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1 Introduction

The understanding of what builds up our visible and non-visible universe was and
still is one of the key questions of physics, starting with the Greek philosopher
Demokrit, who supposed a model that matter is made up of indivisible (Greek:
a-tomos) particles called atoms. This was ignored rather 2000 years, and it took
until the 19th century when the physicist Joseph John Thomson discovered the
existence of one constituent of atoms, namely the electron. In the beginning of the
20th century Ernest Rutherford revealed in his scattering experiments the finding
that atoms are not massive particles, but have an inner structure. He suggested
that the positive charge of an atom and most of its mass is concentrated in a
nucleus at the center of an atom, with the electrons orbiting it like planets around
the sun [1]. Rutherford’s model was further revised by the physicist Niels Bohr
in 1913, when he suggested that the electrons were confined into clearly defined
orbits [2]. After the discovery of pions in cosmic rays in 1947 [3], the development
of improved particle accelerators and particle detectors led to the identification
of a large amount of hadrons. The notion of quarks evolved out of a classification
of these hadrons developed independently in 1961 by Gell-Mann and Nishijima
[4], which was called the eightfold way, as in this scheme the hadrons are grouped
together into octets. This quark model was further revised by Ne’eman and Zweig
[5] and attained great success for, e.g., the prediction of the Ω− baryon [6], which
was eventually discovered at the Brookhaven National Laboratory.

In the 1960’s a new program was started at the Stanford Linear Accelerator
Center (SLAC), where a high-energy electron scatters off a nucleon, interacting
via the exchange of a photon with high virtuality Q2 [7]. The results of this Deep-
Inelastic Scattering (DIS) compelled an interpretation as elastic scattering of the
electron off pointlike, spin-1/2 constituents of the nucleon, carrying fractional
electric charge. These constituents, called “partons”, were subsequently identified
with the quarks.

One assumption of this very successful parton interpretation of DIS was that
partons are practically free (i.e., non-interacting) on the short time scales set
by the high virtuality of the exchanged photon. As a consequence, the underly-
ing theory of the strong interactions must actually be relatively weak on short
time or, equivalently, distant scales. The groundbreaking development was when
Gross, Wilczek and Politzer showed in 1973 that the non-Abelian theory Quantum
Chromodynamics (QCD) of quarks and gluons possessed the remarkable feature
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4 1 Introduction

of “asymptotic freedom”, a discovery for which they were awarded the 2004 No-
bel Prize for Physics [8]. This weak interaction of partons at short distances
were then predicted to lead to visible effects in the experimentally measured DIS
structure function

F1(x,Q
2) =

1

2

∑

q

e2q[q(x,Q
2) + q̄(x,Q2)] . (1.1)

Here, q [q̄] are the probabilities for finding an unpolarized quark [antiquark] in
the unpolarized nucleon with a fraction x of the nucleon’s momentum. Q2 is the
virtuality of the exchanged photon and determines the length scale R ≃ 1/Q
probed in DIS. eq is the electric charge of quark q and the sum runs over all
possible quark flavors being determined by the center-of-mass system (c.m.s.)
energy

√
S of the high-energy experiment. The dependence of the structure

function F1 on the virtuality Q2 is known as “scaling violations”. It essentially
describes the response of the partonic structure of the proton to the resolving
power of the virtual photon, set by its virtuality Q2. Within the theory of QCD,
including the introduction of gluons as the particles mediating the strong force,
precise predictions for the Q2 dependence of F1 can be provided. It turned out
that the predicted scaling violations were observed experimentally and verified
with great precision by the H1 and ZEUS experiments at DESY-HERA [9]. This
led to a great triumph of the theory of strong interactions, namely QCD, and
made DIS to a very useful tool for understanding the structure of nucleons.

Nowadays, QCD is embedded in the Standard Model of particle physics de-
scribing three of the four fundamental forces between the elementary particles:
electromagnetism, weak, and strong interaction, with gauge bosons as the force-
mediating particles.

A further milestone in the study of the nucleon was the advent of polarized
electron beams in the early 1970’s. This now allowed to perform DIS measure-
ments with polarized lepton beams and nucleon targets, offering the first time
the possibility to study whether quarks and antiquarks have preferred spin direc-
tions inside a spin-polarized nucleon. It was first studied at SLAC [10] and the
European Muon Collaboration (EMC) [11]. The program of polarized DIS has
been and still is an enormous successful branch of particle physics. In analogy to
unpolarized DIS, one defines a spin-dependent structure function g1 by

g1(x,Q
2) =

1

2

∑

q

e2q[∆q(x,Q
2) + ∆q̄(x,Q2)] , (1.2)

with ∆q [∆q̄] being the helicity distributions of quarks [antiquarks] in the nucleon.
For example,

∆q(x,Q2) = q+(x,Q2) − q−(x,Q2) (1.3)



5

counts the number density of quarks with the same helicity minus the number
density of quarks with opposite helicity as the nucleon. A more detailed definition
of these quantities will be given in Chapter 2. In the same way, one can define a
helicity distribution for gluons by

∆g(x,Q2) = g+(x,Q2) − g−(x,Q2) . (1.4)

Now, a prime question is how the proton spin, which is well known to be 1
2
, is

composed of the average spins and orbital angular momenta of quarks and gluons
inside the proton. To be more precise, this is expressed by the spin “sum rule”
[12]

Spz =
1

2
=

1

2
∆Σ(Q2) + ∆G(Q2) + Lq,q̄z (Q2) + Lgz(Q

2) , (1.5)

stating that the proton’s spin-1
2

consists of the total quark polarization ∆Σ(Q2) =∫ 1

0
dx[∆u+ ∆ū+ ∆d+ ∆d̄+ ∆s+ ∆s̄](x,Q2), the total gluon polarization

∆G(Q2) =

∫ 1

0

∆g(x,Q2)dx , (1.6)

and of the orbital angular momenta Lq,q̄,gz of quarks and gluons.
The single most prominent result of polarized DIS is the finding that quark and

antiquark spins summed over all flavors provide very little - only about ∼ 20%
- of the proton spin [13]. This result is in striking contrast with predictions
from constituent quark models and has therefore been dubbed “proton spin cri-
sis/surprise”. Even though the identification of nucleon with parton helicity is
not a prediction of QCD, such models have enjoyed success in describing hadron
magnetic moments and spectroscopy. This result now implies that sizable con-
tributions to the nucleon spin should come from the polarization of gluons ∆G
and/or from orbital angular momenta Lq,q̄,gz of partons.

To this day, very little is known about orbital angular momenta of partons.
There are attempts to gain information about it from QCD sum rules [14] and
in exclusive processes like deeply virtual Compton scattering (DVCS) [15]. A
theoretical approach can also be made via Lattice QCD calculations [16].

Scaling violations in polarized DIS allow, in principle, to determine not only
the ∆q + ∆q̄ combinations for various flavors, but also ∆g(x,Q2). However, due
to the limited range in Q2, results from DIS alone are not very conclusive [17].

A better way to access ∆g(x,Q2) in lepton-nucleon scattering is to select fi-
nal states, which are predominantly produced through the photon-gluon fusion
process. Due to the relatively small c.m.s. energy

√
S available in the current

fixed-target experiments, such studies are limited to charm and single- or di-
hadron production at moderate transverse momenta PT . Recent results from
charm production at the Compass experiment [18] at CERN give a rather poor
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picture of the size of ∆g(x,Q2) [19]. It turns out that the production of hadrons
is the much more promising process. Single- and di-hadron production is studied
at Compass and Hermes at DESY and first results have already been published
[20, 21].

The main goal of this work is to provide a reliable theoretical framework to
describe and analyze the photoproduction of two hadrons at high transverse mo-
menta in lepton-nucleon collisions at the next-to-leading order (NLO) in pertur-
bative QCD (pQCD). So far, calculations are available only for single-inclusive
photoproduction of hadrons [22] at NLO and photoproduction of hadron pairs at
leading order (LO) [23]. We will give cross sections and spin asymmetries for both
Compass and Hermes kinematics and make detailed studies of the underlying
subprocesses. This is also crucial for a future global QCD analysis of all spin-
dependent data in terms of polarized parton densities, in particular ∆g(x,Q2).
Due to the lack of a theoretical framework at NLO, di-hadron photoproduction
data have been left out in recent analyses for polarized distribution functions [24].
Further applications of our calculations can be made for a polarized lepton-proton
collider such as the planned Electron-Ion Collider (EIC) [25].

It should be noted that results from polarized lepton-nucleon scattering ex-
periments are now supplemented by a growing amount of data from polarized
proton-proton collisions at BNL-RHIC [26]. The strength of RHIC is the possi-
bility to study several different processes, which are directly sensitive to gluon
polarization ∆g(x,Q2): single-inclusive prompt photon [27], jet [28], hadron [29],
and heavy flavor production at high transverse momenta PT , or any combination
of these final states in two-particle correlations. A recent global analysis, in-
cluding RHIC data, set significant constraints on the gluon helicity distribution,
providing evidence that ∆g(x,Q2) is small in the accessible range of momentum
fraction 0.05 . x . 0.2 [24]. However, due to the limited range in x, statements
about the first moment ∆G(Q2) cannot be made yet.

The basic concept that underlies the theoretical framework in pQCD for high-
PT processes in lepton-nucleon and proton-proton scattering, and any global
analysis thereof, is the factorization theorem [30]. In the presence of a hard
scale like the virtuality Q2 or transverse momenta PT , quarks can be treated as
quasi-free particles due to asymptotic freedom. The factorization theorem now
states that these reactions may be factorized into long-distance pieces that con-
tain the desired information on the spin structure of the nucleon in terms of the
universal parton densities, defined in Eqs. (1.3) and (1.4), and parts that describe
the short-distance, hard interactions of the partons. The latter can be evaluated
order by order in the strong coupling αs(Q

2) within pQCD. This decomposition
of course is not exact and is valid only if a hard scale - like Q2 or PT - is present.
Towards smaller scales there are corrections that are down by inverse powers of
the scale, so-called power corrections.
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Nonetheless, the results of a perturbative calculation very often give excellent
approximations for physical observables, as it has been shown for example for
single-inclusive hadron or jet production at RHIC [28, 29, 31]. In general, pQCD
is an indispensable tool for a better understanding of scattering processes. It is
extremely successful in describing hard-scattering experiments at, e.g., DESY-
HERA and Fermilab’s Tevatron. However, pQCD studies in LO in the strong
coupling αs are suitable only for a rough qualitative picture of the underlying
process, calculations at NLO accuracy are required for a first quantitative analy-
sis to control theoretical uncertainties. However, at the fixed-target experiments
like Compass and Hermes, which operate at relatively low c.m.s. energies, the
standard perturbative QCD framework might be not sufficient and power cor-
rections may become relevant. They will challenge our understanding and the
applicability of factorization and perturbative QCD and may open a window to
the non-perturbative regime, which is very poorly explored and understood so
far.

Before going into the details of predictions for the different experiments, we give
a brief outline of the fundamental concepts of perturbative QCD in Chapter 2.
After defining the Lagrangian of QCD, which underlies all following calculations,
we show how to make predictions for processes with strongly interacting particles
with perturbative methods. We give a general overview of the concept of renor-
malization and factorization and provide a prescription to handle divergencies
showing up in pQCD calculations by dimensional regularization. Furthermore, a
detailed definition of the non-perturbative objects like parton distribution func-
tions and fragmentation functions is presented.

In Chapter 3 we give the details of an analytic calculation of two-hadron pho-
toproduction at NLO accuracy of pQCD. An explicit computation of matrix el-
ements and polarization sums is shown in the leading order approximation first.
Next, we discuss virtual corrections and present the calculation of the three-body
phase space relevant for real gluon emission corrections. Special emphasis is put
on the integration of various combinations of Mandelstam variables. Thereafter,
we show how factorization works in practice.

We present numerical results obtained within the analytic calculation in Chap-
ter 4. Unpolarized and polarized cross sections for Compass and Hermes are
presented, as well as an examination of the theoretical uncertainties arising in the
calculation. Furthermore, we show the sensitivity of the experimentally relevant
double-spin asymmetries to the polarized gluon distribution.

Chapter 5 is dedicated to an approach alternative to the one given in Chapter 3
using the so-called “two cut-off phase space slicing method” [32] based on Monte-
Carlo integration techniques. Here, two cut-off parameters are introduced to
separate the regions of phase space containing the soft and collinear singularities
from the non-singular regions. We give a detailed prescription how this method
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works in practice and show how to obtain finite hadronic cross sections in the
end.

In Chapter 6 we present detailed phenomenological studies for Compass and
Hermes based on the Monte-Carlo approach. We test its applicability and com-
pare it to the results from the analytic calculation. Next, polarized and unpolar-
ized cross sections are shown with kinematics and cuts close to the experimental
setup of the fixed-target experiments.

Parts of this work containing the analytic approach have been published in
Refs. [23, 33], or have been accepted for publication [34]. A publication of the
main results of the second part including the Monte-Carlo approach is currently
in preparation [35]. The main goal of this work is to give a detailed account of the
analytic and Monte-Carlo NLO pQCD calculations. Whereas most technicalities
are omitted in the publications, we provide here all relevant formulas and details
of the calculation.



2 Basic Concepts of Perturbative

QCD

This Chapter is dedicated to the general framework needed in all calculations in
perturbative QCD (pQCD) at NLO accuracy. We introduce the Lagrangian of
QCD and give an idea of how to derive Feynman rules. We will demonstrate the
regularization of divergencies, which inevitably show up in higher order calcula-
tions. The procedure of renormalization is shown to remove ultra-violet divergen-
cies, and the fundamental factorization theorem is given for a proper treatment
of the remaining collinear divergencies stemming from collinear emissions of par-
tons. We close this Chapter by defining parton distribution functions for protons
and photons, and fragmentation functions. Finally, we give an overview of the ex-
perimental status of these quantities. They are needed for the phenomenological
studies presented in Chapter 4 and 6.

This Chapter shall serve as an introduction to the methods used for any pQCD
calculation. However, it is in no way complete and just gives an overview of the
basic concepts. For a detailed account of pQCD, we refer to textbooks like [36].

2.1 The Lagrangian of QCD

The standard model of elementary particles and their interactions has two basic
components: the spontaneously broken SU(2) × U(1) electroweak theory, and the
unbroken SU(3) color gauge theory, known as Quantum Chromodynamics (QCD).
This theory of strong interactions describes the interplay of spin-1

2
quarks and

spin-1 gluons. As in all quantum field theories, the starting point is the Lagrange
density, which reads in the case of QCD

LQCD = Lclassical + Lgauge−fixing + Lghost . (2.1)

The first term is the classical Lagrangian given by

Lclassical =
∑

f

ψ̄f (iγµD
µ −mf )ψf −

1

4
F a
µνF

a,µν . (2.2)

The sum in Eq. (2.2) runs over all active flavors f . ψf denotes a spin-1
2

quark field
of flavor f with a massmf . Color indices are suppressed in Eq. (2.2) for simplicity.

9



10 2 Basic Concepts of Perturbative QCD

The terms in Lclassical describe the interaction of the quarks with massless spin-1
gluons. The field strength tensor F a

µν and the covariant derivative is given by

F a
µν = ∂µA

a
ν + ∂νA

a
µ + gsf

abcAbµA
c
ν

Dµ = ∂µ − igsA
a
µT

a , (2.3)

where Aaµ is the gluonic field with a color index a running from 1 to N2
c − 1 = 8

in a SU(Nc = 3) theory. In Eq. (2.3), gs is the strong coupling constant, and the
fabc are the antisymmetric structure constants of SU(Nc). The T a are a set of
eight independent Hermitian traceless 3×3 matrix generators in the fundamental
or adjoint representation, which satisfy the commutator relation

[T a, T b] = ifabcT c . (2.4)

Both ψf and Aaµ depend on the four-dimensional space-time vector x, which is
suppressed for simplicity. Throughout this work we use the sum convention of
Einstein, where a summation over repeated indices is assumed implicitly. In four
dimensions the Dirac matrices γµ obey

{γµ, γν} = 2gµν , (2.5)

where we have used the convention of Bjorken and Drell [37]

gµν = diag(1,−1,−1,−1) . (2.6)

From now on we use the symbolic notation /a ≡ aµγ
µ. The fundamental difference

of QCD and Quantum Electrodynamics (QED) is the self-interaction of gluons
arising from the non-vanishing commutator term in the field strength tensor of
a non-Abelian theory in Eq. (2.3). This self-interaction of color-charged gluons
is in contrast to the interaction of gauge bosons of QED, the photons, which are
charge-neutral and hence couple only to the electrically charged fermions.

For a proper definition of the propagator for gluon fields the quantization of
the classical field theory requires a gauge-fixing term for the gluon fields. The
choice

Lgauge−fixing = − 1

2η
(∂µAaµ)(∂

νAaν) (2.7)

fixes the class of covariant gauges with a gauge parameter η, ensuring the condi-
tion ∂µA

µ = 0. In principle every value for η is allowed, as the physical observ-
ables must be independent of the gauge used. Throughout this work we adopt
the Feynman gauge (η = 1). In a non-Abelian theory such as QCD the covari-
ant gauge fixing term must be supplemented by a ghost Lagrangian including
anticommuting (fermionic), scalar ghost fields [38]

Lghost = gsf
abcξ̄a∂µ(Acµξ

b) − ξ̄a∂µ∂µξ
a . (2.8)
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These unphysical ghost fields (Faddeev-Popov ghosts) preserve gauge-invariance
and current conservation, respectively, and cancel the unphysical polarization
degrees of freedom of the gluon fields emerging in covariant gauges, as the physical
degrees of freedom have to be transverse.

Altogether, the quantized QCD Lagrangian reads in a covariant gauge

LQCD =
∑

f

ψ̄f (iγµD
µ −mf )ψf −

1

4
F a
µνF

a,µν

− 1

2η
(∂µAaµ)(∂

νAaν)

+ gsf
abcξ̄a∂µ(Acµξ

b) − ξ̄a∂µ∂µξ
a , (2.9)

and is invariant under local gauge transformations.
Analytic or perturbative solutions in QCD are difficult to obtain due to the non-

Abelian nature of the strong force. Depending on the relevant energy regime,
there are several approaches for calculating physical observables. In the low-
energy regime one of the most common methods is Lattice QCD. In a lattice
gauge theory, the space-time is Wick rotated into Euclidean space, discretized,
and replaced by a lattice with lattice spacing a. The quark fields are only defined
at the elements of the lattice, the gluon fields at the links of the lattice. This is
to reduce the analytically intractable path integrals of the continuum theory to
a numerical computation. While it is a slow and resource-intensive approach, it
has wide applicability, giving insight into parts of the theory inaccessible by other
means, such as the baryon mass spectrum or hadronic corrections to weak matrix
elements. However, despite considerable progress, lattice calculations still suffer
from very limited space-time volumes and the extrapolation to the continuum
limit.

Another well-known method is the 1/Nc-expansion, which starts from the
premise that the number of colors is infinite, and thus simplifies certain cal-
culations. One then makes a series of corrections to account for the fact that
Nc = 3. Until now it has been the source of qualitative insight, rather than a
method for quantitative predictions.

In addition to the two approaches given above, another method in the low-
energy regime is chiral perturbation theory. In this regime of QCD, the degrees
of freedom are no longer quarks and gluons, but rather hadrons. Since chiral
perturbation theory assumes chiral symmetry, and therefore massless quarks, it
cannot be used to model interactions of the heavier quarks. In addition, unknown
coupling constants, also called low-energy constants, are associated with terms
in the Lagrangian that must be determined by fitting to experimental data. The
range of applicability is also highly debatable.

These methods, of course, are indispensable for a qualitative insight in the struc-
ture of the strong interactions. However, for precise calculations of cross sections
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and a quantitative description of QCD one must therefore apply the method of
perturbative QCD, which is applicable in the mid-to-high-energy regime. It is also
very important for an analysis of a wealth of experimental data and is known to
work well in the presence of a hard scale. Thus, we choose this approach in our
work. In the following we will explain the details and ingredients necessary for a
calculation in pQCD.

In pQCD we make an expansion in the strong coupling constant gs, with the
use of the fact that gs(µr) decreases if the scale µr increases. This implicates
that quarks move mostly free as non-interacting particles within the nucleons
(asymptotic freedom). QCD is a renormalizable field theory, which implies that
the coupling constant gs must be defined by its value at some renormalization
scale µr, i.e., gs = gs(µr) ≡

√
4παs(µr). This dependence on the renormalization

scale µr can be expressed by the renormalization group equation (RGE)

µr
dgs(µr)

dµr
= β(gs(µr)) , (2.10)

where the QCD beta function is a power series in gs beginning at O(g3
s)

β(gs) = −gs
(
αs
4π
β1 +

(αs
4π

)2

β2 + ...

)
. (2.11)

β1 and β2 can be obtained from a 1- and 2-loop calculation, respectively, of any
physical quantity that depends on µr in perturbation theory.

At LO and NLO the β1 and β2 have the form

β1 =
1

3
(11Nc − 2nf )

β2 =
1

3
(102Nc − 38nf ) , (2.12)

with nf the number of active flavors. The solution of Eq. (2.10) can be written
in NLO, i.e., taking into account both the β1 and β2 term in Eq. (2.11), in the
following form [39]

αs(µr) ≃
4π

β1 ln (µ2
r/Λ

2)

[
1 − β2

β2
1

ln [ln (µ2
r/Λ

2)]

ln (µ2
r/Λ

2)

]
. (2.13)

Λ is the fundamental parameter in QCD and has to be determined from exper-
iment, giving values Λ ≃ O(200 MeV). The theory of pQCD is then applicable
only for hard scales Q ≫ Λ. It should be noted that no analytical solution of
Eq. (2.10) exists beyond the LO approximation. Some more details on renormal-
ization and how it works in practice can be found in the next Section.
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Figure 2.1: The running coupling constant αs(Q). The Figure is taken from [40].

Since the strong coupling αs(µr) enters the calculation of all processes in leading
order and beyond, it can be determined, in principle, in all processes involving
hadronic particles. The energy dependence of the strong coupling αs(µr) provides
the most powerful and decisive test of the validity of QCD. Figure 2.1 shows
a compilation of many measurements of αs(µr) made in a variety of physical
processes, at energy scales ranging from just above 1 GeV up to 200 GeV. The
predicted logarithmic decrease with energy implied by Eq. (2.13) is dramatically
seen. This is a fundamental property of QCD, known as asymptotic freedom
[8]. It consists of the observation that at larger renormalization scales µr, or
correspondingly shorter time scales, the coupling weakens, and indeed vanishes
in the limit µr → ∞. As argued at the beginning of this Section, this is the basis
for all pQCD calculations.

Thus, in the high-energy (short-distance) regime quarks and gluons can be
treated as quasi-free particles, and interactions between them occur only as small
perturbations. This allows us to calculate an experimentally observable quantity
R in a power expansion of αs:

R =
∞∑

n=0

αnsR
(n) . (2.14)
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Even if the limit αs → 0 is considered, and the series in Eq. (2.14) is summed to
all orders, the power expansion does not uniquely define R. One basic feature of
pQCD is to assume this power expansion to be asymptotic, i.e.,

∣∣∣∣∣R−
N∑

n=0

αnsR
(n)

∣∣∣∣∣ ≤ BN+1α
N+1
s , (2.15)

for allN . Provided R(n) ∼ BN , the best approximation is achieved when the series
is truncated at its minimal term and the truncation error is roughly given by the
minimal term of the series. For a detailed discussion see, e.g., [41]. Asymptotic
series may yield good approximations for the physical relevant quantity, even if the
coefficientsBN do not converge. The divergence is due to non-perturbative effects.
At collider energies it has been shown in numerous cases that perturbation theory
works well in today’s experiments, if the particle’s energies are high enough.

The truncation of the series in Eq. (2.14) at a fixed order in the strong coupling
αs leads to a residual dependence on unphysical scales µ, such as µr introduced
to renormalize the theory. In principle the quantity R in Eq. (2.14) is completely
independent of a scale µ

µ
d

dµ
R = µ

d

dµ

∞∑

n=0

αnsR
(n) = 0 . (2.16)

At a given fixed order in αs the power series acquires a dependence on the scale.
This residual dependence is due to the higher orders in αs. It gives a gauge for
the reliability of pQCD calculations, much more than the actual size of higher
order corrections. Controlling the theoretical uncertainties stemming from scale
dependence in a confident way motivates to go to NLO and beyond.

However, the connection between the perturbatively calculable partonic cross
sections and hadrons in the initial and final states requires much more than
asymptotic freedom. The problem arises already at the parton level. When one
calculates partonic processes beyond LO (tree graphs), cross sections involving a
definite number of particles in the final state will be divergent for certain kine-
matic configurations, in the limit of high energy or vanishing mass of the partons,
even after renormalization. One can obtain finite results only for certain classes
of cross sections, generally of the inclusive type, which are either “infrared safe”,
or that can be factorized into an infrared safe (short-distance) component and a
non-perturbative (long-distance) component, which are determined phenomeno-
logically from experiment. An observable is infrared safe, when its value does
not change abruptly, when an additional soft gluon is emitted, or a parton splits
collinearly into a pair of partons. Such configurations are treated with the con-
cept of factorization and renormalization, and will be discussed in detail in the
next two Sections.
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Before turning to the details of factorization and renormalization, we need to
derive Feynman rules to obtain the amplitudes and matrix elements for every
subprocess contributing to the considered process. These rules are defined from
the operator

SQCD = i

∫
d4xLQCD , (2.17)

with LQCD as given in Eq. (2.9). We can separate the Lagrangian density into a
free piece L0, which contains all the terms bi-linear in the fields, and an interaction
piece Lint containing all the rest

SQCD = S0 + Sint = i

∫
d4xL0 + i

∫
d4xLint . (2.18)

One now obtains the Feynman rules for the inverse propagators from −S0, and
the interactions are derived from Sint. Thus, for example, the inverse fermion
propagator in momentum space is obtained by making the identification

∂µ = −ipµ (2.19)

for an incoming field. In momentum space the two-point function of the quark
field depends on a single momentum p. It can now be written as

Γ
(2)
ij (p) = −iδij(/p−m) , (2.20)

which is the inverse of the propagator. Similar Feynman rules can be obtained
for the gluon field and the interactions of quarks and gluons. We have listed all
Feynman rules relevant for photoproduction in Appendix A. In the Appendix,
the iǫ prescription for the pole of the propagator is added to preserve causality.

2.2 Dimensional Regularization and

Renormalization

After introducing the Lagrangian of QCD, Eq. (2.9), and establishing the Feyn-
man rules, see Appendix A, we are in a position to carry out perturbative cal-
culations of cross sections for any process involving (anti-)quarks and gluons.
However, problems occur beyond the LO approximation, as one has to deal with
divergencies showing up in the intermediate steps of the calculations. The proce-
dure to make divergent integrals manifest by introducing some suitable prescrip-
tion is generically called regularization. It is a purely mathematical procedure
and has no physical consequences. Accordingly it is not a unique prescription,
there is a variety of regularization schemes. Before going into the details of dimen-
sional regularization [42, 43], commonly used in the most calculations in pQCD,
we discuss first the different types of divergencies showing up beyond the LO.

There are three different types of divergencies:
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1. Ultra-violet (UV) divergencies emerge, if one has to deal with closed loops
in Feynman diagrams. As the loop momentum is not observed, it can reach
in principle any value and thus has to be integrated from 0 to infinity. E.g.,
at high momentum p the integral over the internal propagator of a quark

∫ ∞

0

d4p
/p+m

p2 −m2

diverges. This is for example relevant for self-energies of gluons, quarks and
antiquarks as well as box diagrams. We refer to Chapter 3 for a detailed
discussion of diagrams of this type.

