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ABSTRACT

In this work we develop a systematic approach to calculate moments of leading-
twist and next-to-leading twist baryon distribution amplitudes within lattice QCD.
Using two flavours of dynamical clover fermions we determine low moments of
nucleon distribution amplitudes as well as constants relevant for proton decay cal-
culations in grand unified theories. The deviations of the leading-twist nucleon
distribution amplitude from its asymptotic form, which we obtain, are less pro-
nounced than sometimes claimed in the literature. The results are applied within
the light cone sum rule approach to calculate nucleon form factors that are com-
pared with recent experimental data.
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CHAPTER 1

The Global Frame

Quantum field theories are the state-of-the-art in modern physics. The develop-
ment of quantum mechanics and the aim to include properties of fields in this
framework resulted finally in the formulation of the first quantum field theory, the
quantum electrodynamics. This theory demonstrates the successful unification of
quantum mechanics and electrodynamics allowing highly precise calculations of
matter properties at the atomic scale. Many effects, like anomalous magnetic mo-
ment of the electron, the Lamb shift of the energy levels of hydrogen, could be
predicted and are tested to a precision, which can only rarely be reached within
physics. Quantum electrodynamics was not only the first physical relevant quan-
tum field theory, it served also as a prototype for other quantum field theories.
Although it seems that quantum electrodynamics is driven to its limits, we are
still detecting new properties and effects within this theory, like in the field of
cavity-quantum electrodynamics.

From the theoretical point of view, the next step was to describe not only the
electromagnetic force by a quantum field theory but also the other fundamental
forces which act at nucleonic scale, namely the weak and the strong interaction.
Up to now, only the gravitation resists to be formulated as a quantum field theory.
The present knowledge of the interplay and some partial connections between
the different quantum field theories is condensed in the standard model of particle
physics. It is the essence of what is known by the physicists about the fundamental
forces in the nature up to our day.

Therefore the aim of todays and tomorrows experiments is a better understand-
ing of the complete standard model and, may be even more important, the search
for new physics to answer the unresolved secrets of nature. Hence it is not only
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THE GLOBAL FRAME

important to understand each known force separately but also the interplay and
the hidden connections of the different sectors of the standard model are of the
key importance for the future. In quantum mechanics probably the most impor-
tant breakthrough was achieved by calculating the different properties of the most
simplest object, the hydrogen wave function. Within the standard model we have
still not reached the point to be able to calculate the wave functions of the most
simple objects, the hadrons like mesons and baryons. As the hadrons are built up
from more elementary particles which interact through weak and strong forces,
the calculation would involve obviously both of these forces. However, as the
name may implicate, the weak force is less important in this cases and is not taken
into account within this work .

The theory of the strong interaction is Quantum Chromodynamics (QCD)
which will be the basis of the calculations in this work. However, as already
pointed out, QCD cannot be studied isolated but the connections to other parts of
the standard model are also of crucial importance. Any prediction and also any
description of tomorrows and todays experiments involves all parts of the standard
model. Thus, to approve or to falsify the standard model we need highly precise
theoretical descriptions of all ingredients in standard model. The understanding
of the nucleon properties is of particular importance for experiments. To inspect
the nature at the femtometer scales we need microscopes with very high resolu-
tion. Thus we need very high energies which are at the moment only reachable
if we use nucleons as probe. But as long as there is a lack of the true theoretical
understanding of the nucleon properties, all experimental results and theoretical
predictions are limited by our present knowledge. Thus in full analogy to the
hydrogen wave function, we would like to have an analogous description of the
nucleon. The knwoledge of the full nucleon wave function would be an enormous
improvement, but the calculation of that seems to be almost impossible due to the
intricacy of the quantum chromodynamics. However, as long as we can not ac-
cess the full nucleon wave function we can reduce the complexity of the problem.
In this work we calculate quantities which contain less information than the full
nucleon wave function, but are already close to that. Although the information is
slightly reduced, this quantities provide a lot of additional informations compared
to others usually used to describe the nucleon structure. Thus, this additional in-
formation is of great importance to understand the experimental results now and
in the future.

Of course we do not want to understand only the standard model but would
also like to discover unknown physical phenomena beyond it. This also requires
calculations using our present knowledge. In the next two section of this chap-
ter we will give a short overview of the standard model and a connection to the
physics beyond the standard model based on some recent publications in this field
[L, 2, 3L 4] in order to establish a gross framework in which our results should
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be set. For a more detailed introduction we refer the reader to the standard text-
books e.g., [3]], and for recent developments to the selected papers [1, 2, 3} 4] and
references therein. In the second chapter we focus our attention on the theory
underlying our calculation, the Quantum Chromodynamics where we introduce
also the objects of our interest, the Nucleon Distribution Amplitudes (NDA) and
proton decay constants, which are related to possible theories beyond the standard
model. The following chapters contain then the details about our approach and
overview of results, we have obtained.

1.1 Standard Model ...

The standard model of particle physics is the most successfull theory in physics. It
describes three of the four known interactions and is still valid beyond the energies
it was designed for. The wide applicability range of the standard model and the
innumerable experimental confirmations are the key reasons for its success. From
the theoretical point of view the standard model has a simple and elegant structure
being at the same time as economical as possible. By requiring Lorentz invari-
ance of the theory and few local symmetries we obtain almost full description
of the phenomena like the strong and electroweak interactions, confinement and
symmetry breaking, hadronic and leptonic flavour physics etc. The study of all
these aspects has kept many physicists busy for the last three decades and we are
still not at the point where we can claim to understand all ascpects of the standard
model.

The success of the standard model is mostly based on few key features which
are related to our current understanding of nature:

e The standard model brings together the relativity and quantum mechanics,
therefore the elementary particles are described by quantum fields.

e Being an effective theory the predictions are based on the regularisation
of divergent quantum corrections and the renormalisation procedure which
introduces a scale dependence of the observed quantities.

e All interactions are related to local symmetries and are described by Abelian
and non-Abelian gauge theories.

e The masses of all particles are generated dynamically by confinement
(hadrons) and spontaneous symmetry breaking (fermions) induced by the
Higgs field.

Now let us take a closer look on the ingredients of the standard model. The
“ugly” fermionic sector of the standard model has three families or generations of
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particles

owe () (5) ()
o () (0) ()

Since 1989 it is believed that there are no more generation because the experi-
ments carried out in SLAC and CERN strongly suggest that there are three and
only three generations of fundamental particles within the standard model [6].
This is inferred by showing that the lifetime of the massive Z° gauge boson is
consistent only with the existence of exactly three very light (or massless) neutri-
nos. Of course the existence of an additional very heavy neutrinos is not excluded.

In the gauge sector the spin 1 gauge bosons describe the fundamental interac-
tions of the standard model,

AZ, a=1,...,8: the gluons of the strong interaction
Wi I =1,2,3,B,: W and B bosons of the electroweak interaction.

These gauge interactions have a beautiful geometric interpretation and are associ-
ated with the symmetry group of the standard model

GSM = SU(3)C X SU(Q)W X U(l)y

where the subscripts C, W and Y denote the colour, weak isospin and hypercharge,
respectively. Since the leptons do not carry any colour charge, the only particles
which interacts strongly are the quarks, which are confined in hadrons as colour
singlets. We will come later to this part of the standard model and will discuss it
more extensively, since it will be the basis of this work.

The electroweak part of the standard model Gwg = SU(2)w x U(1)y is a chi-
ral gauge theory, and this gauge symmetry is spontaneously broken. The building
blocks of the chiral gauge theory are the massless left- and right-handed fermions
with the possibility of different gauge quantum numbers. Having different repre-
sentations for SU(2)w (a chargeless one-dimensional singlet representation and
a charged two-dimensional doublet representation) and some experimental infor-
mation about present couplings it is possible to figure out the grouping of the
particles. The left-handed fermions are grouped to transform as SU(2)w dou-
blets while the right handed fermions transform as SU(2)w singlets. Accordingly
the left-handed fermions couple to Wlf and B, fields, whereas the right-handed
couple to the B, field only.
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The last and maybe the most interesting ingredient of the standard model is the
complex scalar Higgs field ®. It is the only particle of the standard model which
is not yet confirmed experimentally. As a doublet under SU(2)y transformations
the Higgs field couples to Wlf and B, fields and in the Lagrangian it generates a
mexican hat potential of the form

|
V(OTd) = —10Td + 5A(<I>T<I>)2, iy > 0.

This potential has a minimum away from the origin at ®'® = p2 /\ which fixes
the modulus of ®®, the other three degrees of freedom can be eliminated by
a appropriate gauge transformation. Rewriting the theory in terms of the physi-
cal degrees of freedom the SU(2)y symmetry becomes hidden and three of the
four physical fields, which are combinations of the original W’f and B, fields, ac-
quire mass terms through the coupling to the Higgs field. The remaining massless
neutral vector field is the photon and the three massive vector fields are the two
charged W bosons and one neutral Z boson.

Sometimes it ist stated that the Higgs mechanism leads to spontaneous sym-
metry breaking what in some way hides the true meaning. The gauge symmetry is
not really broken but only hidden and is therefore not directly manifest in the phys-
ical fields. But what are the consequences of the spontaneous symmetry breaking
for the fermions? Remember, the left- and right-handed fermions couple differ-
ently to the G'wg gauge bosons and there are additionally allowed Yukawa cou-
plings to the Higgs doublet. After the spontaneous symmetry breaking the Higgs
field has a non-zero vacuum expectation value (®) = 1, /+/\ and the Yukawa
couplings of the fermions to the Higgs field become effectively masses. These
mass CKM-matrix named after Cabibbo, Kobayashi and Maskawa is not diagonal
what is reflected by the fact that the mass eigenstates are not the weak eigenstates
leading to CP violation.

1.2 ... and a Glimpse Beyond

Despite all the beauty, the standard model has aesthetic deficiencies we cannot
ignore. If someone studied the standard model for some time he would recognise
that the standard model and so our present understanding of the nature has some
obvious hints that there must be something which is more general. The awareness
that there is more fundamental description of the nature comes from the already
known structure of the standard model. However, the answer are beyond the stan-
dard model. On the other hand our present knowledge guides us on the right way
towards a better understanding of nature.



1.2. ... and a Glimpse Beyond THE GLOBAL FRAME

The structure of the gauge sector in the standard model is extremely econom-
ical and precise at the same time. It describes three different forces only by three
continuous parameters. These parameters are becoming approximately equal at
very high energies and we are forced to ask ourselves, if there is one greater sym-
metry which we just do not see. The product structure SU (3)c x SU(2)w xU(1)y,
the reducibility of the fermion representation, the cancellation of quantum anoma-
lies, the quantisation of the charges and the peculiar assignments of hypercharges
encourage us only further to believe in a more fundamendal and beautiful sym-
metry. We expect that this symmetry would contain the three factors, unite the
representations and explain the hypercharges.

The smallest group into which the three groups of the standard model will
fit is the SU(5). A larger symmetry group e.g., SO(10) or some related alter-
native is even more welcome. The SO(10) contains all the particles and one
additional SU(3)c x SU(2)w x U(1)y singlet particle in a single spinor 16 rep-
resentation. It has the quantum numbers of the right-handed neutrino and is es-
pecially attractive in the “seesaw” mechanism which can explain the smallness of
the neutrino masses. A further appealing property is the natural explanation of the
hypercharges. Because of the extended symmetry hypercharges are then related
to colour and weak charges

1 1
Y:—E(R+W+B)+Z(G+P)

where R, W, B are colour and G, P weak charges.

As we mentioned before the larger symmetry implies that the different cou-
plings in the standard model should be equal, but due to symmetry breaking are
different at low energy scale. Taking a definite hypothesis about the particle spec-
trum in the unified theory we get prediction for the distortion of the different cou-
plings. Including the vacuum polarisation from the particles we know about in the
minimal standard model we obtain only approximate unification of the couplings
around 10! GeV .

Since the unification is only approximate it seems that we failed in our attempt
to unify the theory and to keep the theory as economical as possible. Of course
there are some alternatives on the market e.g., technicolour models, large extra
dimension scenarios and brane-world scenarios, which render the unification of
couplings as an accident. But the idea of unification is so attractive, that it is even
worth to give up the economy and to introduce a complete new world of extremely
heavy particles. The reward is a further and much larger symmetry, the supersym-
metry called SUSY. Within SUSY the gauge bosons and fermions do not stand
anymore separately but fall into common multiplets. And every presently known
particle has then a heavier superpartner with same quantum numbers but differing
in spin by 1/2 and mass. The gain of this new particle zoo is an accurate unifi-
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cation of the couplings if one includes the vacuum polarisation of the additional
particles.

At this point one can be disappointed since the 10'® GeV unification scale is
far beyond our present possibilities and one may believe that nature is teasing us,
allowing us to recognise that there is something else, but not giving us the possi-
bility to figure it out. But there is no need for such high energies. Already at next
generation experiment as the Large Hadron Collider (LHC) some of the particles
may become accessible. Another possibility will be to look for decay processes,
e.g., proton decay, which are not allowed within the standard model but other
theories. This approach implies that we can predict observations within standard
model sp precisely, that we are able to state that a certain observation contradicts
the theoretical description. This requires obviously highly precise theoretical cal-
culations in all parts of the standard model but also precise experimental results.

In summary we can state that the standard model is the foot in the door to
understand the fundamental of nature better and it will surely be a working horse
for a long time in future. All alternatives will have a hard time to compete with
the beauty and accuracy of the standard model, but now we are also at the point
where the standard model reached its limits, and we are encouraged to look for a
new, maybe even more beautiful theory.

10



CHAPTER 2

Continuum QCD

In the last chapter we gave an overview of basic ideas of the standard model and
stressed the importance and the interplay of all its parts. In future experiments the
nucleon and its properties will be an important testing field for the standard model
but also for the search for alternatives. As the nucleon is a composite object, and
the interaction of its parts is described by the theory of strong interaction, the
Quantum Chromodynamics, we will introduce now the basic concepts and some
techniques of this theory. The aim is to describe the nucleonic properties using
our present understanding of this theory. However, this can be decomposed in two
partially independent problems.

On one hand we can calculate the properties of the nucleon using the quantum
chromodynamics with the aim to make some predictions which can be used in fu-
ture calculations and/or tested in experiments. In analogy to quantum mechanical
wave function of the hydrogen we would also like to obtain analogous information
on the internal structure of the nucleon. Obviously it is a more demanding task
compared to the calculation of the hydrogen wave function.

On the other hand we can assume, that our present knowledge has to be mod-
ified by some unknown effects which allow e.g., in the standard model forbidden
nucleon decay. Using a low energy effective theory it is also possible to obtain
some predictions on such effects. Comparing those with the experiments will al-
low us to look for physics beyond the standard model. In our case as an approach
we use a low energy effective theory, the chiral perturbation theory, which is based
on the approximate chiral symmetry. Although the chiral symmetry is broken in
the nature it plays a crucial role in the theory of the strong interaction. Thus, in the
following sections, we will give some basic overview on the QCD and introduce
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2.1. Non-Abelian Gauge Theories CONTINUUM QCD

the objects which describe the nucleon. Due to the importance of chiral symmetry
we also give some general introduction to the chiral perturbation theory and how
we can gather informations relevant for nucleon decay from QCD.

2.1 Non-Abelian Gauge Theories

The construction of the non-Abelian theories is in some way similar to the Abelian
case, but there are of course additional obstacles one has to fight. Before we start
to consider the construction of non-Abelian theories we review shortly the basis,
i.e., groups with non-commuting elements. Our focus is on the SU(n) groups,
groups of n X n unitary matrices with determinant 1 as these are the groups in the
standard model.

The n x n complex matrix U has 2n? real degrees of freedom. The unitary
constraint UTU = 1 implies that UTU is Hermitian and we have additional equal-
ity (UTU)" = UTU. Thus the diagonal entries are real and the lower triangle is the
hermitian conjugate of the upper one yielding n + n(n — 1) real constraints. One
further real constraint is det U = 1 giving finally 2n* —n—n(n—1)—1=n?—1
real degree of freedom for the elements of the SU(n). Hence the SU(n) group
members can be written in terms of n? — 1 real parameters «; as exponentials

U = exp {ia;\'} (2.1)

wherei = 1...(n*>—1) and A\ are the generators of the group. Usually A\ are cho-
sen to be Hermitian and from the group product one can derive the commutation
relation for the generators

(A% Y] =i febene, (2.2)

where % is the antisymmetric structure constant depending on the choice of the
generators.

As next step we consider complex fields which are SU(n) multiplets. This
means that we consider a n-component vector ; and the SU(n) matrices acts on
it multiplicatively:

®1
e=| : | = ¢ =Up soTz(soL---,sOD — (p1) = plU" (23)
Pn

Then a Lagrangian constructed in full analogy to classical mechanics as kinetic
term minus potential

L= (0,0)" (9"p) = V (1) 2.4)

12



2.1. Non-Abelian Gauge Theories CONTINUUM QCD

is obviously invariant under unitary transformations since the product 'y is an
invariant quantity.

The generalisation from global to local symmetry U = U(x) leads to the
problem that the kinetic term is not invariant anymore, because the derivatives act
then on U(x) as well,

Iup — 0w’ =0, (Up) =U0,p+ (9,U) ¢. (2.5)

Thus to save the invariance the partial derivative must be replaced by a covariant
derivative,
0, — D, =0, +1igA, (2.6)

where the gauge field A, = AjA" is a matrix and \* are the generators of the
group. The requirement for the invariance of the kinetic term

(DM)/ =[(0, +1igAy) 90], = (au + Z'QA:;) (Ugp)

(2.7)
=U (8, + UM (8,U) +igUtALU) ¢ = UD,p;
yield a transformation law for the field A,
_ i _
A =UAU" - EUGMU L (2.8)

Up to now we do not have a kinetic term with A, in the Lagrangian, there-
fore no dynamics for the field A, is present. The desired kinetic term should be
gauge invariantﬂ and contain derivatives up to second order. The starting point
therefore is in analogy to Abelian gauge theories the field strength tensor which is
a commutator of two covariant derivatives

Fo—_

ng

é (D, D] = 8,4, — 0,4, +ig [A,, A)] = Fo\°
F, =0,AL — 0,A% — g fabCA’;A;.

(2.9)

The crucial point in the non-Abelian theories can be realised in the field strength
tensor. It contains not only derivatives, like in the Abelian case, but also a
quadratic term in the potentials. Thus the fields A, do not interact only with
the fields ¢; but also directly with each other. Unlike in Abelian theory the field
strength tensor is not invariant, but transforms as covariant quantity

Fn — F,=UF,U". (2.10)

A Kinetic term which should be quadratic in £, and gauge invariant is then easily
constructed by

1 1
Lyin = —ZFSVF““” = —§tr(FWF‘“’). (2.11)

!Otherwise we have to introduce a further gauge field

13



2.2. The Theory of Strong Interaction CONTINUUM QCD

The gauge invariance follows from tr (UF?U~1) = tr (U7'UF?) = trF? where
the normalisation convention

tr (A°A%) = %&lb (2.12)

was used.

So far we considered the SU(n) gauge theory at the classical level. Compared
to Abelian gauge theory, the quantisation in the non-Abelian case is a more de-
manding task due to the self-interaction of the gauge field. As in the Abelian case
the Green’s function for the gauge field should be the inverse of the differential
operator in the equations of motion. But due to gauge freedom the operator has
zero eigenvalues and hence is not invertible. This problem can be solved pragmat-
ically by fixing the gauge. However this causes lot of additional difficulties during
the calculations due to loss of the gauge invariance.

A more clever and elegant way is the Faddeev and Popov trick [7], where one
inserts a gauge-fixing term in the gauge action. This new gauge-fixing term is
not gauge invariant, but represents a certain gauge condition which can be chosen
freely. In Abelian theories the trick does not cause any serious problems, but in
non-Abelian theories we have then one more non-trivial ingredient. Due to self-
interaction of the gauge field the Faddeev Popov trick introduces a new set of
anticommuting fields that are scalars under the Lorentz transformations. Thus the
quantum excitations of these fields have wrong relation between spin and statistics
and therefore are not physical. These fields, called Faddeev-Popov ghosts due to
their strange properties, cancel exactly the contributions from non physical degree
of freedom of the gauge bosons and hence can be interpreted as negative degree of
freedom. But what is about the lost gauge invariance? It turns out that the gauge
invariance is not really lost but rather traded for another symmetry. Independently
discovered by C. Becchi, A. Rouet, R. Stora [8]] and I. Tyutin [9, [10]. This new
BRST-symmetry ensures that we still get physically sensible results.

2.2 The Theory of Strong Interaction

After the preparatory work for non-Abelian gauge theories we turn now to Quan-
tum Chromodynamics, the theory of strong interaction within the standard model.
At the end of the first half of the last century there was a crisis in particle physics.
The discovery of many new particles led to an inflation of particle numbers. With
the growth of this particle ‘zoo’ also the confusion of the physicist grew leading
to the conviction that these particles are not fundamental. In 1964 it is was found
independently by M. Gell-Mann [11] and G. Zweig [12, 13] that the different par-
ticles can be explained if the hadrons are built from more fundamental particles,

14



2.2. The Theory of Strong Interaction CONTINUUM QCD

the quarkf] which must be spin 1/2 fermions.

The quarks allow to construct baryons as compositions of three quarks and
mesons are then pairs of quarks and anti-quarks. Using three different types of
quarks the different hadrons were then fitted into roughly mass degenerate mul-
tiplets of a global flavour group SU(3);. Nowadays the total number of quarks
found increased to six and pairs of quarks are grouped then to form families or
generations (Table [2.1)).

Family ¢ Name €q Izzzzli(n Flavour (1\1\/;[:\8782)
1w up +% +3 L=+; =~15...4
1 d down —? —% Z:—% ~4...8
2 S strange =3 —% S=- ~ 80...130
2 c charm —i? +% C=1 =~1150...1350
3 b bottom (beauty) 3 —3 B=—-1 =~4100...4400
3t top(truth)  +5 +i T =1 ~ 174300

Table 2.1: Overview of quarks, grouped in families with the corresponding
masses and charges in terms of the elementary electric charge e,.

The different generations have similar pattern of quantum numbers, but with
succeeding generation the quarks become heavier. The up, down and strange
quark are usually termed the light quarks with masses below Agcp ~ 200MeV,
while the charm, bottom and top are the heavy quarks. As in many other applica-
tions we can ignore here safely the heavy quarks and should concern from now on
only the light quarks with the effective flavour group SU(3);.

Taking the quarks to transform under fundamental 3 representation and anti-
quarks to transform under the 3 representation the nine possible ¢’ combinations
containing the light up, down and strange quarks are grouped into an octet and a
singlet of light quark mesons (Figure [2.1))

33=8q1 (2.13)

The approximate SU(3); flavour symmetry for “ordinary” baryons implies
that baryons which are made up from three quarks gqq fall into one of the multi-
plets on the right hand side of

30323=105®8y 8y ® 14, (2.14)

where the subscript indicate the symmetry, mixed symmetry or antisymmetry un-
der interchange of any two quarks in the three quark state (Figure [2.2)).

