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1.  Introduction 
The electronic and optical properties of electroluminescent organic materials have attracted 

tremendous academic and industrial research interests over the past decades due to the appealing 

advantages that these materials offer for electronic devices such as organic light emitting diodes 

(OLEDs) [Tan87], organic field effect transistors (OFETs) [Bur88], organic solar cells (OSCs) 

[Hal95], photodiodes [Yu98] and organic lasers [Mal05]. The devices using organic materials are 

attractive because they can take advantage of organic materials such as potentially low cost, 

capability of thin-film, large-area and flexible device fabrication. These devices can be processed 

by a multitude of different methods, the most important of which are vapor deposition and 

solution-based processes, such as spin-coating and different printing techniques [Kaf05]. The 

deposition of thin films can be carried out at room temperature, and the production costs are 

considerably lower than those of corresponding inorganic optoelectronic devices. Organic photo-

conducting materials have already established wide markets in copying machines and laser 

printers. OLEDs have found practical applications in small displays such as mobile phones, 

digital cameras, and car audios. They are expected to expand their markets to flat panel television 

and room lighting in the near future [Kaf05].  

Despite the huge advance in the development of organic photonic and electronic devices, one 

important device is still missing in the market, the electrically pumped organic laser diode. Since 

the first demonstration in 1996 of photo-pumped lasing from semiconducting polymers [Tes96], 

much effort has been devoted to the development of organic diode lasers [McG00, Tes99]. 

However, because of the presence of strong charge-induced absorption and electrode induced 

absorption, efforts to make electrically pumped diode lasers from organic and polymeric films 

have not been successful. Semiconductor diode laser pumped organic thin film lasers have been 
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realized recently [Dua05, Dua08]. The search for new lasing materials which are soluble in 

organic solvents and can be prepared in the form of thin films is of great interest. 

Motivated by the rapid growth of organic industry, the development of laser diodes has 

become the focus of many investigations. To avoid complications that are associated with current 

injection, charge transport and electrode incorporation, it is always beneficial to study stimulated 

emission and gain, starting with excitation by optical pumping. As a matter of fact, stimulated 

emission was first observed in a polymer solution [Mos92], and later also in diluted or undiluted 

solid films [Yan95]. The first attempt to achieve lasing action from a high gain organic 

semiconductor material was carried out using a microcavity resonator [Tes96]. Since then a large 

number of research groups are involved in the spectroscopic characterization and determination 

of laser action in luminescent organic molecules. Laser action (including wave-guided travelling-

wave laser action) was achieved for various poly-phenylenevinylenes (PPV) [Hid97], poly-

phenylene-ethynylenes (PPE) [Hol97], poly-para-phenylenes (PPP) [Lem00], poly-arylene-

vinylenes (PAV) [Hol01], triphenylamine (TPA) based polymers [Pen01], and triphenylamine 

dimer (TPD) based conjugated and non conjugated polymers [Hol02, Phi03]. 

Generally no laser action is achieved for neat films of organic laser dyes since molecular 

aggregation occurs and the fluorescence efficiency is strongly reduced by self quenching [Pen86]. 

Several spiro-dyes have high solid-state fluorescence efficiency and show optically pumped neat 

thin-film amplified spontaneous emission [Sal02]. The widely used electroluminescent 

triphenylamine dimer TPD molecules turned out to work as efficient violet-wavelength thin-film 

lasers [Hol00, Phi03]. Neat-film laser action was also achieved with a thianthrene-substituted 

distyrylbenzene dye (thianthrene-DSB) [Hol04]. Single-mode tunable laser emission was 
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achieved with an electroluminescent oligothiophene (quinquethiophene-S,S-dioxide T5oA) 

[Zav01]. 

1.1 Motivation and outline 
The primary objective of the work presented in this dissertation is the photo-physical and 

lasing characterization of some low molar mass electroluminescent organic materials and a newly 

synthesized luminescent polymer. The studied low molar mass organic dye molecules consist of 

one, two or three identical units. They are extensively used as hole transport materials in organic 

light emitting devices [Kaf05]. They have well defined glass transition temperatures and readily 

form uniform amorphous thin films. The studied polymer was synthesised for electroluminescent 

purposes [Fra01] but has not been characterized for its laser performance before this work. 

Not all luminescent organic molecules are laser active [Hol01a, Hol01b]. They may be 

applicable to light emitting devices but may not be able to be used as lasing materials. Generally 

laser active organic dyes loose their laser active properties when they are used as neat thin films, 

due to fluorescence self-quenching [Dua90]. The electroluminescent molecules applied in organic 

light emitting diodes (OLEDs) retain their good luminescence properties in neat films. We will 

determine the laser ability of the investigated molecules in diluted solution and in neat films. The 

investigated molecules are characterized by optical and spectroscopic methods and then their 

lasing behaviour is studied. 

Liquid solutions of the electroluminescent materials in dye-laser cell will be operated in 

transverse pumped low-Q lasing for effective stimulated cross-section determination. Wave-

guided travelling wave lasing (amplification of spontaneous emission, mirror-less lasing, laser 

generator operation) is used to find out whether a specific thin-film sample is laser active or not. 
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One-dimensional DFB laser studies are carried out to get narrow-band, frequency tuneable, small 

divergent organic lasers which may find application in integrated optics and telecommunication. 

Chapter 2 consists of a brief description of fundamental properties of organic materials. In 

section 2.1, delocalization of π electrons in organic molecules will be discussed. Section 2.2 

provides the optical and electronic properties of organic materials. In section 2.3 some 

fundamentals of nonlinear spectroscopic properties of organic materials like saturable absorption 

and inverse saturable absorption are given. The criteria that should be fulfilled by organic 

materials to show laser action are given in section 2.4. 

The chapter 3 covers the experimental techniques that have been used in this work. The 

structural formulae of the investigated organic materials used in this thesis are given in the 

section 3.1. The preparation of films on substrates for optical and spectroscopic characterization 

and laser action are explained in section 3.2. The determination of optical constants (refractive 

index and absorption coefficient) and the thickness of thin films by spectrally resolved 

reflectance and transmittance measurements are described in section 3.3.  

In section 3.4 absorption cross-section spectra of organic solutions of known concentration 

and of thin films are calculated from transmission measurement results.  

Details about the fluorescence quantum distribution measurements are given in section 3.5. 

The fluorescence quantum yields are determined by comparing with the emission spectrum of a 

reference dye of known quantum yield. The degree of fluorescence polarization is determined by 

orientation dependent fluorescence measurements.  

In section 3.6 a detailed description of fluorescence lifetime measurements is given. The 

samples are excited with single picosecond laser pulses of a mode-locked ruby laser system 

(pulse duration 35ps, wavelength 347.15nm) or a mode-locked Titanium Sapphire laser system 
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(pulse duration 3ps, wavelength 400nm). For fluorescence lifetimes longer than 300 ps a micro-

channel-plate detector system is used for recording. For lifetimes less than 300 to 500 ps, a 

single-sweep streak camera is used for detection. 

The excited state absorption behavior of the investigated organic materials is studied by the 

intensity dependent transmission measurements in section 3.7. 

