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Introduction

The Membership Problem for quadratic modules

For a subset Q ⊆ K[X] = K[X1, ..., Xn] of the polynomial ring over a field K in the
indeterminates X1, ..., Xn the Membership Problem asks the following:

Is there an algorithm to decide whether a given polynomial f ∈ K[X] lies in Q?

This means that the Membership Problem asks for a computational procedure which
on input the coefficient vector of f stops after finitely many steps with output YES
if f ∈ Q and output NO if f 6∈ Q.

If Q is an ideal then the Membership Problem was solved affirmatively by Grete
Hermann [He] in 1926 and algorithms for this problem, which are mainly based on
the theory of Gröbner bases, are widely studied (see e.g. [C-L-S]).

When working over real closed fields R, which are fields sharing the algebraic prop-
erties of the field of real numbers, it is not enough to study polynomial equalities.
Instead, polynomial inequalities are of central importance in real algebraic geome-
try. Thus in real algebraic geometry varieties, the fundamental geometric objects
of classical algebraic geometry, are replaced by semialgebraic sets which are the so-
lution sets of polynomial inequalities. If G = {g1, ..., gs} ⊆ R[X] is finite then the
set

S(G) := {x ∈ Rn | gi(x) ≥ 0 (1 ≤ i ≤ s)}

is called the basic closed semialgebraic set generated by G. For the set

P(S(G)) := {f ∈ R[X] | f |S(G) ≥ 0}

the Membership Problem is solvable in the affirmative due to a groundbreaking
result of Tarski [T].

Tarski proved that the theory of real closed fields in the first order language of
ordered rings L = {+,−, ·, 0, 1, <} is decidable. This means for the real closed field
R, provided R is given in some explicitly computable manner, there is an algorithm
which on input a sentence Φ in the language of ordered rings decides the truth or
falsity of Φ. A sentence Φ being an expression that is built up using the operations
+,−, ·, the relations =, < and the boolean connectives as well as quantifiers over
variables which range over the elements of R.

Therefore one way of giving a positive answer to the Membership Problem for a
set Q ⊆ R[X] is to prove that Q is definable. This is a new notion introduced
in this thesis to express that for any general polynomial f(X, Y ) ∈ Z[X, Y ] there
is an L-formula ϕ(Y ) such that a coefficient vector c ∈ RY fulfills f(X, c) ∈ Q
if and only if ϕ(c) is true. Being definable is for Q ⊆ R[X] equivalent to being
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weakly semialgebraic, which was introduced by Knebusch in [K1] and means that
the intersection of Q with every finite dimensional subspace of R[X] is semialgebraic.

The set P(S(G)) for some finite G ⊆ R[X] is a particular example of a weakly
semialgebraic subset of R[X]. Thus Tarski’s result provides an explicit algorithm
for deciding whether a polynomial f lies in P(S(G)), i.e. whether f is nonnegative
on the basic closed semialgebraic set S(G). However Tarski’s algorithm is intractable
for problems with a large number of variables since the complexity for any general
decision procedure for the theory of real closed fields is at least doubly exponential
in the number of variables (see [D-H]).

One possibility to overcome this complexity drawback of Tarski’s method, which
is theoretically so powerful, is to approximate P(S(G)) by a set which consists of
polynomials that are nonnegative on S(G) and whose nonnegativity is witnessed by
the fact that they can be written in the following form:

QM(G) := {σ0 + σ1g1 + ...+ σsgs | σi ∈
∑

R[X]2 (0 ≤ i ≤ s)}

where
∑
R[X]2 denotes the set of all finite sums of squares of polynomials.

If f ∈ QM(G) then we say that f possesses a certificate for nonnegativity on S(G).
The set Q = QM(G) is not just an arbitrary subset of R[X], it is a subset containing
1, being closed under addition and under multiplication with squares of polynomi-
als. A subset with these properties is called a quadratic module and plays a very
important role in real algebraic geometry. In fact Q belongs to the class of finitely
generated quadratic modules which are exactly those quadratic modules of the form
QM(G) with associated semialgebraic set S(G) for some finite G ⊆ R[X].
The set P(S(G)) is also a particular quadratic module, namely a multiplicatively
closed quadratic module. Quadratic modules with this property are called preorder-
ings. Similar to the way that ideals correspond to varieties in algebraic geometry,
preorderings correspond to semialgebraic sets in real algebraic geometry. However
quadratic modules and preorderings are much harder to study than ideals because
they tend not to be finitely generated.

The reason that makes the finitely generated quadratic module Q = QM(G) in view
of computational aspects more attractive than P(S(G)) is that testing membership
in Q can be done in polynomial time if Q is stable. Stability means that the degree of
the sums of squares used in the representation of an element f of Q can be bounded
by a number which depends only on the degree of f . In this case the Membership
Problem for Q translates into a semidefinite programming problem which can be
solved in polynomial time by using interior point methods (see [N-N]).

Up to now we have seen two classes of finitely generated quadratic modules of R[X]
for which the Membership Problem is solvable affirmatively. The first consists of
the saturated preorderings, which are equal to P(S(G)) for some finite G ⊆ R[X],
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and the second consists of the stable quadratic modules.

Examples of not finitely generated quadratic modules for which there is a positive
answer to the Membership Problem are the orderings of R[X]. This is due to the
Marker-Steinhorn theorem ([M-S] Theorem 2.1) which says that all orderings of
R[X] are weakly semialgebraic.

Motivation

The Membership Problem for quadratic modules is in itself from a theoretical view-
point an interesting problem. Its solution however is also of interest for applied
mathematics as many problems can be formulated using just polynomial inequali-
ties. As indicated above one way to overcome the drawback of Tarski’s algorithm as
regards complexity is to approximate the solution to such problems by using certifi-
cates for nonnegativity expressed as the membership in certain quadratic modules.
We illustrate this approach with the optimization algorithm of Lasserre [L]. The
optimization problem in consideration is the minimization of a polynomial f over a
nonempty compact basic closed semialgebraic set S(G). Equivalently one can com-
pute the largest real number a such that f−a is nonnegative on S(G). The key idea
is now to replace the nonnegativity of f − a on S(G) by the algebraic nonnegativity
certificate f − a ∈ QM(G). By successively increasing the degree of the sums of
squares used for representations of elements of QM(G) Lasserre obtains a sequence
of semidefinite programs of increasing size. The convergence of the solutions of these
semidefinite programs to the solution of the original optimization problem is given
by a theorem of Putinar about positivity of polynomials ([Pu] Lemma 4.1).

Aim of this work and main results

The aim of this work is to investigate the Membership Problem for quadratic mod-
ules of the ring of polynomials over a real closed field.

For the case of finitely generated quadratic modules of R[X1] we succeed and solve
the Membership Problem affirmatively (Theorem 2.20). The proof of this also shows
that the definability of a finitely generated quadratic module is not equivalent to
stability.

Furthermore we obtain a positive solution of the Membership Problem for finitely
generated quadratic modules not just in R[X1] but in R[X1] where R is an arbitrary
real closed field if the associated semialgebraic set is finite (Theorem 2.37).

We mention that our proof of these two results essentially uses that the quadratic
modules are finitely generated and can not be extended to the not finitely generated
case.

Another important part of the thesis is the generalization of the model theoretic

3



concept of heirs which plays an important role in the solution of the Membership
Problem for orderings. We define the heir of an arbitrary subset Q of R[X] on a
real closed field R′ ⊇ R as a certain subset of R′[X] such that the definability of Q
becomes equivalent to the existence of a unique heir on every real closed extension
field of R. This is a main tool for a possible affirmative answer to the Membership
Problem. For finitely generated quadratic modules QM(G) ⊆ R[X1] with nonempty
bounded S(G) we explicitly compute the heirs on R ⊇ R (Theorem 3.11).

Outline of this thesis

In Chapter 1 we introduce the notion of being definable or equivalently of being
weakly semialgebraic which is fundamental for our approach to solve the Member-
ship Problem. Then we describe why finitely generated saturated preorderings and
finitely generated stable quadratic modules are weakly semialgebraic. For a stable
quadratic module Q we give a description of an algorithm based on semidefinite
programming which decides membership in Q and goes back to a work of Powers
and Wörmann [P-W].

The key result for the positive solution of the Membership Problem for a finitely
generated quadratic module Q in R[X1] in Section 2.1 is the explicit description of
the membership in Q in the case that the associated semialgebraic set is bounded.
We obtain this by first characterizing the finitely generated quadratic modules in
the formal power series ring R[[X1 − a]] for a ∈ R and then using a local-global
principle due to Scheiderer. From our description of the finitely generated quadratic
modules in the formal power series rings we furthermore derive, by again using the
local-global principle, that every finitely generated quadratic module of R[X1] whose
associated semialgebraic set is bounded is, in fact, a preordering. At the end of Sec-
tion 2.1 we characterize when a finitely generated quadratic module Q ⊆ R[X1]
whose associated semialgebraic set is bounded can be generated by just one polyno-
mial and describe an algorithm that produces in general at most three generators of
Q. Furthermore we show that a finitely generated quadratic module of R[X1] with
nonempty bounded semialgebraic set S is completely determined by two vectors:
one which encodes the boundary points of S and one which encodes order condi-
tions attached to these points.
In Section 2.2 we prove a local-global principle for quadratic modules of R[X1],
where R is an arbitrary real closed field, under the assumption that the associated
semialgebraic set is finite. This enables us to solve the Membership Problem affir-
matively for those quadratic modules and to give a description of their support.
In Section 2.3 we are concerned with positivity divisors of (R[X], Q), i.e. elements
h of Q such that for every f ∈ R[X] the fact that hf ∈ Q implies that f ∈ Q, and
convexity divisors, which are positivity divisors h having the additional property
that the principal ideal hR[X] is convex. We use the explicit description of the
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membership in a finitely generated quadratic module Q of R[X1] whose associated
semialgebraic set is bounded from Section 2.1 to determine the positivity and con-
vexity divisors of (R[X1], Q). This enables us to give a proof of a second local-global
principle of Scheiderer for this special situation.

In Chapter 3 we deal with heirs of subsets of R[X]. We develop the notion of a
(weak resp. dual weak) heir of Q ⊆ R[X] on R′ ⊇ R such that Q is definable if and
only if it has a unique heir on every real closed extension field R′ ⊇ R. The property
of being stable can also be recognized with the help of heirs. A result of Scheiderer
translated into the language of heirs says that a quadratic module Q generated by
g1, ..., gs ∈ R[X] is stable if and only if for every real closed extension R′ ⊇ R the
unique heir of Q on R′ equals the quadratic module generated by g1, ..., gs in R′[X].
This implies that the finitely generated quadratic modules QM(G) of R[X1] with
the property that S(G) is finite are stable. For a finitely generated quadratic mod-
ule Q = QM(G) ⊆ R[X1] we give, under the assumption that S(G) is not empty
and bounded, an explicit description of the heir of Q on a real closed field R ⊇ R.
From this we deduce that if in addition S(G) has a nonempty interior then Q is
stable if and only if it is saturated. Hence there are a lot of examples of definable
but not stable quadratic modules which shows that the notion of stability is strictly
stronger than the notion of definability. In particular it follows that the preordering
QM((1−X2

1 )3) ⊆ R[X1] is not stable which has already been proved by Stengle [St2]
using approximation theory. Using the upper and lower bounds given by Stengle in
his paper [St2] we show that the heir of this preordering is not finitely generated.
In Section 3.3 we consider tame extensions R′ ⊇ R which are those extensions where
the embedding R ↪→ O^ → O^/m is onto with O^ being the convex hull of R in R′

and m the maximal ideal of O^. The place λ : O^ → R is in this case called the
standard part map. We prove that the image of the weak heir and of the dual weak
heir of a quadratic module Q ⊆ R[X] on R′ under the standard part map is equal to
Q(‡). This quadratic module was introduced by Kuhlmann, Marshall and Schwartz
in [K-M-S] and plays an important role in the solution of the moment problem.

In Chapter 1 and 2 we showed that in dimension 1 the Membership Problem for
finitely generated quadratic modules is solvable in the affirmative over arbitrary
real closed fields if the associated semialgebraic set S is either not bounded or
has empty interior. Within the remaining case we restrict ourselves in Chapter 4
to the case that the quadratic module Q is generated by finitely many elements
g1, ..., gs ∈ O^[X1] where O^ is the convex hull of R in R. For the quadratic module
QÔ ⊆ Q ∩ O^[X1] which is generated by g1, ..., gs in O^[X1] we reduce in the case
that SpecO^ = {{0},m} the question when a polynomial f ∈ O^[X1] lies in QÔ to
finitely many membership questions in formal power series rings over O^ given some
extra assumptions. These additional assumptions make it on the one hand possible
to use a local-global principle which we establish over O^. On the other hand they
ensure that QÔ is archimedean which has been proved for the case of a preordering
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by Prestel (see [P-D]). For our proof we use that the semi-real spectrum of O^[X1]
equals the real spectrum of O^[X1] which follows from our description of SperO^[X1]
in Section 4.1. We conclude the thesis with a list of open problems which are topics
for future research.

We defer the proofs of some results about definability and heirs which use deeper
model theory to the appendix to make the thesis readable also for those who are
not that acquainted with model theory.
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0 Notation and Prerequisites

In this preliminary chapter we fix some notation and state well-established results
about quadratic modules and preorderings which will be used later on.

We denote the set of natural numbers with N, the natural numbers including 0 with
N0, the ring of integers with Z, the field of rational numbers with Q and the field of
real numbers with R.

For some ordered field K and a, b ∈ K with a < b we use ]a, b[ to denote the open
interval {x ∈ K | a < x < b}. Similarly the closed interval is denoted by [a, b] and
the half-open intervals by [a, b[ and ]a, b].

The set of isolated points of a subset S of some topological space is denoted by Sisol.

If A is a ring and f ∈ A then fA denotes the ideal generated by f in A.

The quotient field of an integral domain A is denoted by Quot(A).

The letter R is always used for real closed fields.

If v is a valuation of a field K then we write O^ for the valuation ring correspond-
ing to v and m for the maximal ideal of O^. The residue field O^/m is denoted by
Ô and the residue map O^ → Ô as well as its extension to the polynomial rings
O^[X] → Ô [X] by λ.
If v is not stated explicitly and R′ ⊇ R is an extension of real closed fields then
O^ is defined to be the convex hull of R in R′ and v is the valuation corresponding
to the valuation ring O^. In this case m consists of the elements of R′ which are
infinitesimal with respect to R and the residue field Ô is a real closed subfield of R
which is isomorphic to R if R ⊆ R.

For the remaining of this chapter A is a commutative ring with 1.

The basic algebraic objects of our study are quadratic modules and preorderings of
A which are defined as follows.

Definition 0.1
A subset Q ⊆ A is called a quadratic module of A if

Q+Q ⊆ Q, 1 ∈ Q and A2Q ⊆ Q.

A subset P ⊆ A is called a preordering of A if

P + P ⊆ P, P · P ⊆ P and A2 ⊆ P.
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Preorderings are special quadratic modules, namely those quadratic modules which
are closed under multiplication.

If Q ⊆ A is a quadratic module then the intersection Q ∩ −Q =: supp(Q) is called
the support of Q which is an ideal if 1

2
∈ A.

A quadratic module Q is finitely generated if there are finitely many elements
g1, ..., gs ∈ A such that Q is the smallest quadratic module containing these ele-
ments. The quadratic module generated by g1, ..., gs is denoted by QM(g1, ..., gs)
and is given by

QM(g1, ..., gs) = {σ0 + σ1g1 + ...+ σsgs | σi ∈
∑

A2 (0 ≤ i ≤ s)}

where
∑
A2 denotes the set of all finite sums of squares of elements from A.

The preordering generated by g1, ..., gs is similarly denoted by PO(g1, ..., gs) and is
given by

PO(g1, ..., gs) = {
∑

ε∈{0,1}s
σεg

ε1
1 · · · gεss | σε ∈

∑
A2 ∀ε ∈ {0, 1}s}.

If it is not clear from the context we write POA(g1, ..., gs), and QMA(g1, ..., gs) to
indicate that the sums of squares are formed with elements from A.

Quadratic modules and preorderings of A which have the two additional properties
of the following definition are of special importance.

Definition 0.2
A preordering α ⊆ A is an ordering of A if

α ∪ −α = A and supp(α) is a prime ideal.

A quadratic module β ⊆ A is a semiordering of A if

β ∪ −β = A and supp(β) is a prime ideal.

The set
SperA := {α ⊆ A | α is an ordering of A}

is called the real spectrum of A and similarly

SemiSperA := {β ⊆ A | β is a semiordering of A}

is called the semi-real spectrum of A.
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For some set T ⊆ A we define

H(T ) := {α ∈ SperA | T ⊆ α \ (−α)},
H(T ) := {α ∈ SperA | T ⊆ α},
HSemi(T ) := {β ∈ SemiSperA | T ⊆ β \ (−β)},
HSemi(T ) := {β ∈ SemiSperA | T ⊆ β}.

If SperA is provided with the Harrison topology which has {H(a) | a ∈ A} as a
subbasis of open sets then SperA is quasi-compact. Similarly SemiSperA provided
with the topology generated by the subbasis {HSemi(a) | a ∈ A} forms a quasi-
compact space. For more details about the real spectrum we refer for example to
[K-S] and for the semi-real spectrum see for example [J1].

For every ring A the real spectrum is the subset of the semi-real spectrum consisting
of those semiorderings which are closed under multiplication. If A is the ring of
polynomials over a real closed field in one indeterminate then both sets coincide.

Proposition 0.3
If R is a real closed field and X denotes one indeterminate then

SemiSperR[X] = SperR[X].

Proof:
We show that every semiordering of R[X] is already an ordering.
For that purpose we use the bijection between the set of semiorderings of an arbi-
trary commutative ring A with 1 and the set of tuples (p, γ) where p ∈ SpecA is a
prime ideal of A and γ is a semiordering of the quotient field Quot(A/p) of A/p.

There are three different kinds of prime ideals of R[X].

If p = ((X − a)2 + b2)R[X] for some a, b ∈ R with b 6= 0 then −1 is a sum of squares
in the quotient field of R[X]/p which implies that there is no semiordering on it.

If p = (X − a)R[X] for some a ∈ R then the quotient field of R[X]/p is isomorphic
to R which has one unique semiordering, the unique ordering of R.

If finally p = {0} then the quotient field of R[X]/p is R(X). In this case Prestel
showed that every semiordering of R(X) is already an ordering ([Pr] Theorem 3.6).

Thus in all three cases we just get the elements of the real spectrum which means
that SemiSperR[X] = SperR[X].

Prop. 0.3 2

The elements of the (semi-)real spectrum of the ring of polynomials in one indeter-
minate over a real closed field are well-known (e.g. [K-S] III.3 Example 2).
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SemiSperR[X] = SperR[X] consists of the orderings a± (a ∈ R), ±∞ and orderings
ξ corresponding to free Dedekind cuts which all have support {0} and the orderings
αa corresponding to evaluation in a ∈ R with support (X − a)R[X].

If Y is a subset of the real or semi-real spectrum of A then the elements of A can be
considered as generalized functions on Y and the sign of some f ∈ A on Y is given
in the following way:

f > 0 on Y ⇔ f ∈ α \ (−α) for every α ∈ Y
f ≥ 0 on Y ⇔ f ∈ α for every α ∈ Y
f = 0 on Y ⇔ f ∈ supp(α) for every α ∈ Y

The abstract Stellensatz for quadratic modules Q (resp. preorderings P ) character-
izes those elements of A which are positive, nonnegative or zero on HSemi(Q) (resp.
H(P )) in an algebraic way using sums of squares. For the abstract Stellensatz for
quadratic modules we refer to Jacobi ([J1],[J2]). The Stellensatz for preorderings
was discovered by Krivine [Kr] in 1964 and rediscovered by Stengle [St1] in 1974.

Theorem 0.4 (Abstract Stellensatz for quadratic modules)
Let Q ⊆ A be a quadratic module and f ∈ A.
Then the following is true:

i) f > 0 on HSemi(Q) ⇔ pf = 1 + q for some p ∈
∑
A2, q ∈ Q

ii) f ≥ 0 on HSemi(Q) ⇔ pf = f 2m + q for some m ∈ N0, p ∈
∑
A2, q ∈ Q

iii) f = 0 on HSemi(Q) ⇔ −f 2m ∈ Q for some m ∈ N0

iv) HSemi(Q) = ∅ ⇔ −1 ∈ Q

Theorem 0.5 (Abstract Stellensatz for preorderings)
Let P ⊆ A be a preordering and f ∈ A.
Then the following is true:

i) f > 0 on H(P ) ⇔ pf = 1 + q for some p, q ∈ P

ii) f ≥ 0 on H(P ) ⇔ pf = f 2m + q for some m ∈ N0, p, q ∈ P

iii) f = 0 on H(P ) ⇔ −f 2m ∈ P for some m ∈ N0

iv) H(P ) = ∅ ⇔ −1 ∈ P
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If A = R[X] = R[X1, ..., Xn] and P = PO(g1, ..., gs) ⊆ R[X] is a finitely generated

preordering then H(P ) is just S̃, the constructible subset of SperR[X] associated
to the basic closed semialgebraic set

S := S(g1, ..., gs) := {x ∈ Rn | gi(x) ≥ 0 (1 ≤ i ≤ s)}.

In this situation the Stellensatz can be formulated in the following way.

Theorem 0.6 (Stellensatz for preorderings)
Let R be a real closed field, g1, ..., gs ∈ R[X] = R[X1, ..., Xn], P = PO(g1, ...gs),
S = S(g1, ..., gs) and f ∈ R[X].
Then the following is true:

i) f > 0 on S ⇔ pf = 1 + q for some p, q ∈ P

ii) f ≥ 0 on S ⇔ pf = f 2m + q for some m ∈ N0 and p, q ∈ P

iii) f = 0 on S ⇔ −f 2m ∈ P for some m ∈ N0

iv) S = ∅ ⇔ −1 ∈ P .

We note that the proof of this Stellensatz essentially uses Tarski’s Transfer Principle
which was formulated by Tarski [T] in 1931.

Theorem 0.7 (Tarski’s Transfer Principle)
Suppose that R1 and R2 are two real closed fields inducing the same ordering on a
common subfield K. If p1, ..., pr ∈ K[X] = K[X1, ..., Xn] and ε1, ..., εr ∈ {−1, 0, 1}
then we have some x ∈ Rn

1 with sign(pj(x)) = εj (j = 1, ..., r) if and only if there
is some x ∈ Rn

2 satisfying the same system of polynomial equations and inequalities
with coefficients from K.

The following Representation theorem is known in the literature as the Kadison-
Dubois Theorem. The version for quadratic modules is due to Jacobi ([J2] Theorem
4). It gives denominator-free representations of polynomials which are strictly pos-
itive on H(Q) under the hypothesis that the quadratic module Q is archimedean.

Definition 0.8
A quadratic module Q of A is called archimedean if for every f ∈ A there is some
N ∈ N such that N ± f ∈ Q.
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Theorem 0.9 (Kadison-Dubois Theorem)
Suppose that 1

2
∈ A, f ∈ A and Q ⊆ A is an archimedean quadratic module.

Then we have
f > 0 on H(Q) ⇒ f ∈ Q.

Another result which we will need later on is a version of the Basic Lemma of
Kuhlmann/Marshall/Schwartz ([K-M-S] Lemma 2.1) which can be found in [S5]
([S5] Proposition 2.4).

Theorem 0.10 (Basic Lemma)
Let T ⊆ A and H(T ) a bounded subset of SperA, i.e. for every h ∈ A there is some

N ∈ N such that N ± h ≥ 0 on H(T ).
If f, g, s, t ∈ A such that f, g ≥ 0 on H(T ) and sf + tg = 1 then there are σ, τ ∈ A
with σf + τg = 1 and σ, τ > 0 on H(T ).

12



1 The Membership Problem

1.1 Definability

The focus of this work is to answer the question regarding the definability of quadratic
modules and preorderings in the polynomial ring over a real closed field.

The question of definability can be posed in a more general setting for subsets of
M [X] where M is an L-structure for some first order language L and X denotes a
finite tuple of variables (X1, ..., Xn). We restrict the problem to subsets Q ⊆ R[X]
where R is a real closed field. Thus the first order language L in consideration is
always the language of ordered rings Lor = {+,−, ·, 0, 1, <}.
L(R) denotes the language obtained from L by adding a constant symbol to name
each element of R, FmlL(R) is the set of L(R)-formulas and Y is a finite tuple of
variables (of variable length).

Definition 1.1
Q ⊆ R[X] is definable if and only if for every f(X, Y ) ∈ Z[X, Y ] there is a formula
ϑf (Y ) ∈ FmlL(R) such that for all c ∈ RY

f(X, c) ∈ Q⇔ R |= ϑf (c),

i.e. if and only if the set

D(f,Q) := {c ∈ RY | f(X, c) ∈ Q}

is definable (by an L(R)-formula ϑf (Y )).

Although we concentrate on the case where Q is a preordering or a quadratic mod-
ule this more general setup is very useful for example for the study of the set of
polynomials of some quadratic module up to a certain degree d.

When working in the language of ordered rings with respect to the theory of real
closed fields the definability of D(f,Q) means nothing else than that this set is a
semialgebraic subset of RY . In this setting the notion of definability given above
is equivalent to the notion of being weakly semialgebraic which was introduced
by Knebusch in [K1]. A proof of the equivalence is contained in the Appendix
(Proposition A.2).
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Definition 1.2
A subset Q of a finitely generated R-algebra A is called weakly semialgebraic if for
every finite dimensional R-subspace U of A the set Q ∩ U is a semialgebraic subset
of U .

Because of the mentioned equivalence we prefer to speak of weakly semialgebraic
subsets Q if we have witnessed membership in the sets D(f,Q) by Lor(R)-formulas
as defined in Definition 1.1 since this notion is more precise what the underlying
language and theory concerns.

The reason why we want to know whether Q is weakly semialgebraic or not is its
impact on the solution of the Membership Problem for Q.

Definition 1.3
We say that the Membership Problem is solvable affirmatively for Q if and only
if for every f(X, Y ) ∈ Z[X, Y ] there is an algorithm which decides upon input of
c ∈ RY whether f(X, c) ∈ Q or not.

Since the theory of real closed fields in the language of ordered rings is by Tarski
[T] decidable we know that the Membership Problem is solvable affirmatively for Q
if Q is weakly semialgebraic and the input data is computable.

Though being weakly semialgebraic is sufficient, it is not necessary for the result
that the Membership Problem is solvable affirmatively for a quadratic module.
We illustrate this with the following example.

Example 1.4
Let P := {f ∈ R[X] | f |Z ≥ 0} where X denotes one indeterminate.

Then the preordering P is not weakly semialgebraic because for the polynomial
f(X, Y ) := 2(X − Y )2 − 1 ∈ Z[X, Y ] the set D(f, P ) is equal to Z + 1

2
which is not

semialgebraic.

However the Membership Problem is solvable affirmatively for P as the following
pseudo code shows.

INPUT: coefficient vector (c0, ..., cd) of a polynomial f = f(X, c) of degree d
COMPUTE the Cauchy bound B for (c0, ..., cd)
COMPUTE f(x) for all x ∈ Z, |x| < B
IF f(x) ≥ 0 for all x ∈ Z, |x| < B

OUTPUT: f ∈ P
ELSE

OUTPUT: f 6∈ P

14



1.2 Saturated preorderings and stable quadratic modules

In this section we present two classes of finitely generated quadratic modules for
which we easily can see that they are weakly semialgebraic.

Saturated preorderings

The first class of weakly semialgebraic quadratic modules consists of the finitely
generated saturated preorderings.

A preordering P of some commutative ring A with 1 is saturated if and only if P is
equal to the intersection of all orderings containing P , i.e. if P =

⋂
α∈H(P )

α.

If A = R[X] = R[X1, ..., Xn] and P is finitely generated then being saturated
translates by Tarski’s Transfer Principle (Theorem 0.7) into the following:
P = PO(g1, ..., gs) ⊆ R[X] is saturated if and only if every f ∈ R[X] which is
nonnegative on the basic closed semialgebraic set S = S(g1, ..., gs) ⊆ Rn lies in P .
With

P(S) := {f ∈ R[X] | f |S ≥ 0}

this means that
P is saturated ⇔ P = P(S).

We give some important steps of the proof of this equivalence because they involve
two important results which are part of the foundation of real algebraic geometry:
Tarski’s Transfer Principle (Theorem 0.7) and the famous Stellensatz for preorder-
ings (Theorem 0.6).

If the preordering P is not proper, i.e. if −1 ∈ P , then P = R[X] because we
can write f = (f+1

2
)2 − (f−1

2
)2 ∈ P for every f ∈ R[X]. On the other hand the

Stellensatz for preorderings (Theorem 0.6 iv)) says that S = ∅ which implies that
the set of all nonnegative polynomials on S is also equal to R[X].
Thus the equivalence “P is saturated ⇔ P = P(S)” is fulfilled if P is not proper.

Now we suppose that −1 6∈ P .
The implication “P = P(S) ⇒ P saturated” is not hard to prove. We give the proof
of the other implication.
Since clearly P ⊆ P(S) we take some f ∈ R[X] with f |S ≥ 0 and show that
f ∈ P . We suppose to the contrary that there is some ordering α ⊇ P with f 6∈ α.
This will be used to get elements x1, ..., xn in some real closed extension field of R
with g1(x) ≥ 0, ..., gs(x) ≥ 0 and f(x) < 0 for x = (x1, ..., xn). The real closed
field in consideration is the real closure k(α) of the quotient field of R[X]/supp(α).
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This is a real closed extension field of R and the ordering of k(α) restricts to the
unique ordering on R. In k(α) we have with xi := Xi+supp(α) (1 ≤ i ≤ n) and
x = (x1, ..., xn) ∈ k(α)n that gj(x) ≥ 0 (1 ≤ j ≤ s) as P ⊆ α and f(x) < 0 because
by assumption f 6∈ α. Thus we get by Tarski’s Transfer Principle (Theorem 0.7)
some x ∈ Rn with x ∈ S and f(x) < 0. This contradicts the fact that f |S ≥ 0 and
proves the claim.

Thus for some saturated preordering P = PO(g1, ..., gs) ⊆ R[X] and some polyno-
mial f(X, Y ) ∈ Z[X, Y ] the formula ϑsatf (Y ) which defines membership in P is given
by

ϑsatf (Y ) := ∀X

(
s∧
i=1

gi(X) ≥ 0 → f(X,Y ) ≥ 0

)
.

The parameters appearing in the formula ϑsatf (Y ) ∈ FmlL(R) are just the coefficients
of the polynomials g1, ..., gs ∈ R[X].
If f(X, Y ) ∈ Z[X, Y ], g1(X,Z), ..., gs(X,Z) ∈ Z[X,Z] then the L-formula

ϑsat(Y, Z) := ∀X

(
s∧
i=1

gi(X,Z) ≥ 0 → f(X, Y ) ≥ 0

)
defines uniformly the membership in the saturation which means that for every
c ∈ RY , b ∈ RZ

f(X, c) ∈ P(S(g1(X, b), ..., gs(X, b)) ⇔ R |= ϑsat(c, b).

If P = PO(g1(X, b), ..., gs(X, b)) is saturated than this formula defines the member-
ship in P .

When is a preordering saturated?

In dimension 1 the basic closed set S = S(g1, ..., gs) ⊆ R for some g1, ..., gs ∈ R[X]
is a finite union of intervals and points and being saturated is closely related to the
set of natural generators of P(S).

If S 6= ∅ is a basic closed semialgebraic subset of R then the set of natural generators
of P(S) is defined as

Nat(S) := {X − a | a is a least element of S}
∪ {a−X | a is a largest element of S}
∪ {(X − a)(X − b) | a, b ∈ S, a < b and ]a, b[∩S = ∅}

If S = ∅ we define Nat(∅) := {−1}.
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The result of the next theorem is due Kuhlmann, Marshall and Schwartz ([K-M-S]
Theorem 3.1). Since it is stated there for the field R and we need it later on for
arbitrary real closed fields we state and prove it here. For the proof we need a lemma
which can be found in [B-M].

Lemma 1.5 (Berg-Marserick, [B-M] Lemma 4)
If a, c1, c2, b ∈ R with a ≤ c1 ≤ c2 ≤ b then

(X − c1)(X − c2) ∈ QM((X − a)(X − b)).

Proof:
If c1 = c2 then the claim is trivial.
From now on we suppose that a ≤ c1 < c2 ≤ b.
Since we are working in dimension 1 where every polynomial which is nonnegative
on all of R is a sum of (two) squares (see for example [M1] Proposition 1.2.1) it is
enough to show that there is some nonnegative element γ ∈ R such that

fγ(x) := (x− c1)(x− c2)− γ(x− a)(x− b) ≥ 0

for every x ∈ R.
Because fγ(X) is a polynomial of degree two which has in the case γ < 1 a minimum
for

x0 =
(c1 + c2)− γ(a+ b)

2(1− γ)

with value

fγ(x0) = −
(

(c1 + c2)− γ(a+ b)

2

)2
1

1− γ
+ c1c2 − γab

we are looking for some γ0 ∈]0, 1[ such that fγ0(x0) ≥ 0.

Case 1: c1 + c2 > a+ b
Then γ0 := 2

b−a(b−
c1+c2

2
) ∈]0, 1[ and fγ0(x0) = (b− c1)(b− c2) ≥ 0.

Case 2: c1 + c2 < a+ b
Then γ0 := 2

b−a(
c1+c2

2
− a) ∈]0, 1[ and fγ0(x0) = (c1 − a)(c2 − a) ≥ 0.

Case 3: c1 + c2 = a+ b
Then γ0 := (c2−c1)2

(b−a)2 ∈]0, 1[ and we have

fγ0(x0) = 1
4
(b− a)2 (c2−c1)2

(b−a)2 − 1
4
(c1 + c2)

2 + c1c2 = 1
4
(c1 − c2)

2 − 1
4
(c1 − c2)

2 = 0.

Thus in any of these three cases we have found an appropriate γ0 which proves the
claim.

Lemma 1.5 2
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Theorem 1.6
For a basic closed semialgebraic set S ⊆ R we have

P(S) = PO(Nat(S)).

Proof:
If S = ∅ then the set of nonnegative polynomials on S is R[X] which is also equal
to PO(Nat(∅)) = PO(−1) because every polynomial in R[X] can be written as a
difference of two squares.

We suppose now that S 6= ∅.

The inclusion ⊇ is clear since every element of Nat(S) is in a natural way nonnega-
tive on S.
For the other inclusion we consider some f ∈ R[X] with f |S ≥ 0 and prove by
induction on the degree d of f that f ∈ PO(Nat(S)).
For d = 0 the result is clear. Thus suppose that d > 0.
If f is nonnegative on all of R then f is a sum of two squares and hence in
PO(Nat(S)).
We suppose now that there is some c ∈ R with f(c) < 0 and distinguish the following
three cases.

Case 1: S has a least element a and c < a
Let c0 be the least root of f in ]c, a] then f = (X − c0)g with
X − c0 = X − a+ (a− c0)︸ ︷︷ ︸

≥0

∈ PO(Nat(S)), g|S ≥ 0 and deg(g) < deg(f).

Case 2: S has a largest element a and c > a
Let c0 be the largest root of f in [a, c[ then f = (c0 −X)g with
c0 −X = (c0 − a)︸ ︷︷ ︸

≥0

+a−X ∈ PO(Nat(S)), g|S ≥ 0 and deg(g) < deg(f).

Case 3: There are a, b ∈ S with a < b, ]a, b[∩S = ∅ and a < c < b.
Let c1 be the largest root of f in [a, c[ and c2 the least root of f in ]c, b]
then f = (X − c1)(X − c2)g with (X − c1)(X − c2) ∈ PO(Nat(S)) by the
previous lemma, g|S ≥ 0 and deg(g) < deg(f).

Thus in any of these three cases we can use the induction hypothesis to prove the
claim.

Theorem 1.6 2
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Corollary 1.7
For n = 1, P = PO(g1, ..., gs) ⊆ R[X] and S = S(g1, ..., gs) we have:

P is saturated ⇔ Nat(S) ⊆ P

Proof:
P is saturated if and only if P = P(S) which is by the previous theorem equal to
PO(Nat(S)). This immediately gives ⇒. If otherwise Nat(S) ⊆ P then again by
the previous theorem P(S) = PO(Nat(S)) ⊆ P . Hence P = P(S) because P is
always a subset of P(S).

Corollary 1.7 2

We want to mention that if we additionally suppose that S(g1, ..., gs) ⊆ R is not
bounded then the natural generators of P(S) are in P if and only if they already
appear in the set {g1, ..., gs} ([K-M] Theorem 2.2).

Thus the membership in P = PO(g1, ..., gs) of the finitely many natural generators
of P(S(g1, ..., gs)) decides in the case n = 1 whether P is saturated or not. In the
case n = 2 there are examples of finitely generated preorderings which are not satu-
rated - the probably most well known is the sums of squares itself - and it was long
unknown whether there is an example of a saturated preordering in dimension two.
Just recently Scheiderer presented such an example ([S5] Corollary 3.3).

Another important result of Scheiderer is that if the dimension of S(g1, .., gs) is
greater or equal to three we always get a negative answer what the saturation of the
preordering PO(g1, ..., gs) concerns ([S1] Proposition 6.1).

Stable quadratic modules

Now we come to the second class of weakly semialgebraic quadratic modules where
we state an algorithm based on semidefinite programming in order to decide whether
a polynomial lies in the quadratic module or not. The quadratic modules in consid-
eration are the finitely generated stable quadratic modules.

The definition of stability we use is due to Powers and Scheiderer [P-S]. For a more
general notion of stability with respect to filtrations and graduations and a lot of
examples of stable quadratic modules we refer to Netzer [N].

For ease of notation let g0 := 1.
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Definition 1.8
Q = QM(g1, ..., gs) ⊆ R[X] = R[X1, ..., Xn] is stable if for every finite dimensional
subspace U of R[X] there is a finite dimensional subspace V of R[X] such that

Q ∩ U ⊆ {
s∑
i=0

σigi | σi ∈
∑

V 2 (0 ≤ i ≤ s)}.

If we consider R[X] graduated by the total degree graduation then being stable
means nothing else than the existence of a function ϕ : N → N such that every ele-
ment f of Q has a representation in Q where the degree of the polynomials appearing
in the sums of squares is less or equal to ϕ(deg(f)) =: ϕ(f). A bound ϕ(deg(f)) on
the degrees of the squares appearing in the representation also bounds the number of
squares needed for a presentation of f by some number N(ϕ(deg(f))) =: N(f). This
result together with the correspondence between sums of square representations and
symmetric positive semidefinite matrices is the content of the next lemma. More
about this well-known connection which forms the core of the Gram matrix method
due to [P-W] can be found in [C-L-R]. We will state a generalization of the Gram
matrix method later on. This method allows us to recognize whether a polynomial
is a sum of squares via semidefinite programming which is a generalization of lin-
ear programming where the cone of nonnegative vectors is replaced by the cone of
positive semidefinite matrices. For more information about the topic of semidefinite
programming we refer ro [V-B] or [W-S-V].

Note that if Λ(d) := {α ∈ Nn
0 | |α| ≤ d} for some d ∈ N0 then {Xα | α ∈ Λ(d)} forms

a basis of the vector space R[X]≤d of all polynomials of degree ≤ d with dimension
|Λ(d)| =

(
n+d
n

)
.