>The name quarks introduced for this particles by M. Gell-Mann is based on the book Finni-
gan’s Wake by James Joyce [[14] (“Three quarks for Muster Mark™).
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Figure 2.1: The Octet multiplets for spin 0 (pseudoscalar) and spin 1 (vector)
mesons.

The quark model was the first step in the understanding of the particle ‘zoo’,
but it lacked any dynamics. Furthermore it violated also the Pauli principle, e.g.
the AT state would be composed of three up-quarks each carrying spin +1/2,
necessary to obtain the observed angular momentum (J, J,) = (3/2,3/2). The
way out was suggested a short time later by O. Greenberg [[15] and by M.Y. Han
and Yoichiro Nambu [16] introducing a new quantum number ‘colour’ for the
quarks. As this quantum number was never observed the hadrons must be colour
singlets. Although already 1969 the analysis of Standford Linear Accelerator
data by J. Bjorken [17] gave evidence that the proton is composed from quarkﬂ
it was still believed that the quarks are purely mathematical objects, since they
were never observed. The possible explanation therefor and the dynamics were
introduced then 1973 by H. Fritzsch and M. Gell-Mann [18, [19], the quantum
field theory of strong interaction was formulated. This theory of quarks and glu-
ons is similar in structure to quantum electrodynamics (QED) but with colour
charged particles and therefore is called quantum chromodynamics (QCD). Based
on SU(3)c local colour gauge symmetry and reusing our preparatory work from
the last section we take for the QCD as action

1 Lo
L= FF" + > @ (iv' Dy —my) g (2.15)
f=1

with
F,, =0,A, —0,A, —ig[A,, A

2.16
D, =8, — igA\"A?. (2.10)

3They do not used the name “quarks”, but called the constituents “partons”.
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A~ A° AT AtT

Figure 2.2: The Octet and Decuplet for spin half and three half baryons.

The index f denotes the different quark flavours and 7 ¢ is the number of the used
flavours, vy, are the Dirac matrices.

Without losing a local gauge SU(3)c invariance we can add a topological
term proportional to O F F with another parameter ¢ where FW = €uuwpl’P 1s the
dual of F'. The physical quantity connected to this term is the topological charge
defined as

— 4 n 0%
Q=2 / d'z tr (FWF ) 2.17)

which takes integer values in the third homotopy group of the gauge group. For
0 # 0 or 7 this term explicitly breaks parity as well as CP invariance. From the
measurements of the electric dipole moment of the neutron we have at the moment
an upper bound of |§] < 107Y suggesting § = 0. Hence this term should not
bother us here. However the smallness of 6 is puzzling since the CP invariance
is already explicitly broken in the electroweak sector of the Standard Model by
the complex phase of the Cabbibo-Kobayashi-Maskawa matrix. This puzzle is
commonly known as the strong CP problem and is also intimately connected to
the axial anomaly which we discuss in section [2.6.1]

2.3 QCD Phenomenology

2.3.1 Asymptotic Freedom & Confinement

After we have introduced the basics of the quantum chromodynamics we take
now a closer look on the properties of this theory. As already mentioned QCD
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is a non-Abelian gauge theory and the gauge bosons interact directly with each
other. This introduces a new level of complication in theoretical calculations and
of course changes also the properties of this theory compared to QED. Maybe the
most important consequence is the behaviour of the strong coupling constant as a
function of the scale ;. This dependence is described by the 3-function

2
i?;(:;) = Blas) with  f(ay) = —%(50 + ﬁl% +...) (2.18)

which assumes that o is small so that the perturbative expansion is justified. For
the QCD, the SU(3)c gauge theory with V. = 3 colours one has

11
N, - (2.19)

BOZEC 6

which is positive for ny < 33/2. Then eq. (2.18) implies that with increasing
energy the coupling becomes smaller, so in the limit of high energies the particles
in QCD are only weakly coupled and the perturbative approach should be possible.
This phenomenon, also known as asymptotic freedom, was discovered already in
1973 by D. Politzer, F. Wilczek and D. Gross [20, 21]] and was awarded with a
Nobel Prize in Physics 2004. Contrary, this behaviour also implies that at low
energies the coupling should become strong and the perturbative approach would
break down. QCD in this strong coupled region is much less understood since it
requires nonperturbative calculations.

Due to the strong coupling at low energies the quarks are confined within
hadrons and therefore can not be observed as free particles. Thus, also colour
charges can not be observed freely and particles built up from quarks like mesons
(quark and anti-quarks) or baryons (three quarks) must be colour neutral. As one
tries to separate two quarks from each other they form a colour flux tube out of
gluon fields. Therefore the force between the quarks stays constant and the total
energy of the system is rising linearly with increasing distance. Thus, at some
distance it is energetically favourable for the system to generate a quark and anti-
quark pair out of the vacuum producing independent but still bound colourless
states. Although this picture of string breaking is confirmed by lattice calculations
[22] we are still lacking a true understanding of confinement. Thus to understand
nature we need also to understand the mechanism of the confinement and how the
different hadrons are built up from quarks. Lattice QCD provides a nonperturba-
tive approach allowing us to examine the strongly coupled region and to obtain
results that are not reachable within perturbative calculations. In particular, us-
ing Lattice QCD a proof of confinement seems also to be within reach [23] 24]],
putting us further in the understanding of the standard model.
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2.3.2 QCD Scale and the Origin of Hadron Masses.

The notion of scale in a quantum field theory is not restricted to QCD. However,
the QCD scale is of particular interest as it is connected through confinement to
hadron masses. Naively one can assume that hadron masses should be of the
order of involved quark masses which is, of course, immediately falsified just by
measuring the proton mass. Even in the chiral limit of vanishing quark masses
hadrons would be not massless which can be traced back to the trace anomaly.

At classical level the QCD Lagrangian in the limit of vanishing quark masses
does not have any intrinsic scale and therefore the rescaling of the involved fields
will leave the action unchanged. This means that after rescaling the fields by

P(x) — e % (zeT), (2.20)

where d is the canonical mass dimension of the field, the theory remains un-
changed. The associated dilatation current which is conserved due to Noether
theorem is

J =M, 8MJ5 =0, =0 (2.21)

with the energy-momentum tensor ©#”. In a quantum field theory which is cou-
pled to gravitation the energy-momentum tensor can be obtained by varying the
Lagrangian £ with respect to space-time metric g,,,,

)
oW =2 / d*zL (2.22)
59#1/@)

and therefore the scale transformation as a change in spacetime metric

G () = €7 g (2) (2.23)

will change the Lagrangian just by the trace of ©*”.
In a quantum field theory the couplings of fields are not constant but changes
with the scale as

g— g+T106(g) (2.24)

where (3(g) describes the theory dependent coupling scaling. The corresponding
change in the Lagrangian is then

0

Tﬁ(g)a—gﬁ (2.25)

inducing in most cases breaking of scale invariance. Therefore the trace of the
energy-momentum tensor is then

0T = 0" = B9)5 L. (2.26)
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This is also known as the trace anomaly. Rewriting the last formula in terms of
QCD fields yields for the trace of energy-momentum tensor in QCD

oF, = %F;’UF“”. (2.27)
Therefore the mass expectation value in QCD for any hadronic state |p) with mo-
mentum p
(p|©" .|p) = 2p"p,, = 2m3; # 0 (2.28)
will not vanish, the sizes and masses of the hadrons therefore are determined by
the QCD scale which is experimentally Agcp ~ 200 MeV.
However at this point one may ask why the proton masses are so far below the
Planck scale Mp constructed from the Newton’s constant GG

L a0
Mp e ~ 107GeV, (2.29)
which is the grand unification scale of gravitation and other interactions. As
Wilczek has explained [25]], the nucleon mass is much smaller than the Planck
scale partly due to the asymptotic freedom of QCD. It seems that also chiral
symmetry, which we consider at the end of this chapter, plays a crucial role as
discussed e.g., in [26]].

2.3.3 Nucleon Form Factors

Many of the known results in QCD were obtained over years from electron-
nucleon scattering experiments (Figure [2.3)) where an electron scatters elastically
with the nucleon at momentum transfer —¢> = Q? ~ 1GeV?. Since the QED
coupling constant is small one can consider the limit of one photon exchange so
that the scattering amplitude can be written as a product

S N9_ )
Ty = (—ie)*ve (K )yuve(k) X @@’U"(Q) ) (2.30)

with vector current 5 1
JH = gﬂfy“u — chfy“d + ... (2.31)

acting on pronto state |p) and v, the electron spinors. The informations about the
nucleon structure are then obtained from the formfactors. Those are defined from
general Lorentz decomposition of the matrix element in eq. (2.30). Being a com-
pound particle the Dirac and Pauli form factors £} and F5 respectively describe
the deviation from pointlike structure of the general decomposition

qv
my

(P17l = N@') | Fi(a*) + 0™ 5 = Fa(q*) | N(p) (2:32)
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Figure 2.3: Electron-nucleon scattering for the case of one photon exchange. The
green ellipse denotes the nonperturbative QCD part, which is described by the

nucleon form factors (egs. (2.30) and (2.32)).

where my is the mass of the nucleon and N (p) (N (p’)) the nucleon spinor before
(after) the scattering process and o, = i(y, — 7,)/2. The values of the Dirac
and Pauli form factors at Q> = 0 define the electric charge and the anomalous
magnetic moment of the nucleon:

FP0)=1, F'0)=0, FI0)=r,=179, F}=r,=-191, (2.33)

where the index p and n stands for proton and neutron respectively. From ex-
perimental point of view the more convenient combination are the electric and
magnetic Sachs form factors

2

o 9 4q 2
Ge(q”) =F1(q°) + (sz>2F2(q ) (2.34)

Gu(q®) =F1(¢%) + F2(q?)

which are preferable, since the cross section can be written as the sum of squares
of these form factors, i.e. there is no interference term. In the special frame
of reference, the Breit-frame (¢ = (0,0,0,—Q) and p = (F,0,0,p3)), Ge(¢?)
describe the distribution of the electric charge and G,,(¢*) the magnetic current
distribution. Both form factors, GG, and G, correspond also in the same frame of
reference to helicity conserving and helicity-flip amplitude respectively.

The experimental values of G,, below 5 GeV? are described very well by the
famous dipole ansatz:

1 1 1
—G (@) = —Gh(QY)  ——5751 ~0.71GeV?  (2.35)
iy (@) L O @) g
with
GP(0) =pp, =279  G"(0) = p, = —191. (2.36)
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Also for the electric form factor one observes dipole behaviour below 1 GeV?
for Q2. For larger values of momentum transfer the status was unclear until end
of the last century since the later SLAC data [27] contradicted the older DESY
results [28]]. These measurements were based on the Rosenbluth separation of the
cross section and only recently the Jefferson Lab Hall 1 Collaboration extracted
the ratio G?(Q?)/GP,(Q?) from the simultaneous measurement of longitudinal
and perpendicular polarisation components of the recoil nucleon [29} 30]. In this
experiment the systematic deviation from the dipole behaviour was observed con-
firming the tendencies seen earlier at DESY.

There are two possibilities to generalise these form factors. One can not only
consider the longitudinal distribution but also the transverse distribution of the
quarks within the nucleon. Those will lead to Generalised Parton Distributions
which describe the three dimensional structure of the nucleon and the forward
limit will be the form factors. Here we want to consider another direction of the
generalisation, the Nucleon Distribution Amplitudes. But before we can start we
have to review shortly the Operator Product Expansion.

2.4 Operator Product Expansion

All deep inelastic scattering calculations involving distribution amplitudes rely so
far on the operator product expansion or OPE. Introduced 1969 by Wilson [31]
into particle physics to face various problems in strong interaction calculations
and proven few years later by W. Zimmermann [32] in perturbative quantum field
theory, it became the most important tool in quantum field theorical calculations.
Given the importance of this tool, it was proven also for conformal field theories
[33} 134} 135]], while the formal mathematical proofs based on different axiomatic
settings on Minkowski space-time were found in [36, 37, 38, [39]]. Recently OPE
was also extended to general Lorentzian curved space-time [40].

The operator product expansion states that a product of operators at differ-
ent space-time points which is usually singular in quantum field theories can be
written as an asymptotic series of coefficient functions times a local operator at a
nearby point y

O1(21) ... Onlwn) = > Erpkl(@1,- ., 22) Ot ni(y). (2.37)
k

For small distances the Wilson coefficients £ can be calculated perturbatively,
while the local operators on the right-hand-side encodes the nonperturbative con-
tent. Therefore, the operator product expansion is used in a small distance region,
where the smallness is usually ensured by an “internal reason” like the W-boson
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Top 2 yop/

Figure 2.4: Lowest order Feynman diagram with the gluon exchange between
two valence quarks of the meson. A = p' — xop, A% & x9¢%, k = yop’ — 21p
k? & 2132q°

mass or the heavy c and b-quark masses. In this case the leading terms in the oper-
ator product expansion are operators with minimal dimensionality. In our case of
exclusive processes in deep inelastic scattering the smallness of the relative dis-
tance is ensured by an “external reason”, the large momentum transfer. Then the
parameter which determines the importance of the operators in the expansion is
the twist which is defined as the dimension of the operator minus its spin.

As the method for obtaining operator expansion for exclusive processes does
not follow directly from the Wilson expansion of local operator products we
demonstrate it here for a “simple” case, the meson form factor which is defined as
matrix element

(0’| Julp) (2.38)

where the quark current J, = ¢7,q is sandwiched between mesonic states with
different momenta p and p’. The main idea for the approach we illustrate below
was proposed in [41] and applied e.g., in [42]].

Mesons are built of a quark and antiquark, therefore the lowest order Feyn-
man diagrams describing the coupling of the photon to these quarks have the
form given in Figure 2.4 The virtuality of the quark and gluon propagators,
(0]q(21)q(0)]0) and (0]|G,,(21)G ,(22)]0), is of order A? ~ k? ~ ¢%,i.e. (2,—0)% ~
(22 — 0)* ~ (29 — 21)® ~ 1/¢?, so the use of perturbation theory for this parts
is justified due to the asymptotic freedom of the QCD. On the other hand quarks
which are produced close to each other at the distance of order (z2 — 21) ~ 1/q
and stay a long time collinear to each other will interact strongly. Therefore we
should not calculate the external quark lines explicitly but should remain with the
Heisenberg operator acting in the small virtuality and small momentum transfer
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subspace. Then, we can write the meson formfactor as

21

WD) = f dadeatl|§ @) ep iy [ do,Gulo) | astea) p 10

z2 Z]
22

<O S0 () e (g [ do,Guto) | ast0) b 1o

0 Kl

(2.39)

where f means a integration over the small space-time volume ~ 1/¢* around 0,
1,7, k, are the colour indices and «, 3, , ¢ the spinor indices. C’fj’;lﬁva dentotes
the hard scattering part of the process. The meaning of this expression becomes

more clearly as we look at the operator expansion of the current at short distances

J(0) = [g(0)g(0)] + ¢* f dzdz, [74]10)C1 (0] [7d]
(2.40)

. 75 dzrdzadzs [30F) 10YC (0] [qq) + . .,

where we have suppressed for simplicity the different indices and £ is the field
strength tensor. The eq. can be understood as follows. Due to quantum
fluctuations in the small vicinity of 0 the photon transforms into two independent
systems of quarks and gluons which move then in opposite directions. The ampli-
tude C; for this transition can be calculated perturbatively. After taking the matrix
element between the mesonic states the matrix elements of the moving quarks
and gluons describe then the transition of the partonic systems to mesons. Due to
the increasing dimension of the operators on the right hand side of eq. the
contributions becomes suppressed by additional powers of 1/q implying that the
minimal Fock state with two quarks is the leading one.

However also the leading Fock state operator is still a nonlocal operator but
should be seen as a generating functional for local operators required by the OPE
which are then obtained by Taylor expansion of the nonlocal operators. Let us
exemplify that on the leading bilocal quark-antiquark operator. The leading twist
contribution to the bilocal matrix element can be then written as

oo

N

/l/ «— > . .
(0|q(=)q(0)|p) = Z LR 2, (0|gD¥ . D} q(0)|p) 4 higher twist

n=0
(2.41)

where D = (D — D) and the curly brackets {. .. } denotes total symmetrisation in
Lorentz indices and the substraction of traces. Hence at large ) only the leading
twist of the leading Fock state will contribute to the meson formfactor.
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At the end we should stress that we described here only roughly the scheme
to obtain the operator expansion for the mesons in the asymptotic case. However,
for baryons and for not so large ()%, the analysis will be obviously more involved
because of increased number of valence quarks and contributions from higher
twists which are not negligible in this energy region. Additionally, we want to
point out that later we will use operator expansion within the framework of the
Light Cone sum rules (LCSR), which allow calculation at intermediate values of
()?. Therefore, we will use a version of the operator expansion, which is adapted
to the Light Cone sum rules, but the ideas and the line of arguments are basically
the same as displayed in this section. Unfortunately the discussion of the different
sum rule methods is far beyond the scope of this work and therefore we will
restrict ourselves in further discussion of Light Cone sum rule approach only to
some basic parts required in our calculations.

2.5 Distribution Amplitudes

The knowledge of the wave function of any system in quantum mechanics gives
us the possibility to predict and calculate many properties of this system. As in
quantum mechanics also in QCD we would like to know the wave functions of
the bound systems like mesons or baryons. However, the complexity of these
systems is much higher, requiring a more sophisticated approach. To reduce the
complexity of the problem we consider the Distribution Amplitudes which are
defined in terms of the Bethe-Salpeter type wave function

Wps(x) = (O[T [C](l‘l, lﬁ,L)C](@, k2,L)Q(x3> k3,¢)] ) (2.42)

with z; being the logitudinal momentum fractions carried by partons and £; |
their transverse momenta and |p) the proton state with momentum p. The leading
twist distribution amplitudes are then obtained by integrating out the transverse
momenta

[y |<p
‘I)(%', M) = Z(M)/ dgki,J_\I[BS(xa ]ﬁ) (2.43)

where Z is the renormalisation factor for the quark field operator and x; are the
remaining logitudinal quark momenta fractions. Higher-twist distribution ampli-
tudes are more numerous and describe either the contribution of the “bad” com-
ponents in the wave function, or contributions of transverse momenta or higher
Fock states with additional gluons and/or quark-antiquark pairs.

There are different possibilities to establish the connection between the Dis-
tribution Amplitudes and the observable physical quantities. As we are going
to present later some results obtained in Light Cone sum rule approach, we also
introduce the Nucleon Distribution Amplitudes within this context.
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2.5.1 1In a Nutshell

In the past the main results about the nucleon structure were obtained within the
frame of inclusive processes where one measures only the scattered electron. Nev-
ertheless the aim of the future experiments is to go to higher luminosity and to
more and more exclusive channels measuring as much as possible of the pro-
duced particles. One of the main reasons to deal with increased experimental and
theoretical difficulties is the growing understanding in the recent time how much
can be learned about the internal hadronic structure and especially the spin struc-
ture from these processes. The increased experimental possibilities require also
larger efforts from the theoretical side to make fully quantitative predictions of
hard exclusive processes.

In QCD, the theory of strong interaction, many powerful results are obtained
from perturbative calculations applicable to a large variety of scattering processes.
The success of this approach is based mainly on the factorisation properties of the
investigated reactions. In this framework the scattering process is factorised in
perturbative and non-perturbative parts. Since the non-perturbative parts are uni-
versal for different scattering processes it is possible to relate them to each other
order by order in the coupling constant of the strong interaction using perturba-
tion theory for the non-universal part. In the case of the inclusive processes the
non-perturbative parts are described by the distribution and fragmentation func-
tions for quarks and gluons. These functions have to be either calculated in a
framework beyond the scope of perturbation theory or have to be extracted from
a subset of experimental data and then to be used for other. In the case of the hard
exclusive processes the measured quantities are various form factors.

In this work we focus on the calculation of the quark distribution amplitudes
of the nucleon. Although being equally important and complementary to the con-
ventional distribution functions the distribution amplitudes are much less studied.
These unsatisfying situation is mainly based on the more challenging situation one
has to deal with during the experimental and theoretical studies of the distribu-
tion amplitudes. Thus, for facilitating fully quantitative predictions for processes
involving these objects the knowledge of the nonperturbative quark distribution
amplitudes within a hadron is essential.

Distribution amplitudes were introduced in [41} 43, 44, i45] 46, |47] and de-
scribe the hadron structure in terms of valence quark Fock states at small trans-
verse separation and, unlike distribution functions in inclusive processes, can not
be accessed “directly” in experiments. Only some indirect insight can be obtained
by measuring physical quantities like the magnetic form factor of the nucleon
Gu(Q?). At very large values of ? the electromagnetic form factors of the nu-
cleon can be expressed as a convolution of a hard scattering kernel h(z;, y;, Q%)
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©*(yi, Q%)

Figure 2.5: The factorisation of the subprocess relevant in the calculations involv-
ing the quark distribution amplitudes of the nucleon. The hard scattering kernel
h(x;, y;, Q%) calculable within the perturbative QCD is denoted by the red ellipses,
while the blue one stands for the nucleon distribution amplitude describing the
transition of three collinear valence quarks to the nucleon.

and the quark distribution amplitude in the nucleon ¢(x;, QQ) [44]):

1

Gul@) = [

0

1
(] [l @1, @)1, Q) + Ol Q%)

’ (2.44)
where [dz] = dz;dzodasd(1 — 320, @), and —Q? equals the squared momen-
tum transfer in the hard scattering process (cf., Figure 2.5]). In this case only the
leading twist nucleon distribution amplitude contributes. The variables z; (y;) can
be interpreted in a appropriate gauge as the momentum fractions carried by the
valence quarks before (after) the hard scattering.

The theoretical study of non-perturbative quantities, like distribution ampli-
tudes, is a demanding task in QCD. The sum rule approach used for the calculation
of moments of distribution amplitudes has large systematic uncertainties making
it difficult to obtain reliable results. Apart from QCD sum rule determinations, an
analytical approach to the distribution amplitude is feasible only for sufficiently
large values of %, where the asymptotic form p(Q? — oo) = 120z 2573 [43, 48]
is obtained. Loosely speaking, the nucleon distribution amplitude looses at high
energies any information about the original form and the final asymptotic form is
a universal one. However, given the logarithmic evolution in ()? this knowledge
is not really usefull at reasonable energy scales.

At intermediate values (1GeV? < Q% < 10 GeV?) of the momentum transfer
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Q)? electromagnetic form factors can be calculated from nucleon distribution am-
plitudes using Light Cone sum rules. In contrast to the relatively simple picture at
large (Q? the factorisation does not hold anymore since the non-factorisable terms
contribute also significantly [49]. Furthermore, also higher twist terms of nucleon
distribution amplitudes [49, 50, 51, [52]] became important and give a large con-
tributions. Experimentally, this kinematic region gained also a lot of interest in
recent years, because new data from JLAB [29, 30} 53| 54] for the well-known
electromagnetic form factors of the nucleon contradict common textbook knowl-
edge, for details see [S3]] and references therein.