Section 3.8 describes low-Q laser measurements. A transverse pumped uncoated rectangular 

dye laser cell is used as laser resonator. The spectral laser output as a function of the pump laser 

energy density is analysed to extract the excited state absorption of the studied organic materials 

in the fluorescence spectral region. 

The wave guided traveling wave lasing arrangement of neat thin films is described in section 

3.9. The samples are excited with picosecond laser pulses. The laser action is realized by spectral 

narrowing and a sharp increase of the emission signal above a certain threshold. 

The distributed feedback laser experiment is explained in section 3.10. The organic materials 

are spin coated on substrates with corrugated gratings. The surface laser emission from the 

gratings is detected and analysed. 

The results of optical, spectroscopic and lasing action measurements of all studied 

electroluminescent organic molecules are represented and discussed in chapter 4. The chapter is 

divided in to four sections. In sections 4.1 to 4.3, the results of the low molar mass 

electroluminescent molecules are discussed. Section 4.4 gives the results of the studied polymer 

[Fra01]. 

Chapter 5 summarizes the thesis with a discussion of the results obtained and provides 

direction for further research.  
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2. Fundamental principles 
 
2.1 Organic materials with conjugated π-electron system 
 

The absorption of organic materials in the visible region is based on the presence of 

delocalized π- electrons in unsaturated hydrocarbon molecules. One of the most prominent 

representatives of this class is the benzene ring depicted in Fig. 2.1. Each carbon atom provides 

four valence electrons, three of which form σ-bonds with neighbouring carbon or hydrogen 

atoms. The remaining 6 valence electrons of the 6 carbon atoms occupy pz orbitals, which are 

aligned perpendicular to the plane of the σ-bonds. The pz electrons from two neighbouring  

 
 (a)    (b)        (c) 
 
Fig. 2.1: C6H6 (benzene): (a) chemical structure formula, (b) spatial distribution of the σ-orbitals 
which are responsible for the steric configuration, (c) spatial distribution of the π-orbitals forming 
a delocalized π-system [Hak04]. 
 
carbons form a π-bond. In this ‘conjugated’ π system, π-electrons can no longer be attributed to 

one specific C-C bond; instead, their wavefunction is delocalized over the entire conjugated ring. 

Every electroluminescent organic material contains a more or less extended π-electron 

system. These delocalized π-electrons are responsible for the absorption behaviour and the 

semiconducting properties. Fig. 2.2 shows the chemical structure of two common 

electroluminescent materials. The hole transport material 3-methyl TPD (N,N‘-di-phenyl-bis-(3-

methylphenyl)-biphenyl-4,4‘-diamine) is a single molecule with extension of the conjugated 

system over the molecule. The conjugated polymer PPV (poly(para-phenylene-vinylene)) consist 
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of many identical, conjugated repeat units. The π-electrons may be delocalized over several 

repeat units. 

   

(a) (b) 
 

Fig. 2.2: Chemical structure formulae of organic materials (a) hole transport material 3-methyl 
TPD [Hol00], (b) poly (p-phenylenevinylene) (PPV) [Lem00] . 

2.2 Electronic transitions in organic materials 

Whenever an electronic transition occurs in a molecule the nuclei are subjected to a change in 

Coulombic force as a result of the redistribution of electronic charge that accompanies the 

transition. As a consequence, electronic transitions are strongly coupled to the vibrational modes 

 
Fig. 2.3: Molecular potential energy as a function of the atomic distance. Vibronic eigenstates are 
denoted by ν and ν’. The arrows indicate vibronic transitions associated with (a) absorption and 
(b) emission of a photon. The corresponding absorption and luminescence spectra are shown in 
(c) [HAK04]. 
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of the molecule. In the absorption (fluorescence) spectrum these vibronic transitions cause 

characteristic side-bands above (below) the purely electronic transition. Fig. 2.3 (a) sketches the 

molecular potential energy as a function of a generalized nuclear coordinate R for the ground 

state S0 and the electronically excited singlet state S1. The respective vibronic states are denoted 

by ν and ν’. Since the energy associated with a vibronic excitation is usually much higher than the  

thermal energy at room temperature, a molecule in thermal equilibrium occupies dominantly the 

state S0, ν=0. Absorption of a photon of suitable energy causes a transition S0,ν→Sn,ν’. It is 

followed by radiative and radiationless transitions (radiative transitions are included in Fig. 2.3 

(b)). The most important transitions are summarized in Fig. 2.4. Following an excitation into a 

vibronically excited state S1 a molecule quickly relaxes to the vibronic ground-state ν’=0 by 

internal conversion. In a radiative transition the molecule returns to S0,ν accompanied by 

spontaneous emission (fluorescence) of a photon.  

 
Fig. 2.4: Jablonski diagram of a molecule with singlet and triplet levels. Every electronic state is 
drawn with a number of associated vibronic states. Internal conversion and intersystem crossing 
are radiationless transitions. 
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The resulting absorption and fluorescence spectra are sketched in Fig. 2.3 (c). In liquid and 

solid-state often the vibronic structure can not be resolved due to inhomogeneous broadening of 

the transitions and the overlay of many vibrational modes. The Stokes-shift between the 

absorption and emission maxima of the purely electronic transition is caused by intra-molecular 

structural relaxation and intermolecular energetic dissipation as well as solute-solvent 

reorganization (solvent effect) [Val02]. 

2.3 Nonlinear spectroscopic properties  

2.3.1 Saturable absorption 

The bleaching of absorbing media by intense light is a general phenomenon [Her67]. It means 

that at high intensities the transmission behaviour of organic molecules differs from the small 

signal transmission. To explain the intensity dependent transmission behaviour of organic 

materials a three level model may be adopted as shown in Fig. 2.5.  

 

Fig. 2.5: Three-level system for understanding the behaviour of saturable absorption in the case 
of first excited singlet state excitation. S0, singlet ground state; S1, first excited singlet state with 
Franck-Condon level 2' and thermally relaxed level 2; Lσ absorption cross section; FCτ , Franck- 
Condon relaxation time; Aτ , ground state absorption recovery time.  
 

A transition from S0 - S1 (1→2′) excites the molecules from ground state to a higher lying 

state in the S1 band. If the Franck-Condon relaxation time FCτ  within the S1 band is short in 
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comparison to the fluorescence lifetime, the excited molecules will relax quickly to the thermally 

relaxed level 2 of S1- state during the excited-state lifetime. At high excitation intensities all 

molecules will accumulate in level 2. In this way the number of molecules in the ground state 

decreases and the transmission increases correspondingly. 

 

Fig. 2.6: (a) Intensity-dependent transmission behaviour of saturable absorber. (b) Intensity 
dependent population accumulation in S1-state. Nex, the number of molecules in S1-state. N0, the 
total number of molecules. I0P,sat, saturation intensity. T0, small signal transmission. 
 

The accumulation of the molecules in the S1-level and correspondingly the increase in 

transmission is shown above in Fig. 2.6. According to the 3-level model used, the transmission at 

higher intensities approaches T = 1, because there is no further excited levels assumed to be 

present in the applied 3-level model. 
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The intensity at which half of the total molecules are excited to the higher state i.e. (Nex/N0 = 

0.5), is called saturation intensity, Isat. Accordingly the transmittance rises to 0TTsat = . 