Lemma 1.9
For 0 6≡ f ∈ R[X]≤2d the following are equivalent:

i) f ∈
∑
R[X]2

ii) f =
∑

α,β∈Λ(d)

aαβX
α+β for some symmetric positive semidefinite matrix

A = (aαβ)α,β∈Λ(d) with entries from R (sometimes called Gram matrix of f)

iii) f =
N∑
i=1

h2
i for some hi ∈ R[X]≤d (1 ≤ i ≤ N) with N = |Λ(d)| =

(
n+d
n

)
Proof:

i) ⇒ ii) : If f =
k∑
i=1

h2
i is a sum of squares of polynomials from R[X] for some k ∈ N

then we have hi ∈ R[X]≤d for every 1 ≤ i ≤ k because the homogeneous
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part of f of highest degree is a sum of squares of forms where no cance-
lation can occur.

We define aαβ :=
k∑
i=1

hiαhiβ for α, β ∈ Λ(d) where (hiγ)γ∈Λ(d) is the coef-

ficient vector of hi with respect to the basis {Xγ | γ ∈ Λ(d)}. Then we
have

f =
k∑
i=1

(
∑

α,β∈Λ(d)

hiαhiβX
α+β) =

∑
α,β∈Λ(d)

aαβX
α+β

and A = (aαβ)α,β∈Λ(d) is certainly a symmetric matrix. It is even positive
semidefinite since for any vector z ∈ R|Λ(d)| we have

zTAz =
k∑
i=1

∑
α,β∈Λ(d)

hiαhiβzαzβ =
k∑
i=1

(
∑
α∈Λ(d)

hiαzα)
2 ≥ 0.

ii) ⇒ iii) : Since A = (aαβ)α,β∈Λ(d) is symmetric positive semidefinite we can write
A = BTB for some matrix B = (bαβ)α,β∈Λ(d). Thus

f =
∑

α,β∈Λ(d)

∑
γ∈Λ(d)

bγαbγβX
α+β =

∑
γ∈Λ(d)

(
∑
α∈Λ(d)

bγαX
α)2

which is the desired sum of squares representation.

iii) ⇒ i) : This is trivial.
Lemma 1.9 2

Now we can state the semialgebraic formula ϑstabf (Y ) which defines membership in
the stable quadratic module Q = QM(g1, ..., gs) ⊆ R[X] for f(X, Y ) ∈ Z[X, Y ].

ϑstabf (Y ) := ∃W

∀X
f(X, Y ) =

s∑
i=0

N(f)∑
j=1

Fϕ(f)(X,Wij)
2

 gi(X)


where W = (W11, ...,W1N(f), ...,WsN(f)), Fϕ(f)(X,Wij) =

∑
α∈Λ(ϕ(f))

Wij,αX
α denotes the

general polynomial in Z[X,Wij] of degree ϕ(f) with respect to X, N(f) is related
to ϕ(f) as in Lemma 1.9 iii) and ϕ(f) = ϕ(deg(f)) with ϕ : N → N given by the
stability of Q.

If f(X, Y ) ∈ Z[X, Y ], g1(X,Z), ..., gs(X,Z) ∈ Z[X,Z] then the L-formula

ϑstab(Y, Z) := ∃W

∀X
f(X, Y ) =

s∑
i=0

N(f)∑
j=1

Fϕ(f)(X,Wij)
2

 gi(X,Z)


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defines uniformly the membership in the subset of the quadratic module where the
degrees of the sums of squares are bounded by ϕ(f) which means that for every
c ∈ RY , b ∈ RZ

f(X, c) ∈
s∑
i=0

∑
R[X]2≤ϕ(f)gi(X, b) ⇔ R |= ϑstab(c, b).

If Q = QM(g1(X, b), ..., gs(X, b)) is stable with stability function ϕ : N → N then
this formula defines the membership in Q.

Now we describe explicitly an algorithm for testing membership in a stable quadratic
module which is called the Gram matrix method in the case that the quadratic mod-
ule in consideration is

∑
R[X]2 (see [P-W]). This method can easily be generalized

for finitely generated quadratic modules which are stable.

If Q = QM(g1, ..., gs) ⊆ R[X] is a stable quadratic module then for some given
polynomial f(X) =

∑
γ∈Λ(deg(f))

cγX
γ ∈ R[X] there are di ∈ N0 (0 ≤ i ≤ s) just

depending on the degree of f and the degree of the polynomials g0 := 1, g1, ..., gs
such that deciding whether f ∈ Q reduces to deciding whether

f ∈
s∑
i=0

∑
R[X]2≤di

gi.

By Lemma 1.9 this is equivalent to testing whether there are positive semidefinite
matrices Ai = (a

(i)
αβ)α,β∈Λ(di) for 0 ≤ i ≤ s such that

f ∈
s∑
i=0

∑
α,β∈Λ(di)

a
(i)
αβX

α+βgi.

We expand for every i ∈ {0, ..., s} and every α, β ∈ Λ(di) the polynomials

Xα+βgi =
∑

γ∈Λ(D)

c
(γ,i)
αβ Xγ

with respect to the basis of R[X]≤D where D = max
0≤i≤s

{2di + deg(gi)}. This gives

symmetric matrices Cγ,i = (c
(γ,i))
αβ )α,β∈Λ(di) for every γ ∈ Λ(D) and every 0 ≤ i ≤ s.

By comparing coefficients we see that f ∈ Q if and only if

s∑
i=0

∑
α,β∈Λ(di)

c
(γ,i)
αβ a

(i)
αβ = cγ ∀γ ∈ Λ(D)
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for some positive semidefinite matrices Ai = (a
(i)
αβ)α,β∈Λ(di) 0 ≤ i ≤ s. This can be

written as

(∗)


s∑
i=0

trace(Cγ,iA
T
i ) = cγ ∀γ ∈ Λ(D)

Ai � 0 (0 ≤ i ≤ s)

where Ai � 0 denotes that Ai is positive semidefinite. The problem of finding ma-
trices which solve (∗) is nothing else than a semidefinite programming feasibility
problem.

Thus given the input data c ∈ RY for some f(X, Y ) ∈ Z[X, Y ] the problem of decid-
ing if f(X, c) is in QM(g1, .., gs) translates in the stable case by the above sketched
generalization of the Gram-Matrix method into a semidefinite program of bounded
size which can be solved efficiently by interior point methods (see e.g. [N-N]).

When does stability occur?

One important result in this context is that Q = QM(g1, ..., gs) is stable if the
associated basic closed set S(g1, ..., gs) ⊆ Rn contains an n-dimensional affine cone.

Over the reals this was proved by Powers and Scheiderer ([P-S] Theorem 2.14) and by
Kuhlmann and Marshall ([K-M] Theorem 3.5). For the case of a quadratic module
over an arbitrary real closed field we use the ideas worked out by Julia Salzl in her
diploma thesis ([Sa]).

Let v : R(X) → Z denote the total degree valuation, i.e. v(f
g
) = deg g − deg f for

f, g ∈ R[X].

Lemma 1.10
Let K := R(X1

Xn
, ..., Xn−1

Xn
) ⊆ R(X). Then K ⊆ O^ and the composition K → O^

with O^ → O^/m is an isomorphism K → O^/m. Hence K is a residue field of v.

Proof:
An arbitrary element of K is of the form f

g
where f, g ∈ R[X1

Xn
, ..., Xn−1

Xn
]. Thus f and

g are of the form∑
ε∈Nn−1

0

cε(
X1

Xn

)ε1 · · · (Xn−1

Xn

)εn−1 = X−dn
∑

ε∈Nn−1
0

cεX
ε1
1 · · ·Xεn−1

n−1 X
d−(ε1+...+εn−1)
n

where only finitely many cε 6= 0 and d := max{ε1 + ... + εn−1 | ε ∈ Nn−1
0 , cε 6= 0}.

Hence f
g

= fd·Xd′
n

gd′ ·Xd
n

where the fd, gd′ ∈ R[X1, ..., Xn] are homogeneous of degree d,

resp. d′. Thus deg f = deg g = d+ d′ and therefore v(f
g
) = 0 which gives K ⊆ O^.
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In order to see that K → O^/m is surjective we must show that for every f
g
∈ O^

with d := deg f = deg g ∈ N0, there is some H ∈ K and some µ ∈ m such that
f
g

= H + µ.

Let f = fd+f
′ where fd ∈ R[X] is non zero, homogeneous of degree d and f ′ ∈ R[X]

is of degree < d. Then fd can be written as fd = Xd
n · f∗(X1

Xn
, ..., Xn−1

Xn
, 1) and

µf := f ′

Xd
n
∈ m. Thus f = Xd

n · (f∗(X1

Xn
, ..., Xn−1

Xn
, 1) + µf ).

The same argument applied to g gives g = Xd
n · (g∗(X1

Xn
, ..., Xn−1

Xn
, 1) + µg) for some

µg ∈ m. Hence

f

g
=
f∗(

X1

Xn
, ..., Xn−1

Xn
, 1) + µf

g∗(
X1

Xn
, ..., Xn−1

Xn
, 1) + µg

and we can take H :=
f∗(

X1
Xn

,...,
Xn−1

Xn
,1)

g∗(
X1
Xn

,...,
Xn−1

Xn
,1)
∈ K. This gives us

f

g
−H =

µfg∗ − µgf∗
g2
∗ + g∗µg

=

f ′gd

X2d
n
− g′fd

X2d
n

g2d
X2d

n
+ gdg′

X2d
n

=
f ′gd − g′fd
g2
d + gdg′

∈ m

because deg(f ′gd), deg(g′fd), deg(gdg
′) < 2d and deg(g2

d) = 2d.
Lemma 1.10 2

We remark that with K = R(X1

Xn
, ..., Xn−1

Xn
) as in the previous lemma we clearly have

R(X) = K(X1) = ... = K(Xn) and each Xi is transcendental over K.

Lemma 1.11
i) Let 1 ≤ i ≤ n. For F ∈ K[Xi], F = Fd ·Xd

i + ...+ F0 with Fj ∈ K, Fd 6= 0 we
have v(F ) = −d.

ii) If f ∈ R[X] with homogeneous components f0, ..., fd, then

f = Xd
n · fd(

X1

Xn

, ...,
Xn−1

Xn

, 1) +Xd−1
n · fd−1(

X1

Xn

, ...,
Xn−1

Xn

, 1) + ...+ f0 ∈ K[Xn].

Proof:
i) : We proceed by induction on d. If d = 0, then F ∈ K is of valuation 0.

If d > 0 then with F = Fd · Xd
i + ... + F0 with Fj ∈ K, Fd 6= 0, we have by

induction hypothesis that the valuation of F − Fd · Xd
i is strictly bigger than

−d, hence the valuation of F is the valuation of Fd ·Xd
i . But Fd has valuation

0 and Xd
i has degree d as desired.

ii) : Clearly holds since fj(
X1

Xn
, ..., Xn−1

Xn
, 1) ∈ K (0 ≤ j ≤ d).

Lemma 1.11 2
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Now we determine the orderings of R(X) compatible with v in order to get a
condition on the semialgebraic set S = S(g1, ..., gs) ⊆ Rn which implies that

S̃ ⊆ SperR[X] contains an ordering of R(X) compatible with v. This will finally
imply that Q = QM(g1, ..., gs) is stable. In this context we identify the orderings of
R(X) with the orderings of R[X] that have support {0}.

We recall that a valuation v is compatible with α ∈ SperR(X) if and only if 1+m > 0
(respectively m ⊆]− 1, 1[) in the ordered field (R(X), α) ([K-S] II.2 Theorem 3).
This means that the total degree valuation v is compatible with α if and only if

deg f < deg g ⇒ |f | < |g| in (R(X), α) (f, g ∈ R[X])

Lemma 1.12
Let i ∈ {1, ..., n} and let α ∈ SperR(X). Then α is compatible with v if and only
if |Xi| > K in (R(X), α).

Proof:
First suppose that α is compatible with v. As v(Xi) = −1 < 0 = v(h) for every
h ∈ K the compatibility of v and α implies that |Xi| > h in (R(X), α).

Conversely suppose that |Xi| > K in (R(X), α). Then |Xn| = |Xi
Xn

Xi
| > K as well.

Let f, g ∈ R[X] with d = deg f < deg g = d+ r for some r > 0. By Lemma 1.11 we
can write f = Fd ·Xd

n + ...+F0 with Fj ∈ K, Fd 6= 0 and g = Gd+r ·Xd+r
n + ...+G0

with Gj ∈ K, Gd+r 6= 0. But then, as |Xn| > K and r > 0, we see that |g| > |f | in
(R(X), α). Hence v is compatible with α.

Lemma 1.12 2

Theorem 1.13
Let Q = QM(g1, ..., gs) ⊆ R[X] and S = S(g1, ..., gs) ⊆ Rn.

If there is an ordering α ∈ S̃ ∩ SperR(X) which is compatible with the total degree
valuation v then Q is stable.

Proof:
We take arbitrary h1, ..., hr ∈ Q and show that Q′ := QM(h1, ..., hr) is stable.

Because of α ∈ S̃ we have in the ordered field (R(X), α) for 1 ≤ i ≤ s that gi ≥ 0
and therefore g ≥ 0 for every g ∈ Q. In particular hi ≥ 0 (1 ≤ i ≤ r).

Now we show that for every d ∈ N there is some N ∈ N such that

Q′ ∩R[X]≤d ⊆ {
r∑
i=0

σihi | σi ∈
∑

R[X]2≤N (0 ≤ i ≤ r)}
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where h0 := 1. Since (R[X]≤d)d∈N is a filtration of R[X] into finite dimensional
subspaces this will prove the stability of Q′.

Let h =
r∑
i=0

σihi ∈ Q′ ∩ R[X]≤d with some σi ∈
∑
R[X]2 (0 ≤ i ≤ r). We want to

show that there is a common bound on the degree of the polynomials appearing in
the sums of squares σi (0 ≤ i ≤ r).

More generally we have the following:
For a1, ..., am ∈ Q \ {0} with a1 + ...+ am ∈ R[X]≤d we have ai ∈ R[X]≤d for every
1 ≤ i ≤ m.
This is true because deg(a1 + ...+am) ≤ d means that for the total degree valuation
v(a1 + ...+ am) ≥ −d.
By the first remark above we have in (R(X), α) that ai ≥ 0 (1 ≤ i ≤ m) which gives
that ai > 0 (1 ≤ i ≤ m) because supp(α) = {0}. This implies that

v(a1 + ...+ am) = min
1≤i≤m

v(ai)

because α is compatible with v.
Hence min

1≤i≤m
v(ai) ≥ −d which means that deg(ai) ≤ d (1 ≤ i ≤ m).

With this observation we see that deg(σihi) ≤ d for every i appearing in the repre-
sentation of h. From this we get by Lemma 1.9 some N ∈ N such that σi ∈ R[X]2≤N
for 0 ≤ i ≤ r which proves that Q′ is stable.

Theorem 1.13 2

Corollary 1.14
If S = S(g1, ..., gs) ⊆ Rn contains an n-dimensional affine cone then the quadratic
module Q = QM(g1, ..., gs) ⊆ R[X] is stable.

Proof:
Let α be the ordering of R(X) with the property that R(X1, ..., Xi−1) < Xi in
(R(X), α) for every 1 ≤ i ≤ n. This ordering fulfills |Xn| > K in (R(X), α) which
implies by Lemma 1.12 that α is compatible with v. By the previous theorem
it remains to show that α ∈ S̃. Since the property of being stable remains un-
changed under R-algebra isomorphisms we can without loss of generality suppose
that {x ∈ Rn | xi ≥ 0 (1 ≤ i ≤ n)} is a subset of S(g1, ..., gs). This implies that

gi ≥ 0 (1 ≤ i ≤ s) in (R(X), α) and finally that α ∈ S̃.
Corollary 1.14 2

Actually the quadratic modules satisfying the conditions of Theorem 1.13 (resp.
Corollary 1.14) show a stronger form of stability, namely the sums of squares ap-
pearing in every representation of an element f ∈ QM(g1, ..., gs) can be bounded
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by the degree of f which is called totally stable by Netzer. Netzer even shows that
Q = QM(g1, ..., gs) is totally stable if and only if S(g1, ..., gs) ⊆ Rn contains an
n-dimensional affine cone ([N] Corollary 5.2, Example 5.3(1)).

Furthermore in the proof of Theorem 1.13 we not just show that Q = QM(g1, ..., gs)
is stable but that every finitely generated quadratic module contained in Q is stable.
This kind of stability is also useful for not finitely generated quadratic modules and
we call such a quadratic module very stable. Very stable orderings have the follow-
ing nice property with respect to the inverse topology on the real spectrum SperA
of a commutative ring A which has {H(a) | a ∈ A} as a subbasis of open sets.

Proposition 1.15
Let A be an R-algebra. The set of all very stable orderings of A is an inverse closed
subset of SperA.

Proof:
Let α be in the inverse closure of the set of very stable orderings of A. We claim
that α is very stable, too.
Let g1, ..., gs ∈ α. Then α ∈ H(g1, ..., gs) which is inverse open. Hence there is
some very stable ordering β of A such that β ∈ H(g1, ..., gs). So g1, ..., gs ∈ β and
QM(g1, ..., gs) is stable because β is very stable.

Prop. 1.15 2

The inverse closure of the set of all very stable orderings means that this set is closed
with respect to the constructible topology on SperA, i.e. a proconstructible subset
of SperA.

If the dimension of S(g1, .., gs) ⊂ Rn is bigger there is similar to the case of satura-
tion a negative result what stability concerns.
If Q = QM(g1, ..., gs) ⊆ R[X] has the moment property, i.e. the set of positive semi-
definite elements of R[X] is contained in the closure of Q with respect to the natural
linear topology, and dim(S(g1, ..., gs)) ≥ 2 then Q is not stable ([S3] Theorem 5.4).
Thus in particular for dimension ≥ 2 the quadratic modules for which the Theo-
rem of Putinar holds, i.e. every strictly positive polynomial on S(g1, ..., gs) ⊆ Rn is
contained in the quadratic module Q = QM(g1, ..., gs) ([Pu] Lemma 4.1), are not
stable. Since the result of Putinar serves as the theoretical underpinning for the
optimization algorithm of Lasserre [L] this is unpleasant from a practical point of
view. In order to find the minimum of a polynomial on a basic closed semialgebraic
set the algorithm of Lasserre constructs a sequence of semidefinite programming
problems which can be solved efficiently by using interior point methods. The con-
vergence of the sequence is ensured by the Theorem of Putinar. Lasserre’s algorithm
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is implemented in the optimization software GloptiPoly. We refer the reader who
wants to know more about the extremely interesting interplay of real algebra and
optimization to the articles of Laurent [La], Marshall [M2] and Schweighofer [Sw].

There is another way of characterizing stable quadratic modules by looking at real
closed extension fields. We come back to this in Section 3.2 when we are dealing
with heirs.

We will see later on that there are quadratic modules which are weakly semialgebraic
without being saturated or stable namely the not stable and not saturated finitely
generated quadratic modules over R in dimension 1 and that there are even not
finitely generated weakly semialgebraic quadratic modules namely the orderings in
arbitrary dimension over R.

1.3 Solution for orderings

Before we investigate more closely the general case of quadratic modules we describe
what is known for orderings.

If we consider not just a quadratic module but an ordering α of R[X1, ..., Xn] we
have a corresponding type pα which is determined by the set {f ≥ 0 | f ∈ α}. In this
case the fact that α is weakly semialgebraic means exactly that the corresponding
type pα is definable. For a proof of this see the Appendix (Proposition A.5).

In the one-dimensional case there is furthermore the well-known correspondence
between complete types and Dedekind cuts. In this case the following is true.

Proposition 1.16 (Marker-Steinhorn, [M-S] Lemma 2.3)
Let α ⊆ R[X] = R[X1] be an ordering with corresponding Dedekind cut p.
Then α is weakly semialgebraic if and only if p is principal.

For orderings it is also in arbitrary dimension possible to completely determine when
they are weakly semialgebraic. The following theorem is a special instance of the
Marker-Steinhorn theorem where tame extensions play an important role.

Definition 1.17
Let R′ ⊇ R be real closed fields, O^ the convex hull of R in R′ and m the maximal
ideal of O^. We say that R′ ⊇ R is a tame extension of R if for every c′ ∈ O^ there
is a (necessarily unique) c ∈ R such that c′ = c+ m.
The element c is called the standard part of c in R.
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Theorem 1.18 (Marker-Steinhorn, [M-S] Theorem 2.1)
Let α ⊆ R[X] = R[X1, ..., Xn] be an ordering.
Then α is weakly semialgebraic if and only if R ↪→ k(α) is tame where k(α) is the
real closure of Quot(R[X]/supp(α)).

Theorem 1.18 is a result over arbitrary real closed fields R which gives us in partic-
ular that every ordering α of R[X] is weakly semialgebraic because for R we always
have that R ↪→ k(α) is tame. This shows how useful it is to consider a general real
closed field instead of just looking at R even if one is just interested in the result
over R.

In [Tr1] the proof of this theorem is done by induction. The case n = 1 is the
content of Proposition 1.16. For the induction step Tressl uses the characterization
of definability with the help of the existence of unique heirs.

This approach structures the following chapters. Before we introduce heirs for arbi-
trary subsets of the polynomial ring over a real closed field we solve the definability
question for quadratic modules in dimension 1 over R and in special cases over
arbitrary real closed fields.
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2 The MembershipProblem for finitely generated

quadratic modules of R[X ] in dimension 1

In this chapter X always denotes one variable unless explicitly stated otherwise.

2.1 Solution in the case R = R

We consider a polynomial g ∈ R[X] and first solve the Membership Problem af-
firmatively for the special quadratic module Q = QM(g) generated by that single
polynomial. This quadratic module is actually a preordering since it is obviously
closed under multiplication.
We solve the Membership Problem in the affirmative by looking at the possible
quadratic modules generated by one single polynomial in formal power series rings.
Since the characterization of the structure of these quadratic modules can be done
more generally over an arbitrary real closed field R instead of R we work over R
now.

For an arbitrary commutative ring A the completion ÂI with respect to an ideal
I ⊆ A is defined as the inverse limit

ÂI := lim
←−

A/In.

With În := {(gk mod Ik)k∈N ∈ ÂI | gk mod Ik = 0 (k ≤ n)} we have A/In ∼= ÂI/În
for every n ∈ N (see [E] 7.1).

For a ∈ R the formal power series ring R[[X − a]] is isomorphic to the completion

R̂[X](X−a)R[X] of R[X] with respect to the maximal ideal (X−a)R[X] ([E] Example
in Section 7.1).
R[[X−a]] is a local ring with maximal ideal (X−a)R[[X−a]] and for every element
q ∈ (X − a)R[[X − a]] we have that 1 + q is a unit and a square in R[[X − a]]. If
we say that something is true locally at a then we mean that it is true in the formal
power series ring R[[X − a]].

Remark 2.1
Every element f =

∞∑
i=0

ci(X − a)i ∈ R[[X − a]] can be written in the form

f = cd(X − a)d(1 + q)

for some uniquely determined d ∈ N0, cd 6= 0 and q ∈ (X − a)R[[X − a]].
Just let d be the minimal i ∈ N0 for which ci 6= 0 then

f = cd(X − a)d(1 +
cd+1

cd
(X − a) + ...︸ ︷︷ ︸
=:1+q

)
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Proposition 2.2
If σ ∈

∑
R[[X − a]]2 is of the form σ = cd(X − a)d(1 + q) as in the previous remark

then cd > 0 and d = 2k is even.
Furthermore

∑
R[[X − a]]2 = R[[X − a]]2.

Proof:
Without loss of generality we take a = 0.

Let σ =
m∑
i=1

h2
i with some hi ∈ R[[X]] (1 ≤ i ≤ m). Then there are for 1 ≤ i ≤ m

some di ∈ N0, c
(i)
j ∈ R for j ≥ di and c

(i)
di
6= 0 such that

hi = c
(i)
di
Xdi + c

(i)
di+1X

di+1 + ... (1 ≤ i ≤ m).

Hence for every i ∈ {1, ...,m} we have

h2
i = (c

(i)
di

)2︸ ︷︷ ︸
>0

X2di + 2c
(i)
di
c
(i)
di+1X

2di+1 + ...

By defining c̃i := (c
(i)
di

)2 > 0 for 1 ≤ i ≤ m we have

σ =
m∑
i=1

c̃iX
2di + 2c

(i)
di
c
(i)
di+1X

2di+1 + ...

Let 2k := min
1≤i≤m

2di and without loss of generality di = k for 1 ≤ i ≤ r. Then we can

sum up all the higher order terms to some q ∈ XR[[X]] as in the previous remark
and obtain

σ = (c̃1 + ...+ c̃r)X
2k(1 + q)

which proves the first claim.
In the power series ring R[[X]] we have

∑
R[[X]]2 = R[[X]]2 because for some

σ ∈
∑
R[[X]]2 we have just proved that σ = c2kX

2k(1 + q) with some c2k > 0 and
some q ∈ XR[[X]]. Hence σ = X2k · p2 ∈ R[[X]]2 for some p ∈ R[[X]].

Prop. 2.2 2

One can also see that d has to be even and cd has to be positive by looking at the
two orderings of the field R((X−a)). With respect to one ordering X−a is positive,
with respect to the other X − a is negative. As σ is a sum of squares it has to be
positive with respect to both orderings which implies the properties we want.
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Theorem 2.3
In R[[X−a]] we have the following structure of proper quadratic modules generated
by one polynomial:

QM(X − a) QM(−(X − a)2) QM(−(X − a))

QM((X − a)3)
?�

OO

( �

55kkkkkkkkkkkkkk
QM(−(X − a)4)

?�

OO

QM(−(X − a)3)
?�

OO

6 V

iiSSSSSSSSSSSSSS

QM((X − a)5)
?�

OO

( �

55kkkkkkkkkkkkkk
QM(−(X − a)6)

?�

OO

QM(−(X − a)5)
?�

OO

6 V

iiSSSSSSSSSSSSSS

R[[X − a]]2
7 W

jjUUUUUUUUUUUUUUUUU
?�

OO

' �

44iiiiiiiiiiiiiiiiii

and all these quadratic modules are included in the ordering coming from evaluation
in a which is given by R≥0 + (X − a)R[[X − a]].

Proof:
Without loss of generality we take a = 0.
Let g ∈ R[[X]]. By Remark 2.1 we have g = cdX

d(1+q) for some d ∈ N0, cd 6= 0 and
q ∈ XR[[X]]. This implies that QM(g) = QM(cdX

d) because 1+q is a square and a
unit in R[[X]]. This shows that all quadratic modules generated by one polynomial
in R[[X]] are of the form QM(±1 ·Xd) for some d ∈ N0.

The quadratic module generated by −1 is equal to R[[X]] which is not proper.
The quadratic modules of the form QM(X2k) for some k ∈ N0 are clearly equal to∑
R[[X]]2 which is by the previous proposition equal to R[[X]]2.

The inclusions
QM(X) ⊃ QM(X3) ⊃ QM(X5) ⊃ ...,

QM(−X) ⊃ QM(−X3) ⊃ QM(−X5) ⊃ ...

and
QM(−X2) ⊃ QM(−X4) ⊃ QM(−X6) ⊃ ...

are clear where each inclusion is strict as for example X2k+1 6∈ QM(X2k+3).

First we examine the connection between the first and the third column. For arbi-
trary k, l ∈ N0 we have X2k+1 6∈ QM(−X2l+1). This will be proved by contradiction.
So suppose that X2k+1 = σ0 +σ1(−X2l+1) for some σi ∈ R[[X]]2 (i = 0, 1). Then by
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the previous proposition σi = ciX
2ki(1+qi) for some ki ∈ N0, ci > 0 and qi ∈ XR[[X]]

(i = 0, 1). Thus

X2k+1 = c0X
2k0(1 + q0) + (c1X

2k1(1 + q1))(−X2l+1).

Now we get a contradiction by comparing terms of lowest degree which on the right
hand side is either even or odd but then with negative coefficient whereas the term
of lowest degree on the left hand side is odd with positive coefficient.
The same proof works the other way around so that we have

QM(X2k+1) 6⊆ QM(−X2l+1)

and
QM(−X2k+1) 6⊆ QM(X2l+1)

for every k, l ∈ N0.

For the connection between the first and the second column we note that
X2k+1 6∈QM(−X2l) if 2k + 1 < 2l. For otherwise we would have

X2k+1 = σ0 + σ1(−X2l) = s2
0 + s2

1(−X2l)

for some si ∈ R[[X]]. As the terms in s2
1(−X2l) are of degree at least 2l > 2k + 1

X2k+1 must appear in s2
0. Therefore the order of s2

0 which is even has to be of the
form 2k′ < 2k + 1. Hence on the right hand side there is a term of the form c2X2k′

which cannot be killed by terms from s2
1(−X2l) because 2k′ < 2k + 1 < 2l. Thus

QM(X2k+1) 6⊆QM(−X2l) for 2k + 1 < 2l.
However if 2k+1 > 2l then X2k+1 ∈QM(−X2l) and hence QM(X2k+1) ⊆QM(−X2l).

This is true because of the formula X2k+1 = (X
s+Xl
√

2
)2 + (1+X2(s−l)

2
)(−X2l) where we

write s = 2k + 1− l ≥ l (because 2k + 1 ≥ 2l).
Similar connections are true for the second and the third column which means that
we proved the desired structure.
That the inclusions between the first resp. third column and the middle column are
strict can be seen by the fact that −X2l 6∈ QM(±X2k+1) if 2k + 1 > 2l (which can
be proved similarly to X2k+1 6∈QM(−X2l) if 2k + 1 < 2l).
The inclusion in the stated ordering is clear.

Theorem 2.3 2

Now we return to the ring of polynomials and consider some g ∈ R[X].

For a ∈ R let orda(g) := min{k ∈ N0 | g(k)(a) 6= 0}.
In a Taylor series expansion g =

n∑
i=0

ci(X − a)i of g in a the order orda(g) appears

as the minimal index i ∈ N0 such that ci 6= 0.
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We denote the sign of corda(g) by εa(g) ∈ {±1}.

Thus considered as an element of the formal power series ring R[[X − a]] we can
write

g = εa(g)(X − a)orda(g) (εa(g)corda(g))︸ ︷︷ ︸
>0

(1 +
c2

corda(g)

(X − a) + ...)︸ ︷︷ ︸
=:1+q

with some q ∈ (X − a)R[[X − a]].

For the quadratic module generated by the images of g1, ..., gs ∈ R[X] in the formal

power series ring R[[X − a]] we use the notation Q̂Ma(g1, ..., gs) or Q̂a in case that
Q = QM(g1, ..., gs).

If Q = QM(g) then we have

Q̂a = Q̂Ma(εa(g)(X − a)orda(g)).

The image of g ∈ R[X] in the formal power series ring R[[X − a]], which is nothing
else as the Taylor series expansion of g in a, is denoted by ĝa.

With this considerations Theorem 2.3 translates into conditions which ensure that
a polynomial is locally in the quadratic module generated by another polynomial.

Corollary 2.4
Let f, g ∈ R[X] and a ∈ R. Then the following is true:

1) If orda(g) is even and εa(g) = 1 then

f̂a ∈ Q̂Ma(g) ⇔ orda(f) even and εa(f) = 1.

2) If orda(g) = 0 and εa(g) = −1 then

f̂a ∈ Q̂Ma(g) ⇔ f ∈ R[X].

3) If orda(g) > 0 is even and εa(g) = −1 then

f̂a ∈ Q̂Ma(g) ⇔ orda(f) even and εa(f) = 1 or orda(f) ≥ orda(g).

4) If orda(g) is odd then

f̂a ∈ Q̂Ma(g) ⇔ orda(f) even and εa(f) = 1 or
orda(f)− orda(g) ∈ 2N0 and εa(f) = εa(g).
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Proof:
This follows directly from the Theorem 2.3 because

Q̂Ma(f) = Q̂Ma(εa(f)(X − a)orda(f)),

Q̂Ma(g) = Q̂Ma(εa(g)(X − a)orda(g))

and f̂a ∈ Q̂Ma(g) if and only if Q̂Ma(f) ⊆ Q̂Ma(g).
Corollary 2.4 2

The first equivalence in particular means that f is locally a (sum of) square(s) if
and only if orda(f) is even and εa(f) = 1.

Since the conditions for the order and ε given in Corollary 2.4 can be formulated by
semialgebraic formulas (see Remark 2.12) the result of Corollary 2.4 means nothing
else than the definability of membership in the quadratic module in the formal power
series ring.

Corollary 2.5
If f(X,Y ) ∈ Z[X, Y ] and g(X,Z) ∈ Z[X,Z] then there is some L-formula ϕ(Y, Z)
such that for every real closed field R, every a ∈ R and any c ∈ RY , b ∈ RZ

f̂a(X, c) ∈ Q̂Ma(g(X, b)) ⇔ R |= ϕ(c, b).

With the help of the local conditions from Corollary 2.4 we are now able to answer
the question when a polynomial f is (globally) in the quadratic module generated
by another polynomial g in the case that the basic closed semialgebraic set S(g) is
a compact subset of R. In order to do so we apply a local-global principle due to
Scheiderer which essentially uses the archimedean property of the quadratic module.
This is the reason why we get our result for quadratic modules whose associated
semialgebraic set is bounded.

For the convenience of the reader we include a proof of the local-global principle for
the case n = 1 which is inspired by Marshall ([M3] Theorem 9.2.1).

The essential part of the proof are two lemmas which we will use in other situations
later on.

With Z(f) we denote the set of zeros of f .

Lemma 2.6
Let R be a real closed field, f, g1, ..., gs ∈ R[X] and Q = QM(g1, ..., gs) with associ-
ated semialgebraic set S = S(g1, ..., gs).

If f̂a ∈ Q̂a for every a ∈ Z(f) ∩ S then f ∈ Q+ f 2R[X].
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Proof:
The set Z(f) ∩ S is the basic closed semialgebraic set associated to the quadratic
module Q+ f 2R[X] = QM(g1, ..., gs,−f 2). Thus if Z(f)∩S is empty then −1 is an
element of Q+ f 2R[X] by the abstract Stellensatz for quadratic modules (Theorem
0.4) and Proposition 0.3. This implies that Q + f 2R[X] = R[X] because every
element of R[X] can be written as the difference of two squares. The conclusion of
the lemma is in this case trivially true.

From now on we suppose that Z(f) ∩ S 6= ∅.
We factorize f =

∏
p|f
pkp with p ∈ R[X] irreducible and kp ∈ N.

Then we have f 2 =
∏
p|f
p2kp .

The Chinese remainder theorem gives us R[X]/f2R[X] ∼=
∏
p|f
R[X]/p2kpR[X]. (∗)

In order to prove that f ∈ Q+f 2R[X] we first show that for every irreducible p|f the
polynomial f lies in Q+ p2kpR[X] and then use the Chinese remainder theorem. By
considering the possibilities for the irreducibles p we get the following three cases:

Case 1: p(X) = X − a for some a ∈ Z(f) ∩ S
Then by assumption f̂a ∈ Q̂a which means that there are hi ∈ R[[X − a]]

for 0 ≤ i ≤ s such that f̂a =
s∑
i=0

h2
i (̂gi)a where g0 := 1.

If hi =
∞∑
j=0

c
(i)
j (X−a)j ∈ R[[X−a]] we define hi :=

2kp∑
j=0

c
(i)
j (X−a)j ∈ R[X] for

every i ∈ {0, ..., s}. Then f :=
s∑
i=0

h
2

i gi ∈ Q and f ≡ f mod (X−a)2kpR[X]

which means that f ∈ Q+ p2kpR[X].

Case 2: p(X) = X − a for some a ∈ Z(f) \ S
This means that there is some g ∈ Q such that g(a) < 0. Hence we can write
g = −(−g(a)︸ ︷︷ ︸

>0

+q) for some q ∈ (X − a)R[[X − a]]. Thus locally ĝa = −h2

for some unit h ∈ R[[X − a]] which implies that −1 = ( 1
h
)2ĝa ∈ Q̂a. Hence

Q̂a = R[[X − a]] so that clearly f̂a ∈ Q̂a and again f ∈ Q+ p2kpR[X].

Case 3: p(X) = (X − a)2 + b2 for some a, b ∈ R and b 6= 0
In the ring R[X]/p2kpR[X] we have the identity ((X−a)2 +b2)2kp = 0 which
means that b4kp = −σ where σ is a sum of squares.
Hence −1 ∈

∑
R[X]2 + p2kpR[X] as b is a unit. Thus Q+ p2kpR[X] = R[X]

so clearly f ∈ Q+ p2kpR[X].
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Up to now we have constructed for every irreducible p|f a polynomial fp ∈ Q such
that f ≡ fp mod p2kpR[X]. By the Chinese Remainder theorem the system of
finitely many congruences for irreducible polynomials p, p̃|f

qp ≡
{

1 mod p̃2kp̃R[X] if p = p̃
0 mod p̃2kp̃R[X] if p 6= p̃

can be solved. Now we define g :=
∑
p|f
q2
pfp ∈ Q.

Then g mod p2kpR[X] ≡ fp mod p2kpR[X] ≡ f mod p2kpR[X] for every irre-
ducible p which divides f and therefore we have by (∗) f ≡ g mod f 2R[X], i.e.
f ∈ Q+ f 2R[X].

Lemma 2.6 2

Lemma 2.7 (Scheiderer, [S2] Corollary 3.11)
Let A be a commutative ring with 1, 1

2
∈ A, Q ⊆ A an archimedean quadratic

module and f ∈ A.
If f ≥ 0 on H(Q) and f ∈ Q+ f 2A then f ∈ Q.

Proof:
Since 1

2
∈ A implies that every element of A can be written as the difference of two

squares we have Q+ f 2A = Q− A2f 2. Thus

f(1 + pf) = q

for some q ∈ Q and some p ∈ A2. By assumption Q is archimedean such that for
every h ∈ A there is some N ∈ N with N ± h ∈ Q and therefore N ± h ≥ 0 on
H(Q). With t := 1 and s := −p ∈ A we have

sf + t(1 + pf) = 1

as well as f ≥ 0, 1 + pf ≥ 0 on the bounded set H(Q) ⊆ Sper(A). Hence we get by
the Basic Lemma (Theorem 0.10) some σ, τ ∈ A with

σf + τ(1 + pf) = 1 (∗)

where σ, τ > 0 on H(Q). Thus also στ > 0 on H(Q) and Kadison-Dubois (Theorem
0.9) now implies that σ and τ as well as στ are elements of Q.
By multiplying (∗) with τf we get τf = στf 2 + τ 2q ∈ Q and finally by multiplying
(∗) with f we get f = σf 2 + τf + τpf 2 ∈ Q.

Lemma 2.7 2
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In arbitrary dimension the boundedness of the semialgebraic set S(g1, .., gs) just
gives us that the preordering PO(g1, ..., gs) ⊆ R[X1, ..., Xn] is archimedean ([P-D]
Theorem 5.1.17), it does not imply that the quadratic module QM(g1, ..., gs) is
archimedean. However in dimension 1 it does. We show this with the help of the
result SemiSperR[X] = SperR[X] (Proposition 0.3). For another proof of this see
[M3] Theorem 7.1.2.

Proposition 2.8
Let g1, ..., gs ∈ R[X].
If S = S(g1, ..., gs) ⊆ R is bounded then Q = QM(g1, ..., gs) is archimedean.

Proof:
The boundedness of S implies that there is some N0 ∈ N such that

N0 −X2 > 0 on S.

Thus N0−X2 is strictly positive on H(g1, ..., gs) which is by Proposition 0.3 equal to
Hsemi(g1, ..., gs) = Hsemi(Q). Hence the abstract Stellensatz for quadratic modules
(Theorem 0.4) gives us some p ∈

∑
R[X]2 and some q ∈ Q such that

p(N0 −X2) = 1 + q.

