3.6.

3. Closedness: Holds since ¢, is chosen from a closed set.

Proof of Theorem 3.9. Summing up over all k = 1,...,n, equation (7) yields
o (W) () Ve (u1) + H(e) e A < plyn + M (1),
Since 3 (')’ H(v)e! < 3(e')'e'A for all v € U, there holds
px (W) + () Vpx (u ™) + LY HW)e < plo + M(u)
for all v € U. By the Mean Value Theorem (Nocedal and Wright, 2006), the latter equation yields
px (U 4 €) < ploas + M(uh).

Noting that u! = u'~! + €’ yields the assertion. O
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