2. Infrared (IR) or soft divergencies show up, if the momentum of an emitted
parton approaches zero.

3. Collinear divergencies are encountered, when the emission of a parton is
collinear to another parton leg.

A physical cross section measured in experiment is, of course, free of any diver-
gencies. UV divergencies are removed by the renormalization procedure. The IR
and simultaneous IR and collinear divergencies cancel in the sum off all diagrams
contributing to a specific process, according to a theorem by Kinoshita, Lee, and
Nauenberg [44, 45, 46]. The remaining collinear divergencies are factorized from
the hard partonic cross section into the bare parton distribution functions and
fragmentation functions, depending on whether the collinearity is in the initial or
final state. The factorization procedure will be discussed in detail in Section 2.3.

Throughout this work we use dimensional regularization [42, 43]. Here, one
assumes that the space-time dimension is extended to n = 4−2ε with an a priori
arbitrary but small parameter ε. Integrals, which are divergent in four dimen-
sions, are defined in n dimensions. The divergencies are “hidden” in quantities
proportional to 1/ε and 1/ε2, whose coefficients must be canceled by renormal-
ization and/or factorization and in the sum of all contributing diagrams to obtain
physical quantities in the limit ε → 0. Contrary to many other regulators, di-
mensional regularization is known to lead to consistent results (e.g., preserving
Ward identities) to all orders in perturbation theory.

In dimensional regularization, every integral over momentum space has to be
replaced by ∫

d4p

(2π)4
→

∫
dnp

(2π)n
, (2.21)

and the contracted metric tensor is

gµµ = gµνg
µν = n . (2.22)
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To keep the action in Eq. (2.17) dimensionless, one has to replace the dimension-
less coupling gs by a dimensional one g̃s

gs → g̃s = µ
2−n

2

d gs , (2.23)

with µd being an arbitrary mass scale. The Dirac algebra in n dimensions
is unchanged - the Dirac matrices still satisfy the anticommutation relation of
Eq. (2.5). However, problems occur in the polarized case. The projection onto
specified helicities of spin-1/2 quarks and spin-1 gauge bosons (gluons and pho-
tons) requires objects like γ5 and ǫµνρσ, which are not defined in n 6= 4 dimensions
from first principles. Throughout this work we use the so-called ’t Hooft-Veltman-
Breitenlohner-Maison (HVBM) scheme [43, 47]. Here, one carefully distinguishes
between objects in the “usual” 4, or in the additional (n− 4) space-time dimen-
sions. This is realized via a decomposition of the n-dimensional metric tensor gµν
into a (n− 4)-dimensional part ĝµν and a 4-dimensional part ˆ̂gµν

gµν = ĝµν + ˆ̂gµν . (2.24)

In the same way we get a decomposition of pµ

pµ = (ˆ̂pµ, p̂µ) = (p0, p1, ..., pn−1) , (2.25)

with ˆ̂pµ and p̂µ the 4- and (n− 4)-dimensional part, and of the Dirac-γ matrices

γµ = γ̂µ + ˆ̂γµ . (2.26)

The tensor ǫµνρσ is defined as usual for µ, ν, ρ, σ = 0, 1, 2, 3 and vanishes in the
extra dimensions. We note that an anticommuting γ5 in n dimensions would lead
to inconsistent results. Thus, it is defined to have a non-anticommuting part

{ˆ̂γµ, γ5} = 0, [γ̂µ, γ5] = 0 . (2.27)

In the matrix elements the extension to n dimensions may lead to factors called
“hat-momenta”, denoted by p̂µ in the additional (n − 4) dimensions. They ap-
pear in polarized matrix elements discussed in Sec. 3.4.2 in detail and require a
special treatment when integrating over the phase space of unobserved partons.
In addition, special care has to be taken for massless spin-1 bosons like gluons
and photons. In n dimensions they do not have (4−2) = 2, but (n−2) = 2(1−ε)
spin degrees of freedom. This is relevant when averaging over polarizations, as,
for instance, in unpolarized cross sections. In combination with poles in 1/ε and
1/ε2 the factor 1/[2(1 − ε)] gives additional finite contributions.

In order to illustrate how dimensional regularization works in practice, we take a
specific example of a UV divergent integral, namely the quark self-energy Σij(p),
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p-k

νµ b,a,

nl

ji

k

pp

Figure 2.2: Quark self-energy. Latin indices denote the color, Greek indices the
Lorentz structure.

schematically depicted in Fig. 2.2. The relation to the full quark propagator
Sij(p), which contains all radiative corrections, reads

Sij(p) = i
δij

/p−m+ Σ(p)
, (2.28)

with Σij(p) = δijΣ(p).
Following the Feynman rules given in Appendix A and neglecting the masses

of the quark and gluon, the quark self-energy in 4 dimensions can be written as

Σij(p) = −
∫

d4k

(2π)4
gsγµT

a
il

δln(/p− /k)

(p− k)2
gsγνT

b
nj

δab
k2
gµν . (2.29)

Keeping in mind that we use Einstein’s sum convention, we get for the color
factor

δlnδabT
a
ilT

b
nj =

∑

a,b,l,n

δlnδabT
a
ilT

b
nj = CF δij , (2.30)

with CF = (N2
c − 1)/(2Nc) = 4/3, and obtain for the self-energy

Σ(p) = −CF g2
s

∫
d4k

(2π)4

γµ(/p− /k)γµ

k2(p− k)2
. (2.31)

This 4-dimensional integral is linearly divergent, as can be easily seen by simple
power counting in k ∫

d4k
/k

k2k2
∼ lim

K→∞
K . (2.32)

Thus, the divergence stems from the high-momentum region |k| → ∞. Now,
the divergence can be removed, if the dimension of the integral is changed to
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n = (4 − 2ε) < 4. Using dimensional regularization, the regularized form of
Eq. (2.31) reads

Σ(p) = CF g̃
2
s(2 − n)

∫
dnk

(2π)n
/k − /p

k2(p− k)2
, (2.33)

where we have used
γµγνγ

µ = (2 − n)γν , (2.34)

and replacing gs according to Eq. (2.23). Using Feynman parameterization and
going to the Euclidean space by a Wick rotation, one can compute the integral
over k and obtains for the quark self-energy

Σ(p) = iCF
g2
s

(4π)2/p

(
4πµ2

d

−p2

)ε
(1 + ε)

(
1

ε
− γE

)
+ O(ε) , (2.35)

where γE is the Euler-Mascheroni constant. This unrenormalized expression for
the quark self-energy is obviously divergent as ε→ 0, and hence this limit cannot
be taken yet. Inserting Eq. (2.35) in Eq. (2.28) and again neglecting the mass m
yields

Sij(p) = i
δij

/p

1

1 + Σ̃(p2)
, (2.36)

where

Σ̃(p2) = iCF
g2
s

(4π)2

(
1 +

1

ε
− γE + ln

4πµ2
d

−p2

)
+ O(ε) . (2.37)

The procedure to remove UV divergencies like in Eq. (2.37) is called renormal-
ization. In a renormalizable field theory like QCD, this is achieved by redefining
the gluon, quark, and ghost fields as well as coupling constants

Aaµ = Z
1/2
3 Aar,µ ,

ψ = Z
1/2
2 ψr ,

ξa = Z̃
1/2
3 ξar ,

gs = Zggr,s ,

η = Z3ηr ,

m = Zmmr , (2.38)

by so-called renormalization constants for gluon fields (Z3), quark fields (Z2),
ghost fields (Z̃3), masses (Zm), and coupling constants (Zg). The renormaliza-
tion constant for the gauge parameter η is chosen to be the same as for the gluon
field Aaµ, so that the gauge-fixing term is kept in the same form under this redefini-
tion. This redefinition can be done systematically order-by-order in perturbation
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theory. The renormalization constants are not independent, but related among
each other via Slavnov-Taylor identities [48, 49], reflecting the gauge-symmetry
of LQCD.

In a consistent way, we now renormalize the full quark propagator by the factor
Z2

Sr,ij(p) =
1

Z2

Sij(p) , (2.39)

with Sr,ij(p) being the renormalized (finite) quark propagator. Z2 is now ex-
panded in powers of the strong coupling constant gs

Z2 = 1 − z2 + O(g4
s) , (2.40)

with z2 being the term of order g2
s , which is assumed to be divergent. The

renormalized full quark propagator now takes the form (up to O(g2
s))

Sr,ij(p) = i
δij

/p

1

1 + Σ̃(p2) − z2

. (2.41)

Now the propagator is free of any divergencies, and hence (Σ̃(p2) − z2) should
be finite. This requirement determines the constant z2 up to a finite additive
constant. In order to fix this arbitrariness in z2, we need an additional require-
ment, which defines a renormalization scheme. There are a variety of schemes
depending on the specific problem. The most common one is the Modified Mini-
mal Subtraction scheme (MS scheme) [50], used throughout this work. It results
from the observation that poles always appear in the following combination

1

ε
− γE + ln 4π , (2.42)

which is a special feature in dimensional regularization. Hence, it is convenient
to not only eliminate the pole 1/ε, as it is done in the Minimal Subtraction
scheme (MS scheme) [51], but to subtract the accompanied terms as well. The
renormalization constant z2 takes the following form in the MS scheme

z2 = i CF
g2
s

(4π)2

(
1

ε
− γE + ln 4π

)
. (2.43)

The renormalized and finite MS quark propagator reads

Sr,ij = i
δij

/p

[
1 + iCF

g2
s

(4π)2

(
1 + ln

µ2
d

−p2

)]−1

. (2.44)

Equation (2.44) is only valid for the off-shell case, i.e., p2 6= 0. The renormal-
ization prescription has to be slightly modified for on-shell quarks appearing in
Feynman graphs with external quark lines. Such details are discussed, e.g., in
[31].
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2.3 Factorization, Parton Distribution Functions,

and Fragmentation Functions

In this Section we introduce the concept of factorization and give definitions
for parton distribution functions and fragmentation functions, which link us to
apply perturbative calculations to processes involving hadrons instead of partons.
Factorization is the property that some cross section or amplitude is a product of
two or more factors and that each factor depends only on physics happening on
one momentum (or distance/time) scale [30]. The process is supposed to involve
some large momentum transfer, in our case the high transverse momentum PT
of an observed hadron, and corrections to the factorized form are suppressed by
inverse powers of this scale. Factorization allows to derive predictions for cross
sections by separating (factorizing) long-distance from short-distance behavior
in a systematic fashion. We note that a rigorous proof of factorization to all
orders in perturbation theory is an intricate problem and has been established
only in very few cases like DIS. Nevertheless, pQCD calculations are in excellent
agreement with a wealth of experimental data, making pQCD to a well established
framework.

We now assume that all UV divergencies are canceled via the renormalization
procedure and IR as well as simultaneous IR and collinear divergencies have been
removed in the appropriate sum of all diagrams. Thus, the only divergencies
appearing in this step of a NLO calculation are simple collinear poles. In the
factorization procedure, these poles are now factorized from the hard partonic
cross section into the bare parton distribution and fragmentation functions, which
thereby become scale dependent.

We are interested in polarized photoproduction with two observed hadrons in
the final state. The polarized hadronic cross section for this process, character-
ized by a hard momentum transfer Q, can generically be written as convolution,
denoted by the symbol ⊗, of soft (long-distance) and hard (short-distance) com-
ponents

d∆σ(Q) = ∆fa(µf ) ⊗ ∆fb(µf )

⊗ d∆σ̂(Q/µf , µf/µ
′
f , Q/µ

′
f ) ⊗Dc(µ

′
f ) ⊗Dd(µ

′
f ) . (2.45)

∆fa,b(µf ) denote polarized parton distribution functions (PDF), evaluated at
a factorization scale µf , and Dc,d(µ

′
f ) are the fragmentation functions at an in

principle other factorization scale µ′
f . A detailed definition of these objects will be

given at the end of this Section. d∆σ̂ represents the hard partonic cross section,
evaluated at a given order in the strong coupling constant αs, at a momentum
scale Q, and depending on the ratios of the appearing scales Q,µf , µ

′
f . The

dependence on the renormalization scale µr is suppressed for simplicity.
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The reshuffling of the collinear poles from the hard partonic cross section to the
bare parton distributions involves some degree of arbitrariness, which is known
as factorization scheme dependence. One can shift finite terms together with
the poles in ε. As in the renormalization procedure, we will mostly employ
the MS factorization scheme, where 1/ε poles are subtracted together with the
(ln 4π − γE)-terms appearing in dimensional regularization.

The computation of two-hadron production in lepton-nucleon scattering in-
volves also processes, where the exchanged photon fluctuates into a vector meson
with the same quantum numbers (“resolved photon”). A proper factorization of
all collinear divergencies requires the introduction of photon PDFs. In this case,
we slightly deviate from the MS scheme, and use the DISγ scheme [52], where
the coefficient function Cγ in F γ

2 for the NLO process γ∗γ → qq̄ is absorbed into
the definition of the photonic parton densities. Details about the transformation
from one scheme to another will be given in Chapter 3.

The expression for the hadronic cross section in Eq. (2.45) is then free of any
divergencies and is the starting point for the calculation of any observable in
pQCD involving two hadrons in the final state.

We now turn to a detailed definition of the (un)polarized parton distribution
and fragmentation functions. Parton distribution functions fHi (x, µ) describe the
internal structure of hadrons. They are defined directly in terms of hadronic
matrix elements of bi-local operators [53]. In their simplest form, these matrix

elements may be given in terms of operators bi(xp,~kT ) and b†i (xp,
~kT ), which

annihilate and create a parton i with longitudinal momentum xp and transverse
momentum ~kT in a hadron H of momentum p

fHi (x, µ) =

∫
d2~kT
(2π)2

〈H(p)|b†i(xp,~kT )bi(xp,~kT )|H(p)〉 . (2.46)

In the light-cone gauge, A+ = 0, the quark distribution function can be re-
expressed in terms of the quark fields for parton i by

fHi (x, µ) =

∫ ∞

−∞

dy−

4π
e−ixp

+y−〈H(p)|ψ̄i(0+, y−,~0T )γ+ψi(0)|H(p)〉 , (2.47)

with the use of light-cone coordinates. Similar definitions of distribution functions
can be made for antiquarks and gluons. At the LO in pQCD, they give the
probability for finding a parton i in a hadron H at a scale µ with longitudinal
momentum fraction x of the hadron’s momentum. Beyond the LO, Eq. (2.47) is
subject to renormalization and hence requires the choice of a particular scheme,
e.g., the MS scheme.

Although perturbative QCD cannot predict the absolute normalization of these
parton distributions, their evolution with the factorization scale can be calculated.
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More precisely, the scale dependence is governed by a set of coupled integro-
differential evolution equations, valid to all orders in αs(µ), known as DGLAP
evolution equations [54]

µ
d

dµ

(
fHq (x, µ)

fHg (x, µ)

)
=
αs
2π

∫ 1

x

dy

y

(
Pqq Pqg

Pgq Pgg

)

(y,αs(µ))

(
fHq (x/y, µ)

fHg (x/y, µ)

)
. (2.48)

The kernels Pij(x, µ), known as splitting functions, have the physical interpreta-
tion as probability densities for obtaining a parton of type i from one of type j
with a fraction x of the parent parton’s momentum. They have a perturbative
expansion

Pij(x, µ) = P
(1)
ij (x)

αs(µ)

π
+ P

(2)
ij (x)

(
αs(µ)

π

)2

+ ... , (2.49)

and the P
(k)
ij are known up to three loops (next-to-next-to-leading order) in the

unpolarized case [55]. Equation (2.48) can also be obtained by demanding that
the left side of Eq. (2.45) is independent of µf , i.e.,

dσ(Q)

d lnµf
= 0 . (2.50)

The definition giving the PDFs in terms of operators, Eq. (2.47), is process in-
dependent. The same distributions then appear in the QCD formula for any pro-
cess with one or two hadrons in the initial state, and thus exhibit the property of
universality. Needless to say, the parton distributions and the partonic cross sec-
tion in Eq. (2.45) have to be evaluated in the same renormalization/factorization
scheme.

In principle, some integer moments of Eq. (2.47) can be calculated by using the
method of Lattice QCD. Taking Mellin moments of Eq. (2.47) turns the bi-local
into local operators, which is required for a Lattice calculation. However, a few
moments are insufficient to reconstruct the x-shape of the parton distribution
functions. For this reason, they have to be determined by a phenomenological
global QCD analysis of experimental data.

The most comprehensive analyses are being done by the CTEQ [56, 57] and
MRST [58] groups. To perform such a fit one chooses a parameterization for
the distributions at some initial scale µ0. Certain sum rules that follow from
the definition of the PDFs constrain the parameterization. An example is the
momentum sum rule

∑

i

∫ 1

0

xfHi (x, µ)dx = 1 , (2.51)
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Figure 2.3: The two upper plots show parton densities xf pi (x,Q) for the proton in
the CTEQ6 NLO parameterization at a scale Q = 2 GeV (left) and
Q = 100 GeV (right). The lower plots show the uncertainty bands for
the up-quark and the gluon, represented by the shaded area. In addition,
ratios to other results for PDFs are shown. The solid and dashed lines
stand for the comparison to CTEQ5 [59], the dotted line for MRST2001
[58]. The lower plots are evaluated at a scale Q = 3.16 GeV. Figures are
taken from [56].
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stating that the total momentum of a hadron H must be carried by all different
types of partons i, indicated by the sum in Eq. (2.51).

Using the obtained parton densities for the calculation of a measurable quan-
tity and comparing it with the experimental results, one gets an estimate for the
quality of the used parameterization in terms of χ2. One then finds an optimized
functional shape for the parton densities by minimizing χ2. Given some set of
values for the parameters describing the fHi (x, µ0), one can determine fHi (x, µ)
for µ > µ0 relevant for experimental data, by using the DGLAP equations in
Eq. (2.48). These distributions can then be used to predict other physical ob-
servables at scales far beyond those presently achievable. Beyond this, however,
the very possibility of a global fit tests the internal consistency of our fundamental
theoretical picture of hard scattering, based on factorization and the universality
of parton distributions.

Figure 2.3 shows the unpolarized CTEQ6 NLO parton distribution functions
at scales µ = Q = 2 GeV, and Q = 100 GeV for a proton in the MS scheme used
throughout this work. The lower plots show uncertainty bands for the up-quark
and gluon distributions at a scale Q = 3.16 GeV. One can see that both the up
and down distribution is peaked at a value of x ≈ 0.3, as expected in the naive
parton model, where the three valence quarks share almost all the momentum of
the nucleon. At lower values of x, the gluon dominates the parton content of a
proton. The lower plots show that the up-quark is determined very well up to
x ≃ 0.6, in contrast to the gluon distribution, where the errors are in general
larger, in particular, for x > 0.3. This complicates also a future extraction of ∆g
in this region of x from measurements of spin asymmetries, which are sensitive
to ∆g/g. Clearly, our knowledge of the unpolarized gluon distribution has to be
improved as well. A more precise extraction of unpolarized PDFs is one of the
subjects at the Tevatron at Fermilab and the upcoming Large Hadron Collider
(LHC) at CERN [60, 61].

Polarized, helicity-dependent parton distributions are defined via

∆fHi (x, µ) ≡ f
H+

i+ (x, µ) − f
H+

i− (x, µ) , (2.52)

whereas in the unpolarized case it takes the form

fHi (x, µ) ≡ f
H+

i+ (x, µ) + f
H+

i− (x, µ) . (2.53)

f
H+

i+ (x, µ) [f
H+

i− (x, µ)] denote the distribution of partons with its spin [anti-]aligned
to the direction of the hadron’s spin. Because of parity conservation we have two
constraints:

f
H+

i+ (x, µ) = f
H−
i− (x, µ) , and f

H+

i− (x, µ) = f
H−
i+ (x, µ) . (2.54)
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Figure 2.4: The polarized parton densities by DSSV for the sea and gluon distributions
as a function of the Bjorken-x, compared to previous fits [17, 62]. The
PDFs are evaluated at a scale µ2 = Q2 = 10 GeV2. The uncertainty
bands correspond to ∆χ2 = 1 and ∆χ2/χ2 = 2%, respectively. The
Figure is taken from [24].

The helicity-dependent parton distributions are sensitive to the longitudinal
polarization of the parton inside the hadron at given momentum fraction x and
scale µ. The first moments of these polarized PDFs enter the spin sum rule
in Eq. (1.5) and are therefore closely related to the total spin of the respective
hadron. To minimize extrapolation uncertainties in the first moment, it is crucial
to know the x-shape of the polarized PDFs as accurate as possible. Generally,
the first moment of ∆g, the polarized gluon distribution, is not a local operator
and hence not amenable to Lattice QCD.

There are DGLAP-like evolution equations also for polarized PDFs by simply
replacing the unpolarized quantities by their polarized counterparts in Eq. (2.48).
The polarized splitting functions are known up to two loops, i.e. NLO [63, 64].
The procedure for determining helicity-dependent distributions is similar to that
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one in the unpolarized case. However, due to the lack of experimental data
containing information on the structure of the longitudinally polarized proton, the
polarized PDFs are not determined with high accuracy. The positivity constraint,

|∆f(x, µ)| ≤ f(x, µ) , (2.55)

provides some guidance in LO. This constraint no longer strictly holds true in
NLO, as parton densities become scheme dependent unphysical objects.

Several groups provide sets of polarized PDFs, mainly extracted from polarized
Deep-Inelastic Scattering, where the light sea is assumed to be flavor-symmetric
[17, 65, 66]. However, other groups provided sets of helicity-dependent distribu-
tions including Semi-Inclusive DIS (SIDIS) data [62], and also data from RHIC
proton-proton measurements [24] in their fits. Here, a discrimination of the light
sea distributions can be achieved. Figure 2.4 shows the best fits of the DSSV
group of polarized parton densities for the sea and gluon distributions as a func-
tion of the Bjorken-x at a scale µ2 = Q2 = 10 GeV2. The uncertainty bands
correspond to ∆χ2 = 1 (darker band), and ∆χ2/χ2 = 2% (light shaded band),
respectively. Their fits are compared to previous fits by GRSV [17] and DNS [62].
The dotted lines indicate the positivity constraint of Eq. (2.55), giving a maximal
and minimal boundary for ∆g. Whereas valence quark distributions are deter-
mined very well, the sea quark distributions exhibit larger error bands. At the
same degree, the situation is completely unsatisfactory for the helicity-dependent
gluon distribution ∆g(x, µ). There is some evidence that it is small in the re-
gion 0.05 . x . 0.2, but the first moment still suffers from large extrapolation
uncertainties, and thus no reliable value for it can be quoted.

In this Thesis we will provide the theoretical framework necessary for an ex-
traction of ∆g(x, µ) in the photoproduction of hadron pairs at fixed-target ex-
periments like Compass and Hermes. These results can then be included in a
future NLO global analysis.

As mentioned before, such a calculation involves leptons in the initial state.
Thus, we also have to discuss the partonic structure of the photon radiated off the
lepton. This is relevant for the resolved contributions to the cross section. It has
been shown that such resolved processes contribute significantly to photoproduc-
tion cross sections at HERA energies [67], and hence should not be disregarded.
In any case, they are required for consistently factorizing all collinear singularities
in a photoproduction cross section.

In practice, this is conveniently done by introducing a [polarized] parton distri-
bution function in a lepton [∆]f l, which is a convolution of a [polarized] lepton-
to-photon splitting function [∆]Pγl, and a [polarized] photon structure function
[∆]fγ

[∆]f l(x, µ) =

∫ 1

x

dy

y
[∆]Pγl(y)[∆]fγ(xγ =

x

y
, µ) . (2.56)
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Calculating [∆]Pγl, the Weizsäcker-Williams equivalent photon spectrum, is a
Quantum Electrodynamics (QED) issue. In the polarized case it reads [68]

∆Pγl(y) =
αem
2π

[
1 − (1 − y)2

y
ln
Q2
max(1 − y)

m2
l y

2
+ 2m2

l y
2
( 1

Q2
max

− 1 − y

m2
l y

2

)]
,

(2.57)
where αem = g2

e/(4π) is the electromagnetic coupling constant. ∆Pγl(y) describes
the radiation of a photon with momentum fraction y off the lepton of mass ml

with a virtuality less than Q2
max. The terms in Eq. (2.57) containing logarithms

are of special relevance for muon beam experiments, i.e., Compass.
The photon differs from a hadron in hard scattering processes. On the one

hand, it can interact directly as a pointlike particle, where

[∆]fγ(x, µ) = δ(1 − x) , (2.58)

on the other hand, it can fluctuate into a hadron-like structure of quarks, anti-
quarks and gluons. In the resolved case, the unpolarized densities fγ have been
mainly determined from γ∗γ DIS in e+e− annihilations [69]. The polarized par-
ton distributions are completely unknown at the moment. Their evolution equa-
tions (similarly for spin-averaged distributions) have an additional inhomogeneity
[52, 70, 71]

µ
d∆qγ(x, µ)

dµ
=

αs
2π

(∆kq(x, µ) + {∆Pqq ⊗ ∆qγ + ∆Pqg ⊗ ∆gγ})

µ
d∆gγ(x, µ)

dµ
=

αs
2π

(∆kg(x, µ) + ∆Pgq ⊗ {∆qγ + ∆q̄γ}

+ ∆Pgg ⊗ ∆gγ) . (2.59)

Here, ∆Pij ⊗ ∆fγ is a shortcut for the convolution of a splitting function with a
parton density

∆Pij ⊗ ∆fγ ≡
∫ 1

x

dy

y
∆Pij

(
x

y
, µ

)
∆fγ(y, µ) . (2.60)

Altogether the [∆]fγ are of order O(αem/αs), such that direct and resolved contri-
butions to photoproduction enter at the same footing. The solution of Eq. (2.59)
consists of an additional inhomogeneity, which ends up in a so-called pointlike
solution ∆fpγ together with the homogeneous hadronic solution ∆fhγ ,

∆fγ(x, µ) = ∆fpγ (x, µ) + ∆fhγ (x, µ) . (2.61)

As mentioned before, the spin-dependent photon parton distributions are com-
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Figure 2.5: The polarized parton distribution functions in the photon. The left plot
shows the up-quark distribution, the right one the gluon distribution.
Both scenarios, (2.62) and (2.63), are shown at µ2 = Q2 = 10 GeV2 in
LO and NLO. The Figures are taken from [71].

pletely unknown to this day. To solve this dilemma one uses two extreme scenar-
ios. In the minimal scenario the hadronic contribution is set to zero at a scale
µ = µ0,

∆fhγ (x, µ0) = 0 , (2.62)

whereas in the maximal scenario it is chosen to saturate the positivity constraint
for ∆fγ similar to (2.55)

∆fhγ (x, µ0) = fhγ (x, µ0) . (2.63)

In both scenarios the pointlike solution vanishes at the input scale µ0.
Figure 2.5 shows the used spin-dependent parton distributions in the photon at

a scale µ2 = Q2 = 10 GeV2 in the DISγ scheme. The left plot shows the up quark
distribution, the right one the gluon distribution. Noticeable is the fact that the
difference between both scenarios diminishes at x → 1. This observation is of
relevance for our phenomenological studies in Chapter 6. We will demonstrate
that at c.m.s. energies relevant for di-hadron photoproduction at Compass and
Hermes, one mainly probes ∆fγ at rather large values. This greatly reduces the
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available in the AKK analysis. The Figure is taken from [73].

error stemming from the lack of knowledge of the ∆fγ. As for H1 and ZEUS at
DESY, the planned EIC project will operate at higher energies and hence will
be sensitive to the non-perturbative structure of ∆fγ and the hadronic input
∆fhγ (x, µ0).