To close the gap in the understanding and to put the calculations on a solid ba-
sis, a better and more quantitative understanding of the distribution amplitudes
is desirable. Lattice QCD, as a nonperturbative approach, allows to calculate
matrix elements of local operators which can be related to moments of the dis-
tribution amplitudes. These moments are non-perturbative parameters which can
be used then as input in sum rule calculations of the physical quantities of in-
terest. However, the advantages of lattice calculations have to be paid by the
reduced symmetry due to the discretisation of the space-time. Thus on the lattice
a straight-forward calculation will be distorted by additional unwanted operator
mixings. Therefore, careful choice of used operators is an essential step in lattice
calculations and can greatly improve or completely destroy the predictive power
of the obtained results.

In the following we present the theoretical framework needed to sensibly set
up such a calculation on the lattice and use it to calculate the moments of the
nucleon distribution amplitudes up to second order. Similar analysis were done
earlier to calculate moments of structure functions [56, 57, 58], generalised par-
ton distributions [S9, |60] and meson distribution amplitudes [61] based on the
irreducibly transforming two quark operators [62]. However the analysis for the
baryons is more demanding due to the presence of three quarks. Furthermore, our
approach allows us additionally to calculate matrix elements which are relevant
for the proton decay in grand unified theories.

2.5.2 Leading-Twist Nucleon Distribution Amplitudes

After a short phenomenological introduction of the distribution amplitudes as
nonperturbative objects of interest in QCD we turn now our attention to a
more technical and quantitative description. The nucleon distribution amplitudes
were introduced within the classical framework of hard exclusive processes in
[411163] 143, 44) 48] 145, 46|, 147]. Since we are going to present later some results
obtained using LCSR approach it is natural to introduce also the Nucleon Dis-
tribution Amplitudes within the context of the LCSR to establish the connection
between those parts as it was done e.g in [49, 164, 52]. However we want to stress
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Figure 2.6: LO contribution to the correlation function in eq. (2.45))

once more that the concept of the distribution amplitudes is not restricted to light
cone sum rules calculations, the distribution amplitudes are more general objects
and can be used also in other not related approaches.

The starting point for LCSR calculations is the correlator

Colpq) = i / dt €07 (0[T {1(0)J,(2)} |p) (2.45)

where J, is some current which couples to the proton state |p) and 7 some in-
terpolating nucleon field. For definiteness we will use for J, an electromagnetic
current and for 7 the Chernyak-Zhitnitsky interpolator 63, 66]]

2 1-
J, =" = gﬂfyl,u + gdfy,,d, (2.46)
ncz(0) =e™ [u*(0)C #u’(0)] v5£d°(0), (2.47)
where the coupling of the interpolator to the nucleon is given by
(Olncz|P) = fn(p - 2)#N(p) (2.48)

Here 2 is a light-cone vector, z? = 0, and the coupling determines the normalisa-
tion of the leading twist nucleon distribution amplitude [44] 67] we are interested
in. Inserting a nucleon intermediate state in the eq. (2.45)) and using the definition
in eq. (2.30) for nucleon form factors it readily follows

<0 p.4) Zmzf—fp,z(p’ ) {RR@)W - 2) - F2(Q°)(q-2)] £

@ o+ 5 a| A+ -

my
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Figure 2.7: The leading fock state plus higher fock states contributions (see text
for more details) to the correlation function in eq. (2.43) .

where
P=p-gq (2.50)
and the dots stand for higher resonances and the continuum.
On the other hand, at large Euclidean momenta p’ % and 7> = —Q? the cor-

relation function can be calculated in perturbation theory using operator product
expansion. The leading order contribution is shown in Figure[2.6]and has the form
[49]

2,C"(p, q) :% / - (CF) (v5#)~

2m x4

< [0l 0O @lP) + S0 Ou@aon]
(2.51)

where we have performed operator product expansion similarly to those in
eq. (2.40) to leading order in Fock states. Therefore the hard part (dashed line
in Figure [2.6)) can be calculated perturbatively, while the soft parts are expressed
as matrix elements. To be precise one should also take into account higher Fock
states. The reason is the hard quark propagator #/z* in eq. (2.51)), which receives
corrections in the background colour field [68] giving finally rise also to higher
Fock states (Figure [2.7). However, although not strictly shown it is believed that
such corrections do not play a significant role as for example seen in [69]. There-
fore from now on we will consider only operators with three valence quarks like
it was done to obtain eq. (Z.5T)) which should give us a good enough description
of the non-perturbative contributions for the correlator in eq. (2.45).

The common idea of sum rules is to match the dispersion relations in eq. (2.49)
with the QCD calculations of eq. (2.51) at certain “not so large” Euclidean values
of momentum p’> flowing through the nucleon interpolating current 1. The prob-
lem thereby are the remaining nonperturbative matrix elements on the right-hand
side of eq. (2.5T), which describe a transition from a certain three-quark state to
the nucleon.

Obviously the three-quark operator used in the remaining matrix elements of
eq. (2.51) are not the most general one but can be seen as a special case of a more
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general trilocal quark operator:

e ()| [exp (ig /j Au<0')d0“> ua(zl):| “

X [exp (z’g /23 AV(T)dTV) U,B(»@)} bdi(zia) ),

22

(2.52)

where path ordering is implied for the exponentials, a, b, ¢ are the colour indices
and |p) denotes the nucleon state with momentum p.

Considering the quarks in the matrix element of eq. (2.52) on the light cone
and using the transformation properties of the fields under Lorentz symmetry and
parity it is possible to rewrite the leading twist contribution in terms of three in-
variant functions V', A and T" [70]

1
@32) = J {lp-7C)ap(1sN),V(zi - p) + (P - 175C)as Ny Alzi - p)
+(10,,p" C)ap(V' 5N )T (2 - p)} + higher twist,

(2.53)

where C' is the charge conjugation matrix, N the nucleon spinor and fy the nu-
cleon decay constant. Then in the light-cone limit 22 — 0 the remaining matrix
elements in eq. (2.5T)) can be quite easily related to the nucleon distribution am-
plitudes on the right-hand side of eq. (2.53).

Beyond the large ) limit at intermediate energies of Q> = 1...10GeV? the
contributions of the higher twist distribution amplitudes [50] are similarly impor-
tant. In this part our main focus is on leading twist and we will consider higher
twist later.

In momentum space

d(z - p)
or

Vi(x;) = /V(Zz' “p) HGXP (iwi(zi - p)) Vi(zi) = V(x1, 72, 73)

(2.54)
the distribution amplitudes V' (x;), A(x;) and T'(x;) describe the quark distribution
inside the nucleon as a function of the longitudinal momentum fractions z; carried
by the valence quarks in the nucleon, 0 < z; < 1 and ) x; = 1. The leading-
twist expansion in eq. (2.53) is equivalent to the following form of the proton state
(46 165, 166]]

1) = / ) YO ZAG) 1t () d ()

224z 2913 (2.55)
—|u!(z)d* (azg)uT(:zzg)ﬂ
with the integration measure
[dz] = deydeadasd(1 — x1 — g — x3). (2.56)
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To be precise we want to note, that the distribution amplitudes also depend on the
renormalisation scale i, which we will suppress as long as not explicitly required.

2.5.3 Moments of Leading-Twist Distribution Amplitudes

Since it is so far not possible to access the quark distribution amplitudes directly
we consider their moments, which are defined as

1
yimn — f_N/ [dx] xllzv’;:vg V(xy, z9, x3) (2.57)
0

with the normalisation constant fy and equivalent definitions for other leading
twist distribution amplitudes. Using eq. (2.53)) and (2.54)) one can relate the mo-
ments of the quark distribution amplitudes to matrix elements of the following
local operators

VETT(0) = e [i' DML DN (0)](C )agli™ DH L. DM u(0)] (2.58)
X [i"D" ... D" (75d°(0))]

AL (0) = e (IDN . DG (0))(Cy el DM . DFmuh(0)]  (259)
X [i"D" ... D" de(0)]

T (0) = ¢ [i' DY ... DN ug (0)] (C(0%)),,, ™D ... DF™us(0)]  (2.60)
x [i"D" ... D" (ve75d°(0))]

by
(O™ (0)|p) = — fa VI pP plp™p" Ny (p) (2.61)
(01A2™7(0)[p) = — fy A" pPp'p™p" N, (p) (2.62)
(O[TP"™™(0)[p) = 2fnT"™"p p'p™p" N (p), (2.63)

where Imn with [ = \;... )\ etc. denotes the Lorentz structure given by the
covariant derivatives D, = 0, — igA,, the index p reflects the gamma matrice
present in the operators and fy is the nucleon decay constant.

Due to the presence of two u-quarks in the nucleon we have for the moments
of the nucleon distribution amplitude additional relations

Vlmn — len, Almn — _Amln’ Tlmn — Tmln‘ (264)

If we define 1
¢lmn — 5(‘/lmn . Almn + 2Tlnm), (265)
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which is a natural combination in our analysis, then we have due to isospin 1/2
symmetry

Tlmn — %(gblnm + ¢mnl)' (266)

Due to the analogous identities for V' and A, we can express the moments of V', A
and T in terms of only one independent distribution amplitude ¢'™":

_% (26 4 2™ — grim — gy | (2.67)
1 (_2¢lmn + 2¢mln _ ¢nlm + ¢nml) ) (268)

|
N

Then the normalisation of the nucleon decay constant fy is defined by the choice
T000 — /000 — 4000 — 1 The combination ™" = Vimn — Almn_ often used in
QCD sum rule calculations, can be easily related ¢'™" according to

SDlmn — 2¢lmn . gbnml? (269)
1

Because of momentum conservation (), z; = 1) we have additional relations
between lower and higher moments of the distribution amplitude:

gblmn — ¢(l+1)mn + ¢l(m+1)n + ¢lm(n+1)’ (271)
which in particular imply

1 =00 — 100 4 4010 | 4001

:¢200 + ¢020 + ¢002 4 2(¢011 + ¢101 + (bll(]) —— (272)
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2.5.4 Modelling the Leading-Twist Nucleon Distribution Am-
plitude

Although the moments of the nucleon distribution amplitude are the quantities we
calculate, we would also like to have some functional form of the leading twist
distribution amplitude. However, as there may be very different functional forms
associated with the few accessible moments we need some additional information
to constrain the possible form. This additional information can be provided by
the renormalisation group equation of the distribution amplitudes. Expanding the
leading-twist nucleon distribution amplitude in terms of polynomials P, to order
N

N as(p) /b
2 s
oz, n°) = 120z 290 E cn P (x; ( ) (2.73)
(i, 1) R () as (o)

such that the mixing matrix is diagonal [71, [72] and calculating the coefficients
¢, from an independent subset of ¢'™" we can obtain a model function for the
distribution amplitude .

As initial expansion in we use a conformal expansion (see [71}50] and
references therein for details)

N k
plae) = (1) DD enn(W) Vi (@) (2.74)

with

T1 — X2

\11(12)3 D) = n p(2n+3,1) . . 03/2
(i) = (21 +22)" BT (13 — @1 — 22) G p——

) (2.75)

where the constraint Z?:l x; = 1 is implied and C? and P{™” are Gegenbauer

and Jacobi polynomials, respectively. The superscript (12)3 stands for the order
in which the conformal spins of the valence quarks are summed to form the total
spin k + 3. First the spins of the two up-quarks summed to spin n + 2, and then
the down-quark is added.

This conformal expansion of distribution amplitude can be seen as a field-
theoretic analogon to the partial wave expansion in quantum mechanics. In both
cases one utilises the symmetry of the problem to introduce a set of separated
coordinates. Here the conformal symmetry [73] is the analogon to e.g., radial
symmetry in quantum mechanics, and allows to separate longitudinal and trans-
verse degrees of freedom [74, [71, [75) [76]. As the explicit dependence on the
transverse coordinates (c.f., (2.43)) is integrated out it is described by the renor-
malisation group, while the dependence on the longitudinal momentum fractions
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is described by a set of orthogonal polynomials \I/( 2% that form an irreducible
representation of the collinear subgroup SL(2, R) of the conformal group.

Since the renormalisation group equations to leading logarithmic accuracy do
not break the conformal symmetry the components in the distribution amplitude
with different conformal spin £ do not mix under renormalisation to this accuracy.
Thus the task to diagonalise expansion is greatly simplified. The renormal-
isation group equation for distribution amplitude operators B can be written as
[77, 168]

0 0
— — |B=H-B 2.76
(3 + 80015, 276
where H is some integral operator, which can be rewritten in the form
NC + 1 v v v 30 e e
HZ( N ){ 12+H23+H31+TF_ 12— Ttag] - (2.77)

A further advantage of the expansion in (2.79) is that the diagonalisation pro-
cedure is now reduced to the diagonalisation of a simple algebraic equation [71]

N, 3CF | - (12)3 12)3
\IJ 2.7
[Nc 1T ] = Ein¥ 2.78)

with fixed 0 < k& < N. The action of the operators H,, on W(%)¢ can be written
as

MU = 2[(n +2) — (2)] T, (2.79)
1
U = T (2.80)

(n+2)(n+1) *n7

with the digamma function )(n). In order to evaluate the action of H on our initial

expansion basis polynomials \IJS’Z)B they can be easily reexpressed in terms of the

basis polynomials \Ifgi)l and \1156172)2 which are given by
U (21, w0, 25) = UL D (w0, 23, 1), 2.81)
\112172)2(%,@7 r3) = ‘I’Sz)g(%af& T3). (2.82)

\n

Using the obtained anomalous dimensions

N.+1 3
Ve = ( ) Ern +=CF (2.83)

N, 2
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and calculating finally the moments of the diagonalised expansion, comparing
these results with /™" we are able to obtain a model function in terms of mo-
ments, which is explicitly given for N = 2 as

2

(21, T2, T3, 1) = 120212923 fN (10) [L‘%U
63 26
_ §(¢100 - ¢001)(1 _ 53:1 — X9 + 3%3)[192[7%

7 010 20
+ §(1 — 30" (1 4 3(z1 — 3z + x3)) L3

63
— 5058 — 79" — 40 —8(¢6™" + ) (947 + by + 21 (1 4 2)
Fao(11 + 64a3) — 1 (31 + 1225 + 10da3) — 3) Lo
189
+ 4—0(4(¢200 — ") = 3(¢" — ¢™")) (1 + 2227 — 1825 — Tws(1 + 2u3)

a1 (823 — T6wy — 3) + 2(17 + 4823)) Lo

9
+ 1_00(15 . 21¢010 . 14(¢200 + ¢002) . 42¢101) (98?[7% . 1821‘3

171 (280 — 24wy — 11) + Taa(1 + 223) + Tw2(9 + 1623) — 1)L
(2.84)

with by = %NC — %nf and

as (1)
O‘S(:u0> .
This form is of course not unique as we already pointed out before. Furthermore,
as the convergence of the polynomial expansion is in the sense of L? norm, the
restriction to the leading few moments may be a very strong simplification. On
the other hand, based on additional information provided by the renormalisation
group this model allows us to study at least some interesting aspects of the distri-
bution amplitude.

L=

(2.85)

2.5.5 Moments of Next-to-Leading Twist Nucleon
Distribution Amplitudes

In the case of higher twist distribution amplitudes we restrict ourselves to oper-
ators without any derivatives. Thus the problem is simplified greatly since the
Lorentz decomposition of a local three quark matrix element involves only four
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structures [50]:
4(0[e**“ug, (0)ugy(0)d5 (0) |p) =

VE2PC)ap(15N )y + Vamn (1,C)ap( 15N ) (2.86)
+ Tl()(pyiauuc>aﬂ(7“’75N)v + TgmN(Uuuc)aﬁ(UWVE’)N)V'

where we have used for convenience the same notation as in [S0], the leading
twist constants V and T} corresponds to fyV% and fx7°% in our notation
respectively and as already pointed out they are equal. The two new constants de-
termine the normalisation of the twist four distribution amplitudes. Alltogether
we have only three independent nonperturbative constants. The combinations
A = (V2 —4VD) and Ay = 6(V,? — 4T72) are also known in the literature. They
describe the coupling to nucleon of two possible independent nucleon interpo-
lating fields that are used in calculations of dynamical nucleon properties in the
QCD sum rule approach. One of the operators £, was introduced in [78] and the
another M. in [79]

L:(0) = ™ [u®(0)Cy*u’(0)] x (v5d°(0)), (2.87)
M (0) = € [u*(0)Co*u’(0)] X (¥50,,d°(0)), (2.88)

with the matrix elements given by
(01£-(0)|p) = Aymy Ny (2.89)

2.6 Detour to Chiral Symmetry

From the previous discussion in this work it should become clear that chiral sym-
metry plays an crucial role in QCD. In lattice QCD calculations chiral symmetry
is even more important but much more difficult to preserve. Chiral symmetry in
QCD is only exact in the limit of zero quark masses, however the masses of up-
and down- quarks are far smaller than the QCD scale. Therefore it should be a
good low energy approximation to assume zero quark masses. In this limit the
fermionic part of the QCD Lagrangian simplifies to

nyg
Lr=> "D’ (2.91)
f

As next we decompose the quark fields ¢ into left- and right-handed components

qr =714, 4r =7YrRY, 49 =4qL +qr

B - B - -7 - (2.92)
dr =9YrR, qr=497YL, 4=4qL +qr
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with 1+ 1
75 — 5
= = ) 2.93
YR 5 L 5 (2.93)
After inserting the decomposed spinors into the Lagrangian we obtain
ny
£ =" (aivDudl + dhiv*Dudk) (2.94)

f

i.e., the Lagrangian decouples into two parts for left- and right-handed quarks
resulting in U(ny), ® U(ny)g chiral symmetry.

Due to the quantum anomaly in the axial U(1)4 symmetry the symmetry of
the quantum field theory is then reduced to SU(ny)r ® SU(n¢)r ® U(1) s where
the U(1)p = U(1)—r symmetry represents baryon number conservation.

2.6.1 The Axial Anomaly and the Atiyah-Singer Index Theo-
rem

As a consequence of the U (1) 4 quantum anomaly the flavour-singlet axial current

() = qvusa, (2.95)

which is classically conserved has a non-zero divergence in the quantum field
theory

= — €pwoptt [F™ (2) F¥P (2)] (2.96)

ny
32m2
due to topological effects in the theory. In particular the axial charge Q°(t) =
[ d®xj5(Z, t) is related to the topological charge from eq. by

Q°(t = 00) — Q°(t = —00) = nysQ. (2.97)

Furthermore the axial anomaly is also deeply connected with the Atiyah-Singer
index theorem, which relates the zero-modes of the massless Dirac operator to the
topological charge. Since the eigenvalues of the massless Dirac operator v*D,,
are purely imaginary and come in complex conjugate pairs the zero eigenvalues
are the only ones which are not paired. The eigenvectors of the zero modes have
a definite handiness because the massless Dirac operator anti-commutes with ~s.
The Atiyah-Singer theorem states that

index (v"D,) = np, —ng = nsQ (2.98)

i.e., the difference between the number of the left- and right-handed zero-modes
is proportional to the topological charge.
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2.6.2 Spontaneous Chiral Symmetry Breaking

Although chiral symmetry is only approximate in QCD, we can still expect al-
most degenerate states in the spectrum of strongly interacting particles. Since the
masses of up and down quarks are far below the QCD scale, such an approximate
symmetry is observed in nature and hadrons can be classified as isospin multiplets.
Adding the strange quark, the symmetry becomes more approximate but is still
visible in the spectrum. Furthermore one observes very light pseudo-scalar par-
ticles, the three pions 7+, 7°, and somewhat heavier pseudo-scalar particles, the
four kaons K+, K°, K° and the n-meson. Thus, it leads us to the indication that
chiral symmetry must be spontaneously broken and the observed pseudo-scalar
particles must be the corresponding Goldstone bosons.

According to the Goldstone theorem the number of the massless particles is
given by the number of the generators of the full symmetry group minus the num-
ber in the unbroken subgroup. Here the full chiral symmetry group is

Gy =SU(ng) @ SU(ns)r@U(1)p, (2.99)
which is broken down to
H, =SU(nf)—r@U(1)p. (2.100)

Hence we expect nfc — 1 massless Goldstone bosons. Assuming only approximate
symmetry for up and down quarks we have then three massless Goldstone bosons
which can be identified with the three light pions. For ny = 3 we have then addi-
tionally the kaons and the n-meson, alltogether eight massless Goldstone bosons.
Of course the pions, kaons and n-meson are not really massless since the chiral
symmetry is explicitly broken by the quark masses. But the breaking is relatively
small so that we can still identify the Goldston bosons.

In contrast to the electro-weak spontaneous symmetry breaking due to the
Higgs field the chiral symmetry breaking has not been derived analytically yet
from QCD Lagrangian and its origin remains mysterious. However, in lattice
QCD, which is a nonperturbative formulation of QCD, it was shOWIﬂ that the
chiral symmetry is indeed spontaneously broken [80, |81]] in the strong coupling
limit. The numerical simulations in lattice QCD confirm this result even in the
weakly coupled regime by observing the chiral condensate

X = (q9), (2.101)

which is an order parameter of the chiral symmetry breaking. If the chiral symme-
try is restored the chiral condensate is invariant under chiral rotations and would
vanish, otherwise in the chiral broken sector the chiral condensate has a non-zero
expectation value.

“In the proof the authors used staggered fermions for the fermionic part of the action, which is
controversial due to not yet completely understood properties.
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2.6.3 Low-Energy Effective Theory

Since the pions are the lightest particles in QCD they dominate the dynamics of
the strong interaction at low energy. A low-energy effective description of QCD
is provided by the Chiral Perturbation Theory (yPT). Therein the pion dynamics
is predicted by a systematic expansion in powers of external momenta and quark
masses. Since pions are Goldstone bosons they are described by fields in the coset
space U(z) € G, /H, = SU(ny).

The extension of the theory to non-zero baryon numbers is a non-trivial task.
An overview on this topic can be found in [82, |83], while here we give only a
sketch how this can be done. Extending the chiral perturbation theory to sectors
with non-zero baryon number one includes the baryons in the form of a Dirac
spinor field N(z) and N (x) that transforms as an SU(2); isospin doublet. Global
chiral rotations L ® R € SU(2), ® SU(2)g can be realised then nonlinearly on
this field. In order to realise a chirally invariant action one introduces an SU(2)

flavour “gauge” field
1

vu(x) = 5 [uf(a:), duu()) (2.102)
with
u(r) = U*(x), and wu, =du'0,Uu’ (2.103)
In leading order one can then write a low-energy Lagrangian for nucleons and
pions of the form

Lo=Lr+Ly (2.104)
with
F? j
Lo=—Ftr (8,U0"U) + <2q—q>tr (MUT+UMT)
s (2.105)

_ 1
Ly =N(iv"D, —mn)N + §gANPy“uM’y5N

where F is the pion decay constant, (Gq) is the chiral condensate, which must
be calculated non-perturbatively or extracted from experiment, and M is the mass
matrix. The covariant derivative in the nucleon Lagrangian Ly is given by D,, =
Oy + vy

2.7 GUT Decay Constants

Now we consider the processes relevant for nucleon decays in great unified the-
ories. One of the three requirements for the baryogenesis in the early universe
by Sakharov [84] is the violation of the baryon number conservation. In 1976 it
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et p - et

Figure 2.8: Diagrams contributing to the nucleon decay amplitude p — 7° + e™.

was recognised by 't Hooft [85]] that within the standard model the electro-weak
anomaly violates baryon number conservation by a nonperturbative effect and
hence could not be seen in the perturbative calculations. The divergence of the
left-handed baryon plus lepton currents is given by
i, = S5 s WO 2.106

wYBr+Ly — Weaﬁyé a a 2. )
where W2 is the SU (2)yy field strength. It can be shown that the right hand side
has a topological nature and the anomaly is related to tunnelling between topolog-
ically different n-vacua through the instanton field configurations. However the
tunnelling amplitude A being of order

A~ e 89 107137 (2.107)

is too small to generate a reasonable number of baryons during the whole life
time of the universe and the related process was not considered to be relevant for
baryogenesis. Nine years later, 1985, it was recognised [86] that at temperatures
T 2 100 GeV the energy will be large enough to hop over the barrier and the
process will become unsuppressed. Thus if the remaining two Sakharov condi-
tions can be fullfilled within the standard model it can in principle describe the
baryogenesis. However it is a hard task to find e.g., strong enough source for CP
violation in the standard model and it is believed that this problem should still be
addressed within the extensions of the standard model or grand unified theories.
Beyond these, there are of course other strong reasons we already discussed in the
introduction to look for physics beyond the standard model.