For a fast saturable absorber (the excitation pulse duration PtΔ is longer than the relaxation 

time Aτ  and Aτ  is longer then FCτ  ), the saturation intensity is given by [Her67] 

   
AP

P
fsat

hI
τσ

ν
=,             (2.1) 

where Aτ  is the absorption recovery time (it is equal to fluorescence lifetime τF), h is the Planck’s 

constant, νP  is the excitation frequency, and σP is the absorption cross section. 

For a slow saturable absorber the excitation pulse duration PtΔ is shorter than the relaxation 

time Aτ . In this case the saturation intensity is given by [Pen88] 

.   
PP

p
ssat t

h
I

Δ
=

σ
ν

,             (2.2) 

2.3.2 Reverse saturable absorption 

Reverse saturable absorption was first observed by [Giu67]. It was noticed that under intense 

laser pulse irradiation, some organic dyes did not show bleaching as expected, but became darker 

at high excitation intensities. This situation occurs if the excited state absorption cross-section for 

absorption from the S1-level to higher levels Sn is stronger than the ground state absorption. In 

this case, the transmission decreases with increasing excitation intensity. To understand this 

phenomenon, we consider that there exist further higher energy states with sufficient excited-state 

absorption cross-section. So we consider a multi level diagram as shown in Fig. 2.7. The pump 

laser excites the chromophore from the S0 ground-state to a Franck-Condon level 2’ in the S1 

band. From there the molecules relax to a thermalized level 2 with the Franck-Condon relaxation 
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time constant, FCτ . From the S1 band excited-state absorption, Pex,σ , excites the molecules to a 

higher lying singlet band Sn (level 3). The higher excited molecules relax quickly back to the first 

excited singlet state with a time constant τex. The S1 state back relaxation to the ground-state is 

taken into account by the ground-state absorption recovery time, Aτ . If Pex,σ is greater than Pσ , 

then the transmission will decrease with rising excitation intensity. This is the case for reverse 

saturable absorbers. 

 

Fig. 2.7: Multi-level system for understanding the behaviour of reverse saturable absorption. S0: 
singlet ground state; S1: first excited singlet state with Franck-Condon level 2' and thermalised 
level 2; Pσ : ground state absorption cross section; Pν : pump laser frequency; FCτ : Franck-
Condon relaxation time; Aτ : ground state absorption recovery time, exτ : higher excited state 
relaxation time and Pex,σ : excited state absorption cross-section. 
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2.4 Laser action  
 

The fundamental process of lasing is the interaction of molecules (atoms) with an 

electromagnetic field, with amplification of the electromagnetic field. The name LASER is the 

abbreviation of the Light Amplification by Stimulated Emission of Radiation. Laser operation 

requires that the light amplification factor lNA exexem ))()(()( λσλσλ −=  should be larger than the 

light absorption (loss) factor lNL aa )()( λσλ = . This means that 

))(()())()(( 0 exaaaexexem NNNN −≈>− λσλσλσλσ  is necessary condition for laser action to 

occur. Here exN  is the population number density of the upper laser level and aN  is the 

population number density of the lower laser level, 0N is the total number density of laser active 

molecules, l is the length of active medium, aσ , exσ  and emσ  are the ground-state absorption 

cross-section, the excited state absorption cross-section and stimulated emission cross-section 

respectively. 

2.4.1 Stimulated emission 
 

If a photon of appropriate energy interacts with a molecule already in the excited state, that 

molecule is stimulated to decay and to emit another photon of the same wavelength, polarisation 

and direction as the original photon. This is illustrated in Fig. 2.8. A photon with energy EbA 

interacts with a molecule in the excited state S1, sub level b. This interaction stimulates the 

molecule to decay to the ground state S0, sub level A, with the emission of a photon in phase and 

with the same energy EbA as the original photon. Only a photon with energy equal to the energy 

difference of an allowable transition in a molecule will stimulate (induce) emission from an 

excited molecule. 
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Fig. 2.8: Energy level schematic showing stimulated emission. 

2.4.2 Laser amplifier 
 

In a laser amplifier the input light to the active medium is amplified, when the active medium 

has been population inverted by pumping mechanism. A principle scheme of a laser amplifier is 

shown is Fig. 2.9. The active medium is population inverted by an excitation source (here 

indicated by pump with intensity IP). After inversion an input pulse of intensity Iin at 

wavelength Lλ is amplified to Iout. The light amplification is given by  

{ }[ ]lNNNII exaexexeminout  )( )()( exp)()( 0 −−−= σλσλσλλ               (2.3) 

where exσ  is the excited state absorption cross-section and 0N  is the total number density of 

molecules. 

 
 

Fig. 2.9: Schematic of a laser amplifier. An input light of wavelength Lλ  is amplified in the 
population inverted active medium. Population inversion is caused by an excitation source (here 
pump beam). 
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2.4.3 Amplified spontaneous emission (travelling wave laser, mirror-less laser) 
 

The laser amplifier arrangement of Fig. 2.9, without input light, amplifies the spontaneous 

emission if the active medium is population inverted by an excitation source. The arrangement is 

sketched in Fig. 2.10.  

 

Fig. 2.10: Scheme showing principle of amplified spontaneous emission. The active medium is 
pumped by a pulse of wavelength Pλ  and of intensity IP to achieve population inversion.  

The spontaneous emission is broadband and this broadband is amplified according to the 

amplification of spontaneous emission and is given by 

{ }[ ]lNNII aaexexemspout )())()((exp)()( λσλσλσλλ −−=         (2.4) 

where Isp(λ) is the intensity of the spontaneous emission. The amplification of spontaneous 

emission dominates exponentially in the direction of longest interaction length (l is maximum). 

Conjugated polymers and organic dyes typically show strong stimulated emission for the 

transition from the singlet state S1,ν’=0 to vibronic sublevels of the ground state S0,ν. Due to the 

fast relaxation out of the vibronic levels, the ground state of the optical transition is usually 

unpopulated, resulting in a four-level system as shown in Fig. 2.11.  
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Fig. 2.11: Broadband fluorescence emission, which may be amplified. 

In laser active thin films, when the film refractive index is larger than the substrate refractive 

index and the film is of sufficient thickness, wave-guiding of the spontaneous emitted light within 

critical angle case takes place [Kog79]. If the population inversion is managed, for example by 

transverse pumping of the waveguide then wave-guided travelling wave lasing (wave-guided 

amplification of spontaneous emission) takes place. A typical arrangement is shown in Fig. 2.12.  

 

Fig. 2.12: Schematic of amplified spontaneous emission in a thin film waveguide. A cylindrical 
lens is used to transverse pump a sample thin film. 
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2.4.4 Laser oscillator 

In a laser oscillator the spontaneous emission (and amplified spontaneous emission) is 

feedback into the active medium by resonator mirrors. The feedback light is amplified in the 

active medium and the constructive and destructive interference occurs between propagating and 

reflecting waves (Fabry-Perot interference effect).This leads to specified wavelength selection in 

laser oscillators. A typical laser oscillator arrangement is shown in Fig. 2.13. 