The last non-perturbative object in the factorized cross section formula,
Eq. (2.45), to be defined, are fragmentation functions, denoted byDH

i (z, µ). They
describe the collinear fragmentation of a parton i into the observed hadron H at
a scale µ. z is the momentum share that the hadron H inherits from its parent
hadron i in the hadronization process. Again, using light-cone coordinates, the
operator definition is given by [53, 74]

DH
i (z, µ) =

∑

X

∫
dy−

12π
eik

+y−Tr γ+〈0|ψi(0, y−, y⊥)|HX〉〈HX|ψ̄i(0)|0〉 , (2.64)
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where the sum is over all final states X containing the chosen hadron H. So far,
there are no results on moments of DH

i (z, µ) in Eq. (2.64) from Lattice QCD.
Similar to parton densities, the scale evolution of fragmentation functions is

governed by DGLAP-type evolution equations [54]. To extract fragmentation
functions from data, similar methods are used as for parton densities explained
above. However, one has to keep in mind that the bulk of experimental infor-
mation about fragmentation functions comes from data of the Z resonance. It is
not guaranteed that they also provide a good description at much lower energies,
1 ÷ 3 GeV, relevant at fixed-target experiments.

So far, Compass and Hermes observe charged hadrons, with no further identi-
fication of the hadron type. From the theoretical side, the specification of certain
hadrons, e.g., pions, would have more predictive power, as their fragmentation
functions are determined at a much more confident level. Several groups like
Kretzer [72], KKP [75], and AKK [76, 77] provide sets of fragmentation functions
for charged hadrons. Throughout this work we use the sets by DSS [73], includ-
ing single-inclusive hadron production in electron-positron annihilation, proton-
proton collisions and deep-inelastic lepton-proton scattering, as this sets uniquely
are obtained within a global analysis.

Figure 2.6 shows the fragmentation functions of DSS for positively charged
hadrons and a comparison to sets of Kretzer and AKK. One feature of these
distributions shown in Fig. 2.6 is the only slightly broken flavor democracy for
q + q̄ fragmentation functions into charged hadrons.
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3 The Analytic NLO Calculation

In this Chapter we give the theoretical framework for a calculation of both unpo-
larized and polarized cross sections at the next-to-leading order (NLO) of pertur-
bative QCD. Here, we concentrate on an analytic approach, i.e., the integration
over unobserved particles is done analytically at the partonic level. Monte-Carlo
methods are applied only for the convolution of the hard partonic cross section
with the non-perturbative parton distribution and fragmentation functions. We
will turn to a different approach, based on Monte-Carlo techniques already at the
partonic level, in Chapter 5.

In this Thesis, we are interested in the polarized photoproduction of two
hadrons at high transverse momenta. We first show the basic ideas and concepts
used in all pQCD calculations. Section 3.2 is dedicated to tree level contributions
(LO). We show how to calculate Feynman diagrams together with their color
structure and give the relevant phase space for two partons in the final state.
We treat the LO contributions already in n dimensions, as this is needed for the
subsequent NLO calculation, discussed in the next three Sections.

Starting with virtual corrections, we show what types of contributions appear
and how to compute such diagrams technically. Next, real corrections with three
particles in the final state are considered. A detailed derivation of the two-
particle inclusive phase space for the unpolarized and polarized case is given,
and methods to integrate analytically all different types and combinations of
Mandelstam variables, stemming from the matrix elements, are presented. The
interested reader is referred to Appendix B for a detailed discussion of the explicit
integrals. We close this Chapter by showing how to remove the remaining collinear
poles with the concept of factorization and give all relevant formulas for this
procedure.

3.1 Basic Concepts

The basic concept that underlies all perturbative QCD calculations and hence
also our calculations for di-hadron photoproduction is the factorization theorem
[30], which was introduced in Sec. 2.3. It states that large-momentum trans-
fer reactions may be factorized into long- (non-perturbative) and short-distance
(perturbative) contributions. The long-distance pieces contain information on

33
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tions (red blobs), partonic hard-scattering cross sections (green blob),
and fragmentation functions (blue blobs).

the structure of nucleons or leptons (photons) in terms of its distributions of con-
stituents, namely partons. The short-distance parts describe the hard interactions
of these partons and can be calculated from first principles in pQCD. While the
parton distributions describe universal properties of the nucleon, that is, are the
same in each reaction, the short-distance parts carry the process-dependence and
have to be calculated for each reaction on their own.

The process considered in this work is the inclusive photoproduction of two
high-PT hadrons H1 and H2 in collisions of longitudinally polarized leptons and
nucleons

l(Pl, λl) N(PN , λN) → l′(Pl′) H1(P1) H2(P2) X . (3.1)

The exchanged photon is assumed to have low virtuality Q2. In the analytic
approach we concentrate on the direct part to the photoproduction cross section.
Here, the photon interacts as an elementary particle with one of the partons of
the nucleon N . The Pi in Eq. (3.1) are the four-momenta of the external lepton
and hadrons with helicity λi, and X contains all the additional hadronic activity
not observed in experiment.

More explicitly as in Eq. (2.45), the factorization theorem states then for the



3.1 Basic Concepts 35

[polarized] experimentally measurable hadronic cross section:

d[∆]σ

dP =
∑

a,b,c,d

∫
dxl

∫
dxN

∫
dz1

∫
dz2 [∆]f la(xl, µf )[∆]fNb (xN , µf )

× DH1

c (z1, µ
′
f )D

H2

d (z2, µ
′
f )

× d[∆]σ̂ab→cdX

dP (xlPl, xNPN , P1/z1, P2/z2, µr, µf , µ
′
f ) , (3.2)

where the sum is over all contributing partonic channels ab → cdX with
d[∆]σ̂ab→cdX the associated [polarized] partonic cross section. P stands for any
appropriate set of the kinematic variables of the reaction, and the [∆]f l,Na,b (x, µf )

and DH1,H2

c,d (z, µ′
f ) are the [polarized] parton distribution functions and unpolar-

ized fragmentation functions as introduced in Sec. 2.3. Equation (3.2) includes
both direct and resolved contributions to the [polarized] photoproduction cross
section via an appropriate choice for [∆]f la, as it was discussed in Sec. 2.3. The
idea of factorization for two-hadron production is illustrated schematically in
Fig. 3.1.

The unpolarized and polarized hadronic cross sections are defined via

dσ

dP ≡ 1

4

[
dσ++ + dσ+− + dσ−+ + dσ−−

dP

]

d∆σ

dP ≡ 1

4

[
dσ++ − dσ+− − dσ−+ + dσ−−

dP

]
, (3.3)

and, equivalently, their partonic counterparts

dσ̂ab→cdX

dP ≡ 1

4

[
dσ̂++

ab→cdX + dσ̂+−
ab→cdX + dσ̂−+

ab→cdX + dσ̂−−
ab→cdX

dP

]

d∆σ̂ab→cdX

dP ≡ 1

4

[
dσ̂++

ab→cdX − dσ̂+−
ab→cdX − dσ̂−+

ab→cdX + dσ̂−−
ab→cdX

dP

]
, (3.4)

where the superscripts denote the helicities of the incoming particles. From parity
conservation of QCD follows

dσ++ = dσ−−

dσ+− = dσ−+ , (3.5)

and similarly on the partonic level. The main quantity of interest for experiments
is the double-spin asymmetry AH1H2

LL , defined via

AH1H2

LL ≡ d∆σ

dσ
=
dσ++ − dσ+−

dσ++ + dσ+− . (3.6)
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We now focus on the analytic calculation of [polarized] cross sections d[∆]σ̂/dP
at the partonic level. Here, dP shall be an appropriate set of kinematic variables
in the sense that we have maximal information on the two final state partons,
which hadronize to the hadrons H1 and H2.

3.2 Leading Order Contributions

With the methods of dimensional regularization, renormalization and factoriza-
tion introduced in the last Chapter we are now in a position to compute partonic
hard-scattering cross sections in LO and NLO accuracy. Although the main focus
of this work should be on NLO corrections to the photoproduction of a hadron
pair, we start with presenting LO contributions, as some concepts and important
techniques in the calculation show up already at this order in the strong coupling.
We extend the space-time from 4 to n already at LO, since the n-dimensional
expressions of the LO results are needed in our NLO calculation for, e.g., factor-
ization or the soft limit. At LO, the scattering of two partons with helicities λa
and λb is described by the reaction

a(pa, λa) + b(pb, λb) → c(pc) + d(pd) , (3.7)

with a - d denoting partons, i.e., quarks, antiquarks, and gluons, respectively,
and pi their four-momenta. We consider only up-, down-, and strange-quarks,
and neglect their masses, i.e.,

p2
i = m2

i = 0 , for i = a, b, c, d , (3.8)

which is appropriate for our studies. In the calculation of partonic cross sections
we emphasize that there are advantages using Mandelstam variables instead of
four-momenta. In the first order of the strong coupling constant αs we use three
variables defined via

s = (pa + pb)
2 , t = (pa − pc)

2 , u = (pb − pc)
2 . (3.9)

Due to momentum conservation pa + pb = pc + pd only two of the three variables
are independent. With the condition of massless particles we get the constraint

s+ t+ u = m2
a +m2

b +m2
c +m2

d = 0 . (3.10)

Up to phase space factors, the [polarized] partonic cross section d[∆]σ̂ab→cd is
proportional to the [polarized] matrix element squared [∆]|M|2ab→cd, which con-
tains the actual information of the hard-scattering process and can be calculated



3.2 Leading Order Contributions 37

to a fixed order in the strong coupling constant αs. Hence, d[∆]σ̂
(0)
ab→cd as the LO

contribution is given by

d[∆]σ̂
(0)
ab→cd =

1

2s

dnpc
(2π)n−1

dnpd
(2π)n−1

(2π)n
∑

[∆]|M|2ab→cd

× δ
(
p2
c

)
δ
(
p2
d

)
δ(n) (pa + pb − pc − pd) . (3.11)

Here, the factor 1/(2s) represents the flux factor for two incoming partons, the
dnpi/(2π)n−1 are the phase space factors for each outgoing parton, and the delta
functions ensure the conditions for massless, on-shell partons and momentum
conservation. The sum

∑
in Eq. (3.11) denotes the summation over unobserved

color and spin degrees of freedom for outgoing and appropriate averaging for
incoming partons. As QCD is an SU(3) theory, quarks and gluons in the initial
state are accompanied by factors 1/CA = 1/3 and 1/(C2

A−1) = 1/8, respectively,
for averaging over color. For unpolarized particles the cross sections for incoming
quarks require a factor 1/2, and for incoming massless spin-1 bosons like photons
and gluons we need a factor 1/[2(1 − ε)] in dimensional regularization.

We limit ourselves to the scattering of partons with definite helicities, without
observing any polarization in the final state. This makes it convenient to utilize
the following definition for unpolarized and polarized matrix elements in analogy
to Eqs. (3.3) and (3.4)

|M|2 =
1

2

[
|M|2(+,+) + |M|2(+,−)

]

∆|M|2 =
1

2

[
|M|2(+,+) − |M|2(+,−)

]
, (3.12)

where we again employed parity conservation, i.e., |M|2(+,+) = |M|2(−,−) and
|M|2(+,−) = |M|2(−,+). The arguments ± in Eqs. (3.12) denote the helicities
of the incoming particles, which can acquire the values ±1. We shall emphasize
here that the two parts do not mix, i.e.,

|M|2(λa, λb) = |M|2 + λaλb∆|M|2 , (3.13)

with λa and λb being the helicities of parton a and b. We can interpret the first
part in Eq. (3.13) as the spin-averaged and the second part as the spin-dependent
contribution to the matrix element.

In the case, where the photon directly interacts with a parton stemming from
the nucleon, we only have two relevant processes at the first order in the strong
coupling constant αs, namely the QCD Compton process

γq → qg , (3.14)
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(1) (2)

Figure 3.2: The two Feynman diagrams contributing to γq → qg.

and photon-gluon fusion (PGF)

γg → qq̄ , (3.15)

whereas if the photon resolves into its hadronic constituents, as discussed in detail
in Sec. 2.3, we have eight additional processes in LO accuracy of pQCD

qq′ → qq′

qq̄ → q′q̄′

qq → qq

qq̄ → qq̄

qq̄ → gg

gg → qq̄

qg → qg

gg → gg . (3.16)

Here q′ denotes a quark having a different flavor compared to quark q. Needless
to say, every quark line can be replaced by an antiquark line.

We will now give an outline how to calculate matrix elements
∑

∆|M|2 at LO
from first principles. As exemplary case, we consider the QCD Compton process

γ(pa, λa) q(pb, λb) → q(pc) g(pd) , (3.17)

with λa and λb denoting the helicities of the photon and the quark, and pi the
four-momenta. Figure 3.2 shows the two Feynman diagrams contributing to the
QCD Compton process at O(αemαs). We now concentrate on the calculation of
the amplitude for the t-channel diagram (1), shown on the left-hand-side (l.h.s.)
of Fig. 3.2. The same steps have to be applied for the s-channel diagram (2),
shown on the right-hand-side, and for the interference term M1M∗

2, with the
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Figure 3.3: Diagram (1) of the QCD Compton process depicted in Fig. 3.2, together
with its complex conjugated. Roman letters denote color indices, Greek
letters Lorentz indices.

superscript ∗ denoting the complex conjugated. The final result is given by the
sum of the contributing diagrams squared

[∆]|M|2γq→qg = [∆]|M1 + M2|2 = [∆]
[
|M1|2 + |M2|2 + Re(2M1M∗

2)
]
. (3.18)

The calculations of all diagrams and interference terms of diagrams are straight-
forward.

Figure 3.3 shows diagram (1) together with its complex conjugated diagram
and all Lorentz (Greek letters) and color (Roman letters) indices. Using the
Feynman rules of Appendix A, one gets for the matrix element squared

|M1|2 =
∑

λc,λd

ǫµ(pa, λa)ǫν(pd, λd)ǫ
∗
σ(pd, λd)ǫ

∗
ρ(pa, λa)

× ū(pc, λc) (geδlkγ
µ)

(
δjk

/pa − /pc
(pa − pc)2

)(
gsγ

νT aij
)
u(pb, λb)

× ū(pb, λb) (gsγ
σT ani)

(
δnm

/pa − /pc
(pa − pc)2

)
(geδmlγ

ρ)u(pc, λc) . (3.19)

As the helicities of the outgoing particles are not observed, we have to sum them.
All factors containing the color structure of the process are independent of the
γ-matrices and can be calculated separately, obtaining

∑

a,i,j,k,l,m,n

δlkδjkT
a
ijT

a
niδnmδml =

∑

a,i,j

T aijT
a
ji = Trc[T

aT a] = CACF . (3.20)

With the help of the projection operators for quarks, given in Eq. (A.1) in Ap-
pendix A, we end up with

|M1|2 = CACF
g2
sg

2
e

t2

∑

λd

ǫµ(pa, λa)ǫν(pd, λd)ǫ
∗
σ(pd, λd)ǫ

∗
ρ(pa, λa)

× Tr
[
/pcγ

µ(/pa − /pc)γ
ν 1

2
/pb(1 − λbγ5)γ

σ(/pa − /pc)γ
ρ
]
. (3.21)
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For the unpolarized gluon in the final state, labeled with four-momentum pd, the
summation over the helicity degrees of freedom λd has to be performed, which is
usually done by ∑

λ

ǫµ(p, λ)ǫ∗ν(p, λ) = −gµν . (3.22)

This prescription is used in all our calculations. The advantage is that the gluonic
and photonic polarization sums are simply replaced by the metric tensor gµν . The
price to pay is that one has to calculate additional diagrams involving Faddeev-
Popov ghosts to cancel unphysical polarization degrees of freedom. These ghosts
show up only in diagrams involving the three-gluon vertex and hence are not
subject to the QCD Compton process. To avoid this, one can also use the full
expression ∑

λ

ǫµ(p, λ)ǫ∗ν(p, λ) = −gµν +
pµrν + pνrµ

p · r , (3.23)

with an arbitrary momentum rµ fulfilling the condition r2 = 0 and p ·r 6= 0. With
this expression the structure of the Dirac γ-matrices gets more complicated and
the calculation can become very time-consuming, especially if more particles are
involved like for real corrections.

In Eq. (3.21) the trace of Dirac γ-matrices in n = 4 − 2ε dimensions can
be calculated, for example, using the algebraic computer package Tracer [78],
written for the program Mathematica [79]. With the projection onto specified
helicity for the incoming photon, as given in Eq. (A.3) of Appendix A, contraction
of all Lorentz indices, and the calculation of |M2|2 and M1M∗

2 we find the
following expressions for the unpolarized and polarized matrix elements squared

∑
|M|2γq→qg = −2CF

1

st

[
s2 + t2 − ε(s+ t)2

]
,

∑
∆|M|2γq→qg = 2CF

u

st

[
2s+ u− εu

]
. (3.24)

The terms proportional to ε are, of course, negligible at LO, but give finite con-
tributions at NLO, when combined with poles 1/ε and 1/ε2.

Inevitably, in dimensional regularization we have to deal with contributions
from hat-momenta, as discussed in Sec. 2.2. However, in LO all hat-momenta
can be safely set to zero, as all momenta can be parameterized in such a way,
that they have components only in the physical four space-time dimensions.

The next step in the calculation of partonic cross sections is the evaluation
of the two-particle inclusive phase space. As we consider di-hadron production,
we do not have any unobserved partons at the LO of pQCD, simplifying the
calculation. This will be different in NLO, with an additional unobserved parton
in the final state, and an integration of its momentum over the entire phase space.
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Figure 3.4: The decomposition of the momentum pc and the definition of the scat-
tering angle θ.

We start with the definition of the two-particle Lorentz-invariant phase space
in n dimensions, and evaluate the n-dimensional δ-function ensuring momentum
conservation

dPS2 =

∫
dnpc

(2π)n−1

dnpd
(2π)n−1

(2π)nδ(p2
c)δ(p

2
d)δ

(n)(pa + pb − pc − pd)

=
1

(2π)n−2

∫
dnpcδ(p

2
c)δ
(
(pa + pb − pc)

2
)
. (3.25)

Equation (3.25) can be evaluated further in the c.m.s. of the incoming particles a
and b, where the following conditions for the spatial parts and zero components
of the four-momenta hold true

~pa + ~pb = 0 , (pa + pb)
2 = (p0

a + p0
b)

2 = s . (3.26)

The spatial components of pc can be decomposed into a part parallel to the axis
of the incoming partons (pc,‖) and a (n− 2)-dimensional part perpendicular to it
(pc,⊥), as depicted in Fig. 3.4. The phase space takes now the form

dPS2 =
1

(2π)n−2

∫
dpc,0dpc,‖dp

n−2
c,⊥ δ(p

2
c)δ(s− 2pc,0

√
s) . (3.27)

The (n − 2)-dimensional components pc,⊥ can be evaluated with the use of gen-
eralized spherical coordinates, giving

dpn−2
c,⊥ =

π
n−2

2

Γ
(
n−2

2

)
(
p2
c,⊥
)n−4

2 dp2
c,⊥ . (3.28)

Rewriting the argument of the first δ-function as p2
c = p2

c,0 − p2
c,‖ − p2

c,⊥, and
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integrating over p2
c,⊥ yields

dPS2 =
π

n−2
2

(2π)n−2

1

Γ(n−2
2

)

1

2
√
s

∫
dpc,0dpc,‖

×
(
p2
c,0 − p2

c,‖
)n−4

2 δ

(√
s

2
− pc,0

)
. (3.29)

We now evaluate the pc,0-integration with the use of the δ-function and introduce
the scattering angle θ (see Fig. 3.4)

dPS2 =
π

n−2
2

(2π)n−2

1

Γ(n−2
2

)

1

2
√
s

∫
d cos θ pn−3

c,0 sinn−4 θ , (3.30)

with pc,0 =
√
s

2
. It is convenient to re-express any dependence on the scattering

angle θ in terms of the Mandelstam variables t and u, defined in Eq. (3.9), via

t = −s
2
(1 − cos θ) , and u = −s

2
(1 + cos θ) . (3.31)

The final result for the two-particle phase space in n = 4 − 2ε dimensions reads

dPS2

du dt
=

1

Γ(1 − ε)

(
1

4π

)1−ε
1

2s

(
tu

s

)−ε
δ(s+ t+ u) . (3.32)

In NLO calculations it is customary to use the variables v and w, instead of t
and u, defined by

v = 1 +
t

s
, w = − u

s+ t
. (3.33)

As will be discussed in Sec. 3.4, an analytic calculation of the three-particle phase
space in NLO requires the introduction of a variable z [80], defined by

z = −~pT,c · ~pT,d
p2
T,c

, (3.34)

with ~pT,i being the two-dimensional transverse momentum of parton i relative
to the beam axis of the two incoming partons. LO contributions and virtual,
one-loop corrections at NLO only have two partons in the final state, and their
transverse momenta perpendicular to the beam axis have to balance each other
due to momentum conservation. Thus, we get the following constraint

~pT,c = −~pT,d → z = 1 , (3.35)

at the parton level.
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Figure 3.5: Generic diagrams for virtual contributions: box diagrams, vertex correc-
tions and self-energy corrections.

The two-particle phase space differential in v, w, and z is given by

dPS2

dv dw dz
=

1

2Γ(1 − ε)

(
1

4π

)1−ε(
1

sv(1 − w)

)ε
δ(1 − w)δ(1 − z) . (3.36)

Together with the matrix elements squared, we now have all building blocks for
the calculation of partonic cross sections in LO

d∆σ̂
(0)
ab→cd

dv dw dz
=

1

2s

∑
|∆Mab→cd|2

dPS2

dv dw dz
. (3.37)

Results for polarized and unpolarized partonic LO cross sections are well known.
Explicit expressions for both QCD processes and processes involving also photons,
polarized and unpolarized, can be found, for example, in [31]. Phenomenological
studies based on LO results have been performed, for instance, in [81, 82, 83] and
most recently in [23, 84]. In Chapter 4 and 6 these results will be compared to
our NLO predictions.

3.3 Virtual Contributions

At NLO, one class of corrections to the Born cross sections arise, if additional
unobserved - virtual - particles are emitted and again reabsorbed in the scattering
process. Each interaction brings in an additional coupling constant gs, yielding
an extra αs for each virtual, one-loop diagram. Therefore at NLO, i.e., O(α2

sαem),
one has to consider only the interference of virtual and Born diagrams. One-loop
amplitudes squared are O(α3

sαem), and hence part of a next-to-next-to-leading
order calculation, which is far beyond the scope of this work.

Three topological different diagrams are possible, which are shown schemati-
cally in Fig. 3.5: box diagrams, vertex corrections and self-energy corrections.
Each line can stand for a photon, gluon or quark, taking into account that only
qqγ-, qqg-, and ggg-vertices are possible. Whereas box diagrams are UV finite and
not subject to the renormalization procedure, vertex corrections and self-energies
exhibit IR and UV divergencies, and therefore require a proper renormalization.
Throughout this work we adopt the MS scheme introduced in Sec. 2.2.
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Figure 3.6: Vertex corrections at the qqg-vertex for the process γq → qg.

Since no additional particles are present in the final state, we can employ the
usual two-particle phase space and kinematics for 2 → 2 Born diagrams intro-
duced in the previous Section, see Eq. (3.36). The virtual corrections to the
[polarized] cross section read

dσ̂virtab→cd

dv dw dz
=

1

2s

dPS2

dv dw dz

∑
|MvM∗

b |ab→cdδ(1 − w)δ(1 − z)

d∆σ̂virtab→cd

dv dw dz
=

1

2s

dPS2

dv dw dz

∑
∆|MvM∗

b |ab→cdδ(1 − w)δ(1 − z) , (3.38)

with (∆)|MvM∗
b |ab→cd the appropriate interference matrix elements for boxes,

vertices, and self-energies, and
∑

the appropriate summation and averaging over
unobserved color and spin degrees of freedom. Note that the virtual cross sections
are proportional to δ(1 − w)δ(1 − z) as for LO contributions.

3.3.1 Vertex Corrections and Self-Energies

In vertex corrections we have to take into account the emission and reabsorption
of an additional gluon. Figure 3.6 shows the three contributions for such correc-
tions in the example of the QCD Compton process for the qqg-vertex. Instead of
computing each diagram on its own, including appropriate counter terms as dis-
cussed in Sec. 2.2, we can exploit renormalized vertex and self-energy insertions
listed in [85]. This amounts to using “modified” Feynman rules for the “blob”
indicated in Fig. 3.6, which greatly facilitates the computations. In practice,
we simply have to replace the Feynman rules for the bare quark-gluon vertex in
Appendix A by the renormalized one

− igsγ
µ → −igs

αs
4π

Λµ , (3.39)
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where Λµ is a function of the four-momenta pb, pd, and q as well as the renor-
malization scale µr. In this way, all UV singularities are properly dealt with.
However, the final expression still contains IR poles, which are handled within
a later step of the calculation. The explicit form of Λµ depends on which leg
goes off-shell. Instead of reproducing the rather lengthy expressions for Λµ, we
refer the reader to Table B.II. of [85]. A similar replacement can be done for the
ghost-gluon and the three-gluon vertex. However, in the direct case with only
two processes, photon gluon fusion and QCD Compton, these vertices are absent
and thus do not need to be considered here.

Like for vertex corrections, similar renormalized insertions exist for self-energy
contributions, which read in the case of the quark propagator

− i/pCF
αs
4π

Σ(p2) . (3.40)

For the gluon propagator one has

i
αs
4π

Πµν(p) . (3.41)

The explicit expressions for Σ(p2) and Πµν(p) differ for on- and off-shell lines, i.e.,
p2 = 0 and p2 6= 0, respectively. Again, they can be found in [85].

In the case of self-energies for internal lines, the procedure for calculating matrix
elements is rather straightforward. E.g., considering the self-energy corrections
to the internal quark propagator in the QCD Compton process, which have been
calculated in Sec. 2.2, the interference of the virtual diagram with the appropriate
tree level diagram reads

[MsM∗
b ](λa, λb) = CACFg

2
sg

2
e

∑

λd

ǫµ(pa, λa)ǫν(pd, λd)ǫ
∗
σ(pd, λd)ǫ

∗
ρ(pa, λa)

× Tr

{
/pcγ

µ
(/pa − /pc)

(pa − pc)2

[
CF (/pa − /pc)

αs
4π

Σ
(
(pa − pc)

2
)]

×
(/pa − /pc)

(pa − pc)2
γρ

1

2
/pb(1 − λbγ5)γ

σ(/pa − /pc)γ
ν

}
. (3.42)

While the calculation is straightforward for internal lines, virtual corrections to
external legs have to be treated with special care. Due to an additional prop-
agator with the momentum of the external line, e.g., 1/p2

b , this would naively
result in an infinite quantity. However, in combination with the proper insertion
from [85], this artificial pole cancels and one gets a finite quantity in the end.
Technically, this is done by putting them off the mass-shell, e.g., p2

b = q2. Then
all terms proportional to q2 are kept explicitly and cancel at the end of the calcu-
lation. External lines receive an additional factor 1/2 from the renormalization
procedure, as is discussed, e.g., in [31].
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Figure 3.7: Example for a box diagram occurring in NLO photoproduction calcula-
tions. The loop momentum q is unrestricted.

3.3.2 Box Contributions

As mentioned before, box diagrams have no UV divergencies and thus are not
subject to the renormalization procedure. However, IR singularities show up as
single poles in 1/ε and double poles 1/ε2 in combination with collinear singu-
larities. No precalculated building blocks exist in literature, so they have to be
calculated from scratch. To exemplify this, we outline the steps necessary to
evaluate one of the one-loop box contributions to photon-gluon fusion, depicted
in Fig. 3.7.