Nucleon decay at low energies is the most dramatic prediction of these the-
ories and the detection of such decay will put us forward in the understanding
of nature. Already our existence proves, that the lifetime of the proton must be
very large and the present lower bound for the proton lifetime obtained from ex-
perimental results [87) [88, [89] excludes already e.g., some modifications of the
minimal SUSY SU(5) [89]. and the ' = 1 SUSY [90].

Nucleon decay calculations involve GUT dynamics modified by the short dis-
tance corrections calculated within the standard model and hadronic matrix ele-
ments encoding the much less understood long distance behaviour of QCD. The
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proton decay itself is a short distance process in the sense that at least two quarks
are within the distance of order O(1/Mgyr) with Mgyr the scale of grand unifica-
tion. Using nucleon chiral Lagrangian approach discussed before and extending
it by matrix elements which allow baryon number violation [91} 92, 93] 94, 93] it
is possible to relate the nucleon lifetime in leading order to matrix elements of the
local three quark operators

U;(0) = e [yru®(0)Cryrd(0)] (vru®(0)), (2.108)
Wi (0) = €™ [yu®(0)Cyd’(0)] (v1u(0))- (2.109)

with the left- and right-handed projectors v, = (1 — 5)/2 , vp = (1 4+ 735)/2.
The matrix elements of this operators are involved in the calculation of the proton
decays in Figure [2.8

(0] (0)|p) = a(vN)- (2.110)
(O (0)|p) = B(vLN)+- 2.111)

There are only two low energy constants « and 3 to lowest order in momenta in
the effective Lagrangian of the nucleon decay which extend the usual three-flavour
baryon chiral Lagrangian. The knowledge of these two constants in combination
with other parameters allows to calculate nucleon decay matrix elements, e.g. the
form factors relevant for the proton to 7° decay read

Wt (p — =°)
Wt (p — 7°)

a(l+ D+ F)/V2f (2.112)
B+ D+ F)/V2f (2.113)

with f the tree level pion decay constant normalised such that the experimental
value f, ~ 131 MeV. D and F are the baryon couplings to the axial current,
whereby the axial charge is the sum of both g4 = D + F.
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CHAPTER 3

Lattice QCD

As we have displayed in the previous chapter the perturbative approach in QCD is
a good tool to study physics at high energy scales and many phenomena observed
in experiments can be described in this approach very well. However, our inter-
est is the nucleon wave function, or more exactly the moments of the associated
nucleon distribution amplitudes. And at this point the perturbation theory must
fail, since the distribution amplitudes are low energy objects in QCD. Thus the
calculation of low energy parameters calls for an alternative approach. One of
the possibilities is to use an effective low energy theory, the Chiral Perturbation
theory we discussed before. Another possibility is to use Lattice QCD where one
regularise QCD nonperturbatively through discretisation of the space time. Being
in someway complementary approaches, both have certain advantages and disad-
vantages which can be reduced if both methods are combined. In our case the
method of choice is Lattice QCD which we introduce now in greater detail.

The discretised Euclidean version of QCD was first introduced by Wilson [96]
and does not require model assumptions. Therefore, the calculations within lat-
tice QCD are from first principles. Apart from simulation specific parameters
this formulation does not involve additional parameters compared to the contin-
uum formulation. Like in the continuum the parameters of the lattice QCD La-
grangian, like masses and couplings, must be determined by comparison with
nature. In order to extrapolate to the physical point these parameters have to be
tuned. This freedom can be seen as an advantage which allows us to simulate how
nature would look like at different quark masses. On the other hand the unphysical
regimes of todays simulations introduce additional problem making it difficult to
comapre with the physical reality. Further limitations are caused by the finite vol-
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ume and discretisation effects. Thus, in order to estimate the possible influences
the simulations should span a large enough parameter space.

In the following we focus on the relevant basics of the lattice approach to QCD
and introduce the required techniques. We start in the continuum and formulate
in the first three section the QCD in a form, which is best suited for discretisation.
Then, we will introduce the discretised form of the QCD action used in our cal-
culations and explain the relevant basic numerical techniques, needed to simulate
this. The most important general tools, like operator overlap improvement, are
explained in Sections [3.6]-[3.9] In the last three sections - we explain
details of the main tools and techniques which are essential for the calculation of
the moments of the distribution amplitudes.

3.1 Path Integral and Correlation Functions

Because we know the QCD Lagrangian the quantum field theory formalism
should n principle allow us to calculate any quantity we want. But due to nonlin-
earity of QCD we failed until today to obtain analytical results. However modern
high performance computers allow precision calculations from first principles us-
ing numerical approach. The best starting point to “solve” QCD on computer is
the Feynman path integral formalism in Euclidean space time which is obtained
by means of the Wick rotation t — —it.

At first the quantity we want to calculate must be expressed as a vacuum matrix
element of some operator . In QCD this operator is constructed as a product of
gluon fields A, and quark fields ¥. Then the vacuum expectation value of O can
be calculated as

(0) = % / 4] [d0] [AG] O [, b, A] e~ Seeolvb4], 3.1)

with the partition function

7 = / (] [dep] [dA] e~ Seco[vd4] (3.2)

The vacuum expectation value is obtained by evaluating the operator O for one
field configuration and then to integrate over all possible field configurations
whereby each configuration is weighted with the exponential of the QCD action
Socp- The expression is then normalised by the prescription that the expectation
value of the unity operator is one.

As we are going to calculate the nucleon distribution amplitudes the operator
O in eq. will obviously involve fermionic fields namely the quarks. The
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noncommuting nature of fermions requires a special care and therefore we define
the generating functional

W n, 7 = / [dg)] [dep] [dA] e~ SecwlvbA] giveny (3.3)

where we have additional source terms 77¢) and 7¢) with currents 1 and 7. The
expectation value of a quark operator can then be written as a functional derivative
of the generating functional

16 5 0 5
W n, 7] - G4

Wn s winwjl T w]"> - 557721 o 67_]% 577]'1 o 577% =0

The propagator of a quark or equally the Green function is then given as

10 9

Dy (i, 25) = (i) v;(x5)) = Eé_m%w 1, 7] (3.5)
Applying the usual trick by completing the square in the fermion fields and
change the variables, the fermionic part of the generating functional can be written

as a Gaussian integral which can be integrated analytically resulting in
Wn,n] = / [dG] det De—5a (@)D jn;, (3.6)

Thus the problem is now reduced to evaluating only the gauge action while the
fermionic contribution is now encoded in the determinant of the Dirac operator
and its exponential disappears in the evaluation of a matrix element due to eq.
as the currents 7 and 7 are set to zero.

3.2 Two-Point Correlation Functions

Hadron masses and matrix amplitudes are measured on the lattice from two-point
correlation functions. In the following we describe the general procedure neces-
sary to obtain these quantities as discussed e.g. in [97]. Let us consider therefore
two operators O; and O, which are functions of quark and anti-quark fields. Then
the correlation function is either obtained from the partition function eq. (3.1)) as

C(t;5) = (O1(; PO (0; 7)) 3.7)

or alternatively we can define it using an operator formalism with operators living
in a suitable Fock space propagating in time via a transfer matrix, S = exp(—H)
with ‘H the Hamiltonian. Thus, we can write the correlator also as

C(t; p) = (O1(t; H)ON(0; p)) = tr | ST 01(0; p)S'OL(0; ) (3.8)
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with 7' the time extension of the lattice. The operator OE(O; p) acts as a source
for a particle moving with momentum p while Oy (¢; p) = S'0;(0; p)S* acts as
the sink. The equivalence of these two formulations allows to relate the correla-
tion functions, which are calculated using the path integral formalism, to physical
quantities. For a more extensive discussion of this relation we refer to e.g., [98]
and proceed now with the nucleon correlators.

3.3 Euclidisation

As already proposed, Lattice QCD is based on a nonperturbative regularisation
scheme of a quantum gauge theory introduced by Wilson [96] in 1974 by dis-
cretising the spacetime. If one performs this discretisation in a finite spacetime
volume it is obvious that the number of degrees of freedom in eq. (3.1)) becomes
finite. However, for a physically reasonable volume it excess any controllable
number. The second problem is that the integrand in eq. (3.1)) is oscillatory as
the action is imaginary in Minkowski space-time. However, both problems can
be accessed by performing an analytic continuation from Minkowski to Euclidean
space-time. Therefore the real time axes is Wick rotated onto the imaginary axes:

Ty — —i334. (39)

Thus the action becomes real in Euclidean space-time and the oscillating integra-
tion weight acquire now the form of the Boltzmann factor in statistical physics.
The achieved probabilistic interpretation of eq. (3.1)) in Euclidean space-time calls
for Monte Carlo simulations to face the large number of degrees of freedom and
so to calculate the path .

As during the euclidisation procedure also the metric changes from the g,,, to
.., we also have to transform the Dirac gamma matrices in order to preserve the
associated Clifford algebra. The relevant set of Dirac gamma matrices as used in
our calculation is given in Appendix Obviously there is some freedom which
representation can be used for the Clifford algebra. The motivation for our choice,
the Weyl representation, should become clear later in section [3.11]

3.4 Lattice QCD Action

The next obvious task to formulate QCD on a lattice is to rewrite the QCD La-
grangian in discretised form such that the gauge and other symmetries of QCD are
preserved. This can be divided in two separate problems, the discretisation of the
gauge action S and the fermionic action Sg. In order to discretise those a four
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Figure 3.1: The plaquette term U,,,, of the Wilson gauge action

dimensional grid of space-time points is introduced. The introduction of a hyper-
cubic lattice breaks Lorentz invariance which should be restored in the continuum
limit. However the remaining hypercubic symmetry is still present in the theory
[99] 100]. To translate the QCD Lagrangian to the lattice we need some clever fi-
nite difference techniques, in particular for the Dirac operator. The discretisation
of the gauge part is quite straight forward and therefore we will start with it. As
second we will address the fermionic part which is more demanding and is still
problematic in ourdays lattice calculations.

3.4.1 Gauge Action

In the continuum gauge transformations involve space time derivatives of group-
valued functions. On the lattice we do not have infinitesimally close points and
replace the derivative by finite differences. However, we need to be more care-
fully as we want to keep the gauge invariance in the discretised theory. Therefore
we need the concept of so called parallel transporter introduced independently by
Wegner and Wilson, as well as Smit. On discretised spacetime the parallel trans-
porter U from point = to the neighbour point in p direction x + aft is defined
as
1

U(z,z +aft) = U,, = Pexp iago/d§ Gulz+(1—=¢&ap) p, (3.10)
0

a straight line path between x and x + aft with [ the unit vector in p direction.
The local gauge transformation of the parallel transporter has then the form:

Uz, x +ap) — Q@)U(z, z + ap)Qz + app)’ (3.11)

where (2 are elements of SU(3)c, the colour group. Connecting two separated
space-time points the parallel transporters naturally lives on the links of the lattice
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(Figure [3.I). These link variables are used to construct the gauge part of the
action. The colour trace of any closed loop (Wilson loop’) of link variables is
gauge invariant. The smallest possible loop, the plaquette, one can obtain on the
lattice is the usual building block of the gauge action

Up(a; pv) = Uy uUsi UL, U (3.12)

z+o,u - T,ve

Then the standard Wilson action for the gauge sector is the sum over all plaquettes

1
Se = -0 (; ﬁctr <Up + U,t,) — 1) (3.13)

with (3 the lattice coupling constant. In the limit of vanishing lattice spacing a — 0
it reduces to the usual continuum Yang-Mills action

Sa =

4§c/dxtr(Fw,F“”)+O(a2). (3.14)

3.4.2 Fermion Action

The discretisation of the fermion action is much more troublesome. Naively dis-
cretising the fermionic part of the QCD action leads in the continuum to the fa-
mous ’fermion doubling’ problem [101, |102]. The fermion action can be generi-
cally written as

Sp =Y OMy (3.15)

where M is the fermion operator, a lattice approximation to the Dirac operator.
In this work we use the so called Wilson-Clover action which avoid the fermion
doublers by adding the Wilson term to the naive discretised fermion action. Thus
on the lattice we will use in our calculations the lattice fermion action of the form

Sp = Z (wlﬁw + amoyp Naive term
1 -
— §a¢V2¢ Wilson term
1 _
—I—Ziacswg2z/;aw,FW@/)> Clover Term (3.16)

where in the first line we have a simple discretisation of the fermion action. The

covariant derivative D is constructed from forward and backward derivatives as

- 1
D, (x) = (5 (U(x, T+ aft)0ptapy — UT(x, T — aﬂ)éwamy)) P(y) (3.17)

(¥(x)) Bu =1(y) (5 (0yraplU(z + afi, x) — 6y oapU' (x — afl, x))) (3.18)
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and setting

Dz%(D—D). (3.19)
Higher order derivatives can be obtained by appropriately combining the forward
and backward derivative operators.

Taking the limit of the (free) naive fermion propagator however gives poles in
the massless fermion propagator not only at ap = (0,0,0,0) but also whenever
ap, = m causing the already mentioned fermion doubling. Therefore the Wilson
term is introduced in the second line of eq. to avoid this problem. This
term gives a contribution o< » = (1 — cos(ap,))/a to the propagator and so the
doubler masses are o< 1/a and vanish as the continuum limit @ — 0 is taken. But
we have to pay a three-fold price:

1. Even for massless fermions we loose completely the chiral symmetry, which
is present in the continuum (at least approximately).

2. Without chiral symmetry the fermion mass is not prevented anymore from
running up to the lattice scale 1/a. For about two decades lattice QCD suf-
fered from this hierarchy problem in the fermion sector. Recovering chiral
symmetry in the continuum limit then requires additive mass renormalisa-
tion, involving a delicate fine-tuning of the bare fermion mass

am = amgy — amgont (3.20)

where one has to determine amg™.
3. In the continuum limit the fermion part is now worse than the gauge part as
we have now O(a) discretisation errors.

Point 1 and 2 are a fundamental problem in lattice QCD calculations. The
solutions are provided by more sophisticated actions like overlap [103, [104] or
domain wall [105} [106]]. These actions are numerically more expensive and will
become available with reasonably high statistics only in the near future. However
for point three we can achieve some progress by adding a further term and so
restore the O(a?) behaviour. Adding further irrelevant operators (i.e. higher di-
mensional) to the action [107]] and tuning them to remove the discretisation errors
we can restore the O(a?) behaviour. At the lowest order, i.e. O(a) improvement
(for review cf. [108] [109]), there are 5 possible gauge invariant irrelevant opera-
tors [110] (including the Wilson term). Restricting ourselves to the improvement
of on-shell quantities, when the correlation functions are evaluated at non-zero
physical distances and no contact terms between operators appear, the equations
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Figure 3.2: The clover-leaf of the discretised field strength tensor.

of motions can be used and we are left with only one remaining operator, the
"clover" term. This is the last term in eq. (3.16)) with

1
(Ui @) - Uh@)')., (3.21)

Fo(z) = —
8 (x) 829 +p,tv

where we have extended the definition of the plaquette to the Clover leave (Fig-

ure (3.2)

Now if we can achieve that one physical quantity (e.g. physical mass ratio)
does not have a O(a) term then

o this fixes ¢4, (9)

e all other physical quantities are automatically improved to O(a?).

However the practical realisation is difficult and numerically demanding as one
has to perform simulations at different c,,(g) values for one 3. The ALPHA
Collaboration were able to find [111]] numerically ¢y, (¢)

1 —0.454¢% — 0.175g* + 0.012¢° + 0.045¢®
Cow =
1 —0.72042

and using this values it is possible to estimate c,,,(¢g) for the 3 values used in our
simulations.

(3.22)

3.5 Numerical Techniques

3.5.1 Monte Carlo Method

As already proposed the path integral in eq. (3.1) is calculated using Monte Carlo
simulations. Here we shall now make some very brief comments on numerical al-
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gorithms. The probabilistic interpretation implicates that we wish to find averages
over some high dimensional probability distribution

(0) = / WIOW)PW), W)= eSO (3.23)
The fermion part of the action does not appear at this point, being quadratic in the
Grassmann fields it can always be integrated out to give a determinant in the gauge
fields as seen in eq. (3.6). Statistical physics offers methods to deal with such
problems, in particular we can simulate a Markov chain to obtain an approximate
value for the wanted average. Let () be the transition matrix then for a sequence
we wish

P (U') = / U] P.(U)Q(U, T, / AQUUY =1 (3.24)

In ‘equilibrium’, P, — P, and the Markov chain is solved by P(U)Q(U,U’) =
PU"HQ(U',U), a sufficient but not necessary condition known as “detailed bal-
ance”. The transition matrix () can be considered as

, rob. of choosing a rob. of acceptin
QUU,U") = P g P pung
’ candidate config. new config. (3.25)

:PC(U — U’) X Pa(U — U,)

Many choices are possible, depending on what one is simulating. For example for
quenched QCD where one drops the fermion determinantﬂ we may sweep through
the lattice defining for each link variable U; a new one U] by the prescription

o U/ = UoUl_on (over-relaxation, [[112]) with

-1
UO = (PTOj Z Ustaples)

staples

e P, = min(1, e 2%) (Metropolis Algorithm)

where the staples are build from the link variables that would complete the plaque-
ttes of the link U;. When one keeps the fermion determinant (dynamical QCD),
the standard procedure is to use the Hybrid Monte Carlo algorithm [113].

To estimate the average a large number of independent configurations is gen-

erated and
N, conf

> o, (3.26)

conf

- 1
O:

conf

This approximation is uncontrolled but nevertheless is often done due to lack of computer
power.
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is calculated. Monte Carlo is very similar to performing an experiment and re-
quires a careful analysis of errors. For N o, configurations we expect

1
Error o¢ ———, (3.27)
\% N, conf
so the errors only decrease slowly; this is one of the main reasons why Monte
Carlo calculations are so expensive in computer time.

3.5.2 The Green’s Function

One important step within calculations is the computation of fermion propaga-
tors needed for the calculation of correlators. This involves inversion of a very
large, sparse matrix. Here we sketch some of the details necessary to perform
this inversion. We have already discussed the Dirac operator which is used in our
simulations in subsection [3.4.2] For numerical purposes, it is conventional at first
to introduce the ‘hopping parameter’ «, lying between 1/6 and 1/8 re-scaling the
quark fields

q — V2nrq, (3.28)
so that the bare quark mass is related to the hopping parameter by
1 1
= — — — 3.29
T 9k T 16 529

and to define then the critical value x.(g2) as the point where the bare quark mass
vanishes,

1/1 1
= — . =_ (= - 3.30
amg(go) = amg — amoc(go) 5 (K Hc(g(])) (3.30)
This allows to rewrite the Wilson-Dirac matrix in our case as
My, ==[Dw+C+ amo}xy
1.
— 1+ §mgcsw(go) ;UWFW Oy + (3.31)

“Z [(% = 1) Up(@) 0014y — (vu + 1) UZ(x - ﬂ)éxfﬂyy] :

In order to define the transfer matrix consistently periodic boundary conditions
are taken in spatial while antiperiodic boundary condition is taken in the time
direction. As the calculation of the Greens functions from all points x to all points
y 1s numerically not possible, one in general wishes to find the Greens function
from some given source s%, so we have a matrix equation

Mv =s (3.32)
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to solve for v. For each Dirac and colour component we must invert the matrix,
i.e. we have 4 x 3 = 12 inversions to perform to obtain the full Greens function.
However using the staggered symmetry, x1 + x5 + 23 + x4 = even/odd, allows
to re-write the Wilson-Dirac matrix in block form and to reduce in this way the
number of needed inversions saving lot of the required computational time.

Some possible inverters that can be used are the Conjugate Gradient (CG)
[114] (multiplying M first by 75 obtaining a hermitian matrix), Minimal Residual
(MR) [[115] or BiCGstab [116]. CG, while being reliable is slower than MR or
BiCGstab. In our calculations we used mainly BiCGstab, except for the heavy
quark masses on the smaller lattices where we used the MR algorithm.

At the end of this subsection we want to point out that the matrix inversion
in lattice QCD is the most CPU intensive part of the calculation, because going
for am, — 0 (the chiral limit) we approach the limit of vanishing pion mass.
Not only we need then a larger lattice size to avoid finite size effects, but also the
inversion becomes slower as the number of iterations required for the convergence
increases as o< 1/am,,.

3.5.3 The APEmille Machine

In the last section we have seen that the even/odd decomposition allows to re-
duce computation costs. While the implementation of this does not cause serious
problems on vector computers, the implementation on parallel machine can cause
some difficulties. Parallel machines consists of a number of processors, which are
wired with certain topology which can lead to conflicts during the computation if
two processors try to operate in the same time on the same data. As the largest
part of our results was obtained on the APEmille machine, we would like to il-
luminate some numerical and technical details relevant for the calculation on a
parallel machine and in particular the APEmille machine. The processors on the
APE machines are arranged in three dimensional periodic arrays which can have
different dimensions. In our calculations we have mainly used the 2 x 8 x 8 layout
of processors, which was sufficient for the calculations of the 243 x 48 lattices.
The architecture of the APE is SIMD (Single Instruction Multiply Data). On
each node (i.e., processors) sits a sub-lattice of the total lattice. Thus for a given
four-dimensional lattice, one of the dimension is placed completely on each pro-
cessor, while the remaining three dimensions are distributed over all nodes. The
nodes process the float numbers and are globally controlled by the Z controller
where the integers are stored. Each node thus consists of a specially designed
FPU (Floating Point Unit), called M AD processor for Multiply Adder Device
capable to perform the complex operation a X b + ¢ in one cycle. As the integers
are processed by the Z — C'PU., it controlls e.g., the global DO-loops. This “sim-
ple” architecture has the advantage that we do not have synchronisation problems.
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On the other hand we have the disadvantage that the local control is difficult. A
W H E RE-statement allows some local control, but is inefficient, as large parts
of the machine may be idle during the execution. However, in the present Lattice
QCD calculations this disadvantage is of minor importance, as only occasionally
at the boundary one needs local control. Communication on this machine is to the
next nearest processors only - again sufficient for most Lattice QCD applications.
However, some times it is necessary to communicate to the next to nearest node,
i.e., during the calculation of the second order derivatives. Thus, it has to be done
in two steps slowing down the computation. However, this communication very
often can be hidden behind the calculation as in our case, and therefore does not
affect the performance for our calculation.