 

Fig. 2.13: Schematic of a laser resonator. 

2.4.5 Low-Q laser oscillator 

In a low Q laser oscillator the laser quality factor Q is small (number of round trips before 

photon escapes the resonator is small). This situation occurs if the output coupler has high 

transmission (low reflectivity) or back side front mirror (usually 100% reflectivity) and the output 

mirror have low reflectivity. In our low-Q-laser studies, the low-Q resonator is formed by the 

uncoated optically polished glass windows of a cell which contains the active laser medium (the 

molecule solution under study). The solution in the dye laser cell is transversely pumped with the 

help of a cylindrical lens. A schematic low-Q laser arrangement is shown in Fig. 2.14. 
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Fig. 2.14: Schematic of a transverse pumped low-Q laser. The dye laser cell is transversely 
pumped with the help of a cylindrical lens. 
 
2.4.6 Distributed feedback laser 
 

The concept of distributed feedback (DFB) lasers was introduced in the early 1970s by 

Kogelnik et al., who realized that laser operation can be achieved if a periodic structure is 

integrated within the gain region [Kog71]. In such types of devices, light is reflected by the 

periodic modulation of the refractive index or the gain so that light is Bragg reflected. This is the 

major difference in comparison to a conventional laser device as shown in Fig. 2.13, where the 

feedback is established by end mirrors. The laser wavelength of a DFB laser is close to the Bragg 

wavelength, Λ= effBragg n2λ ( effn is the effective refractive index of the waveguide and Λ  is the 

period of the grating), and the wavelength can be tuned by varying either the effective refractive 

index, effn or the period of the grating, Λ . The DFB lasers made with periodic modulation in the 

refractive index normally lase in two modes [Sha71], one slightly below of Braggλ  and another one 

slightly above this. Single mode DFB lasers can be made by introducing a phase shift in the 
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periodic modulation or by modulating gain instead of refractive index. Fig. 2.15 depicts an 

example of a DFB structure. 

 

Fig. 2.15: Schematic diagram of an organic material DFB laser with corrugations of period of Λ . 
Light of wavelength Λ= effn2λ  propagating from left to right is scattered from the periodic 
structure to create a diffracted wave propagating in the counter propagating waveguide [Sam07]. 
 

The DFB geometry is very attractive for semiconducting organic lasers for several reasons. 

As organic material based thin films can be readily made by spin-coating, the film can be pumped 

transversely and the laser structure allows light to propagate through significant distances in the 

gain medium. As the feedback is provided by corrugation rather than mirrors so no alignment of 

the laser is required, and the corrugation can be used to give a well-defined output beam, by 

diffracting some light out of the face of the film. 

 

 

 



3. Experimental techniques 
 

 
 

23  

3. Experimental techniques 

3.1 Investigated electroluminescent organic materials 
 

The work presented in this dissertation consists of two types of electroluminescent organic 

materials: some low molar mass molecules and a polymer. The low molar mass molecules are 

dicarboxovinylene-MEH-phenylene : full name ( 1,4-bis(9-ethyl-3-carbazovinylene-2-methoxy-

5-(2’-ethyl-hexyloxy)-phenylene), abbreviated by (2CzV-MEH-B) [Ban08a], triphenylamine 

dimer: full name (N,N,N’,N’-tetraphenylbenzidine), abbreviated by (TPB) [Ban08b], napthalene 

substituted triphenylamine dimer: full name (N,N’-di-[1-napthaalenyl)-N,N’-diphenyl]-(1,1´-

biphenyl)-4,4’-diamine), abbreviated by (β-NPB) [Ban08b], triphenylamine (TPA) [Ban08c], tris-

3 methyl-triphenylamine: full name (1,3,5-tri(3-methylphenyl-phenylamino)benzene) abbreviated 

by (m-MTDAB) [Ban08c]. The studied polymer is poly (2,2’-dipyridine-5,5’-diyl-2,5-dihexyl-

1,4-phenylene) abbreviated by (PPBpy) [Ban08d]. The structural formulae and chemical names 

of the compounds are shown in Fig. 3.1. 

All these electroluminescent organic materials were characterized spectroscopically and 

investigated for neat thin-film laser action. The light emitting oligomer 2CzV-MEH-B (product 

name: ADS084BE) and the hole transport material m-MTDAB (product name ADS04HTM) 

were bought from American Dye Source, Inc. Quebec. The hole transport materials TPB and β-

NPB were bought from Sensient Imaging Technologies GmbH, Wolfen, Germany. The 

triphenylamine TPA and the solvents tetrahydrofuran and 1,1,2,2-tetrachloroethane were 

purchased from Sigma-Aldrich, Taufkirchen, Germany. All the organic materials and solvents 

were used without further purification. The polymer PPBpy was synthesized in the group of 
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Professor Klemn, Institut für Organische Chemie und Makromolekulare Chemie, Friedrich-

Schiller Universität Jena, Germany. 
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       PPBpy 
 

Fig 3.1: Structural formulae of investigated electroluminescent materials. 2CzV-MEH-B, Full 
name: 1,4-bis(9-ethyl-3-carbazovinylene-2-methoxy-5-(2’-ethyl-hexyloxy)-phenylene (sum 
formula: C47H50N2O2. Molar mass: 674.91 g mol-1). TPB: Full name: N,N,N’,N’-
tetraphenylbenzidine (sum formula: C36H28N2. Molar mass: 488.64 g mol-1). β-NPB: Full name: 
N,N’-di-[1-napthaalenyl)-N,N’-diphenyl]-(1,1´-biphenyl)-4,4’-diamine (sum formula: C44H32N2. 
Molar mass: 588.76 g mol-1). TPA: Full name: Triphenylamine (sum formula: C18H15N. Molar 
mass: 245.32 g mol-1). m-MTDAB: Full name: 1,3,5-tris (3-methylphenyl-phenylamino) benzene 
(sum formula: C45H39N3. Molar mass: 621.83 g mol-1). 
PPBpy: Full name: poly(2,2’-dipyridine-5,5’-diyl-2,5-dihexyl-1,4-phenylene) (sum formula: 
C28H34N2. Molar mass: 398.6 g mol-1). 
 

The organic materials were dissolved in tetrahydrofuran (C4H8O) or 1,1,2,2-tetrachloroethane 

(C2H2Cl4). All the measurements were performed at room temperature (ca. 22 °C) under ambient 

conditions. 

3.2 Film preparation 
  

The thin films used in this work were prepared by spin coating on suitable substrates. The 

spin coating on substrates was done by the instrument shown in Fig 3.2 built in our electronic and 

mechanical workshops. The schematic shows a plexiglas box with front side open. A sample 

holder is located on a rotating disk. The sample holder is different for different sample types. The 

speed of the rotating disk is controlled by D1 and D2 knobs on the controller box. A rotary switch 

S enables the exchange between the two stages D1 and D2. The first stage reaches a maximum 

angular speed of approximately 600 rpm (rotations per minute).  The second stage enables an 

N N

C6H13

C6H13

n
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angular speed in the range of about 400-3000 rpm. The whole arrangement was covered for 

safety purpose and located in the fume hood for evaporating solvent exhaustion. 