With the Feynman rules of Appendix A one ends up with the following structure
for the matrix element

Mbox ∼
[∫

dnq

(2π)n
γρ
/q

q2
γµ
/q3

q2
3

γν
/q2

q2
2

γρ
1

q2
1

]
. (3.43)

q is the unobserved loop momentum and can take any value from zero to infinity.
Now, the main task is the computation of tensor integrals. For our example the
integral takes the form

∫
dnq

(2π)n
qαqβ3 q

γ
2

q2q2
1q

2
2q

2
3

=

∫
dnq

(2π)n
qαqβqγ

q2q2
1q

2
2q

2
3

− (pc + pd − pb)
β

∫
dnq

(2π)n
qαqγ

q2q2
1q

2
2q

2
3

− (pc + pd)
γ

∫
dnq

(2π)n
qαqβ

q2q2
1q

2
2q

2
3

+ (pc + pd − pb)
β(pc + pd)

γ

∫
dnq

(2π)n
qα

q2q2
1q

2
2q

2
3

. (3.44)

These tensor integrals with some definite Lorentz structure in the numerator of
the integrand can be decomposed into a set of calculable scalar integrals with
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the help of the Passarino-Veltman decomposition [86, 87]. This procedure relies
on the fact that the Lorentz structure of a tensor integral is determined by the
external momenta and the metric tensor gµν , which are the only quantities in the
calculation exhibiting Lorentz indices. All relevant formulas for this decomposi-
tion can be found, e.g., in Appendix C of [31]. With the help of this procedure
one ends up with a finite number of scalar integrals. They are tabulated and can
be found in [85, 88, 89].

After applying this procedure and calculating the scalar integrals, Mbox no
longer depends on the loop momentum q. The further evaluation is straightfor-
ward as in LO, but tedious and lengthy. Mbox has to be combined with the
appropriate Born amplitude M∗

b to obtain the result for Re(MboxM∗
b).

3.4 Real Contributions

In addition to the virtual contributions just discussed, a full NLO calculation
includes also real contributions. In this class of processes a third particle is
emitted, i.e., one has to deal with a 2 → 3 body kinematics,

a(pa) + b(pb) → c(pc) + d(pd) + e(pe) , (3.45)

with a - e denoting the massless partons, and pi their corresponding four-
momenta. Partons c and d shall hadronize into the two observed hadrons in
the fragmentation process, and parton e remains unobserved and hence has to be
integrated over its entire phase space.

The computation with largely analytical methods becomes feasible thanks to
the introduction of the variable z [80], defined in Eq. (3.34). This is, to avoid some
certain singular configurations of two final state partons. For instance, momenta
pc parallel to pd correspond to negative values of z. In this case, the partonic
cross section is incomplete and contains uncanceled poles, which would require
the introduction of additional non-perturbative functions describing the simulta-
neous fragmentation of a single parton into two hadrons. Situations, where the
momentum pd is parallel to the direction of the incoming photon, are character-
ized by z = 0. For the phase space integrations we therefore restrict ourselves
to

z > zmin > 0 , (3.46)

equivalent to the condition that the two hadrons are produced by partons in
opposite hemispheres.

In contrast to the 2 → 2 processes like LO processes and virtual corrections,
characterized by three Mandelstam variables and one constraint, we now need a



48 3 The Analytic NLO Calculation

set of ten variables, which are chosen as follows:

s = (pa + pb)
2 , t = (pa − pc)

2 , u = (pb − pc)
2 ,

s12 = (pc + pd)
2 , t2 = (pa − pd)

2 , u2 = (pb − pd)
2 ,

s13 = (pc + pe)
2 , t3 = (pa − pe)

2 , u3 = (pb − pe)
2 ,

s23 = (pd + pe)
2 . (3.47)

This set of course is not unique, but useful for our purposes. Due to momentum
conservation, pa + pb = pc + pd + pe, the variables have the following constraints

t3 = −s− t− t2

u3 = −s− u− u2

s23 = s+ t+ u

s13 = s+ t2 + u2

s12 = −s− t− t2 − u− u2 . (3.48)

As a consequence, only five of the ten Mandelstam variables are actually indepen-
dent. In our calculations we make extensive use of rewriting variables in terms
of different sets of variables to integrate the matrix elements over phase space
analytically.

Before going into the details of how to integrate analytically the 2 → 3 matrix
elements over phase space, we shall list the contributing processes at O(αemα

2
s)

first. In the case, where the quasi-real photon interacts directly with a parton of
the nucleon, the relevant subprocesses at NLO are

γq → qgg

γg → qq̄g

γq → q′q̄′q

γq → qq̄q , (3.49)

where the first two are the QCD Compton and the photon-gluon fusion process
in Eqs. (3.14) and (3.15), with emission of an additional gluon. The other two
processes in Eq. (3.49) show up in NLO for the first time. For processes, where
the photon resolves into its partonic structure, we have ten additional processes

qq′ → qq′g

qq̄ → q′q̄′g

qq → qqg

qq̄ → qq̄g
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qq̄ → ggg

qg → qgg

qg → qq′q̄′

qg → qqq̄

gg → qq̄g

gg → ggg . (3.50)

Needless to say, any quark line can be replaced by an antiquark line. The pro-
cesses in Eqs. (3.50) are of order O(α3

s). However, in combination with photonic
parton distributions, which are O(αem/αs), these contributions enter already at
O(αemα

2
s). In Eqs. (3.49) and (3.50), the two observed hadrons can in principle

be produced by any of the three particles in the final state, making it indispens-
able to take into account all combinatorical possibilities. For instance, in the
first process of (3.50), qq′ → qq′g, the hadrons can be produced either by the
q and q′, by q and g, or by q′ and g. In addition, the two partons have to be
exchanged among each other, since we can not select the ordering of the partons
for fragmentation to hadron H1 and H2.

The calculation of the matrix elements squared for all 2 → 3 processes given in
Eqs. (3.49) and (3.50) is straightforward, but tedious. It follows the steps outlined
for the computation of the LO QCD Compton process in Sec. 3.2. The relevant
traces of Dirac γ-matrices are again conveniently computed in n dimensions with
the help of the computer algebra tool Tracer [78]. Both the Dirac algebra and
the color structure of each contribution are much more involved than in a simple
LO calculation. The results for the matrix elements squared are too lengthy to
be given here explicitly, but are available upon request.

In addition, integrating the expressions for matrix elements squared analytically
over phase space is very cumbersome, as we will demonstrate in some detail
next. Thus, in the analytic calculation we concentrate on the direct part of
the spin-dependent cross section for two-hadron photoproduction, as there are
less processes. Nevertheless, these results are very important, both theoretically
and phenomenologically. On the one hand, the analytic results will serve as an
important check on more versatile Monte-Carlo (MC) techniques like the “two
cut-off phase space slicing method” [32], discussed in Chapter 5. On the other
hand, it was demonstrated in our LO study [23], that the direct photon part is
responsible for the main features of the experimentally relevant spin asymmetry,
defined in Eq. (3.6), and its sensitivity to the polarized gluon density at fixed-
target experiments like Compass and Hermes.

With one additional particle in the final state, the “unphysical” hat-components
in the (n−4)-dimensional subspace, introduced within dimensional regularization
in Eq. (2.25), cannot be disregarded, as it was the case for 2 → 2 processes. In
Sec. 3.4.2 we will show that the phase space combined with a factor, e.g., p̂2

d
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will be proportional to ε, giving a finite contribution in combination with a 1/ε
pole. For a proper computation of the three-particle phase space we choose the
c.m.s. of the two incoming partons, and parameterize the momenta in such a way
that only final state partons have components in the (n− 4) dimensions. Due to
momentum conservation, p̂c can be eliminated, and we get

p̂d + p̂e = 0 . (3.51)

With p2
d = 0 = p̂2

d + ˆ̂p2
d, the following relations for the (n − 4)-components hold

true

p̂2
d = − ˆ̂p2

d

p̂2
e = − ˆ̂p2

d

p̂d · p̂e = ˆ̂p2
d . (3.52)

Now, the next Subsection is dedicated to the evaluation of the three-particle phase
space without hat-momenta, whereas in Subsec. 3.4.2 we include an additional
factor ˆ̂p2

d.

3.4.1 Three-body Phase Space without Hat-Momenta

In the derivation of the phase space in the absence of hat-momenta we closely
follow [80, 90]. In analogy to the two-particle phase space defined in Eq. (3.25)
we start with the definition of the phase space with three particles in the final
state

dPS3 =

∫
dnpc

(2π)n−1

dnpd
(2π)n−1

dnpe
(2π)n−1

(2π)n

× δ(n)(pa + pb − pc − pd − pe)δ(p
2
c)δ(p

2
d)δ(p

2
e) . (3.53)

To proceed, we split up the full 2 → 3 phase space into a 2 → 2 scattering,
followed by a 1 → 2 decay into the partons d and e. This is done by defining
pde ≡ pd + pe and inserting an integration over the invariant mass s23 of the pair
(d,e), defined in Eq. (3.47):

1 =

∫
ds23δ(s23 − p2

de) . (3.54)

This yields for the three-particle phase space

dPS3 =
1

(2π)2n−3

∫
dnpcd

npdeds23δ
(n)(pa + pb − pc − pde)

× δ(p2
c)δ(s23 − p2

de) × dPS2 , (3.55)
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with

dPS2 ≡
∫
dnpdd

npeδ(p
2
d)δ(p

2
e)δ

(n)(pd + pe − pde)

=

∫
dnpdδ(p

2
d)δ
(
(pde − pd)

2
)

(3.56)

being the splitting of a parton with momentum pde in the two partons d and e with
momenta pd and pe. We go to the c.m.s. of the pair (d,e), where pde = (

√
s23,~0)

and pd = (Ed, ~pd). In this frame the 1 → 2 phase space is

dPS2 =

∫
dnpdδ(p

2
d)δ(s23 − 2

√
s23Ed) . (3.57)

Using n-dimensional polar coordinates for pd, we get for the differential

dnpd = dEd|~pd|n−2d|~pd|dφ
× sin θn−3dθn−3 sin2 θn−4dθn−4 . . . sin

n−3 θ1dθ1 . (3.58)

Now, the integration over (n− 5) components can be performed [91]
∫ π

0

sin θn−3dθn−3

∫ π

0

sin2 θn−4dθn−4 . . .

∫ π

0

sinn−5 θ3dθ3 =

n−5∏

j=1

∫ π

0

sinj ξjdξj =
πn/2−5/2

Γ
(
n
2
− 3

2

) . (3.59)

Inserting Eqs. (3.58) and (3.59) in Eq. (3.57), and making use of the δ-functions,
the 1 → 2 phase space reads

dPS2 = (p2
de)

n/2−2Iunp(θi) , (3.60)

with

Iunp(θi) ≡
πn/2−3/2

2n−2Γ(n
2
− 3

2
)

∫ π

0

sinn−4 θ2dθ2

∫ π

0

sinn−3 θ1dθ1 . (3.61)

To proceed, we insert Eq. (3.60) in Eq. (3.55) and integrate over pde and s23

with the help of the δ-functions. This yields for the complete three-particle phase
space

dPS3 =
1

(2π)2n−3

∫
dnpcδ(p

2
c)[(pa + pb − pc)

2]n/2−2

︸ ︷︷ ︸
I1,unp

Iunp(θi) . (3.62)

With the following parameterization for the n-momentum pc

pc = Ec(1, 0, cosα2 sinα1, cosα1, . . .) , (3.63)
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where the ellipsis denotes arbitrary spatial-components in the (n−4)-dimensional
subspace, we get

I1,unp = π

∫
dEc

∫
d|~pc|2|~pc|n−3

[
n−4∏

j=1

∫ π

0

sinj αn−2−jdαn−2−j

]

×
∫ π

0

sinn−3 α1dα1δ(E
2
c − |~pc|2)[s+ t+ u]n/2−2

=
πn/2−1

Γ(n
2
− 1)

∫
dEn−3

c

∫ 1

−1

sinn−4 α1d(cosα1)[s+ t+ u]n/2−2 . (3.64)

We now go to the c.m.s. of the two incoming partons a and b, defined by

pa =

√
s

2
(1, 0, 0, 1,~0) , pb =

√
s

2
(1, 0, 0,−1,~0) . (3.65)

The Mandelstam variables t and u in Eq. (3.9) can be expressed as

t = (pc − pa)
2 = −√

sEc(1 − cosα1) ,

u = (pc − pb)
2 = −√

sEc(1 + cosα1) . (3.66)

With the definition of the auxiliary variables v and w, see Eq. (3.33) in Sec. 3.2,
we find for the integration variables in Eq. (3.64)

Ec =

√
s

2
(1 − v + vw) ,

cosα1 = −1 − v − vw

1 − v + vw
. (3.67)

Substituting in Eq. (3.64) the integration variables from (Ec, cosα1) to (v, w), the
Jacobian yields

J = det




∂ cosα1

∂v

∂Ec
∂v

∂ cosα1

∂w

∂Ec
∂w


 =

√
sv

1 − v + vw
. (3.68)

Finally, with n = 4 − 2ε the full three-particle phase space reads

dPS3 =
1

(2π)5−4ε

π3/2−2ε

23−2εΓ(1 − ε)Γ(1
2
− ε)

s1−2ε

×
∫
dv

∫
dw(1 − v)−ε(1 − w)−εv1−2εw−ε

×
∫ π

0

sin−2ε θ2 dθ2

∫ π

0

sin1−2ε θ1 dθ1 . (3.69)
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This result is in agreement with Eq. (B.7) in [92], and is applicable for studies of
single-inclusive hadron or jet production at NLO, see Refs. [93, 94].

However, Eq. (3.69) is not appropriate for an analysis for two observed hadrons
in the final state coming from two partons in the fragmentation process. To
proceed, we need to introduce a variable z and an auxiliary space-like vector m
[80], defined via

z ≡ m · pd , m ≡ pcs+ pbt+ pau

tu
. (3.70)

With the help of light-cone coordinates it is easy to show that

z = −~pT,c · ~pT,d
p2
T,c

, (3.71)

in the c.m.s. of the two incoming partons. ~pT,c and ~pT,d denote the transverse
momenta of the two partons, which fragment collinearly in the two observed
hadrons relative to the beam axis. This expression was already introduced in
Eq. (3.34). As already mentioned at the beginning of this Section, some certain
singular regions (collinear hadrons, hadron H2 parallel to the beam axis) have to
be avoided by restricting z > 0.

To continue, the phase space is further evaluated in the rest frame of pd and
pe, where we choose pa, pb, and pc in such a way that they have non-vanishing
components only in two spatial directions

pa =
sv

2
√
s23

(1, 0, sinψ, cosψ, . . .) ,

pb =
s(1 − vw)

2
√
s23

(1, 0,− sinψ, cosψ, . . .) ,

pc =
s(1 − v + vw)

2
√
s23

(1, 0, sinψ′, cosψ′, . . .) ,

pd =

√
s23

2
(1, px, cos θ2 sin θ1, cos θ1, p̂d) ,

pe =

√
s23

2
(1,−px,− cos θ2 sin θ1,− cos θ1,−p̂d) . (3.72)

Here, the ellipsis in the parameterization of pa, pb, and pc denotes zeros in the
(n− 4)-dimensional components. p̂d denotes the (n− 4)-dimensional components
for parton d, and px is arbitrary. With the definition of the variables v and w,
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see Eq. (3.33) in Sec. 3.2, we find

cosψ =

√
w(1 − v)

1 − vw
,

sinψ =

√
1 − w

1 − vw
,

cosψ′ =
1 + v − vw

1 − v + vw
cosψ ,

sinψ′ = −1 − v − vw

1 − v + vw
sinψ , (3.73)

and for s23, see Eqs. (3.47) and (3.72),

s23 = (pd + pe)
2 = s+ t+ u = sv(1 − w) . (3.74)

Using the parameterization in Eq. (3.72), we find

m =
[ s
tu

]1/2
(√

w(1 − v)

1 − w
, 0, 0,

√
1 − vw

1 − w
, 0̂

)
. (3.75)

Introducing the identity

1 =

∫
dzδ(z −m · pd), (3.76)

and inserting it into the three-particle phase space, Eq. (3.69), yields

dPS3 =
1

(2π)5−4ε

π3/2−2ε

23−2εΓ(1 − ε)Γ(1
2
− ε)

s1−2ε

×
∫
dv

∫
dw(1 − v)−ε(1 − w)−εv1−2εw−ε

×
∫
dθ2 sin−2ε θ2

∫
dθ1 sin1−2ε θ1

∫
dz δ(z −m · pd) . (3.77)

The integration over the angle θ1 is trivial, since z = 1
2
(1− cos θ1

cosψ
), which also gives

us an upper and lower bound for the variable z:

zmax/min =
1

2
(1 ± 1

cosψ
) . (3.78)
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After evaluation of the θ1-integration, one gets for the three-body phase space

dPS3 =
1

(2π)5−4ε

π3/2−2ε

23−2εΓ(1 − ε)Γ(1
2
− ε)

s1−2ε

×
∫
dv

∫
dw(1 − v)−ε(1 − w)−εv1−2εw−ε2 cosψ

×
(

1 − w + 4w(1 − v)z(1 − z)

1 − vw

)

︸ ︷︷ ︸
≡g(z)

−ε ∫
dz

∫
dθ2 sin−2ε θ2 . (3.79)

With the use of the identity [95]

Γ(2x) =
22x−1

√
π

Γ(x)Γ

(
x+

1

2

)
, (3.80)

one ends up with the following expression for the phase space differential in the
variables v, w and z

dPS3

dv dw dz
=

s

(4π)4Γ(1 − 2ε)

(
4π

s

)2ε

(1 − v)−ε(1 − w)−εv1−2εw−ε

× 2 cosψg(z)−ε
∫ π

0

dθ2 sin−2ε θ2 . (3.81)

This result can also be found in [80, 90, 96], and serves as starting point for any
further calculation. The majority of terms in the matrix elements squared for
real processes can be integrated with Eq. (3.81), except the terms containing a
factor ˆ̂p2

d, which will be treated in Subsec. 3.4.2.

Once one has the [unpolarized] matrix elements in terms of the set of Man-
delstams in Eq. (3.47), the θ2-integration has to be performed. For a proper
treatment of all singularities arising in virtual and real contributions, one has to
introduce distributions in terms of δ-functions and so-called “plus-distributions”
in the variables w and z, defined in Subsec. 3.4.3. This greatly complicates the
analytical phase space calculations, and is much more involved, as it is the case
for single-inclusive phase space calculations, where only distributions in w are
present.

3.4.2 Three-body Phase Space including Hat-Momenta

Here, we demonstrate how to perform the phase space integrations in the presence
of an additional four-component part ˆ̂p2

d, showing up in some terms of polarized
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matrix elements squared, i.e., we compute

dP̂S3 =

∫
dnpc

(2π)n−1

dnpd
(2π)n−1

dnpe
(2π)n−1

(2π)n

× δ(n)(pa + pb − pc − pd − pe)δ(p
2
c)δ(p

2
d)δ(p

2
e)

ˆ̂p2
d . (3.82)

Like before, we decompose the phase space into a 2 → 2 scattering followed by
a 1 → 2 decay, and follow closely the calculation in the previous Subsection, the
difference being the extra factor ˆ̂p2

d in Eq. (3.57). To proceed, we choose the

following parameterization for ˆ̂pd

ˆ̂pd = p0
d(1, cos θ3 sin θ2 sin θ1, cos θ2 sin θ1, cos θ1) , (3.83)

and easily obtain
ˆ̂p2
d = (p0

d)
2 sin2 θ1 sin2 θ2 sin2 θ3 . (3.84)

Hence the usual angular integration measure is modified

n−2∏

l=1

sinn−l−2 θldθl ;

3∏

l=1

sinn−l θldθl ×
n−2∏

l=4

sinn−l−2 θldθl . (3.85)

After integrating the components for l = 3, . . . , n − 2 with the help of the δ-
functions, and after parameterizing pd in polar coordinates, dP̂S2 has the form

dP̂S2 = (p2
de)

n/2−1 πn/2−3/2Γ(n
2
− 1)

2nΓ(n
2
− 2)Γ(n

2
− 1

2
)

∫ π

0

sinn−2 θ2dθ2

∫ π

0

sinn−1 θ1dθ1

︸ ︷︷ ︸
Ipol(θi)

. (3.86)

The full three-body phase space including an additional factor ˆ̂pd reads

dP̂S3 =
1

(2π)2n−3

∫
dnpcδ(p

2
c)
[
(pa + pb − pc)

2
]n/2−1

Ipol(θi) . (3.87)

The next steps are similar to the phase space calculation without hat-momenta,
Eqs. (3.63)-(3.68). Rewritten in terms of v, w, and ε, dP̂S3 has the form

dP̂S3 =
1

(2π)5−4ε

π3/2−2ε

25−2εΓ(3
2
− ε)Γ(−ε)s

2−2ε

×
∫
dv

∫
dw(1 − v)−ε(1 − w)1−εv2−2εw−ε

×
∫ π

0

sin3−2ε θ1dθ1

∫ π

0

sin2−2ε θ2dθ2 . (3.88)
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With the parameterization of momenta in Eq. (3.72), and after introducing again
the variable z via the identity of Eq. (3.76), we obtain

dP̂S3

dvdwdz
=

s2(−ε)
2(4π)4Γ(2 − 2ε)

(
4π

s

)2ε

(1 − v)−ε(1 − w)1−εv2−2εw−ε

× 2 cosψg(z)1−ε
∫

sin2−2ε θ2dθ2 . (3.89)

Besides some obvious misprints, Eq. (3.89) is in agreement with Eq. (B42) in
Appendix B of [97].

Since the phase space is proportional to ε and exhibits an additional factor
(1 − w), we shall stress that there are no additional poles arising from contribu-
tions proportional to ˆ̂p2

d. However, in combination with a 1/ε singularity from
subsequent integrations, we get finite contributions to the polarized two-hadron
photoproduction cross section. Thus, simply disregarding hat-momenta would
yield wrong results.

Next, we turn to the actual phase space integration of the 2 → 3 matrix
elements.

3.4.3 Phase Space Integration

The partonic cross sections ab → cde relevant for di-hadron photoproduction,
differential in v, w, and z, are obtained by integrating the 2 → 3 matrix elements
squared over the entire phase space of the unobserved parton e. As explained
in detail for the LO case, one has to attach the flux factor and average or sum
over the color and spin degrees of freedom, depending on whether one deals with
initial state or final state partons. The unpolarized and polarized cross sections
then take the form

dσ̂realab→cdX

dv dw dz
=

1

2s

dPS3

dv dw dz

∑
|Mr|2ab→cde ,

d∆σ̂realab→cdX

dv dw dz
=

1

2s

dPS3

dv dw dz

∑
∆|Mr|2ab→cde , (3.90)

respectively. The [polarized] 2 → 3 matrix elements squared [∆]|Mr|2ab→cde can
be expressed in terms of the ten Mandelstam variables, defined in Eq. (3.47), and
terms proportional to ˆ̂p2

d.

In order to perform the integrations over the angle θ2 in Eqs. (3.81) or (3.89),
we have to make the dependence on θ2 explicit in the [∆]|Mr|2ab→cde. To this end,
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we use the parameterization of the momenta in Eqs. (3.72) and find that

t2 = −sv
2

(1 − cosψ cos θ1 − sinψ sin θ1 cos θ2) ,

u2 = −s(1 − vw)

2
(1 − cosψ cos θ1 + sinψ sin θ1 cos θ2) ,

t3 = −sv
2

(1 + cosψ cos θ1 + sinψ sin θ1 cos θ2) ,

u3 = −s(1 − vw)

2
(1 + cosψ cos θ1 − sinψ sin θ1 cos θ2) ,

s12 =
s(1 − v + vw)

2
(1 − cosψ′ cos θ1 − sinψ′ sin θ1 cos θ2) ,

s13 =
s(1 − v + vw)

2
(1 + cosψ′ cos θ1 + sinψ′ sin θ1 cos θ2) . (3.91)

The other Mandelstam variables s, t, u, and s23 are harmless, since they do not
have any dependence on the angle θ2. After having rewritten the matrix elements
in this way, the integration over θ2 needs to be done with special care, since poles
in z and w may arise. They need a special treatment and require the introduction
of plus-distributions. We give here a general description of how to integrate the
different combinations of Mandelstam variables. For a detailed discussion we refer
to Appendix B, where we collect the explicit formulas for the integration of all
relevant combinations of Mandelstam variables appearing in the direct processes
at NLO accuracy, listed in Eq. (3.49).

The first step is the decomposition of complex structures of Mandelstam vari-
ables into a set of calculable basic integrals. The problem is, that only combina-
tions of Mandelstam variables can be integrated analytically, where at most two
depend on θ2. We employ extensive partial fractioning, together with the rela-
tions among the ten Mandelstam variables given in Eqs. (3.48). To illustrate this
procedure consider the term 1/(t2u2s13). As it stands, it cannot be integrated
analytically. This combination can be rewritten as

1

t2u2s13

=
1

s

[
1

t2u2

− 1

t2s13

− 1

u2s13

]
. (3.92)

Hence, a term with a too complicated dependence on θ2 in the denominator has
been turned into three simpler terms, all integrable. Making an extensive use of
this procedure one ends up with a relatively small amount of master integrals,
discussed in detail in Appendix B.

In the following we give a general outline of the calculation of these integrals.
We first note, that any Mandelstam variable in Eq. (3.91) can be expressed as

Xi = Xi0(ai + bi cos θ2) . (3.93)
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The prefactor Xi0 only depends on v and w. The ai, bi, and Xi0 have no de-
pendence on the integration angle θ2. The relevant combinations, covering all
eventualities for direct photoproduction, are

Xk
i , XiXj ,

1

Xi

,
Xk
i

Xj

,
1

XiXj

, (3.94)

where k is an integer and takes at most the value k = 3. These combinations in
turn are all expressible in terms of two master integrals. However, the explicit
form of the coefficients ai and bi determines the final result: the singularity
structure in terms of poles in 1/ε and 1/ε2 accompanied by Dirac δ-functions
in w and z, and plus-distributions in w and z.

The most general and simplest integral, where the combinations of Mandelstam
variables exhibit no explicit dependence on θ2, has the form

I0 ≡
∫ π

0

sin−2ε θ2dθ2 . (3.95)

Using Eq. (3.80), we immediately find

I0 =
√
π

Γ(1
2
− ε)

Γ(1 − ε)
= π22εΓ(1 − 2ε)

Γ2(1 − ε)
. (3.96)

The next simplest integral with just one θ2-depending Mandelstam variable in
the denominator takes the form

I1(Xi) ≡ Xi0

∫ π

0

sin−2ε θ2dθ2

Xi

=

∫ π

0

sin−2ε θ2dθ2

ai + bi cos θ2

. (3.97)

With the use of Ref. [95] we obtain

I1(Xi) =
√
π

Γ(1
2
− ε)

Γ(1 − ε)

1

ai − bi
2F1

[
1,

1

2
− ε; 1 − 2ε;

2bi
bi − ai

]

=
π√

a2
i − b2i

[
4a2

i

a2
i − b2i

]ε
Γ(1 − 2ε)

Γ2(1 − ε)

× 2F1

[
1

2
− ε,−ε; 1 − ε;

b2i
a2
i

]
, (3.98)

with 2F1(a, b; c; z) being the hyper-geometric function. The explicit form of the
integrals I1(Xi) and the types of singularities occurring in the calculation, depend
on the prefactors ai and bi. All combinations of Mandelstams variables can in
general be decomposed into these two integrals, as will be shown below. However,
one has to take care, if singularities arise. A derivation of all formulas for the
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combinations of Mandelstam variables, we encounter in the integration of the
matrix elements, can be found in Appendix B.