The second problem of the architecture is that certain lattice sizes can cause
problems with certain machine geometries. Let u exemplify this on a low di-
mensional example for a two dimensional 16 x 32 lattice on an one dimensional
processor array with 32 nodes. If the lattice would be divided up in the simplest
possible way, as illustrated in Figure then there would be a conflict when
updating space-like links, since different processors would be making simultane-
ous updates within the same plaquette leading to wrong results. A solution to this
problem is illustrated in Figure where we have used a new slanted coor-
dinate system for dividing the lattice between the different processors. Thus we
set

sy =(z +t) mod 16

St =t

(3.33)

and use during the computation always the slanted coordinates (s, s;). Now there
are no conflicts during the gauge update.

An additional advantage of the slanted coordinate system is that it obviously
allows algorithms that involve even/odd decomposition. As discussed previously
the even/odd decomposition is important when we invert the fermion matrix to
find the propagator. Without this decomposition the inversion would be slower,
while in the slanted coordinate system the computation is accelerated as nearest
neighbors are always on the neighboring processors.

3.6 Two-Point Correlators on the Lattice

The calculation of the nucleon distribution amplitudes will obviously involve the
nucleon operator. As the nucleons are built up from three valence quarks the op-
erator to create the nucleon on the lattice contains three quark fields. Additionally
it should carry the correct quantum numbers to have an overlap with the nucleon
state. However, the discussion here does not apply only to the nucleon, but to all
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Figure 3.3: A t(vertical) - « (horizontal) part of the 4-dimensional lattice dis-
tributed onto the machine nodes. Each dashed rectangle represents one node
coresponding to one ¢ value. Lattice links are shown as lines. Every node op-
erates simultaneously on one link (e.g., the bold lines). Even/odd lattice points
corresponds to black/gray filled points. The Figure (a) illustrate the simplest pos-
sible distribution of the lattice on the machine nodes, while Figure (b) display the
slanted distribution.
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hadrons with three quarks and therefore can be easily extended to other baryons.
In fact the operator for the nucleon can be also chosen in different ways and we
will use here a certain choice, which should have a good overlap [[117] with the
nucleon state.

As a suitable interpolator for the proton E] on the lattice we use

Nolti ) = \/ng S ety (1 7) [, F)Csd(h, 7)) (B34

where (' is the charge conjugation matrix. The last two quark fields form a di-
quark system, while the first quark field carries the spinor index.

During our calculations we have to evaluate the two-point correlator of the
nucleon and another three quark operator

Cr(t; ) = (O(t; p)TN(0; p)) (3.35)

with
O.(t;p) = —1 E e~ U abe [u“(t;y)Flub(t;y)] (Tad®)a(t; 9) (3.36)
VVs 7

where I', I'; and I'y are some combinations of the Dirac gamma matrices. Ad-
ditionally we can have also some covariant derivatives acting on the quark fields.
However for the general discussion here we can restrict ourselves to the case with-
out derivatives. Then by Wick contracting the fermion fields in the correlator the
problem reduces to the calculation of the fermion propagator

G (Z,7) = (q3(2) 5 (y)) (3.37)

which in principle depends on the quark masses. However the up- and down-
quarks are almost mass degenerate, so for both we can use the same propagator.

As we are averaging over the background gauge fields we can further simplify
the calculation by employing translation invariance. We can move every source
at (¢,0) to (6, 0) reducing the summation to the x sites only. Furthermore as the
Green’s functions are calculated on gauge configurations which may have strong
correlations. In order to reduce this problem we place the sources on different
sites for gauge configurations which are close to each other.

3.7 The Transfer Matrix on the Lattice

Rewriting the correlator from eq. (3.35)) using the transfer matrix formalism on
the lattice gives the Euclidean propagation of an operator from time slice 0 to

By a simple isospin rotation u < d we can obtain directly also the relations for the neutron
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time slice . Hence we can rewrite the correlation function as

1 -

— (&

Vs £
z,y

Cr(t;p) = PED ey [STTO@) TSN ()] - (3.38)

Inserting the complete set of energy eigenstates and shifting the operators in the
spatial plane to the origin by using the translation operator only the lowest nucleon
mass states will dominate for large enough ¢

Zo(p)Zn(P)
2E(p)

> [0, 9T o5, 5)e P 4+ w(p, HTw(p, §)e” "PT)]

Zo(P)Zn (D) ,
28'(p)
> [T/(ﬁ )0V (7, §)e PP + ' (7, )T’ (7, g)e—E'(mT—t)} _

—

S

C(@ﬁ) = Ay

(3.39)

where v, w are nucleon spinors in forward and backward time direction respec-
tively. In the (3.39) we kept not only the lowest nucleon states with energy F
but also the state of the nucleon parity partner with the energy £’ and the spinor
v', w'. The reason is that the energy of these states are relatively close and the
time needed to suppress the second unwanted state is reasonably large on finite
lattices. A partial cure can be achieved by projecting out this unwanted states. For
the unpolarised stationary nucleon this can be done by applying the positive parity
projection operator v, = (1 + ~4)/2. Unfortunately for the moving nucleon re-
quired in some of our correlators we do not expect the complete suppression of the
unwanted state. In order to construct a projection operator for moving nucleons
we need information about the mass of the parity partner. However, in our case
the suppression will be good enough also for moving nucleons and the uncertainty
in the calculation is mostly dominated by other sources of error.

3.8 Operator Overlap Improvement

During the calculation of the correlators on the lattice we have to interpolate the
hadrons by operators with the correct quantum numbers. Clearly as hadrons are
not point-like objects the used interpolator should also have some extension; ide-
ally to achieve a good signal we would like to have a very good overlap with the
nucleon wave function. However, the perfect overlap is not possible as we do not
know the nucleon wave function. Therefore to create a nucleon on the lattice we
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use an interpolator which involves the three valence quarks of the nucleon plus
some gamma matrices and has the right quantum numbers.

As the Green’s function for the quarks, the constituents of the nucleon, is cal-
culated using one point source, also the interpolating field for the nucleon will be
a point-like object and we run into the risk that the amplitude for a nucleon, or
equivalently the overlap of the used interpolator with a nucleon, in the correlation
function might be very small. To help this situation we shall employ a type of im-
provement called smearing, where the source for the nucleon in the (%, 0) plane is
smeared. Thus the nucleon amplitude in the correlator will not only depend on the
renormalisation factor for the three quarks but also on the smearing parameters.
We merge both constants in the factor Zy (p), which also depends on the nucleon
momentum p. Although we are not interested in the value of this factor, the de-
termination of it will affect our calculation. We postpone the discussion how it is
done technically to the relevant section.

The basic idea of smearing is to create an extended source which has approxi-
mately the same size as the real nucleon so that the overlap should be considerably
enlarged compared to the point source. The most general smeared nucleon inter-
polator is given by

N, = b Z F(Zy, 25,7 )e—iﬁ-(fl+i‘2+fs)/3
T VIR 2 1, T2, 23
3 71,72,73 (3.40)

eyl (t; ) [ub(t; To)Crysd(t; fg)} ,

«

where £, if known exactly, describes the true nucleon wave function. However the
correlation function calculated from such a source would require the knowledge
of the Green’s functions from source positions (0; Z7), (0; Z2) and (0; Z'3) for all
21,72 and 3. While translation invariance allows to set one of the sources to
(0; 6) it is not possible for all three sources simultaneously. Thus this general
approach would require an enormous amount of computer power. To avoid this
we a simpler smearing where F' factorises into a product of function of 7', ¥ and
T3 (cf., [118]).

Factorising F' is equivalently to smearing each quark individually. Denoting
the smearing with label S we have then

Sqa(t;2) = SH®(t{U}: 7, §)qb(t: 7)) (3.41)
4,0

where the kernel A is diagonal in spin space and is chosen to have the correct
gauge transformation properties, i.e., H(t,{U}; ¥, i) must be the parallel trans-
porter from (¢; ¢) to (¢; Z) so that under a gauge transformation

qt; 2)H (AU}, 7, 9)q(t; ) (3.42)
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remains gauge invariant. H is also taken as hermitianf| HT = SH. Then the
smeared anti-quark is defined as

an j)° Ho(t,{U}: 9. 7). (3.43)

Note that it is possible to choose smearing for the quark and anti-quark fields as
well as for source and sink separately. This is part of the so called cross correlation
technique [119, 1120, 121]]. However, in our case we are only interested in ground
states where the improvement from the cross correlation technique is relatively
small. Therefore we will smear all sources (and sinks if required) in the same way.
Thus, the local nucleon interpolator from (3.34) has a quite simple generalisation
of the form

1 .
SNL(t;P) = A D e PEete Sya (¢, 7) [Sul(t, )0 Sd(t, 7)) . (3.44)

Analogously the smeared Green’s function is defined by

S (U 2,y) = (5 ¢2(2)5q%(y)) (3.45)

where "G will be the original unsmeared Green’s function and '*G' one with
smeared source and local sink. So in correlation functions we can simply re-
place the unsmeared Green’s function by one which has the desired smearings on
the source and sink.

The smeared Green’s functions are then determined sequentially

e Generate a smeared source from a point source sy at (fo; Zp) with si, =
5@@0 6tt0 (Saao 50(040 .

85390 (t to; &, To) = *H* (t,{U}; Z, Zo) 01ty Ovarg (3.46)

aao

e Find the Green’s function with smeared source *G by inverting
M'sG = ®s, with M being the Dirac matrix. So we have

ZSG t tUa y L ZGabl t tO;'fa g\)sHblb(tOv {U}ﬂga f(]) (347)
g’bl

e From "G we can generate the smeared-smeared propagator **G by applying
*H to the sink

Gt b T, o) = Y T H ™ (6 AU T, ) Gap(t to; 7, B).  (3.48)

3More exactly S HT(t, {U}; %, ) = SH(t,{U}; 4, %) = SH®(t,{U}; Z,¥)
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In practice there exist several roughly similar smearing prescriptions [118]].
Here we shall use the Jacobi smearing technique [122} [123]] which is gauge co-
variant. It is defined as

> K4 E3) (4 F) = solt; T) (3.49)

where s is the original point source and D is a covariant derivative in the x4, =t
plane. Writing K in the form

K =1-ksD; (3.50)

we need then H = K~!. Instead to perform the complete inversion (cf., [124]),
the smeared source is obtained by N, Jacobi iterations

SsM(t: ) = so(t; &) + kDS V(7)) n=1,2,... (3.51)

Thus we have two parameters, «; and N, we can adjust. While x4 determines the
coarseness of the iteration, the number of iterations /N, determines the size of the
smeared object. As we want to maximise the overlap of composite particles the
resulting smeared quark source should approximately be of the nucleon size. A
suitable measure of the RMS radius of the smeared source °s is
o 2 g(@ = 0)?"s(to; ¥, o) |
re = 5 ) (3.52)
>z |°s(to; T, )|

3.9 Setting the Scale

Before we turn our attention to the details of the lattice calculation for the nucleon
distribution amplitudes, we have to discuss how the bare numbers obtained on a
computer can be translated into physical units. On the computer our action does
not involve any dimensionful parameters by construction. Besides the dimension-
less coupling /3 it involves also the quark masses, however these appear always in
the combination am, where « is the lattice spacing. The point is that the lattice
spacing a is the regulator in our calculation and by performing simulations with
fixed  we have in fact already chosen a certain a value, which fixes then also all
other quantities. However, we do not know this value and have to determine it in
physical units.

The lattice spacing a can be determined by comparing a physical quantity
we know with numerical values we get from lattice calculation, like the mass on
the lattice am, so that both agree with each other. This procedure of finding the
physical units is called “setting the scale”. Instead of using the masses to set the
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scale we will use in our calculation the method introduced by R. Sommer [125]
126]]. This method utilises the static quark potential V' (r), which is commonly,
but not necessarily , parametrised as

B
Vir)=A+ - +or (3.53)

where o is the “string tension”. From QCD phenomenology one expects a value
of o ~ 800MeV /fm. The parameter B is responsible for the strength of the
Coulomb part of the potential and A is some irrelevant energy normalisation. The
static potential is closely tied to a characteristic length scale ry which is defined

by the equation
0

2
re—
or

In lattice units we have then in the above parametrisation

1,65+ B
oo =22 (3.55)
a aco

Calculating the static quark potential by Wilson loops on the lattice we can ob-
tain the numbers B and a®c by fitting V(r) to the calculated potential. Using
the physical value of 1y, we can then determine the lattice spacing in physical
units. However, while 7 has the advantage that on the lattice it can be determined
with relatively high statistical accuracy, its experimental value is far less known.
Recent results from different collaborations indicate that the value for r is signif-
icantly smaller than the typically used value o = 0.5 fm. In this work we use the
value o = 0.467 fm [127, [128] and the present uncertainty of this empiric value
is one of the systematic errors in our calculations.

V(r)|y, = 1.65. (3.54)

3.10 Operator Choice on the Lattice for Distribu-
tion Amplitudes

We have already seen that the advantages of the lattice calculations compared to
continuum calculations have to be paid for by problems which are not present in
the continuum. But we also saw that it is possible to handle these problems. In
this section we turn our attention to a further problem which arises on the lattice
due to the reduction of the continous Lorentz symmetry to the hypercubic one.
The operators in QCD have to be renormalised. As the renormalisation ma-
trix for an operator set is in general not diagonal, we expect mixing of different
operators under renormalisation. However, due to the Lorentz symmetry in the
continuum most of the mixings are not allowed. The lattice discretisation reduces
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this symmetry strongly and leads to additional operator mixings which are not
present in the continuum. Even worse, on the lattice we can also have mixing
with lower dimensional operators due to O(a) discretisation errors. A partial cure
of this problem and an improved analysis can be achieved by using appropriate
operator combinations. Thus a systematic analysis and careful choice of the used
operators is mandatory as already partially outlined in [129]. As we are deal-
ing with nucleon we have to find the relevant three quark operators. In [130] a
complete classification with respect to the hypercubic spinorial H(4) group of all
three-quark operators without derivatives was obtained. Also for operators with
one and two derivatives the classification of all leading twist operators relevant
for our case has been worked out therein. This classification simplifies greatly our
task to construct operators with good mixing properties relevant for the calculation
of the distribution amplitudes.

d=9/2 d=11/2 d=13/2
(0 derivatives) (1 derivative) (2 derivatives)

R 52,50, 5

50 50
7 B BB
o 5] B2 B2, B
o B0 0B | s BB | 63, B, B B2,
B 506080 B0 | B, B, 6,

2 2
B3 B,

Table 3.1: Overview of irreducibly transforming multiplets of three-quark oper-
ators Bl(;l) sorted by their mass dimension (number of derivatives d) taken from
[130] with a notation adapted to our needs. Since for the classification it is not
important on which quarks the derivatives act, only the sum [ + m + n is given
as superscript. The subscript gives the numbering of the operators according to
the convention in [[130]. The first number corresponds to the lower index of [[130]
while the second number corresponds to the upper index in [130] numbering dif-
ferent operators within one multiplet (cf., Table 4.1 in [[130]). In the first column
we give also the representations where the superscript denotes the dimension.

Since operators belonging to different irreducible representations do not mix
with each other we use operators which lie completely within one irreducible rep-
resentation. In Table we give an overview of the irreducible multiplets of op-
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erators taken from Table 4.1 in [[130], but with a modified notation adapted to our
needs, e.g., the operator Bﬁ) corresponds to Og)m in [130]. The next-to-leading
twist distribution amplitude operators (2.87]) and and the GUT related op-
erators and ll lie completely-within 'ﬂl?l%z representation with mass
dimension 9/2. The operators for the leading twist distribution amplitudes belong
to other multiplets. As operators without derivatives in the 78 representation do
not have an overlap with the nucleon, the relevant operators with “good” mixing
properties lie in 711*2 with mass dimension 9/2, 7'21*2 with mass dimension 11/2 and
7'; with mass dimension 13/2 for zero, one and two derivatives respectively.

By relating these irreducible operators to the local operators of distribution
amplitude operators we were able to construct operators for distribution ampli-
tude with best possible mixing properties on the lattice. In Appendix [A.2] we sum-
marise the obtained relations which can be used directly to construct the preferred
set of the operators for different leading twist baryon distribution amplitudes. In
the following we give some details on the operators as used by us.

Initially the irreducible operators in [[130] have a general flavour content and
are of the type

L% D* DY e faghhs. (3.56)
where I’fjf” is a tensor projecting the operator to a certain irreducible representa-
tion. It is not important for the construction of irreducibly transforming operators
on which of the quarks the derivatives acts, as the possible combinations fall into
the same irreducible representation. Therefore, at this stage we do not distinguish
between the different positions of covariant derivatives.

To establish connection to the distribution amplitude operators V, A and 7
we preferred a slightly generalized approach. We rewrite distribution amplitude
operators from eqs. (2.58] [2.59and [2.60) also as operators without definite flavour
content, e.g.,

VAR (0) = [ DM L DN f2(0)](CHP)apli™ DM ... DM gh(0)]

| (3.57)
x[i"D"' ... D" (y5h¢(0))],

and similarly for .4 and 7. Since the distribution amplitude operators for other
members of the baryon octet differ only by the flavor content the obtained rela-
tions can be used directly also for other octet baryons [47]. Furthermore these
relations are applicable also to A, which is not in the octet. The nucleon distribu-
tion amplitudes are then restored by the identification

f—u, g — u, h — d. (3.58)

and subsequent isospin symmetrisation. Since we preferred a fixed flavor assigne-
ment for f, g, h the isospin 1/2 operators are obtained in a different way compared
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to [130]. For our purpose it is sufficient to combine appropriately different multi-
plets in the same representation to obtain an isospin 1/2 operatmﬂ

3.11 Details of the Lattice Calculation

In this section we discuss the techniques used and the details of the lattice calcula-
tion in Euclidean space. We summarise the common properties in the first part of
this section. Then, in the following parts we discuss the calculation of matrix el-
ements relevant for leading and next-to-leading twist distribution amplitudes and
the nucleon decay in GUTs.

3.11.1 Common Properties

To be as flexible as possible in our calculation we have adopted a two-stage ap-
proach in the evaluation of the correlators. In the first step we have calculated
correlators of the form

Clmn = (e[DM ... DMule[DM .. D)D" ... D" dN;),  (3.59)

afByT

with [ +m + n < 2. As interpolating operator for the nucleon we have used
N; = e [u*T Crysd’] ul (3.60)

with the charge conjugation matrix C'. Due to the presence of two up-quarks in the
three-quark operator, C’%Q‘T can be reconstructed from C’QZQLT by the appropriate
interchange of Dirac indices. In this way we can halve the number of required
general correlators, saving large amount of computer time.

In the second step, the general three-quark operator from was used to
calculate the matrix elements for the different quantities we discussed before. The

general form of the correlation functions we compute at this stage is of the type

<07(t,ﬁ)/\_ﬂ-/(0,ﬁ)> =V ZN(mNT’(ﬁ) eXp (_E(ﬁ)t) <0|Or(t’ﬁ)’p>, (3~61)

which can be directly computed from the general correlation function in (3.59).
The remaining matrix element on the right hand side is the quantity we want
to determine.Thus, we have also to calculate the normalisation constant Zy (),
which can be extracted from the usual two-point nucleon correlator

m+ E(p)
E(p)

40f course the results of both procedures are and must be equivalent.

On(B) = (74),0r (N (PN (0, 7)) = Zn(P) oxp (~E@)) (3.62)
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with the positive parity projection v, = (1 + ~4)/2. In the evaluation of the
correlator in (3.59) the overlap of the nucleon interpolator with the nucleon state
is improved by Jacobi smearing at the source while the sink is not smeared since
we want to evaluate local matrix elements. Thus the nucleon correlator in (3.62)
cannot be extracted from the general three-quark nucleon correlator but
must be computed separately with Jacobi smeared sink and source.

The normalisation constant Zy (p) could be removed by considering the ratio

(7)o (O (N (0))
(7+)T’T <N‘r (t)NT/ (O>> .

However, as we will see later, the location of the effective mass plateaus is differ-
ent for the two correlators, presumably due to the different smearings on the sink,
spoiling this simple approach. Thus instead of calculating the ratio we perform
a correlated fit to the two correlators in the range of the corresponding effective
mass plateaus.