 

Fig. 3.2: Experimental arrangement for spin coating. 

For the travelling-wave laser action experiments microscope slides, (type SUPERIOR Paul 

Marienfeld GmbH and Co KG, Lauda-Königshofen, Germany) were used as substrates. The 

dimensions of the substrates used were 38 mm × 26 mm × 1 mm (l × b × h). For the optical 

spectroscopic characterizations (absorption, fluorescence and optical constants) of the 

luminescent organic materials as thin films, the substrate used was synthetic quartz glass, 

Spectrosil B [The66]. The dimensions of the substrate quartz glasses were 50 mm × 30 mm × 

3mm (l × b × h).  

The wet substrates were put on the rotating disk for one minute at rotational speed of 2400 

rpm to dry them completely. Subsequently to make a film of desired thickness, the speed was 

reduced. The thickness of the film is inversely proportional to the number of revolutions and is 

directly proportional to the square of concentration of the dye in the solvent [Dro98]. Depending 

on the desired film thickness, the used solvent and the kind of organic material, rotational speeds 
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between 600 rpm to 1800 rpm were selected. After the rotating disk achieved the desired speed, 

one or two drops of the dye solution were brought exactly in the middle of the rotating substrate 

with the help of a Pasteur pipette. One drop of organic material from the Pasteur pipette 

corresponds to a quantity of roughly 0.015 ml. The rotating disk speed was kept constant for 

about 1 min. During this time the solvent evaporated at ambient temperature. Subsequently, the 

spin-coater was switched off and the sample was taken out from the holding template. 

The thin films used for laser experiments were generally made from dye solutions of 20mg/ml 

concentration. For example, to make a film of thickness of approximately 100 nm, a rotational 

speed of 1200 rpm was used. For the measurement of the optical constants, the fluorescence 

quantum yield and fluorescence lifetime, film thicknesses of around 50nm to 90nm were needed. 

In this case a rotational speed about 2000 rpm was used. 

After preparation, the films were stored for about 30 minutes at ambient temperature to let the 

remaining solvent to evaporate and after that they were stored at 4˚C in a refrigerator. 

3.3 Optical constants and film thickness measurement 
 

The optical constants, refractive index n and absorption coefficientα , were determined by 

reflection and transmission measurements. The experimental arrangement for the reflection and 

transmission measurements over a wide wavelength range is shown in Fig. 3.3. The sample (thin 

film on substrate) was mounted on a mirror holder on a rotation stage. The illumination part, 

consisting of a light source (tungsten lamp 12V), two apertures B1, B2, a lens L1, and a vertically 

polarized polarizer P, was mounted on a swivel arm with center of rotation at the sample position. 

It can be positioned to any angle between 8˚ and 180˚. The position of φ=180˚ was used for 

transmission measurement. For reflection measurement at an angle of incidence, φa, the swivel 

arm was set to φ= 2φa. The detection part consisted of a spectrometer with a silicon diode array 
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detection system, an aperture B3 and a lens L2. The quartz lens L2 collected the transmitted or 

reflected light to the entrance slit of the spectrometer. The reflected and the transmitted light 

spectra were calibrated to the light spectra obtained when the light source was in the transmission 

measurement position and the sample had been removed. 

 
 

Fig. 3.3. Experimental arrangement for spectral reflectance and transmittance measurement. S, 
sample; LA, lamp; B1, B2, B3, apertures; P, polarizer; L1, L2, lenses; SP, spectrometer; DA, 
diode array detection system; movement possibility of swivel arm is indicated by arced arrows. 

The refractive index dispersion, )(λn , the absorption coefficient spectrum, )(λα , and the thin 

film thickness l are extracted from the reflection and transmission measurements [Bor80]. A 

detailed description of data extraction from the transmission and reflection measurements is given 

in [Pen98]. 

3.4 Absorption measurement 
 

The absorption measurements of organic materials in liquid solutions were carried out using a 

commercial single beam UV-VIS-IR spectrophotometer (Cary 50 from Varian and Beckman 

ACTA M IV) by measuring transmission spectra T (λ). The absorption coefficient spectra, )(λα  , 

are derived from the transmission spectra by using the relation 

  T (λ) = exp [- )(λα l]                 (3.1) 
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where l is the sample length. 

The absorption cross-section spectra, )(λσ a , are related to the absorption coefficient spectra, 

)(λα , by the relation, 0/)()( Na λαλσ = , where N0  is the number density of molecules or repeat 

units. 

The absorption cross-section spectra of the neat films of organic materials were determined 

by assuming equal absorption cross-section integrals in solutions and in thin films for the S0-S1 

absorption band by using the relation         

   ∫∫ −
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The assumption is reasonable since the absorption integrals or oscillator strength of allowed 

transitions depends little on solvent and concentration [Bir70]. 

The molecule mass density N0 or ρ of the molecules in thin films was determined by using 

the relation 
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, ==              (3.2) 

where M is the molar mass, NA is the Avogadro number. 

3.5 Fluorescence quantum distribution measurement 
 

Fluorescence measurements were carried out using a self assembled fluorimeter in front face 

collection arrangement. The experimental setup is shown schematically in Fig. 3.4. The setup 

consists of an excitation part and a detection part. In the excitation part, a 200 Watt high-pressure 

mercury lamp (from Spindler and Hoyer, Göttingen (now LINOS)) in combination with an 

interference filter (to select the desired wavelength) and a polarizer P1 is used as excitation 

source. The vertically polarized excitation light is focused to the sample S by lens L2. In the 
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detection part the fluorescence emission is collected by lens L3 and focused to the spectrometer 

SP with lens L4 under conditions of parallel, perpendicular or magic angle polarizer direction 

(polarizer transmission under an angle of 54.74° to the vertical for magic angle polarization 

[Dör66]) relative to the polarization direction of the excitation light. The dispersed fluorescence 

spectrum is collected by a silicon diode array detection multi-channel analyser system (Tracor 

DARRS system TN-1710, from Tracor Northern).  

 

Fig. 3.4: Experimental setup for fluorescence measurements. LS, light source (high pressure 
mercury lamp); IF, interference filter; L1-L4, lenses; P1, P2, linear dichroitic polarizer sheets; S, 
sample; SP, spectrometer; DA, diode-array detection system. 
 

The absolute intrinsic fluorescence quantum distribution, EF(λ), which is defined as the ratio 

of total intrinsic fluorescence photons integrated over the full solid angle to the absorbed 

excitation photons [Pen87], is given by  

( ) ( )
abs

i
F S

SE λλ =                 (3.4) 

where Si(λ) is the number of intrinsic fluorescence photons per unit wavelength and per volume 

element and Sabs is the  number of absorbed pump photons in the same volume element.  
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The fluorescence quantum yield, Fφ , which is defined as the total number of intrinsic 

fluorescence photons to the number of absorbed light photons, is given by 

 φF = ( ) λλ dEF∫                 (3.5) 

 In the experiments the fluorescence quantum distribution, EF(λ), and fluorescence quantum 

yield, Fφ , were determined by calibration to reference dyes of known fluorescence quantum yield 

[Hol99, För51].  