If there is no dependence on the angle θ2 in the denominator of the integrand,
the integrals over θ2 of all Mandelstam combinations can be written solely in
terms of I0

X0
i → I0 ,

Xi → Xi0aiI0 ,

X2
i → X2

i0

[
a2
i +

b2i
2(1 − ε)

]
I0 ,

XiXj → Xi0Xj0

[
aiaj +

bibj
2(1 − ε)

]
I0 ,

X3
i → X3

i0

[
a3
i +

3aib
2
i

2(1 − ε)

]
I0 . (3.99)

The other case is, when there is at least one Mandelstam variable in the denomi-
nator. As mentioned above, these Mandelstam combinations can be rewritten in
terms of I1(Xi):

1

Xi

→ 1

Xi0

I1(Xi) ,

Xi

Xj

→ Xi0

Xj0

[
aibj − ajbi

bj
I1(Xj) + π

bi
bj

]
,

X2
i

Xj

→ X2
i0

Xj0

{[
aibj − ajbi

bj

]2

I1(Xj) + π

[
2aibibj − ajb

2
i

b2j

]}
,

X3
i

Xj

→ X3
i0

Xj0

{[
aibj − ajbi

bj

]3

I1(Xj) ,

+π

[
6aibibj(aibj − biaj) + b3i (b

2
j + 2a2

j)

2b3j

]}
,

1

XiXj

→ 1

Xi0Xj0

1

ajbi − aibj

[
biI1(Xi) − bjI1(Xj)

]
. (3.100)

The latter decomposition is not possible, if the term (ajbi−aibj) can be zero. For
example, if the integrand is 1/(t3u3), this term contains a factor (1+cosψ cos θ1)
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and reaches zero for w = 1. This calls for yet another special treatment, and the
explicit formulas are also given in Appendix B.

In the case of hat-momenta in the phase space integration the exponent of the
sine-function in Eq. (3.97) is modified from (−2ε) to (2 − 2ε), and we need to
compute two additional integrals:

∫ π

0

sin2−2ε θ2dθ2

ai + bi cos θ2

=
Γ2(3

2
− ε)

2−2+2εΓ(3 − 2ε)

1

ai
2F1

(
1

2
, 1; 2 − ε;

b2i
a2
i

)
,

∫ π

0

sin2−2ε θ2dθ2

(ai + bi cos θ2)2
=

Γ2(3
2
− ε)

2−2+2εΓ(3 − 2ε)

1

a1−2ε
i

1

(a2
i − b2i )

ε+1/2

× 2F1

(
1 − ε,

1

2
− ε; 2 − ε;

b2i
a2
i

)
. (3.101)

The first integral vanishes in combination with the factor (−ε) stemming from

the phase space dP̂S3, unlike the second integral, where the factor 1/(a2
i−b2i )ε+1/2

can yield terms proportional to 1/ε. Here, we get non-zero contributions when
combined with the factor (−ε) from the phase space in Eq. (3.89).

As mentioned already, distributions in w and z occur in the calculation. For
example, terms containing (1 − w)−1−ε develop a pole as w → 1. This can be
handled by the identity

1

(1 − w)1+ε
= −1

ε
δ(1 − w) +

1

(1 − w)+

− ε

[
ln(1 − w)

1 − w

]

+

+ O(ε2) , (3.102)

with 1/(1 − w)+ as the plus-distribution, defined via an arbitrary test function
f(w) by ∫ 1

0

dw
f(w)

(1 − w)+

≡
∫ 1

0

dw
f(w) − f(1)

1 − w
, (3.103)

and similarly for [ln(1−w)/(1−w)]+. Equation (3.102) can be easily verified by
integrating both sides with a test function according to Eq. (3.103). Furthermore,
we get distributions in z. As z > 1 is possible, the plus-distribution must be
generalized to any range of integration. We split it into the ranges [0; 1] and
[1; zmax]. In addition to the “normal” plus-distribution, such as Eq. (3.103), this
leads to an alternative definition via a test function f(z)

∫ zmax

1

dz
f(z)

(z − 1)+

≡
∫ zmax

1

dz
f(z) − f(1)

z − 1
. (3.104)

Another modification has to be made, if the pole appears at z = z1 ≡ 1/(1− v+
vw) with w 6= 1 and hence z1 6= 1. In this case we make the following definitions
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of plus-distributions

∫ z1

0

dz
f(z)

(z1 − z)+

≡
∫ z1

0

dz
f(z1) − f(z)

z1 − z
,

∫ zmax

z1

dz
f(z)

(z − z1)+

≡
∫ zmax

z1

dz
f(z) − f(z1)

z − z1

. (3.105)

The singularities appear in poles 1/ε and 1/ε2. For the explicit pole structure
of all Mandelstam combinations, we refer to Appendix B.

3.5 Counter Terms, the Cancelation of

Singularities, and Final Results

After renormalizing the virtual contributions stemming from vertex corrections
and self-energies, they are free of any UV divergencies. In the next step, adding
them to the real contributions with one additional particle in the final state at
the partonic level, all infrared 1/ε singularities and coinciding IR and collinear
1/ε2 poles cancel for each process in the sum of all contributing diagrams [44, 45,
46]. The remaining collinear singularities, appearing as 1/ε, are handled by the
factorization procedure, as discussed in Sec. 2.3. They arise when the momentum
pi of an unobserved parton becomes parallel to any of the other parton momenta.
After adding the appropriate counter terms for the collinear divergencies the sum
of all contributions is free of any poles in ε and the limit ε → 0 can safely be
performed to obtain the final results.

In the real corrections, Eq. (3.45), the third, not observed parton, say parton
e, can in principle become collinear to any leg of any other parton in the hard
process. However, in the direct case gluons, of course, can not become collinear
to the incoming photon, because there is no vertex including both photons and
gluons.

We remove collinear singularities by factorizing them from the hard cross sec-
tion at the partonic level to the soft functions like parton distribution and frag-
mentation functions, depending on whether the collinear poles stem from initial
or final state parton legs. This subtraction is performed at a scale µf for ini-
tial state singularities and µ′

f for final state singularities and thus gives rise to

“dressed” functions [∆]fN,li (x, µf ) and DH
i (z, µ′

f ). Together with the collinear
singularities one has the possibility to shift also finite pieces from the hard to
the soft parts. This is due to the freedom in choosing a factorization scheme.
If no photon is involved in the splitting process, we use the MS scheme like for
the renormalization procedure introduced in Sec. 2.2. In this scheme we sub-
tract finite terms proportional to γE and ln 4π together with 1/ε poles, see, e.g.,
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Figure 3.8: The four different possibilities for collinear singularities.

Eq. (2.42). In the literature, parton distribution and fragmentation functions are
usually given in the MS scheme. However, care has to be taken in the case, if a
photon is involved in the factorization process. Here, we slightly deviate from the
MS scheme and use the so called DISγ scheme, discussed in Sec. 2.3, as photon
distribution functions are often given in this scheme. For the transformation from
MS to DISγ we refer to the end of this Section.

In principle, at NLO collinear emissions can occur from any external leg, initial
and final state, of a 2 → 2 LO process. Although for the direct processes,
considered in this work, collinear configurations on all four legs are not possible,
we give here the most general expression, including all possibilities. Assuming
that parton e is not observed and can become collinear to any other parton leg,
we have four different possibilities, shown schematically in Fig. 3.8.

In practice, the factorization is performed by adding appropriate counter terms
to every partonic cross section in order to remove the collinear poles. These
counter terms always have the simple structure of a convolution of a n-dimensional
LO 2 → 2 partonic cross section, with a divergent “transition function”, contain-
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ing a four-dimensional LO splitting function. In the MS scheme we have

[∆]Hij(x,Q
2) =

(
− 1

ε
+ γE − ln 4π

)
[∆]Pij(x)

( s
µ2

)ε
+ [∆]fij(z) . (3.106)

The [∆]Pij(z) denote the usual [polarized] four-dimensional LO one-loop splitting
functions [54]:

∆Pqg(z) =
1

2

[
z2 − (1 − z)2

]
,

∆Pgq(z) = CF

[
1 − (1 − z)2

z

]
,

∆Pqq(z) = CF

[
2

(1 − z)+

− 1 − z +
3

2
δ(1 − z)

]
,

∆Pgg(z) = 2CA

[
1

(1 − z)+

− 2z + 1

]
+

[
11

6
CA − Nf

3

]
δ(1 − z) . (3.107)

The unpolarized counterparts can be found, e.g., in [31]. The functions [∆]fij(z)
in Eq. (3.106) reflect the freedom in choosing a factorization prescription. In
the MS scheme these functions all vanish, except for the polarized qq-case. In
the framework of the HVBM regularization procedure [43, 47] the definition of
γ5 results in helicity non-conservation at the quark-gluon vertex in n dimen-
sions [63, 64, 98, 99, 100]. This gives rise to a deviation of the spin-dependent
n-dimensional quark-to-quark splitting function in LO from the corresponding
unpolarized counterpart

∆Pqq(z) − Pqq(z) = 4CF ε(1 − z) . (3.108)

If one demands helicity conservation the Pqq and ∆Pqq must coincide. As is well
known, the literal MS factorization prescription would lead to inconsistencies in
the renormalization of the axial current, and the cancellation of collinear sin-
gularities is not guaranteed beyond NLO [101]. We therefore slightly deviate
from the normal MS prescription in the spin-dependent case and restore helicity
conservation by choosing [63, 64, 100]

∆fqq(z) = −4CF (1 − z) . (3.109)

All other ∆fij(z) are set to zero.

Depending on which leg undergoes the collinear splitting, the kinematics of the
counter term deviates from the LO case, where s + t + u = 0. Taking this into
account, the appropriate spin-dependent counter term cross section reads in the
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four different cases as depicted in Fig. 3.8:

1

sv

d∆σ̂factab→cdX

dvdwdz
= −αs

2π

[
1

sv
∆Hia(w, µ

2
f )
d∆σ̂

(0)
ib→cd

dv
(ws, v, ε)δ(1 − z)

+
1

s(1 − vw)
∆Hib

( 1 − v

1 − vw
, µ2

f

)

× d∆σ̂
(0)
ai→cd

dv

( 1 − v

1 − vw
s, vw, ε

)
δ(1 − z)

+
1

s(1 − v + vw)
Hci

(
1 − v + vw, µ′

f
2
)

× d∆σ̂
(0)
ab→id

dv

(
s,

vw

1 − v + vw
, ε
)
δ(z1 − z)

+
1

sv
Hdi(z, µ

′
f
2
)
d∆σ̂

(0)
ab→ci

dv
(s, v, ε)

× θ(1 − z)δ(1 − w)

]
, (3.110)

with z1 = 1/(1− v+ vw). The d∆σ̂
(0)
jk→lm/dv are the LO polarized n-dimensional

2 → 2 cross sections for the process jk → lm and can be found in the HVBM
scheme in [98]. As mentioned above, the cross sections are evaluated at some
shifted kinematics, denoted by (ζs, ξ), since the collinear parton j takes away a
certain fraction of the available momentum. Note that the unpolarized Hij(x, µ

′
f )

contribute to the factorization of final state singularities, since we do not consider
the production of polarized hadrons. Needless to say that an equation similar to
Eq. (3.110) holds in the unpolarized case.

A special treatment is required, if photons are involved in the factorization pro-
cess. The collinear singularities, stemming from γ → qq̄ splittings present in the
direct part, are absorbed into the pointlike part of the photon densities and thus
into the resolved piece of the photoproduction cross section. No cancellation of
such divergencies is possible within the direct part alone, as the photon interacts
here as a pointlike particle. Consequently, only the sum of direct and resolved
contribution

d∆σ = d∆σdir + d∆σres (3.111)

is a physically meaningful quantity and independent of conventions at NLO and
beyond. In practice, the subtraction of collinear poles stemming from γ → qq̄
splitting is done in analogy to Eq. (3.106)

[∆]Hqγ(x,Q
2) =

(
− 1

ε
+ γE − ln 4π

)
[∆]Pqγ(x)

( s
µ2

)ε
+ [∆]fqγ(x) , (3.112)



66 3 The Analytic NLO Calculation

where [∆]fqγ(z) again denotes the freedom in subtracting finite pieces together
with the 1/ε poles. The [polarized] four-dimensional LO photon-to-quark splitting
functions have the following form [70]

Pqγ(z) = CA

[
z2 + (1 − z)2

]
,

∆Pqγ(z) = CA

[
z2 − (1 − z)2

]
. (3.113)

In the MS scheme the functions [∆]fqγ(x) vanish. However, it is common
to express the [polarized] photon distribution functions [∆]fγ(x, µ), defined in
Eq. (2.56), in the DISγ scheme, which is related to the MS scheme via [52]

[∆]fMS
γ (x, µ) = [∆]fDISγ

γ (x, µ) + δ[∆]fγ(x) , (3.114)

with f = q, q̄, g, and where

δqγ(x) = δq̄γ(x)

= −CAe2q
αem
2π

[
(1 − 2x+ 2x2) ln

1 − x

x
− 1 + 8x(1 − x)

]
,

δgγ(x) = 0 ,

δ∆qγ(x) = δ∆q̄γ(x)

= −CAe2q
αem
2π

[
(2x− 1)

(
ln

1 − x

x
− 1
)

+ 2(1 − x)

]
,

δ∆gγ(x) = 0 . (3.115)

Alternatively, the hard partonic cross section in the MS scheme can be rewritten in
the DISγ scheme by demanding that the sum of direct and resolved contributions
to the partonic cross section remains invariant,

d∆σ = d∆σMS = d∆σDISγ . (3.116)

Hence, the appropriate scheme transformation is schematically given by

d∆σ̂
DISγ

γb→cdX = d∆σ̂MS
γb→cdX +

∑

a

δ∆aγ ⊗ d∆σ̂
(0)
ab→cd , (3.117)

with d∆σ̂
(0)
ab→cd the polarized LO partonic cross section for the process ab → cd.

Here, we disregard contributions δ∆fγ ⊗ d∆σ̂(1), which are formally of NNLO
accuracy. Needless to say, Eqs. (3.116) and (3.117) hold also true for the un-
polarized case by simply replacing the polarized quantities by their unpolarized
counterparts.
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Adding all contributions, virtual and real corrections, as well as the counter
terms just discussed, we end up with the complete NLO cross section differential
in v, w, and z

d∆σ̂
(1)
ab→cdX

dv dw dz
=
d∆σ̂virtab→cd

dv dw dz
+
d∆σ̂realab→cdX

dv dw dz
+
d∆σ̂factab→cdX

dv dw dz
, (3.118)

which is now finite in the limit ε → 0, but depends explicitly on the renormal-
ization scale µr and the factorization scales µf and µ′

f , which are omitted in
Eq. (3.118).

We note that the polarized partonic cross section in Eq. (3.118) can be generi-
cally written in terms of all possible combinations of distributions

d∆σ̂
(1)
ab→cdX

dvdwdz
= ∆K1(v, w)δ(1 − z) + ∆K2(v, w)δ(z1 − z)

+ ∆K3(v, w)
θ(1 − z)

(1 − z)+

+ ∆K4(v, w)
θ(z − 1)

(z − 1)+

+ ∆K5(v, w)
θ(z1 − z)

(z1 − z)+

+ ∆K6(v, w)
θ(z − z1)

(z − z1)+

+ ∆K7(v, w)

[
ln(1 − z)

1 − z

]

+

+ ∆K8(v, w, z) . (3.119)

The functions ∆Ki(v, w, z), i = 1, ..., 8 are regular in z and contain, in general,
distributions in w. They can be decomposed further as

∆Ki(v, w) = ∆k1(v)δ(1 − w) + ∆k2(v)
1

(1 − w)+

+ ∆k3(v)

[
ln(1 − w)

1 − w

]

+

+ ∆k4(v, w) . (3.120)

This decomposition holds also true for the unpolarized case. However, not all
combinations give real plus-distributions in the end. For example, the product of
1/(z − 1)+ and 1/(1 − w)+ gives

θ(z − 1)

(z − 1)+

1

(1 − w)+

=
θ(z − 1)

(z − 1)+

1

1 − w
, (3.121)

since in the region z > 1 the variable w is limited to w < 1 due to Eq. (3.78). In
addition, in the case w = 1 the upper integration limit of z becomes zmax = 1,
and the distributions at z = z1 coincide with the distributions at z = 1.

As already mentioned before, z has to be limited in the range z > 0 to avoid
certain singular configurations as, e.g., two collinear hadrons. When comparing
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with data, no experimental cuts on z can be made, since, strictly speaking, this
is a partonic quantity. Here, we have to introduce the hadronic counterpart of z

zH ≡ −
~PT,1 · ~PT,2
P 2
T,1

=
z2

z1

z , (3.122)

with PT,i being the transverse momentum of hadron Hi, and zi the momentum
fraction of parton i carried by the produced hadron Hi. As a consequence, the
lower bound on z is a function of the zi. Analogously, the lower integration limit
of the w integration also takes values wmin 6= 0. Since the plus-distributions are
defined so far in the interval 0 to 1, we need to generalize them to accommodate
arbitrary lower limits. We define

∫ 1

zmin

dzf(z)[g(z)]zmin
≡
∫ 1

zmin

dz[f(z) − f(1)]g(z) , (3.123)

with a function g(z) containing the singular structure in z. We can now re-express
the usual plus-distributions by the new ones

1

(1 − z)+

=
1

(1 − z)zmin

+ δ(1 − z) ln(1 − zmin)

(
ln(1 − z)

1 − z

)

+

=

(
ln(1 − z)

1 − z

)

zmin

+
1

2
ln2(1 − zmin)δ(1 − z) . (3.124)

The same expressions of course hold true for the variable w, and for distributions
including z1 with simply replacing 1 by z1.

This completes the discussion of the analytic calculation of the cross section
for the photoproduction of two hadrons.



4 Phenomenological Applications

with the Analytic Approach

We now turn to the numerical studies of our results obtained in the previous
Chapter, focusing on the relevance of NLO corrections and theoretical uncer-
tainties due to the choice of scales. The main results presented here have been
published in Ref. [23, 34]. In addition, we give the contributions of the indi-
vidual subprocesses to the full cross section, and also show predictions for the
double-spin asymmetry AH1H2

LL defined in Eq. (3.6). This quantity turns out to
be very sensitive to the chosen spin-dependent gluon distribution, and has more
relevance for experiments than cross sections. This is, because in asymmetries
acceptance corrections due to detector efficiencies and other experimental un-
certainties partly cancel in the ratio of polarized and unpolarized cross sections.
Thus, measuring AH1H2

LL in experiment is a viable method for accessing the polar-
ized parton distributions of the nucleon. We note, however, that a cross section
measurement is essential to test the applicability of pQCD, which is not at all
guaranteed at moderate c.m.s. energies.

This Chapter is dedicated to results obtained with the analytic approach, i.e.,
with the methods to perform the phase space integrations described in the previ-
ous Chapter. Here, we compute the NLO QCD corrections to the “direct” part
of the spin-dependent cross section for two-hadron photoproduction,

l(Pl, λl)N(PN , λN) → l′(Pl′)H1(P1)H2(P2)X , (4.1)

i.e., where the exchanged photon is at low virtuality and interacts as an elemen-
tary particle with one of the partons of the nucleon N . The Pi in (4.1) are the
four-momenta of the observed leptons and hadrons, X contains all the additional
hadronic activity not observed in experiment, and the λi denote the helicities of
the interacting lepton l and nucleon N . Both hadrons H1 and H2 are required
to be at high transverse momentum to ensure that the factorization procedure is
applicable for this process.

We observe a hadron H1 with transverse momentum PT,1, which is scattered
at an angle θ1 relative to the incoming lepton beam. It is common to use its
pseudorapidity

η1 = − ln tan

[
θ1

2

]
, (4.2)

69
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instead of the scattering angle θ1, as this quantity is additive under Lorentz
boosts. For fixed-target experiments like Compass and Hermes, the transfor-
mation from the laboratory frame, where the nucleon is at rest, to the c.m.s. is
given by

ηcms = ηlab −
1

2
ln

[
2El
MN

]
, (4.3)

with El being the energy of the incoming lepton beam and MN the mass of the
nucleon at rest. In the case of massless particles the pseudorapidity η1 coincides
with the rapidity y1 defined by

y1 =
1

2
ln

[
E + pz
E − pz

]
, (4.4)

where E is the energy of the observed hadron and pz the z-component of its
momentum defined by the incident lepton beam direction.

Since we want to make use of the largely analytical methods developed in the
previous Chapter, we are limited to observing the hadron H2 in the hemisphere
opposite to hadron H1. The transverse momentum vector ~PT,2 of hadron H2 is
constrained by zH defined in Eq. (3.122), but otherwise unspecified kinematics, in
particular the rapidity of the hadron H2 is beyond our control. The fixed-target
experiments like Compass and Hermes are not equipped with a 4π-detector
covering all solid angles, but allow particle detection and identification only in a
certain range of rapidity. Thus, hadron H2 may end up outside the acceptance
of the detector.

The factorized expression for the NLO spin-dependent cross section is a con-
volution of the non-perturbative parton distribution and fragmentation functions
and the hard scattering of the partons and reads

d∆σH1H2

dPT,1dy1dzH
≡ 1

2

[
dσH1H2

++

dPT,1dy1dzH
− dσH1H2

+−
dPT,1dy1dzH

]
(4.5)

=
2PT,1
S

∑

i,j,k

∫ 1

1−V+VW

dz1

z1

∫ 1− 1−V
z1

V W
z1

dv

v(1 − v)

∫ 1

V W
vz1

dw

w

×
∫ zmax

zmin

dz

z
∆f lγ(xl, µf )∆f

N
i (xN , µf )

αs(µr)αem
s

×
[
d∆σ̂

(0)
γi→jk(v)

dv
δ(1 − w)δ(1 − z) +

αs(µr)

2π

×
d∆σ̂

(1)
γi→jkX

dvdwdz
(s, v, w, µf , µ

′
f , µr, z)

]

× DH1

j (z1, µ
′
f )D

H2

k (z2, µ
′
f ) . (4.6)
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The subscripts ”++” and ”+−” in (4.5) denote the settings of the helicities of
the incoming lepton and nucleon. We have introduced the standard hadronic
invariants

S = (Pl + PN)2 , T = (Pl − P1)
2 , U = (PN − P1)

2 , (4.7)

V = 1 +
T

S
, W = − U

S + T
, (4.8)

with four-momenta specified in Eq. (4.1). The partonic counterparts s, t, u, v,
and w are defined in Eqs. (3.9) and (3.33).

Neglecting the masses of all particles one finds the following relations among
the hadronic and partonic variables

s = xlxNS , t =
xl
z1

T , u =
xN
z1

U , (4.9)

xl =
VW

vwz1

, xN =
1 − V

(1 − v)z1

, (4.10)

with xl [xN ] being the fraction of the longitudinal momentum of the lepton [nu-
cleon] taken by the quasi-real photon [parton i]. In addition, V andW in Eq. (4.8)
are determined by the observed hadron H1 and the lepton-nucleon c.m.s. energy
squared S:

V = 1 − PT,1√
S
e−y1 , W =

P 2
T,1

SV (1 − V )
. (4.11)

Note that the cross section on the left hand side of Eq. (4.6) is differential in
the hadronic variable zH , whereas the right side includes an integral over the
partonic counterpart z, defined in Eq. (3.70). z1,2 are the momentum share that
the hadrons H1,2 inherit from its parent partons j, k in the hadronization process.

The latter is modeled by non-perturbative functions D
H1,2

j,k (z1,2, µ
′
f ) describing the

collinear fragmentation of the partons j and k into the observed hadrons H1 and
H2, respectively. The ∆fNi (xN , µf ) in Eq. (4.6) are the spin-dependent parton
distribution functions, defined in Sec. 2.3 via Eq. (2.52).

As we only focus on the direct photon case in this Chapter, ∆f lγ(xl, µf ) in
Eq. (4.6) coincides with the spin-dependent Weizsäcker-Williams equivalent pho-
ton spectrum, see Eq. (2.57). It describes the collinear emission of a photon with
low virtuality Q, less than some upper limit Qmax determined by the experimen-
tal conditions. The non-logarithmic pieces in Eq. (2.57) result in a small but
non-negligible contribution in case of muons.

The sum in Eq. (4.6) runs over all possible partonic channels γi→ jkX, with i,

j, and k being either an (anti)quark or a gluon. The d∆σ̂
(0)
γi→jk and d∆σ̂

(1)
γi→jkX de-

note the associated LO and NLO longitudinally polarized partonic hard-scattering
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Figure 4.1: The polarized gluon distribution function x∆g(x, µ) as a function of x
for different sets of parameterizations: GRSV std. [17], DNS Set 1 [62],
DSSV [24], and an extreme set assuming ∆g = −g at the input scale of
GRSV.

cross sections, respectively, given in Eqs. (3.37) and (3.118). They are defined in
complete analogy to Eq. (4.5) and have been stripped of trivial factors involving
the electromagnetic coupling αem and the strong coupling αs(µr) evaluated at the
renormalization scale µr. As indicated in Eq. (4.6) and discussed before, starting
from the NLO level, the subprocess cross sections will explicitly depend on µr,
as well as on the scales µf and µ′

f of the parton distribution and fragmentation
functions owing to the factorization of initial and final state collinear singularities.
Corresponding expressions for spin-averaged cross sections are straightforwardly
obtained by replacing all polarized quantities by their unpolarized counterparts.

At LO the contributing subprocesses are the QCD Compton and photon-gluon
fusion (PGF) processes, see Eqs. (3.14) and (3.15). At NLO the same 2 → 2
reactions have to be considered, now including virtual corrections. Additionally,
processes with three partons in the final state contribute. They are listed for the
direct case in Eq. (3.49). Since only two of the three final state partons fragment
into the observed hadrons, it is indispensable to include all combinatorical possi-
bilities by taking into account that any of the three partons can be the unobserved
one.

In the computation of the LO and NLO unpolarized cross section we use the LO
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and NLO CTEQ6 parton densities [56] and strong coupling αs, respectively. In
the polarized case we use the sets of DNS helicity dependent parton densities [62],
the usual GRSV sets [17], as well as a new set by DSSV [24], described in detail
in Sec. 2.3. This new set gives a rather small spin-dependent gluon distribution
even when compared to fits with a moderate gluon polarization like DNS and
GRSV. A small gluon polarization, either positive or negative, is indicated by
all presently available data sensitive to ∆g(x, µf ) [20, 21, 28, 29]. We note that
for a set with a positive gluon polarization, like the “standard” set of GRSV
[17], and the sets of DNS [62], one encounters strong cancellations between the
contributions from PGF and the QCD Compton process leading to sign changes
in the polarized cross section. This makes it awkward to display the ratios of NLO
to LO results we are interested in here. Hence we resort to the new set by DSSV,
where the helicity-dependent gluon distribution is smaller and no sign changes
appear for the NLO cross sections. Figure 4.1 shows the used spin-dependent
gluon distributions as a function of the momentum fraction x of the proton taken
by the gluon at a scale µ2 = 4 GeV2. Also shown is an extreme set from the
GRSV analysis assuming a large and negative ∆g(x, µf ), now disfavored by data.

To model the hadronization of partons j and k into the observed hadrons
H1 and H2, we use the novel set of fragmentation functions of DSS [73]. This
new set is based on a first global QCD analysis of inclusive hadron spectra in
electron-positron annihilation, DIS multiplicities, and hadron-hadron scattering
and known to describe hadronization fairly well also in the energy range relevant
here [73]. Since Compass and Hermes do not identify different hadron species
and measures only the sum of charged hadrons [20, 21], we use the corresponding
LO and NLO sets of DSS [73] for all our calculations. We note that our studies for
Compass kinematics have already been published [23, 34]. However, all results
based on the recent DSSV global analysis are new and have not been shown
before.

4.1 Results for COMPASS Kinematics

For our numerical studies in this Section we choose the kinematical setup of
the Compass experiment [102], which scatters a beam of polarized muons with
an energy of Eµ = 160 GeV off deuteron in a polarized 6LiD solid-state target,
corresponding to a lepton-nucleon c.m.s. energy of

√
S ≃ 18 GeV.