From this we get as in the proof of iii’) ⇒ ii’) in [P-D] Theorem 5.1.18 some N1 ∈ N
such that

N1 −X2 ∈ Q.

This implies by [P-D] Corollary 5.1.14 that Q is archimedean.
Prop. 2.8 2

This proposition together with the two previous lemmas now easily give the local-
global principle of Scheiderer.

Theorem 2.9 (Scheiderer, [S2] Corollary 3.17)
Let f, g1, ..., gs ∈ R[X] and Q = QM(g1, ..., gs) with S = S(g1, ..., gs) ⊆ R bounded.

If f̂a ∈ Q̂a for every a ∈ Z(f) ∩ S and f |S ≥ 0 then f ∈ Q.

Proof:
By Lemma 2.6 we know that f ∈ Q + f 2R[X]. Proposition 2.8 implies that Q is

archimedean. Since H(Q) = S̃ we get by Lemma 2.7 that f ∈ Q.
Theorem 2.9 2
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Now we note that for isolated points a ∈ S(g)isol the order orda(g) is even and
εa(g) = −1.
For boundary points a of S(g) \ S(g)isol the order orda(g) is odd. If a is a left
boundary point we have εa(g) = 1 and if a is a right boundary point we have
εa(g) = −1.

In the case that S(g) is a not degenerated interval the result of the next theorem
can already be found in [P-R].

Theorem 2.10
Let f, g ∈ R[X] and S = S(g) ⊆ R bounded. Then f ∈ Q = QM(g) if and only if
f |S ≥ 0 and

i) for every boundary point a of S \ Sisol we have orda(f) is even or
orda(f)−orda(g) ∈ 2N0

ii) for every isolated point a of S we have orda(f) is even and εa(f) = 1 or
orda(f) ≥ orda(g).

Proof:

⇒: Since f ∈ Q we clearly have that f |S ≥ 0 and f̂a ∈ Q̂a for every a ∈ R.
If a is a boundary point of S \Sisol then orda(g) is odd so we get by Corollary
2.4 4) the desired properties of f .
If a is an isolated point of S then orda(g) is even and εa(g) = −1. Hence
Corollary 2.4 3) gives us what we need.

⇐: Let a be a zero of f in S.
If a lies in the interior of S then orda(f) must be even and εa(f) = 1 because

of the nonnegativity condition on f . This implies that f̂a is a square in the
formal power series ring at a.
If a is one of the boundary points of S \ Sisol then orda(g) is odd and we have
because of the nonnegativity condition for f on S that εa(f) = εa(g). Thus we

get by Corollary 2.4 4) under the additional assumption i) that f̂a ∈ Q̂a.
For isolated points a we finally have that orda(g) is even and εa(g) = −1 so

that we have together with assumption ii) by Corollary 2.4 3) that f̂a ∈ Q̂a.

Altogether we have shown that f̂a lies in the image of Q in the formal power
series ring R[[X − a]] for every zero a of f in S. This gives by the local-global
principle of Scheiderer (Theorem 2.9) that f ∈ Q.

Theorem 2.10 2
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Before expressing the conditions of the previous theorem by semialgebraic formulas
and solving affirmatively the Membership Problem we remark that Theorem 2.10
can also be formulated for non-singular irreducible affine curves C over R as accord-
ing to Scheiderer ([S2] Theorem 5.5) the local-global principle holds there and the
completed local rings in non-singular points are nothing else but formal power series
rings in one variable. Hence our way of reasoning works in a complete analogue for
these objects just that compact is replaced by virtually compact which means the
following. A closed semialgebraic subset S of C(R) is virtually compact if (every
irreducible component of) C has either a non-real point at infinity or a real point
at infinity which does not lie in the closure of S.

Theorem 2.11
Let C be an affine curve over R which is non-singular and irreducible. Suppose that
f, g ∈ R[C] and S = S(g) ⊆ C(R) is virtually compact.
Then f ∈ Q = QM(g) if and only if f |S ≥ 0 and

i) for every boundary point a of S \ Sisol we have orda(f) is even or
orda(f)−orda(g) ∈ 2N0

ii) for every isolated point a of S we have orda(f) is even and εa(f) = 1 or
orda(f) ≥ orda(g).

Remark 2.12
Since the order of g in a boundary point of S(g) \ S(g)isol is odd, condition i) of
Theorem 2.10 can be rewritten as

orda(f) is even or orda(f) ≥ orda(g).

This shows that both conditions of Theorem 2.10 can be expressed by semialgebraic
formulas. We state them explicitly now:
Let f = f(X, c) and g = g(X, b) for some f(X,Y ) ∈ Z[X,Y ], g(X,Z) ∈ Z[X,Z]
and coefficients c ∈ Rk and b ∈ Rl where k = |Y | and l = |Z|. Without loss of
generality let f(X, Y ) be the general polynomial of degree d where d is the degree
of f with respect to X and g(X,Z) the general polynomial of degree e where e is
the degree of g with respect to X.
This means that k = d + 1, l = e + 1, f(X, Y ) = Y0 + Y1X + ... + YdX

d and
g(X,Z) = Z0 + Z1X + ...+ ZeX

e.
The largest even number less or equal to d (respectively e) will be denoted by 2D
(respectively by 2E).
Bit by bit we express now the sufficient and necessary conditions of theorem 2.10
by first order formulas in the language of ordered rings:
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f |S(g) ≥ 0
can be expressed as

∀X (g(X, b) ≥ 0 → f(X, c) ≥ 0)
which is denoted by

R |= θe,d,sat(b, c)

a is a left boundary point of S(g) \ S(g)isol
can be expressed as

g(a, b) = 0 ∧ ∃δ > 0[∀ε ∈]0, δ[(g(a− ε, b) < 0 ∧ g(a+ ε, b) > 0)]
which is denoted by

R |= θe,lend(a, b)

a is a right boundary point of S(g) \ S(g)isol
can be expressed as

g(a, b) = 0 ∧ ∃δ > 0[∀ε ∈]0, δ[(g(a− ε, b) > 0 ∧ g(a+ ε, b) < 0)]
which is denoted by

R |= θe,rend(a, b)

a is an isolated point of S(g)
can be expressed as

g(a, b) = 0 ∧ ∃δ > 0[∀ε ∈]0, δ[ (g(a− ε, b) > 0 ∧ g(a+ ε, b) > 0)
∨ (g(a− ε, b) < 0 ∧ g(a+ ε, b) < 0)]

which is denoted by
R |= θe,iso(a, b)

To express the order of f or g in a point a we use the definition by derivatives and
remark that orda(f) ≤ d and orda(g) ≤ e:

k = orda(f)
can be expressed as

f(a, c) = 0 ∧ f ′(a, c) = 0 ∧ ... ∧ f (k−1)(a, c) = 0 ∧ f (k)(a, c) 6= 0
or equivalently by

c0 + c1a+ ...+ cda
d = 0 ∧ c1 + 2c2a+ ...+ dcda

d−1 = 0 ∧ ...
...∧k(k−1) · · · 2 ·1 · ck +(k+1)k · · · 2 · ck+1a+ ...+d(d−1) · · · (d−k+1)cda

d−k 6= 0
which we denote by

R |= θd,ord,k(a, c)

If we in addition want to have that f (k)(a) > 0 we denote the corresponding formula
by θd,ord,k,+.
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Now condition i) of the Theorem 2.10 can be expressed as

∀a[ (θe,lend(a, b) ∨ θe,rend(a, b))
→ (θd,ord,0(a, c) ∨ θd,ord,2(a, c) ∨ ... ∨ θd,ord,2D(a, c) ∨ θd,e,ord,≥(a, b, c))]

where θd,e,ord,≥(a, b, c) is the finite disjunction of the formulas

θe,ord,0(a, b) → (θd,ord,0(a, c) ∨ ... ∨ θd,ord,d(a, c)),

θe,ord,1(a, b) → (θd,ord,1(a, c) ∨ ... ∨ θd,ord,d(a, c))
up to

θe,ord,d(a, b) → θd,ord,d(a, c).

Condition ii) of Theorem 2.10 becomes

∀a( θe,iso(a, b)
→ (θd,ord,0,+(a, c) ∨ θd,ord,2,+(a, c) ∨ ... ∨ θd,ord,2D,+(a, c) ∨ θd,e,ord,≥(a, b, c)))

This altogether even shows that for given general polynomials f(X, Y ) ∈ Z[X,Y ]
and g(X,Z) ∈ Z[X,Y ] of degree d and e there is a semialgebraic formula φ(Y, Z)
which has parameters just from Z such that for c ∈ RY , b ∈ RZ the following is true

f(X, c) ∈ QM(g(X, b)) ⇔ R |= φ(c, b)

Now we are able to prove that the Membership Problem is solvable affirmatively
for the special case that we are in dimension one over the reals and the quadratic
module is generated by a single polynomial.

Theorem 2.13
For g ∈ R[X] the quadratic module QM(g) is weakly semialgebraic.

Proof:
We consider the basic closed semialgebraic set S(g).
If S(g) is not bounded we know by the stability theorem of Kuhlmann/Marshall
or Powers/Scheiderer (Corollary 1.14) that QM(g) is stable and therefore weakly
semialgebraic as explained in Section 1.2.
If S(g) is bounded we know by Theorem 2.10 that QM(g) is weakly semialgebraic.

Theorem 2.13 2

Corollary 2.14
If g(X) ∈ R[X] and the input data is computable then the Membership Problem is
solvable affirmatively for QM(g).
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The consideration made above about the defining formulas show in particular the
following uniform version of the positive solution of the Membership Problem.

Corollary 2.15
If f(X, Y ) ∈ Z[X,Y ] and g(X,Z) ∈ Z[X,Z] then there is an L-formula ϕ(Y, Z)
such that we have for every real closed subfield R of R and any c ∈ RY , b ∈ RZ

f(X, c) ∈ QMR[X](g(X, b)) ⇔ R |= ϕ(c, b).

Proof:
With θ(Z) := ∃r[∀X(g(X,Z) ≥ 0 → X2 ≤ r)] we define

ϕ(Y, Z) := (θ(Z) → φ(Y, Z)) ∨ (¬θ(Z) → ϑstab(Y, Z))

with φ(Y, Z) from Remark 2.12 and ϑstab(Y, Z) from the part about stable quadratic
modules in Section 1.2. Then we have as in the proof of Theorem 2.13 that for
c ∈ RY , b ∈ RZ

f(X, c) ∈ QMR[X](g(X, b)) ⇔ R |= ϕ(c, b).

Let now R be an arbitrary real closed subfield of R and c ∈ RY as well as b ∈ RZ .
If f(X, c) ∈ QMR[X](g(X, b)) then we have by QMR[X](g(X, b)) ⊆ QMR[X](g(X, b))
that R |= ϕ(c, b). Since R is an elementary extension of R and b and c are from R
we also have R |= ϕ(c, b).
If on the other hand R |= ϕ(c, b) then again by the property of being an elementary
extension we know that R |= ϕ(c, b) and thus f(X, c) ∈ QMR[X](g(X, b)) ∩ R[X].

Thus we have R |= ∃W (∀X(f(X, c) =
k0∑
j=1

Fd0(X,W )2 +
k1∑
j=1

Fd1(X,W )2g(X, b))) for

certain ki, di ∈ N where Fdi
(X,W ) is the general polynomial of degree di with re-

spect to X (i = 0, 1). By the Tarski transfer principle (Theorem 0.7) this formula
is also true for R which finally implies that f(X, c) ∈ QMR[X](g(X, c)).

Corollary 2.15 2

Now we consider an arbitrary finitely generated quadratic module Q = QM(G) of

R[X] for some G = {g1, ..., gs} ⊆ R[X]. The description of Q̂a ⊆ R[[X − a]] for
some a ∈ R will depend on the following values:

ka(G) := min
1≤i≤s

{orda(gi) | orda(gi) even, εa(gi) = −1}
k+
a (G) := min

1≤i≤s
{orda(gi) | orda(gi) odd, εa(gi) = 1}

k−a (G) := min
1≤i≤s

{orda(gi) | orda(gi) odd, εa(gi) = −1}

In any of the three cases we define k+
a (G), k−a (G) and ka(G) to be ∞ if the corre-

sponding set is empty.
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How does Q̂a look like?
We have to distinguish the following cases.

Remark 2.16
Let G = {g1, ..., gs} ⊆ R[X] and Q = QM(G).

Case 1: ka(G) = k+
a (G) = k−a (G) = ∞ ⇒ Q̂a = R[[X − a]]2

Case 2: k+
a (G) <∞, ka(G) = k−a (G) = ∞ ⇒ Q̂a = Q̂Ma((X − a)k

+
a (G))

Case 3: k−a (G) <∞, ka(G) = k+
a (G) = ∞ ⇒ Q̂a = Q̂Ma(−(X − a)k

−
a (G))

Case 4: ka(G) <∞, k+
a (G) = k−a (G) = ∞ ⇒ Q̂a = Q̂Ma(−(X − a)ka(G))

Case 5: k+
a (G), k−a (G) <∞, ka(G) = ∞⇒ Q̂a = Q̂Ma((X−a)k

+
a (G),−(X−a)k−a (G))

Case 6: ka(G), k−a (G) <∞, k+
a (G) = ∞

Case 6a: ka(G) < k−a (G) ⇒ Q̂a = Q̂Ma(−(X − a)ka(G))

Case 6b: ka(G) > k−a (G) ⇒ Q̂a = Q̂Ma(−(X − a)k
−
a (G),−(X − a)ka(G))

Case 7: ka(G), k+
a (G) <∞, k−a (G) = ∞

Case 7a: ka(G) < k+
a (G) ⇒ Q̂a = Q̂Ma(−(X − a)ka(G))

Case 7b: ka(G) > k+
a (G) ⇒ Q̂a = Q̂Ma((X − a)k

+
a (G),−(X − a)ka(G))

Case 8: ka(G), k+
a (G), k−a (G) <∞

Case 8a: ka(G) < k+
a (G), k−a (G) ⇒ Q̂a = Q̂Ma(−(X − a)ka(G))

Case 8b: k+
a (G) < ka(G) < k−a (G) ⇒ Q̂a = Q̂Ma((X − a)k

+
a (G),−(X − a)ka(G))

Case 8c: k−a (G) < ka(G) < k+
a (G) ⇒ Q̂a = Q̂Ma(−(X−a)k−a (G),−(X−a)ka(G))

Case 8d: ka(G) > k+
a (G), k−a (G) ⇒ Q̂a = Q̂Ma((X − a)k

+
a (G),−(X − a)k

−
a (G))

In every case the given representation of Q̂a follows immediately from Theorem 2.3
with the description of the inclusions between the three columns and the fact that
±(X − a)l ∈ Q̂a for some l ∈ N if and only if Q̂Ma(±(X − a)l) ⊆ Q̂a.

We illustrate some cases by examples for a = 0 and indicate by bold letters the
quadratic modules respectively elements lying in the given quadratic module:
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Case 2: Q̂M0(X
3, X7) = Q̂M0(X

3)

QM(X) QM(−X2) QM(−X)

QM(X3)

�
�
�

pppppp
QM(−X4)

�
�
�

QM(−X3)

O O O O O O

�
�
�

QM(X5)

pppppp
QM(−X6)

�
�
�

QM(−X5)

O O O O O O

�
�
�

�
�
�

�
�
�

Case 5: Q̂M0(X
5,−X3, X9,−X5) = Q̂M0(X

5,−X3)

QM(X) QM(−X2) QM(−X)

QM(X3)

�
�
�

pppppp
QM(−X4)

�
�
�

QM(−X3)

O O O O O O

�
�
�

QM(X5)

�
�
�

pppppp
QM(−X6)

�
�
�

QM(−X5)

O O O O O O

Case 8a: Q̂M0(X
5,−X4,−X5) = Q̂M0(−X4)

QM(X) QM(−X2) QM(−X)

QM(X3)

�
�
�

pppppp
QM(−X4)

�
�
�

QM(−X3)

O O O O O O

�
�
�

QM(X5)

�
�
�

ppppppppppp
QM(−X6) QM(−X5)

OOOOOOOOOOO

�
�
�
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Case 8b: Q̂M0(X,−X6,−X7) = Q̂M0(X,−X6)

QM(X) QM(−X2) QM(−X)

QM(X3)

pppppp
QM(−X4)

�
�
�

QM(−X3)

O O O O O O

�
�
�

QM(X5)

pppppp
QM(−X6)

�
�
�

QM(−X5)

O O O O O O

�
�
�

QM(X7)

ppppppppppp
QM(−X8) QM(−X7)

OOOOOOOOOOO

�
�
�

Case 8d: Q̂M0(X
3,−X4,−X3) = Q̂M0(X

3,−X3)

QM(X) QM(−X2) QM(−X)

QM(X3)

�
�
�

pppppp
QM(−X4)

�
�
�

QM(−X3)

O O O O O O

�
�
�

QM(X5)

ppppppppppp
QM(−X6) QM(−X5)

OOOOOOOOOOO

Before we formulate the generalization of Theorem 2.10 for the finitely generated
case we observe that the finitely generated quadratic modules in R[[X − a]] listed
above are all closed under multiplication which has the following nice consequence
which has already been observed by Scheiderer ([S4] Corollary 4.4).

Theorem 2.17
Let g1, ..., gs ∈ R[X] with S = S(g1, ..., gs) ⊆ R bounded.
Then the quadratic module Q = QM(g1, ..., gs) is closed under multiplication and
thus Q = PO(g1, ..., gs).

Proof:
For abbreviation we write G := {g1, ..., gs}.
We consider some f1, f2 ∈ Q and show that f1f2 ∈ Q.
Since f1 and f2 are elements of Q we certainly have that fi|S ≥ 0 for i = 1, 2 and
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thus also f1f2|S ≥ 0.

Furthermore for every zero a of f1f2 in S we have (̂fi)a ∈ Q̂a (i = 1, 2).

Q̂a equals one of the quadratic modules given in Remark 2.16. Any of them is closed
under multiplication.
For example if Q̂a equals Q̂Ma((X − a)k

+
a (G), (X − a)k

−
a (G)) from case 8d then

we have (X − a)k
+
a (G)(X − a)k

−
a (G) ∈ Q̂Ma((X − a)k

+
a (G), (X − a)k

−
a (G)) because

Q̂Ma((X − a)k
+
a (G)(X − a)k

−
a (G)) ⊆ Q̂Ma((X − a)k

+
a (G), (X − a)k

−
a (G)) according to

Theorem 2.3.
The closure of the quadratic modules in all the other cases also follows easily with
the help of Theorem 2.3.

Hence we have (̂f1f2)a ∈ Q̂a for every a ∈ Z(f1f2) ∩ S which now implies by the
local-global principle of Scheiderer (Theorem 2.9) that f1f2 ∈ Q.

Theorem 2.17 2

From now on we always keep in mind that whenever we deal with a finitely gen-
erated quadratic module Q ⊆ R[X] whose associated semialgebraic set is bounded
then Q is in fact a preordering.

The next theorem characterizes the membership in such finitely generated quadratic
modules.

Theorem 2.18
Let f ∈ R[X] and G = {g1, ..., gs} ⊆ R[X] with S = S(G) ⊆ R bounded.
Then f ∈ Q = QM(G) if and only if f |S ≥ 0 and

i) for every left boundary point a of S \ Sisol we have orda(f) is even or
orda(f)− k+

a (G) ∈ 2N0

ii) for every right boundary point a of S \ Sisol we have orda(f) is even or
orda(f)− k−a (G) ∈ 2N0

iii) for every isolated point a of S we have orda(f) is even and εa(f) = 1 or

Case 1: orda(f) ≥ ka(G) if ka(G) < k+
a (G) and ka(G) < k−a (G).

Case 2: (orda(f)− k+
a (G) ∈ 2N0 and εa(f) = 1) or orda(f) ≥ min(ka(G), k−a (G))

if k+
a (G) ≤ min(ka(G), k−a (G)).

Case 3: (orda(f)−k−a (G) ∈ 2N0 and εa(f) = −1) or orda(f) ≥ min(ka(G), k+
a (G))

if k−a (G) ≤ min(ka(G), k+
a (G)).
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Proof:
This follows with a similar argument as in Theorem 2.10 from the description of
Q̂Ma(g1, ..., gs) given in Remark 2.16 and the local-global principle of Scheiderer
(Theorem 2.9) if we consider the following.
If a is a left boundary point of S \ Sisol then there is some i ∈ {1, ..., s} such that
orda(gi) is odd and εa(gi) = 1. For all other j 6= i we must either also have orda(gj)
odd and εa(gj) = 1 or in the other case orda(gj) even and εa(gj) = 1. In both cases

we are in case 2 of Remark 2.16. Hence Q̂Ma(g1, ..., gs) = Q̂Ma((X − a)k
+
a (G)).

Similar considerations show ii).
In the case of an isolated point there is either some 1 ≤ i ≤ s such that orda(gi)
is even and εa(gi) = −1 which means that ka(G) <∞ or at least two of the values
ka(G), k+

a (G) and k−a (G) are less than infinity. Now depending on the relation be-
tween k+

a (G), k−a (G) and ka(G) we are in case 4, 5, 6, 7 or 8 of Remark 2.16 which
covers the cases listed in iii).

Theorem 2.18 2

Now we distinguish the isolated points in the following way.

Let G = {g1, ..., gs} ⊆ R[X], S = S(G) and a ∈ Sisol.
We say that a is an isolated point of type

A (for G) if ka(G) < k+
a (G) and ka(G) < k−a (G)

r

B (for G) if ka(G) > k+
a (G) and ka(G) > k−a (G)

r��

�
�

@
@

@
@

C (for G) if k+
a (G) < ka(G) < k−a (G)

r��

�
�

D (for G) if k−a (G) < ka(G) < k+
a (G)

r
@

@

@
@

On the right hand side we illustrated for each type how typical generators of that
type of an isolated point behave in a neighborhood of that point.
We note that the order conditions for the isolated points given in Theorem 2.18 just
depend on one or two of the values ka(G), ka(G)+, ka(G)−. The type of the isolated
point decides which of the values are needed.
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We give another formulation of Theorem 2.18 which makes the case differentiation
in iii) according to the type of the isolated point.

Corollary 2.19
Let f ∈ R[X] and G = {g1, ..., gs} ⊆ R[X] with S = S(G) ⊆ R bounded.
Then f ∈ Q = QM(G) if and only if f |S ≥ 0 and

i) for every left boundary point a of S \ Sisol we have orda(f) is even or
orda(f)− k+

a (G) ∈ 2N0

ii) for every right boundary point a of S \ Sisol we have orda(f) is even or
orda(f)− k−a (G) ∈ 2N0

iii) for every isolated point a of S we have orda(f) is even and εa(f) = 1 or

Type A: orda(f) ≥ ka(G)
if ka(G) < k+

a (G) and ka(G) < k−a (G).

Type B1: (orda(f)− k+
a (G) ∈ 2N0 and εa(f) = 1) or orda(f) ≥ k−a (G)

if k+
a (G) ≤ k−a (G) < ka(G).

Type B2: (orda(f)− k−a (G) ∈ 2N0 and εa(f) = −1) or orda(f) ≥ k+
a (G)

if k−a (G) < k+
a (G) < ka(G).

Type C: (orda(f)− k+
a (G) ∈ 2N0 and εa(f) = 1) or orda(f) ≥ ka(G)

if k+
a (G) < ka(G) < k−a (G).

Type D: (orda(f)− k−a (G) ∈ 2N0 and εa(f) = −1) or orda(f) ≥ ka(G)
if k−a (G) < ka(G) < k+

a (G).

Theorem 2.18 immediately implies that QM(g1, ..., gs) ⊆ R[X] is weakly semialge-
braic.

Theorem 2.20
For g1, ..., gs ∈ R[X] the quadratic module QM(g1, ..., gs) is weakly semialgebraic.

Proof:
As in the proof of 2.13 the non bounded case is covered by the stability theorem of
Kuhlmann/Marshall or Powers/Scheiderer (Corollary 1.14) and the bounded case
by the previous theorem.

Theorem 2.20 2

Completely similar to the case of one generator we can deduce the following two
corollaries.
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Corollary 2.21
If g1, ..., gs ∈ R[X] and the input data is computable then the Membership Problem
is solvable affirmatively for QM(g1, ..., gs).

Corollary 2.22
For f(X,Y ) ∈ Z[X, Y ], g1(X,Z), ..., gs(X,Z) ∈ Z[X,Z] there is some L-formula
ϕ(Y, Z) such that for every real closed subfield R of R and any c ∈ RY , b ∈ RZ

f(X, c) ∈ QMR[X](g1(X, b), ..., gs(X, b)) ⇔ R |= ϕ(c, b).

Now we deduce other corollaries from Theorem 2.18.

One corollary characterizes when a finitely generated quadratic module in dimension
1 with bounded associated semialgebraic set is saturated which can be found in
[K-M-S].

Corollary 2.23 (Kuhlmann, Marshall, Schwartz, [K-M-S] Theorem 3.2)
Let g1, ..., gs ∈ R[X] and S = S(g1, ..., gs) ⊆ R bounded.
Then QM(g1, ..., gs) is saturated if and only if

i) for every boundary point a of a S \ Sisol there is some i ∈ {1, ..., s} with
orda(gi) = 1.

ii) for every isolated point a of S there is a pair (i, j) ∈ {1, ..., s}× {1, ..., s} with
orda(gi) = orda(gj) = 1 and εa(gi) 6= εa(gj).

Proof:
This is clear since in any other case we can by Theorem 2.18 construct a polynomial
f which is nonnegative on S but not in QM(g1, ...gs).

Corollary 2.23 2

Another corollary is the famous Theorem of Schmüdgen for the one dimensional
case since strictly positive polynomials trivially satisfy the conditions of Theorem
2.18.

Corollary 2.24 (Schmüdgen, [Sm] Corollary 3)
Let f, g1, ..., gs ∈ R[X] and S = S(g1, ..., gs) ⊆ R bounded.
If f |S > 0 then f ∈ QM(g1, ..., gs) = PO(g1, ..., gs).
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Theorem 2.18 furthermore implies that a finitely generated quadratic moduleQM(G)
of R[X] with nonempty bounded semialgebraic set S(G) is completely determined
by a natural number m ∈ N and two vectors ~σ ∈ R2m and ~ω ∈ N2m.

We will explain this after we have generalized the set of natural generators which
we introduced in Section 1.2.

If the nonempty compact semialgebraic set S ⊆ R is written as S =
m⋃
i=1

[ai, bi] for

some ai, bi ∈ R with ai ≤ bi for 1 ≤ i ≤ m and bi < ai+1 (1 ≤ i ≤ m − 1) then the
set of natural generators of P(S) is given as

Nat(S) = {(X − bi)(X − ai+1) | 0 ≤ i ≤ m}

where b0 := −∞, am+1 := ∞, X − (−∞) := 1 and X −∞ := −1.

In Theorem 1.6 we have shown that the finite set Nat(S) generates the saturation
P(S) = {f ∈ R[X] | f |S ≥ 0} of S. We will give a generalization of this by con-
sidering preorderings whose members satisfy in addition to the nonnegativity on S
order conditions as in Theorem 2.18.

For m ∈ N we define Svec(m) as

{(a1, b1, ..., am, bm) ∈ R2m | ai ≤ bi (1 ≤ i ≤ m) and bi < ai+1 (1 ≤ i ≤ m− 1)}

such that an element of Svec(m) is nothing else but the vector of endpoints of the in-
tervals of some compact semialgebraic subset of R written in increasing order where
isolated points are considered as degenerated intervals.

If ~σ ∈ Svec(m) then we denote the corresponding semialgebraic subset of R by S(~σ).

The other way round S =
m⋃
i=1

[ai, bi] ⊆ R decomposed in its connected components

in increasing order defines ~σ(S) := (a1, b1, ..., am, bm) ∈ Svec(m).

For ~σ ∈ Svec(m) a vector

~ω := (l1, r1, ..., lm, rm) ∈ N2m

lies in Ωvec(~σ) if and only if

li and ri are odd if ai < bi

and
min(ri, li) is odd or ri = li is even if ai = bi.

A vector ~ω ∈ Ωvec(~σ) represents order conditions attached to the elements of ~σ.
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For (~σ, ~ω) ∈ Svec(m)× Ωvec(~σ) we define the preordering P(~σ, ~ω) as follows.

Let f ∈ R[X]. Then

f ∈ P(~σ, ~ω) :⇔ f |S(~σ) ≥ 0 and for every 1 ≤ i ≤ m
if ai < bi :
(ordai

(f) even or ordai
(f) ≥ li) and

(ordbi(f) even or ordbi(f) ≥ ri)
if ai = bi :
ordai

(f) even and εai
(f) = 1 or

if li = ri even:
ordai

(f) ≥ li
if min(li, ri) = li odd:

(ordai
(f)− li ∈ 2N0 and εai

(f) = 1) or ordai
(f) ≥ ri

if min(li, ri) = ri odd:
(ordai

(f)− ri ∈ 2N0 and εai
(f) = −1) or ordai

(f) ≥ li

Lemma 2.25
If (~σ, ~ω) ∈ Svec(m)× Ωvec(~σ) for some m ∈ N then P(~σ, ~ω) is a preordering.

Proof:
Clearly R[X]2 ⊆ P(~σ, ~ω) because squares are nonnegative on R and the order orda(f)
of some square f is even and εa(f) = 1 for every a ∈ R.

In order to show that P(~σ, ~ω) is closed under addition we restrict ourselves to the
case that f, g ∈ P(~σ, ~ω) and ordai

(f) = ordai
(g) for some 1 ≤ i ≤ m.

The considerations for bi are similar and if the order is not equal then we have
ordai

(f + g) = min{ordai
(f), ordai

(g)} which easily gives that f + g ∈ P(~σ, ~ω).
By going through the different cases from the definition of P(~σ, ~ω) it is also for
ordai

(f) = ordai
(g) not hard to prove that f + g ∈ P(~σ, ~ω).

Exemplarily we check the case ai = bi and min(li, ri) = li odd.
If ordai

(f) ≥ ri then also ordai
(f + g) ≥ ordai

(f) ≥ ri.
Now suppose that ordai

(f) < ri.
If ordai

(f)− li ∈ 2N0 and εai
(f) = 1 then the same is true for g which implies that

also ordai
(f + g)− li ∈ 2N0 and εai

(f + g) = 1 since no cancelation can occur.
If otherwise orda(f) is even and εa(f) = 1 then also orda(g) even and εa(g) = 1
which gives the same for f + g.

Also for the closure under multiplication one has to check that f, g ∈ P(~σ, ~ω) implies
that fg ∈ P(~σ, ~ω) for the different possibilities of entries in ~σ and ~ω. Most of the
cases are easy to check.
We show the closure for the case ai = bi and min(li, ri) = ri odd.
If ordai

(f) ≥ li then also ordai
(fg) = ordai

(f)+ ordai
(g) ≥ ordai

(f) ≥ li.
Now we suppose that ordai

(f) < li and ordai
(f)− ri ∈ 2N0 as well as εai

(f) = −1.
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If also ordai
(g)− ri ∈ 2N0 and εai

(g) = −1 then ordai
(fg) even and εai

(fg) = 1.
If ordai

(g) even and εai
(g) = 1 then ordai

(fg)− ri ∈ 2N0 and εai
(fg) = −1.

Finally if ordai
(g) ≥ li then similar to above ordai

(fg) ≥ li.
Lemma 2.25 2

If S =
m⋃
i=1

[ai, bi] is equal to S(~σ) for some ~σ ∈ Svec(m) then the saturation P(S(~σ))

is equal to P(~σ, ~ω) with ~ω := (1, 1, ..., 1, 1).

For the definition of the set of generalized natural generators for P(~σ, ~ω) we use the
vector

~ω± := (ω1, ω
+
1 , ω

−
1 , ..., ωm, ω

+
m, ω

−
m)

which we call the complete vector of orders associated to ~ω. It is uniquely determined
by ~ω as follows.
For 1 ≤ i ≤ m we define

ωi := ω+
i := ω−i := Type

if ai < bi : ∞ li ri
if ai = bi :

if li = ri even : li li + 1 li + 1 A
if li, ri odd : max(li, ri) + 1 li ri B
if li < ri, li odd and ri even : ri li ri + 1 C
if ri < li, ri odd and li even : li li + 1 ri D

In the last row we classify the isolated points in correspondence with the classifica-
tion from Corollary 2.19.

We note that there is no additional information in ~ω± which is not yet in ~ω and we
can get back the vector ~ω from ~ω±.
The information necessary to define P(~σ, ~ω) is given by ~σ ∈ Svec(m) for some m ∈ N
and ~ω ∈ Ωvec(~σ). However it is sometimes easier and clearer to work with ~ω± instead
of ~ω.
The advantage of ~ω± is that for some isolated point ai of S(~σ) the entry ωi (resp. ω+

i ,
resp. ω−i ) is defined such that for some f ∈ R[X] with ordai

(f) even and εai
(f) = −1

(resp. ordai
(f) odd and εai

(f) = 1, resp. ordai
(f) odd and εai

(f) = −1) the con-
dition for being an element of P(~σ, ~ω) is given by ordai

(f) ≥ ωi (resp. ≥ ω+
i , resp.

≥ ω−i ). This covers the conditions for all possible order behavior of f in ai because
we do not need a lower bound for the case that ordai

(f) is even and εai
(f) = 1.

In order to avoid case differentiations we will use ~ω± instead of ~ω at certain points.
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In the following table we state what kind of entries a vector of orders

~ω = (l1, r1, ..., lm, rm) ∈ Ωvec(m)

and a complete vector of orders

~ω± = (ω1, ω
+
1 , ω

−
1 , ..., ωm, ω

+
m, ω

−
m)

associated to some vector from Ωvec(m) can have.

Before we do so we note that in ~ω± the entry ωi is even and ω+
i , ω

−
i are odd for every

1 ≤ i ≤ m.

entry in ~ω entry in ~ω±
if ai < bi li, ri odd ωi = ∞
if ai = bi Type A li = ri even ω+

i = ω−i = ωi + 1
Type B li, ri odd ωi = max(ω+

i , ω
−
i ) + 1

Type C li < ri, li odd, ri even ω+
i < ωi, ω

−
i = ωi + 1

Type D li > ri, li even, ri odd ω−i < ωi, ω
+
i = ωi + 1

For some (~σ, ~ω) ∈ Svec(m) × Ωvec(σ) we define now the set of generalized natural
generators of P(~σ, ~ω) by using the associated complete vector of orders ~ω±.

Nat(~σ, ~ω)

is defined as the union of

{(X − bi)
ω−i (X − ai+1)

ω+
i+1 | 0 ≤ i ≤ m}

and

{(X − bi−1)
ω−i−1(X − ai)

ωi(X − ai+1)
ω+

i+1 | 1 ≤ i ≤ m, ai = bi not of type B}

where b0 := −∞, am+1 := ∞, (X − (−∞))ω
−
0 := 1 and (X −∞)ω

+
m+1 := −1.

The exclusion of isolated points of type B in the second set effects that Nat(S(~σ))
is equal for Nat(~σ, ~ω) with ~ω = (1, 1, ..., 1, 1).

The finite set Nat(~σ, ~ω) is in general not a minimal set of generators of P(~σ, ~ω)
regarding the number of elements but it is minimal what the degree of the elements
concerns. We come back to the question of the minimal number of generators later
on in this section.

Now we generalize the result P(S) = Nat(S) of Theorem 1.6 and show that the set
Nat(~σ, ~ω) generates the preordering P(~σ, ~ω).
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Theorem 2.26
If (~σ, ~ω) ∈ Svec(m)× Ωvec(~σ) for some m ∈ N then

P(~σ, ~ω) = PO(Nat(~σ, ~ω)).

Proof:
This is an immediate consequence of Theorem 2.18 and the definition of P (~σ, ~ω).
With G := Nat(~σ, ~ω) we have S(G) = S(~σ).
By definition of ~ω± and G the following is true.
For every left boundary point ai of S(~σ) \ S(~σ)isol we have

k+
ai

(G) = ω+
i = li.

For every right boundary point bi of S(~σ) \ S(~σ)isol we have

k−bi(G) = ω−i = ri.

For every isolated point ai of S(~σ) we have

k+
ai

(G) = ω+
i and k−ai

(G) = ω−i

and if ai is not of type B then
kai

(G) = ωi.

For an isolated point ai of type B we have

kai
(G) = ∞.

If li = ri even then

kai
(G) = li < li + 1 = k+

ai
(G) and kai

(G) = li < li + 1 = k−ai
(G).

If min(li, ri) = li odd then

k+
ai

(G) = li ≤ ri = min(k−ai
(G), kai

(G)).

If min(li, ri) = ri odd then

k−ai
(G) = ri ≤ li = min(k+

ai
(G), kai

(G)).

By comparing the definition of P (~σ, ~ω) with Theorem 2.18 we see that P(~σ, ~ω) is
equal to PO(Nat(~σ, ~ω)).

Theorem 2.26 2
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Let G = {g1, ..., gs} ⊆ R[X] with ∅ 6= S(G) ⊆ R bounded and

~σ(S(G)) = (a1, b1, ..., am, bm) ∈ Svec(m)

for some m ∈ N.

Then we define the vector of orders

~ω(G) = (l1, r1, ..., lm, rn) ∈ Ωvec(~σ(S(G)))

associated to G by

li :=

{
k+
ai

(G) if ai < bi or (ai = bi of type B or C)
kai

(G) if ai = bi of type A or D

and

ri :=

{
k−bi(G) if ai < bi or (ai = bi of type B or D)
kbi(G) if ai = bi of type A or C

for 1 ≤ i ≤ m.

Hence the complete vector of orders

~ω±(G) = (ω1, ω
+
1 , ω

−
1 , ..., ωm, ω

+
m, ω

−
m)

associated to G is given as follows.

For boundary points ai < bi of S(G) \ S(G)isol we have

ωi = ∞, ω+
i = k+

ai
(G), ω−i = k−bi(G).

For isolated points ai = bi of S(G) we have

ωi = ω+
i = ω−i =

kai
(G) kai

(G) + 1 kai
(G) + 1 if ai is of type A

max(kai
(G)+, kai

(G)−) + 1 kai
(G)+ kai

(G)− if ai is of type B
kai

(G) kai
(G)+ kai

(G) + 1 if ai is of type C
kai

(G) kai
(G) + 1 kai

(G)− if ai is of type D

With these definitions we can show that all the information needed to describe a
finitely generated quadratic module of R[X] with nonempty bounded associated set
is contained in two vectors.

56



Corollary 2.27
There is a bijection between

{Q ⊆ R[X] | Q = QM(G) for some finite set G and ∅ 6= S(G) bounded}

and
{(~σ, ~ω) | (~σ, ~ω) ∈ Svec(m)× Ωvec(~σ) for some m ∈ N}.

Proof:
If G ⊆ R[X] is finite and Q = QM(G) with ∅ 6= S(G) bounded then ~σ(S(G)) is in
Svec(m) for some m ∈ N and by definition ~ω(G) ∈ Ωvec(~σ(S(G))).

If (~σ, ~ω) ∈ Svec(m)× Ωvec(~σ) for some m ∈ N then S(~σ) is nonempty and bounded.
The associated finitely generated quadratic module which is in fact a preordering is
given by P(~σ, ~ω) = PO(Nat(~σ, ~ω)) (Theorem 2.26). As S(Nat(~σ, ~ω)) = S(~σ) and
Nat(~σ, ~ω) is finite we know by Theorem 2.17 that P(~σ, ~ω) = QM(Nat(~σ, ~ω)).

The fact that these mappings are inverse to each other follows from Theorem 2.18
whose content is exactly that P(~σ(S(G)), ~ω(G)) = Q if Q = QM(G) for some fi-
nite set G ⊆ R[X] with ∅ 6= S(G) ⊆ R bounded. Furthermore we clearly have
~σ(S(~σ)) = ~σ and ~ω(Nat(~σ, ~ω)) = ~ω if (~σ, ~ω) ∈ Svec(m)× Ωvec(~σ) for some m ∈ N.