For excitation in the blue and violet spectral range the dye Coumarin 314T in ethanol was 

used as reference (fluorescence quantum yield φF = 0.87 according to technical data sheet of 

Kodak). The Fig. 3.5 shows the absorption cross-section spectrum and the fluorescence quantum 

distribution of the dye coumarin 314T in ethanol. In the case of near UV excitation the dye 

quinine- sulphate dihydrate in 1N H2SO4 was used as reference (φF = 0.546/ (1+14.5 C) where C 

is the dye concentration in mol dm-3 [Mel61]). The absorption cross-section spectrum and 

fluorescence quantum distribution of this dye are shown in Fig. 3.6.  

The degree of fluorescence polarization [Dör66], PF was determined by vertical polarized 

excitation and detection of the fluorescence signal polarized parallel (SF,||) and perpendicular 

(SF,⊥) to the excitation light and by using the relation 

    )]()(/[)]()([)( ,,||,,|| λλλλλ ⊥⊥ +−= FFFFF SSSSP         (3.6) 
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Fig. 3.5: Absorption cross-section spectrum and fluorescence quantum distribution of Coumarin 
314T in ethanol. 

 

Fig. 3.6: Absorption cross-section spectrum and fluorescence quantum distribution of quinine- 
sulphate dihydrate in 1N H2SO4. 
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3.6 Fluorescence lifetime measurement 
 

Fluorescence lifetime measurements of samples with lifetimes longer than about 500 ps were 

carried out using the experimental setup depicted in Fig. 3.7a. The samples were excited by 

vertical-polarized second harmonic pulses of an active and passive mode-locked ruby laser 

[Wei93] (pulse duration 35 ps, wavelength 347.15 nm). For detection the fluorescence was 

gathered by lens L1 and directed to a micro-channel-plate photomultiplier (Hamamatsu, type 

R1564-U01) by lens L2 under magic angle orientation (polarizer transmission under an angle of 

54.7° to the vertical [Dörr66]). The photomultiplier signal was recorded with a high-speed digital 

oscilloscope (LeCroy, type DSO 9362). In the fluorescence path, an edge filter (EF) was used to 

cut unwanted excitation light.  

 

Fig. 3.7a: Experimental setup for fluorescence lifetime measurement. M.L.Laser, active and 
passive mode-locked ruby laser;  SHG, KD*P crystal for second harmonic generation; F , filter to 
cut the fundamental light; L1,L2, beam expanding telescope; L3,L4, fluorescence collecting 
lenses; S, sample; EF, long-pass edge filter (λ>370 nm); P, polarizer at magic angle (54.7˚); PD1, 
PD2, photodetectors; MCP, micro-channel-plate photomultiplier. 

For the investigated neat film of 2CzV-MEH-B the fluorescence lifetime came out to be 

shorter than 500 ps and could not be resolved by the micro-channel plate detector system. In this 

case temporal fluorescence traces were measured by excitation with second harmonic pulses of a 

titanium sapphire femtosecond laser (pulse duration 130 fs, wavelength 400 nm, laser system 
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Hurricane from Spectra-Physics) and fluorescence signal detection with a picosecond single 

sweep streak-camera (Hamamatsu type C1587 temporal photometer with M1952 high speed 

repeat unit , time resolution ≤ 2 ps). The experimental arrangement is shown in Fig. 3.7b. The 

operating principle is described in [Hol00a]. 

 

Fig. 3.7b: Experimental setup for time-resolved analysis with streak camera. M.L.Laser, active 
and passive mode-locked ruby laser; SHG, KD*P crystal for second harmonic generation; F , 
filter to cut the fundamental light; L1,L2, fluorescence collecting lenses; S, sample; EF, long-pass 
edge filter (λ>400 nm); PD1, energy calibrated photodetector; SC, streak camera; CCD, 
intensified two-dimensional CCD camera; PD2, trigger photodiode; DL, optical delay line. 

3.7 Saturable absorption measurement 
 

The saturable absorption behaviour of sample solutions in THF or in TCE at room 

temperature was studied using the experimental setup depicted in Fig. 3.8. Single picosecond 

light pulses were selected from an active and passive mode-locked ruby laser (pulse duration 35 

ps FWHM). The pulses were amplified and the second harmonic was generated in a KD*P 

crystal. The intensity of the pulses at the sample was varied with filters and a lens L1. The energy 

transmission through the sample cell was measured with photodetectors PD1 and PD3. The input 

peak pulse intensity was determined by two photon transmission measurements through a KI 

crystal (thickness 1cm) with photodetectors PD1 and PD2 [Bla81]. The two-photon transmission  
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Fig. 3.8: Experimental setup for saturable absorption measurement. M.L.Laser, active and passive 
mode-locked ruby laser; SHG, KD*P crystal for second harmonic generation; F, Filter; L1 lens; 
TP: KI crystal for Intensity detection; S, sample; PD1, PD2, and PD3 photodetectors. 
 
of the KI crystal versus input peak intensity I0 is shown in Fig. 3.9. The excited-state absorption 

cross-section of the samples at the excitation wavelength is extracted from the dependence of the 

energy transmission TE on the input laser peak intensity I0.  

 
 
Fig. 3.9: Two photon energy transmission through a KI crystal of length 1 cm [Bla81]. 
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3.8 Low-Q laser studies 
 

The low-Q lasing arrangements of organic materials in a 1 cm × 1 mm quartz dye-laser cell 

were studied using vertical-polarised second harmonic pulses of a picosecond ruby laser system 

[Wei93] (wavelength λP = 347.15 nm, pulse duration ΔtP = 35 ps, pulse energy up to 1 mJ). The 

experimental arrangement is shown in Fig. 3.10.  

The input pump pulse peak energy density, w0P, is varied with neutral density filters. The 

samples were transversally pumped. The vertical polarized laser beam was elongated along the 

horizontal-optical axis with a concave cylindrical lens, C1 (beam extension to 14.5 mm FWHM), 

and focused perpendicular to the horizontal-optical axis with a convex cylindrical lens, C2 (beam  

 

Fig. 3.10: Experimental setup of travelling wave lasing. M.L.Laser, active and passive mode-
locked ruby laser; SHG, KD*P crystal for second harmonic generation; F, filter; C1, C2, 
cylindrical lenses for pump pulse line-focus formation; S, sample; P, polarizer; A, aperture; L1 
lens; PD1, PD2, photodetectors; SP, spectrometer; DA, diode-array detection system. 

narrowing to 0.245 mm FWHM). The excitation occurred along the 1 cm cell side, perpendicular 

to the 1mm cell windows. The cell windows acted as resonator mirrors (reflectivity R ≈ 0.036). 