The results we show will be differential in the transverse momentum PT,1 of
hadron H1 and integrated over the angular acceptance of the Compass experi-
ment, i.e., covering scattering angles θ1 of less than 180 mrad in the laboratory
frame. Using Eqs. (4.2)-(4.4), this straightforwardly translates into a lower bound
on the c.m.s. rapidity y1 for hadron H1. Kinematics dictates the upper bound of
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y1, depending on the transverse momentum of the hadron

ymax
1 = cosh−1

√
S

2PT,1
. (4.12)

Recall that we cannot control the rapidity of hadron H2 in our analytical cal-
culation, which in turn implies that it may end up outside the acceptance of
Compass. The range of the transverse momentum vector ~PT,2 of H2 is restricted
by demanding zH > 0.4, with zH as defined in Eq. (3.122). The momentum
distribution of the quasi-real photons radiated off the muons is described by
the Weizsäcker-Williams equivalent photon spectrum given in Eq. (2.57), with
ml = mµ and Q2

max = 0.5 GeV2. The momentum fraction xl of the photon is
restricted to be in the range 0.1 ≤ xl ≤ 0.9.

Figure 4.2 shows our results for the PT,1-differential cross section for the po-
larized and unpolarized photoproduction of a pair of charged hadrons at LO and
NLO accuracy at Compass. We have set all renormalization and factorization
scales in Eq. (4.6) equal to twice the transverse momentum of hadron H1. The
sum of the transverse momenta of both hadrons might be a better motivated
choice, but we do not have control on PT,2 within the analytical calculation. The
so-called “K-factor”, defined as the ratio of NLO to LO unpolarized (polarized)
cross sections

K ≡ d(∆)σNLO

d(∆)σLO
, (4.13)

is depicted in the lower panel of Fig. 4.2. The computed QCD corrections are
such that the NLO results are below the LO estimates in the entire range of
PT,1 shown in Fig. 4.2. They appear to be more sizable in case of the polarized
cross section. The observed difference of the unpolarized and polarized K-factors
clearly indicates that NLO corrections are relevant also for studies of double-
spin asymmetries, AH1H2

LL , see Eq. (3.6), as they do not cancel in the ratio. The
contrary is often assumed in analyses of spin asymmetries.

We wish to make two remarks about the results shown in Fig. 4.2. Firstly, find-
ing K-factors smaller than 1 is not a result of the NLO corrections to the hard-
scattering partonic cross sections, but stems mostly from the difference between
the LO and NLO parton distribution and fragmentation functions, in particular
the latter. The LO and NLO sets of DSS show pronounced differences, mainly
because the LO fragmentation functions try to make up for the often large NLO
corrections in some of the fitted cross sections, see [73] for details, which are
missing in a consistent LO analysis. The effect of the fragmentation functions is
illustrated in Fig. 4.2 by the curves labeled “LO”. They refer to a calculation us-
ing LO matrix elements but NLO parton densities and fragmentation functions.
This clearly demonstrates the inadequacy of LO results. At best they can serve
as a rough estimate, but they are insufficient for any quantitative analysis. Very
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Figure 4.2: Unpolarized and polarized photoproduction cross section for a pair of
charged hadrons, µd → (H+

1 + H−
1 )(H+

2 + H−
2 )X, at LO (dashed)

and NLO (solid) accuracy using COMPASS kinematics. The lower panel
shows the ratios of NLO to LO cross sections (K-factor). The curve la-
beled “LO” refers to a LO calculation using NLO parton densities and
fragmentation functions (see text).

similar observations can be made in the polarized case. Here, a “LO”-type cal-
culation leads to K-factors ranging from 1.1 to 1.8. This is not shown in Fig. 4.2
for clarity.

Secondly, we note that the details and size of the NLO corrections in the po-
larized case depend significantly on the still largely unknown gluon polarization.
As already mentioned, there can be strong cancellations between different sub-
processes, leading to zeros in the polarized cross section. In their vicinity large
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Figure 4.3: Scale dependence of the LO and NLO unpolarized (a) and polarized (b)
cross sections for µd→ (H+

1 +H−
1 )(H+

2 +H−
2 )X shown in Fig. 4.2. All

scales are varied simultaneously in the range
√

2PT,1 ≤ µr = µf = µ′
f ≤

2
√

2PT,1. Solid lines correspond to the choice where all scales are set to
2PT,1. All LO computations have been rescaled by a factor 0.01 to better
distinguish them from the NLO results.

NLO corrections are in general inevitable.

As an estimate for the sensitivity of the computed cross sections to the ac-
tual choice of scales µf , µ

′
f , and µr in Eq. (4.6), we vary them simultaneously

in the range
√

2PT,1 ≤ µr = µf = µ′
f ≤ 2

√
2PT,1. We note that in principle all

scales can be varied independently. The shaded bands in Figs. 4.3 (a) and (b)
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Figure 4.4: Relative contributions of the partonic channels γq → cdX and γg →
cdX, summed over all final states c, d, to the full unpolarized and polar-
ized cross section at Compass.

indicate the resulting residual scale uncertainty of the unpolarized and polarized
photoproduction cross sections, respectively. We find that the NLO results show
somewhat reduced theoretical ambiguities, in particular, for the polarized cross
section. However, similar remarks as above apply also here. Scale ambiguities in
the polarized case depend on the details of the helicity-dependent parton densi-
ties and on possible cancellations among different subprocesses. One also has to
keep in mind that the results only include the direct photon contribution to the
photoproduction cross section. Predictions including the resolved contributions
are addressed to Chapter 6, where we apply an alternative approach of a nu-
merical phase space integration using the two cut-off phase space slicing method.
Additionally, we shall stress here that constraining the transverse momentum
PT,2 of hadron H2 by another value as zmin

H = 0.4 does not lead to a reduction
of scale dependence, but only gives a shift in the unpolarized and polarized cross
sections. Going to smaller values for zmin

H increases the cross sections, whereas a
larger lower bound results in a reduction of the cross sections.

Next, we analyze the relevance of the different subprocesses, namely the par-
tonic contributions γq → cdX and the γg → cdX, where we sum over all final
states c and d. Figure 4.4 shows the fractions of the different subprocesses to the
full cross section, both the unpolarized (left panel) and polarized (right panel)
case. Again, we constrain hadron H2 by demanding zH > 0.4 and set all scales
equal to twice the transverse momentum of hadron H1. In the unpolarized case
the γq-channel dominates, contributing between 60 and 80% to the direct pho-
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Figure 4.5: Double-spin asymmetry AH1H2

LL at NLO accuracy for the direct part of
di-hadron photoproduction at Compass for different sets of parton dis-
tributions. The error bars indicate the estimated statistical uncertainty
for the Compass experiment at an integrated luminosity of 1 fb−1.

toproduction cross section. For the corresponding studies in the polarized case
we again employ the new set of polarized parton distribution functions by DSSV.
For this particular set, the γq-channel dominates the full polarized cross section,
and the PGF contributions enter with the opposite sign. This, of course, has to
be taken with a pinch of salt due to the special choice of spin-dependent parton
distributions. Using, for example, the sets of DNS or the standard GRSV set
would lead to even larger cancellations between the two partonic channels and
even to sign changes, making it difficult to display the results in a proper way.
However, it tells us that the polarized photoproduction of hadron pairs is very
sensitive to the used gluon scenario and in principle would allow for an extraction
of ∆g(x, µ). Figure 4.4 also shows that due to the huge cancellations of the γq-
and γg-channels, the resolved contributions might be of relevance as well. Thus,
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neglecting them can perhaps lead to misleading results for ∆g(z, µ).
We now turn to the double-spin asymmetry AH1H2

LL for the deuteron target used
at Compass, as defined in Eq. (3.6), and depicted in Fig. 4.5 for different sets
of polarized parton distributions. In our numerical studies we use Set 1 of DNS
(obtained with Kretzer fragmentation functions) [73], the standard GRSV set
[17], a maximal negative gluon polarization labeled as ∆g = −g, as well as the
new set by DSSV [24]. The respective gluon distributions have been shown in
Fig. 4.1. Again, all scales are set equal, µr = µf = µ′

f = 2PT,1. Over the entire pT -
range the asymmetry obtained with the maximal negative gluon scenario exceeds
all other results shown in Fig. 4.5, following the hierarchy: the more “negative”
the ∆g(x, µ), the more positive the double-spin asymmetry AH1H2

LL . This behavior
can be traced back to the γg-channel, which gives large positive contributions to
d∆σ for negative ∆g(x, µ), as the double-spin asymmetry at the partonic level is
negative for the PGF process.

Figure 4.5 also shows the estimated statistical error for such a measurement as
estimated by

δAH1H2

LL ≃ 1

PbPdFd

√
σbinL

, (4.14)

with Pb = 0.76 being the beam polarization and Pd = 0.5 the polarization of the
deuteron target. The 6LiD solid-state target has a dilution factor of Fd = 0.5
[102], and σbin denotes the unpolarized cross section integrated over the PT,1-bin
considered. We assume an integrated luminosity of L = 1 fb−1. The error bars
indicate that, in principle, one can distinguish between a small ∆g(x, µ), and the
extreme scenario of a maximal negative ∆g(x, µ), but a precise determination
seems to be possible only in the low PT,1-range, as the unpolarized cross section
is larger and thus statistics is better in this region. Compass obtained a PT -
averaged double-spin asymmetry for photoproduction of hadron pairs of AH1H2

LL ≃
0.002±0.019(stat.)±0.003(syst.) [20], which is in agreement with our predictions
for moderate sets of ∆g(x, µ).

However, there are a few caveats in relating the measured AH1H2

LL with a value
for ∆g(x, µ), which need to be addressed: First, one has to demonstrate the
applicability of pQCD methods. For this purpose, an important “benchmark”
would be the comparison of the relevant unpolarized cross sections with theoret-
ical expectations, which are, e.g., given in Fig. 4.3. Unfortunately, such a kind of
information is still lacking from Compass for the time being. Measuring the un-
polarized cross section is essential, before making use of double-spin asymmetries
in a reliable way. Let us stress that a possible discrepancy between experiment
and theory at moderate c.m.s. energies would not necessarily imply that standard
pQCD methods are beyond remedy. It would only call for further improvement
by resumming large terms in the perturbative series, for instance threshold loga-
rithms, to all orders in the strong coupling αs. This is known to lead often to a
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Figure 4.6: Double-spin asymmetry AH1H2

LL as a function of PT,1 = pT,c at LO ac-
curacy for different gluon polarizations. The upper panel shows the spin
asymmetry with (solid lines) and without (dashed lines) including the
resolved contribution. In the lower panel the dependence of AH1H2

LL on
the two extreme photon scenarios, “maximal” (solid lines) and “mini-
mal” saturation (dashed lines), see Fig. 2.5, is shown. The “error bars”
indicate the estimated statistical accuracy for such a measurement at
Compass according to Eq. (4.14). The curve labeled ’std.∆g’ refers to
the standard GRSV set, ’∆g = g’ [’∆g = 0’] corresponds to a maximal
[vanishing] gluon polarization at the GRSV input scale. The Figure is
taken from [23].
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much improved agreement between data and pQCD calculations.

Second, we shall stress here that Fig. 4.5 only includes the direct part to the
photoproduction cross section. The resolved part can become important, as it has
been shown in our LO study [23]. The upper panel of Fig. 4.6 shows a comparison
at LO accuracy of AH1H2

LL for the sum of direct and resolved contributions with
AH1H2

LL computed for the direct part alone. Here, one can infer that, irrespective
of the chosen ∆g, the resolved part is non-negligible. It leads to a significant shift
in the absolute value of the spin asymmetry, and neglecting it would clearly lead
to wrong conclusions about ∆g. Furthermore, in our analytic NLO studies we
encounter hadrons which might end up outside the Compass detector acceptance,
as explained above. We will address this issue and the importance of the resolved
contributions in Chapter 5 and 6.

The studies in this Section are addressed to a deuteron target. Needless to say,
this can also be done for a proton target, which has been used in the last run of
the Compass experiment.

4.2 Results for HERMES Kinematics

In the recently completed Hermes experiment at DESY longitudinally polarized
electrons and positrons with a beam energy of Ee ≃ 27.5 GeV were scattered off
both a polarized deuterium and a polarized hydrogen gas target. The available
c.m.s. energy of about

√
S ≃ 7.5 GeV is lower than at Compass, which even

further limits the range of accessible transverse momenta. On average, the lepton
beam polarization is Pe ≃ 0.53. For the polarization of the gas target we take
Pd ≈ Pp ≃ 0.85, and, contrary to a solid-state target, there is no dilution from
unpolarized target material, i.e., Fp = Fd = 1.

Here, we concentrate on phenomenological studies for a polarized deuterium
target, which is the data sample with the highest statistics in the Hermes spin
physics program. We demand hadronH1 to be in the Hermes angular acceptance
of 40 mrad ≤ θ1 ≤ 220 mrad and plot the results differential in its transverse
momentum PT,1. Again, hadron H2 is constrained via the lower bound zmin

H =
0.4, and no cut on its rapidity is made, implying that it may end up outside
the Hermes detector acceptance. We choose a maximal photon virtuality of
Q2

max = 0.1 GeV2 in the Weizsäcker-Williams equivalent photon spectrum in
Eq. (2.57) and restrict the momentum fraction xl of the lepton taken by the
quasi-real photon to the range 0.2 ≤ xl ≤ 0.9. The fractions of the parent
parton’s momenta carried by the produced hadrons are z1,2 ≥ 0.1. Again, all
scales in Eq. (4.6) are set equal to µr = µf = µ′

f = 2PT,1 unless stated otherwise,
as we do not have control of PT,2 within the formalism used here.

The upper panel of Fig. 4.7 shows the PT,1-differential unpolarized and polarized
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Figure 4.7: LO (dashed line) and NLO (solid line) unpolarized and polarized pho-
toproduction cross section for a pair of charged hadrons, ed → (H+

1 +
H−

1 )(H+
2 + H−

2 )X for Hermes kinematics. The K-factor is depicted
in the lower panel. The “LO” curve refers to a LO-type calculation with
NLO parton distributions and NLO fragmentation functions.

cross sections for Hermes kinematics at LO and NLO accuracy. The unpolarized
and polarized K-factors, defined in Eq. (4.13), are depicted in the lower panel.
As in Fig. 4.2, the curve labeled “LO” refers to a calculation using LO partonic
cross sections and NLO parton distribution functions and NLO fragmentation
functions.

Again, K-factors close to 1 are not a feature of the calculated NLO corrections,
but stem from the sizable difference between LO and NLO parton distribution
functions and fragmentation functions, as can be inferred from the curve labeled
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Figure 4.8: Scale dependence of the unpolarized and polarized di-hadron photopro-
duction cross section at Hermes kinematics. All scales are varied in the
range

√
2PT,1 ≤ µr = µf = µ′

f ≤ 2
√

2PT,1.

“LO”. The effect is even more dramatic than before for Compass, see Fig 4.2,
and the K-factor increases significantly in the whole PT,1-range considered. The
calculation for the polarized case shows a similar pattern, but is not depicted in
Fig. 4.7 for clarity. Again, for the polarized parton densities we have used the
new DSSV set. As before, using other sets like GRSV “standard” or DNS leads to
significant cancellations of the two partonic channels γq → cdX and γg → cdX.

Next, to get a feeling for the theoretical error, which we make in the calculation
due to the truncation of the perturbative series at a fixed order in the strong
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Figure 4.9: As in Fig. 4.4, but now for Hermes kinematics.

coupling constant αs, we vary the scales in Eq. (4.6) in the range
√

2PT,1 ≤
µr = µf = µ′

f ≤ 2
√

2PT,1. This is depicted in Fig. 4.8 for the unpolarized
and polarized cross section. Whereas for Compass kinematics the polarized
NLO cross section exhibits a somewhat reduced scale dependence, see Fig. 4.3,
no significant improvement is found for Hermes kinematics in both the spin-
dependent and spin-independent case. Once again, this illustrates the delicacy
of a perturbative calculation in a low-energy regime and calls for an unpolarized
“reference” measurement to ensure the applicability of pQCD methods. As for
Compass, no reduction of the scale dependence for different cuts in zH can be
found.

To estimate the sensitivity of the polarized cross section to the spin-dependent
parton distributions of the proton, in particular ∆g(x, µ), we analyze first the
weights of the underlying subprocesses contributing to the di-hadron production
at Hermes. Fig. 4.9 shows the unpolarized and polarized ratio of the γq- and
γg-channel to the full photoproduction cross section. We find a similar pattern
as discussed in connection with Fig. 4.4 above.

Next, we turn to a discussion of the double-spin asymmetry AH1H2

LL at Hermes

for a deuteron gas target. It is depicted in Fig. 4.10 using the same sets of
polarized PDFs as before. The statistical accuracy for such a measurement is
again estimated with Eq. (4.14), based on the actual integrated luminosity of
L = 200 pb−1 collected by Hermes and the parameters as specified above.

One can infer that AH1H2

LL is very sensitive to the chosen ∆g(x, µ). However, dis-
tinguishing different sets with a small gluon polarization like in GRSV, DNS, or
DSSV appears to be very difficult with the given experimental accuracy. Statis-
tical significant results can only be obtained in the PT,1-range from 1 to 1.5 GeV.
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Figure 4.10: As in Fig. 4.5, but now for Hermes kinematics.

Of course, one has to check if the pQCD framework is valid in this region. All
caveats mentioned at the end of Sec. 4.1 also apply here.

To close this Section, we note that final Hermes results for AH1H2

LL and cross
sections are in preparation [21].
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5 The Monte Carlo Approach

In contrast to the analytic calculation presented in Chapter 3, we give here an
alternative method, based on Monte-Carlo (MC) integration techniques. In the
analytic approach, the phase space integration over unobserved partons is done
exactly, requiring the introduction of the variable z, defined in Eq. (3.70), with
the cut z > 0. Only the convolution of the hard partonic cross sections with
the parton distribution and fragmentation functions is performed with numerical
methods. The advantage of this method is that the numerics is fast and reliable.
However, we have limited control of the kinematics of hadron H2, most notably
its rapidity y2. This implies that it may end up outside the acceptance of the
detectors, making it difficult to compare the theoretical predictions with exper-
imental data. Moreover, the transverse momentum PT,2 can only be restricted
via a lower bound on zH , defined in Eq. (3.122). As already mentioned in Chap-
ter 3, the resolved contributions were omitted in the analytic approach, as the
computation is very cumbersome.

For these reasons, we pursue here an alternative approach using MC integration
techniques already at the partonic level by performing the phase space integration
over unobserved partons largely numerically. Singular regions of the phase space
are isolated and integrations are performed analytically. Furthermore, histograms
for several observables can be evaluated simultaneously, and it is straightforward
to implement cuts on the four-momenta of the partons and hadrons, which greatly
facilitates the comparison of theoretical predictions with experimental data.

To this end, we use the two cut-off phase space slicing method introduced in
Refs. [32, 103]. It provides a relatively simple, transparent, and robust method
to isolate the soft (infrared) and collinear singularities. Two cut-off parame-
ters δc and δs are introduced to separate the regions of phase space containing
collinear and soft divergencies from the non-singular regions. This is a well known
technique and has been applied to various processes before, e.g., direct jet photo-
production [104], hadronic photon-jet production [105], and di-hadron production
in hadronic collisions [106]. In this Chapter we give the relevant steps to perform
such a MC calculation for the spin-dependent photoproduction of hadron pairs.
For a detailed discussion of this method together with other examples we refer to
[32].

We start with the decomposition of the three-body phase space dPS3,
Eq. (3.53), relevant for the calculation of the polarized partonic 2 → 3 real

87
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emission cross sections d∆σ̂real at NLO, into a soft (S) and a hard (H) region to
be specified below,

d∆σ̂realab→cde =
1

2s

∫ ∑
∆|Mr|2ab→cdedPS3

=
1

2s

∫

S

∑
∆|Mr|2ab→cdedPS3 +

1

2s

∫

H

∑
∆|Mr|2ab→cdedPS3

= d∆σ̂Sab→cde + d∆σ̂Hab→cde , (5.1)

with 1/(2s) the flux factor, and
∑

∆|Mr|2ab→cde the appropriate matrix element
for the subprocesses ab → cde under consideration, including spin and color
factors for averaging and summing over initial and final states, respectively.

This partitioning of phase space introduces a cut-off parameter δs. The integra-
tion of the soft region S is done analytically in n = 4− 2ε space-time dimensions
using dimensional regularization. To make this tractable, we apply the eikonal
double pole approximation to the matrix element ∆|Mr|2ab→cde. For a detailed
discussion see Sec. 5.1. The result then exhibits single and double poles in 1/ε
and single and double logarithms in the soft cut-off parameter δs. In principle
there are also terms of the order δs. However, they can be neglected as we choose
δs to be small enough.

Collinear singularities are made explicit by a further decomposition of the hard
region H into a collinear (HC) and non-collinear (HC) region

d∆σ̂Hab→cde = d∆σ̂HCab→cde + d∆σ̂HCab→cde

=
1

2s

∫

HC

∑
∆|Mr|2ab→cdedPS3

+
1

2s

∫

HC

∑
∆|Mr|2ab→cdedPS3 , (5.2)

which introduces a second cut-off parameter δc. The integration of the collinear
region is done analytically in n dimensions, giving rise to single and double poles in
1/ε, and single logarithms in δc and δs. Due to the simpler collinear kinematics,
we can apply here the leading pole approximation to the 2 → 3 real emission
matrix elements as discussed in Sec. 5.2.

The computation of the virtual 2 → 2 matrix elements follows exactly the
procedure outlined in Sec. 3.2. Therefore, we can adopt all the results obtained
there. Adding the soft and collinear parts, together with the renormalized, UV
finite, one-loop corrections, and factorization counter terms, all poles in 1/ε2

and 1/ε cancel. Thus, the overall result is finite and the limit ε → 0 can be
taken. However, due to the separation of the three-particle phase space into soft,
collinear, and hard regions, there is still an explicit dependence on single and
double logarithms of the cut-off parameters δs and δc.
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The remaining integration of the 2 → 3 matrix element over the hard, non-
collinear region HC is done in four dimensions with solely numerical methods and
depends on the cut-off parameters δs and δc as well through the lower boundaries
of the integration. In combination with the soft and collinear regions, the depen-
dence of the cross sections on δs and δc cancels for suitably defined infrared-safe
observables. We start with the calculation of the soft contributions in Sec. 5.1
and App. C, and discuss the integration of the collinear regions in Sec. 5.2 next.
Needless to say, the relevant formulas for the unpolarized case are obtained by
simply replacing the polarized quantities by the unpolarized counterparts.

5.1 Soft Regions

In this Section we discuss the calculation of the soft part d∆σ̂Sab→cde, separated
off the three-particle phase space in Eq. (5.1). Soft divergencies appear in the
2 → 3 matrix elements squared, when an additional unobserved gluon is emitted
with vanishing energy. In this case, some approximations can be made leading
to a simplification of the phase space and the matrix elements squared for real
processes. We adopt the definitions of four-momenta and Mandelstam variables
from Chapter 3, see Eqs. (3.45) and (3.47).

With the assumption that the soft gluon in the NLO subprocess ab → cde is
associated with particle e and four-momentum pe, the soft and the hard regions
are defined via its energy Ee in the c.m.s. frame of the incoming partons a and b
and a cut-off parameter δs:

soft : 0 ≤ Ee ≤ δs

√
s

2
,

hard : Ee > δs

√
s

2
, (5.3)

with

Ee =
s− s12

2
√
s

. (5.4)

In the three-particle phase space, defined in Eq. (3.53), we can explicitly set pµe = 0
in the Dirac delta-function guaranteeing momentum conservation to obtain for
the soft phase space

dPS3

∣∣∣
soft

= dPS2
dn−1pe

2Ee(2π)n−1
, (5.5)

with dPS2 being the usual two particle phase space for partons c and d as defined
in Eq. (3.25). We proceed in the c.m.s. frame of the two incoming partons a and
b with the following parameterization for the n-momentum of the soft gluon e

pe = Ee(1, sin θ1 sin θ2, sin θ1 cos θ2, cos θ1, ...) . (5.6)
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The ellipsis denotes the (n − 4) space-time dimensions not further specified in
this parameterization. After a trivial integration of the (n−4)-components of pe,
the differential in Eq. (5.5) takes the form

dn−1pe = d|~pe||~pe|n−2dΩn−2

= dEeE
n−2
e sinn−3 θ1dθ1 sinn−4 θ2dθ2

2πn/2−3/2

Γ(n/2 − 3/2)
. (5.7)

Using now Eq. (3.80) and n = 4 − 2ε the final result for the three particle phase
space in the soft approximation can be expressed as

dPS3

∣∣∣
soft

= dPS2

[(
4π

s

)ε
Γ(1 − ε)

Γ(1 − 2ε)

1

2(2π)2

]
dS , (5.8)

where

dS =
1

π

(
4

s

)−ε ∫ δs
√

s

2

0

dEeE
1−2ε
e sin1−2ε θ1dθ1 sin−2ε θ2dθ2 . (5.9)

For the calculation of the matrix elements involving a soft gluon, the eikonal
double pole approximation is applied to the full 2 → 3 matrix element squared,
computed in Chapter 3, by setting the momentum of the soft gluon to zero. In
practice, this is done by carefully taking the limit of the Mandelstam variables,
involving the soft gluon momentum pe, to zero and by expressing the others by
2 → 2 kinematics, i.e.,

s12 → s t2 → u u2 → t

s13 → ξs13 t3 → ξt3 u3 → ξu3

s23 → ξs23 , (5.10)

with a small dimensionless parameter ξ. After this replacement is done in the
matrix elements squared, only the leading terms proportional to 1/ξ2, i.e., the
double poles, are kept. All others, containing factors ξ, ξ2, or 1/ξ are set to
zero. The next step is the integration of the soft matrix elements over dS, see
Eq. (5.9). All relevant integrals and the soft matrix elements squared in case
of direct photoproduction processes can be found in Appendix C. For the soft
contributions to the resolved photon processes, listed in Eq. (3.50), we refer to
[106].

Altogether, the hadronic cross section in the soft limit has the following generic
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form

d∆σS = (4παs)
2
∑

a,b,c,d

∫
dxldxNdz1dz2∆f

l
a(xl, µf )∆f

N
b (xN , µf )

× DH1

c (z1, µ
′
f )D

H2

d (z2, µ
′
f )
αs
2π

(
4πµ2

d

s

)ε
Γ(1 − ε)

Γ(1 − 2ε)

× 1

2s

[
As

2

ε2
+

As
1

ε
+ As

0

]
dPS2 , (5.11)

where we have factored out an overall (µεdgs)
2 from the 2 → 3 matrix element.

The As
i = As

i (ab → cd) are process-dependent quantities containing single and
double logarithms of δs and di-logarithms of Mandelstam variables. Again, we
refer to App. C for the explicit form of these quantities in the case of direct photo-
production, namely the photon-gluon fusion and the QCD Compton processes.

5.2 Collinear Regions

In this Section we present the evaluation of the hard, collinear part d∆σHC of
the cross section, separated from the soft part in Eq. (5.1) and the hard, non-
collinear part in Eq. (5.2). Similar to the soft limit discussed in the previous
Section, the phase space simplifies also, if two partons become collinear. Again,
the integration is done analytically in n = 4 − 2ε dimensions leading to single
poles in 1/ε and accompanying logarithms of the soft and collinear cut-offs δs and
δc. As discussed in detail in Sec. 2.3, these collinear poles have to be absorbed in
the bare parton distribution or fragmentation functions, depending on whether
the collinearity is associated with an initial or final state parton leg. Although
the concept is the same for both cases, we distinguish in the following between
collinear configurations in the initial and in the final state, since some details are
different.