Corollary 2.27 2

This correspondence immediately implies that for every finitely generated quadratic
module Q = QM(G) ⊆ R[X] with nonempty bounded set S(G) there is a set of
generalized natural generators of Q.

Corollary 2.28
Let G be a finite subset of R[X] such that ∅ 6= S(G) ⊆ R is bounded.
Then the set of generalized natural generators Nat(~σ(S(G)), ~ω(G)) has the property
that

QM(G) = PO(G) = PO(Nat(~σ(S(G)), ~ω(G))) = QM(Nat(~σ(S(G)), ~ω(G))).

Proof:
This follows with the correspondence described in the previous corollary from The-
orem 2.26 and Theorem 2.17.

Corollary 2.28 2

Now we deal with the question how many generators we actually need to generate a
finitely generated quadratic module Q = QM(G) in R[X] if S(G) 6= ∅ is bounded.
In some cases we just need one generator.
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Corollary 2.29
Let G ⊆ R[X] be finite and Q = QM(G) such that S = S(G) is not empty and
bounded.
Then the following are equivalent:

i) Q is generated by one polynomial.

ii) Every isolated point of S is of type A.

If one of the equivalent conditions is satisfied then

Q = QM(−
m∏

i=1
ai<bi

(X − ai)
k+

ai
(G)(X − bi)

k−bi
(G)

m∏
i=1

ai=bi

(X − ai)
kai (G))

where (a1, b1, ..., am, bm) = ~σ(S).

Proof:
If Q is generated by one polynomial then every a ∈ Sisol must be of type A since
for every other type at least two of the values ka(G), k+

a (G) and k−a (G) must be less
than infinity. This cannot be realized by just one generator.

Now we suppose that every isolated point of S is of type A. Then the polynomial

g := −
m∏

i=1
ai<bi

(X − ai)
k+

ai
(G)(X − bi)

k−bi
(G)

m∏
i=1

ai=bi

(X − ai)
kai (G)

has the same nonnegativity set as G and we have ~ω(g) = ~ω(G). Thus by Corollary
2.27 Q = P(~σ(S(G)), ~ω(G)) = P(~σ(S(g)), ~ω(g)) = QM(g).

Corollary 2.29 2

If there is at least one isolated point in S = S(G) of type B,C or D then we need
at least two generators for Q = QM(G). For the case that S is an interval or a
point Q can be generated by at most two generators which we state in the following
remark.

Remark 2.30
Let G ⊆ R[X] be finite, Q = QM(G) and S = S(G).
Then

Q = QM(Gmin)

where Gmin is given as follows.
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If S = [a, b] for some a, b ∈ R with a < b then

Gmin = {−(X − a)k
+
a (G)(X − b)k

−
b (G)}

If S = {a} for some a ∈ R then we have the following cases according to the type
of the isolated point a.

If a is of type A, i.e. ka(G) < k+
a (G) and ka(G) < k−a (G) then

Gmin = {−(X − a)ka(G)}.

If a is of type B, i.e. ka(G) > k+
a (G) and ka(G) > k−a (G) then

Gmin = {(X − a)k
+
a (G),−(X − a)k

−
a (G)}.

If a is of type C, i.e. k+
a (G) < ka(G) < k−a (G) then

Gmin = {(X − a)k
+
a (G),−(X − a)ka(G)}.

If a is of type D, i.e. k−a (G) < ka(G) < k+
a (G) then

Gmin = {−(X − a)k
−
a (G),−(X − a)ka(G)}.

In every case the claim that Q = QM(Gmin) follows directly from Theorem 2.18 or
Corollary 2.19.

We note that these sets of generators which are minimal what the number of ele-
ments concerns do not always coincide with the set of generalized natural generators
which is minimal with respect to the degree of its elements.

For example in the case S = [a, b] we have

Nat(~σ(S(G)), ~ω(G)) = {(X − a)k
+
a (G),−(X − b)k

−
b (G)}.

Up to now we have seen examples where we need one or two generators for QM(G).
In general we need at most three generators. We show this by stating an algorithm
which produces these three generators.

Before we state the algorithm we describe what the algorithm does.
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Associated to some finite set G ⊆ R[X] with ∅ 6= S(G) ⊆ R bounded we have

~σ(S(G)) = (a1, b1, ..., am, bm) ∈ Svec(m)

for some m ∈ N and the complete vector of orders

~ω±(G) = (ω1, ω
+
1 , ω

−
1 , ..., ωm, ω

+
m, ω

−
m).

These both vectors are the input data for the algorithm.

The output of the algorithm is the set of (coefficient vectors of) three polynomials
H = {hneg, hpos, hvar} which have the property that QM(G) = QM(H).

The algorithm is composed of m steps.

The index of the polynomials of H is chosen to indicate the sign of the polynomial
on the right to the point bi in step i of the algorithm. For every 1 ≤ i ≤ m the
polynomial hneg is negative and hpos is positive to the right side of bi whereas the
sign of hvar depends on whether ai or ai+1 is an isolated point of a certain type or
not. The current sign of hvar is stored in the variable signvar. To explain what
happens in step i of the algorithm we recall that ai = bi is an isolated point of type

A (for G) if ωi < ω+
i and ωi < ω−i

r- -

B (for G) if ωi > ω+
i and ωi > ω−i

r-
+�

�

�
�

r+

-@
@

@
@

C (for G) if ω+
i < ωi < ω−i

r-
+�

�

�
�

r- -

D (for G) if ω−i < ωi < ω+
i

r+

-@
@

@
@ r- -

60



In step i the algorithm ensures that

k+
ai

(H) = ω+
i , k−bi(H) = ω−i if ai < bi

kai
(H) = ωi, k+

ai
(H) ≥ ω+

i , k−ai
(H) ≥ ω−i if ai = bi of type A

k+
ai

(H) = ω+
i , k−ai

(H) = ω−i , kai
(H) ≥ ωi if ai = bi of type B

k+
ai

(H) = ω+
i , kai

(H) = ωi, k−ai
(H) ≥ ω−i if ai = bi of type C

k−ai
(H) = ω−i , kai

(H) = ωi, k+
ai

(H) ≥ ω+
i if ai = bi of type D

In order to not change the sign behavior of hpos, hneg and hvar on the left side of ai
this will be achieved in step i by multiplying a polynomial from H with

negative sign to the left of ai with − (X − ai)
ω+

i which effects k+
ai

(H) = ω+
i ,

positive sign to the left of bi with − (X − bi)
ω−i which effects k−bi(H) = ω−i ,

negative sign to the left of ai with (X − ai)
ωi which effects kai

(H) = ωi.

Now to the assignment of signvar.
If ai is an isolated point of type D then step i will produce two polynomials which
are negative on the right side of bi = ai. If ai+1 is an isolated point of type C then
step i has to produce two polynomials which are negative on the right side of bi. In
these two cases the assignment of signvar is −1.
In all other cases hvar we will have signvar = 1.

If signvar = −1 and ai is not an isolated point of type C then hvar will be multiplied
by −(X − ai)

ω+
i to ensure nonnegativity in ai.

By construction we have (~σ(S(H)), ~ω(H)) = (~σ(S(G)), ~ω(G)) which implies by
Corollary 2.28 that QM(G) = QM(H).

Algorithm:

INITIALIZE:
hneg = −1
hpos = 1

hvar =
{
−1 if a2 = b2 of type C
1 else

signvar =
{
−1 if a2 = b2 of type C
1 else
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FOR i = 1, ...,m
IF ai < bi

h∗neg = hneg · (X − ai)ω
+
i (X − bi)ω

−
i

h∗pos = hpos
IF signvar = −1

h∗var =

{
hvar · (X − ai)ω

+
i (X − bi)ω

−
i if ai+1 = bi+1 of type C

hvar · (−(X − ai)ω
+
i ) else

ELSE IF signvar = 1

h∗var =
{

hvar · (−(X − bi)ω
−
i ) if ai+1 = bi+1 of type C

hvar else
ELSE IF ai = bi of type A

h∗neg = hneg · (X − ai)ωi

h∗pos = hpos
IF signvar = −1

h∗var =
{

hvar · (X − ai)ωi if ai+1 = bi+1 of type C

hvar · (−(X − ai)ω
+
i ) else

ELSE IF signvar = 1

h∗var =
{

hvar · (−(X − bi)ω
−
i ) if ai+1 = bi+1 of type C

hvar else
ELSE IF ai = bi of type B

h∗neg = hpos · (−(X − bi)ω
−
i )

h∗pos = hneg · (−(X − ai)ω
+
i )

IF signvar = −1

h∗var =
{

hvar · (X − ai)ωi if ai+1 = bi+1 of type C

hvar · (−(X − ai)ω
+
i ) else

ELSE IF signvar = 1

h∗var =
{

hvar · (−(X − bi)ω
−
i ) if ai+1 = bi+1 of type C

hvar else
ELSE IF ai = bi of type C

h∗neg = hneg · (X − ai)ωi

h∗pos = hvar · (−(X − ai)ω
+
i )

h∗var =
{

hpos · (−(X − bi)ω
−
i ) if ai+1 = bi+1 of type C

hpos else
ELSE IF ai = bi of type D

h∗neg = hneg · (X − ai)ωi

h∗pos =
{

hvar · (−(X − ai)ω
+
i ) if signvar = −1

hvar else

h∗var = hpos · (−(X − bi)ω
−
i )

signvar =
{
−1 if ai+1 = bi+1 of type C or ai = bi of type D
1 else

i = i + 1, hneg = h∗neg, hpos = h∗pos, hvar = h∗var
DO;
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We include an example of a finitely generated quadratic module which needs the
maximal number of three generators.

Example 2.31
Let G := {g1, g2, g3} ⊆ R[X] with g1 := −X3(X − 1)8, g2 := −X4(X − 1)6 and
g3 := −X7(X − 1)5(X2 + 1).
Then S(G) = {0, 1}, i.e. ~σ(S(G)) = (0, 0, 1, 1).
As k0(G) = 4, k+

0 (G) = 7, k−0 (G) = 3, k1(G) = 6, k−1 (G) = 5 and k+
1 (G) = ∞ we

have ~ω(G) = (4, 3, 6, 5) and ~ω±(G) = (4, 5, 3, 6, 7, 5). Thus both isolated points are
of type D.
The three generators produced by the algorithm are

hneg = −X4(X − 1)6

r r

hpos = X3(X − 1)3

r r

hvar = −(X − 1)5

r r
where the schematically behavior on the right hand side illustrates that all three
generators are needed.

By representing a finitely generated quadratic module Q = QM(G) ⊆ R[X] with
nonempty bounded set S = S(G) ⊆ R as Q = P(~σ(S), ~ω(G)) (Corollary 2.27) we
see that

Q =
m⋂
i=1

P(~σ(S)i, ~ω(G)i)

where the vectors ~σ(S)i correspond to the connected components of S and the vec-
tors ~ω(G)i are obtained by subdividing ~ω(G) according to the subdivision of ~σ(S)
by the ~σ(S)i (1 ≤ i ≤ m).
Since the connected components of S are intervals or points we know that every
finitely generated quadratic module QM(G) of R[X] with bounded S(G) 6= ∅ is
the finite intersection of quadratic modules generated by one or two polynomials
(Remark 2.30).

In general the intersection of two finitely generated quadratic modules does not have
to be finitely generated any more. However if the associated semialgebraic set is a
nonempty bounded subset of R then it is true.
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Proposition 2.32
Let G1, G2 ⊆ R[X] be finite and Qi = QM(Gi) with nonempty bounded set S(Gi)
for i = 1, 2. Then Q1 ∩Q2 is again finitely generated.

Proof:
By decomposing S(Gi) into its connected components we can without loss of gen-
erality suppose that Si := S(Gi) = [ai, bi] for some ai ≤ bi ∈ R (i = 1, 2).

Corollary 2.27 gives that Q := Q1 ∩Q2 = P(~σ(S1), ~ω(G1)) ∩ P(~σ(S2), ~ω(G2)).

Let S(Q) := {x ∈ R | g(x) ≥ 0 ∀g ∈ Q}.
The quadratic module Q is by Theorem 2.26 finitely generated if the simultaneous
fulfillment of the order conditions from ~ω(G1) and ~ω(G2) can be expressed by some
order condition ~ω(Q) such that (~σ(S(Q)), ~ω(Q)) ∈ Svec(m)×Ωvec(~σ(S(Q))) for some
m ∈ N.

Clearly S(Q) = S1 ∪ S2.

If S1 ∩S2 = ∅ we can simply join the two vectors (~σ(S1), ~ω(G1)) and (~σ(S2), ~ω(G2))
and get the vector (~σ(Q), ~ω(Q)) ∈ Svec(2)× Ωvec(~σ(S(Q))).

Now we suppose that S1 ∩ S2 6= ∅.
Without loss of generality let S1 ≤ S2.

In the following case differentiation we state for each case the vector of order con-
ditions which describes Q1 ∩Q2 where we work now with ~ω± instead of ~ω.
Let ~ω±(Gi) := (ωi, ω

+
i , ω

−
i ) for i = 1, 2.

Case 1: a1 < b1 and a2 < b2

Case 1.1: a1 < a2 = b1 < b2
Then ~σ(S(Q)) = (a1, b2) and ~ω±(Q) = (∞, ω+

1 , ω
−
2 ).

In a = a2 = b1 we have for some f ∈ Q1 ∩ Q2 that orda(f) even (and
εa(f) = 1) or orda(f) ≥ k−1 and εa(f) = −1 because f ∈ Q1. On
the other hand orda(f) even (and εa(f) = 1) or orda(f) ≥ k+

2 and
εa(f) = 1 because f ∈ Q2. Thus the order condition for Q1 ∩ Q2 in
a is given by orda(f) even (and εa(f) = 1). This follows already from
the fact that every f ∈ Q is nonnegative on S1 ∪ S2.

Case 1.2: a1 < a2 < b1 < b2
Then ~σ(S(Q)) = (a1, b2) and ~ω±(Q) = (∞, ω+

1 , ω
−
2 ).

In a = a2 we have for some f ∈ Q1∩Q2 that orda(f) even and εa(f) = 1
because f ∈ Q1 and a2 ∈ int(S1). On the other hand orda(f) is even
(and εa(f) = 1) or orda(f) ≥ k+

2 and εa(f) = 1 because f ∈ Q2. Thus
the order condition for Q1 ∩ Q2 in a is given by orda(f) even (and
εa(f) = 1). This follows already from the fact that every f ∈ Q is
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nonnegative on S1 ∪ S2. The same argument shows that we need no
entry for b1 in ~ω±(Q).

Case 1.3: a1 < a2 < b1 = b2
Then ~σ(S(Q)) = (a1, b1) and ~ω±(Q) = (∞, ω+

1 ,max(ω−1 , ω
−
2 )).

The reason why ω+
2 does not appear in ~ω±(Q) is similar to case 1.2.

Case 1.4: a1 = a2 < b1 = b2
Then ~σ(S(Q)) = (a1, b1) and ~ω±(Q) = (∞,max(ω+

1 , ω
+
2 ),max(ω−1 , ω

−
2 )).

Case 2: a1 < b1 and a2 = b2

Case 2.1: a1 < b1 = a2

Then ~σ(S(Q)) = (a1, b1) and ~ω±(Q) = (∞, ω+
1 ,max(ω−1 , ω

−
2 )).

Case 2.2: a1 < a2 < b1
Then ~σ(S(Q)) = (a1, b1) and ~ω±(Q) = (∞, ω+

1 , ω
−
1 ).

In a = a2 we have for some f ∈ Q2 that orda(f) even and εa(f) = 1
or an order condition depending on the type of the isolated point a.
Whatever this order condition is the fact that a lies in the interior of
S1 implies that orda(f) even and εa(f) = 1 for some f ∈ Q1∩Q2. This
is automatically fulfilled as every f ∈ Q is nonnegative on S1 ∪ S2.
Hence there is no entry corresponding to a2 in ~ω±(Q).

Case 2.3: a1 = a2 < b1
Then ~σ(S(Q)) = (a1, b1) and ~ω±(Q) = (∞,max(ω+

1 , ω
+
2 ), ω−1 ).

Case 3: a1 = b1 and a2 < b2
Completely similar to case 2.

Case 4: a1 = b1 = a2 = b2
Then ~σ(S(Q)) = (a1, b1) and for the complete vector of orders we have
~ω±(Q) = (max(ω1, ω2),max(ω+

1 , ω
+
2 ),max(ω−1 , ω

−
2 )).

The only case where it is not immediately clear that the obtained vector ~ω±(Q) is
the complete vector of orders associated to some ~ω ∈ Ωvec(~σ(S(Q))) is case 4.

We abbreviate ω := max(ω1, ω2), ω
+ := max(ω+

1 , ω
+
2 ) and ω− := max(ω−1 , ω

−
2 ).

If ω < ω+ and ω < ω− then we have to show that ω+ = ω− = ω + 1.
Without loss of generality we suppose that ω+ = ω+

1 . Then ω1 < ω+
1 which implies

that ω+
1 = ω1 + 1 since ~ω±(G1) is a complete vector of orders. Thus ω = ω1 and

ω+ = ω + 1. Similarly we get ω− = ω + 1.

If ω+ < ω and ω− < ω then we have to show that ω = max(ω+, ω−) + 1.
Without loss of generality we suppose that ω = ω1. Then ω+

1 < ω1 and ω−1 < ω1
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which gives ω1 = max(ω+
1 , ω

−
1 ) + 1 because ~ω±(G1) is a complete vector of orders.

Since ω+
1 ≤ ω+ and ω−1 ≤ ω− we have max(ω+

1 , ω
−
1 ) ≤ max(ω+, ω−) < ω = ω1. Thus

ω = max(ω+, ω−) + 1.

If ω+ < ω < ω− then we have to show that ω− = ω + 1.
Without loss of generality we suppose that ω− = ω−1 . Then ω+

1 < ω1 < ω−1 and thus
ω−1 = ω1 +1 because ~ω±(G1) is a complete vector of orders. Thus ω = ω1 and hence
ω− = ω + 1.

The case that ω− < ω < ω+ implies ω+ = ω + 1 has a similar reasoning.

With the vector ~ω(Q) corresponding to ~ω±(Q) we haveQ = P(~σ(S(Q)), ~ω(Q)) where
(~σ(S(Q)), ~ω(Q)) ∈ Svec(m) × Ωvec(~σ(S(Q))) with m = 1 or m = 2. Theorem 2.26
now implies that Q1 ∩Q2 is finitely generated.

Prop. 2.32 2

Another result about being finitely generated in this context is the following.

Proposition 2.33
Let Q ⊆ R[X] be a quadratic module. If S(Q) = {x ∈ R | g(x) ≥ 0 ∀g ∈ Q} ⊆ R
is a bounded semialgebraic set and there is a finitely generated quadratic module
Q̃ ⊆ Q with S(Q̃) = S(Q) then Q is finitely generated.

Proof:
Let G ⊆ R[X] be the finite set which generates Q̃. Similar to the definition of
ka(G), k+

a (G) and k−a (G) we define for every boundary point of S := S(Q) = S(G)
the values

k+
a (Q) := min{orda(q) | q ∈ Q, orda(q) odd, εa(q) = 1},

k−a (Q) := min{orda(q) | q ∈ Q, orda(q) odd, εa(q) = −1}

and
ka(Q) := min{orda(q) | q ∈ Q, orda(q) even, εa(q) = −1}.

In any of the three cases we again define k+
a (Q), k−a (Q) and ka(Q) to be ∞ if the

corresponding set is empty.

Because of Q̃ ⊆ Q we have
ka(Q) ≤ ka(G), k+

a (Q) ≤ k+
a (G) and k−a (Q) ≤ k−a (G) (∗)

for every boundary point of S. This implies that for some left (resp. right) boundary
point a of S \ Sisol we have k+

a (Q) <∞ (resp. k−a (Q) <∞) whereas the other both
values are ∞ because elements of Q are nonnegative on S. For isolated points a of
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S we can conclude that at least one of the values ka(Q), k+
a (Q) and k−a (Q) is less

than ∞. Now we can in complete analogy to ~ω(G) define a vector of orders ~ω(Q)
corresponding to Q such that we have

Q ⊆ P(~σ(S), ~ω(Q)).

By definition of the values ka(Q), k+
a (Q) and k−a (Q) and because of (∗) there is for

every boundary point a of S some element of Q which has the order condition given
by the element of ~ω(Q). Let {q1, ..., qr} ⊆ Q be the set of those polynomials. Then
we have by Corollary 2.27

Q ⊆ P(~σ(S), ~ω(Q)) = QM(q1, ..., qr) ⊆ Q

which proves the claim.
Prop. 2.33 2

2.2 Solution in the case of finite associated semialgebraic
sets

The reason why we can solve the Membership Problem affirmatively over arbitrary
real closed fields if the semialgebraic set S associated to the quadratic module is
finite is that the local-global principle is in this case true not just over R but over
arbitrary real closed fields. Instead of using the Basic Lemma and the Kadison-
Dubois Theorem which forced us to work over R in Theorem 2.9 we now apply the
abstract Stellensatz for quadratic modules.

Theorem 2.34
Let f, g1, ..., gs ∈ R[X] and Q = QM(g1, ..., gs) with S = S(g1, ..., gs) ⊆ R finite.

If f̂a ∈ Q̂a for every a ∈ Z(f) ∩ S and f |S ≥ 0 then f ∈ Q.

Proof:
An argument similar to the one used in the proof of Lemma 2.6 shows that S = ∅
gives Q = R[X] such that f ∈ Q is trivially true.

Now we suppose that ∅ 6= S = {a1, ..., am} for some ai ∈ R (1 ≤ i ≤ m).
Then the elements α ∈ SperR[X] with Q ⊆ α are the orderings αai

(1 ≤ i ≤ m)
which correspond to evaluation in ai.

We consider the polynomial p :=
m∏
i=1

(X − ai) which is clearly in the support of αai

for every 1 ∈ {1, ...,m}. By Proposition 0.3 this means that p ∈ supp(β) for every
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semiordering β ∈ HSemi(Q). Thus the abstract Stellensatz for quadratic modules
(Theorem 0.4 iii)) gives some N ∈ N such that

−p2N = −
m∏
i=1

(X − ai)
2N ∈ Q.

Now let f ∈ R[X] with f |S ≥ 0, f̂a ∈ Q̂a for every zero a of f in S and i ∈ {1, ..,m}
arbitrary but fixed.
The task is to find a polynomial f i ∈ Q with f i ≡ f mod (X − ai)

2NR[X].

Case 1: f(ai) = 0

By assumption we have with g0 := 1 a representation f̂ai
=

s∑
l=0

h2
l (̂gl)a for

some hl ∈ R[[X − ai]]. If hl =
∞∑
j=0

c
(l)
j (X − ai)

j ∈ R[[X − ai]] we define the

polynomial hl :=
2N∑
j=0

c
(l)
j (X − ai)

j ∈ R[X].

Then f i :=
s∑
l=0

h
2

l gl ∈ Q ⊆ R[X] and f ≡ fi mod (X − ai)
2NR[X].

Case 2: f(ai) > 0

Then f̂ai
is a square in R[[X − ai]], i.e. there is some hi ∈ R[[X − ai]] such

that f̂ai
= h2

i . Again by truncating we get an element hi ∈ R[X] such that

f ≡ fi mod (X − ai)
2NR[X] with f i := h

2

i ∈ Q.

By the Chinese Remainder Theorem we can now find for every 1 ≤ i ≤ m a poly-
nomial qi ∈ R[X] with hi ≡ δij mod (X − aj)

2N where δij denotes the Kronecker
symbol (1 ≤ j ≤ m).

We put these ingredients together and define q :=
m∑
i=1

q2
i f i ∈ Q.

Since for every i ∈ {1, ...,m} we have f ≡ f i ≡ q2
i f i ≡ q mod (X − ai)

2NR[X] we

can conclude that f ≡ q mod (
m∏
i=1

(X − ai)
2N)R[X].

Thus there is some v ∈ R[X] such that f = q+v
m∏
i=1

(X−ai)2N which can be written

as f = q + (v+1
2

)2
m∏
i=1

(X − ai)
2N + (v−1

2
)2(−

m∏
i=1

(X − ai)
2N). This is an element from

the quadratic module Q because −
m∏
i=1

(X − ai)
2N ∈ Q and q ∈ Q.

Theorem 2.34 2
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Since the description of the structure of the quadratic modules in the local power
series rings in Section 2.1 is given for arbitrary real closed fields this local-global
principle gives us by looking at the proof of Theorem 2.10 or 2.18 the following
characterization of membership in QM(g1, ..., gs) ⊆ R[X] if S(g1, ..., gs) is finite.

Theorem 2.35
Let f ∈ R[X] and G = {g1, ..., gs} ⊆ R[X] with S(g1, ..., gs) = {a1, ..., am} ⊆ R.
Then f ∈ QM(g1, ..., gs) if and only if f(ai) ≥ 0 (1 ≤ i ≤ m) and for every
i ∈ {1, ...,m} we have ordai

(f) even and εai
(f) = 1 or

Case 1: ordai
(f) ≥ kai

(G) if kai
(G) < k+

ai
(G) and kai

(G) < k−ai
(G).

Case 2: (ordai
(f)− k+

ai
(G) ∈ 2N0 and εai

(f) = 1) or ordai
(f) ≥ min(kai

(G), k−ai
(G))

if k+
ai

(G) ≤ min(kai
(G), k−ai

(G)).

Case 3: (ordai
(f)−k−ai

(G) ∈ 2N0 and εai
(f) = −1) or ordai

(f) ≥ min(kai
(G), k+

ai
(G))

if k−ai
(G) ≤ min(kai

(G), k+
ai

(G)).

Proof:
In analogy to the proof of Theorem 2.18 just using Theorem 2.34 instead of 2.9.

Theorem 2.35 2

Similar to Corollary 2.19 we give another formulation of the theorem where we do
distinguish the different types of isolated points.

Corollary 2.36
Let f ∈ R[X] and G = {g1, ..., gs} ⊆ R[X] with S(g1, ..., gs) = {a1, ..., am} ⊆ R.
Then f ∈ QM(g1, ..., gs) if and only if f(ai) ≥ 0 (1 ≤ i ≤ m) and for every
i ∈ {1, ...,m} we have ordai

(f) even and εai
(f) = 1 or

Type A: ordai
(f) ≥ kai

(G)
if kai

(G) < k+
ai

(G) and kai
(G) < k−ai

(G).

Type B1: (ordai
(f)− k+

ai
(G) ∈ 2N0 and εai

(f) = 1) or ordai
(f) ≥ k−ai

(G)
if k+

ai
(G) ≤ k−ai

(G) < kai
(G).

Type B2: (ordai
(f)− k−ai

(G) ∈ 2N0 and εai
(f) = −1) or ordai

(f) ≥ k+
ai

(G)
if k−ai

(G) < k+
ai

(G) < kai
(G).

Type C: (ordai
(f)− k+

ai
(G) ∈ 2N0 and εai

(f) = 1) or ordai
(f) ≥ kai

(G)
if k+

ai
(G) < kai

(G) < k−ai
(G).

Type D: (ordai
(f)− k−ai

(G) ∈ 2N0 and εai
(f) = −1) or ordai

(f) ≥ kai
(G)

if k−ai
(G) < kai

(G) < k+
ai

(G).
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The fact that we now have a characterization over arbitrary real closed fields does
in fact imply stability of this kind of quadratic modules. We come back to this in
the chapter about heirs.

Theorem 2.37
For g1, ..., gs ∈ R[X] with S(g1, ..., gs) ⊆ R finite the quadratic moduleQM(g1, ..., gs)
is weakly semialgebraic.

Proof:
This is clear by the previous theorem.

Theorem 2.37 2

As in Section 2.1 this gives the following two corollaries.

Corollary 2.38
If g1, ..., gs ∈ R[X] and the input data is computable then the Membership Problem
is solvable affirmatively for QM(g1, ..., gs) if S(g1, ..., gs) is finite.

Corollary 2.39
For f(X,Y ) ∈ Z[X, Y ], g1(X,Z), ..., gs(X,Z) ∈ Z[X,Z] there are L-formulas ψ(Z)
and ϕ(Y, Z) such that we have for every real closed field R and any c ∈ RY , b ∈ RZ :
If

R |= ψ(b)

then
f(X, c) ∈ QM(g1(X, b), ..., gs(X, b)) ⇔ R |= ϕ(c, b).

Proof:
The formula

ψ(Z) := ∀X

(
s∧
i=1

gi(X,Z) ≥ 0 →
s∨
i=1

gi(X,Z) = 0

)
expresses the finiteness of the basic closed set S(g1, ..., gs) and the formula ϕ(Y, Z)
can be obtained with the considerations from Remark 2.12.

Corollary 2.39 2

Theorem 2.35 together with Lemma 2.6 imply that for f, g1, ..., gs ∈ R[X] the mem-
bership of f in the quadratic module generated by g1, ..., gs,−f 2 is given by finitely
many local conditions which can be expressed by a semialgebraic formula as ex-
plained in Section 2.1.
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Corollary 2.40
Let f, g1, ..., gs ∈ R[X].
Then we have with Q = QM(g1, ..., gs) and S = S(g1, ..., gs)

f̂a ∈ Q̂a ∀a ∈ Z(f) ∩ S ⇔ f ∈ Q+ f 2R[X] = QM(g1, ..., gs,−f 2)

Proof:
The implication ⇒ is just Lemma 2.6.
For the other inclusion let Q̃ := QM(g1, ..., gs,−f 2) = Q+ f 2R[X].

Then S(Q̃) = Z(f) ∩ S which is empty or finite.

If S(Q̃) is empty then H(g1, ...gs,−f 2) = ∅ and thus by Proposition 0.3 we also have

∅ = HSemi(g1, ...gs,−f 2) = Hsemi(Q̃) which implies by the abstract Stellensatz for

quadratic modules (Theorem 0.4 iv)) that −1 ∈ Q̃ and thus Q̃ = R[X]. Hence the
assumption as well as the conclusion is in this case true for every f ∈ R[X].

Now we suppose that S(Q̃) 6= ∅. As f ∈ Q̃ we know by Theorem 2.35 that f ful-

fills for every a ∈ S(Q̃) = Z(f) ∩ S the order conditions determined by the values

ka(G̃), k+
a (G̃) and k−a (G̃) where G̃ := {g1, ..., gs,−f 2}. Since orda(−f 2) > orda(f)

for every zero of f this means that f also satisfies the order conditions from Theo-
rem 2.35 for every a ∈ Z(f)∩ S with respect to the values ka(G), k+

a (G) and k−a (G)

where G := {g1, ..., gs}. This means nothing else than f̂a ∈ Q̂a ∀a ∈ Z(f) ∩ S.
Corollary 2.40 2

As in Section 2.1 we transfer with the help of the local-global principle the multi-
plicative closure of the quadratic modules in the formal power series ring to the ring
of polynomials.

Theorem 2.41
Let g1, ..., gs ∈ R[X] with S(g1, ..., gs) ⊆ R finite.
Then the quadratic module Q = QM(g1, ..., gs) is closed under multiplication and
thus Q = PO(g1, ..., gs).

Proof:
We use exactly the same argument as in the proof of Theorem 2.17 with Theorem
2.9 replaced by Theorem 2.34.

Theorem 2.41 2

Now we describe the support of finitely generated quadratic modules Q = QM(G) of
R[X] with finite S = S(G). In general it is hard to determine the support Q∩−Q of
a quadratic module Q. With the help of our explicit characterization of membership
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we can do better. Actually what the support concerns the case where S consists of
finitely many points is the interesting one. Since in the other case int(S) 6= ∅ which
forces the support of Q to be {0}.

Corollary 2.42
Let G = {g1, ..., gs} ⊆ R[X] and ∅ 6= S(G) = {a1, ..., am} ⊆ R. Then the support of
the quadratic module Q = QM(G) is given by

supp(Q) =

(
m∏
i=1

(X − ai)
ki

)
R[X]

where for every 1 ≤ i ≤ m

ki =


kai

(G) if kai
(G) < k+

ai
(G), k−ai

(G)
min(kai

(G), k+
ai

(G)) if k−ai
(G) ≤ min(kai

(G), k+
ai

(G))
min(kai

(G), k−ai
(G)) if k+

ai
(G) ≤ min(kai

(G), k−ai
(G))

Proof:
The condition that f and −f has to be in Q implies that f has to fulfill the order
conditions from Theorem 2.35 which do not depend on εai

(f) in every ai (1 ≤ i ≤ m).

Thus
m∏
i=1

(X − ai)ki divides every f ∈ supp(Q) where the exponents ki are defined as

in the statement of the Corollary. This gives ⊆.

The other inclusion is true because
m∏
i=1

(X − ai)
ki ∈ supp(Q) by Theorem 2.35.

Corollary 2.42 2

With the help of this characterization of the support we can derive the following.

Corollary 2.43
Let Q = QM(g1, ..., gs) ⊆ R[X] and S = S(g1, ..., gs) 6= ∅. Then

supp(Q) = {0} ⇔ int(S) 6= ∅.

Proof:
If the interior of S is not empty then every polynomial f ∈ supp(Q) has to be zero
because it must fulfill f |S = 0.
For the other implication we use the preceding corollary. Suppose that the interior
of S is empty. Then S is of the form S = {a1, ..., am} for some ai ∈ R (1 ≤ i ≤ m).
By Corollary 2.42 there is some polynomial f which is not identically zero and be-
longs to the support of Q.

Corollary 2.43 2
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Theorem 2.35 and Corollary 2.42 also allow us to describe the finitely generated
quadratic modules Q ⊆ R[X] with finite associated semialgebraic set in the form
Q = Q′+supp(Q) where Q′ is a definable subset of a finite dimensional vector space
R[X]≤D for some D ∈ N.

Corollary 2.44
Let G = {g1, ..., gs} ⊆ R[X] and ∅ 6= S(G) = {a1, ..., am} ⊆ R.

If supp(Q) =

(
m∏
i=1

(X − ai)
ki

)
R[X] for some k1, ..., km ∈ 2N is the support of the

quadratic module Q := QM(G) and D := k1 + ...+ km − 1 then we have

Q = Q′ + supp(Q)

with Q′ ⊆ R[X]≤D characterized by p ∈ Q′ if and only if for every 1 ≤ i ≤ m
ordai

(p) even and εai
(p) = 1 or

Case 1: ordai
(p) ≥ kai

(G) if kai
(G) < k+

ai
(G) and kai

(G) < k−ai
(G).

Case 2: (ordai
(p) − k+

ai
(G) ∈ 2N0 and εai

(p) = 1) or ordai
(p) ≥ min(kai

(G), k−ai
(G))

if k+
ai

(G) ≤ min(kai
(G), k−ai

(G)).

Case 3: (ordai
(p)−k−ai

(G) ∈ 2N0 and εai
(p) = −1) or ordai

(p) ≥ min(kai
(G), k+

ai
(G))

if k−ai
(G) ≤ min(kai

(G), k+
ai

(G)).

Proof:

For abbreviation we write g(X) :=
m∏
i=1

(X − ai)
ki .

We consider some f ∈ Q and get by division through g that

f = qg + r

with unique q, r ∈ R[X] such that either r = 0 or deg(r) ≤ D.
If r = 0 then f ∈ supp(Q).
In the other case let a = ai be some point of S with k = ki. We have

orda(r) = orda(f − qg) ≥ min{orda(q) + orda(g), orda(f)} (∗)
with equality if orda(q)+orda(g) 6= orda(f).
We note that orda(g) = k and distinguish the different possibilities for k according
to Corollary 2.42.
First let k = ka(G) (i.e. ka(G) < k+

a (G), k−a (G))
If orda(f) ≥ k then we also have orda(r) ≥ k because of (∗) .
If otherwise ν = orda(f) < k even and εa(f) = 1 then we have equality in (∗) and

hence orda(r) = orda(f) also even. From f = (X − a)ν f̃ = (X − a)ν(qg̃ + r̃) we see
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that r̃(a) = f̃(a) > 0 because of g̃(a) = 0 as ν < k. Hence εa(r) = εa(f) = 1.
Now suppose that k = min(ka(G), k+

a (G)) (i.e. k−a (G) ≤ min(ka(G), k+
a (G)))

If orda(f) ≥ k then we also have orda(r) ≥ k because of (∗) .
If otherwise ν = orda(f) < k we have equality in (∗) and hence orda(r) = orda(f).
Similar to the first case we also see that εa(f) = εa(r) which means that the condi-
tions for orda(r) and εa(r) are the same as the conditions for orda(f) and εa(f).
The final case k = min(ka(G), k−a (G)) (i.e. k+

a (G) ≤ min(ka(G), k−a (G)))
can be done similarly.
Altogether we have proved that r ∈ Q′,i.e. Q ⊆ Q′ + supp(Q).
The other inclusion is clear. Corollary 2.44 2

An important class of quadratic modules with finite associated semialgebraic set are
preorderings of the form

∑
R[X]2+I where I ⊆ R[X] is an ideal. If I is generated by

g1, ..., gl then
∑
R[X]2+I = PO(g1, ..., gl,−g1, ...,−gl) = QM(g1, ..., gl,−g1, ...,−gl)

with associated semialgebraic set Z(I) = {x ∈ R | gi(x) = 0 (1 ≤ i ≤ l)}. This kind
of preordering which is composed of the two stable parts sums of squares and ideal
is itself again stable as we will see in the chapter about heirs. Although one might
guess that the support of

∑
R[X]2 + I is I this is not true in general, the support

can strictly contain I, which we show with the following example.

Example 2.45
The support of the preordering

P = QM(X(X2 + 1),−X(X2 + 1)) =
∑

R[X]2 +
(
X(X2 + 1)

)
R[X] ⊆ R[X]

is by Corollary 2.42 given by

supp(P ) = XR[X] ⊃
(
X(X2 + 1)

)
R[X].

The fact that X ∈ supp(P ) can be seen explicitly as follows:
Since ±X(X2 + 1) ∈ P we have

pX(X2 + 1) = (
p+ 1

2
)2X(X2 + 1) + (

p− 1

2
)2(−X(X2 + 1)) ∈ P

for every p ∈ R[X]. Thus in particular (−X)X(X2 + 1) = −X4 − X2 ∈ P which
gives that −X2 ∈ P . Hence

X = X(X2 + 1)−X3 = X(X2 + 1) + (
X + 1

2
)2(−X2) + (

X − 1

2
)2X2 ∈ P.

Similarly

−X = −X(X2 + 1) +X3 = −X(X2 + 1) + (
X + 1

2
)2(X2) + (

X − 1

2
)2(−X2) ∈ P

which implies that X ∈ supp(P ).
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2.3 Positivity and convexity divisors

In Section 2.1 we solved the Membership Problem in the affirmative for finitely gen-
erated quadratic modules in R[X] where X denotes one indeterminate. If in addition
the associated semialgebraic set is bounded Theorem 2.18 states the conditions for
membership in the quadratic module which is in fact a preordering (Theorem 2.17).
With the help of this explicit description we can again explicitly describe the posi-
tivity and convexity divisors in such preordered rings.

In this section A denotes an integral domain.

Definition 2.46
Let (A,P ) be a preordered ring and h ∈ A. We say that h is a

i) positivity divisor of A if h ∈ P and for every f ∈ A we have

hf ∈ P ⇒ f ∈ P.

ii) convexity divisor of A if h is a positivity divisor and the principal ideal hA is
convex.

We note that for a positivity divisor h the property of being a convexity divisor
means the following:

if f, g ∈ A with g ∈ P, f − g ∈ P and h|f then h|g.