The detection part consists of a vertically polarized polarizer dichotic sheet, an aperture A with 

diameter 3 mm at 21 cm distance from the sample, and a lens L1. The aperture, A restricts the 
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full collection angle to Δθ = 0.82˚, Lens L1 (focal length f1 = 100 mm) focuses the emitted light 

to a spectrometer, SP, with diode-array detection system, DA (OMA system with intensified 

detector model 1455 from EG&G Princeton Applied Research). The silicon photodetectors PD1 

and PD2 were used to measure the transmission through the samples. The input pulse energy WP 

is measured with the energy calibrated photodetector, PD1. The pump laser beam width and 

height (FWHM), at the sample position were measured separately with a diode array camera.  

3.9 Wave-guided travelling-wave laser studies 
 

The amplification of spontaneous emission (ASE) of neat thin films was studied using second 

harmonic pulses of a picosecond ruby laser system [Wei93] (wavelength λP = 347.15 nm, pulse 

duration ΔtP = 35 ps, pulse energy up to 1 mJ). The experimental arrangement of ASE generation 

and detection is shown in Fig. 3.11. The samples are transversally pumped. The laser beam is 

elongated along the horizontal-optical axis with a concave cylindrical lens, C1 (beam extension to 

14.5mm FWHM), and focused perpendicular to the horizontal-optical axis with a convex 

cylindrical lens, C2 (beam narrowing to 0.245 mm FWHM). The sample surface was tilted (α ≈ 

7˚) off the perpendicular direction towards the excitation beam direction for better collection of 

the light propagating along the film substrate interface [Pen04]. The emission is collimated with 

lens L1 (focal length f1 = 65 mm). An aperture, A (opening diameter d = 20 mm), restricts the full 

collection angle to Δθ = 17.5˚. A lens L2 (f2 = 100 mm) focuses the collimated light to a 

spectrometer, SP, with diode-array detection system, DA (OMA system with intensified detector 

model 1455 from EG&G Princeton Applied Research). The thickness, d, of the neat films for 

ASE measurements was determined by the neat film transmission, ( )PT λ′ , measured at the laser 

excitation wavelength, Pλ . It is ( ) ( ) ( ) ( )dTTT PPSPP αλλλ −==′ exp/ , where ( )PT λ  is the 
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transmittance of the neat film and the substrate, ( )PST λ is the transmittance of the blank substrate 

and Pα is the absorption coefficient. 

 
Fig. 3.11: Experimental setup for wave-guided travelling-wave lasing. M.L.Laser, active and 
passive mode-locked ruby laser; SHG, KD*P crystal for second harmonic generation; F, blocking 
filter for fundamental laser light; C1, C2, cylindrical lenses; S, sample; A, aperture; L1, L2 
lenses; PD1, PD2, photo detectors; SP, spectrometer; DA, diode-array detection system. 
 

The effective gain length (interaction length) of wave-guided travelling wave lasing, lTWL, is 

determined by changing the exposed sample length, lap, with a variable slit A and measuring the 

threshold pump power energy density, thPw , . 

3.10 Distributed-feedback laser studies 
 

For the distributed feedback lasing studies on organic materials (2CzV-MEH-B and PPBpy), 

the used experimental arrangement is shown in Fig. 3.12. Vertically polarised single second 

harmonic pulse of a picosecond ruby laser system [Wei93] (wavelength λL = 347.15 nm, pulse 

duration ΔtL ≈ 35 ps, pulse energy up to 1 mJ) were used for transversely exciting the samples. 

The pump pulse energy was measured with a calibrated photo-detector, PD1 (sensitivity 

0.68±0.018 nJ/V). The negative cylindrical lens C1 (beam expansion in horizontal plane) and the 

positive cylindrical lens C2 (beam narrowing in vertical plane) form a line focus along the grating 
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axis. The beam diameter perpendicular to grating axis is l⊥ = 0.13 mm. The beam diameter along 

grating axis is limited to l|| = 0.9 mm by an aperture, in order to avoid amplified spontaneous 

emission outside the grating region and to avoid imperfections at the grating – flat-surface 

borders. The samples were tilted to an angle of 45° to the excitation direction with grooves in 

vertical direction. The first-order-diffraction radiation mode (M = 1), which is emitted normal to 

the grating plane [Car98, Mor97], is collected by a lens, L, and detected spectrally resolved by a 

spectrometer, SP, with diode-array detection system, DA (OMA system with intensified detector 

model 1455 from EG&G Princeton Applied Research). The gratings were operated in second 

grating order (p = 2, Bragg wavelength Λ=Braggm,λ ) [Hol02a]. The gratings were fabricated on 

fused silica plates. The grooves were processed by reactive ion beam etching [Hol02a]. The 

organic material films were deposited by spin coating as described earlier. 

 

Fig. 3.12: Experimental arrangement for distributed-feedback lasing. M.L.Laser, modelocked 
ruby laser system; SHG, KD*P crystal for second-harmonic generation; F, filter; BS, beam 
splitter; C1, C2, cylindrical lenses; L, Lens; S, sample; ϕ = 45◦; SP, spectrometer; DA, diode-
array detection system. 
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4. Results and discussion 
 
In this chapter the results of the investigated electroluminescent organic materials are 

elaborated which have been obtained using the experimental techniques described in chapter 3. 

4.1 Dicarbazovinylene-MEH-Benzene Dye (2CzV-MEH-B) 

Carbazole based polymers are applied as hole transport materials in xerographic industry and 

in organic light emitting diodes (OLEDs) [Rom96]. MEH-Benzene based polymers [Hol02] have 

shown laser action in neat thin films. The studied dye dicarbazovinylene-MEH-Benzene is a 

model compound for carbazovineylene and MEH-Benzene based polymers. It is a commercially 

available electroluminescent organic material by the name ADS084BE from American Dye 

Source, Inc. It has been used as light emitting oligomer in organic light emitting devices 

(OLEDs). It is abbreviated by 2CzV-MEH-B because of the two carbazovinylene cap-groups and 

the central MEH-benzene (or phenylene) part.  

The oligomeric compound is studied in tetraydrofuran (THF) and as a thin film on a glass 

substrate. Absorption cross-section spectra, stimulated emission cross-section spectra, 

fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence 

polarisation, and fluorescence lifetimes are determined. The saturable absorption of the dye at 

347.15 nm (second harmonic of picosecond ruby laser) is measured and analysed. The 

amplification of spontaneous emission (wave-guided travelling-wave lasing) in neat films and the 

dye solution low-Q lasing in a cell (cell windows act as low reflectivity resonator mirrors) are 

studied by transverse sample pumping. The distributed-feedback lasing of the dye spin-coated on 

corrugated gratings etched into a quartz glass is investigated. The low-Q-lasing onset is analysed 

to extract the excited-state absorption cross-section spectrum of the dye in the fluorescence 

spectral region. 
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4.1.1 Optical and spectroscopic characterization  

The transmittance spectrum and the reflectance spectrum of a 2CzV-MEH-B thin film on a 

fused silica substrate are shown in Fig. 4.1. The film was prepared by spin-coating, as explained 

in section 3.2, of a 2CzV-MEH-B/THF solution of dye concentration 15 mg/ml with a speed of 

1500 rpm. The dashed curves in Fig 4.1 show the reflectance and transmittance curves of the 

fused silica substrate. A Fresnel equation analysis of the reflectance and transmittance curves 

allows to determine the absorption coefficient spectrum, α(λ), the refractive index spectrum, 

n(λ), and thickness, df, of the neat film on transparent substrates [Pen98, Hol99a]. The film 

thickness is found to be df = 122 nm (for this value a smooth refractive index spectrum in the 

absorption region is obtained). The determined absorption coefficient spectrum, α(λ), and the 

refractive index spectrum, n(λ), are displayed in Fig. 4.2. The refractive index dispersion of fused 

silica is also included in the figure (dashed curve). The absorption maximum occurs at 414 nm. 