5.2.1 Final State Collinearities

To be specific, let us assume that in the NLO 2 → 3 subprocess ab → cde the
two partons d and e become collinear. The hard collinear region HC in Eq. (5.2)
is defined through the condition

0 ≤ s23 ≤ δcs , (5.12)

introducing another small cut-off parameter δc. Using pd′ = pd + pe, the three-
particle phase space can be written as

dPS3

∣∣∣
coll

= dPS2

∣∣∣
cd′

dn−1pe
2p0

e(2π)n−1

p0
d′

p0
d

, (5.13)
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with dPS2

∣∣∣
cd′

being the two-body phase space for particles c and d′. Now, in the

collinear limit, where partons d and e have vanishing relative transverse momen-
tum and longitudinal momentum fraction z and (1 − z) of p′d, respectively, we
obtain [32]

dn−1pe
2p0

e(2π)n−1

p0
d′

p0
d

=
(4π)ε

16π2Γ(1 − ε)
dzds23[s23z(1 − z)]−ε . (5.14)

By virtue of the factorization theorem the 2 → 3 matrix element squared at NLO
accuracy factors in the collinear limit in a product of a LO splitting function and
a LO matrix element for the process ab→ cd′

∑
∆|Mab→cde|2 ≃

∑
∆|Mab→cd′|2P (u)

dd′ (z, ε)g
2
sµ

2ε
d

2

s23

, (5.15)

with P
(u)
ij (z, ε) = P

(4)
ij (z) + εP

(ε)
ij (z) being the unregulated splitting function in

n = 4 − 2ε dimensions for z < 1. They can be found, e.g., in [32]. Note that in
Eq. (5.15) the unpolarized splitting function is used, as we consider unpolarized
final state partons. This can be interpreted as the collinear splitting of parton d′

into the partons d and e.
We then get for the polarized partonic cross section with a collinear configura-

tion in the final state

d∆σ̂HCab→cde = d∆σ̂
(0)
ab→cd′

[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(4πµ2
d

s

)ε
](

− 1

ε

)
δ−εc

×
∫
dz[z(1 − z)]−εP

(u)
dd′ (z, ε) , (5.16)

where d∆σ̂
(0)
ab→cd′ is the appropriate LO partonic cross section for the process

ab → cd′. The integration limits of z are set by the “hard condition” in
Eq. (5.3). Depending on the type of process and hence on the splitting func-
tions in Eq. (5.16), the integration limits take different values

q → qg g → gg g → qq̄

0 ≤ z ≤ 1 − δs δs ≤ z ≤ 1 − δs 0 ≤ z ≤ 1

.

(5.17)

Here, the first of the two final state partons subsequently fragments into one of
the observed hadrons. The cut-off parameter δs comes into play, if an unobserved
gluon can become soft, i.e., for q → qg and g → gg in (5.17). As we are in-
terested in the production of hadrons not partons, it is necessary to introduce
fragmentation functions DH

i (z). At LO accuracy, this is done by

d∆σ
(0)
ab→cH = d∆σ̂

(0)
ab→cdD

H
d (z)dz . (5.18)
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The collinear part of the hard cross section in Eq. (5.2) reads then

d∆σHCab→cHe = d∆σ̂
(0)
ab→cd′

[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(4πµ2
d

s

)ε
](

− 1

ε

)
δ−εc

×
∫
dy[y(1 − y)]−εP

(u)
dd′ (y, ε)D

H
d (x)dx δ(xy − z)dz , (5.19)

if we assume that parton d fragments in the observed hadron H. The δ-function
ensures that H carries a momentum fraction z of the parent parton momentum.
Note that we restrict ourselves in Eq. (5.19) to one-hadron production to sim-
plify matters. Of course, for two-hadron production, which we are interested in,
parton c also needs to fragment. In addition, c can also be collinear to parton e,
and a similar procedure as discussed here needs to be applied. Furthermore, in
Eq. (5.19) there is an implied sum over all possible partons d′ contributing to the
considered process.

As discussed in Sec. 2.3, the collinear singularity has to be factorized and ab-
sorbed into the bare fragmentation function, giving rise to a “dressed” function
depending on an arbitrary factorization scale µ′

f . The subtraction has the follow-

ing form in the MS scheme

DH
i (z, µ′

f ) = DH
i (z)− 1

ε

[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(
4πµ2

d

µ′
f
2

)ε]∫ 1

z

dy

y
DH
i′ (z/y)Pi′i(y) , (5.20)

with an implied sum over the index i′ and an arbitrary mass scale µd introduced
in dimensional regularization, see Eq. (2.23). The integration extends from z to
1, in contrast to Eq. (5.19). The splitting function in Eq. (5.20) is now regulated
at z = 1, see [32] and Eq. (3.107) for the polarized case. Rewriting the bare
fragmentation functions in Eq. (5.18) and in Eq. (5.19) in terms of the scale
dependent quantity according to Eq. (5.20) and adding up the LO and hard
collinear expressions, gives a cancellation between the two singular expressions.
However, there are residual terms due to the mismatch in the limits for the y-
integration. In the LO expression we have z ≤ y ≤ 1, in the hard collinear
expression the integration limits are given in (5.17). We get as final result

d∆σcollab→cH = d∆σ
(0)
ab→cd′

[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(4πµ2
d

s

)ε
]{

D̃H
d′ (z, µ

′
f )

+

[
Asc

1 (d′ → de)

ε
+ Asc

0 (d′ → de)

]
DH
d (z, µ′

f )

}
dz , (5.21)

where we have omitted terms, which are O(α2
s). Here, the soft collinear factors Asc

i

appear due to the different integration limits in the fragmentation and subtraction
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pieces, see Eq. (5.17), and are given by

Asc
1 (q → qg) = CF (2 ln δs + 3/2)

Asc
1 (g → gg) = 2CA ln δs + (11CA − 2nf )/6

Asc
1 (g → qq̄) = 0

Asc
0 = Asc

1 ln
( s

µ′
f
2

)
. (5.22)

The “modified” fragmentation functions D̃H
i (z, µf ) in Eq. (5.21) are given by

D̃H
i (z, µf ) =

∑

i′

∫ 1−δsδii′

z

dy

y
DH
i′ (z/y, µ

′
f )P̃

fact
i′i (y) , (5.23)

with

P̃ fact
i′i (y) = P

(4)
i′i (y) ln

[
y(1 − y)δcs

µ′
f
2

]
− P

(ε)
i′i (y) . (5.24)

P
(4)
ij (z) and P

(ε)
ij (z) are the n = 4 and O(ε) pieces of the unregulated splitting

functions P
(u)
ij (z, ε) and can be found in [32]. The D̃H

i (z, µf ) functions contain a
dependence on logarithms of δs via the integration limits, which give contributions
only if i′ = i.

5.2.2 Initial State Collinearities

As mentioned before, the computation of the initial state singularities follows
closely the steps outlined in the previous Subsection. Here, the singularities are
absorbed in the bare parton distribution functions, which gives a finite remainder
as it is the case for final state collinearities in Eq. (5.21). Since some details of the
calculation differ, we briefly derive the relevant formalism, following again closely
Ref. [32]. We first concentrate on the details for a collinear configuration in a
NLO 2 → 3 subprocess ab → cde involving parton b stemming from a nucleon
N . Afterwards, we provide the relevant formulas for the direct photon processes
γb → cde. Subtraction terms involving photonic parton densities in a resolved
contribution closely resemble those for hadronic parton densities and need not to
be discussed here.

Let us consider the collinear emission of parton e off the initial state parton b
in a NLO process ab→ cde with c and d being “observed”. With u3 = (pb− pe)

2,
the collinear region is defined by

0 < −u3 < δcs . (5.25)



5.2 Collinear Regions 95

In this region we can make the approximation pb−pe ≃ ypb and find for the three
particle phase space

dPS3

∣∣∣
coll

=

[
dn−1pc

2p0
c(2π)n−1

dn−1pd
2p0

d(2π)n−1
(2π)nδ(pa + ypb − pc − pd)

]

× dn−1pe
2p0

e(2π)n−1
. (5.26)

Rewriting the pe-depending part in terms of y, u3, and n = 4 − 2ε gives

dn−1pe
2p0

e(2π)n−1
=

(4π)ε

16π2Γ(1 − ε)
dydu3[−(1 − y)u3]

−ε . (5.27)

The integration over u3 can be performed with the limits determined by
Eq. (5.25), and yields

∫ δcs

0

(−du3)(−u3)
−1−ε = −1

ε
(δcs)

−ε . (5.28)

Similar to Eq. (5.15), the 2 → 3 matrix elements squared can be simplified in the
collinear limit

∑
∆|Mab→cde|2 ≃

∑
∆|Mab′→cd|2∆P (u)

b′b (y, ε)g2
sµ

2ε
d

−2

yu3

, (5.29)

with ∆P
(u)
b′b (y, ε) the unregulated polarized splitting functions. We now take

into account that parton b stems from a longitudinally polarized nucleon N and
hence introduce the bare polarized parton distribution function ∆fNb . Combining
Eqs. (5.26)-(5.29) we find for the hard collinear cross section

d∆σHCaN→cde = ∆fNb (x/y)d∆σ̂
(0)
ab′→cd(s, t, t2)

×
[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(4πµ2
d

s

)ε
](

− 1

ε

)
δ−εc

×
∫

∆P
(u)
b′b (y, ε)

dy

y

[
1 − y

y

]−ε
. (5.30)

For simplicity we ignore here the fragmentation of partons c and d into the ob-
served hadron pair. The introduction of a scale dependent parton distribution
function in the MS scheme

∆fNb (x, µf ) = ∆fNb (x) − 1

ε

[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(4πµ2
d

µ2
f

)ε
]∫ 1

x

dy

y
∆fNb′ (x/y)∆Pbb′(y)

(5.31)
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yields the final result for the hard collinear cross section

d∆σcollaN→cde = d∆σ̂
(0)
ab′→cd

[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(4πµ2
d

s

)ε
]{

∆f̃Nb′ (x, µf )

+

[
Asc

1 (b→ b′e)

ε
+ Asc

0 (b→ b′e)

]
∆fNb (x, µf )

}
dx . (5.32)

Here, the factors Asc
i , defined in Eq. (5.22), depend on the initial-state factoriza-

tion scale µf . The ∆f̃Nb′ (x, µf ) are defined analogously to Eq. (5.23) via

∆f̃Nb (x, µf ) =
∑

b′

∫ 1−δsδbb′

x

dy

y
∆fNb′ (x/y, µf )∆P̃bb′(y) , (5.33)

with

∆P̃ij(y) = ∆P
(4)
ij (y) ln

(
δc

1 − y

y

s

µ2
f

)
− ∆P

(ε)
ij (y) , (5.34)

and again reflect the “mismatch” of the different integration limits. The ∆P
(4)
ij (y)

are the n = 4 parts of the unregulated splitting functions for y < 1, defined in
Eq. (3.107), and the ∆P

(ε)
ij the O(ε) parts

∆P (ε)
qq (y) = −CF (1 − y) ,

∆P (ε)
gq (y) = 2CF (1 − y) ,

∆P (ε)
gg (y) = 4CA(1 − y) ,

∆P (ε)
qg (y) = −(1 − y) . (5.35)

Next, we discuss briefly the peculiarities if the incoming quasi-real photon splits
collinear into a qq̄-pair, followed by a hard scattering of the (anti-)quark with a
parton of the nucleon. In the absence of gluons collinear to the photon, there are
no soft singularities. In this case, Eq. (5.32) can be simplified to

d∆σcollγb→cde = d∆σ̂
(0)
qb→cd

[
αs
2π

Γ(1 − ε)

Γ(1 − 2ε)

(4πµ2
d

s

)ε
]
∆f̃γq (x, µf ) , (5.36)

with

∆f̃γq (x, µf ) =

∫ 1

x

dy

y
∆fγγ

(x
y
, µf

)
∆P̃qγ(y)

=

∫ 1

x

dy

y
δ
(
1 − x

y

)
∆P̃qγ(y) = ∆P̃qγ(x) . (5.37)
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The n = 4 and O(ε) parts of the qγ splitting functions are given by

∆P (4)
qγ (y) = CA(2y − 1)

∆P (ε)
qγ (y) = −2CA(1 − y) . (5.38)

Now, in the MC approach all possible soft and collinear configurations have to
be treated with the “building blocks” given in the previous two Sections.
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6 Phenomenological Applications of

the Monte-Carlo Method

This Chapter is dedicated to detailed phenomenological studies of the photopro-
duction of hadron pairs at high transverse momenta including now both direct
and resolved contributions. We use here the concept of the two cut-off phase space
slicing method [32] introduced in Chapter 5 and phase space integrations are per-
formed largely numerically. This enables us to organize our calculations such that
they resemble the experimental conditions of Compass and Hermes as closely
as possible. As in Chapter 4, where we discussed the results obtained within our
analytic approach, we give the relevant unpolarized and polarized cross sections
differential in the transverse momentum PT,1 of hadron H1, as well as K-factors
and double-spin asymmetries AH1H2

LL for different sets of spin-dependent parton
distributions. We also study the cross sections differential in kinematic variables
like the angle in the transverse plane between the two produced hadrons and the
momentum fractions xN and xl probed in the nucleon and lepton. As parton
distribution functions for circularly polarized photons have not been measured
yet, we will also focus on the dependence of the polarized cross sections on two
extreme models introduced in Sec. 2.3.

At LO, the contributing processes are the QCD Compton process, Eq. (3.14),
and the photon gluon fusion, Eq. (3.15), in addition to the resolved contributions
as given in Eq. (3.16). At NLO, we have the same processes as in LO, now
including virtual corrections together with the real processes having an additional
particle in the final state, see Eq. (3.49) for the direct case, and Eq. (3.50) for
the resolved case. Needless to say, for all NLO 2 → 3 processes we have to take
into account all different combinatorical possibilities as only two of the three final
state partons fragment into the observed hadron pair.

For the unpolarized parton distributions we again employ the CTEQ6 [56] and
GRV [69] sets for the nucleon and photon, respectively. In the polarized case,
the helicity-dependent DSSV distributions [24] are used for nucleons, if not stated
otherwise. The two extreme sets for the polarized photonic distribution functions
[71] we use in the calculation are shown in Fig. 2.5 of Sec. 2.3. As not stated
otherwise, we choose the “maximal saturation” scenario in all our calculations.
For the fragmentation functions, the sets of DSS [73] are employed.

In Sec. 6.1 we first scrutinize the numerical stability of our MC code by compar-
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analytic

MC
zH > 0.4

unpolarized

polarized

d(∆)σH(+)+H(-) / dPT,1  [pb / GeV]

PT,1 [GeV]

1

10

10 2

10 3

10 4

1 1.5 2 2.5

Figure 6.1: The direct photon contribution to the unpolarized and polarized photo-
production cross section at Compass applying the cut zH > 0.4. The
results are obtained within the analytic calculation (lines) and the MC
approach (histograms).

ing it to the predictions obtained within the analytic calculation. Furthermore,
we study the dependence of the results on the soft and collinear cut-off parame-
ters δs and δc, respectively, and show, in what regions the calculation is stable. In
Sec. 6.2 we turn to phenomenological studies using Compass kinematics, whereas
Sec. 6.3 is dedicated to results for the Hermes experimental setup.

6.1 Testing the Stability of the MC Code

Figure 6.1 shows a comparison of the direct photon contribution to the unpolar-
ized and polarized photoproduction cross section, obtained within the analytic
and MC approach. We restrict hadron H1 to be in the Compass detector accep-
tance (θmax

1 = 180 mrad), and constrain the transverse momentum of hadron H2

by demanding zH > 0.4. No cut on the rapidity of hadron H2 is made. As in
Chapter 4, all scales are set equal to twice the transverse momentum of hadron
H1. There is a good agreement between the two methods over three orders in
magnitude, which validates the correctness of our results, as both calculations
have been performed independently using different methods.

Next, we study how the two-body, comprising LO, virtual, collinear, and soft
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Figure 6.2: The full unpolarized (a) and polarized (b) NLO photoproduction cross
section at Compass and the individual two-body and three-body contri-
butions (see text) together with their sum as a function of the soft cut-off
parameter δs. The collinear cut-off parameter is set to δc = δs/50 [32].

parts, and the three-body contribution depend on the soft and collinear cut-off
parameters δs and δc, respectively, and to what extent this dependence cancels in
the sum. Figure 6.2 shows the results for the unpolarized and polarized cross
section of di-hadron photoproduction at Compass as a function of δs. The
collinear cut-off parameter is chosen to be δc = δs/50, as it has been shown
that this choice yields good results and possible correction terms proportional to
Li2(δc/δs) are negligible [32]. In Fig. 6.2, we have integrated over the rapidity
and transverse momenta of both hadrons with cuts on the angles in the labo-
ratory frame, θ1,2 < 180 mrad, and their transverse momenta, PT,1,2 > 0.7 GeV.
In the unpolarized case, the three-body contribution develops numerical insta-
bilities if δs . 10−5, resulting in an inaccurate result for the total cross section.
This calls for a choice for δs in the range 10−5 . δs . 10−2. If the cut-offs are
chosen too large, the results become unreliable as we neglect all non-logarithm
contributions in δs and δc. In the polarized case, the situation is different, as it
involves much more delicate cancellations of the individual subprocesses. The full
polarized cross section shows a dependence on the cut-off parameter δs in a wider
range than in the unpolarized case. This dependence will be investigated more
thoroughly in our further studies [35]. For the time being, we take δs = 10−3 in
all our calculations, which guarantees numerically stable results.
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Figure 6.3: Unpolarized and polarized photoproduction cross section for a pair of
charged hadrons, µd → (H+

1 +H−
1 )(H+

2 +H−
2 )X, at LO (dashed) and

NLO (solid) accuracy using COMPASS kinematics. Results are obtained
with a MC code and include the direct and resolved parts. The lower
panel shows the ratios of NLO to LO cross sections (K-factor). The
curve labeled “LO” refers to a LO calculation using NLO parton densities
and fragmentation functions (see text).

6.2 Results for COMPASS Kinematics

Within the MC approach, we have complete control of all kinematical variables
and four-momenta of the hadrons and partons taking part in the hard scattering.
This enables us to choose the cuts close to the experimental setup of Compass:
The transverse momenta PT,1 and PT,2 of the hadrons H1 and H2 are required to
be larger than 0.7 GeV. The angles of the hadrons relative to the beam axis are
restricted to be smaller than 180 mrad, which translates into a minimal bound
on the (pseudo)rapidity according to Eqs. (4.2) and (4.4). We again choose the
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Figure 6.4: Unpolarized and polarized photoproduction cross section at Compass.
All scales are set equal and varied in the range 1/

√
2(PT,1 +PT,2) ≤ µ ≤√

2(PT,1 +PT,2) (dotted lines). The solid lines correspond to the default
choice, where µ = PT,1 + PT,2. All LO computations have been rescaled
by a factor 0.01 to better distinguish them from the NLO results.

fraction y of the muon’s momentum taken by the quasi-real photon to be in the
range 0.1 < y < 0.9. The maximal virtuality of the photon in the Weizsäcker-
Williams equivalent photon spectrum, see Eq. (2.57), is chosen to be Q2

max =
0.5 GeV2. The momentum fractions z1 and z2 of the two final state partons
fragmenting into the observed hadrons are bounded by z1,2 > 0.1. In addition,
we make a cut on the invariant mass of the two hadrons: M(H1, H2) > 1.5 GeV.
This is to avoid configurations, where the two observed hadrons become collinear.
If not stated otherwise, we have chosen the renormalization and factorization
scales equal to the sum of the transverse momenta of the two hadrons H1 and
H2: µr = µf = µ′

f = PT,1 + PT,2.

In order to test the importance of NLO corrections, the upper panel of Fig. 6.3
shows our predictions for the unpolarized and polarized photoproduction cross
section at LO and NLO accuracy and differential in the transverse momentum
PT,1 of hadron H1. The lower panel shows the resulting unpolarized and polarized
K-factors as defined in Eq. (4.13). The NLO corrections to the cross sections seem
to be small, with K-factors of around 1 both in the polarized and unpolarized
case. The K-factor is often associated with a measure of the relevance of NLO
corrections to hadronic processes. However, this proposition has to be taken
with some care. To illustrate this, we performed a calculation using LO partonic
cross sections and NLO parton distribution and fragmentation functions, as has
been done also in our studies within the analytic approach in Chapter 4. This
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Figure 6.5: Relative contributions of the direct and resolved cross sections (left panel)
and the contributing subprocesses ab → cdX, summed over all final
states c, d (right panel), to the full unpolarized photoproduction cross
section at Compass.

“LO”-type calculation, also shown in Fig. 6.3, leads to a K-factor of roughly 2.
Hence, all statements about the large difference in the LO and NLO fragmentation
functions of DSS given in Sec. 4.1 also hold true, when all experimental cuts and
both resolved and direct photon contributions are included.

In Fig. 6.4 we give the dependence of the unpolarized and polarized cross section
at LO and NLO on the unphysical renormalization/factorization scales varied in
the range 1/

√
2(PT,1+PT,2) ≤ µ ≤

√
2(PT,1+PT,2). The LO curves are scaled by a

factor 0.01. Going to NLO accuracy gives a somewhat reduced scale dependence
for the unpolarized and polarized cross sections. As already stated in Chapter 4,
a check of the applicability of pQCD at relatively low scales requires benchmark
measurements of the unpolarized cross section.

Next, we discuss the relevance of the direct and resolved part to the full photo-
production cross section. The left panel of Fig. 6.5 shows their fractional contri-
bution to the unpolarized cross section differential in the transverse momentum
PT,1. The resolved contribution dominates in the low PT,1-region, whereas the
direct part takes over towards higher PT,1’s. This behavior can be understood by
a closer inspection of the relative weights of the individual subprocesses, shown
in the left panel of Fig. 6.5. The cross section for the direct γq-channel dominates
over the whole PT,1-range. However, due to the relatively small γg-contribution,
the resolved processes, mainly qq and qg scattering, become more important in
the low PT,1-region than the direct channels. This demonstrates the necessity
to include resolved contributions in an extraction of ∆g(x, µ) via double-spin
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Figure 6.6: The same as in Fig. 6.5, but now for the polarized case.

asymmetries AH1H2

LL .

The left panel of Fig. 6.6 shows the direct and resolved photon contributions to
the full photoproduction cross section in the polarized case. They balance each
other in the low-to-mid PT,1-region. Only towards the high PT,1-region the direct
part gains in size and becomes more important. To understand this better we
again display the relative weights of the individual partonic channels to the full
polarized cross section in the right panel of Fig. 6.6. This is also important in
order to explore the sensitivity of the polarized hadronic cross section to the spin-
dependent parton distributions of the proton, in particular ∆g(x, µ), and of the
resolved photon. In the low PT,1-region, the process where the photon resolves
into a (anti)quark and subsequently scatters off a quark out of the nucleon, has
the largest contribution. This is in striking contrast to the naive expectation that
at moderate c.m.s. energies the direct part of the cross section dominates. Only
towards higher PT,1 the γq-channel exceeds all other processes in magnitude.
The interesting processes sensitive to the helicity-dependent gluon distribution
∆g(x, µ), i.e., the γg-, qg-, and gg-channels, are less important, mainly due to
the relatively small polarized gluon distribution ∆g(x, µ) in the DSSV parame-
terization, see Fig. 4.1.

For a reliable extraction of ∆g(x, µ), it is imperative to precisely determine its
Bjorken x-dependence. In the left panel of Fig. 6.7 we show the polarized cross
section differential in the fraction xN of the nucleon’s momentum taken by the
produced parton. We apply the cuts on kinematical variables as specified in the
beginning of this Section and integrate both hadrons with a lower bound on PT,1
and PT,2 of 0.7 GeV. The distribution for xN in the left panel of Fig. 6.7 peaks
at a value of around 0.2. This underlines the importance of Compass data,
which are complementary to RHIC proton-proton data, predominantly probing
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Figure 6.7: The left panel shows the polarized NLO photoproduction cross section at
Compass as a function of the momentum fractions xN [xl] of the nucleon
[lepton] taken by the partons. The right panel gives the polarized cross
section differential in the difference of the two azimuthal angles |Φ1−Φ2|
of the hadrons.

smaller momentum fractions xN . Also shown is the fraction xl of the muon’s
momentum taken by the produced photon (direct case) or parton (resolved case).
The distribution has its maximum at xl ≃ 0.4. Differences in the “maximal” and
“minimal” scenario of the polarized photon distribution function are due to the
input for the hadronic, non-perturbative contribution and are important in the
low-to-mid xl region, see Fig. 2.5. Thus, for Compass energies these effects play
a small but non-negligible role.

Next, it is interesting to investigate the angles Φ1 and Φ2 of the two produced
hadrons in a plane perpendicular to the beam axis. The right panel of Fig. 6.7
shows the unpolarized and polarized cross section as a function of the difference
of the two azimuthal angles |Φ1 − Φ2|. We note that it is most likely to find the
two hadrons at an angle of π, i.e., back-to-back in the transverse plane. This
stems mostly from LO contributions, virtual corrections, and soft and collinear
parts, where the transverse momenta must balance each other due to momentum
conservation leading to |Φ1−Φ2| = π. Contributions at small angles |Φ1−Φ2| ≃ 0
are avoided by the cut on the invariant mass of the two hadrons: M(H1, H2) >
1.5 GeV.

Having studied the relevance of the individual subprocesses and the depen-
dence of the cross sections on various kinematic variables and on the unphysical
factorization and renormalization scales, we now turn the actual quantity of in-
terest in di-hadron photoproduction: the double-spin asymmetry AH1H2

LL , defined
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Figure 6.8: Double-spin asymmetry AH1H2

LL at NLO for two sets of polarized parton
densities at Compass. The upper panel shows the spin asymmetry with
(solid lines) and without (dashed lines) including the resolved contribu-
tion. In the lower panel the dependence of AH1H2

LL on the two extreme pho-
ton scenarios, “maximal” (solid lines) and “minimal” saturation (dashed
lines), is shown.

in Eq. (3.6). In Fig. 6.8 we have plotted our expectations for AH1H2

LL as a function
of the transverse momentum PT,1. Apart from the recent set of DSSV polarized
parton densities with a small gluon polarization, we also use the set of GRSV
based on a maximal negative ∆g(x, µ) at the input scale. AH1H2

LL turns out to be
very sensitive to the assumed gluon polarization and thus can help to further our
knowledge of it. Of course, one has to keep in mind the actual errors of 0.019
(stat.) and 0.003 (syst.) for such a measurement at Compass [20].
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In the upper panel of Fig. 6.8 we study the influence of the resolved photon
contribution on the double-spin asymmetry by comparing the results with (solid
lines) and without (dashed lines) including the resolved contributions. One can
immediately infer that the resolved part is non-negligible, resulting in a signifi-
cant, PT,1-depending shift in the absolute value of the spin asymmetry. Neglecting
it in the analysis would clearly lead to wrong conclusions about ∆g(x, µ). This
has also been demonstrated in our analytic LO study [23], see Fig. 4.6 in Sec. 4.1.
Figure 6.8 also shows that the region PT,1 > 1.5 GeV is the most promising one
to obtain information about the gluon polarization, as for smaller PT,1 the asym-
metries almost coincide.

The impact of the completely unknown, non-perturbative parton content of the
circularly polarized photon on AH1H2

LL is examined in the lower panel of Fig. 6.8
by making use of the two extreme models shown in Fig. 2.5 of Sec. 2.3. As can
be seen, there is a fairly significant dependence on the models complicating the
analysis of AH1H2

LL in terms of ∆g(x, µ). The reason is because one probes the
partonic structure of the photon at momentum fractions xl, where the details of
the unknown hadronic input play some role, as has been demonstrated in the
left panel of Fig. 6.7. Now, a viable strategy could be to analyze data in two
regions for the angles θ1,2. In the lower region the dependence of AH1H2

LL on the
models for the circularly polarized photon plays a much less significant role. The
higher region might then be used for studying the non-perturbative structure of
the photon polarization.

6.3 Results for HERMES Kinematics

The results given in this Section are intended to resemble the kinematics of the
Hermes experiment at DESY. All cuts and settings for kinematic variables are
chosen similar to the cuts given in Sec. 4.2. However, we can now ensure to
find both hadrons in the acceptance of the Hermes detector, i.e., the angles θ1,2

of the two hadrons relative to the incoming lepton beam are restricted to be in
the range 40 mrad ≤ θ1,2 ≤ 220 mrad. Additionally we assume the transverse
momenta of the two hadrons to have values larger than 1 GeV. If not stated
otherwise, the renormalization and factorization scales are set equal to the sum
of the two transverse momenta µr = µf = µ′

f = PT,1 + PT,2, as usual.