For more details on this topic we refer to [K2].

The positivity divisors of a ring A play a crucial role in answering the following
question:
Let P ⊆ A be a preordering. When does the preordering

P̃ := {f
h
| f ∈ P, h ∈ P \ {0}}

of the quotient field Quot(A) has the property that P̃ ∩ A = P?

Even if P is proper and supp(P ) = {0}, which implies that P̃ is a proper preordering,

P̃ ∩ A may actually strictly contain P as the following example shows.
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Example 2.47
Let A = R[X] and P = QM((4−X2)3).
By Theorem 2.10 the preordering which has support {0} since int[−2, 2] 6= ∅ can be
described as

P = {f ∈ R[X] | f |[−2,2] ≥ 0, ord±2 6= 1}.
P is not saturated because the natural generators 2−X, 2+X of the interval [−2, 2]
are not in P (Corollary 1.7).

However P̃ ∩ R[X] = P(S(P )) = P([−2, 2]) and hence P is a proper subset of

P̃ ∩ R[X]. That the intersection is the saturation follows again with Corollary 1.7

from the fact that 2 ±X = 2±X
1

= (2±X)3

(2±X)2
∈ P̃ ∩ R[X] where we used the result of

Proposition 2.33 which implies that P̃ ∩ R[X] is finitely generated.

We note that the denominator (2 − X)2 appearing in the example is not a posi-
tivity divisor of (R[X], QM((4 − X2)3)) because (2 − X)3 ∈ QM((4 − X2)3) but
(2−X) 6∈ QM((4−X2)3).

If we localize A with respect to the multiplicative set Σ+(A) of all positivity divisors
of A then we get a ring extension

Quot+(A) := Σ+(A)−1A

of A (called the total preordered ring of quotients of A) with preordering

Quot+(A)+ = {f
h
| f ∈ P, h ∈ Σ+(A)}

such that Quot+(A)+ ∩ A = P ([K2] Proposition 6.2b)).

We note that −1 6∈ P implies that −1 6∈ Quot+(A)+ because no element of supp(P )
is a positivity divisor.

If we want to have in addition that A is convex in the ring extension we have to
restrict ourselves to convexity divisors. By [K2] Proposition 6.10 A is convex in

Quotc(A) := Σc(A)−1A

where Σc(A) denotes the multiplicative set of convexity divisors of A. Quotc(A) is
preordered by

Quotc(A)+ := Quot+(A)+ ∩Quotc(A).

Therefore it is interesting to determine the set of positivity and convexity divisors
for a preordered ring (A,P ). We do this in some special cases.
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We consider a finitely generated preordering P ⊆ R[X] with bounded associated
semialgebraic set S = S(g1, ..., gs) ⊆ R. To shorten the notation we say inspired by
Corollary 2.23 that the condition for saturation is satisfied

• in a boundary point a of S \ Sisol if min
1≤i≤s

(orda(gi)) = 1

• in an isolated point a of S if there is a pair gi, gj such that
orda(gi) = orda(gj) = 1 and εa(gi) = −εa(gj)

This means that with G := {g1, ..., gs} the condition for saturation is not satisfied
in some boundary point a of S \ Sisol if the corresponding entry in ~ω(G) is not 1.
Similarly the condition for saturation is not satisfied in some isolated point a of S
if the corresponding entries in ~ω(G) are not (1, 1).

Proposition 2.48
Let g1, ..., gs ∈ R[X] such that S = S(g1, ..., gs) ⊆ R is bounded.
Then the set of positivity divisors Σ+(R[X]) for the preordered ring (R[X], P ) with
P = QM(g1, ..., gs) is given by

Σ+(R[X]) = {h ∈ R[X] | h|S ≥ 0 and h(a) 6= 0 for all boundary points a of S
in which the condition for saturation is not satisfied }

Proof:
If P is saturated then by Corollary 2.23 the condition for saturation is satisfied in
every boundary point a of S. Hence the set on the right hand side consists of the
polynomials which are nonnegative on S, which means that the claim is in this case
that Σ+(R[X]) = P(S) = P . This is clear because for any h ∈ R[X] with h|S ≥ 0
we have hf |S ≥ 0 if and only if f |S ≥ 0.

Now we suppose that P is not saturated. This means that in at least one boundary
point a of S the condition for saturation fails (Corollary 2.23).

The inclusion ⊇ is clear because in all those points a of S in which an element of
P has to fulfill order conditions according to Theorem 2.18 we have orda(h) = 0 for
some h which lies in the set on the right hand side. This means first that h ∈ P
and secondly that for some f ∈ R[X] we have orda(fh) = orda(f). Hence if hf ∈ P
the nonnegativity and the necessary order conditions transfer from hf to f and we
can conclude that f ∈ P .

For the other inclusion we take some h ∈ Σ+(R[X]). We suppose that h(a) = 0 for
some boundary point a of S where the condition for saturation is not satisfied. We
distinguish the types of the point a and define in every case a polynomial f ∈ R[X]
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with hf ∈ P but f 6∈ P . This will prove the claim.

We abbreviate G := {g1, ..., gs} and write S =
m⋃
i=1

[ai, bi] such that ~σ(S) ∈ Svec(m)

for some m ∈ N. We will use the vector ~ω±(G) = (ω1, ω
+
1 , ω

−
1 , ..., ωm, ω

+
m, ω

−
m) which

stores the order conditions for P as explained in Section 2.1.
As in the definition of the generalized natural generators

b0 := −∞, am+1 := ∞, (X − (−∞))ω
−
0 := 1 and (X −∞)ω

+
m+1 := −1.

First we suppose that there is some i ∈ {1, ...,m} such that ai < bi and the condition
for saturation fails in ai, i.e. ω+

i = k+
ai

(G) > 1.
As h(ai) = 0 and h ∈ P we have ordai

(h) ≥ 2. Then

f := (X − bi−1)
ω−i−1(X − ai)

ω+
i −2

has the property that f 6∈ P but hf ∈ P .

The case that the condition of saturation fails in some bi with ai < bi is similar.

Now we suppose that there is some 1 ≤ i ≤ m with ai = bi. If ai is an isolated point
of type B we know by assumption that ω+

i = k+
ai

(G) > 1 or ω−i = k−ai
(G) > 1.

As h(ai) = 0 we have ordai
(h) ≥ 1.

If ai = bi is of type A then we have similar to the case ai < bi that ordai
(h) ≥ 2 and

can again define

f := (X − bi−1)
ω−i−1(X − ai)

ω+
i −2.

If ai = bi is of type B then we suppose without loss of generality that ω+
i > 1. With

f := (X − bi−1)
ω−i−1(X − ai)

ω+
i −1(X − ai+1)

ω+
i+1

we have hf ∈ P but f 6∈ P .

If ai = bi is of type C then we define

f := (X − bi)
ωi−1(X − ai+1)

ω+
i+1

and finally if ai = bi is of type D then the polynomial

f := (X − bi−1)
ω−i−1(X − ai)

ωi−1

is not in P but hf ∈ P .

In each case f 6∈ P but hf ∈ P follows from Theorem 2.18 and the definition of
~ω±(G) as the minimal order values of elements of P .

Prop. 2.48 2
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For the preordering of Example 2.47 we have by the result of the proposition

Σ+(R[X]) = {h ∈ R[X] | h|[−2,2] ≥ 0, h(±2) > 0}.

Before we describe the set of convexity divisors we deduce a consequence from Propo-
sition 2.48 which concerns a second local-global principle due to Scheiderer.

Theorem 2.49 (Scheiderer, [S5] Theorem 2.8)
Let A be a commutative ring with 1, 1

2
∈ A, f ∈ A and P ⊆ A an archimedean

preordering.
If f lies in the preordering Pm generated by P in the localization Am for every
maximal ideal m of A with supp(P ) ⊆ m then f ∈ P .

We note that Pm = { p
h2 | p ∈ P, h ∈ A \m}.

In general one has to check infinitely many local conditions and the maximal ideals
with non-real residue field can not be excluded. However in the situation of Propo-
sition 2.48 where we have the concrete description of the positivity divisors of
(R[X], P ) one has to check only finitely many conditions. We show that the local-
global principle can be derived from Proposition 2.48 in this special situation.

Proposition 2.50
Let f, g1, ..., gs ∈ R[X] and P = QM(g1, ..., gs) with S = S(g1, ..., gs) ⊆ R bounded.
If P is saturated then f ∈ P if f lies in the preordering Pm generated by P in R[X]m
for one maximal ideal m ⊆ R[X].
For the non saturated case the following is true:
Suppose that f lies in the preordering Pm generated by P in R[X]m for every maximal
ideal m of the form (X − a)R[X] where a is a boundary point of S in which the
condition for saturation is not satisfied. Then f ∈ P .

Proof:
If P is saturated then the assumption implies that h2f ∈ P for some h ∈ R[X]. As
the set of positivity divisors is in this case equal to P(S) we get f ∈ P .
Now suppose that P is not saturated.
Let m1, ...,mr denote the maximal ideals of R[X] corresponding to the finitely many
boundary points a1, ..., ar of S in which the condition for saturation fails. By as-
sumption we have for every 1 ≤ i ≤ r an element hi ∈ R[X] \ mi, i.e. hi(ai) 6= 0,
with h2

i f ∈ P . Thus h := h2
1 + ... + h2

r is an element which is nonnegative on all
of R and has the property that h(ai) > 0 (1 ≤ i ≤ r). By Proposition 2.48 h is a

positivity divisor of (R[X], P ). Since hf =
r∑
i=1

h2
i f ∈ P this implies that f ∈ P .

Prop. 2.50 2
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We include here a few remarks on the conditions appearing in the first and second
local-global principle of Scheiderer for the following situation:

Let A = R[X] for an arbitrary real closed field R, X denotes one indeterminate as
always in this section and P = PO(G) ⊆ A is a finitely generated preordering with
associated basic closed set S = S(G).

As the ideal m := (X − a)R[X] for some a ∈ R is a maximal ideal of R[X] we have
(see e.g. [E] 7.1)

R̂[X]m
∼= ̂(R[X]m)mR[X]m

.

Thus R[X]m ⊆ R̂[X]m
∼= R[[X − a]] and therefore

P(X−a)R[X] ⊆ P̂a.

This means that if R = R and S is bounded then by the (first) local-global principle
of Scheiderer (Theorem 2.9) the conditions f ∈ P(X−a)R[X] for the finitely many zeros
of f in S together with the nonnegativity of f on S imply that f ∈ P .

If R is again an arbitrary real closed field but S = {a1, ..., am} is finite then we even
have

P(X−a)R[X] = P̂a

for every a ∈ S.
This can be seen as follows:
Let f ∈ P̂a for some a ∈ S. Then we have for every N ∈ N some pN ∈ P and some
hN ∈ R[X] such that f = pN + hN(X − a)2N . By the Stellensatz for preorderings

(Theorem 0.6 iii)) there is some N0 ∈ N such that q := −
m∏
i=1

(X − ai)
2N0 ∈ P . Now

we define h :=
∏
ai 6=a

(X − ai)
N0 and get

h2f = h2pN0 + (
hN0 + 1

2
)2h2(X − a)2N0 + (

hN0 − 1

2
)2 (−h2(X − a)2N0)︸ ︷︷ ︸

=q∈P

∈ P.

As h 6∈ (X − a)R[X] this means that f ∈ P(X−a)R[X].

In this case the conditions appearing in the first and the second local global-principle
are equivalent because:

f̂a ∈ P̂a for every a ∈ Z(f) ∩ S and f |S ≥ 0

⇔ f̂a ∈ P̂a for every a ∈ S
⇔ f ∈ P(X−a)R[X] for every a ∈ S
⇔ f ∈ Pm for every maximal ideal m with supp(P ) ⊆ m

Hence we can formulate Theorem 2.34 in the following form which uses localizations
instead of formal power series rings and gives a version of the second local-global
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principle where the assumption that QM(g1, ..., gs) is archimedean is replaced by
the assumption that S(g1, ..., gs) is finite.

Corollary 2.51
Let f, g1, ..., gs ∈ R[X] and P = QM(g1, ..., gs) with S = S(g1, ..., gs) ⊆ R finite.
If f ∈ P(X−a)R[X] for every a ∈ S then f ∈ P .

Now we characterize the set of convexity divisors for the case that P ⊆ R[X] is a
finitely generated preordering whose associated semialgebraic set is not empty and
bounded.

Proposition 2.52
Let G = {g1, ..., gs} ⊆ R[X] such that ∅ 6= S = S(G) =

m⋃
i=1

[ai, bi] ⊆ R is bounded

and (a1, b1, ..., am, bm) ∈ Svec(m). Then a polynomial h ∈ R[X] is a convexity divisor
of (R[X], P ) where P = QM(G) if and only if h is nonnegative on S and of the form

h = c
m∏

i=1
ai<bi

k+
ai

(G)=1

(X − ai)
µi

m∏
i=1

ai<bi

k−
bi

(G)=1

(X − bi)
νi

m∏
i=1

ai=bi

k+
ai

(G)=k−
bi

(G)=1

(X − ai)
εi

N∏
i=1

(X − αi)
2λi

for some c ∈ R \ {0}, µi, νi ∈ N0 (1 ≤ i ≤ m), εi ∈ {0, 1} (1 ≤ i ≤ m),
N ∈ N0, λi ∈ N and αi ∈ int(S) (1 ≤ i ≤ N).

Proof:
For the implication ⇐ we take some polynomial h of the prescribed form and write

for abbreviation h = c
r∏
i=1

(X − ci)
ki where c1, ..., cr are the distinct zeros of h with

ordci(h) = ki ∈ N (1 ≤ i ≤ r).
By Proposition 2.48 we know that h is a positivity divisor. In order to show that
h is a convexity divisor we consider some f, g ∈ R[X] with g, f − g ∈ P and h|f .
For showing that h|g it is enough to prove that (X − ci)

ki|g for 1 ≤ i ≤ r. Since
f − g ∈ P and g ∈ P we have in particular that f ≥ g ≥ 0 on S. (∗)
As h divides f we have for every 1 ≤ i ≤ r that f(ci) = 0 and thus by (∗) also
g(ci) = 0.
For an isolated point this is enough for showing that (X − ci)

ki|g since we have by
assumption ki = 1.
Now we consider some zero ci of g which is not an isolated point of S. The fact that
there is an interval to the left or to the right of ci where (∗) has to be fulfilled forces
the multiplicity of the zero ci of g to be at least as big as ki. Thus also in this case
(X − ci)

ki|g.
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Altogether this proves that h is a convexity divisor and hence ⇐.

For the other implication we already know by Proposition 2.48 that h|S ≥ 0 and

h = h1

m∏
i=1

ai<bi

k+
ai

(G)=1

(X − ai)
µi

m∏
i=1

ai<bi

k−
bi

(G)=1

(X − bi)
νi

m∏
i=1

ai=bi

k+
ai

(G)=k−
bi

(G)=1

(X − ai)
εi

N∏
i=1

(X − αi)
2λi

for some h1 ∈ R[X] with h1(x) 6= 0 ∀x ∈ S, µi, νi, εi ∈ N0 (1 ≤ i ≤ m),
N ∈ N0, λi ∈ N and αi ∈ int(S) (1 ≤ i ≤ N) because h is a positivity divisor.

It remains to show that εi ∈ {0, 1} for every 1 ≤ i ≤ m and h1 ≡ c for some
c ∈ R \ {0}.

For abbreviation we write again h = h1

r∏
i=1

(X − ci)
ki where c1, ..., cr are the distinct

zeros of h in S with multiplicities k1, ..., kr.

We first suppose that h1 is not constant and lead this to a contradiction.

Then we can write h1 = δH1

ν∏
i=1

(X − γj)
lj for some 0 6= δ ∈ R, H1 ∈ R[X] with

H1(x) 6= 0 ∀x ∈ R, ν ∈ N0, γj ∈ R \ S and lj ∈ N (1 ≤ j ≤ ν). The assumption that
h1 is not constant means that either H1 is not constant or ν ∈ N.
As in [Sc] Example 30 we can find γ̃j ∈ R \ S close to γj but γ̃j 6= γj for 1 ≤ j ≤ ν

and ε > 0 small such that h̃1 := ε
ν∏
i=1

(X − γ̃j)
lj has the following properties. On

every connected component of S the polynomials h1 and h̃1 have the same sign and
0 < |h̃1(x)| < |h1(x)| for every x ∈ S. This implies that the polynomials

h̃ := h̃1

r∏
i=1

(X − ci)
ki

and

h− h̃ := (h1 − h̃1)
r∏
i=1

(X − ci)
ki

are both nonnegative on the set S and for every boundary point a of S we have
orda(h) = orda(h̃) = orda(h − h̃) together with εa(h) = εa(h̃) = εa(h − h̃). Thus

h ∈ P implies by Theorem 2.18 also h̃ ∈ P and h − h̃ ∈ P . Since h is a convexity
divisor this means that h|h̃, i.e. there is some p ∈ R[X] with

h1

r∏
i=1

(X − ci)
ki · p = h̃1

r∏
i=1

(X − ci)
ki .
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Thus
h1 · p = h̃1

which is a contradiction since h1 and h̃1 are by definition relatively prime. Hence h1

is constant. Furthermore h1 cannot be identically zero because 0 is not a positivity
divisor.

Now we suppose that there is some isolated point a = ai of S with the property that
ka(G)+ = k−a (G) = 1 and orda(h) ≥ 2.
We write h = H1(X − a)orda(h) with H1 ∈ R[X] and H1(a) 6= 0. As a is an
isolated point there is some ε > 0 such that ]a − ε, a + ε[∩S = ∅. We choose some
α ∈]a− ε, a+ ε[\{a} and consider the polynomial (X − α)(X − a).
As (X−a)2 and (X−α)(X−a) are strict positive on the compact set S \{a} there
is some µ ∈ N such that 0 < µ(x− α)(x− a) < (x− a)2 for every x ∈ S \ {a}.
Thus the polynomials

g̃ := H1(X − a)orda(h)−2µ(X − a)(X − α)

and
h− g̃ = H1(X − a)orda(h)−2((X − a)2 − µ(X − a)(X − α))

have the following properties. They are both nonnegative on S and for every
boundary point b of S with b 6= a we have ordb(h) = ordb(g̃) = ordb(h − g̃) and
εb(h) = εb(g̃) = εb(h− g̃). For a we have orda(g̃) = orda(h− g̃) = orda(h)− 1 ≥ 1.
Hence g̃ and h − g̃ are according to Theorem 2.18 elements of P because h ∈ P
and a is an isolated point with ka(G)+ = k−a (G) = 1. Since h is a convexity divi-
sor we conclude that h|g̃ which is not possible because orda(h) > orda(g̃). Hence
orda(h) ≤ 1.

Prop. 2.52 2

For the preordering of Example 2.47 we find

Σc(R[X]) = {h ∈ R[X] | h = c
N∏
i=1

(X − αi)
2λi with c ∈ R \ {0}, N ∈ N0,

λi ∈ N,−2 < α1 < ... < αN < 2}

Now we suppose that the preordering is a partial preordering, i.e. supp(P ) = {0}.
Then the quotient field Quot(R[X]) for the integral domain R[X] coincides with
complete ring of quotients Q(R[X]). For an arbitrary ring A the complete ring of
quotients Q(A) is defined as the inductive limit lim

−→
I∈D(A)

Hom(I, A) where I ∈ D(A) if

and only if I is a dense ideal of A, i.e. no element f ∈ A \ {0} is annulated by the
ideal I.
In the more general setting of the complete ring of quotients the concept of positivity
divisors has to be replaced by positively dense subsets. Again we refer to [K2] for
more details.
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Definition 2.53
Let (A,P ) be a preordered ring. We say that M ⊆ P is positively dense if for every
f ∈ A we have

Mf ∈ P ⇒ f ∈ P.

Positively dense subsets are used to define the complete partially ordered ring of
quotients Q+(A) of a partially ordered ring (A,P ).

Knebusch showed that Q+(A) the set of all F ∈ Q(A) such that there is a set M ⊆ P
with MF ⊆ A and M positively dense in A ([K2] Proposition 2.14).

Even in the situation where Q(A) = Quot(A) one can ask whether it is true that
Q+(A) = Quot+(A). We do this and answer the question for the preordered rings for
which we determined the positivity divisors (Proposition 2.48) under the additional
assumption that supp(P ) = {0}. First we describe the positively dense subsets.

Proposition 2.54
Let g1, ..., gs ∈ R[X] and P = QM(g1, ..., gs) with S = S(g1, ..., gs) ⊆ R bounded. In
the preordered ring (R[X], P ) a subset M ⊆ P is positively dense if and only if for
every boundary point a of S in which the condition for saturation is not satisfied
there is some ha ∈M with ha(a) 6= 0.

Proof:
We suppose that there is some boundary point a of S where the condition for sat-
uration fails and orda(h) ≥ 1 for every h ∈ M . Then one can construct as in the
proof of Proposition 2.48 a polynomial f ∈ R[X] with Mf ∈ P and f 6∈ P .

Conversely if for every boundary point a of S in which the condition for saturation
fails there is some ha ∈ M with orda(ha) = 0 then the condition Mf ⊆ P implies
that in all points where an order condition according to Theorem 2.18 has to be
fulfilled, f already satisfies these conditions because of M ⊆ P . Also the nonnega-
tivity transfers from M to f and hence f ∈ P .

Prop. 2.54 2

In the situation of 2.47 for example M = {(2−X)2, (2 +X)2} is a positively dense
subset of R[X]. We note that the elements of M itself are no positivity divisors.

Proposition 2.54 now immediately gives the answer to the question from above
whether Q+(A) = Quot+(A).
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Proposition 2.55
Let g1, ..., gs ∈ R[X] = R[X1] with P = QM(g1, ..., gs) such that supp(P ) = {0} and
S = S(g1, ..., gs) ⊆ R bounded. Then we have for the preordered ring (R[X], P )

Quot+(R[X]) = Q+(R[X]).

Proof:
The inclusion ⊆ is clear because for F = f

h
∈Quot+(R[X]) we have MF ⊆ R[X] for

M = {h} ⊆ P . Since h is a positivity divisor the set M is positively dense in A.

For the other inclusion we consider some F ∈ Q+(R[X]). Hence there is a positively
dense subset M ⊆ P with MF ⊆ R[X]. We have to show that there is some pos-
itivity divisor h ∈ Σ+(R[X]) such that hF ∈ R[X]. If the set of boundary points
of S where the condition for saturation fail is denoted by {a1, ..., ar} then we have
by Proposition 2.54 polynomials hai

∈ M with hai
(ai) > 0 and hai

(aj) ≥ 0 for

1 ≤ i, j ≤ r, i 6= j. By defining h :=
r∑
i=1

hai
we get an element of P with the property

that h(ai) 6= 0 for every i ∈ {1, ..., r}. Thus by Proposition 2.48 h is a positivity
divisor which satisfies hF ∈ R[X] as MF ⊆ R[X].

Prop. 2.55 2

85



3 Heirs of subsets of R[X ]

3.1 Definition of heirs

As already mentioned before the definability question for orderings in R[X1, ..., Xn]
could be solved (Theorem 1.18). One crucial step in the proof of this uses the fact
that an ordering is definable if and only if for every real closed extension R′ ⊇ R it
has a unique heir. The notion of heirs originates in model theory and can be used for
orderings because of the correspondence between orderings and types as explained
in Section 1.3 and in the Appendix. The aim of this section is to generalize heirs
of types to heirs of subsets of R[X1, ..., Xn] such that one can speak of an heir of a
quadratic module or a preordering.

First we motivate the definition of an heir of a general subset of R[X1, ..., Xn].

As in Chapter 1, R is a real closed field, X = (X1, ..., Xn) and Y, Z finite tuples of
variables (of variable length) as well as L = Lor = {+,−, ·, 0, 1, <} the language of
ordered rings. In this setting we know that the notion of being weakly semialgebraic
and of being definable is equivalent for some Q ⊆ R[X]. However we use the notion
of definability when developing the concept of heirs because everything is also true
if L is an arbitrary first-order language and M some L-structure.

If Q ⊆ R[X] is definable and R′ ⊇ R is a real closed extension field then we can
define in a canonical way a set associated to Q, namely

Q′ := {f(X, c′) | f(X, Y ) ∈ Z[X, Y ], c′ ∈ R′Y and R′ |= ϑf (c
′)}

where ϑf (Y ) is an L(R)-formula defining DR(f,Q).
Recall that because of the definability of Q we have for every f(X, Y ) ∈ Z[X, Y ] a
formula ϑf (Y ) ∈ FmlL(R) such that the set DR(f,Q) = {c ∈ RY | f(X, c) ∈ Q} is
defined by the formula ϑf (Y ). We note that Q′ does not depend on the particular
formula ϑf (Y ) defining DR(f,Q), it only depends on DR(f,Q).

What properties does the set Q′ have?

One property is the following:

(H+)
For all f(X, Y ) ∈ Z[X, Y ] and every ϕ(Y ) ∈ FmlL(R) we have:
DR′(f,Q

′) ∩ ϕ(R′Y ) 6= ∅ ⇒ DR(f,Q) ∩ ϕ(RY ) 6= ∅
Another one is:

(H−)
For all f(X, Y ) ∈ Z[X, Y ] and every ϕ(Y ) ∈ FmlL(R) we have:
DR′(f,R

′[X] \Q′) ∩ ϕ(R′Y ) 6= ∅ ⇒ DR(f,R[X] \Q) ∩ ϕ(RY ) 6= ∅
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That the properties (H+) and (H−) are fulfilled for Q′ as defined above is clear
because in this case DR′(f,Q

′) = ϑf (R
′Y ), DR′(f,R

′[X] \Q′) = ¬ϑf (R′Y ) and R′ is
an elementary extension of R.

Now we consider an arbitrary subset Q′ ⊆ R′[X].

It is easy to see that if (H+) is satisfied for Q and Q′ then (H+) is also satisfied for
Q and every subset of Q′. Similarly if (H−) is satisfied for Q and Q′ then (H−) is
also satisfied for Q and every set containing Q′.

Therefore it is interesting to look at the smallest (resp. largest) subset of R′[X] such
that (H−) (resp. (H+)) is satisfied for Q and this set.

Lemma 3.1
Suppose R′ ⊇ R is real closed and Q ⊆ R[X].
The set

h(Q,R′) := {f(X, c′) | f(X, Y )∈ Z[X,Y ] such that there is a ϕ(Y )∈ FmlL(R)
with c′ ∈ ϕ(R′Y ) and ϕ(RY ) ⊆ DR(f,Q)}

is the smallest subset of R′[X] such that (H−) is satisfied for Q and this set.
The set

H(Q,R′) := {f(X, c′) | f(X, Y )∈ Z[X,Y ] such that for every ϕ(Y )∈ FmlL(R)
with c′ ∈ ϕ(R′Y ) we have ϕ(RY ) ∩DR(f,Q) 6= ∅}

is the largest subset of R′[X] such that (H+) is satisfied for Q and this set.

Proof:
We first note that if (H−) is satisfied for Q and Q′ then h(Q,R′) must be a sub-
set of Q′ by definition of h(Q,R′). For suppose to the contrary that there is some
f(X, c′) ∈ h(Q,R′) which is not in Q′. Then we would have by (H−) for Q and
Q′ that for every ϕ(Y ) ∈ FmlL(R) with c′ ∈ ϕ(R′Y ) there is some c ∈ ϕ(RY ) with
f(X, c) 6∈ Q. This contradicts the definition of h(Q,R′).

It remains to show that (H−) is satisfied for Q and h(Q,R′).
Therefore we take some f(X, Y ) ∈ Z[X, Y ] and some ϕ(Y ) ∈ FmlL(R) with
DR′(f,R

′[X] \ h(Q,R′)) ∩ ϕ(R′Y ) 6= ∅, i.e. there is some c′ ∈ ϕ(R′Y ) such that
f(X, c′) is not in h(Q,R′). Being not in h(Q,R′) implies that there is some element
c ∈ ϕ(RY ) with f(X, c) 6∈ Q which means that DR(f,R[X] \Q) ∩ ϕ(RY ) 6= ∅. This
gives the claim for the first part of the lemma.

The result for H(Q,R′) follows from this since H(Q,R′) = R′[X] \ h(R[X] \Q,R′)
and (H+) is satisfied for Q and Q′ if and only if (H−) is satisfied for R[X] \Q and
R′[X] \Q′.

Lemma 3.1 2
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The sets h(Q,R′) (resp. H(Q,R′)) do not just satisfy (H−) (resp. (H+)) with
respect to Q. They satisfy even the following properties as we will see in the next
lemma.

(Hw)

For all k ∈ N0, all f1(X,Y ), ..., fk(X, Y ), f−(X, Y ) ∈ Z[X, Y ]
and every ϕ(Y ) ∈ FmlL(R) we have:
k⋂
i=1

DR′(fi, Q
′) ∩DR′(f

−, R′[X] \Q′) ∩ ϕ(R′Y ) 6= ∅

⇒
k⋂
i=1

DR(fi, Q) ∩DR(f−, R[X] \Q) ∩ ϕ(RY ) 6= ∅

Q′ is called a weak heir of Q on R′ if (Hw) is satisfied for Q and Q′.

(Hdw)

For all k ∈ N0, all f−1 (X, Y ), ..., f−k (X, Y ), f(X, Y ) ∈ Z[X, Y ]
and every ϕ(Y ) ∈ FmlL(R) we have:
k⋂
i=1

DR′(f
−
i , R

′[X] \Q′) ∩DR′(f,Q
′) ∩ ϕ(R′Y ) 6= ∅

⇒
k⋂
i=1

DR(f−i , R[X] \Q) ∩DR(f,Q) ∩ ϕ(RY ) 6= ∅

Q′ is called a dual weak heir of Q on R′ if (Hdw) is satisfied for Q and Q′.

Clearly (Hw) and (Hdw) imply both conditions (H+) and (H−).

Proposition 3.2
Suppose R′ ⊇ R is real closed and Q ⊆ R[X].
Then h(Q,R′) is a weak heir of Q on R′ and H(Q,R′) a dual weak heir of Q on R′.

Proof:
We take f1(X, Y ), ..., fk(X, Y ), f−(X, Y ) ∈ Z[X, Y ] and some ϕ(Y ) ∈ FmlL(R)

with
k⋂
i=1

DR′(fi, h(Q,R
′)) ∩ DR′(f

−, R′[X] \ h(Q,R′)) ∩ ϕ(R′Y ) 6= ∅. Hence there

is some c′ ∈ R′Y with f1(X, c
′), ..., fk(X, c

′) ∈ h(Q,R′), f−(X, c′) 6∈ h(Q,R′) and
c′ ∈ ϕ(R′Y ). By definition of h(Q,R′) there is for every i ∈ {1, ..., k} a formula
ϕi(Y ) ∈ FmlL(R) with c′ ∈ ϕi(R′Y ) and ϕi(R

Y ) ⊆ DR(fi, Q). (∗)

Since f−(X, c′) 6∈ h(Q,R′) and R′ |= ϕ(c′)∧
k∧
i=1

ϕi(c
′) there is by the fact that (H−)

is satisfied for Q and h(Q,R′) (Lemma 3.1) some c ∈ RY with R |= ϕ(c) ∧
k∧
i=1

ϕi(c)

and f−(X, c) 6∈ Q. By (∗) we have f1(X, c), ..., fk(X, c) ∈ Q which proves the claim
for h(Q,R′).
The claim for H(Q,R′) follows again by H(Q,R′) = R′[X] \ h(R[X] \Q,R′).

Prop. 3.2 2
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Having Lemma 3.1 in mind this actually means that h(Q,R′) is the smallest weak
heir of Q on R′ and H(Q,R′) the largest dual weak heir of Q on R′.

As the adjective weak already indicates we are close to the definition of an heir. The
stronger property of an heir will be the one which allows to show that Q ⊆ R[X]
is definable if and only if it has a unique heir on every real closed field R′ ⊇ R.
This will give us another possibility to prove definability of a quadratic module or
a preordering.

Definition 3.3
Q′ is called an heir of Q on R′ if (H) is satisfied for Q and Q′ where property (H)
is given by the following:

(H)

For all k, l ∈ N0, f1(X, Y ), ..., fk(X, Y ), f−1 (X, Y ), ..., f−l (X, Y ) ∈ Z[X, Y ]
and every ϕ(Y ) ∈ FmlL(R) we have:
k⋂
i=1

DR′(fi, Q
′) ∩

l⋂
i=1

DR′(f
−
i , R

′[X] \Q′) ∩ ϕ(R′Y ) 6= ∅

⇒
k⋂
i=1

DR(fi, Q) ∩
l⋂

i=1

DR(f−i , R[X] \Q) ∩ ϕ(RY ) 6= ∅

In general h(Q,R′) is not an heir but it is obtained from heirs as follows.

Proposition 3.4
Let R′ ⊇ R be a real closed field and Q ⊆ R[X]. Then

h(Q,R′) =
⋂

Q′heir of Qon R′

Q′

and
H(Q,R′) =

⋃
Q′heir of Qon R′

Q′

Proof:
Appendix Proposition A.11

Prop. 3.4 2

Corollary 3.5
If R′ ⊇ R is real closed and Q ⊆ R[X] is a quadratic module (resp. a prerodering)
then h(Q,R′) is also a quadratic module (resp. a preordering).
The same is in general not true for H(Q,R′).
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Proof:
We show that the property of being a quadratic module or a preordering transfers
from Q to every weak heir Q′ of Q.

First we show that Q′ is closed under addition. In order to do so we consider
f1(X, Y ), f2(X, Y ) ∈ Z[X, Y ] and f−(X, Y ) := f1(X, Y ) + f2(X,Y ) ∈ Z[X,Y ]. If
there would be some c′ ∈ R′Y with f1(X, c

′), f2(X, c
′) ∈ Q′ but f−(X, c′) 6∈ Q′ then

the property (Hw) would give us some c ∈ RY such that f1(X, c), f2(X, c) ∈ Q but
f−(X, c) = f1(X, c) + f2(X, c) 6∈ Q. This is a contradiction to the fact that Q is
closed under addition.

Similarly the closure under multiplication transfers from Q to Q′.

The fact that 1 ∈ Q′ follows by (Hw) with f−(X, Y ) := 1.

Now we prove that R′[X]2Q′ ⊆ Q′. With Fd(X,Z) ∈ Z[X,Z] we denote the general
polynomial of degree d with respect to X.
We suppose that there is f1(X, Y ), f−(X, Y ) ∈ Z[X, Y ] and c′ ∈ R′Y such that
f1(X, c

′) ∈ Q′, f−(X, c′) 6∈ Q′ and R′ |= ϕ(c′) where the L-formula ϕ(Y ) is defined
as ϕ(Y ) := ∃Z(∀X(f−(X,Z) = Fd(X,Z)2f1(X, Y ))). Then (Hw) implies that there
is some c ∈ RY with f1(X, c) ∈ Q, f−(X, c) 6∈ Q and R |= ϕ(c). This contradicts
R[X]2Q ⊆ Q.

Thus in particular h(Q,R′) and every heir of Q is a quadratic module (resp. a pre-
ordering) if Q is a quadratic module (resp. a preordering).

This is in general not true for H(Q,R′) because the union of quadratic modules
(resp. preorderings) is in general not a quadratic module (resp. a preordering).

Corollary 3.5 2

With the help of heirs as defined above we can now characterize the definability of
subsets of R[X] similar as for types.

Theorem 3.6
A set Q ⊆ R[X] is definable if and only if it has a unique heir on R′ for every real
closed extension field R′ ⊇ R.

Proof:
Appendix Theorem A.13

Theorem 3.6 2

If we look once more at the canonical set

Q′ := {f(X, c′) | f(X, Y ) ∈ Z[X, Y ], c′ ∈ R′Y and R′ |= ϑf (c
′)}
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where ϑf (Y ) is an L(R)-formula defining DR(f,Q) which we defined at the begin-
ning of this section for a definable set Q ⊆ R[X] to motivate the notion of heirs
then it turns out that in the case where Q is definable, Q′ = h(Q,R′) = H(Q,R′) is
the unique heir of Q on R′.

Proposition 3.4 together with Theorem 3.6 gives another way of showing definability
of a set Q ⊆ R[X], namely to show that h(Q,R′) = H(Q,R′) for every real closed
field R′ ⊇ R.

We use this to give an example of a finitely generated quadratic module on some
real closed field which is not definable, i.e. not weakly semialgebraic.

We are considering the preordering QMR[X]((1 − X2)3) in the ring of polynomials
with one indeterminate over a real closed field R for which Stengle showed in [St2]
that it is not stable over R. We deduce this result later on as a consequence of an
explicit description of heirs (Corollary 3.13). Now we are going to show that this
preordering is not weakly semialgebraic if R ⊃ R contains infinitesimal elements.

First note that 1−X2 6∈ QMR[X]((1−X2)3).
For suppose that 1 − X2 = σ0 + σ1(1 − X2)3 for some σi ∈

∑
R[X]2 (i = 0, 1).

Evaluation of this expression in 1 shows that σ0(1) = 0. Thus (1−X)|σ0 and since
this is a sum of squares even (1 − X)2|σ0. Hence (1 − X)2 divides the right hand
side of the above expression whereas it does not divide the left hand side.
A similar argument shows that also the natural generators 1−X and 1+X are not
in QMR[X]((1−X2)3).

Proposition 3.7
Let R ⊇ R be a real closed field and let n = 1, ε ∈ R. Then

f(X, ε) := 1−X2 + ε ∈ P := QMR[X]((1−X2)3) ⇔ ε > 0 not infinitesimal.

Proof:

⇒: If ε < 0 then f is clearly not in P because it is not nonnegative on [−1, 1].
We suppose now that ε > 0 is an infinitesimal element of R or ε = 0. As an
element of P the polynomial f has a representation f = σ0 + σ1(1−X2)3 for
some σi ∈

∑
R[X]2 (i = 0, 1). If all coefficients of σ0 and σ1 lie in the convex

hull O^ of R in R then we get by applying λ a representation of 1−X2 as an
element of QMÔ [X]((1−X2)3). This is not possible because the residue field

Ô is a subfield of R and we have seen above that 1−X2 does not lie in this
preordering. (We actually just need that Ô is a real closed field).
If one of the coefficients of σ0 or σ1 does not lie in O^, i.e. has negative value
with respect to the corresponding valuation v, then we take the coefficient c
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with the most negative value and divide the representation of f by c2. Again
by applying λ we get in the residue field 0 = σ̃0 + σ̃1(1 −X2)3 for some σ̃i ∈∑
Ô [X]2 (i = 0, 1). Since at least one of the coefficients of the polynomials

appearing in σ̃i is 1 we get a nontrivial representation of 0 in the residue field
and hence a contradiction as the interior of [−1, 1] is not empty and therefore
supp(QMÔ [X]((1−X2)3)) = {0}.

⇐: Because nonnegative elements from R are in the additively closed set P we
can suppose without loss of generality that ε ∈ O^ \ m. Since λ is order

preserving we get λ(ε) > 0 and we find some q ∈ Q with λ(ε)
2

< q < λ(ε)

because Ô is archimedean. As Ô ⊆ R we get by Schmüdgen (Corollary 2.24)
that 1 − X2 + q ∈ QMÔ [X]((1 − X2)3). The order preserving residue map
λ : O^ → O^/m admits an order preserving section ρ : O^/m → O^ which is the
identity on R because R ⊆ R. Hence we get a representation of 1−X2 + q as
an element of QMR[X]((1−X2)3) by applying ρ. We have q < ε because ρ is
order preserving and thus we get what we want.

Prop. 3.7 2

The proposition enables us to give the promised example of a not weakly semialge-
braic finitely generated preordering on some real closed field.