(3.63)

3.12 Moments of Distribution Amplitudes

3.12.1 Leading Twist

0th moment

Using the representation 711*2 and the relations to the distribution amplitude opera-
tors given in Appendix [A.2] we construct from the twelve irreducible three-quark
operators three quadruplets of operators with isospin 1/2 which can be used to
calculate the normalisation constant fy:

—-B3Y + Byg B+ ByY
000 000 000 000
(000 _% 88,1 - 69,1 (9000 _Z_l 88,3 - 89,3
A0 = 000 000 ) B0 — 12000 000 ;
3| —Bsiz t+ Bois 3 Biio + Boio
000 000 000 000
88,7 - 59,7 88,9 - 39,9
RO 3000
8,2 9,2
000 000
0000 _4\/§ _88,5 + 89,5 (3 64)
o0 =5 000 12000 .
3 88,8 Bys

0060 000
=B + Bon

The three-quark operator O on the left hand side has also a Dirac index which we
do not give explicitly here. The relations to the distribution amplitude operators
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given in Appendix [A.2]yield then

<0‘Olmn|l7> fn(ip1y — ipay2) N (D), (3.65)
(0105 p) = f(ipsys + E(@B)7a) N (D), (3.66)
(010 Ip) = fn(ipiy + ipaye — ipsys + E(5)y1) N (D). (3.67)

The operators O and Olm(? are most suitable for our calculation since the op-
erator Olm” would require non-zero spatial momenta in the 1 or 2 direction which
would increase the statistical noise. Thus, in order to determine fy we will eval-
uate finally only the following two correlators at p' = 0 on the lattice:

Cxo :<(74Olmn(t 27)) (N0, ﬁ)) (V4 )rir) =

I/ Zn ) 20 (mas Y@E B) 85 ey (— ) (3.68)
Ceo :<(74Olm”(t p), (N©,9)),, (v4)r) =

D mN+E(1:7();)+p1+pz P xp (—E@)) . (3.69)

1st moment

We use irreducible operators with one derivative from Appendix [A.2]to construct
operators for the calculation of the first moments of the leading twist nucleon
distribution amplitude,

lmn Inm Ilmn Inm
8?71 - B’l?’l _8?73 + B’ng
mn nm mn nm
Olmn _4\/§ =Bgy" + B Olmn :4\/5 Byt — B
3 | By + B ) 3 Bl — By |
Imn Inm Imn Inm
86,8 - 678 _86,10 + 87,10
Bénén o Blnm
4 Bl;nn o Blnm
l 6,5
ol = : (3.70)

Ilmn lnm

3 _8?712 + B'l?712
mn nm

=Bght + B

where [ + m + n = 1 with nonnegative integers [, m,n. The matrix elements of
these operators are then

<0‘Olmn D) fN¢lmn [(ip1y1 — ip2y2) (—ipsys + E(0)va) + 2p1paiv2] N (D),

(3.71)
OIOF T p) =fne"™™ [(ipr1 + ip2y2) (ipsys + E(D)va) — 2ips E(D)vs74] N (D),
(3.72)
<0|Olmn ) fN@blmn(iPl% — 1pa7y2) (ipsys + E(p)ya) N (D), (3.73)
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where again a Dirac index is implied for the three-quark operators O. Unlike the
case of the Oth moment all operators require at least one non-zero component of
the spatial momentum. Hence using all operators available in this case we evaluate
the correlators

Cixmln :<(’Y471Olmn(t 17)) ( V (Oaﬁ))ﬂ (7+)Tf7> =

o T @) i 2Oy ER) £ 205 =05 py
£ 4
(3.74)

Cgﬁn E<(7471Olmn(t 17)) ( V (O,ﬁ))T, (7+)T'T> =

et ) iy DO BV o ), 375
car <(molm"<t ), WN(0.0),, (4)wr) =
It T i P B e (B 076

to determine the first moments ¢'%, ¢°1° and ¢

2nd moments

The calculation of the second moments requires the use of the four-dimensional
irreducible representation Tf to avoid mixing with lower-dimensional operators.
Unfortunately this decreases also the number of possible operators. Using the
irreducible three-quark operators with two derivatives and the relations to the dis-
tribution amplitude operators from Appendix we construct

Imn Inm

85,4 - BG,4
Imn Inm

4 815,3 B 8?73
mn nm

3v3 85,2 - 86,2

Imn inm
85,1 - 86,1

where now [ + m + n = 2 with [, m, n nonnegative integers. The corresponding
matrix element is given by

0|0 |p) = Fne'™ [—pipayive (ipsys + E(P)7a)

olmn . — (3.77)

. : . (3.78)
—ips E(P)v3v4 (ip1y1 + ip2y2)] N (D)
and the second moments are determined then from
Cy™ =((12737405™" (1, 9)), (N0, D)), (V1)) =
mn E) (my+ E(p)) + p2
fN¢l ZN(ﬁ) D2ps3 <4)( al (j) ! exp (_E(ﬁ)t) .

E(p)
with P2 = D3 7& 0.
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Next-to-leading twist distribution amplitudes.

For the higher twist distribution amplitudes we consider only the operators
egs. (2.87) and (2.88]) without derivatives. These can be immediately expressed in
terms of irreducible operators

B + Bl Bl
L=V8]| 732 T4z M=o | 722 |. (3.79)

B%),g +B§173 8%73

By + B By

The corresponding matrix elements have already been given in (2.89) and (2.90).

Proton decay matrix elements.

As for the next-to-leading twist constants the operators in (2.108)) and (2.109) are
irreducible and can be written immediately as

V2B V/2/3 (B — Byt
Yo V2B w | V273 (B - B
V2/3 (Br - B | V2Bl
V2/3 (B — BYY) V2B
(3.80)

with the corresponding matrix elements already given in eqs. (2.110) and (2.1TT).
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CHAPTER 4

Renormalisation

In this chapter we are going to discuss one of the essential steps in quantum field
theory calculations, the renormalisation. In section [3.11] we have introduced the
full set of operators we are going to use in our numerical calculations. However,
the matrix elements calculated on the lattice are bare and have to be renormalised
to get physical results. Therefore, in this chapter, we will sketch the general renor-
malisation procedure for our case to obtain renormalisation matrices to translate
the bare lattice results to modified minimal substraction renormalisation scheme
M S, widely used in phenomenological calculations. As at the present this is a
work in progress [131, [132] we can present here only some preliminary results
for our special case. For the details of the renormalisation procedure and the gen-
eral final numerical results we would like to refer the reader to the future work
[131, [132]. Here we describe only the basic steps of this renormalisation proce-
dure.

Our results are not directly comparable with experiment and must be com-
bined with other phenomenological calculations in order to obtain quantities like
the electromagnetic nucleon formfactors. Therefore we have to provide our fi-
nal results also in the M S renormalisation scheme so that the perturbative and
non-perturbative results can be combined. However, while on the lattice the regu-
larisation is provided by the finite lattice spacing, the M/ S renormalisation scheme
uses dimensional regularisation, where the four dimensions of space-time are re-
duced to 4 — ¢ dimensions. Thus, due to this “incompatibility”, as M .S is only
applicable in continuum, it is not possible to renormalise the lattice results using
the M S renormalisation scheme.

This problem can be solved by an intermediate calculation step. One needs
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a renormalisation procedure which is applicable on the lattice as well as in con-
tinuum. As our results are calculated nonperturbatively, we prefer to use also a
nonperturbative renormalisation procedure. For two-quark operators such a non-
perturbative scheme was proposed in [133] and is known as RI"-MOM renormal-
isation scheme. This scheme can be also applied to the case of three-quark opera-
tors but needs to be modified in some points. Thus the renormalisation procedure,
as required here, will involve three main steps:

° Calculatio of lattice regularised amputated four-point functions I'}** nu-
merically on the lattice.

e Calculation of the renormalisation matrices in the RI'-MOM scheme using
FRI/ — ZRI’ [att
i ij ~j

e Scheme matching of the RI'-MOM renormalisation scheme to the contin-
uum M S renormalisation scheme so that the results in the intermediate
RI — MOM scheme can be used in the continuum perturbation theory.

Let us now elaborate on these three main parts.

lattice calculation

The first step in the renormalisation procedure is the calculation of a four-point
function with three quarks at different positions as sources and one three-quark
sink. The calculation is greatly improved by performing it in momentum space
[134]. Therefore, one imposes fixed momenta on incoming quarks . The resulting
four point correlation function is then of the type

: iS22 pix iSS  piz
C(p17p27p3)£{%y :/dl' d21 dZQ dZ3 e > i1 Pi e > i1 Pizi (4 1)

0], (1) (22)d5 (23) Oi()]0)

with ¢(z;) being the quark sources at z; and O; the three-quark sink at x. The
lattice regularised amputated “three-quark vertex” I'** is then obtained from C'”
by multiplying the four-point function with the inverse propagator in momentum
space

Fiatt (p1, P2, P3)apy = D(P1)aer D(02) 5 D(p3)4y C (p1, P2, ps)g,)ﬁ,w, 4.2)

! Although the correlators are based on the same operators as used in our calculation, the cal-
culation procedure required here differs very strongly.
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RI'-MOM scheme renormalisation

In the next step the lattice regularised bare operators are renormalised using the
RI'-MOM scheme. In general a renormalised “three-quark vertex” is obtained
from the bare one by the relation

F;en = ZZJF] (43)

where Z;; is the renormalisation matrix and in the case of non-vanishing off-
diagonal elements therein we have operator mixing. In the RI'-MOM scheme
one introduces a set of projectors P such that for the “three-quark vertex” at the
tree-level I'""*° the relation

Pka»ree (P1>p2>p3) = Opi (4.4)

holds. Then the renormalisation condition in the RI'-MOM scheme can be formu-
lated as

Pkrful (p17p27p3;/ﬁ)|u2:2ip22/3 = 5]% (45)
Using the relation
RI'’ _ ~RI'platt
= Z3T; (4.6)
we can extract the renormalisation matrix in RI'-MOM renormalisation scheme at
scale u by
N -1
<ZRI ) (1) = PTE (py, o, 13) s, 2 - 4.7)

ij

scheme Matching to M S

The last task in this renormalisation procedure requires the determination of so-
called scheme matching matrix Z* %Rl which relates the 1S and the RI'-MOM
renormalisation schemes

ZMSRI _ 735 (ZRI’> o (4.8)

Therefore ZMS and Z® are calculated in continuum perturbation theory by
expanding in strong coupling constant and applying dimensional regularisation
in both cases. The scheme matching matrix is then found by comparing the ex-
pansion coefficients. The final physical results are obtained by the evolution to
e.g., 2GeV and in principle should not depend on the scale at which the val-
ues were initially calculated. However, due to the truncation of the perturbative
expansion as well as statistical and systematical errors on the lattice this cannot
be exactly fullfiled. Therefore, a good estimate for the systematic uncertainty
of the renormalisation matrices can be obtained from the variation of the initial
scale u? = Y, p?/3 on the lattice and comparing the different results then in M.S
scheme.
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CHAPTER 5

Main Resulis

5.1 General Discussion

As already anticipated we can reduce the statistical noise by combining different
momenta and/or different operators. However, the use of different momenta for
the calculation of the general three-quark operator turned out to be too expensive.
Hence the general correlators , and therefore also the correlators for distri-
bution amplitude operators, were evaluated only at a minimal set of momenta. To
extract the nucleon wave function normalisation constant fy we have fitted the
correlator

1
Co"* = 5(Cg + Cey) (5.1)

where we have averaged over the two possible correlators at p' = 0. Similarly for
the first moments we have used

| —

Ci™ = - (CP + CEP + Cay (5.2)

—~ W

withl +m +n = 1 and p = (27/L,0,0), where L is the spatial extent of our
lattice. For the second moment we have only one correlator, hence no averaging
is possible and we have evaluated it for = (0,27/L,27/L).

To determine the normalisation constant Zx () we had also to evaluate the
usual nucleon correlator. As the additional smearing on the sink introduces ad-
ditional noise, in particular for 7 # 0, we have improved our statistics by using
different momenta in the nucleon correlator. For the 163 x 32 lattices we have
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Figure 5.1: Effective mass plots for the nucleon correlator (a) and the aver-
age of the distribution amplitude correlators (b) for different nucleon momenta
at § = 5.40 and k = 0.13610. The black dots were obtained at zero nucleon
momentum, the red squares and blue diamonds correspond to p? = (27/L)? and
p? = 2(2m/L)?* respectively. The lowest black straight line corresponds to the
effective mass as obtained by the QCDSF collaboration. The middle red and the
top blue line correspond to energies E? = m? + p? with p? = (27/L)? and
p? = 2(2m/L)?, respectively, obtained from QCDSF nucleon masses.

worked with

Cy = % (Cn(27/L,0,0) + Cx(0,27/L,0) + Cy(0,0,27/L))  (5.3)
and
Cy = % (Cn(0,27/L,2m/L) + Cn(21/L,0, 2w /L) + Cn(27/L, 27/ L,0)),

(5.4)
while for the 243 x 48 lattices we have used a larger number of different momenta:

cl :é (Cx(21/L,0,0) + Cx(0,21/L, 0) + Cx(0,0,27/L)) (53)

2 :% (Cw (0,27 /L, 27/ L) + Cy (0, 27 /L, 27 /L)

+ Cn(27/L,0,27/L) + Cn(27/L,0,—27/L)
+Cn(27/L,27w/L,0) + Cn(27/L, —27/L,0)) . (5.6)

As already mentioned, the location of the effective mass plateaus for the nu-
cleon correlator and the distribution amplitude correlators (and also the “GUT
correlators™) is different as exemplified in Figure[5.1] Thus, instead of calculating
the ratios of the correlators we perform a joint fit. As all correlators are evaluated
on the same gauge configuration we should also take into account all possible
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statistical correlations. We have employed two different fitting procedures with
different possibilities for incorporating the correlations:

PC: The first possibility is to fit every moment of the distribution amplitude sep-
arately, e.g., for fy¢'% we fit the correlators C'%° and C}, simultaneously
and incorporate the cross-correlations of both correlators and those between
different time slices. However since we want to extract ¢'°° and not fx ¢
we should in principle also consider the cross-correlation with C%°. Due
to the omission of such additional cross-correlations we call this procedure
“Partially Correlated”.

FC: For the second possibility we have estimated the full cross-correlation ma-
trix and therefore call it here “Fully Correlated”. In this case we take into
account all cross-correlations fitting simultaneously the correlators for the
zeroth, first and second moment as well as the nucleon correlator for the
corresponding momentum.

Both methods have intrinsic disadvantages. In order to extract the moments
we have to perform multi-parameter fits which involve nucleon mass, different
normalisation constants and the wanted moments. The second disadvantage is
the required knowledge of the smeared-smeared nucleon correlator for non-zero
spatial momenta which introduces an additional source for statistical noise. This
problem can be avoided if we consider the ratios of the nucleon distribution am-
plitude correlators, which are equal to ratios of moments:

[+m+n=1:
Imn

R = TS = g0 g0 4 5:)
+m+n=2:
Imn

len — ¢52 ’ 512 — 2(¢011 4 ¢101 +¢110) +¢200 +¢020 +¢002' (58)

The disadvantage of this approach is that we lose the information about the abso-
lute normalisation of the moments and therefore only ratios can be extracted using
this method. Thus, we need a criterion to determine the absolute normalisation of
moments ¢! with [ + m +n > 1. This can be achieved by using the constraint
from (2.71)), explicitly requiring e.g., for the first moments that

3

1
Ot = = (5.9)
; S0 ZiR;

with

lat

lat 100 lat . 020 lat ., 001 ¢

la‘t = Qb ) Qat = gb ) ?,at = ¢ ) RZ = W) (510)
k 7k

74



5.1. General Discussion MAIN RESULTS

’ B ‘ K ‘ mx[GeV] ‘ volume ‘ alfm] ‘ Lfm] ‘
5.29 | 0.1340, 0.1350, 0.1359 | 1.411, 1.029, 0.587 | 163 x 32 | 0.08 | 1.28
5.29 | 0.1355,0.1359, 0.1362 | 0.800, 0.587,0.383 | 243 x 48 | 0.08 | 1.92
5.40 | 0.135,1356,0.1361, | 1.183,0.856,0.648, | 243 x 48 | 0.07 | 1.68
0.13625, 13640 0.559, 0.421

Table 5.1: Overview of sets of lattice ensembles used in our computations.

where ¢!** are the bare numbers on the lattice. In fact the “disadvantage” of this
approach turned now effectively to an “advantage” as the constraint in is
fullfilled now exactly. As we are using explicitly one of many constraints we call
this analysis method “partially constrained”. The calculation of the ratios R'™"
also does not have the other disadvantages of the methods mentioned before as we
have to fit only a constant term for R™". Furthermore, the ratios exhibit a much
better behaviour as the plateaus are less noisier and wider. However, this method
is only applicable to higher moments. The normalisation constants fy, «, 3 and
A; must be determined using the methods mentioned before. The scetched “par-
tially constrained” method can be extended further to the “fully constrained” by
incorporating also the constraints for individual moments in eq. (2.71).

For our numerical results we have evaluated our correlators using the QCDSF/
UKQCD/DIK configurations generated with two flavours of clover fermions at
two different J values summarised in Table For # = 5.29 we have used two
different lattice sizes 24® x 48 and 16® x 32 each at three different quark masses.
For 3 = 5.40 we have evaluated the correlators at five different quark masses on
243 x 48 lattices. Additionally we have performed a partially quenched analysis
where for the valence and see quarks one uses different x values which correspond
to different quark masses. Although the present data are fully consistent with
the unquenched results we did not included these values in our final analysis as
the theoretical status is uncertain and the values are still preliminary. However,
in some of our plots we will show also these additional results to illustrate the
agreement with the unquenched results.

To set the scale on the lattice we have used for the Sommer parameter the
value vy = 0.467fm. As far as it was possible we have also checked that the
dependence of the final results on the fitting procedures (PC, FC) is only very
mild and the deviations are consistent with the present statistical errors.

The lattice results are obtained at non-physical quark masses and we have to
extrapolate them to the physical point. To our knowledge there are no calculations
in chiral perturbation theory to guide our extrapolation. Therefore we rely on the
behaviour of our data and extrapolate them linearly to the physical pion mass. To
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Figure 5.2: Chiral extrapolation of fy/ m?\, (a) and \;/my (b) obtained from
FC fitting procedure. The additional red point at ~ 1.2GeV? denotes the partially
quenched results which were not included in the fit. To demonstrate the associated
uncertainties we show additionally for all fits the one, two and three sigma error
bands.

estimate the uncertainty of such a chiral extrapolation we perform also a quadratic
extrapolation of our data. These values are used to estimate the systematic uncer-
tainty from the difference of the renormalised values from the quadratic and linear
extrapolation procedure.

All operators used in our calculation require renormalisation. Although we
have used operators with good mixing properties we still have to take into account
the remaining operator mixings. The renormalisation matrices for the irreducible
multiplets of three-quark operators were worked out in [[132]]. We have used them
to translate our values into the MS renormalisation scheme at ;1 = 2 GeV. The
corresponding raw lattice results and some additional bare asymmetries can be
found in Appendix |C| The systematic uncertainty of the renormalisation was esti-
mated by variying the renormalisation scale x? in the RI'-MOM scheme by a fac-
tor of two in the range 10 GeV? to 40 GeV? around the central value of 20 GeV?,
which was used to obtain our renormalised results.

5.2 Unconstrained Analysis

5.2.1 Normalisation constants

First, we present in Table[5.2on p. [77|the results for the different constants which
are associated with operators without derivatives: the nucleon wave function nor-
malisation constant fy, the next-to-leading twist normalisation constants \; and
Ao and the GUT related constants «v and 3. It is particularly important to determine
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3 5.40 5.29
fn/m3 - 103 3.486(60)(56)(60) 3.290(62)(100)(72)
—Ai/my - 103[GeV]  18.06(29)(86)(49) 18.33(32)(89)(57)
—\ - 10%[GeV?]  22.15(42)(129)(60) 23.32(46)(60)(73)
Ao/my - 103[GeV]  35.63(58)(176)(97) 36.48(65)(201)(113)
A - 103[GeV?] 43.79(84)(267)(119) 46.72(93)(111)(144)
—a/m? - 103[GeV]  11.43(26)(84)(18) 11.32(27)(27)(21)
—a - 103[GeV?)] 15.16(49)(108)(22) 15.40(52)(30)(30)
B/m?% - 103[GeV]  10.27(26)(35)(23) 10.37(29)(15)(28)
B - 103[GeV?] 13.14(50)(350)(30) 14.20(57)(21)(38)
PO 0.3457(75)(89)(3) 0.3530(62)(132)(7)
P10 0.3124(81)(128)(4) 0.3176(62)(108)(2)
¢! 0.3142(77)(100)(4) 0.3283(62)(68)(4)
PO 0.0823(73)(266)(51) 0.0835(61)(1)(50)
PO 0.1105(92)(254)(51) 0.1003(66)(178)(61)
PHo 0.1035(67)(9)(11) 0.0962(54)(6)(7)
0 0.1556(107)(705)(143)  0.1673(87)(219)(128)
020 0.1300(98)(151)(112) 0.1308(80)(2)(89)
P2 0.1430(100)(48)(141) 0.1506(85)(39)(124)

Table 5.2: Chirally extrapolated lattice results from FC analysis for normalisation
constants and ¢! at 3 = 5.40 and 8 = 5.29 in MS renormalisation scheme at
i = 2GeV. The first error is the combined statistical error of the moments and
renormalisation matrices mainly dominated by the statistical uncertainties of the
moments. The second (third) errors are the systematic uncertainties due to the
chiral extrapolation (renormalisation) estimated as explained in text.

the constant f to high accuracy so that the determination of higher moments of
the leading-twist distribution amplitude will not be disturbed by its uncertainty.

For the GUT related constants we observe o + 3 =~ 0 as in [135]. This is
expected because of the relation

(a+B) N(p) =

since the matrix element on the right hand side vanishes in the non-relativistic
limit and is known to be small at small quark masses [136]. Furthermore we

— (0] (uT Cd®)ysul|p), (5.11)
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3 5.40 5.29
fn/m - 10° 3.672(78)(90)(63) 3.538(79)(283)(77)

—Ai/my - 10%[GeV]  18.75(36)(38)(51) 20.03(41(140)(62)

Ao/my - 10°[GeV]  36.85(76)(8)(100) 38.62(95)(285)(116)
o100 0.3871(313)(528)(4) 0.3903(204)(464)(12)
o010 0.3150(226)(290)(720)  0.3298(159)(118)(608)
o001 0.3155(272)(453)(2) 0.3277(190)(270)(5)
P11 0.0697(181)(128)(98)  0.0813(137)(104)(97)
o101 0.1074(112)(141)(56)  0.1160(105)(169)(57)
p!10 0.1248(178)(88)(32) 0.1052(137)(100)(42)
200 0.1915(252)(951)(151)  0.1742(186)(574)(134)
(020 0.1308(150)(109)(122)  0.1292(119)(81)(87)
(002 0.1390(235)(373)(149)  0.1280(194)(295)(121)

Table 5.3: Chirally extrapolated PC results for different '™ moments at
f = 5.40 and 3 = 5.20 in MS renormalisation scheme at 2 GeV. The first er-
ror is the combined statistical error of the moments and renormalisation matri-
ces mainly dominated by the statistical uncertainties of the moments. The sec-
ond (third) errors are the systematic uncertainties due to the chiral extrapolation
(renormalisation) estimated as explained in text.

confirm also the relative signs of fy, A\; and )\, calculated in [50, [137]. Due to
Fierz identities

e [u"(0)Cy*u®(0)] (757,d°(0)),

— 9abe ([ (O)C ( )] (,}/5uc(0)) [ aT(O)C”)/g)db(O)] UC<O)7-) , (5.12)
Eabc [uaT< ) o u b(())] (75(7#“/ (0))7

= de® ([usT(0)Cd(0)] (15uc(0)), + [uT(0)Cysd(0)] u¢(0),), (5.13)

we have for the next-to-leading twist constants the relation
my (2A1 + A2) N (p) = 8(0[e™ (u*" Cd®) ysu’|p), (5.14)

therefore also observing 2\; ~ —\,.

As already mentioned, at present there are no results from chiral perturbation
theory to guide our chiral extrapolation. Therefore, we have relied on the be-
haviour of our data as function of the quark mass. The nucleon wave function

78



5.2. Unconstrained Analysis MAIN RESULTS

normalisation constant fy exhibited a clear non-linear behaviour. However, it
turned out that the dimensionless ratio fy/m? is much better suited for the linear
extrapolation (cf., Figure and it has the additional advantage that it does
not suffer from the uncertainty in setting the scale on the lattice. The chiral be-
haviour of A\; and )\ is less certain and we have performed two different chiral
extrapolations for these quantities. We have extrapolated the constants ); and also
the ratios \;/my linearly to physical quark masses. The ratios \;/my seems to
be favoured by the linear fit, and we will use these values as our final results.

Very often one is interested in different combinations of moments presented
in Table on p. These were determined using the PC fitting procedure.
Therefore we had also to evaluate fy using the PC fitting procedure. Due to
the correlators of higher moments, in the FC fitting procedure the nucleon mass
is slightly higher than for the zeroth moment correlators only. Therefore, the
values for normalisation constant(s) obtained from FC fitting procedure are in
general lower by ~ 4% indicating systematic uncertainties due to discretisation,
the finite size of the lattice, contributions from excited states and the uncertainty
to determine the position of the effective mass plateaus for higher moments.