The upper panel of Fig. 6.9 shows the unpolarized and polarized photoproduc-
tion cross section for Hermes kinematics at LO (dashed lines) and NLO (solid
lines) accuracy as a function of the transverse momentum of hadron H1. In ad-
dition, the lower panel gives the unpolarized and polarized K-factors. As for
Compass kinematics, K-factors seem to be close to one, in particular, for the
polarized case. Again, this has to be taken with some care, as a calculation with



6.3 Results for HERMES Kinematics 109

0

2

4

1 1.5 2

dσNLO/dσLO

d∆σNLO/d∆σLO

dσNLO/dσ"LO"

PT,1 [GeV]

d(∆)σH(+)+H(-) / dPT,1  [pb / GeV]

unpolarized

polarized

LO
NLO

"LO"

10
-2

10
-1

1

10

10 2

10 3
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Figure 6.10: The same as in Fig. 6.4, but now for Hermes kinematics.
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Figure 6.11: The same as in Fig. 6.6, but now for Hermes kinematics.

LO partonic cross sections and NLO parton distribution and fragmentation func-
tions yields a K-factor in the unpolarized case of roughly 3. The lower panel of
Fig. 6.9 also shows that NLO corrections do not cancel in double-spin asymmetry
AH1H2

LL , as it is often naively assumed.

In Fig. 6.10 we give the dependence of both the unpolarized (left panel)
and polarized (right panel) LO and NLO photoproduction cross section on
the unphysical renormalization and factorization scales varied in the range
1/
√

2(PT,1 + PT,2) ≤ µ ≤
√

2(PT,1 + PT,2). Not unexpectedly, due to the smaller
c.m.s. energy of the Hermes experiment, the scale dependence is even larger than
for Compass, see Fig. 6.4, and does not decrease, when NLO corrections are in-
cluded. All remarks about potential problems with the applicability of perturba-
tive methods at fixed-target energies and the need for unpolarized “benchmark”
cross sections also apply here.

Next, we turn to the relevance of the direct and resolved photon contribu-
tions. The left panel of Fig. 6.11 shows their respective relative contributions
to the full polarized photoproduction cross section. Here, the resolved contribu-
tion plays a much less significant role than at Compass kinematics due to the
smaller c.m.s. energy at Hermes. The ratios of the individual subprocesses to
the unpolarized cross section are given in the right panel of Fig. 6.11. The di-
rect γq-channel dominates over the entire PT,1-range, whereas the γg-channel is
small and negative. Similar results can be found in the unpolarized case, where
the γq- and γg-channel contribute about 80% and 15%, respectively, to the full
unpolarized photoproduction cross section.

In the left panel of Fig. 6.12 the polarized photoproduction cross section at
Hermes is shown as function of the momentum fractions xN and xl of the nu-
cleon and lepton taken by the parton/photon. The distribution for xN peaks at
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Figure 6.12: The same as in Fig. 6.7, but now for Hermes kinematics.
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Figure 6.13: The same as in Fig. 6.8, but now for Hermes kinematics.
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somewhat higher values of xN ≃ 0.3 than for Compass, see Fig. 6.7, which is
mainly due to the lower c.m.s. energy available at Hermes. The distribution
for the momentum fraction xl of the electron taken by the photon or parton,
respectively, has its maximum in the high xl-region, where differences between
the “minimal” and “maximal” scenarios of the photonic parton distributions do
not matter much as we will see below.

The right panel of Fig. 6.12 gives the unpolarized and polarized photoproduc-
tion cross section as a function of the difference of the two azimuthal angles
|Φ1 − Φ2|. As for Compass, most contributions are close to π, which resem-
bles back-to-back kinematics and stems from the LO, virtual, soft, and collinear
contributions.

Next, we consider the corresponding double-spin asymmetry AH1H2

LL in Fig. 6.13.
As in Fig. 6.8 we study the relevance of the resolved photon contribution in the
upper panel and the dependence on models for the non-perturbative partonic
structure of circularly polarized photons in the lower panel of Fig. 6.13. Here,
the resolved photon processes have a much less pronounced effect on the spin
asymmetry than for Compass, see Fig. 6.8. Also, there is almost no difference
between the results obtained with the two extreme models for the ∆fγ densities.
This is because for the same transverse momentum PT,1 the Hermes experiment
is closer to the end of the phase space than Compass, since on average Hermes

probes larger momentum fractions both in the nucleon and in the photon, see the
left panel of Fig. 6.12, which explains our results.

To close this Section, we note that final results from the Hermes experiment
for AH1H2

LL will become available in the near future [21].



7 Summary and Conclusions

In this work, we provided for the first time the theoretical framework for the
longitudinally polarized photoproduction of hadron pairs at next-to-leading order
of perturbative QCD. This process is regarded as an important tool in the quest
for a better understanding of the spin structure of the nucleon. The results
presented in this Thesis can now be applied in quantitative analyses of di-hadron
photoproduction data available from the Compass and Hermes experiments.
For the first time, it will be possible now to include such data consistently in a
NLO global QCD analysis of helicity dependent parton densities of the nucleon,
in particular the elusive gluon polarization. Two-hadron production will also test
our understanding and the applicability of factorization and perturbative QCD
at relatively low scales.

We started with a short overview of the underlying theory, Quantum Chro-
modynamics, and gave an introduction to the renormalization and factorization
procedures, both essential ingredients for any calculation in perturbative QCD
beyond the leading order approximation.

Next, we turned to a detailed derivation of all relevant formulas for the longi-
tudinally polarized photoproduction of two hadrons at high transverse momenta
in a fully analytic approach. To make the calculation tractable, we introduced
the variable zH to avoid certain singular kinematic regions, which are beyond the
realm of the standard factorization theorem. Nevertheless, the analytic approach
turned out to be considerably more challenging than for one-hadron inclusive
cross sections, and we had to limit ourselves to the direct photon contribution.
In addition, it is difficult to match our results to the conditions in experiment.
This is because some kinematic cuts, e.g., on the angular detector acceptance,
can not be implemented in the calculation. However, to our knowledge a fully
analytic computation of di-hadron photoproduction cross section at the next-to-
leading order of pQCD has never been performed before, not even in the unpo-
larized case, which is interesting and important in its own right. Furthermore,
the analytic results serve as an important benchmark for a more versatile, but
numerically delicate Monte-Carlo integration technique, which we also pursued
in this Thesis.

The results of the calculation were then implemented in a phenomenological
analysis with the kinematic cuts as close as possible to the experimental setup.
We demonstrated that the K-factors as a “measure” for the relevance of NLO
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corrections depend more on the details of the non-perturbative parton distribution
and fragmentation functions than on the hard partonic scattering. To get a
better feeling for the typical theoretical ambiguities, we studied the dependence of
our results on the unphysical factorization and renormalization scales introduced
by theory. Although unpolarized cross sections show little or no improvement,
the scale dependence of polarized cross sections, in particular for Compass, is
somewhat reduced when the next-to-leading order corrections are included. This
might be taken as some first indication that the perturbative series is well behaved
at Compass energies. Future comparisons of, not yet available, cross section
data with theory will ultimately decide this and may call for further refinements
of the theoretical calculations like resummations of dominant contributions to all
orders in the strong coupling. Contrary to naive expectations NLO corrections
do not cancel in the experimentally relevant double-spin asymmetry, which was
shown to be very sensitive to the chosen polarized gluon scenario, proving that
di-hadron photoproduction can further our understanding of the spin structure
of the nucleon.

To include also the resolved photon contribution to di-hadron production, which
is required for a consistent factorization, we used an alternative, more versatile
approach based on Monte-Carlo integration techniques. Within this method one
has complete control of all kinematic variables and hence can implement all cuts
required by the experimental setup. In practice, we chose the “two cut-off phase
space slicing method”, which requires the introduction of two small cut-off para-
meters to separate off the divergent regions of phase space. Whereas these singu-
lar regions can be treated analytically, the remaining portion of the phase space
was handled solely numerically. After showing how this method works in practice
and outlining the relevant framework, we first tested the Monte-Carlo integration
by comparing it to our analytical results. Both methods turned out to be in good
agreement. Next, we studied the stability of the numerical integrations, i.e., we
demonstrated the independence of our results on the small cut-off parameters,
which involves delicate numerical cancellations.

After verifying our Monte-Carlo code, we presented detailed results for unpolar-
ized and polarized cross sections and double-spin asymmetries for both Compass

and Hermes kinematics as a function of the transverse momentum of one of the
hadrons. In addition, we studied the dependence on other kinematic variables like
the momentum fractions probed in the nucleon and lepton or the difference in the
azimuthal angles of the two observed hadrons. We also demonstrated that the
spin asymmetries are largely independent of the details of the non-perturbative
hadronic structure of circularly polarized photons, which is completely unknown.
The resolved contribution is important though, as it leads to a systematic shift
of the spin asymmetries. Neglecting it would lead to wrong conclusions about,
e.g., hadronic parton densities including the gluon polarization.
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Detailed studies of spin-dependent processes will certainly provide a much bet-
ter understanding of hadronic spin structure than we have today. The results of
this Thesis will contribute to this effort. It will be now possible to include data
for di-hadron photoproduction in future global NLO analyses of the spin content
of the nucleon. We close with pointing out that the results provided here, in
particular the versatile Monte-Carlo code, will prove to be valuable in studies
for the planned first polarized lepton-proton collider. If the EIC project will be
realized in the future, it will open up a new window for the exploration of the
hadronic and photonic spin structure.
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A Feynman Rules

In this Appendix we present the Feynman rules of QCD, necessary for the cal-
culations of amplitudes iM. Flavor and spinor indices are implicitly understood
and not shown here.

The propagators for fermions, gluons, and ghosts are

ji
p

iδij
1

/p−m+ iǫ′
= iδij

/p+m

p2 −m2 + iǫ

ν

bpa

µ

−iδab
p2 + iǫ

(
gµν − (1 − η)

pµpν

p2

)

b

p

a −iδab
p2 + iǫ

Here i, j, (a, b) denote the color indices of the quarks (gluons or ghosts). Greek
letters like µ, ν are Lorentz indices. p denotes the momentum of the respective
particle, and /p is a shortcut for pµγ

µ. The iǫ prescription in the denominator
of all propagators ensuring causality can be neglected in all our calculations. ǫ
should not be confused with the ε in n = 4 − 2ε. The parameter η depends on
the used gauge. As mentioned in Section 2.1, we use the Feynman gauge (η = 1)
in all our calculations.
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The external quark, antiquark, and gluon legs are represented by

incoming lines

u(p, λ)

v̄(p, λ)

ǫµ(q, λ)

outgoing lines

ū(p, λ)

v(p, λ)

ǫ∗µ(q, λ)

u(p, λ) and v(p, λ) denote the spinors of a quark and a antiquark with
momentum p and helicity λ. ǫµ(q, λ) is the polarization vector of a gluon with
momentum q and helicity λ.

An important ingredient for calculations of Feynman diagrams are the vertices:

quark-gluon

i

j

a

µ
−igsγµT aij

three-gluon
a

b

c

λ

ν

µ

p

r

q

−gsfabc[(p− q)νgλµ + (q − r)λgµν
+ (r − p)µgνλ]

ghost-gluon

a

c

b
p

µ
gsf

abcpµ (pµ outgoing)
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four-gluon

a

b c

d

λ

µ ν

σ

− ig2
sf

abef cde(gλνgµσ − gλσgµν)
− ig2

sf
acef bde(gλµgνσ − gλσgµν)

− ig2
sf

adef cbe(gλνgµσ − gλµgσν)

In addition to the pure QCD-processes we need also the Feynman rules for
photons:

photon propagator µ ν

k

−i gµν

k2+iǫ

photon-quark vertex µ −igeγµ

As for gluons, incoming photon legs are represented by polarization vectors
ǫµ(q, λ) with momentum q and helicity λ.

For the computation of diagrams in NLO accuracy and beyond, one has to keep
in mind some additional rules:

• multiplication with a factor (−1) for each closed fermion or ghost loop

• integration over the loop momentum k for each closed loop with a measure

∫
dnk

(2π)n

After calculating the amplitude iM with the rules just presented, the next step
is to work out the squared absolute value of the amplitude, i.e., |M|2 = MM∗.
To perform this step, one needs projection operators for quarks, antiquarks, and
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massless bosons with definite helicities:

u(p, λ)ū(p, λ) =
1

2
(/p+m)[1 − γ5λ] , (A.1)

v(p, λ)v̄(p, λ) =
1

2
(/p−m)[1 + γ5λ] , (A.2)

ǫµ(q, λ)ǫν
∗
(q, λ) =

1

2

[
−gµν +

qµην + qνηµ

q · η + iλǫµνρσ
qρησ
q · η

]
, (A.3)

where η is an arbitrary, light-like momentum with q · η 6= 0.



B Phase Space Integrals

In this Appendix we discuss in detail the calculation of all phase space integrals
appearing in an analytic NLO calculation of hadron pair production and needed
throughout this work. We give explicit results with special emphasis on the cor-
rect treatment of plus-distributions and the singularity structure of the integrals.
We start with single propagators, namely the I1(Xi), defined in Eq. (3.97), which
exhibit a singular behavior in either w or z. Next, we compute the integrals with
double propagators, I1(XiXj), which can, in general, develop singularities in both
w and z. For some derivations we closely follow [80, 90, 96].

B.1 Single Propagators I1(Xi)

• I1(t2), I1(u2)
Here the Xi0, ai, and bi in Eq. (3.93) take the form

Xi0 ≡ t20 = −sv
2
, ai = 1 − cosψ cos θ1 , bi = ± sinψ sin θ1 .

Inserting
a2
i − b2i = (cosψ − cos θ1)

2 = 4z2 cos2 ψ ,

in Eq. (3.98), a potential singularity occurs for z = 0. However, this case
is avoided as we always ensure that z > 0, and we safely can take the limit
ε→ 0 ending up with

I1(t2) =
π

2t20

1

cosψ

1

z
. (B.1)

The result for I1(u2) is similar, with a factor u20 = −s(1 − v)/2 in the
denominator instead of t20.

• I1(s12)
In this case,

Xi0 ≡ s120 =
s(1 − v + vw)

2
, ai = 1 − cosψ′ , bi = − sinψ′ sin θ1 ,

a2
i − b2i = 4

[
z +

v(1 − w)

1 − v + vw

]2

cos2 ψ .
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As 0 < v,w < 1, a singularity would occur for negative values of z. Again,
as only positive values are allowed for z, we can treat this integral in four
dimensions instead of n to obtain the result

I1(s12) =
π

2s120

1

cosψ

1

z + v(1−w)
1−v+vw

. (B.2)

• I1(t3), I1(u3)
Here,

Xi0 ≡ t30 = −sv
2
, ai = 1 + cosψ cos θ1 , bi = ± sinψ sin θ1 ,

a2
i − b2i = 4(1 − z)2 cos2 ψ .

This yields a singularity in Eq. (3.98) at z = 1, when the unobserved
parton is emitted collinearly to the beam axis defined by the incoming
particles. This pole needs to be factorized into the bare parton distributions,
as explained in Sec. 2.3. From Eq. (3.98) we obtain

I1(t3) =
π

2t30 cosψ

1

|1 − z|1+2ε

( ≡2h(z)︷ ︸︸ ︷
1 + cos2 ψ(1 − 2z)

cosψ

)2ε

× Γ(1 − 2ε)

Γ2(1 − ε)
2F1

(1

2
− ε,−ε; 1 − ε;

b2i
a2
i

)
.

(B.3)

If z → 1, also b2i /a
2
i → 1. In this limit the hyper-geometric function can be

expanded as

2F1

(1

2
− ε,−ε, 1 − ε; 1

)
= 2−2ε

[
1 + O(ε2)

]
. (B.4)

First, let us consider the range z ∈ [1; zmax]. By using partial fractioning,
expanding in powers of ε, and disregarding all terms which vanish in the
limit ε→ 0, we find

∫ zmax

0

dzf(z)
θ(z − 1)

(z − 1)1+2ε

(
h2(z)

g(z)

)ε
=

∫ zmax

0

dzf(z)

[
θ(z − 1)

(z − 1)1+2ε

(
h2(z)

g(z)

)ε ]

+

+ f(1)

[
− 1

2ε
+ ln(zmax − 1) − 1

2
ln

(
h2(1)

g(1)

)]
.

(B.5)
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h(z) is defined in Eq. (B.3), and g(z) is defined in Eq. (3.79). With

θ(z − 1)

[(
h2(z)

g(z)

)ε
1

(z − 1)1+2ε

]

+

=
θ(z − 1)

(z − 1)+

+ O(ε) ,

and 1 − zmax = zmin, this can be written as

θ(z − 1)

(z − 1)1+2ε

(
h(z)2

g(z)

)ε
=
θ(z − 1)

(z − 1)+

+ δ(z − 1)

×
[
− 1

2ε
+ ln(−zmin) −

1

2
ln

(
h2(1)

g(1)

)]
.

(B.6)

With a similar calculation in the range z ∈ [0; 1] we get the combined result

1

|1 − z|1+2ε

(
h2(z)

g(z)

)ε
=
θ(1 − z)

(1 − z)+

+
θ(z − 1)

(z − 1)+

+ δ(1 − z)

(
−1

ε
− ln(zmax)

)
.

(B.7)

The final result for Eq. (B.3) reads

g(z)−εI1(t3) =
π

2t30 cosψ

Γ(1 − 2ε)

Γ2(1 − ε)

×
[
δ(1 − z)

(
−1

ε
− ln(zmax)

)
+
θ(1 − z)

(1 − z)+

+
θ(z − 1)

(z − 1)+

]
.

(B.8)

The same result is obtained for I1(u3) via replacing the prefactor t30 by
u30 = −s(1 − vw)/2.

• I1(s13)
In this case

Xi0 ≡ s130 =
1 − v + vw

2
,

ai = 1 + cosψ′ cos θ1 , bi = sinψ′ sin θ1 , (B.9)

a2
i − b2i = 4

(
z − 1

1−v+vw

)2

cos2 ψ .

Here we run into a singularity at z = 1/(1 − v + vw) ≡ z1. Applying
the same procedure as for I1(t3) but replacing 1 by z1, and defining plus
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distributions in the ranges [0; z1] and [z1; zmax] the final result is

g(z)−εI1(s13) =
π

2s130 cosψ

Γ(1 − 2ε)

Γ2(1 − ε)

×
[
δ(z1 − z)

(
−1

ε
− ln

(
1 − zmin

z1

))

+
θ(z − z1)

(z − z1)+

+
θ(z1 − z)

(z1 − z)+

]
.

(B.10)

• I1(s23)
s23 has no dependence on the integration angle θ2. However, it exhibits a
factor (1 − w) which is expanded via Eq. (3.102) leading to

(1−w)−εI1(s23) =
I0
sv

[
− 1

ε
δ(1−w)+

1

(1 − w)+

−ε
(

ln(1 − w)

1 − w

)]
. (B.11)

I0 is specified in Eq. (3.96).

B.2 Double Propagators I1(XiXj)

• I1(t3u2), I1(t2u3)
Using the expansion for 1/(XiXj) of Eq. (3.100) we encounter a factor
1/(1 − 2z), which diverges for z = 1/2. As this singularity has no physical
interpretation we have to remove it by expanding

1

z
→ θ(1 − z)

z
+
θ(z − 1)

z
, (B.12)

in I1(u2). The final result takes the form

g(z)−εI1(t3u2) =
π

4t30u20 cos3 ψ

Γ(1 − 2ε)

Γ2(1 − ε)

×
[
δ(1 − z)

(
−1

ε
− ln zmax

)
+

θ(1 − z)

z(1 − z)+

+ θ(z − 1)

(
1

(z − 1)+

+
1 + 2z

(1 − 2z)z

)]
.

(B.13)

The result for I1(t2u3) is obtained with replacing t30u20 by t20u30 in
Eq. (B.13).
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• I1(t3u3)
A detailed discussion of this integral can be found in [90]. Hence, we only
give the final result

g(z)−ε(1 − w)−εI1(t3u3) =
π

t30u30

Γ(1 − 2ε)

Γ2(1 − ε)

1

2 cosψ

{
(1 − vw)

×
(

θ(1 − z)

[D1(1 − z)]+
+

θ(z − 1)

[D1(z − 1)]+

)
+ δ(1 − z)

[
− 1 − vw

1 − w

× ln

(
cosψ + cos−1 ψ

2

)
+ v

(
− 1

ε
+ ln

(
(1 − w)2

1 − vw

))

− (1 − v)

[(
1

ε
+ ln(1 − v)

)
1

(1 − w)+

− 2

(
ln(1 − w)

1 − w

)

+

+
1

1 − w
ln

(
1 − vw

1 − v

)]]
+ δ(1 − z)δ(1 − w)

×
(

1

2ε2
+

1

2ε
ln(1 − v) +

1

4
ln2(1 − v)

)
(1 − v)

}
,

(B.14)

where D1 ≡ 1 − w + 2(1 − z)w(1 − v).

• I1(t3s23), I1(u3s23)
Integrals with this structure exhibit singularities both in z = 1 and w = 1
due to an additional factor 1/(1 − w) stemming from 1/s23. A detailed
discussion can be found in [80]. The result is

g(z)−ε(1 − w)−εI1(t3s23) =
π

2svt30 cosψ

Γ(1 − 2ε)

Γ2(1 − ε)

{
− 1

ε
δ(1 − w)

×
[
− 1

ε
δ(1 − z) + θ(1 − z)

(
1

(1 − z)+

− ε
ln z

1 − z

−ε
(

ln(1 − z)

1 − z

)

+

)]
+

1

(1 − w)+

(
−1

ε
δ(1 − z) +

θ(1 − z)

(1 − z)+

)

+
1

1 − w

(
θ(z − 1)

(z − 1)+

− δ(1 − z) ln(zmax)

)
+

(
ln(1 − w)

1 − w

)

+

δ(1 − z)

}
.

(B.15)
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The same result is obtained for 1/(u3s23) with replacing t30 by u30.

• I1(u3s13)
This type of integral cannot be found in previous calculations. Thus, we
have to calculate it from scratch with similar methods used for I1(t3u3) in
Eq. (B.14). The result is

g(z)−ε(1 − w)−εI1(u3s13) = − π

s2v2w cosψ

Γ(1 − 2ε)

Γ2(1 − ε)

{
δ(1 − w)δ(1 − z)

×
[

1

ε2
+

1

ε
ln

(
1 − v

v2

)
− ln2(v) +

1

2
ln2(1 − v)

]
+ δ(1 − z)

×
[

1

(1 − w)+

(
− 1

ε
+ ln

(
v2w

(1 − vw)(1 − v − vw)

))
+

(
ln(1 − w)

1 − w

)

+

− ln

(
(1 + cosψ)(2 − v − vw)

2(v + cosψ(vw − 1) − 1)

)]
+ δ(z1 − z)

[
1

(1 − w)+

(
− 1

ε

+ ln

(
v2w(1 − v − vw)

(1 − vw)(1 − v + vw)2

))
+

(
ln(1 − w)

1 − w

)

+

− ln

(
(2 − v − vw)(1 − v + vw)

(
cosψ

1−v+vw + 1
2
− cosψ

2

)

1 − v + cosψ − vw cosψ

)]

+ v

[
θ(1 − z)

[D2(1 − z)]+
+

θ(z − 1)

[D2(z − 1)]+

− 1 − v − vw

1 − v + vw

(
θ(z1 − z)

[D2(z1 − z)]+
+

θ(z − z1)

[D2(z − z1)]+

)]}
,

(B.16)

with D2 = 2 − 2z − v + 2zv − vw.
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• I1(s13s23)
Similar to I1(t3s23), we find

g(z)−ε(1 − w)−εI1(s13s23) =
π

2svs130 cosψ

Γ(1 − 2ε)

Γ2(1 − ε)

×
{

− 1

ε
δ(1 − w)

[
1

(1 − z)+

− ε
ln z

1 − z
− ε

(
ln(1 − z)

1 − z

)

+

]

+
1

(1 − w)+

[
θ(z1 − z)

(z1 − z)+

+
θ(z − z1)

(z − z1)+

]
+

1

ε2
δ(1 − w)δ(1 − z)

+ δ(z1 − z)

[
− 1

ε

1

(1 − w)+

+

(
ln(1 − w)

1 − w

)

+

− ln

(
1 − zmin

z1

)
1

1 − w

}
.

(B.17)
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C Soft Matrix Elements and

Integrals

In this Appendix we give the (un)polarized matrix elements for the processes

γ(pa) q(pb) → q(pc) g(pd) g(pe) ,

γ(pa) g(pb) → q(pc) q̄(pd) g(pe) , (C.1)

in the soft limit, i.e., when a gluon in the final state has vanishing energy. We
apply the eikonal double pole approximation as outlined in Sec. 5.1. If we asso-
ciate gluon e with the soft particle, the matrix elements squared in n = 4 − 2ε
dimensions exhibit the following forms

∑
|Mγq→qgg|2

∣∣∣
soft

=
∑

|Mγq→qg|2Sγq→qg ,

∑
|Mγg→qq̄g|2

∣∣∣
soft

=
∑

|Mγg→qq̄|2Sγg→qq̄ ,

∑
∆|Mγq→qgg|2

∣∣∣
soft

=
∑

∆|Mγq→qg|2Sγq→qg ,

∑
∆|Mγg→qq̄g|2

∣∣∣
soft

=
∑

∆|Mγg→qq̄|2Sγg→qq̄ ,

(C.2)

with

Sγq→qg = 2g2
sµ

2ε
d

[
CA

( s

s13s23

+
t

u3s23

)
− 1

CA

( u

u3s13

)]
,

Sγg→qq̄ = 2g2
sµ

2ε
d

[
CA

( t

u3s23

+
u

u3s13

)
− 1

CA

( s

s13s23

)]
. (C.3)

The unpolarized and polarized n-dimensional LO matrix elements in Eq. (C.2)
read

∑
|Mγq→qg|2 = N 2CF

[
− s

t
− t

s
+ ε

u2

st

]
,

129
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∑
|Mγg→qq̄|2 = N 1

1 − ε

[
(1 − ε)

( t
u

+
u

t

)
− 2ε

]
,

∑
∆|Mγq→qg|2 = N 2CF

[
t

s
− s

t
− ε

u2

st

]
,

∑
∆|Mγg→qq̄|2 = −N

[
t

u
+
u

t

]
. (C.4)

Here, the prefactor is defined as N = (gsgeeq)
2µ4ε

d . Next, the integration over
the phase space of the soft gluon, dS in Eq. (5.9), has to be performed. This is
done in the c.m.s. frame of the two incoming partons a and b using the following
parameterization

pa =

√
s

2
(1, 0, 0,−1, ...) ,

pb =

√
s

2
(1, 0, 0, 1, ...) ,

pc =

√
s

2
(1, 0, 2

√
v(1 − v), 1 − 2v, ...) ,

pd =

√
s

2
(1, 0,−2

√
v(1 − v),−(1 − 2v), ...) , (C.5)

and Eq. (5.6) for the momentum of the soft gluon e. With the help of [87] the
integrals then take the form

∫
dS

1

s13u3

= − 1

2sv

1

ε2
v−ε(δs)

−2ε
[
1 + ε2Li2(1 − v)

]
,

∫
dS

1

s13s23

=
1

2s

1

ε2
(δs)

−2ε ,
∫
dS

1

u3s23

= − 1

2s(1 − v)

1

ε2
(1 − v)−ε(δs)

−2ε
[
1 + ε2Li2(v)

]
, (C.6)

where Li2 is the di-logarithm function, see, e.g., [95].
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