Example 3.8
The preordering P := QMR[X]((1−X2)3) ⊆ R[X] = R[X1] is not weakly semialge-
braic if R ⊇ R contains infinitesimal elements.

For the proof of this we show that the weak heir and the dual weak heir of P do not
coincide in some suitable real closed extension field R′ of R.

We consider therefore the polynomial f(X,Y ) := 1−X2+Y ∈ Z[X, Y ]. Proposition
3.7 shows that

f(X, c) ∈ P ⇔ c > 0, c not infinitesimal

Let now m+ be the cut corresponding to the upper edge of the maximal ideal m, i.e.
m+ = ((m+)L, (m+)R) with (m+)R := {x ∈ R | x > m}, and β be a realization of
m+ in some real closed field R′ ⊇ R.

Then f(X, β) ∈ H(P,R′)\h(P,R′) because for every formula ϕ(Y ) ∈ FmlL(R) with
R′ |= ϕ(β) (i.e. for every formula from the type of β over R) there is some c1 ∈ R
with R |= ϕ(c1) and c1 > 0 not infinitesimal, i.e. f(X, c1) ∈ P , but there is also
some c2 ∈ R with R |= ϕ(c2) and c2 > 0 infinitesimal, i.e. f(X, c2) 6∈ P .
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3.2 Heirs and stability of quadratic modules

Before we give explicit descriptions of heirs we show how the stability of a quadratic
module can be expressed with the help of heirs.

Stable quadratic modules were one of the examples for finitely generated weakly
semialgebraic quadratic modules given in Section 1.2. As we developed up to now
definability means that there is a unique heir on every real closed extension field. A
theorem of Scheiderer translated in the language of heirs now says that if in addition
the unique heir of QM(g1, ..., gs) equals the quadratic module generated by g1, ..., gs
in R′[X] = R′[X1, ..., Xn] then the quadratic module is stable. For convenience of
the reader we give the proof of this theorem which can be found in [S3].

Theorem 3.9 (Scheiderer, [S3] Proposition 3.6)
If g1, ..., gs ∈ R[X] and Q = QM(g1, ..., gs) ⊆ R[X] then the following are equivalent:

i) Q is stable.

ii) Q ⊆ R[X] is definable and the unique heir h(Q,R′) equals QMR′[X](g1, ..., gs)
for every real closed field R′ ⊇ R.

Proof:
For ease of notation we define g0 := 1.

i) ⇒ ii) : It is clear that Q is definable (see Section 1.2) and therefore has a unique
heir on every real closed field R′ ⊇ R (Theorem 3.6).

Even if Q is not definable we have QMR′[X](g1, ..., gs) ⊆ h(Q,R′) because
g1, ..., gs ∈ h(Q,R′) and h(Q,R′) is by Corollary 3.5 a quadratic module.

The other inclusion follows from the fact that the stability of Q implies
that the unique heir is given by

h(Q,R′) = {f(X, c′) | f(X, Y ) ∈ Z[X, Y ], c′ ∈ R′Y , R′ |= ϑstabf (c′)}

with the formula ϑstabf from Section 1.2. By looking at the definition of the

formula ϑstabf one immediately sees that some f(X, c′) with R′ |= ϑstabf (c′)
lies in QMR′[X](g1, ..., gs).

ii) ⇒ i) : The finite dimensional subspaces of polynomials up to degree d form an

increasing sequence R[X]≤0 ⊆ R[X]≤1 ⊆ ... with R[X] =
∞⋃
d=0

R[X]≤d.

We have Q =
∞⋃
d=0

ϑd(R
Yd) where ϑd(R

Yd) denotes the definable set

{
s∑
i=0

σigi | σi ∈
∑

R[X]2≤d (0 ≤ i ≤ s)}.
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Let R′ ⊇ R be real closed, then we clearly have

QMR′[X](g1, ..., gs) =
∞⋃
d=0

ϑd(R
′Yd).

By assumption QMR′[X](g1, ..., gs) = h(Q,R′) is definable. Thus for every
N ∈ N0 the set QMR′[X](g1, ..., gs) ∩ R′[X]≤N is semialgebraic. We now
consider in particular some real closed field R′ ⊇ R which is ℵ1-saturated
(e.g. a non principal ultrapower of R). Then the semialgebraic covering of
the semialgebraic setQMR′[X](g1, ..., gs)∩R′[X]≤N has a finite subcovering.
This means that there is some d ∈ N such that

QMR′[X](g1, ..., gs) ∩R′[X]≤N = ϑd(R
′Yd) ∩R′[X]≤N .

Since we have by assumption that h(Q,R′) = QMR′[X](g1, ..., gs) and
h(Q,R′) ∩R[X] = Q we get

Q ∩R[X]≤N = ϑd(R
Yd) ∩R[X]≤N .

As (R[X]≤N)N∈N0 forms a filtration of R[X] into finite dimensional sub-
spaces this proves the stability of Q.

Theorem 3.9 2

In Section 2.2 we solved in the univariate case the Membership Problem affirmatively
for finitely generated quadratic modules for the case that the associated semialge-
braic set consists just of finitely many points over arbitrary real closed fields. This
will now with the help of Theorem 3.9 imply that such kind of quadratic modules
are in fact stable.

Corollary 3.10
If n = 1, g1, ..., gs ⊆ R[X] with S = S(g1, ..., gs) ⊆ R finite then the quadratic
module Q = QM(g1, ..., gs) is stable.

Proof:
Let S = {a1, ..., am} for some ai ∈ R (1 ≤ i ≤ m).
By Theorem 2.37 we know that Q is weakly semialgebraic.
If R′ is an arbitrary real closed extension field of R and QR′ := QMR′[X](g1, ..., gs)
then by Tarski S(QR′) = {x ∈ R′ | gi(x) ≥ 0 (1 ≤ i ≤ s)} and also the order of
the polynomials gi in the points aj (1 ≤ i ≤ s, 1 ≤ j ≤ m) stays the same when
the polynomials are considered as elements of R′[X]. Thus the defining formula for
Q and QR′ is by Theorem 2.35 the same which shows that h(Q,R′) = QR′ . Hence
Theorem 3.9 implies that Q is stable. Corollary 3.10 2
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The following question arises:

Is there a quadratic module or a preordering which is weakly semialgebraic but not
stable?

Actually we will see a class of examples very soon. This shows that the notion of
stability is strictly stronger than the notion of definability.

We work out the example by describing the heir of a finitely generated quadratic
module of R[X] with nonempty compact semialgebraic set in dimension 1.

We will use the correspondence between finitely generated quadratic modules of
R[X] = R[X1] with nonempty bounded basic closed set and tuples (~σ, ~ω) where
~σ ∈ Svec(m) for some m ∈ N and ~ω ∈ Ωvec(~σ) as explained in Corollary 2.27.

As in the definition of the generalized natural generators in Section 2.1 the complete
vector of orders ~ω±(G) = (ω1, ω

+
1 , ω

−
1 , ..., ωm, ω

+
m, ω

−
m) associated to the finite set

G ⊆ R[X] plays an important role.

We recall that for S = S(G) =
m⋃
i=1

[ai, bi] with ~σ(S) = (a1, b1, ..., am, bm) ∈ Svec(m)

the entries of ~ω±(G) are

ωi = ∞, ω+
i = k+

ai
(G), ω−i = k−bi(G)

if ai < bi are boundary points of S \ Sisol whereas for isolated points ai = bi

ωi = kai
(G), ω+

i = kai
(G) + 1, ω−i = kai

(G) + 1 if ai is of type A

ωi = max(k+
ai

(G), k−ai
(G)) + 1, ω+

i = k+
ai

(G), ω−i = k−ai
(G) if ai is of type B

ωi = kai
(G), ω+

i = k+
ai

(G), ω−i = kai
(G) + 1 if ai is of type C

ωi = kai
(G), ω+

i = kai
(G) + 1, ω−i = k−ai

(G) if ai is of type D

For 0 ≤ j < l ≤ m+ 1 we define the polynomial

πj,l(X) :=
∏

bj<ai<al
ai=bi

(X − ai)
ωi ∈ R[X]

where b0 := −∞, am+1 := ∞ and πj,l(X) = 1 if there is no isolated point ai with
bj < ai < al.
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Theorem 3.11
Let n = 1, G = {g1, ..., gs} ⊆ R[X] such that ∅ 6= S = S(G) =

m⋃
i=1

[ai, bi] is a bounded

subset of R and ~σ(S) = (a1, b1, ..., am, bm) ∈ Svec(m).
For R ⊇ R the heir of Q = QM(g1, ..., gs) = PO(g1, ..., gs) ⊆ R[X] is given by

h(Q,R) = POR[X](H)

where
H = {g1(X), ..., gs(X)}

together with the following polynomials

• for the least boundary point a of S \ Sisol, for every l ∈ {1, ...,m} with al ≤ a
and every positive infinitesimal µ ∈ R

π0,l(X)(X − al + µ)

• for the largest boundary point b of S \Sisol, for every j ∈ {1, ...,m} with bj ≥ b
and every positive infinitesimal µ ∈ R

−(X − bj − µ)πj,m+1(X)

• for every pair of successive boundary points b < a of S \ Sisol - where we
also treat −∞ and ∞ as boundary points, for every pair 1 ≤ j, l ≤ m with
b ≤ bj < al ≤ a but bj 6= −∞, al 6= ∞ and every positive infinitesimal µ ∈ R

(X − bj − µ)πj,l(X)(X − al + µ)

(X − bj)
ω−j πj,l(X)(X − al + µ)

(X − bj − µ)πj,l(X)(X − al)
ω+

l

Proof:
By Theorem 2.20 Q is a weakly semialgebraic subset of R[X] where for some poly-
nomial f(X, Y ) ∈ Z[X, Y ] and some c ∈ RY the truth of the defining formula ϑf (c)
for D(f,Q) expresses that f(X, c) ≥ 0 on S and for all boundary points a of S the
order orda(f(X, c)) fulfills the conditions described in Theorem 2.18. The heir of Q
on R is therefore given by

h(Q,R) = {f(X, c) | f(X, Y ) ∈ Z[X, Y ], c ∈ RY , R |= ϑf (c)}.

We clearly have the inclusion h(Q,R) ⊇ POR[X](H) since any of the listed polyno-
mials h ∈ H fulfills the conditions given by the formula ϑh(Y ).
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For the other inclusion we consider some polynomial f = f(X, c) ∈ R[X] with
R |= ϑf (c) and c ∈ RY . Similar to the proof of Theorem 1.6 we proceed by induction
on the degree of f = f(X, c).

If deg(f) = 0 then we trivially have f ∈ POR[X](H) because then f is just some
nonnegative element of R.

Let now deg(f) > 0.

If f ≥ 0 on R then f ∈
∑
R[X]2 ⊆ POR[X](H).

Thus we suppose now that there is some γ ∈ R with f(γ) < 0.
In order to use the induction hypothesis we will factorize f = q · p for some q ∈
POR[X](H) and some p ∈ h(Q,R) which has lower degree than f . The properties of
the polynomial p and the polynomial p itself will in any of the following cases follow
from the fact that q divides f , deg(q) > 0, q|S ≥ 0 and for every boundary point a
of S either orda(q) = orda(f) or orda(q) = 0.

We denote for 1 ≤ i ≤ m the order of f in ai with λi and the order of f in bi with
ρi where ρi = λi if ai = bi.

If there is no zero of odd order of f in ] − ∞, γ[∩[a1,∞[ then either γ < a1 or
there are just isolated points of S on the left side of γ. By interpreting the empty
product as 1 we know in both cases that

∏
ai<γ
ai=bi

(X − ai)λi|f where the appearing even

exponents λi are ≥ ωi because f ∈ h(Q,R).
If there is no zero of odd order of f to the right of γ which is ≤ bm then the same
argumentation gives that

∏
ai>γ
ai=bi

(X − ai)
λi|f .

If there is no zero of odd order of f in ]−∞, γ[∩[a1,∞[ and ]γ,∞[∩]−∞, bm] which
is just possible if S = Sisol then we define

q :=
∏

1≤i≤m
ai=bi

(X − ai)
λi ∈ Q ⊆ POR[X](H)

where q ∈ Q because of Theorem 2.18 and f ∈ h(Q,R).

Now we suppose that there is no zero of odd order of f in ] −∞, γ[∩[a1,∞[ but a
least zero α of odd order f in ]γ,∞[∩]−∞, bm].
We suppose that bl−1 < α ≤ al for some l ∈ {1, ...,m}.
The nonnegativity of f on S implies that al ≤ a where a is the least boundary point
of S \ Sisol.

If there are isolated points between γ and α then as before
∏

γ<ai<α
ai=bi

(X−ai)λi|f where

λi ≥ ωi is even because of f ∈ h(Q,R).
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If α = al then we define

q :=

∏
ai<al
ai=bi

(X − ai)
λi

 (X − al)
λl ∈ Q ⊆ POR[X](H)

where q ∈ Q again follows from f ∈ h(Q,R) and Theorem 2.18.

If α = al − ε for some positive ε ∈ R then

q :=

∏
ai<al
ai=bi

(X − ai)
λi

 (X − al + ε).

There is some positive infinitesimal µ ∈ R with 0 < µ ≤ ε.
By definition of H the polynomial π0,l(X)(X − al + µ) is in H which gives that ∏

ai<al
ai=bi

(X − ai)
λi

 (X − al +µ) ∈ POR[X](H) as it is π0,l(X)(X − al +µ) multiplied

by a square. This implies that

 ∏
ai<al
ai=bi

(X − ai)
λi

 (X−al+ε) ∈ POR[X](H) because

it can be written as

 ∏
ai<al
ai=bi

(X − ai)
λi

 (X − al + µ) + (ε− µ)
∏

ai<al
ai=bi

(X − ai)
λi

︸ ︷︷ ︸
∈R[X]2

.

The case that there is a largest zero β of odd order of f in ]−∞, γ[∩[a1,∞[ and no
zero of odd order of f in ]γ,∞[∩]−∞, bm] can be solved similarly.

Now we consider the case that there is a largest zero β of odd order of f in ] −
∞, γ[∩[a1,∞[ and a least zero α of odd order of f in ]γ,∞[∩]−∞, bm].
We suppose that bj ≤ β < aj+1 and bl−1 < α ≤ al for some 0 ≤ j < l ≤ m+ 1.
The fact that f |S ≥ 0 implies the following. If there is a boundary point of S \ Sisol
in ]−∞, γ[ then b ≤ bj where b is the largest boundary point of S \ Sisol. Similarly
if there is a boundary point of S \ Sisol to the right of γ then al ≤ a where a is the
least boundary point of S \ Sisol in ]γ,∞[.

If there are isolated points between β and α then we know because of f ∈ h(Q,R)
that

∏
β<ai<α

ai=bi

(X − ai)
λi|f where λi ≥ ωi is even.
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If β = bj and α = al then we define

q := (X − bj)
ρj

 ∏
bj<ai<al

ai=bi

(X − ai)
λi

 (X − al)
λl ∈ Q ⊆ POR[X](H)

which as above follows from f ∈ h(Q,R) and Theorem 2.18.

If β = bj and α = al − ε for some positive ε ∈ R then we define

q := (X − bj)
ρj

 ∏
bj<ai<al

ai=bi

(X − ai)
λi

 (X − al + ε).

We can find some infinitesimal µ ∈ R with 0 < µ ≤ ε such that by Lemma 1.5
(X−bj)(X−al+ε) ∈ POR[X]((X−bj)(X−al+µ)). Hence by multiplying this with

the square (X− bj)ω
−
j −1πj,l(X) we also have that (X− bj)ω

−
j πj,l(X)(X−al + ε) is in

POR[X]((X− bj)ω
−
j πj,l(X)(X−al+µ)) which is a subset of POR[X](H) by definition

of H. Since q is obtained from (X − bj)ω
−
j πj,l(X)(X − al + ε) by multiplication with

a square we conclude that q ∈ POR[X](H).

If β = bj + ε and α = al for some positive ε ∈ R then we similarly define

q := (X − bj − ε)

 ∏
bj<ai<al

ai=bi

(X − ai)
λi

 (X − al)
λl

and get q ∈ POR[X](H).

If β = bj + ε1 and α = al − ε2 for some positive ε1, ε2 ∈ R then we define

q := (X − bj − ε1)

 ∏
bj<ai<al

ai=bi

(X − ai)
λi

 (X − al + ε2).

We can find infinitesimals µ1, µ2 ∈ R such that 0 < µi ≤ εi for i = 1, 2. By
Lemma 1.5 we have (X − bj − ε1)(X − al + ε2) ∈ POR[X]((X − bj − µ)(X − al + µ))
with µ := min(µ1, µ2). Hence (X − bj − ε1)πj,l(X)(X − al + ε2) is an element of
POR[X]((X − bj − µ)πj,l(X)(X − al + µ)) which is a subset of POR[X](H) because
πj,l(X) ∈ R[X]2 and (X − bj − µ)πj,l(X)(X − al + µ) ∈ H. Thus q ∈ POR[X](H) as
it is equal to (X − bj − ε1)πj,l(X)(X − al + ε2) multiplied by a square.

Theorem 3.11 2

99



If the set S = S(G) ⊆ R is bounded and does not have isolated points then we
know by the results of Section 2.1 that the set of generalized natural generators
Nat(~σ(S), ~ω(G)) for which we by Corollary 2.28 have

QMR[X](G) = QMR[X](Nat(~σ(S), ~ω(G))) = POR[X](Nat(~σ(S), ~ω(G)))

are given by

Nat(~σ(S), ~ω(G)) = {(X − bi)
ω−i (X − ai+1)

ω+
i+1 | 0 ≤ i ≤ m}

with b0 := −∞, am+1 := ∞, (X − (−∞))ω
−
0 := 1 and (X −∞)ω

+
m+1 := −1.

In this case the polynomials needed in addition to Nat(~σ(S), ~ω(G)) in order to
generate the heir of QMR[X](G) are obtained from the generalized natural generators
by varying one or both factors infinitesimally in the following way.

Corollary 3.12
Let n = 1, G = {g1, ..., gs} ⊆ R[X] such that ∅ 6= S = S(G) =

m⋃
i=1

[ai, bi] is a bounded

subset of R without isolated points.
Let ~σ(S) = (a1, b1, ..., am, bm) ∈ Svec(m) and ~ω±(G) = (ω1, ω

+
1 , ω

−
1 , ..., ωm, ω

+
m, ω

−
m)

associated to ~ω(G) ∈ Ωvec(~σ(S)).
For a real closed field R ⊇ R we have

h(QMR[X](G), R) = POR[X](H)

with

H = {(X − bi)
ω−i (X − ai+1)

ω+
i+1 | 0 ≤ i ≤ m}

∪ {(X − bi − µ)(X − ai+1 + µ) | 1 ≤ i ≤ m− 1, 0 < µ ∈ R infinitesimal}
∪ {(X − bi)

ω−i (X − ai+1 + µ) | 0 ≤ i ≤ m− 1, 0 < µ ∈ R infinitesimal}
∪ {(X − bi − µ)(X − ai+1)

ω+
i+1 | 1 ≤ i ≤ m, 0 < µ ∈ R infinitesimal}

where b0 := −∞, am+1 := ∞, (X − (−∞))ω
−
0 := 1 and (X −∞)ω

+
m+1 := −1.

As a consequence of the explicit description of heirs in Theorem 3.11 we prove the
following equivalence of stability and saturation.

Corollary 3.13
Let n = 1, g1, ..., gs ∈ R[X] such that S = S(g1, ..., gs) is a bounded subset of R with
nonempty interior.
Then the following are equivalent for Q = QM(g1, ..., gs) = PO(g1, ..., gs):

i) Q is stable.

ii) Q is saturated.
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Proof:

i) ⇒ ii) : We suppose that Q is not saturated. By Corollary 1.7 there is at least one
natural generator g of P(S) which is not contained in Q. Since the natural
generators of P(S) have coefficients in R and the interior of S is not empty
we can proceed as in the proof of the implication ⇒ in Proposition 3.7
and get that g + µ 6∈ QMR[X](g1, ..., gs) if R ⊃ R real closed and µ > 0
some infinitesimal element of R.
Without loss of generality let g = (X − b)(X − a) for some a, b ∈ S with
b < a and ]b, a[∩S = ∅. Since g+ µ is of the form (X − b− µ̃)(X − a+ µ̃)
for some positive infinitesimal element µ̃ of R this proves by Theorem
3.11 that for every real closed extension R of R with R 6= R we have
h(Q,R) 6= QMR[X](g1, ..., gs). By Theorem 3.9 this implies that Q is not
stable and we get a contradiction to the assumption.
Hence Q has to be saturated.

ii) ⇒ i) : If Q is saturated then by Corollary 1.7 all natural generators of P(S) are
in Q. Let R be a real closed extension of R. With the help of Lemma
1.5 and multiplication by appropriate squares we see that every element
of the set H which generates h(Q,R) according to Theorem 3.11 is in
POR[X](g1, ..., gs). Thus h(Q,R) = POR[X](g1, ..., gs) by Theorem 3.11.
Since R was an arbitrary real closed extension of R we get by Theorem
3.9 that Q is stable.

Corollary 3.13 2

We note that the equivalence of the corollary is no longer true if we are working
in higher dimensions. Scheiderer gave an example of a finitely generated saturated
preordering in dimension 2 ([S5] Corollary 3.3) which has compact semialgebraic set
and is thus by another result of Scheiderer ([S3] Theorem 5.4) not stable.

Since by Theorem 2.20 every finitely generated quadratic module over R in the one
dimensional case is weakly semialgebraic Corollary 3.13 gives us a lot of examples
of definable but not stable quadratic modules.

In particular the Stengle preordering P := QM((1 − X2)3) ⊆ R[X] is not stable
since it does not contain the polynomial 1 − X2 as explained before Proposition
3.7. Gilbert Stengle proved in his paper [St2] that P is not stable by giving explicit
lower bounds for the degrees of the sums of squares appearing in a representation
of 1−X2 + ε (ε ∈ R, ε > 0) as an element of P .
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Before we use these explicit bounds to prove that the heir of P on some real closed
extension field is not finitely generated we state a general result which tells us how
we can get information about degree bounds by looking at real closed extension
fields. This once more shows that it is important to consider arbitrary real closed
fields even if one is just interested in the case R = R.

Proposition 3.14
We consider polynomials g1(X, Y ), ..., gs(X,Y ) ∈ R[X, Y ] where R is a real closed
field, X = (X1, ..., Xn) and Y a finite tuple of variables.
Then the following are equivalent for f(X, Y ) ∈ R[X, Y ], R′ ⊇ R real closed and
c′ ∈ R′Y :

i) f(X, c′) ∈ QMR′[X](g1(X, c
′), ..., gs(X, c

′))

ii) There is a semialgebraic set A = ψ(RY ) ⊂ RY with ψ(Y ) ∈ tp(c′/R) such that
there is some d ∈ N with the property that for every a ∈ A the polynomial
f(X, a) ∈ QMR[X](g1(X, a), ..., gs(X, a)) has a representation where the sums
of squares are of degree at most d .

Proof:
Without loss of generality we suppose that d is even. We describe a general repre-
sentation of an element of QMR[X](g1(X, Y ), ..., gs(X, Y )) where the appearing sums
of squares have degree at most d with respect to X by

td(X, Y, Z) =
s∑
i=0

|Λ( d
2
)|∑

j=1

F d
2
(X,Zij)

2

 gi(X,Y )

where g0 := 1, F d
2
(X,Zij) denotes the general polynomial of degree d

2
with respect

to X and Z = (Z01, ..., Zs|Λ(d)|) (see Lemma 1.9).

ii) ⇒ i) : Let ϕ(Y ) be the L(R)-formula ∃Z(∀Xf(X, Y ) = td(X,Y, Z)).
By assumption R |= ∀Y (ψ(Y ) → ϕ(Y )) which gives by Tarski that also
R′ |= ∀Y (ψ(Y ) → ϕ(Y )). Since A = ψ(RY ) with ψ(Y ) ∈ tp(c′/R) we have
R′ |= ψ(c′) and thus R′ |= ϕ(c′) which gives the desired representation.

i) ⇒ ii) : By assumption we have f(X, c′) = td(X, c
′, b′) for some d ∈ N and some

b′ ∈ R′Z .
Thus R′ |= (∃Z(∀Xf(X, Y ) = td(X,Y, Z)))︸ ︷︷ ︸

=:ψ(Y )∈FmlL(R)

[c′]. Then A := ψ(RY ) ⊆ RY

is semialgebraic and ψ(Y ) ∈ tp(c′/R). For elements a of A we have the
desired representations for f(X, a) as R |= ψ(a).

Prop. 3.14 2
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Stengle used approximation theory to get estimates for the degrees of the sums of
squares needed in some representation of f(X, ε) = 1 − X2 + ε as an element of
QMR[X]((1−X2)3). For the convenience of the reader we give this reasoning in the
slightly more general case of QMR[X]((a−X2)3) for some given 0 < a ≤ 1.

Proposition 3.15 (Stengle, [St2] Theorem 4)
Let n = 1, a, ε ∈ R with 0 < a ≤ 1, 0 < ε < 1 and N(a, ε) be the least integer
which bounds the degree of some sum of squares appearing in a representation of
f(X, ε) = a−X2 + ε as an element of QMR[X]((a−X2)3).
Then there is a constant C > 0 such that N(a, ε) ≥

√
a
ε
· C

Proof:
For abbreviation we define g(X) := (a−X2)3.
Since S(g) = [−

√
a,
√
a] ⊆ R is compact and f |S(g) > 0 we get by Schmüdgens

Theorem (Corollary 2.24) that f ∈ QMR[X](g) = POR[X](g).
Thus there are some σ0, σ1 ∈

∑
R[X]2 such that

a−X2 + ε = σ0 + σ1(a−X2)3 (1)

We give a lower bound for the degree N of σ1 which is also a lower bound for N(a, ε)
since N(a, ε) ≥ N .
Because the sums of squares σ0 and σ1 are nonnegative on R we get from (1)

σ1(x)(a− x2)3 = a− x2 + ε−σ0(x)︸ ︷︷ ︸
≤0 on R

≤ a− x2 + ε ∀x ∈ R (2)

This implies that σ1(x) ≤ 1
(a−x2)2

+ ε
(a−x2)3

∀x ∈]−
√
a,
√
a[.

If we take some r ∈ R with 0 < r < a (this element will be chosen more properly
later on) then [−

√
a− r,

√
a− r] ⊆]−

√
a,
√
a[. Thus

max
|x|≤
√
a−r

σ1(x) ≤ 1
r2

+ ε
r3

(3)

From (2) we can conclude

ε ≥ (x2 − a)− (x2 − a)3σ1(x) ∀x ∈ R (4)

We suppose now that σ1(X) is a polynomial of degree N and use the extremal prop-
erty of the Tschebyscheff polynomial TN(X) of degree N ([R] Theorem 1.10) which
says that for some δ ≥ 1

max
|x|≤δ

|σ1(x)| ≤ TN(δ) max
|x|≤1

|σ1(x)| (5)

We can estimate the maximal value of |σ1| = σ1 on the interval [−
√
a√

1− r
a

,
√
a√

1− r
a

] as

follows:
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max
x2≤ a

1− r
a

σ1(x) = max
x2≤ 1

1− r
a

σ1(
√
ax) = max

x2≤ 1
(1− r

a )2

σ1(
√
a(1− r

a
)x)

(5)

≤ TN( 1
1− r

a
) max
x2≤1

σ1(
√
a(1− r

a
)x) = TN( 1

1− r
a
) max
x2≤a−r

σ1(x)

With (3) this gives

max
x2≤ a

1− r
a

σ1(x) ≤ TN(
1

1− r
a

)(
1

r2
+

ε

r3
)

If x2 ≤ a
1− r

a
this implies that

−σ1(x) ≥ −TN(
1

1− r
a

)(
1

r2
+

ε

r3
)

and by (4)

ε ≥ (x2 − a)− (x2 − a)3TN(
1

1− r
a

)(
1

r2
+

ε

r3
).

With the help of the expression TN(X) = 1
2
((X +

√
X2 − 1)N + (X −

√
X2 − 1)N)

([V-L] p.76 1.) we get −TN( 1
1− r

a
) ≥ −(

1+
√

r
a√

1− r
a

)N . This gives

ε ≥ (x2 − a)− (x2 − a)3(
1

r2
+

ε

r3
)(

1 +
√

r
a√

1− r
a

)N

for all x with x2 ≤ a
1− r

a
.

Now we choose in particular r = a
N2 (which fulfills 0 < r < a) and let x2 = a+ a

2N2

(such that x2 ≤ a
1− r

a
) and get

ε ≥ a

2N2
− a3

8N6
(
N4

a2
+
εN6

a3
)(

1 + 1
N√

1− 1
N2

)N =
a

2N2
− 1

8
(
a

N2
+ ε)(

1 + 1
N√

1− 1
N2

)N

Hence

N2ε ≥ a

2
− 1

8
(a+N2ε)(e+ o(1))

where the last bracket is independent from a. This can equivalently be written as

(1− e

8
+ o(1))N2ε ≥ a(

1

2
− 1

8
(e+ o(1)))

Therefore we get for N big enough that N2ε ≥ a · C for some constant C > 0 and
hence N ≥

√
a
ε
· C which is the desired bound.

Prop. 3.15 2
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The advantage of proving a bound in dependence of a is that it shows the following.
If we consider the polynomial

f(X, Y ) := Y −X2 + Y p ∈ Z[X, Y ]

for some fixed p ∈ N, p > 1, then for some 0 < a ≤ 1 and ε = ap the lower
bound from the previous proposition becomes N(a, ap) ≥

√
a1−p · C which tends to

zero for a → 0. This means that for given δ > 0 there is no global bound d such
that for all a ∈]0, δ[ the polynomial f(X, a) has a representation as an element of
QMR[X]((a−X2)3) with sums of squares of degree at most d. This non-existence of
the degree bound in turn means by Proposition 3.14 that

µ−X2 + µp 6∈ QMR[X]((µ−X2)3)

where R ⊃ R a real closed field and 0 < µ ∈ R infinitesimal.

Now we use the lower bound from Proposition 3.15 together with the upper bound
from [St2] to show that the heir of the Stengle preordering is not finitely generated.

Proposition 3.16
Let n = 1, P = QM((1 − X2)3) ⊆ R[X] and R ⊇ R a real closed extension field
which contains infinitesimal elements.
Then the heir h(P,R) of P on R is not finitely generated.

Proof:
Corollary 3.12 tells us that the heir of P on some real closed extension R ⊇ R is
given by h(P,R) = POR[X](H) with

H = {(1−X2)3}
∪ {1 + µ−X | µ ∈ R, µ > 0 infinitesimal }
∪ {1 + µ+X | µ ∈ R, µ > 0 infinitesimal }.

In order to show that the heir is not finitely generated we suppose that we would
just need finitely many of the polynomials of H.

Let µ > 0 be the smallest infinitesimal element of R such that 1 + µ − X ∈ H or
1 + µ+X ∈ H. Without loss of generality we suppose that

h(P,R) = POR[X]((1−X2)3, 1 + µ−X, 1 + µ+X).

We show that this is not possible by showing that 1 −X2 + µk which is clearly in
h(P,R) is not in POR[X]((1−X2)3, 1 + µ−X, 1 + µ+X) for k ∈ N big enough.

For suppose that 1−X2 +µk ∈ POR[X]((1−X2)3, 1 +µ−X, 1 +µ+X) then there
would exist some δ0 ∈ R such that ∀δ ∈]0, δ0[ the polynomial 1−X2 +δk would have
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a representation as an element of POR[X]((1−X2)3, 1 + δ −X, 1 + δ +X) with the
property that the degree of the sums of squares appearing is fixed by some d ∈ N
(Proposition 3.14). This means that

1−X2 + δk = s0 + s1(1−X2)3 + s2(1 + δ −X) + s3(1 + δ +X)+
+s4(1−X2)3(1 + δ +X) + s5(1−X2)3(1 + δ −X)+
+s6(1 + δ −X)(1 + δ +X) + s7(1−X2)3(1 + δ −X)(1 + δ +X)(∗)

where si ∈
∑

R[X]2 (0 ≤ i ≤ 7) of degree less or equal to d.
Now we use a representation

1 + δ −X = σ0 + σ1(1−X2)3

and
1 + δ +X = σ̃0 + σ̃1(1−X2)3

of these both generators lying itself in the preordering QMR[X]((1 − X2)3). By a
result of Stengle ([St2] Theorem 5) we have an upper bound on the degree of the

σi, σ̃i (i = 0, 1) which is given by C1

√
1 + 2

δ
log(1 + 2

δ
) for some constant C1. By

substituting these representations into (∗) we obtain

1−X2 + δk = τ0 + τ1(1−X2)3

with τ0, τ1 ∈
∑

R[X]2 and more exactly

τ1 = s1 + s2σ1 + s3σ̃1 + s4σ̃0 + s5σ0 + s6σ1σ̃0 + s6σ0σ̃1 + s7σ0σ̃0 + s7σ1σ̃1(1−X2)6.

This implies that deg(τ1) ≤ d+ 12 + 2C1

√
1 + 2

δ
log(1 + 2

δ
).

If δ is small enough (the degree d stays fixed!) then this degree is less or equal than

3C1

√
1 +

2

δ
log(1 +

2

δ
) ≤ 3C1︸︷︷︸

=: eC

(1 +
2

δ
).

On the other hand we know by the result about the lower bound (Proposition 3.15)
that the degree of τ1 has to be greater than or equal to C 1√

δk
.

Hence

C
1√
δk
≤ deg(τ1) ≤ C̃(1 +

2

δ
).

By choosing k big enough such that C̃(1 + 2
δ
) < C 1√

δk
we get a contradiction which

proves that h(P,R) is not generated by just finitely many elements of H.

If we would have other finitely many generators than those given by the set H, say
h(P,R) = POR[X](q1, ..., qr) then we could express the polynomials qi by finitely
many of the elements of H so we could as above deduce a contradiction. This shows
that h(P,R) is not finitely generated.

Prop. 3.16 2
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3.3 Traces of heirs

In this section we do not consider arbitrary extensions of real closed fields. We
concentrate on tame extensions R′ ⊇ R as defined in Section 1.3 (Definition 1.17).

If the extension R′ ⊇ R is tame then the embedding R ↪→ O^ → O^/m is onto and
the place λ : O^ → R is called the standard part map.

We deal with the question: What do we get when we look at the images of h(Q,R′)
and H(Q,R′) under λ if Q is a quadratic module of R[X] = R[X1, ..., Xn]?

Interestingly we get

Q(‡) := {f ∈ R[X] | ∃q ∈ R[X] ∀ε > 0 f + εq ∈ Q}

which is an object introduced by Kuhlmann, Marshall and Schwartz in their paper
[K-M-S] inspired by the (‡)-condition of [K-M].

Q(‡) plays an important role in the solution of the moment problem because it
approximates the closure Q of Q with respect to the natural linear topology. If
R = R we know by Haviland ([H1], [H2]) that Q solves the moment problem for S
if and only if P(S) = Q. By the fact that Q(‡) ⊆ Q the result P(S) = Q(‡) also
implies that Q solves the moment problem for S.

For our result we need the following lemma which is from [K-M-S].

Lemma 3.17 (Kuhlmann,Marshall,Schwartz, [K-M-S] Prop. 1.4)
Let Q ⊆ R[X] be a quadratic module. Then

Q(‡) =
⋃
d∈N0

Q ∩R[X]≤d

where the closure is taken in the euclidian norm.

Proof:
For the inclusion ⊆ we take some f ∈ Q(‡) which means that there is some q ∈ R[X]
such that for every ε > 0 f + εq ∈ Q. With d := max{deg f, deg q} this means that
f + εq ∈ Q ∩R[X]≤d for every ε > 0 and thus f ∈ Q ∩R[X]≤d.

For the other inclusion we consider an element f ∈ Q ∩R[X]≤d for some d ∈ N0.
Since the identity f = (f+1

2
)2− (f−1

2
)2 for every polynomial f ∈ R[X]≤d implies that

R[X]≤d = (Q∩R[X]≤d)− (Q∩R[X]≤d) we know that int(Q∩R[X]≤d) 6= ∅ because
Q ∩ R[X]≤d contains a basis of R[X]≤d. By choosing some q ∈ int(Q ∩ R[X]≤d) we
get that λf + (1− λ)q ∈ Q ∩R[X]≤d for every 0 < λ < 1 which means nothing else
than f + εq ∈ Q ∩R[X]≤d ⊆ Q for every ε > 0.

Lemma 3.17 2
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Theorem 3.18
For every quadratic module Q ⊆ R[X] and any tame extension R′ ⊇ R we have

λ(h(Q,R′) ∩O^[X]) = λ(H(Q,R′) ∩O^[X]) = Q(‡).

Proof:
We will show the following inclusions

Q(‡) ⊆ λ(h(Q,R′) ∩O^[X])

and
λ(H(Q,R′) ∩O^[X]) ⊆ Q(‡)

which will prove the claim as λ(h(Q,R′) ∩O^[X]) ⊆ λ(H(Q,R′) ∩O^[X]).

Proof of the first inclusion:
For f = f(X, c) ∈ Q(‡) there is some q = q(X, b) ∈ R[X] such that f + εq ∈ Q
for every ε > 0. We define g(X,T, Y, Z) := f(X,Y ) + Tq(X,Z) ∈ Z[X,T, Y, Z].
Then for every µ ∈ O^, µ > 0 we have g(X,µ, c, b) ∈ h(Q,R′) ∩O^[X] because with
ϕg(T, Y, Z) ∈ FmlL(R) defined as

T > 0 ∧ ∀X(g(X,T, Y, Z) = f(X, Y ) + Tq(X,Z)) ∧ Y = c ∧ Z = b

R′ |= ϕg(µ, c, b) and ϕg(R
T,Y,Z) ⊆ DR(g,Q).

If 0 < µ ∈ m then λ(g(X,µ, c, b)) = λ(f(X, c)) + λ(µ)λ(q(X, b)) = f(X, c).

Proof of the second inclusion:
We take some polynomial f(X, Y ) ∈ Z[X, Y ] and some c′ ∈ R′Y such that

λ(f(X, c′)) 6∈ Q ∩R[X]≤d

where d is the degree of f(X, Y ) with respect to X and show that f(X, c′) is not in
H(Q,R′). This will by the previous lemma prove the second inclusion.
We can suppose that c′ ∈ O^Y . The fact that λ(f(X, c′)) is not in the closure of
Q ∩ R[X]≤d with respect to the euclidian norm implies that there is a continuous
semialgebraic function s : R[X]≤d → R such that s(λ(f(X, c′))) = 1 and s(Z) = 0

where Z is some semialgebraic set that contains Q ∩R[X]≤d.
Because of the continuity of s we have s◦λ = λ◦sR′ on O^Y where sR′ : R′[X]≤d → R′

is the semialgebraic function defined by the same formula as s.
Thus 1 = s(λ(f(X, c′))) = λ(sR′(f(X, c′))). Hence we have sR′(f(X, c′)) ≥ 1

2
which

means that R′ |= ϕ(c′) with ϕ(Y ) := ∀X(s(f(X, Y )) ≥ 1
2
). But in R we have by

definition of s that ϕ(RY ) ∩DR(f,Q) = ∅ which shows that f(X, c′) 6∈ H(Q,R′).

We note that this second inclusion can also be proved if we just consider some subset
K of R[X] instead of a quadratic module Q. Theorem 3.18 2
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This result together with the explicit description of heirs which we gave in the last
section implies that Q(‡) is equal to the saturation of Q in the one dimensional case
for a finitely generated quadratic module Q ⊆ R[X] whose associated semialgebraic
set is bounded.