5.2.2 Higher Moments

As expected, the non-zero spatial momenta make the results for the first moments
(presented in the MS scheme in Table on p. noisier than for operators
without derivatives. However, we can extrapolate the numbers linearly to the chi-
ral limit (cf.,[5.3) and the obtained results are consistent with sum rule calculations
and phenomelogical estimates [47, 165, 50, 152]]. Additionally we have checked the
quality of our results by comparing them with the constraint from eq. which
is fullfilled very well within the errors (cf. Figure [5.4).

The renormalised results for the moments ¢'%°, ¢°° and ¢! show clearly the
deviation from the asymptotic case ¢(x;) = 120x zox3fn With ¢1% = @010 =
#" = 1/3. As the relative differences of these moments describe a deviation
from the symmetric case, they are of particular interest in phenomenological ap-
plications. Thus, we have also evaluated additionally those combinations of mo-
ments in the chiral limit which were obtained from partially correlated values. The
bare lattice values are given in Appendix[C}, while in Table[5.3]on p.[78| we present
some combinations in the MS renormalisation scheme. The strongest asymmetry
is the ¢1%° — ¢%10 (see the raw lattice results in Appendix [C). However, the large
statistical errors reduce the reliability of the chiral extrapolation as seen in Fig-
ure leading to large uncertainties for the final values. Therefore we will
consider these interesting quntities using a better analysis method.
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Figure 5.4: The bare (solid black line with statistical error band) and renormalised
(blue diamonds) sum of the first moments (a) and second moments (b) according
to eq. (2.72) as obtained from FC analysis. The smaller errors for the renormalised
values are purely statistical, while the larger are the sum of the statistical and
systematical error due to chiral extrapolation. The three different points were
obtained from three different renormalisation scales p in the RI'-MOM scheme
to estimate the systematic uncertainty due to the renormalisation as explained in
text. The theoretical constraints that the sums should be exactly one are fulfilled
very well in both cases.
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Figure 5.3: Chiral extrapolation of R'%0 — RO9 asymmetries (a) from PC results
and R' ratio (b) from FC results. Additionally one, two and three sigma error
bands are presented.

Although the calculation of the second moments requires spatial momenta
with two non-zero components and the number of available operators is reduced
to one, we could extract the different moments with reasonably small statistical
errors. Thus, the chiral extrapolation of moments (cf., Figure@ has a reasonable
accuracy. However, as in the case of the first moments we give also the differ-
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Figure 5.5: FC results for R''? (a) and R002 (b) linearly extrapolated to the chiral
limit with the corresponding one, two and three sigma error bands of the fits.
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Figure 5.6: PC results for (R%! — R'!) (a) and (R?* — R%?) (b) asymmetries
linearly extrapolated to the chiral limit with the corresponding one, two and three
sigma error bands of the fits.

ences of the second moments for raw results in Appendix [C|to illustrate the devi-
ation from the symmetric asymptotic behaviour with ¢**0 = ¢%20 = ¢992 = 1/7
and ¢! = ¢! = ¢110 = 2/21. Although the chiral extrapolation gives some ev-
idences for asymmetries the statistical errors of this analysis method do not allow
us to estimate those with good quality.

81



5.3. Constrained Analysis of Higher Moments MAIN RESULTS

5.3 Constrained Analysis of Higher Moments

5.3.1 Partially Constrained Analysis

In the last section we have seen that the unconstrained analysis of our data gives
us consistent results. However, better estimates of moments and in particular
of asymmetries are preferable. As already mentioned this can be achieved by
overcoming the disadvantages of the previous analysis method by calculating the
correlator ratios which are equivalent to the ratios of moments in eqs. (5.7) and

G.8)

Crlmn
l+m+n=1: R™ = 01 ,Cgq = C{% 4+ P10 + P (5.15)
S,1
Clmn
l+m+n=2: R™=_22_
Csa
Csa = 2(C9" + 3™ + C31%) + CF° + C9%° 4 C9°2. (5.16)

Fitting these ratios to a constant we can reach a much higher precision compared
to the method before. In Figure we present some of these ratios obtained
on one of the ensembles with 5 = 5.40. It is obvious that these ratios are bet-
ter behaved and the plateaus are more pronounced and start at earlier timeslices
compared to the case of effective mass plateaus for the correlators in Figure
Thus, the extracted values for the ratios summarised in Table on p. [85|are of
higher quality compared to the unconstrained analysis. The main reasons for this
improvement are that we do not have to determine the energy £/(p) and normalisa-
tion constant Z (p) for non-zero spatial momenta as both drop out in the partially
constrained analysis. This reduces also the statistical noise as the nucleon corre-
lator with smeared source and sink is not involved anymore in data analysis. In
principle one can calculate similar ratios for correlators involving

(plmn — Vlmn o Almn

instead of using
qzslmn — (Vlmn o Almn + 2Tlnm)/3

However this leads to a three times larger statistical error. Therefore the combina-
tion ¢! is much better adopted to lattice calculation as it reduces the statistical
noise by combining the complete set of leading twist nucleon distribution ampli-
tude operators. Furthermore, due to higher accuracy in the partially constrained
analysis we see a deviation from linear behaviour for ¢'%° and ¢°'° while the
chiral extrapolation for other moments is still described by linear fit very well.
Therefore, considering '™ instead of ¢!™" will propagate the resulting system-
atic uncertainty to all moments '™ with [ +m +n = 1.
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Figure 5.7: Plateaus of correlator ratios R'%° (black diamonds) and R*% (blue
squares) for 3 = 5.40 and K = 0.1361 together with the corresponding fit values
and the associated errorbands.
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Figure 5.8: Linear chiral extrapolation of R'% — R%10 asymmetry (a) and the
R0 + RY19 gum (b). The effect of different chiral extrapolation is demonstrated
on the extreme case of R'% where in (c) a linear fit is applied and in (d) a quadratic
one. All the plots contain also one, two and three sigma error bands of the corre-
sponding fits.
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Figure 5.9: Linear chiral extrapolation of second moment ratios R'° (a) and
R"2 (b) and of R — R (¢) and R*® — R (d) asymmetries as obtained from
partially constrained analysis with one, two and three sigma error bands of the
corresponding fits.

To illustrate the dependence of ¢'°° on the pion mass we present in Figs.
and linear and quadratic chiral extrapolation of this quantity. As ¢°** ex-
hibits similar behaviour, but with inverted slope, the deviation from linear be-
haviour is emphasised for the ¢'%° — ¢"1* asymmetry (Figure[5.8(a)). On the other
hand this leads to linear behaviour of ¢!%° + ¢ (Figure [5.8(b)). Thus, due to
momentum conservation one expects also linear behaviour for ¢°*!, which is in-
deed observed in our data. In principle, smaller deviations from linear behaviour
are also possible for all other moments. However, the present statistical accuracy
does not allow us to resolve such deviations.

84



5.3. Constrained Analysis of Higher Moments MAIN RESULTS
16 5.40 5.29
fn/m3 - 103 3.573(69)(33)(61) 3.392(68)(178)(74)
—A1/my - 103[GeV]  18.35(33)(20)(50) 18.81(36)(123)(59)
Xo/my - 103[GeV]  36.12(66)(40)(98) 37.29(74)(266)(116)
10 0.3638(11)(68)(3) 0.3549(11)(61)(2)
010 0.3023(10)(42)(5) 0.3100(10)(73)(1)
PO 0.3339(9)(26)(2) 0.3351(9)(11)(2)
10 — 0! 0.0300(23)(93)(1) 0.0199(23)(46)(4)
PO — 010 0.0313(17)(12)(7) 0.0251(16)(84)(2)
O 0.0708(18)(82)(77) 0.0848(23)(97)(80)
ot 0.1119(17)(32)(14) 0.1119(23)(2)(28)
pro* 0.0920(16)(3)(45) 0.0938(21)(60)(37)
»?0 0.1663(28)(7)(81) 0.1539(39)(215)(76)
$O20* 0.1321(27)(37)(65) 0.1237(32)(45)(47)
02 0.1521(32)(77)(86) 0.1416(37)(49)(76)
P10 — gt 0.0210(27)(78)(32) 0.0074(33)(68)(44)
ptot — pto 0.0204(21)(133)(50) 0.0171(29)(82)(56)
$?%0 — 020 0.0323(34)(71)(56) 0.0336(44)(24)(79)
02 — 020 0.0194(24)(32)(42) 0.0171(36)(7)(56)

Table 5.4: The results for ¢! and the relevant asymmetries as obtained from
chirally extrapolated ratios R in MS renormalisation scheme at 2 GeV. The
values marked by a star were used in the analysis of the corresponding asymme-
tries to determine the overall normalisation. The first error is the combined sta-
tistical error of the moments and renormalisation matrices mainly dominated by
the statistical uncertainties of the moments. The second (third) errors are the sys-
tematic uncertainties due to the chiral extrapolation (renormalisation) estimated
as explained in text.

5.3.2 Fully Constrained Analysis

In the partially constrained analysis method described and applied in the last sub-
section we have incorporated only the normalisation condition from in or-
der to determine the absolute normalisation of the moments, while every ratio
was fitted separately like in the partially correlated approach. However, by com-
paring the partially and fully correlated analysis methods we see that in the latter
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Figure 5.10: Constant chiral extrapolation of the bare sum of first moments (a)
and second moments (b) according to eq. (2.72) as obtained from PC analysis.

case the statistical errors are significantly reduced. Therefore one expects that a
similar approach within the constrained analysis should also reduce the statistical
errors. Note that in the partially constrained analysis we did not use the additional
relation between the individual moments given in eq. and the explicit use
of these can help even further.

Due to these reasons we performed a similar analysis method as in the the fully
correlated case in order to exploit the stronger relation (2.71]) explicitly to improve
the quality of our results even further. In the following we call this method “fully
constrained”. Such an approach is in particular useful for second moments as
these are notably affected by statistical uncertainties. An additional advantage of
this method is that the relations in eq. (2.71)) are fulfilled exactly and we only fit a
smaller, independent subset of moments, e.g., 1%, ¢ ¢t 19! and @10, This
set of moments does not require the calculation of second order derivatives on the
lattice (e.g., for ¢?°°) which involve next-to-next neighbour terms. Therefore some
of discretisation effects should be suppressed. This is expected as the derivative
operator is more local for ¢°1! | ¢'%" and ¢'°. For the same reasons we think that
this method should be the first choicellif one calculates in the future the moments
@™ with [ +m + n = 3 as one can again restrict oneself to the case [, m,n < 2.

The described analysis method requires the knowledge of the renormalisation
matrices at a very early stage as the bare moments do not fulfil any of the relations
in eq. (2.71) or eq. (2.71) as displayed in Figure.[5.10] However, the renormalisa-
tion matrices have relatively small statistical errors and therefore we do not expect
a significant increase of the statistical error due to this additional uncertainty.

On the other hand also the bare ratios of the moments on the lattice sum up ex-

'However, we suggest that at the beginning the data should be analysed by the less advanced
methods discussed before in order to check the consistency of data and analysis.

86



5.3. Constrained Analysis of Higher Moments MAIN RESULTS

actly to one according to eq. (2.72)). This implies that one of the ratios is hundred
percent correlated to the remainder of the sum and must be omitted in the analyis.
Thus in the case of first moments only two independent correlator ratios can be
used, while in the case of the second moments we are left with five of six not com-
pletely independent correlator ratios. Taking into account all cross-correlation of
these seven correlator ratios and fitting those to five independent moments leads to
results which are fully consistent with the result from partially constrained anal-
ysis. While the resulting values and the errors for the first moments are almost
unchanged, the errors for the three independent second moments are slightly in-
creased, which is caused by the cross-correlations of the five correlaor ratios for
the second moments. Since in our case we have calculated all moments '™ with
[ +m + n = 2 from general correlators, this method does not have strong advan-
tages compared to the “partially constrained” analysis. Thus as we are not forced
to restrict ourselve to an inpendent subset of second moments we preferred the
“partially constrained” approach so that we could test the reliability of our final
results using the eq. for individual moments.

5.3.3 Modelling the Nucleon Distribution Amplitude

Although our data do not allow to perform really controlled continuum extrap-
olation, the fact that # = 5.29 and § = 5.40 results are compatible with each
other indicate that its effect is small. Thus we take the data from our finer lattice
(8 = 5.40) as our final numbers. From the results, presented in the last section,
we can construct a model function for the nucleon distribution amplitude (z;, 1)
as described Section

Using the values of ¢'% and ¢%! and the polynomial expansion up to con-
formal spin N = 1 we obtain the form of the nucleon distribution amplitude
presented in Figure [5.11(b)] Compared to the asymptotic case in Figure
the maximum is considerably shifted. In Figures. [5.11(c) and [5.11(d)| we took
also into account the second moments and the expansion is up to second confor-
mal spin. As the central values for the moments ¢"™" with [ +m + n = 2 do not
exactly fullfill the relation in eq. the model function is slightly dependent
on the choice of ¢!™" to determine c,. For the plot in Figure we have
used ¢, ¢?% and ¢°°2 (set 1), while for the plot in Figure we have incor-
porated ¢!, ¢! and @'Y (set 2). The effect of second moments is however in
both cases the same, the maximum, respectively, the asymmetry is smeared out.
While the model function from set 2 exhibits an obvious symmetry in x; and z3,
this feature is reduced in the case of set 1. Thus, the present systematic uncer-
tainties allow slightly different model functions. However, the general pattern is
preserved in Figures. [5.11(c)| and [5.11(d). Let us emphasise at this point again,
that the model presented here is not unique and in principle the distribution ampli-
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5.3. Constrained Analysis of Higher Moments MAIN RESULTS

tude can be completely different, as one can construct very different distribution
amplitudes with the same set of moments.

To visualise the effect of the statistical error we present in Figure also
the uncertainty of ¢(z;)/fy at z3 = 0.5 as function of z;. However the devia-
tions are reasonably small and consistent with the statistical errors. Therefore the
general pattern in Figure does not change. The effect of different subset
choices is illustrated in Figure where we plot the difference of ¢(z;)/fx
for set 1 and set 2.

2 })‘u :
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@y

%

2—-{—,_
00 02 04 Xpo06 08 0 00 02 04 Xpo06 o8 10

() (d)

Figure 5.11: Barycentric density plot of the leading-twist distribution amplitude
(11, 29, 23)/ fn in the limit of Q* — oo (a) and at u = pg = 2 GeV (b-d) using
expansion (2.73) as obtained from § = 5.40 moments presented in Table [5.4]
The asymmetry caused by the first moments only (N = 1) is illustrated in (b),
while in (c-d) we took into account also the second moments (N = 2). The slight
difference of (c) and (d) plots is caused by the different choices of independent
sets of momenta for [ +m +n = 2.
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Figure 5.12: Statistical uncertainty of the model function ¢(z;)/fy for z; at
x3 = 0.5 (a). Systematic uncertainty due to the choice of the independent subsets
of '™ with [ + m + n = 2 (b) (for details see text).

5.4 Phenomenological Results

5.4.1 Comparison to Other Estimates

Let us now compare the obtained results with some estimates in the literature.
Our results for ¢'™" imply that 1% =~ 0.4, ©*10 ~ 0.3 and "' ~ 0.3 at 1 GeV.
These moments can be interpreted as the fraction of momentum carried by the
corresponding quarks [46, 47]. As in the QCD sum rule approach we find that
the largest fraction of the proton longitudinal momentum is carried by one up-
quark with spin aligned with the proton spin. However, this asymmetry is not
as strong as found in the sum rule calculation. Our results for the first moments
are close to phenomenological estimates [52| [138]], cf. Table [5.5] On the other
hand, our results for ¢!, !9 and ! are similar to the sum rule values, while
the asymmetries in the moments ¢, %% and %2 are clearly smaller. The
phenomenological models BK and BLW which are based on experimental data
and our lattice results are in good agreement with each other. It is worth to notice
that the phenomenological models BLW and BK and as well as our lattice results
show an approximate symmetry ¢! ~ pnm,

5.4.2 Light Cone Sum Rule Results

After rescaling our results to = 1 GeV by eq. and using the light cone
sum rule approach discussed in Section [2.5.2]one can determine different nucleon
form factors. The nucleon distribution amplitudes, more precisely their moments,
provide the principal nonperturbative input to the light cone sum rules. Thus, it
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Asymptotic QCD-SR COzZ BK BLW Latt.

e |1 1/3 ~0.333 0.560(60) | 0.579 8/21~0.38 | 0.415 || 0.3999(13)
eV0 |1 1/3 ~0.333 0.192(12) | 0.192 | 13/42~0.31 | 0.285 || 0.2986(22)
V01 1/3 ~0.333 0.229(29) | 0.229 | 13/42~0.31 | 0.300 || 0.3015(9)

@200 | 1/7~0.143 0.350(70) | 0.369 5/28 ~ 0.18* | 0.204* || 0.1832(26)
eV20 |1 1/7~0.143 0.084(19) | 0.068 1/8 ~ 0.13* | 0.107* || 0.1497(67)
0902 | 1/7~0.143 0.109(19) | 0.089 1/8 ~ 0.13* | 0.118* || 0.1392(42)
O 1l 2/21 2 0.095 || —0.030(30) | 0.027 1/12 =~ 0.08* | 0.075* || 0.0473(55)
10 |1 2/21 =~ 0.095 0.102(12) | 0.113 | 17/168 ~ 0.10* | 0.107* || 0.1151(21)
e110 || 2/21 ~ 0.095 0.090(10) | 0.097 8/21 ~ 0.10* | 0.104* || 0.1016(34)

Table 5.5: In the following table we compare different estimates for the moments
of the leading twist nucleon distribution amplitude ¢ (z;) at 1 GeV. We show the
asymptotic values, the QCD sum rule estimates from [47], the COZ-model [47]]
based on QCD sum rule results, the BK-model [138]], the BLW-model [52] and
our lattice values with statitistical errors only. The BK and BLW model do not
take into account contributions from next?-to-leading conformal spin. Thus, the
second moments denoted by * do not contain additional information and are fully
determined by the first moments.

is essential to have these values with small statistical and systematical errors. At
present the light cone sum rule calculations do not include «; corrections. Thus,
only the ratio of normalisation constants fy and A; and only the first moments
were utilised in the calculation of the nucleon form factors and to present accuracy
these do not depend on the higher moments. However, we plan to include these
corrections in upcoming calculations to investigate the associated effects. Fur-
thermore, the calculation of a; corrections is work which is currently in progress
and should provide us with even more accurate predictions. Unfortunately, at the
moment we cannot provide from our lattice results information about first mo-
ments of the next-to-leading twist nucleon distribution amplitudes, denoted in the
following as fij , where 7 corresponds to the index of \; and j denotes on which
quark the derivative acts on (for more details see [S0]). For these moments we
will use some other estimates from literature and combine them with our results
if necessary.

In order to compare our results with other estimates we will use six different
sets of moments obtained from

e QCD sum rule estimates (dotted red lines)

e Asymptotic form (dashed red lines)
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e BLW model (solid red lines)
e Lattice results plus QCD sum rule estimates for fid (dotted blue lines)
e Lattice results plus asymptotic values for f (dashed blue lines)

e Lattice results plus BLW estimates for fid (solid blue lines)

QCD-SR Asymptotic BLW Lattice
fn[GeV?) 5.0-1073 5.0 - 1073 (%) 5.0 - 1073 (%) 3.24-1073
M[GeV?]  —2.7-1072 —2.7-107%(x)  —2.7-107%(%) —2.01-1072
A2[GeV? 5.4-1072 5.4-1072(%) 5.4-1072(%) 3.96 - 1072
Al =24010 038 0.0 0.13 0.102
Vi = you 0.23 1/3 0.30 0.301
fi 0.40 0.30 0.33 -
I 0.07 0.10 0.09 -
1 0.22 4/15 0.25 -

Table 5.6: Parameter sets used in the LCSR calculations. The used QCD sum
rule values (QCD-SR) are taken from [50, 64] while the BLW model values were
introduced in [64]. The values denoted by (x) in phenomenological models were
obtained from QCD-SR and therefore are equal to those.

The values for different models are summarised in Table The numbers
for the moments in the BLW model were obtained by comparing the light cone
sum rule calculation with the experimental data and are not based on any system-
atic attempt to fit the data. The presented results show that the knwoledge of o
corrections and a better understanding of higher twist corrections is necessary to
describe the data wiht satisfactary precision.

Hence we believe that the radiative corrections to the light cone sum rules are
of key importance. These will include order 22 corrections to (2.51)). Furthermore
it would be interesting to include the higher moments of the distribution ampli-
tudes in the calculation, particularly to investigate the dependence of the results on
the choice of different independent subsets of second momenta. Thus we expect
that all these improvements will allow to make good theoretical predictions in the
experimentally attractive Q? region.
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Figure 5.13: Results for the electromagnetic form factors (left: G s/ (14, G pipole)
vs. Q% right: u,Gp/Gy vs. Q%) of the proton, obtained from LCSR using
different values for distribution amplitude moments as described in text on p.[90]
The red data points in Figure (b) are JLAB data, while the blue ones are obtained
via Rosenbluth separation.
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Figure 5.14: LCSR results for the electromagnetic form factors of the neutron
(eft: Gar/(nGpipote) vs. Q% right: G vs. %), obtained using different values
for distribution amplitudes moments as described in text on p.[90}
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1.2f

Figure 5.15: LCSR results for the ratio \/Q2FY /(1.79FF) obtained using differ-
ent values for distribution amplitudes moments as described in text on p.[90] Red
symbols: experimental values obtained via Polarisation transfer. Blue symbols:
experimental values obtained via Rosenbluth separation.

1.2
1
0.8
0.6
0.4
0.2
0 2 4 6 8 10
(a)
1 1
0.75 0.75
0.5 0.5
0. 25 e, 0.250 o ieessssseseseeces
TRt llTUTI U=
0F—ImE— - ____—--_---=
T —— By -3--4------------°-
0.25 N e 0.25
~e_
S0.5f T e e e -0.5
0.75 -0.75
0 2 4 6 8 10 0 2 4 6 8 10
(b) (c)

Figure 5.16: v*N — A transition form factors (G%;/(3Gpipole) Vs. Q* (a), Ren
vs. Q% (b), Rsas vs. Q?) obtained from LCSR calculation with different nonper-
turbative input parameters for the moments of nucleon distribution amplitudes as
described in text on p.[90]
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CHAPTER 6

Discussions and Outlook

Although quantum chromodynamics is based on a “simple” Lagrangian the very
“complex” bound states such as nucleon are only poorly understood at our time.
As discussed in the introductory part of this thesis the understanding of nucleonic
properties will become a key factor in our understanding of the standard model
as well as theories beyond it. Of course, a complete knowledge of the nucleon
wave function would be highly desirable. However, at present it is not possible
to access the full nucleon wave function due to the nonperturbative properties of
the relevant strong interaction and the complexity of QCD. Thus, one considers
quantities like structure functions or generalised parton distributions. The objects
which come closest to the wave function are the distribution amplitudes. In this
case one simplifies the problem by integrating out the transverse degrees of free-
dom in the wave function. Although the information content is thus reduced, the
distribution amplitudes allow a more general study of the nucleon, as one can
relate e.g., different nucleon formfactors to each other by means of the nucleon
distribution amplitude.