Corollary 3.19
Let n = 1, g1, ..., gs ∈ R[X] such that S = S(g1, ..., gs) is a bounded subset of R .
Then we have for Q = QM(g1, ..., gs) = PO(g1, ..., gs) ⊆ R[X]

Q(‡) = P(S).

Proof:
Let R′ be an arbitrary real closed extension of R = R. Since R = R the extension
is tame. Therefore we know by Theorem 3.18 that Q(‡) = λ(h(Q,R′) ∩ O^[X]). By
Theorem 3.11 we know how the heir looks like and see that the natural generators
of S are in λ(h(Q,R′) ∩ O^[X]). Thus by Corollary 1.7 Q(‡) = P(S) where we use
Proposition 2.33 which ensures that Q(‡) is finitely generated.

Corollary 3.19 2

The fact that P(S) = Q(‡) can also be deduced from the Theorem of Schmüdgen
(Corollary 2.24) which translates to

P(S) = {f ∈ R[X] | ∀ε > 0 f + ε ∈ Q}.

On the other side we clearly have

{f ∈ R[X] | ∀ε > 0 f + ε ∈ Q} ⊆ Q(‡) ⊆ P(S).

In the special case that the quadratic module Q is stable and the support of Q is
zero we can deduce that Q = Q(‡) which together with the previous Corollary gives
another proof of the Implication i) ⇒ ii) in Corollary 3.13.

Proposition 3.20
If Q ⊆ R[X] = R[X1, ..., Xn] is a finitely generated stable quadratic module and
supp(Q) = {0} then

Q = Q(‡).

Proof:
Let Q = QM(g1, ..., gs) for some {g1, ..., gs} ⊆ R[X].
By definition of Q(‡) we have Q ⊆ Q(‡).

For the other inclusion let R′ ⊇ R be the real closure of the field R(µ) obtained
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from R by adjoining a transcendental element µ provided with 0 < µ << 1. This
means R′ is a real closed field which contains an element µ which is infinitesimal
with respect to R, i.e. 1

µ
> R.

We consider an arbitrary element f ∈ Q(‡) and show that f ∈ Q.
By definition of Q(‡) there is some q ∈ R[X] such that f + εq ∈ Q for every ε > 0.
Since Q is stable this implies by Proposition 3.14 that f + µq lies in the quadratic
module QMR′[X](G). Thus we have a representation of the form

f + µq =
r∑
i=0

σigi (∗)

with g0 := 1 and σi ∈
∑
R′[X]2 (0 ≤ i ≤ s). Let σi =

mi∑
j=1

hij(X)2 for some mi ∈ N0

and hij ∈ R′[X] (1 ≤ j ≤ mi, 0 ≤ i ≤ s).
If some of the coefficients of the sums of squares σi are not in O^, let c be the
coefficient with the lowest valuation v(c) < 0. By dividing through c2 we get an

equation of the form 1
c2

(f + µq) =
s∑
i=0

mi∑
j=1

(1
c
hij(X))2gi. We apply λ to both sides of

this equation and get 0 on the left hand side but at least one of the coefficients on
the right hand side is 1. This gives us a nontrivial representation of 0 in the residue
field which is isomorphic to R. This is not possible as the support of Q is {0}.
Thus all the coefficients of the sums of squares σi (0 ≤ i ≤ s) lie in the valuation

ring O^. Hence again by applying the residue map to (∗) we get f =
s∑
i=0

σ̃igi with

σ̃i ∈
∑
R[X]2 (0 ≤ i ≤ s) which is a representation of f as an element of Q.

Prop. 3.20 2
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4 Towards the solution of the Membership Prob-

lem over R = R((tR))

In this chapter R is always a real closed field which contains R.

For ease of notation we often write λf instead of λ(f) and λx instead of λ(x) if
f ∈ O^[X], x ∈ O^ and λ denotes the residue map.

Since for every extension field R of R the extension R ⊇ R is tame as defined in 1.17
we are dealing with tame extensions in this chapter. Later on we will specialize to
the field of formal series R = R((tR)) in order to have SpecO^ = {{0},m} but now
the real closed field R ⊇ R is still arbitrary.

In Section 2.1 we solved the Membership Problem affirmatively for finitely generated
quadratic modules of R[X] in dimension 1. A direct copy of this method for arbitrary
real closed fields R instead of R is not possible because the local global principle as
stated in 2.9 is not valid any more. The fact that the semialgebraic set S = S(G) as-
sociated to the finitely generated quadratic module Q = QM(G) ⊆ R[X] is bounded

is not enough to give: f̂a ∈ Q̂a for all a ∈ Z(f) ∩ S ⇒ f ∈ Q.

Exemplarily the Stengle preordering illustrates this observation.
If R ⊇ R contains infinitesimal elements then the polynomial f(X) := 1 −X2 + µ
where µ > 0 is some infinitesimal element of R is strictly positive on S := [−1, 1].
The interval [−1, 1] is the basic closed semialgebraic set associated to the preorder-

ing P := QMR[X]((1 − X2)3). Thus f̂a ∈ P̂a for every zero a of f in S is trivially
true but by Proposition 3.7 we know that f is not in P .

In the two extreme cases that the interior of the semialgebraic set S ⊆ R associ-
ated to the finitely generated quadratic module Q ⊆ R[X] is empty or that S is
not bounded we already have worked out that the Membership Problem is solvable
affirmatively over arbitrary real closed fields since we even have stability in those
cases (Theorem 2.35, Corollary 1.14).

The remaining case for n = 1 is the case where S is bounded and int(S) 6= ∅ which
implies that supp(Q) = {0}.

As in Chapter 2, X denotes one indeterminate from now on.

Let f, g1, ..., gs ∈ R[X] and

QR := QMR[X](g1, ..., gs) ⊆ R[X]

as well as
SR := S(g1, ..., gs) = {x ∈ R | gi(x) ≥ 0 (1 ≤ i ≤ s)}.

111



We proved in Section 2.2 that the local conditions f̂a ∈ (̂QR)a for the finitely many
zeros a of f in SR are equivalent to f ∈ QMR[X](g1, ..., gs,−f 2) = QR + f 2R[X]
(Corollary 2.40).

However for arbitrary real closed fields R it is not clear under which assumptions
the fact that f |SR

≥ 0 and f ∈ QR + f 2R[X] implies that f ∈ QR.

IfR = R the boundedness of SR is enough because this implies thatQR is archimedean
(Theorem 2.9).

This motivates the following strategy.
We consider f, g1, ..., gs ∈ O^[X] and impose first the necessary assumptions such
that

QÔ := QMÔ [X](g1, ..., gs) ⊆ O^[X]

is archimedean because we can then conclude by Lemma 2.7 from f ≥ 0 on H(QÔ )
and f ∈ QÔ + f 2O^[X] that f ∈ QÔ ⊆ QR ∩ O^[X]. Then we prove under some
additional assumptions for R = R((tR)) a suitable local-global principle which allows
us to express f ∈ QÔ by finitely many conditions in formal power series rings.

We note that a positive solution of the Membership Problem for QR ∩O^[X] would
also give a positive solution of the Membership Problem for QR.
The reason is that for f(X, Y ) ∈ Z[X, Y ] there is a function µ : O^Y → O^ which
can chosen to be semialgebraic such that for every c ∈ O^Y

f(X, c) ∈ QR ⇔ µ(c)2f(X, c) ∈ QR ∩O^[X]

From now on let
f, g1, ...gs ∈ O^[X].

Since Ô is an archimedean real closed field it can be viewed as a subfield of R. Be-
cause we assume that R ⊆ R it is actually isomorphic to R. We denote the section
of the place λ that selects R by ρ : Ô → R. One can think of Ô being a copy of R
but we will not identify them (yet).

In the following not just the quadratic modules QR and QÔ will be important but
also

Qλ
Ô

:= QMÔ [X](λg1, ..., λgs) ⊆ Ô [X].

together with

Sλ
Ô

:= SÔ (λg1, ..., λgs) = {x ∈ Ô | λgi(x) ≥ 0 (1 ≤ i ≤ s)}.
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We illustrate the quadratic modules and basic closed semialgebraic sets appearing
in this chapter with the following picture where i, i1 and i2 are inclusions.

R[X]
QR, SR

R[X]

∼=

i
==||||||||||

i1 // O
^[X]
QÔ

i2

OO

λ // Ô [X]
Qλ
Ô
, Sλ

Ô

The reason why in this picture no associated semialgebraic set appears for QÔ is that
this finitely generated quadratic module is not a quadratic module of a polynomial
ring over a real closed field. However if we are working in the real spectrum then
there is an associated set for QÔ namely

H(QÔ ) = H(g1, ..., gs) = {α ∈ SperO^[X] | gi(α) ≥ 0 (1 ≤ i ≤ s)}.

For the quadratic modules QR and Qλ
Ô

we have H(QR) = S̃R ⊆ SperR[X] and

H(Qλ
Ô

) = S̃λ
Ô
⊆ Sper Ô [X].

By applying the real spectrum functor we get the following picture.

SperR[X]

S̃R
Sper i

zzvvvvvvvvvvvvv
Sper i2

��

Sper R[X]

∼=

SperO^[X]
H(QÔ )

Sper i1oo
Sper Ô [X]

S̃λ
Ô

Sperλoo

We note that the appropriate space for quadratic modules would normally be the
semi-real spectrum. If n = 1 we know however by Proposition 0.3 that SemiSperR[X]
is equal to SperR[X] for every real closed field R.
Thus

Hsemi(QR) = Hsemi(g1, ..., gs) = H(g1, ..., gs) = S̃R ⊆ SperR[X]

and also
Hsemi(Q

λ
Ô

) = S̃λ
Ô
⊆ Sper Ô [X].
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4.1 Description of SperO^[X] and SperO^[X]max

In the first proposition we do not yet specialize to R = R((tR)) and consider an
arbitrary real closed extension R ⊇ R.

Proposition 4.1
If R ⊇ R then the following is true:

i) QÔ = λ−1(Qλ
Ô

) if and only if m[X] ⊆ supp(QÔ ).

ii) If α is a semiordering of O^[X] then α = λ−1(γ) for some γ ∈ SemiSper Ô [X]
if and only if supp(α) ∩O^ = m.

iii) If g1, ..., gs ∈ R[X] and the support supp(QMR[X](g1, ..., gs)) is radical then we
have QR ∩O^[X] = QÔ .

iv) If α is a semiordering of O^[X] then α = β∩O^[X] for some β ∈ SemiSperR[X]
if and only if supp(α) ∩O^ = {0}.

Proof:
i) : If QÔ = λ−1(Qλ

Ô
) then for some f(X) ∈ m[X] the fact that λ(f) = 0 ∈ Qλ

Ô

implies that f ∈ λ−1(Qλ
Ô

) = QÔ . Since for f ∈ m[X] also −f ∈ m[X] we
actually have shown that m[X] ⊆ supp(QÔ ).

In the proof of the other implication the inclusion ⊆ is even true without our
assumption.

To show this we take some f =
s∑
i=0

σigi ∈ QÔ where σi ∈
∑
O^[X]2, 0 ≤ i ≤ s.

As λ(σi) ∈
∑
Ô [X]2 for every 0 ≤ i ≤ s we have λ(f) =

s∑
i=0

λ(σi)λgi ∈ Qλ
Ô

which proves the first inclusion.
For the inclusion λ−1(Qλ

Ô
) ⊆ QÔ we consider some polynomial f ∈ O^[X]

with λ(f) ∈ Qλ
Ô

and show that f ∈ QÔ .

Let λ(f) =
s∑
i=0

σiλgi for some σi ∈
∑
Ô [X]2 (0 ≤ i ≤ s). Then we define

f̃ :=
s∑
i=0

i1(ρ(σi))gi.

Hence f̃ ∈ QÔ because i1(ρ(σi)) ∈
∑

R[X]2 ⊆
∑
O^[X]2 for 0 ≤ i ≤ s. On

the other hand we have

λ(f − f̃) =
s∑
i=0

σiλgi − λ(
s∑
i=0

i1(ρ(σi))gi)

λ◦i1=ρ−1

=
s∑
i=0

σiλgi −
s∑
i=0

σiλgi = 0
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Hence there is some m ∈ m[X] with f = f̃ + m which implies that f ∈ QÔ

because f̃ ∈ QÔ and m[X] ⊆ supp(QÔ ).

ii) : If α = λ−1(γ) for some γ ∈ SemiSper Ô [X] then we have for the support of α
that supp(α)∩O^ = supp(λ−1(γ))∩O^. Since γ is a semiordering of Ô [X] the
intersection of the prime ideal supp(γ) with the field Ô is {0}. Now we have
a ∈ supp(λ−1(γ)) ∩ O^ ⇔ λ(a) ∈ supp(γ) ∩ Ô = {0} for every a ∈ R. This
means that supp(α) ∩ O^ = ker(λ) = m as λ is the canonical homomorphism
O^ onto O^/m = Ô .

Now we suppose that α ∈ SemiSperO^[X] with supp(α) ∩ O^ = m. Then we
consider the ring homomorphism Φ : O^[X] → O^[X]/supp(α) ↪→ k(α) where
k(α) denotes the quotient field of O^[X]/supp(α) which carries a semiordering
T induced by α. As we have by assumption ker(Φ|Ô ) = m the homomor-
phism theorem gives a ring homomorphism Φ1 : Ô = O^/m → k(α) such that

Φ|Ô = Φ1 ◦ λ|Ô . We extend Φ1 to a ring homomorphism Φ̃1 : Ô [X] → k(α)

with Φ = Φ̃1 ◦ λ and define γ := Φ̃−1
1 (T ). Since T is a semiordering of k(α)

and Φ̃1 is a ring homomorphism γ is an element of SemiSper Ô [X].

Furthermore λ−1(γ) = λ−1(Φ̃−1
1 (T )) = (Φ̃1 ◦ λ)−1(T ) = Φ−1(T ) = α by defini-

tion of Φ.

iii) : By [M-R] Corollary 4.2 we may assume that R is a truncation closed subfield
of R((tΓ)) and O^ = R ∩ R((tΓ

≥0
)) where Γ is the value group of v.

The inclusion QR ∩O^[X] ⊇ QÔ is clear.

Thus we consider now some f ∈ QR ∩ O^[X] and show that f ∈ QÔ . This

means we have σi ∈
∑
R[X]2 for 0 ≤ i ≤ s such that f(X) =

s∑
i=0

σi(X)gi(X).

There are r, d ∈ N and hi,j(X) ∈ R[X] for i ∈ {0, ..., s} and 1 ≤ j ≤ r such

that σi(X) =
r∑
j=1

hi,j(X)2 and deggi, deghi,j ≤ d. Thus we have

f(X) =
s∑
i=0

r∑
j=1

hi,j(X)2gi(X).

As we consider R as a subfield of R((tΓ)) there are hi,j,γ(X) ∈ R[X] of degree
≤ d such that

hi,j(X) =
∑
γ

hi,j,γ(X)tγ

which implies that

f(X) =
∑
γ

(
s∑
i=0

r∑
j=1

∑
γ1+γ2=γ

hi,j,γ1(X)hi,j,γ2(X)gi(X)

)
tγ (∗).
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We abbreviate QR := QMR[X](g1, ..., gs) and define

γ̂ := min{γ ∈ Γ | hi,j,γ(X)gi(X) 6∈ supp(QR) for some 0 ≤ i ≤ s, 1 ≤ j ≤ r}

We claim that
γ̂ ≥ 0

and suppose to the contrary that γ̂ < 0 which also means that 2γ̂ < 0.
Then the coefficient of t2bγ in the representation (∗) must be zero because
f(X) ∈ O^[X]. This means that

s∑
i=0

r∑
j=1

∑
γ1+γ2=2bγ

hi,j,γ1(X)hi,j,γ2(X)gi(X) = 0

or

h(X) +
s∑
i=0

r∑
j=1

hi,j,bγ(X)2gi(X) = 0 (∗∗)

where we have defined

h(X) :=
s∑
i=0

r∑
j=1

∑
γ1+γ2=2bγ

γ1<bγor γ2<bγ

hi,j,γ1(X)hi,j,γ2(X)gi(X).

The definition of γ̂ implies that h(X) ∈ supp(QR) because every summand is
an element of the support of QR. Again by definition of γ̂ now together with
the radicality of supp(QR) we have some î and some ĵ such that h

bi,bj,bγ(X)2g
bi(X)

is not in supp(QR) which means that −h
bi,bj,bγ(X)2g

bi(X) 6∈ QR. This contradicts
(∗∗) and proves the claim that γ̂ ≥ 0.

Now we define for every 0 ≤ i ≤ s and every 1 ≤ j ≤ r

ĥi,j,γ(X) :=

{
hi,j,γ(X) if γ ≥ γ̂

0 if γ < γ̂

and
ĥi,j(X) =

∑
γ

ĥi,j,γ(X)tγ−bγ ∈ O^[X].

Since f(X) ∈ O^[X] we have

f(X) =
∑
γ<0

(
s∑
i=0

r∑
j=1

∑
γ1+γ2=γ

hi,j,γ1(X)hi,j,γ2(X)gi(X)

)
tγ = 0

such that

f(X) = f1(X) + t2bγ
s∑
i=0

r∑
j=1

ĥi,j(X)2gi(X)

116



with

f1(X) :=
∑
γ≥0

 s∑
i=0

r∑
j=1

∑
γ1+γ2=γ

γ1<bγor γ2<bγ

hi,j,γ1(X)hi,j,γ2(X)gi(X)

 tγ.

By definition of γ̂ the element f1(X) is in the ideal generated by supp(QR)

in O^[X] and hence f1 ∈ QÔ . Since γ̂ ≥ 0 and ĥi,j(X) ∈ O^[X] we have
altogether shown that f ∈ QÔ .

iv) : If α = β ∩O^[X] for some semiordering β from SemiSperR[X] then we clearly
have that supp(α)∩O^ = (supp(β)∩R)∩O^ = {0} because supp(β) is a prime
ideal and R is a field.

Now we suppose that α ∈ SemiSperO^[X] with supp(α) ∩ O^ = 0. We have
the ring homomorphism Φ : O^[X] → O^[X]/supp(α) ↪→ k(α) where k(α)
denotes the quotient field of O^[X]/supp(α) semiordered by the semiordering
T induced by α. Since by assumption ker(Φ|Ô ) = {0} the map Φ|Ô is in-
jective. Since R = Quot(O^) we have a ring homomorphism Φ1 : R → k(α)

which sends a
b
∈ R to Φ(a)

Φ(b)
. The map Φ has the property that Φ|Ô = Φ1 ◦ i

where i : O^ → R is the canonical inclusion. We extend Φ1 to a ring ho-
momorphism Φ̃1 : R[X] → k(α) which also satisfies Φ̃1 ◦ i = Φ and define

β := Φ̃−1
1 (T ). Since T is a semiordering of k(α) and Φ̃1 is a ring homomor-

phism β ∈ SemiSper(R[X]). Furthermore β ∩O^[X] = Φ−1(T ) = α.
Prop. 4.1 2

Now we specialize to the case that R = R((tR)) where SpecO^ = {{0},m} and
identify Ô with R. Then SemiSperO^[X] is according to the previous proposition
given as

{λ−1(γ) | γ ∈ SemiSper R[X]}
⋃
· {β ∩O^[X] | β ∈ SemiSperR[X]}.

Proposition 0.3 implies that the elements of SemiSperO^[X] are in fact orderings
and we have

SemiSperO^[X] = SperO^[X] =
= {λ−1(γ) | γ ∈ Sper R[X]}

⋃
· {β ∩O^[X] | β ∈ SperR[X]}.

This implies that

Hsemi(QÔ ) = Hsemi(g1, ..., gs) =
= H(g1, ..., s) =

= {λ−1(γ) | γ ∈ S̃λR}
⋃
· {β ∩O^[X] | β ∈ S̃R}.
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In order to see that H(QÔ ) is made up of the two sets as stated above we consider
some α ∈ SemiSperO^[X] = SperO^[X] with α ⊇ QÔ , i.e. gi ∈ α for 1 ≤ i ≤ s.

If supp(α)∩O^ = m then by Proposition 4.1 ii) α = λ−1(γ) for some γ ∈ Sper R[X].

Since gi ∈ α = λ−1(γ) implies that λgi ∈ γ for every 0 ≤ i ≤ s we have γ ∈ S̃λR.

If otherwise supp(α) ∩ O^ = {0} then there is some β ∈ SperR[X] such that
α = β ∩ O^[X] (Proposition 4.1 iv)). As β ⊇ α we have gi ∈ β for 1 ≤ i ≤ s

and thus β ∈ S̃R.

If we look at the maximal spectrum then SperO^[X]max clearly is a subset of

(Sperλ)(SperR[X]max)
⋃
· (Sper i2)(SperR[X]max)

by the description of SperO^[X] given above .

As the support of some ordering in the image of Sperλ intersected with O^ is m

whereas the intersection is {0} if the ordering is in the image of Sper i2 we just have
to check the following:
Given some ordering β ∈ SperR[X]max is there some ordering γ ∈ Sper R[X]max

such that β ∩O^[X] ⊆ λ−1(γ)?

Before we go through the possible cases for β the following observation is useful
which can be made for arbitrary real closed fields R ⊇ R.

Lemma 4.2
Let R ⊇ R and β ∈ SperR[X]. Then −1 ∈ λ(β ∩O^[X]) if and only if there is some

semialgebraic set S ⊆ R with β ∈ S̃ and S ∩O^ = ∅.

Proof:
⇒: Since −1 ∈ λ(β ∩ O^[X]) there is some m(X) ∈ m[X] such that the element
f(X) := −1 + m(X) is in β. Thus the set S := {x ∈ R | f(x) ≥ 0} is a semialge-

braic subset of R which satisfies β ∈ S̃. If we take some x ∈ O^ then m(x) ∈ m and
therefore f(x) < 0. Thus S ∩O^ = ∅.

⇐: Let S ⊆ R be semialgebraic with β ∈ S̃ and S ∩ O^ = ∅. By o-minimality
there is some r > O^ such that [−r, r] ∩ S = ∅. The fact that β ∈ S̃ implies
that X2 − r2 ∈ β and hence also (X

r
)2 − 1 ∈ β. As X

r
∈ m[X] we get that

−1 = λ((X
r
)2 − 1) ∈ λ(β ∩O^[X]).

Lemma 4.2 2
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Now we consider some β ∈ SperR[X]max for R = R((tR)).

Case 1: β = a is the ordering corresponding to evaluation at a for some a ∈ R.
If a ∈ O^ then we have β ∩ O^[X] ⊆ λ−1(γ) for γ := λa ∈ Sper R[X]max

because λ is order preserving.
If a 6∈ O^ then there is some positive µ ∈ m such that β > 1

µ
or β < − 1

µ
.

Thus there is a semialgebraic set S ⊆ R with β ∈ S̃ and S ∩ O^ = ∅. By
Lemma 4.2 we have −1 ∈ λ(β ∩O^[X]). Thus β ∩O^[X] does not specialize
to any element of the image of Sperλ.

Case 2: β = ±∞R

By definition of +∞R sets of the form S =]r,∞[ with r ∈ R and r > O^

have the property that β ∈ S̃ and also S ∩O^ = ∅. Hence by Lemma 4.2 β
does not specialize to any element of the image of Sperλ.
Similar for β = −∞.

Case 3: β is an ordering corresponding to a free Dedekind cut.
If β > O^+ or β < O^− then again by Lemma 4.2 λ(β∩O^[X]) is not proper
and therefore β does not specialize to any element of Sperλ(SperR[X]).
If β = O^+ then we have β∩O^[X] ⊆ λ−1(γ) with γ := +∞R. In order to see
this we take some f(X) ∈ β ∩O^[X] and write f(X) = p(X) +m(X) with
p(X) ∈ R[X] and m(X) ∈ m[X]. Without loss of generality we suppose
that p 6= 0. By definition of O^+ the polynomial f has to be positive for
all points close to O^+. Since for every x ∈ R we have |m(x)| < |p(x)| this
means that p(x) > 0 for all x ∈ R close to O^+. Thus p ∈ +∞R which
proves the inclusion above.
Similarly we have for β = O^− that β ∩O^[X] ⊆ λ−1(γ) with γ := −∞R.
It remains the case that O^− < β < O^+. By [Tr2] Theorem 2.12 β is of the
form a + bm+ for some a, b ∈ R and b 6= 0. This implies that if S ⊆ R is
some semialgebraic set with β ∈ S̃ then S∩O^ 6= ∅ and therefore by Lemma
4.2 −1 6∈ λ(β ∩ O^[X]). Thus there is some ordering γ ∈SperR[X]max with
λ(β ∩O^[X]) ⊆ γ and therefore β ∩O^[X] ⊆ λ−1(γ).

The case differentiation shows that SperO^[X]max is given as

{λ−1(γ) | γ ∈ SperR[X]max}
⋃
· {β∩O^[X] | β ∈ SperR[X]max, β > O^+ or β < O^−}

and hence H(QÔ )max = {α ∈ SperO^[X]max | gi(α) ≥ 0 (1 ≤ i ≤ s)} decomposes
as

{λ−1(γ) | γ ∈ S̃λR
max

}
⋃
· {β ∩O^[X] | β ∈ S̃R

max
, β > O^+ or β < O^−}
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4.2 Reduction to the formal power series ring over O^

We recall that our aim is to characterize when f(X) ∈ O^[X] lies in the quadratic
module QÔ = QMÔ [X](g1, ..., gs) for some g1, ..., gs ∈ O^[X] and R = R((tR)).

First we state two necessary conditions.
If f ∈ QÔ then

1) f ∈ QR which implies that f |SR
≥ 0

2) λf ∈ Qλ
R which implies that λf |Sλ

R
≥ 0

Since λ is an order preserving map we always have λ(SR ∩O^) ⊆ SλR.
The other inclusion is not true in general. If g1(X) = (1 − X2)t ∈ R((tR))[X] for
example then λg1(X) = 0 such that SλR = R whereas SR ∩O^ = [−1, 1].
This shows that the fact that f |SR∩Ô ≥ 0 does not imply λf |Sλ

R
≥ 0 for some

f(X) ∈ O^[X]. From f |SR∩Ô ≥ 0 it follows that λf |λ(SR∩Ô ) ≥ 0 but it can happen
that λ(SR ∩ O^) is a strict subset of SλR as in the example above. For that example
the polynomial f(X) = 1 − X2 = λf(X) is nonnegative on SR ∩ O^ = [−1, 1] but
not nonnegative on SλR = R.

The same example also shows that boundedness of SR (by some element from N)
does not imply the boundedness of SλR. The reverse conclusion also fails. Take for
example g1(X) := (1 − X2)(1 − tX) ∈ R((tR))[X] then SR = [−1, 1] ∪ [1

t
,∞[ and

SλR = [−1, 1].

The boundedness of the sets SR and SλR is for R = R((tR)) enough to ensure that
the preordering POÔ [X](g1, ..., gs) is archimedean if −1 6∈ POÔ [X](g1, ..., gs) ([P-D]
Lemma 8.3.1 b)). We will show that in dimension 1 this also gives that QÔ is
archimedean.

We recall that a quadratic module in O^[X] is already archimedean if there is some
N ∈ N such that N −X2 ∈ Q.
This follows as in the case of R[X] (see e.g. [P-D] Corollary 5.1.14) from the fact
that the set HQ := {f ∈ O^[X] | ∃N ∈ N N ± f ∈ Q} is a subring of O^[X] with
O^ ⊆ HQ and by assumption X ∈ HQ.

The properness of the preordering POÔ [X](g1, ..., gs) is assured by the fact that
either SR or SλR is not empty ([P-D] Lemma 8.3.1 a)). We claim that

−1 ∈ QÔ ⇔ −1 ∈ POÔ [X](g1, ..., gs).

This can be seen as follows. We have by the abstract Stellensatz for quadratic
modules (Theorem 0.4 iv)) −1 ∈ QÔ ⇔ HSemi(QÔ ) = ∅.

120



With Proposition 0.3 we obtained as a consequence of Proposition 4.1 that

∅ = HSemi(QÔ ) = Hsemi(g1, ..., gs) = H(g1, ..., gs) = H(POÔ [X](g1, ..., gs))

which is by the abstract Stellensatz for preorderings (Theorem 0.5 iv)) equivalent
to −1 ∈ POÔ [X](g1, ..., gs).
Thus as in the case for preorderings we have QÔ is proper if and only if SR 6= ∅ or
SλR 6= ∅.
We recall that QÔ = O^[X] if −1 ∈ QÔ because every element in O^[X] can be
written as the difference of two squares.

Proposition 4.3
Let R ⊇ R with SpecO^ = {{0},m}. Suppose that g1, ..., gs ∈ O^[X] with SλR 6= ∅
and ‖SR‖ ≤ N as well as ‖SλR‖ ≤ N for some N ∈ N.
Then QÔ = QMÔ [X](g1, ..., gs) is archimedean.

Proof:
The assumption SλR 6= ∅ implies that QÔ is proper as explained above.
As in the proof of [P-D] Lemma 8.3.1 b) the boundedness of SR and SλR imply that
there is some N0 ∈ N such that N0 −X2 > 0 on H(g1, ..., gs). By the consequence
of Proposition 4.1 we know that H(g1, ..., gs) = Hsemi(QÔ ). Hence we have by the
abstract Stellensatz for quadratic modules some p ∈

∑
O^[X]2 and some p ∈ QÔ

with p(N0 −X2) = 1 + q. From this we can construct as in the proof of iii’) ⇒ ii’)
in [P-D] Theorem 5.1.18 some N1 ∈ N such that N1 −X2 ∈ QÔ . This implies that
QÔ is archimedean.

Prop. 4.3 2

Theorem 4.4
Let R ⊇ R with SpecO^ = {{0},m}. Suppose that f, g1, ..., gs ∈ O^[X] with SλR 6= ∅
and ‖SR‖ ≤ N as well as ‖SλR‖ ≤ N for some N ∈ N.
If f |SR

≥ 0, λf |Sλ
R
≥ 0 and f ∈ QÔ + f 2O^[X] then f ∈ QÔ .

Proof:
The assumptions for SλR and SR imply by the previous proposition that QÔ is
archimedean.
By the description of H(QÔ ) which we worked out after Proposition 4.1 f |SR

≥ 0
and λf |Sλ

R
≥ 0 imply that f ≥ 0 on H(QÔ ). Thus Lemma 2.7 gives that f ∈ QÔ .

Theorem 4.4 2

Now we have to find out when we can achieve that f ∈ QÔ + f 2O^[X].
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We recall that the first part of the proof of the local global principle in Section 2.1
(Lemma 2.6) is valid over arbitrary real closed fields. This means that in the case

that f̂a is in the quadratic module generated by the images of g1, ..., gs in R[[X− a]]
for every zero a of f in SR (which is fulfilled if finitely many order conditions are
true) then f ∈ QR + f 2R[X] = QMR[X](g1, ..., gs,−f 2). But note that this is not
exactly what we want because the quadratic module and the ideal are formed in
R[X] not in O^[X].

A similar conclusion gives that in the case that λ̂fa is in the quadratic module gen-
erated by the images of λg1, ..., λgs in R[[X − a]] for every zero a of λf in SλR we get
λf ∈ Qλ

R + λf 2R[X] = QMR[X](λg1, ..., λgs,−λf 2).

The both conditions f ∈ QR + f 2R[X] and λf ∈ Qλ
R + R[X]λf 2 are not enough to

give f ∈ QÔ + f 2O^[X].

We illustrate this with an example from Chapter 3. In the proof of Proposition 3.16
we showed with the help of the explicit upper and lower bounds from Stengle that
for some k ∈ N big enough 1−X2 + µk 6∈ POR[X]((1−X2)3, 1−X + µ, 1 +X + µ).
Using an isomorphism R→ R which sends an infinitesimal to another this actually
gives us that f := 1−X2 + µ2 6∈ POR[X]((1−X2)3, 1−X + µ, 1 +X + µ) and thus
in particular f 6∈ POÔ [X]((1−X2)3, 1−X + µ, 1 +X + µ).
In this example we have SR = [−1, 1] and since f does not have zeros in SR we get
f ∈ POR[X]((1−X2)3, 1−X+µ, 1+X+µ)+f 2R[X]. Furthermore λf = 1−X2 is in
the saturated preordering POR[X]((1−X2)3, 1−X, 1+X) = POR[X](1−X, 1+X).
However f 6∈ POÔ [X]((1−X2)3, 1−X + µ, 1 +X + µ) + O^[X]f 2 since this would
by Theorem 4.4 imply that f ∈ POÔ [X]((1−X2)3, 1−X + µ, 1 +X + µ) which is
a contradiction to what we have proved in Proposition 3.16.

The advantage of the quadratic module QÔ + f 2O^[X] = QMÔ [X](g1, ..., gs,−f 2)
in comparison to QÔ = QMÔ [X](g1, ..., gs) is that the associated semialgebraic sets
S(g1, ..., gs,−f 2) ⊆ R and S(λg1, ..., λgs,−λf 2) are finite. We have already seen
in Section 2.2 that for the case of finite semialgebraic sets we can prove a local-
global principle over arbitrary real closed fields (Proposition 2.34). We will see in
the following that in this situation with an additional assumption we can prove a
local-global principle over O^.

The completion of O^[X] with respect to the ideal (X − a)O^[X] for some a ∈ O^

can as in the case of the ring of polynomials over a real closed field be considered as
the formal power series ring O^[[X − a]] ([E] Example in Section 7.1).
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It follows a local-global principle valid for O^[X].

Proposition 4.5
Let R ⊇ R with SpecO^ = {{0},m} and f, g1, ..., gs ∈ O^[X].
We suppose that SR = {a1, ..., am} ⊂ O^ and ai − aj 6∈ m for all i 6= j as well as
SλR = {λa1, ..., λam, b1, ..., bt} ⊆ R where bi − aj 6∈ m for all i 6= j.
Then the following are equivalent:

i) f ∈ QÔ = QMÔ [X](g1, ..., gs)

ii) for every b ∈ SλR \ λ(SR) there is some µb ∈ m such that

f̂a ∈ (̂QÔ )a for every a ∈ SR and

f̂b+µb
∈ (̂QÔ )b+µb

for every b ∈ SλR \ λ(SR)

Proof:
The implication i) ⇒ ii) is clear.

For the other implication we show as a first step that for all µ1, ..., µt ∈ m there are
N = Nµ1,...,µt ∈ N such that we have for the polynomial

pµ1,...,µt :=
m∏
i=1

(X − ai)
t∏

j=1

(X − bj − µj)

that −p2N
µ1,...,µt

∈ QÔ .

To see this we consider some µ1, ..., µt ∈ m and show for p := pµ1,...,µt that p = 0 on
Hsemi(QÔ ) and then we get what we want by the abstract Stellensatz for quadratic
modules (Theorem 0.4).

As explained after Proposition 4.1 we have

Hsemi(QÔ ) = H(QÔ ) =

= {λ−1(γ) | γ ∈ S̃λR}
⋃
· {β ∩O^[X] | β ∈ S̃R}.

Let first α = λ−1(γ) for some γ ∈ S̃λR. Since by definition of p we have λp|Sλ
R

= 0

as SλR = {λa1, ..., λam, b1, ..., bt} it follows that λp ∈ supp(γ). Thus p ∈ supp(α), i.e.
p(α) = 0.

Now suppose that α = β ∩ O^[X] for some β ∈ S̃R. Since SR = {a1, ..., am} the
element p is in the support of β and thus p ∈ supp(α), i.e. p(α) = 0.

If SR and SλR are empty then we have by the description of Hsemi(QÔ ) as given above
and the abstract Stellensatz for quadratic modules −1 ∈ QÔ and hence QÔ = O^[X]
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such that i) is trivially true.

Now we suppose that SR 6= ∅ or SλR 6= ∅.
By assumption there are µbi ∈ m such that f̂bi+µbi

∈ (̂QÔ )bi+µbi
⊆ O^[[X − bi − µbi ]]

for every 1 ≤ i ≤ t and f̂ai
∈ (̂QÔ )ai

⊆ O^[[X − ai]] for every 1 ≤ i ≤ m.

As in the proof of Theorem 2.34 we use for a ∈ O^ and N big enough the projection
O^[[X−a]] → O^[X]/(X−a)2NO^[X] to obtain f i ∈ QÔ and hi ∈ O^[X] (1 ≤ i ≤ m)
with

f = f i + hi(X − ai)
2N

as well as f̃j ∈ QÔ and h̃j ∈ O^[X] (1 ≤ j ≤ t) with

f = f̃j + h̃j(X − bj − µbj)
2N .

In order to use the Chinese remainder theorem we observe the following.
The fact that ai − aj 6∈ m for 1 ≤ i, j ≤ m, i 6= j implies that

(X − aj)O
^[X] + (X − ai)O

^[X] = O^[X]

because X − aj − (X − ai) = ai− aj is a unit in O^[X] and hence 1 is an element of
(X − aj)O

^[X] + (X − ai)O
^[X].

Similarly we have

(X − aj)O
^[X] + (X − bi − µbi)O

^[X] = O^[X]

for 1 ≤ j ≤ m and 1 ≤ i ≤ t as well as

(X − bj − µbj)O
^[X] + (X − bi − µbi)O

^[X] = O^[X]

for 1 ≤ i, j ≤ t, i 6= j.

The Chinese remainder theorem gives completely similar to the proof of Proposition
2.34 some element q ∈ QÔ and some v ∈ O^[X] such that

f = q + (
v + 1

2
)2p2N + (

v − 1

2
)2(−p2N︸ ︷︷ ︸

∈QÔ

) ∈ QÔ

where p = pµb1
,...,µbt

.
Prop. 4.5 2

These proposition together with the local-global principle (Theorem 4.5) gives the
following reduction of the Membership Problem to the formal power series ring.
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Theorem 4.6
Let R ⊇ R with SpecO^ = {{0},m}, f, g1, ..., gs ∈ O^[X].
We suppose that SλR 6= ∅ and ‖SR‖ ≤ N as well as ‖SλR‖ ≤ N for some N ∈ N.
If f |SR

≥ 0, λf |Sλ
R
≥ 0 and a − a′ 6∈ m for any a, a′ ∈ Z(f) ∩ SR, a 6= a′ as well as

b− a 6∈ m for all a ∈ Z(f) ∩ SR, b ∈ (Z(λf) ∩ SλR) \ λ(Z(f) ∩ SR).
Then the following are equivalent:

i) f ∈ QÔ = QMÔ [X](g1, ..., gs)

ii) for every b ∈ (Z(λf) ∩ SλR) \ λ(Z(f) ∩ SR) there is some µb ∈ m such that

f̂a ∈ (̂QÔ )a for every a ∈ Z(f) ∩ SR and

f̂b+µb
∈ (̂QÔ )b+µb

for every b ∈ (Z(λf) ∩ SλR) \ λ(Z(f) ∩ SR)

Proof:
The implication i) ⇒ ii) is clear.

For the implication ii) ⇒ i) we define

Q := QÔ + f 2O^[X] = QMÔ [X](g1, ..., gs,−f 2).

Then the associated basic closed semialgebraic set of QMR[X](g1, ..., gs,−f 2) is equal
to Z(f)∩SR and the associated basic closed semialgebraic set of the quadratic mod-
ule QMR[X](λg1, ..., λgs,−λf 2) is Z(λf)∩SλR. Since both sets are finite and the fact

that QÔ ⊆ Q implies that (̂QÔ )a ⊆ Q̂a for every a ∈ R the assumptions made
about Z(f) ∩ SR and Z(λf) ∩ SλR together with ii) give by Proposition 4.5 that
f ∈ Q = QÔ + f 2O^[X].

With the additional assumptions made in the statement of the theorem we can now
deduce by Theorem 4.4 that f ∈ QÔ .