The reduction of the complexity by the integration of transverse momenta is
only one of three simplifications. Another one is the twist expansion of the rel-
evant matrix elements justified by operator product expansion. Presently such
calculations are usually limited to leading and next-to-leading twist. The nonlo-
cal matrix elements which correspond to distribution amplitudes of different twist
can be seen as generating functionals for a series of local operators. These lo-
cal matrix elements are related to moments of the distribution amplitudes and can
be directly accessed in Lattice QCD. Of course, the restriction to a small finite
number of moments leads again to some loss of information and in principle one
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would like to avoid this, preferring the full functional form of the nucleon distribu-
tion amplitude. On the other hand the physically relevant quantities are obtained
from nucleon distribution amplitudes by convoluting them with a hard scattering
kernel. The higher moments are suppressed in this case, and the lower moments
contain exactly the important information needed.

Being nonperturbative objects, distribution amplitudes and the correspond-
ing moments are difficult to calculate reliably in a model independent way. The
QCD sum rule calculations which were used originally are known to overestimate
strongly the asymmetries in the nucleon distribution amplitudes, leading to large
systematic uncertainties in the obtained values. The exactly known results for
the asymptotic case Q> — oo are even less applicable to experimentally relevant
calculations as the logarithmic evolution of the asymptotic distribution amplitude
down to reasonable Q)? values will not be meaningful.

In the case of distribution amplitudes the only systematic approach, except
QCD sum rules, to calculate the corresponding moments is offered by lattice
QCD. Of course one has to fight additional problems which are caused by dis-
cretisation and finite size effects. However, in this work many of the problems
related to this have been significantly reduced leading to results of very good ac-
curacy. Based on three-quark operators which transforms irreducibly under the
spinorial hypercubic group H(4) obtained in [130] we have derived a full set of
operators for leading twist distribution amplitudes with best mixing properties on
the lattice. This was done such that the obtained operators can be used not only
for the nucleon but also for other baryons simplifying greatly future work. These
particular operators allowed us to suppress most of the unwanted operator mixings
during the following renormalisation procedure. Even more important, by choos-
ing the operators carefully it was possible to avoid mixing with lower dimensional
operators completely. We suggest to use in future lattice calculations operator re-
lations summarised in Appendix [A.2] as these do not depend on the choice of the
used lattice action and the described advantages do not have any side effects.

Using this optimal set of operators we have calculated the correlators from
which we could extract the moments of the leading-twist distribution amplitudes
up to order two and the normalisation constants \; and A, of next-to-leading twist
distribution amplitudes as well as the couplings a and [ relevant e.g., for the
calculations of nucleon decay in grand unified theories. We were able to obtain
this additional information because we have applied a two step approach. The
general operators calculated in the first step could be used without great additional
numerical effort to extract these theoretically interesting quantities. We plan to
use these correlators also in future to extract further physically relevant numbers.
Our results for normalisation constants suggested that —2\; ~ A, leading to the
strong suspicion that these constants must be related to each other, what to our
knowledge was not observed in the literature before. Indeed it turned out that in
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the nonrelativistic limit the relation is exactly fulfilled.

Although the standard analysis of our data, called in this work “partially cor-
related”, provided us with fully consistent results, we could improve the quality
of our results by applying the “fully correlated” method. This method reduced the
statistical errors so that also the asymmetries of the nucleon distribution ampli-
tudes become visible. We could confirm the common belief that the asymmetries
of the nucleon distribution amplitude are noticeably smaller than suggested by
QCD sum rules. However, the results obtained from both analysis methods do
not allow reliable quantitative predictions. Furthermore, by improving the quality
of the values for higher moments by applying the “fully correlated* method, the
results for the normalisation constants become worse as the correlators for higher
moments introduced a small systematic shift of the nucleon mass on the lattice.
Although the different results are still consistent to each other, this effect can be
only reduced by higher statistics within this analysis approach.

Unsatisfied by this situation we have developed and applied a new analysis
method, in this work called partially constrained* (Subsection[5.3.1)) as it is based
on the theoretical constraints from momentum conservation. In this method the
statistical properties of the relevant moment ratios are greatly improved and one
can completely avoid the calculation of normalisation constants and energies for
higher moments. Of course one has to use the renormalisation matrices obtained
in [131] as input in a much earlier analysis stage for this method in order to deter-
mine the absolute values of moments and asymmetries. However, as the statistical
uncertainties for the renormalisation matrices are small compared to other sources
of statistical errors in this analysis, we could greatly improve the statistical quality
of our results by the new approach. As an extension and a further improvement of
this method we proposed a "fully constrained* analysis method described in Sub-
section [5.3.2] which improves the quality of results and at the same time reduce
the required computer resources in future lattice calculations.

The accuracy of the constrained analysis allowed us to determine the asym-
metries of the nucleon distribution amplitude with relatively small statistical un-
certainty. This allowed also to resolve small but noticeable deviation from linear
behaviour for ¢'% and ¢! moments as function of the pion mass on the lattice.
Thus, as long as we do not have any additional theoretical input from chiral pertur-
bation theory, it could be interesting to investigate this aspect further numerically
in order to reduce the systematic uncertainty due to chiral extrapolation. Of course
also results from chiral perturbation theory are highly welcome for a quantitative
understanding.

Finally, using our lattice results we have constructed a model function for
the nucleon distribution amplitude guided by its renormalisation group properties.
Of course this model function is not unique, but we can assume that the general
pattern is similar also for the true one, as this model is a natural choice due to the
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renormalisation group characteristics. Furthermore, by applying the light cone
sum rule approach with our results as input, we have calculated some nucleon
related form factors. To our knowledge these results are the first results obtained
from first principle in a systematic, model independent way, and which are not
based on any fits to experimental data.

As some of the calculated quantities are extremely sensitive to the exact val-
ues of the moments, we believe that with increased experimental and theoretical
accuracy, which should be within the reach in near future, it will be possible to
improve the constraints for the nucleon distribution amplitude even further.
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APPENDIX A

Definitions and Relations

A.1 Weyl representation

In Euclidean spacetime the Dirac matrices in Weyl representation have the form

0 0 0 4 00 0 1
o 0 0 o0 =10
=10 —io0o0 =10 10 o0
— 0 00 10 0 O
(A.1)
0 0 ¢ O 0010
0o 00 — 0001
BTl i 000 =1 000
0 ¢« 00 0100
Furthermore we use in our calculations the following conventions
-1 0 00
0 -1 00 1
B=nRBU=1 5 o 1 0 | O = 5 [V, 1] - (A.2)
0 0 01
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A.2 Operators Relations for Leading Twist
Distribution Amplitudes on the Lattice

In the following we summarise the multiplets of irreducibly transforming nu-
cleon distribution amplitude operators in Euclidean space-time obtained from irre-
ducible three-quark operators [[130]. To be as general as possible in these relations
we have rewritten the distribution amplitude operators in the form

VETR(0) = € [i' Dy, - .. Da fa(0))(Chp)apli™ Dyy - - - Dy g5(0)]

% [i"Dy, - .. Dy, (7sh*(0))]-, (A3)
Aglmﬁ(o) = Eabc[ilDM B Dszg(o)](C’Yp%”)aﬁ[imDul s Dumgg(o)]
< ["D" ... D" (h°(0))]-, (A4)
T™(0) = €"[i' Dy, ... Dx, f5(0))(Coes¥s)apli™ Dy, - - Dy, gh(0)]
% [i"Dy, ... Dy, (e 5h (0))],- (A.5)
(A.6)

In the following the total symmetrisation in Lorentz indices denoted by the
curly brackets, e.g.,

2 Lo 2
% 3}:§(V3+V3)
reflects the leading twist projection, thus there is no need to distinguish between
the Lorentz indices connected to derivatives and the uncontracted index of the
~ matrix. In the formulas below we do not note explicitly on which quark the
derivatives act. In all cases it is implied that on left- and right-hand side the
position of the derivatives is the same. The relations for the nucleon distribution
amplitudes, as used by us, are easily obtained from the following relations by the
identification
f—u, g — u, h —d. (A7)

0th moment (I +m +n = 0)

1
(B‘%n’ —ng;", —Bfﬂg, Bg,?n) 1 (7374 [7271 + ’7172}) (A.8)
1
(B3, —By5", —Bilio, Bys") =7 (me [wT® +%T") (A.9)
1
(B3, =By5", =By, Byit) =7 (m2 [nT? = 3T
+y371 [NT? = 2T]) (A.10)

The Blﬁ" ( Bg’i‘") operators from the symmetry class — + + (+ — +) are obtained
from the above by replacing 7 on the right hand side by V + A (V — A).
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1st moments (I +m +n = 1)

(B7R", =B, By, —Bry") =2 (2907 T 4 7une T 4 4py, THY

Fn T3 4 4, T4 (A.11)
(B, ~B B ~BY) =2 (230727 4+ 3000 T 19 4 07700
77T 3 4y, T (A.12)
(B75", By3", Bris, Byit) =2 (e T + 900 4 iy T
+y175T ) (A.13)

The B ( Bym™) operators from the symmetry class D — 4+ + (D + —+) are
obtained from the above by replacing 7 on the right hand side by V + A (V — A).

2nd moments (I +m +n = 2)

V3

(—BEL", —Bys", Bys", Bg") = (T2 T 124 4, 7034
7, 7 134) (A.14)

The Bffﬁ” ( Bé’;?”) operators from the symmetry class DD — + (DD + —+) are
obtained from the above by replacing 7 on the right hand side by V + A (V — A).
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APPENDIX B

Lattice Setup

We have used gauge configurations obtained from rational hybrid Monte Carlo
simulations. Independent configuration were obtained every 40 trajectories. To
increase the number of usable configurations we used multiple source technique,
so that we were able to incorporate every fifth configuration. The parameters of
our lattices are given in Table[B.1] while the smearing parameters are summarised
in Table B.2] For results in physical units the scale is set using the Sommer pa-
rameter with g = 0.467 fm.
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LATTICE SETUP

I} ro/a al[fm] L[fm] FKeeq N3xT am, myL

5.29 6.201(25) 0.075 1.2 0.13400 163 x 32 0.5767(11) 9.2
1.2 0.13500 16% x 32 0.42057(92) 6.7
1.8 0.13550 243 x 48 0.32696(64) 7.8
1.8 0.13590 243 x 48 0.23997(47) 5.8
1.8 0.13620 243 x 48 0.15644(92) 3.8

540 6.946(44) 0.067 1.6 0.13500 243 x 48 0.40301(43) 9.7
1.6 0.13560 243 x 48 0.31232(67) 7.5
1.6 0.13610 242 x 48 0.22081(72) 5.3
1.6 0.13625 242 x 48 0.19053(47) 4.6
1.6 0.13640 243 x 48 0.15353(41) 3.7

Table B.1:
ﬁ Rsea Nsmear Ksmear
5.29 0.13400 60 0.21
0.13500 60 0.21
0.13550 60 0.21
0.13590 60 0.21
0.13620 60 0.21
5.40 0.13500 65 0.21
0.13560 65 0.21
0.13610 75 0.21
0.13625 75 0.21
0.13625 75 0.21

Table B.2: Summary of the smearing parameters used in the evaluation of our
correlators.
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Raw Lattice Results
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RAW LATTICE RESULTS

all 24
# x?/d.o.f # x%/d.o.f

fn/m3 - 103 4.088(77) 6.563  4.53(14) 0.555
—Ai/my - 103[GeV]  27.02(47) 19.31  30.79(78) 6.209
—\1 - 10%[GeV?]  34.37(66) 18.46  36.55(93) 3.484
Ao/my - 10%[GeV]  54.67(95) 19.98  62.9(16) 4.928
A - 103[GeV?] 70.0(14) 18.31  74.8(19) 2.388
—a/m% - 103[GeV]  14.64(39) 8.399  17.02(79) 3.012
—a - 10°[GeV?] 19.91(76) 15.69  22.9(10) 2.877
B/m% - 103[GeV]  14.98(42) 8.191  17.42(83) 0.339
B - 10°[GeV?] 20.52(83) 14.08  23.2(11) 0.053
P00 0.2987(49) 1.125  0.315(10) 0.033
"0 0.2746(48) 0.768  0.263(11) 0.765
P! 0.2840(48) 1.566  0.271(11) 2.555
PO 0.0647(37) 0.276  0.0633(87) 0.711
PO 0.0606(39) 0.821  0.067(12) 0.744
o 0.0651(32) 0.712  0.0592(79) 0.445
>0 0.1149(54) 2.367  0.146(14) 0.597
020 0.0922(50) 0.717  0.096(12) 1.908
¢"02 0.1067(54) 0.944  0.108(13) 2.729

Table C.1: Linear extrapolations of FC results to the chiral limit at § = 5.29
using the 16% x 32 and 243 x 48 lattices (all) and the 243 x 48 lattices only (24).
The x?/d.o.f refers to the linear chiral extrapolation.
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# x%/d.o.f
fn/m3 - 103 4.287(74) 0.658
—\1/my - 103[GeV] 26.40(42) 1.060
—\1 - 103[GeV?] 32.38(60) 1.901
Aa/my - 10°[GeV] 52.96(85) 1.498
Ay - 103[GeV?] 65.1(12) 2.716
—a/m3 - 103[GeV] 14.76(37) 1.359
—a - 103[GeV?] 19.66(70) 1.161
B/m3 - 103[GeV] 14.73(38) 0.952
B - 10%[GeV?] 18.83(72) 5.351
100 0.2939(59) 1.384
P10 0.2719(62) 0.335
PO 0.2740(60) 0.972
o1 0.0646(44) 1.831
P! 0.0688(55) 1.057
H110 0.0707(39) 0.610
¢ 0.1126(68) 5.534
@020 0.0949(61) 0.288
002 0.1060(64) 0.114

Table C.2: Linear extrapolations of FC results to the chiral limit at 3 = 5.40. The
x?2/d.o.f refers to the linear chiral extrapolation.

105



RAW LATTICE RESULTS

all 24

# x%/d.o.f # x%/d.o.f
f/m3 - 10° 4.396(99) 2417 4.67(19) 1.208
Y100 — /010 0.308(13) 0416 0.298(35) 0.027
A100 — _ g010 0.0133(40)  2.495  0.046(13) 0.038
7100 —= 7010 0.307(12) 0.425 0.297(25) 0.263
100 0.324(16) 0.352 0.360(49) 0.001
P10 = @010 — 7001 () 986(12) 1.636  0.248(26) 0.550
P01 — 17001 0.289(15) 1.892  0.229(37) 1.532
Hto0 — @010 0.0194(49) 2.230 0.054(15) 0.056
$100 _ G001 0.0076(39)  2.017  0.036(14) 1.011
G001 _ 010 0.0114(41)  0.679  0.016(13) 1.719
Yo — ot 0.0698(56) 0.197 0.072(17) 0.228
A0 = AL 00006(49)  0.038  0.000(15) 0.004
7o = 1ol 0.0689(44) 0.395 0.068(12) 0.035
O 0.0709(85) 0.068 0.076(27) 0.061
P10l = ¢l = 110 0.0699(62) 0.428 0.071(18) 0.135
P10 = Yo 0.0637(79) 0.149 0.064(24) 0.101
Htot — 01t 0.0012(62) 0.068 0.006(19) 0.023
Pt — 110 0.0025(45) 0.048 0.004(15) 0.096
Htot — @110 —0.0001(47) 0.155 0.005(17) 0.383
200 1020 0.1059(78) 0557 0.129(22) 0.015
AP0 — 4200 0.0132(59) 0.698 0.036(18) 0.131
7200 = 7020 0.1108(79) 0.576 0.119(19) 1.336
200 0.117(12) 0.739  0.165(37) 0.006
V20 = 020 = 002 0.0913(73) 0.261 0.097(19) 0.590
V02 = 002 0.096(12) 0.724 0.066(35) 1.320
200 — 3020 0.0206(68) 0.406 0.039(21) 0.001
200 — 002 0.0060(61) 0.847 0.032(20) 0.601
$002 _ 020 0.0114(55)  0.291  0.005(19) 0.757

Table C.3: Linear extrapolations of PC results to the chiral limit for different
momenta combinations at 3 = 5.29 using the 163 x 32 and 243 x 48 lattices
(all) and the 243 x 48 lattices only (24). The > /d.o.f refers to the linear chiral
extrapolation.
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RAW LATTICE RESULTS

# x?/d.o.f
F/m2, - 103 4.517(96) 0.342
1100 — /010 0.298(19) 0.966
A100 — __ 4010 0.0196(64) 0.960
7100 _ 010 0.300(16) 0.483
(100 0.323(24) 0.777
90010 _ ¢010 — 001 0.276(17) 0.446
01 = /001 0.280(21) 0.399
H100 _ (5010 0.0258(77) 0.928
$100 _ 4001 0.0129(66) 1.291
001 _ 4010 0.0144(66) 2.118
J/011 — y10l 0.0676(69) 0.260
A0 — _ gl01 0.0022(60) 1.063
7011 — 101 0.0707(54) 0.580
QO 0.064(11) 0.533
(p101 = 10l = 110 0.0673(67) 0.504
110 = Yo 0.077(10) 0.049
p1O — Ol 0.0005(73) L7
@Ot — p110 —0.0042(62) 0.246
p1Ot — p110 —0.0036(62) 0.627
17200 _ 17020 0.115(10) 2.034
A020 — __ 4200 0.0195(81) 1.812
77200 _ 020 0.1203(89) 1.450
(200 0.134(16) 2.305
¢020 _ ¢020 — 7002 0.0963(93) 0.646
(002 — 7002 0.106(15) 0.279
$200 _ 4020 0.0300(97) 1.864
$200 _ 4002 0.0092(83) 1.380
$002 — 020 0.0215(80) 0.438

Table C.4: Linear extrapolations of PC results to the chiral limit for different
momenta combinations at 3 = 5.40. The x?/d.o.f refers to the linear chiral ex-
trapolation.
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RAW LATTICE RESULTS

# x%/d.o.f
Fx/m - 10% 4.395(85) 0.267
— i /my - 10°[GeV] 26.8204(48) 0.184
Ao /my - 103[GeV] 53.69(96) 0.403
a/m? - 10°[GeV] 15.09(42) 0.414
3/m3, - 103[GeV] 14.96(44) 1.174
Fx/(Oumy)[GeV 1] 0.1683(14) 0.592
H100 0.3358(11) 6.115
@010 — (010 0.2891(9) 6.960
SO0 (%) 0.3155(9) 1.312
P10 _ 010 0.0468(19) 7.732
$100 _ 5001 0.0206(18) 3.300
GO0 — 010 0.0263(14) 2.526
o1t 0.0932(19) 1.544
H1o1 0.1124(18) 0.287
A10(x) 0.1034(16) 0.135
$200 0.1924(30) 0.338
P20 = p"29(%) 0.1539(28) 0.265
$002 0.1801(36) 0.856
H101 _ ot 0.0200(27) 0.900
P10 _ o1t 0.0100(25) 0.775
G101 _ 5110 0.0094(20) 0.257
$200 _ 5020 0.0364(35) 0.514
$200 _ 3002 0.0115(39) 0.810
G002 _ (5020 0.0255(24) 0.597

Table C.5: Linear extrapolations of ¢!™" and asymmetries to the chiral limit
as obtained from the partially constrained analysis at 3 = 5.40. The x?/d.o.f
refers to the linear chiral extrapolation. The values denoted by the x were used to
determine the absolute normalisation of the associated asymmetries.
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RAW LATTICE RESULTS

# x%/d.o.f

100 0.3563(29) 4.301
P01 (%) 0.2949(26) 2.511
100 — (010 0.0666(34) 6.115
100 — (o001 0.0616(54) 3.300
010 — (o001 0.0056(26) 1.312
O 0.0833(40) 1.259
©'10(x) 0.1135(38) 0.345
20 0.2042(63) 0.564
002 0.1692(68) 1.064
101 — (01 0.0302(47) 1.074
110 — o1 0.0301(74) 0.775
110 — 101 0.0006(37) 0.425
200 — (p020 0.0491(70) 0.505
200 — (p002 0.0345(117) 0.810
002 — (o020 0.0157(56) 1.335

Table C.6: Linear extrapolations of ¢!™" and asymmetries to the chiral limit

as obtained from the partially constrained analysis at 3 = 5.40. The x?/d.o.f
refers to the linear chiral extrapolation. The values denoted by the x were used to
determine the absolute normalisation of the associated asymmetries.
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RAW LATTICE RESULTS

# x%/d.o.f
fn/m3 - 103 4.215(85) 1.878
— A1 /my - 103[GeV]  27.71(52) 10.57
Ao/my - 103[GeV]  55.89(11) 10.54
a/m3 - 103[GeV] 15.10(44) 4.253
B/m3; - 103[GeV] 15.41(45) 2.514
fn/(Amy)[GeV™1]  0.1555(11) 15.49
0 0.3286(12) 7.559
P10 = 010 0.2943(9) 8.530
% (%) 0.3164(9) 1.112
Pp10 — 010 0.0350(20) 9.960
P10 — 001 0.0126(19) 3.996
POt — 010 0.0225(14) 3.315
O 0.1113(26) 3.593
o't 0.1148(26) 0.370
d'10 (%) 0.1085(22) 1.716
»?° 0.1820(44) 4.176
PP%0 = P29 (%) 0.1489(35) 0.363
@Ov? 0.1728(42) 1.677
p1Ot — @011 0.0042(39) 2.489
P10 — O 0.0042(34) 0.636
p1Ot — 110 0.0053(29) 1.159
P00 — V20 0.0367(48) 1.515
200 — 002 0.0076(59) 1.763
P02 — 020 0.0230(39) 1.010
Table C.7: Linear extrapolations of ¢!™" and asymmetries to the chiral limit

as obtained from the partially constrained analysis at 3 = 5.29. The x?/d.o.f
refers to the linear chiral extrapolation. The values denoted by the x were used to
determine the absolute normalisation of the associated asymmetries.
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RAW LATTICE RESULTS

# x%/d.o.f

100 0.3410(30) 5.363
P01 (%) 0.3037(26) 2.682
100 — (010 0.0472(36) 7.560
100 — (o001 0.0373(55) 3.996
010 — (o001 0.0106(26) 1.112
O 0.1164(56) 1.797
©'10(%) 0.1048(50) 0.236
2% 0.1881(93) 3.071
002 0.1640(96) 0.819
101 — (01 0.0001(66) 1.921
10 — O 0.0125(101) 0.636
110 — 101 0.0094(50) 0.069
200 — 0% 0.0442(99) 1.939
200 — (p002 0.0227(178) 1.763
002 — 020 0.0148(91) 1.006

Table C.8: Linear extrapolations of ¢!™" and asymmetries to the chiral limit

as obtained from the partially constrained analysis at 3 = 5.29. The x?/d.o.f
refers to the linear chiral extrapolation. The values denoted by the x were used to
determine the absolute normalisation of the associated asymmetries.
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