Theorem 4.6 2

We include some remarks which are useful for working in the formal power series
ring O^[[X − a]] for some a ∈ O^.
For ease of notation we take a = 0 now.

Let f =
∞∑
i=0

aiX
i ∈ O^[[X]]. Then f is a unit in O^[[X]] if and only if a0 is a unit in

O^. This means in our case if and only if a0 6∈ m.

Since a factorization of the form f = a(1 + q) with a ∈ O^ and q ∈ XO^[[X]] is just
possible if a0 6= 0 and v(a0) = min

i∈N
{v(ai)} we see that the elements of O^[[X]] are

not as simple to describe as the elements of R[[X]].

What the squares in O^[[X]] concerns this observation about the factorization im-
plies that if a0 > 0 and v(a0) = min

i∈N
{v(ai)} then f is a square in O^[[X]]. However
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it is already very hard to give a necessary and sufficient condition for some element
of O^[[X]] to be a square or a sum of squares.
For more information about formal power series rings we refer to [Br].

Now we want to describe some observations about the support of QÔ in the case
that SR is a finite subset of O^.

Remark 4.7
We have supp(QÔ )R[X] = supp(QR).

The inclusion supp(QÔ )R[X] ⊆ supp(QR) is true because QÔ ⊆ QR and thus
supp(QÔ ) ⊆ supp(QR).

For the other inclusion we consider some f ∈ supp(QR), i.e. f ∈ R[X] with f =
s∑
i=0

σigi and −f =
s∑
i=0

τigi for some σi, τi ∈
∑
R[X]2. Let c be a coefficient in σi or

τi with minimal valuation. Then 1
c2
f ∈ supp(QÔ ) ⊆ O^[X].

Thus supp(QR) ⊆ supp(QÔ )R ⊆ supp(QÔ )R[X].

Furthermore if d is the minimal positive degree of a polynomial in supp(QR) then d
is also the minimal positive degree of a polynomial in supp(QÔ ) ([K-Y] Remark 1).

Proposition 4.8
Let R ⊇ R with SpecO^ = {{0},m} and f, g1, ..., gs ∈ O^[X].

If ∅ 6= SR = {a1, ..., am} ⊆ O^ and supp(QR) =

(
m∏
i=1

(X − ai)
ki

)
R[X] then

(
µ

m∏
i=1

(X − ai)
ki

)
O^[X] ⊆ supp(QÔ ) ⊆

(
m∏
i=1

(X − ai)
ki

)
O^[X]

for every µ ∈ O^ with µ
m∏
i=1

(X − ai)
ki ∈ supp(QÔ )

Proof:

By Corollary 2.42 supp(QR) =

(
m∏
i=1

(X − ai)
ki

)
R[X] for some ki ∈ N (1 ≤ i ≤ m).

This implies that supp(QR) ∩ O^ = {0} and therefore also supp(QÔ ) ∩ O^ = {0}
because supp(QÔ ) ⊆ supp(QR).
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Similar as in the previous remark there is some µ ∈ m such that µ
m∏
i=1

(X − ai)
ki is

in supp(QÔ ). For such an element µ we clearly have(
µ

m∏
i=1

(X − ai)
ki

)
O^[X] ⊆ supp(QÔ ).

Let f be an arbitrary element of supp(QÔ ). Since
m∏
i=1

(X−ai)ki ∈ O^[X] is monic and

hence in particular has an invertible leading coefficient there are unique elements
q(X), r(X) ∈ O^[X] such that

f(X) = q(X)
m∏
i=1

(X − ai)
ki + r(X)

and either r(X) ≡ 0 or deg(r) < d :=
m∑
i=1

ki. Hence

µr(X) = µf(X)− q(X)µ
m∏
i=1

(X − ai)
ki ∈ supp(QÔ )

Thus if r 6≡ 0 then deg(r) = 0 because the minimal positive degree of a polynomial
in supp(QÔ ) is by the previous remark d.
This means that µr ∈ supp(QÔ ) ∩O^ = {0} and consequently

f(X) = q(X)
m∏
i=1

(X − ai)
ki .

Altogether we have shown that(
µ

m∏
i=1

(X − ai)
ki

)
O^[X] ⊆ supp(QÔ ) ⊆

(
m∏
i=1

(X − ai)
ki

)
O^[X]

Prop. 4.8 2

In the situation of the Proposition we determine in a particular example how the
support exactly looks like.

LetQÔ := QMÔ [X](µX(X2+1),−µX(X2+1)) ⊆ O^[X] for some µ > 0 infinitesimal
with v(µ) =: δ > 0. Then supp(QÔ ) = µXO^[X].
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This can be seen as follows.
We have S = {0} and supp(QR) = XR[X].
Since

−µX2 = (
−X + 1

2
)2µX(X2 + 1) + (

−X − 1

2
)2(µX(X2 + 1)) + µX4 ∈ QÔ

we get

µX = µX(X2 + 1) + (
X + 1

2
)2(−µX2) + (

X − 1

2
)2µX2 ∈ QÔ .

Similarly −µX ∈ QÔ and hence with the considerations above

µXO^[X] ⊆ supp(QÔ ) ⊆ XO^[X].

We show now that every element f ∈ supp(QÔ ) satisfies v(f) ≥ v(µ) = δ.
We suppose to the contrary that there is some f ∈ supp(QÔ ) with v(f) < δ. We
have a representation

f = σ0 + σ1µX(X2 + 1) + σ2(−µX(X2 + 1))

with some σi ∈
∑
O^[X]2 (i = 0, ..., 2). Let γ := min{v(f), v(σ0)} and a some

element of O^ with v(a2) = γ. Then we have

1

a2
f =

1

a2
σ0 + σ1

µ

a2
X(X2 + 1) + σ2(−

µ

a2
X(X2 + 1))

Because of the fact that v(µ2) > v(µ) > v(f) ≥ v(a2) we get by applying the residue
map λ : O^[X] → O^/m[X] that

λ(σ1
µ

a2
X(X2 + 1) + σ2(−

µ

a2
X(X2 + 1))) = 0

which means that we have

λ(
1

a2
f) = λ(

1

a2
σ0)

in O^/m[X].

Case a: v(f) < v(σ0)
Then λ( 1

a2f) ≡ 0 in O^/m[X] which is a contradiction as at least one coef-
ficients of 1

a2f has valuation 0.

Case b: v(f) > v(σ0)
Then λ( 1

a2σ0) ≡ 0 in O^/m[X] which is a contradiction as λ( 1
a2σ0) is a sum

of squares in O^/m[X] with at least one coefficient not equal to zero.
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Case c: v(f) = v(σ0)
Then λ( 1

a2f) is a sum of squares in O^/m[X]. Now we use the fact that f
is not just in QÔ but in supp(QÔ ). Similar considerations as in Case a)
and b) either lead to a contradiction or to the fact that λ( 1

a2 (−f)) is a sum
of squares in O^/m[X]. Note that we can take the same a for f and −f
in this case because γ = v(f) = v(−f). Thus we have σ̃0 = −τ̃0 for some
σ̃0, τ̃0 ∈

∑
O^/m[X]2 which are not equal to zero. This is a contradiction.

Thus we have shown
f ∈ supp(QÔ ) ⇒ v(f) ≥ v(µ).

Since every f ∈ supp(QÔ ) can be written as f = h · X for some h ∈ O^[X] this
implies that f is divisible by µX because f = 1

µ
h · µX and 1

µ
h ∈ O^[X] because

v(f) = v(h) ≥ v(µ). This gives

supp(QÔ ) = µXO^[X].

Open questions:
In the end we want to list some open questions which are topics for future research.

1. In R[X] where R is an arbitrary real closed field and X denotes one indeter-
minate there are examples of finitely generated quadratic modules which are
weakly semialgebraic (e.g. the stable or saturated ones) and which are not
weakly semialgebraic (Example 3.8). For orderings α ⊆ R[X] we know that α
is weakly semialgebraic if and only if the Dedekind cut corresponding to α is
principal (Proposition 1.16). Which property of a finitely generated quadratic
module Q of R[X] is equivalent to the fact that Q is weakly semialgebraic?

2. Is in the situation of Theorem 4.6 the membership in QMÔ [X](g1, ..., gs) defin-
able by some L(R)-formula where L is the language of ordered rings extended
by one predicate O^ which stands for the valuation ring?

3. Corollary 2.44 reduces the membership problem for finitely generated quadratic
modules of R[X] with finite associated semialgebraic set to the Membership
Problem for ideals. Is this also possible in more general situations?

4. In dimension one we proved that every finitely generated quadratic module
of R[X] is weakly semialgebraic (Corollary 2.20). Is this also true for higher
dimensions?
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Regarding the last open question we want to include an example of a preordering in
R[X1, X2] which is not finitely generated and not weakly semialgebraic.

Example 4.9
The preordering

P = {f ∈ R[X1, X2] | f ≥ 0 on {(x1, x2) ∈ R2|x2 ≥ ex1}} ⊆ R[X1, X2]

is not weakly semialgebraic. This can be seen by considering the polynomial

g(X1, X2, Y1, Y2) := X2 − Y1X1 − Y2 ∈ Z[X1, X2, Y1, Y2].

Since the tangents to the curve X2 = eX1 are given by X2 = eaX1 + ea(1 − a) for
some a ∈ R we have for c = (c1, c2) ∈ R2 that g(X1, X2, c1, c2) ∈ P if and only if
(c1 > 0 and c2 ≤ c1(1− log c1)) or (c1 = 0 and c2 ≤ 0). This means that

D(g, P ) = {(c1, c2) ∈ R2 | (c1 > 0 and c2 ≤ c1(1− log c1))
or (c1 = 0 and c2 ≤ 0)}

As the logarithm appears in the description of D(g, P ) this is not a semialgebraic
subset of R2, i.e. P is not definable with respect to Lor which means that P is not
weakly semialgebraic.
A direct proof of the fact that P is not finitely generated can be seen for example
with [S1] 6.7.
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A Appendix

A.1 Definability of term sets and types

For a review of the basic concepts of first order logic we refer to [P].

Let L be some first order language, M an L-structure, X = (X1, ..., Xn) and Y some
finite tuple of variables of variable length. M [X] is the set of maps f : Mn → M
such that there is some L-term t(X,Y ) and some m ∈ MY with f(x) = t(x,m) for
every x ∈ Mn. If L = Lor and M = R a real closed field then M [X] is nothing
else but the polynomial ring over R in n indeterminates. Completely similar to
Definition 1.1 we can say when a term set Q ⊆M [X] is definable.

Definition A.1
Q ⊆ M [X] is definable if and only if for every L-term t(X,Y ) there is a formula
ϑt(Y ) ∈ FmlL(M) such that for all c ∈MY

t(X, c) ∈ Q⇔ R |= ϑt(c),

i.e. if and only if the set

D(t, Q) = {c ∈MY | t(X, c) ∈ Q}

is definable (by the formula ϑf ).

In the literature there is also the notion of being weakly semialgebraic given in
Definition 1.2. We will show that in the case that L = Lor and M = R is a real
closed field definability is equivalent to the property of being weakly semialgebraic.

Proposition A.2
If L = Lor, R a real closed field and Q ⊆ R[X].
Then Q is weakly semialgebraic if and only if Q is definable.

Proof:
⇒: Let f(X, Y ) ∈ Z[X, Y ]. We consider the finite dimensional R-vector space
U = R[X]≤d of polynomials up to degree d where d = deg(f) is the degree of f with
respect to X. By assumption Q ∩ U is semialgebraic in U where the dimension of

U is
(
n+d
d

)
. Let Vd : RY → R(n+d

d ) be the semialgebraic function which gives for a
general polynomial h(X, Y ) ∈ Z[X, Y ] of degree d in X the coordinate vector of h
with respect to the monomial basis {Xα | |α| ≤ d}. With this map we get

{c ∈ RY | f(X, c) ∈ Q} = {c ∈ RY | Vd(c) ∈ Q ∩ U}
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which is semialgebraic by assumption.
⇐: It is enough to consider finite dimensional subspaces of R[X] of the form R[X]≤d
for some d ∈ N. Then we get similarly as in the proof of ⇒ the description of the
following form {c ∈ RY | f(X, c) ∈ Q} = {c ∈ RY | Vd(c) ∈ Q ∩ U} with the map
Vd as above. Since Q is definable the set on the left is semialgebraic and therefore
Q ∩ U is semialgebraic. Hence Q is weakly semialgebraic.

Prop. A.2 2

Furthermore we show that there is a connection between the fact that a quadratic
module Q in A := R[X]/I is weakly semialgebraic and this property of the preimage
of Q under the canonical epimorphism in R[X].

Proposition A.3
Let R be a real closed field and I ⊆ R[X] an ideal.
If Q ⊆ A := R[X]/I is weakly semialgebraic then ψ−1(Q) ⊆ R[X] is weakly semial-
gebraic where ψ : R[X] → A is the canonical epimorphism.

Proof:
For d ∈ N we define Ud := ψ(R[X]≤d). This is a finite dimensional R-vector space
for which we fix a basis {ψ(Xε) | ε ∈ J} = {Xε | ε ∈ J} for some finite subset
J ⊆ {ε ∈ Nn

0 : |ε| ≤ d} where we abbreviate ψ(X1)
ε1 · · ·ψ(Xn)

εn with X
ε
.

The ideal I is of the form (h1, ..., hl) =
l∑

i=1

hiR[X] for some hi ∈ R[X] (1 ≤ i ≤ l). By

results about Gröbner bases there is an algebraic formula θ((uε)ε∈J , (vε)|ε|≤d) which
says for (aε)ε∈J ∈ R|J | and (bε)|ε|≤d ∈ R|Λ(d)|

R |= θ((aε)ε∈J , (bε)|ε|≤d) ⇔
∑
ε∈J

aεX
ε −

∑
|ε|≤d

bεX
ε ∈ (h1, ..., hl).

Now we can prove our claim.
Therefore we consider some d ∈ N. By assumption there is a semialgebraic formula
φ((uε)ε∈J) which defines Q ∩ Ud in Ud, i.e. for every (aε)ε∈J ∈ R|J | we have

R |= φ((aε)ε∈J) ⇔
∑
ε∈J

aεX
ε ∈ Q

Then we can define ψ−1(Q) ∩R[X]≤d by the semialgebraic formula

ρ((vε)|ε|≤d) := ∃(uε)ε∈J
(
φ(uε)ε∈J ∧ θ((uε)ε∈J , (vε)|ε|≤d)

)
.

To see this we consider some G =
∑
|ε|≤d

bεX
ε ∈ R[X]≤d. Then G ∈ ψ−1(Q) if

and only if ψ(G) =
∑
|ε|≤d

bεX
ε ∈ Q ∩ Ud. Since {Xε | ε ∈ J} is a basis of

132



Ud there is exactly one tuple (aε)ε∈J ∈ R|J | such that
∑
|ε|≤d

bεX
ε

=
∑
ε∈J

aεX
ε

and

therefore
∑
|ε|≤d

bεX
ε −

∑
ε∈J

aεX
ε ∈ I. Thus R |= φ(aε)ε∈J ∧ θ((aε)ε∈J , (bε)|ε|≤d), i.e.

R |= ρ((bε)|ε|≤d).
Prop. A.3 2

In Section 1.3 we mentioned the relationship between orderings and types.

An n-type p of some L-structure M is a set of L(M)-formulas with n free variables
which is maximal consistent with the theory Th(M,M). This means that for every

finite subset {ϕ1(X), ..., ϕk(X)} of p we have M |= ∃X(
k∨
i=1

ϕi(X)) and for every

L(M)-formula ϕ(X) we have ϕ(X) ∈ p or ¬ϕ(X) ∈ p.
By compactness every n-type p is realized in some elementary extension N �M of
M which means that there is some b ∈ Nn such that N |= ϕ(b) for every ϕ(X) ∈ p.
If A ⊆M and a ∈Mn then the type tp(a/A) of a over A is given by

tp(a/A) := {ϕ(X) ∈ FmlL(A) |M |= ϕ(a)}.

With Sn(M) we denote the set of all n-types of M .

If L = Lor and M = R some real closed field then we have a bijection

Ψ : Sn(R) → SperR[X]
p 7→ {f ∈ R[X] | f(X) ≥ 0 ∈ p}

which gives the correspondence between types and orderings.

We recall the notion of definable types and show afterwards that an ordering is
weakly semialgebraic if and only if the corresponding type is definable.

Definition A.4
If M is an L-structure and p ∈ Sn(M) some n-type then p is definable if and only
if for all formulas φ(X, Y,m) with some m ∈MZ the set

{c ∈MY | φ(X, c,m) ∈ p}

is definable by some L(M)-formula.

Equivalently if b ∈ Nn with N � M is a realization of p then p is definable if and
only if for all formulas φ(X, Y,m) with m ∈MZ the set

{c ∈MY | N |= φ(b, c,m)}

is definable by some L(M)-formula.
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Proposition A.5
Let L = Lor, R a real closed field and α ⊆ R[X] an ordering.
Then α is weakly semialgebraic if and only if the corresponding type pα is definable.

Proof:
⇒: We pick some φ(X, Y, Z) and show that {(c,m) ∈ RY × RZ | φ(X, c,m) ∈ pα}
is semialgebraic.
By quantifier elimination we have finitely many polynomials gij, g̃ij ∈ Z[X, Y, Z]
such that φ(X, Y, Z) is equivalent to

∨
i

∧
j

(gij ≥ 0 ∧ g̃ij 6≥ 0) modulo the theory of

R. Let ψij(Y, Z) be an L(R)-formula such that

ψij(R
Y ×RZ) = {(c,m) ∈ RY ×RZ | gij(X, c,m) ∈ α}

which exists by assumption. We do the same for g̃ij and get ψ̃ij.

Then φ(X, c,m) ∈ pα if and only if R |=
∨
i

∧
j

(ψij(c,m) ∧ ¬ψ̃ij(c,m)). This shows

that pα is definable.

⇐: Without loss of generality we take U = R[X]≤d. Proposition A.2 implies that
we have to show that α ∩ U is semialgebraic. By using the general polynomial
Fd(X, c) =

∑
|α|≤d

cαX
α in n variables of degree d this means that we have to show

that the set {c ∈ R(n+d
d ) | Fd(X, c) ∈ α} is semialgebraic. But Fd(X, c) ∈ α means

that Fd(X, c) ≥ 0 ∈ pα. Since pα is definable by assumption we get that α ∩ U is
semialgebraic.

Prop. A.5 2

A.2 Properties of heirs

In the following we prove some statements about heirs and weak heirs given in Sec-
tion 3.1.

We recall the setting from that section: R,R′ denote real closed fields which are
model theoretically an example of L-structures where L = Lor = {+,−, ·, 0, 1, <}
is the first order language of ordered rings. Y and Z will denote finite tuples of
variables (of variable length) whereas X = (X1, ..., Xn) for some fixed n ∈ N.

First we show that the property of being an heir can also be expressed by using the
notion of being existentially closed relative L for certain L∗-structures in a particular
extended language L∗.
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Definition A.6
Let L∗ ⊇ L be first order languages and M∗ ⊆ N∗ an extension of L∗-structures
with M := M∗|L ≺ N∗|L =: N .
Then M∗ is existentially closed in N∗ relative L if for every L(M)-formula ϕ(Y ) and
every quantifier free L∗(M)-formula χ(Y ) we have

N∗ |= ∃Y (ϕ(Y ) ∧ χ(Y )) ⇒M∗ |= ∃Y (ϕ(Y ) ∧ χ(Y ))

If a set Q ⊆ R[X] is definable we can express the fact that for f(X, Y ) ∈ Z[X, Y ]
and c ∈ RY we have f(X, c) ∈ Q because of

f(X, c) ∈ Q⇔ R |= ϑf (c)

with help of the L(R)-formula ϑf (Y ).

If Q is not definable then there is some f(X, Y ) such that we can not express
f(X, c) ∈ Q with the trueness of some L(R)-formula.

Since expressions like f(X, c) ∈ Q appear in the definition of heirs the idea is now to
extend the language L by adding an Y -ary predicate Df for every f(X, Y ) ∈ Z[X, Y ]
to get the language

L∗ = L(Df |f ∈ Z[X, Y ]).

If we expand now R to an L∗-structure

M = (R, (DR(f,Q)|f ∈ Z[X, Y ]))

by interpreting Df in the way that for some c ∈ RY

f(X, c) ∈ Q⇔M |= Df (c)

we can now formulate the membership in Q by saying that a certain formula in the
extended language L∗ is true in the expanded structure M .

This way of reasoning gives us an equivalent characterization of heirs which the
following theorem shows.
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Theorem A.7
Let L(Df |f ∈ Z[X, Y ]) be the language extending L, having an Y -ary predicate Df

for every f = f(X, Y ) ∈ Z[X, Y ]. For some Q ⊆ R[X] we define the
L(Df |f ∈ Z[X,Y ])-structure M by

M := (R, (DR(f,Q)|f ∈ Z[X, Y ])).

Let R′ ⊇ R be a real closed field.

i) If M ′ is an expansion of R′ to an L(Df |f ∈ Z[X,Y ])-structure such that M is
existentially closed in M ′ relative L then the following is true for

Q′ := {f(X, c′) | f(X, Y ) ∈ Z[X, Y ], c′ ∈ R′Y ,M ′ |= Df (c
′)} :

for every f(X, Y ) ∈ Z[X, Y ] and every c′ ∈ R′Y we have

f(X, c′) ∈ Q′ ⇔M ′ |= Df (c
′)

ii) A subset Q′ ⊆ R′[X] is an heir of Q if and only if M is existentially closed in

M ′ := (R′, (DR′(f,Q
′)|f ∈ Z[X, Y ]))

relative L.

Proof:

i) : The implication ⇐ holds by definition.

For the other implication we take some f(X, Y ) ∈ Z[X, Y ] and some c′ ∈ R′Y
with f(X, c′) ∈ Q′. This means that there is some g(X,Z) ∈ Z[X,Z] and
some d′ ∈ R′Z with f(X, c′) = g(X, d′) and M ′ |= Dg(d

′). In M the sentence

∀Y, Z[∀Xf(X, Y ) = g(X,Z)] ∧Dg(Z) → Df (Y )

is true. This sentence is also true in M ′ because M is existentially closed in
M ′ relative L and ∀Xf(X, Y ) = g(X,Z) is an L-formula. Hence we get from
R′ |= ∀Xf(X, c′) = g(X, d′) and M ′ |= Dg(d

′) that we also have M ′ |= Df (c
′).

ii) : Let M be existentially closed in M ′ relative L. We show that this means that
Q′ is an heir of Q on R′.
Therefore we take f1(X, Y ), ..., fk(X, Y ), f−1 (X, Y ), ..., f−l (X, Y ) ∈ Z[X, Y ],
some ϕ(Y ) ∈ FmlL(R) and some c′ ∈ R′Y such that

c′ ∈
k⋂
i=1

DR′(fi, Q
′) ∩

l⋂
i=1

DR′(f
−
i , R

′[X] \Q′) ∩ ϕ(R′Y ).
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This means that

f1(X, c
′), ..., fk(X, c

′) ∈ Q′, f−1 (X, c′), ..., f−l (X, c′) 6∈ Q′, R′ |= ϕ(c′)

which can be formulated in the L(Df |f ∈ Z[X, Y ])-structure M ′ as

M ′ |= Df1(c
′) ∧ ... ∧Dfk

(c′) ∧ ¬Df−1
(c′) ∧ ... ∧ ¬Df−l

(c′) ∧ ϕ(c′).

Now the existentially closure of M in M ′ implies that there is some c ∈ RY

such that

M |= Df1(c) ∧ ... ∧Dfk
(c) ∧ ¬Df−1

(c) ∧ ... ∧ ¬Df−l
(c) ∧ ϕ(c)

which means that

f1(X, c), ..., fk(X, c) ∈ Q, f−1 (X, c), ..., f−l (X, c) 6∈ Q,R |= ϕ(c)

in other words

c ∈
k⋂
i=1

DR(fi, Q) ∩
l⋂

i=1

DR(f−i , R[X] \Q) ∩ ϕ(RY )

which proves by Definition 3.3 that Q′ is an heir of Q on R′.

Now we suppose that Q′ is an heir of Q on R′ and show that M is existentially
closed in M ′ relative L.
Therefore we take some ϕ(Y ) ∈ FmlL(R) and some quantifier free formula
χ(Y ) ∈ FmlL∗(R) where L∗ = L(Df |f ∈ Z[X, Y ]). By definition of L∗ we can
assume that χ(Y ) is a finite disjunction of formulas of the form

Dfi
(g1(Y, a), ..., gl(i)(Y, a))

and
¬Dfj

(g1(Y, a), ..., gl(j)(Y, a))

where gk(Y, Z) ∈ Z[Y, Z] and a ∈ RZ .
We suppose that

M ′ |= ∃Y (ϕ(Y ) ∧ χ(Y )),

i.e. there is some d′ ∈ R′Y such that

M ′ |= ϕ(d′) ∧ χ(d′).

By defining c′k := gk(d
′, a) for every k appearing in the finite disjunction of

χ(Y ) we have in particular

M ′ |= Dfi
(c′1, ..., c

′
l(i))
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and
M ′ |= ¬Dfj

(c′1, ..., c
′
l(j))

for every i, j appearing in the finite disjunction of χ(Y ). This means that for
all i, j we have

fi(X, c
′
1, ..., c

′
l(i)) ∈ Q′, fj(X, c′1, ..., c′l(j)) 6∈ Q′

and
R′ |= ∃(Y ϕ(Y ) ∧

∧
k

c′k = gk(Y, a)).

Because Q′ is an heir of Q on R′ there are ck ∈ R such that

fi(X, c1, ..., cl(i)) ∈ Q, fj(X, c1, ..., cl(j)) 6∈ Q

for every i, j and

R |= ∃Y (ϕ(Y ) ∧
∧
k

ck = gk(Y, a)).

If d ∈ RY with R |= ϕ(d)∧
∧
k

ck = gk(d, a) then we have M |= ϕ(d)∧χ(d), i.e.

M |= ∃Y (ϕ(Y ) ∧ χ(Y )),

which proves the claim.
Theorem A.7 2

In this model theoretic setting we will prove the existence of heirs and later on give
a proof of Proposition 3.4 by using a theorem about resplendent structures.

Definition A.8
Let L be a first-order language and κ a cardinal.
An L-structure M is κ-resplendent, if the following is true:
Given A ⊆M, |A| < κ,
R a set of new relation symbols, |R| < κ,
F a set of new function symbols, |F| < κ,
C a set of new constant symbols, |C| < κ.
If for some set of sentences θ ⊆ SenL(A ∪R ∪ F ∪ C)

Th(M,M) ∪ θ ⊆ SenL(M ∪R ∪ F ∪ C)

is consistent then there is an expansion of (M,M) to an L(M ∪R∪F∪C)-structure
which satisfies this set.
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This means that if we have a set of sentences θ in a language which extends L by
strictly fewer than κ new constant symbols taken from M and strictly fewer than κ
new symbols and Th(M,M)∪ θ has a model then we can interpret the new symbols
on the domain of M in such a way as to have a model of θ.

Important for us is that for every L-structure M there is an elementary extension
M ′ which is |M |+-resplendent, where |M |+ denotes the smallest cardinal strictly
greater than the cardinality of M .

Theorem A.9 (Poizat, [P] Theorem 9.14)
For every L-structure M there is some elementary extension M ′ �M such that M ′

is |M |+-resplendent.

Proposition A.10
Let R′ ⊇ R be real closed fields and Q ⊆ R[X]. Then Q has an heir on R′.

Proof:
By theorem A.9 we have an elementary extension R′′ � R′ which is |R|+-resplendent,
i.e. a real closed overfield R′′ of R′ which is |R|+-resplendent.

As in Theorem A.7 we denote by

M := (R, (DR(f,Q)|f ∈ Z[X, Y ]))

the L∗ := L(Df |f ∈ Z[X,Y ])-structure expanding R.

The |R|+-resplendency of R′′ implies that there is an expansion M ′′ of R′′ to an
L(Df |f ∈ Z[X,Y ])-structure such that M ′′ is an elementary extension of M .

Let M ′ be the restriction of M ′′ to R′. Then M is existentially closed in M ′ relative
L. This can be seen as follows:
Let ϕ(Y ) be some L(R)-formula and χ(y) some quantifier-free L∗(R)-formula and

M ′ |= ∃Y (ϕ(Y ) ∧ χ(Y )).

As M ′ is a substructure of M ′′ we also have

M ′′ |= ∃Y (ϕ(Y ) ∧ χ(Y ))

which implies by the fact that M ′′ is an elementary extension of M that

M |= ∃Y (ϕ(Y ) ∧ χ(Y ))

as desired. We define

Q′ := {f(X, c′) | f(X, Y ) ∈ Z[X, Y ], c′ ∈ R′Y ,M ′ |= Df (c
′)}

and get by Theorem A.7 i) that M ′ = (R′, (DR′(f,Q
′)|f ∈ Z[X, Y ])). This means

by Theorem A.7 ii) that Q′ is an heir of Q on R′.
Prop. A.10 2
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Proposition A.11
Let R′ ⊇ R be a real closed field and Q ⊆ R[X]. Then

h(Q,R′) =
⋂

Q′heir of Qon R′

Q′

and
H(Q,R′) =

⋃
Q′heir of Qon R′

Q′

Proof:
First we prove the claim for h(Q,R′).

The inclusion ⊆ is clear because every heir of Q on R′ is in particular a weak heir
and h(Q,R′) is the smallest weak heir of Q on R′ (Remark after Proposition 3.2).

Now we prove ⊇.
Therefore we suppose that g(X, d′) 6∈ h(Q,R′) for some g(X,Z) ∈ Z[X,Z] and some
d′ ∈ R′Z .

Claim: There is some heir Q′ of Q on R′ such that g(X, d′) 6∈ Q′.

Because g(X, d′) 6∈ h(Q,R′) we have for every L(R)-formula ϕ(Z) with
R′ |= ϕ(d′) some d ∈ ϕ(RZ) with g(X, d) 6∈ Q.
The L(R)-formulas ϕ(Z) with R′ |= ϕ(d′) are exactly the elements of the
type p ∈ SZ(R) of d′ over R.
By Theorem A.9 we may extend R′ if necessary and assume that R′ is |R|+-
resplendent. (If R′′ ⊇ R′ real closed and |R|+-resplendent and Q′′ an heir
of Q on R′′ then Q′ := Q′′ ∩ {f(X, c′) | f(X,Y ) ∈ Z[X,Y ], c′ ∈ R′Y } is an
heir of Q on R′).
As in Theorem A.7 we consider the L(Df |f ∈ Z[X, Y ])-structure

M := (R, (DR(f,Q)|f ∈ Z[X, Y ]))

and denote by a a Z-tuple of new constants.

We prove in the following that

Th(R′, R′) ∪ Th(M,R) ∪ p(a) ∪ {¬Dg(a)}

is consistent.
Since g(X, d′) 6∈ h(Q,R′) we have for every ϕ(a) ∈ p(a) some d ∈ RZ with
R |= ϕ(d) and M |= ¬Dg(d). Thus (M,R, d) |= Th(M,R) ∪ ϕ(a) ∪ ¬Dg(a)
which proves that every finite subset of Th(M,R) ∪ p(a) ∪ ¬Dg(a) is con-
sistent.
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By Robinsons consistency theorem ([Ho] Corollary 8.5.11) applied to the
theory Th(M,R)∪p(a)∪¬Dg(a) in the language L(R, (Df |f ∈ Z[X, Y ]), a)
and the theory Th(R′, R′) in the language L(R′) we can conclude that also
Th(R′, R′) ∪ Th(M,R) ∪ p(a) ∪ {¬Dg(a)} is consistent because the inter-
section of both theories with the common sublanguage is Th(R,R) which
is consistent.

The consistency of Th(R′, R′)∪ Th(M,R)∪ p(a)∪ {¬Dg(a)} and the |R|+-
resplendence of R′ imply the following:
R′ can be expanded to an L(R, (Df |f ∈ Z[X, Y ]), a)-structure (M ′, b′)
which satisfies Th(M,R) ∪ p(a) ∪ {¬Dg(a)}, i.e. M ′ � M , M ′ |= p(b′)
and M ′ |= ¬Dg(b

′).
AsM ′ |= p(b′) the type of b′ over R is the same as the type of d′ over R. Since
the |R|+-resplendence of R′ implies that R′ is strong |R|+-homogeneous
there is an R-automorphism σ of R′ with σ(b′) = d′.
Now we define for f(X, Y ) ∈ Z[X, Y ]

DR′(f) := {σ(c′) | c′ ∈ R′Y ,M ′ |= Df (c
′)}

and
M ′′ := (R′, (DR′(f)|f ∈ Z[X, Y ])).

Since σ is an R-isomorphism M ′ →M ′′ we have M ′′ �M . Furthermore we
have M ′′ |= ¬Dg(d

′) because M ′ |= ¬Dg(b
′) and σ(b′) = d′.

Now we are able to define the desired heir of Q on R′:

Q′ := {f(X, c′) | f(X, Y ) ∈ Z[X, Y ], c′ ∈ R′Y ,M ′′ |= Df (c
′)}

The fact that M is an elementary substructure of M ′′ implies as shown in
the proof of A.10 that M is existentially closed in M ′′ relative L. Hence by
Theorem A.7 Q′ is an heir of Q on R′ with DR′(f,Q

′) = DR′(f) for every
f ∈ Z[X, Y ]. Furthermore g(X, d′) 6∈ Q′ as desired because M ′′ |= ¬Dg(d

′).

The statement for H(Q,R′) follows from H(Q,R′) = R′[X] \ h(R[X] \ Q,R′). If
we apply the result proved above for R[X] \ Q then we get that h(R[X] \ Q,R′) is
the intersection of all heirs of R[X] \Q on R′. By definition of an heir we have the
following: if Q′ is an heir of R[X] \ Q on R′ then R′[X] \ Q′ is an heir of Q on R′.
Thus

h(R[X] \Q,R′) =
⋂

Q′heir of Qon R′

R′[X] \Q′

which implies that

H(Q,R′) =
⋃

Q′heir of Qon R′

Q′. Prop. A.11 2
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Before we prove that Q ⊆ R[X] is definable if and only if it has a unique heir on
every real closed extension of R (Theorem 3.3) we give a topological reformulation
of the membership in h(Q,R′) and H(Q,R′).

We denote the set of all types of length |Y | with SY (R) and provide SY (R) with the
topology which is generated by the basic open sets

<ϕ(Y )>:= {p ∈ SY (R) | ϕ(Y ) ∈ p}

for ϕ(Y ) ∈ FmlL(R). Then SY (R) is a Stone space.

Proposition A.12
Let R ⊆ R′ be real closed fields, f(X, Y ) ∈ Z[X, Y ] and c′ ∈ R′Y . Then the following
is true:

i) f(X, c′) ∈ h(Q,R′) if and only if the type tp(c′/R) lies in⋃
{<ϕ(Y )>| ϕ(Y ) ∈ FmlL(R) and ϕ(RY ) ⊆ DR(f,Q)}

ii) f(X, c′) ∈ H(Q,R′) if and only if the type tp(c′/R) lies in the closure of
DR(f,Q) viewed as a subset of SY (R).

Proof:

i) : By definition f(X, c′) ∈ h(Q,R′) if and only if there is some ϕ(Y ) ∈ FmlL(R)
with R′ |= ϕ(c′) and ϕ(RY ) ⊆ DR(f,Q). This exactly means that the type
tp(c′/R) lies in <ϕ(Y )> for some ϕ(Y ) ∈ FmlL(R) with ϕ(RY ) ⊆ DR(f,Q)
as desired.

ii) : By definition f(X, c′) ∈ H(Q,R′) if and only if for every ϕ(Y ) ∈ FmlL(R)
with R′ |= ϕ(c′) there is some c ∈ RY such that R |= ϕ(c) and f(X, c) ∈ Q.
This means that for every basic open set <ϕ(Y )> with tp(c′/R) ∈<ϕ(Y )>
the intersection of <ϕ(Y )> with the set {c ∈ RY | f(X, c) ∈ Q} = DR(f,Q)
is not empty. This proves the claim.

Prop. A.12 2

Finally we give a proof of Theorem 3.6.

Theorem A.13
A set Q ⊆ R[X] is definable if and only if it has a unique heir on R′ for every real
closed extension field R′ ⊇ R.
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Proof:
⇒: Let R′ ⊇ R be some real closed extension. As explained in Section 3.1 we have

in the definable case the canonical set

Q′ := {f(X, c′) | f(X,Y ) ∈ Z[X,Y ], c′ ∈ R′Y , R′ |= ϑf (c
′), DR(f,Q) = ϑf (R

Y )}

We show that h(Q,R′) = H(Q,R′) = Q′ in this case which proves by Theorem
3.4 that there is a unique heir of Q on R′ given by Q′.

Since (H+) and (H−) is fulfilled for Q′ and Q we have by Lemma 3.1 that
h(Q,R′) ⊆ Q′ ⊆ H(Q,R′) .

The inclusion H(Q,R′) ⊆ Q′ can be seen as follows:
Suppose that f(X, c′) 6∈ Q′ then R′ |= ¬ϑf (c′) where ϑf (Y ) is an L(R)-formula
defining D(f,Q). Thus ¬ϑf (Y ) ∈ FmlL(R) with c′ ∈ ¬ϑf (R′Y ) but obviously
¬ϑ(RY ) ∩DR(f,Q) = ∅ which means by definition of H(Q,R′) that f(X, c′)
is not in H(Q,R′)

For the inclusion Q′ ⊆ h(Q,R′) we take some f(X, c′) ∈ Q′. Then we have
for ϑf (Y ) ∈ FmlL(R) that c′ ∈ ϑf (R

′Y ) and ϑf (R
Y ) = DR(f,Q). Hence by

definition f(X, c′) ∈ h(Q,R′).
Altogether we have shown that h(Q,R′) = Q′ = H(Q,R′).

⇐: By Theorem A.9 there is a real closed overfieldR′ ofR which is |R|+-resplendent
and by assumption there is a unique heir on R′.
As in Theorem A.7 we consider the L(Df |f ∈ Z[X, Y ])-structure

M := (R, (DR(f,Q)|f ∈ Z[X,Y ])).

With the help of the definability theorem of Svenonius ([P] Theorem 9.2) we
want to show that M is a definable expansion of R (with parameters).

In order to do so we take an expansion M ′ of R′ to an L(Df |f ∈ Z[X, Y ])-
structure such that M ′ � M and an automorphism σ of R′ which fixes R
pointwise. We have to show that σ is an automorphism of M ′.
We define

Q′ := {f(X, c′) | f(X, Y ) ∈ Z[X, Y ],M ′ |= Df (c
′)}.

By Theorem A.7 DR′(f,Q
′) is the interpretation of Df in M ′ and Q′ is an heir

of Q on R′. The set

Q′′ := {f(X, σ(c′)) | f(X, c′) ∈ Q′}

is again an heir of Q on R′. By assumption there is only one heir which implies
that Q′ = Q′′. Then σ also fixes D(f,Q′) setwise and because of the fact that
D(f,Q′) is the interpretation of Df in M ′, σ is an automorphism of M ′.

Theorem A.13 2
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Ô , 7
~ω(G), 56
~ω±, 53
~ω±(G), 56
Ωvec(~σ), 51
orda(g), 33
πj,l(X), 95
Pm, 79
PO(g1, ..., gs), 8
P(S), 15
P(~σ, ~ω), 52

QM(g1, ..., gs), 8

Q̂Ma(g1, ..., gs), 34

Q̂a, 34
Q(‡), 107
Q(A), 83
Q+(A), 84
Qλ
Ô
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