At this wavelength the light penetration depth is dp = 1−
Pα  = 57 nm. The refractive index spectrum 

shows the expected dispersion shape. In the displayed wavelength range the film refractive index 

is larger than the fused silica or the optical glass refractive index. Therefore the optical wave-

guiding takes place in films above a critical film thickness [Kog79].  

For transversal electric modes (TE modes, electrical field vector in plane of the film) the 

minimum film thickness is [Kog79] 
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and for transversal magnetic films (TM modes, magnetic field vector in plane of the film) it is  
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Fig. 4.1: (a) Transmittance, 
T(λ), and (b) reflectance, 
R(λ), spectra of an 2CzV-
MEH-B film on fused silica 
substrate. Film thickness df = 
122 nm. Dash-dotted lines 
belong to blank fused silica. 

Fig. 4.2: (a) Absorption 
coefficient spectrum, αf(λ), 
and (b) refractive index, n(λ), 
spectra of 2CzV-MEH-B film 
and fused silica substrate. 
Results of distributed 
feedback laser analysis on the 
TE mode refractive index, 
nf,TE, and the TM mode 
refractive index, nf,TM, are 
included. 



4. Results and discussion: dye 2CzV-MEH-B  
 

 
 

43  

( ) ⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

−π

λ
=

2/1

22

22

4

4

2/122min, arctan
2 sf

cs

c

f

sf
TM nn

nn
n
n

nn
d .        (4.1b) 

λ is the considered wavelength in vacuum, nf, ns, and nc are the refractive indices of the film, the 

substrate, and the surrounding air (nc = 1) at λ, respectively. 

The absorption cross-section spectra, σa(λ), of 2CzV-MEH-B in THF and of 2CzV-MEH-B 

neat film are displayed in Fig. 4.3 (the neat film curve is calculated assuming the same S0-S1 

absorption cross-section integral for the solution and the film, Eq. 3.3). The absorption cross-

section spectra of the film and the solution are similar, only the solution absorption maximum is 

approximately 5 nm blue-shifted compared to the film absorption maximum. The 2CzV-MEH-B 

molecule number density in the film is estimated to be faffN ,/σα=  ≈ 8.51×1020 cm-3 (calculated 

at λ = 416 nm). The mass density, ρ, of the 2CzV-MEH-B neat thin film is determined to be 

( ) mAf MNN /=ρ  ≈ 0.954 g cm-3, where NA is the Avogadro constant and Mm is the molar mass. 

The stimulated emission cross-section spectra, σem(λ), of the solution and the neat film are 

included in Fig. 4.3. They are calculated from the S0-S1 absorption spectra and the fluorescence 

quantum distributions (see Fig. 4.4a) using the Strickler-Berg formula [Str62, Bir63].  
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and the Einstein relation [Str62, Bir63] 
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Fig. 4.3: Absorption cross-section, σa(λ), and stimulated emission cross-section, σem(λ), spectra 
of 2CzV-MEH-B thin film (solid curves) and of 2CzV-MEH-B dissolved in tetrahydrofuran 
(THF) (dashed curves, concentration 7.1 × 10-5mol dm-3).  
         

In Eqs. 4.2 and 4.3 the integrals extend over the regions of S1→S0 emission (em) and S0→S1 

absorption (abs, border λu is indicated in Fig. 4.3). nF and nA are the average refractive indices in 

the S0-S1 fluorescence and absorption region, respectively. c0 is the velocity of light in vacuum. 

τrad,SB is the theoretical radiative lifetime determined by use of Eq. 4.2. The shapes of the 

stimulated emission cross-section spectra of 2CzV-MEH-B in solution and of 2CzV-MEH-B neat 
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film resolve a vibronic structure. The neat film spectrum is about 25 nm red-shifted compared to 

the solution spectrum, and the spectral half-width of the neat-film stimulated emission cross-

section spectrum is considerably broader than that of the solution [ emν~Δ (film) ≈ 5060 cm-1, 

emν~Δ (solution) ≈ 3680 cm-1 (FWHM)]. 

 

Fig. 4.4: (a) Fluorescence quantum distributions, EF(λ), and (b) degrees of fluorescence 
polarization, PF(λ), of solid curves, (film thickness 122 nm ) and of 2CzV-MEH-B in THF 
(dashed curves, concentration 6.695 × 10-5mol dm-3). 

The fluorescence quantum distributions, EF (λ), of 2CzV-MEH-B in THF and of 2CzV- 

MEH-B neat film are shown in the Fig. 4.4a. The fluorescence quantum yield, ∫ λλ=φ dEFF )( , 
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(Eq. 3.5) of the solution is φF = 0.86±0.02 and of the film is φF = 0.062±0.003 and are also 

displayed in Table 4.1 The fluorescence in the solution is high, but in the film it is strongly 

reduced (self-quenching). The fluorescence peak of the solution occurs at 459 nm, while the 

fluorescence peak of the film occurs at 480 nm.  

The degrees of fluorescence polarisation, PF, of 2CzV-MEH-B in THF and of 2CzV-MEH-B 

neat film are shown in the Fig. 4.4b. In the solution it is PF ≈ 0.12, and in the neat film it is PF ≈ 

0.16. The PF values are also listed in Table 4.1.  For isotropic media with parallel orientation of 

the absorption and emission transition dipole moments, PF approaches 0.5 if there occurs no 

reorientation within the fluorescence lifetime (high viscosity and low concentration); and PF 

approaches 0 if complete reorientation occurs within the fluorescence lifetime (either low 

viscosity for molecular reorientation, or high concentration for reorientation by site-to-site 

excitation transfer) [Lak83]. In the solution the obtained degree of fluorescence polarization is 

determined by molecular reorientation, while in the neat film it is determined by site-to-site 

excitation transfer. 

The degree of fluorescence polarisation, PF, is related to the reorientation time, τor, of the 

transition dipole moments by [Amm95, Lak83] 

     FF
FF

F
or P

PP
P

τ
−

−
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0,

0,

/1
3/1/1

,           (4.4) 

where PF,0 = 0.5, and τF is the fluorescence lifetime. For 2CzV-MEH-B in THF it is PF ≈ 0.12 and 

τF = 1.5 ns giving τor ≈ 375 ps. The 2CzV-MEH-B thin film has a PF ≈ 0.16 and τF,av ≈ 60 ps 

giving τor ≈ 26 ps. This short reorientation time is caused by fast excitation transfer in the random 

oriented molecules in the neat film (dipolar Förster-type energy transfer [För51, Val02] and 

Dexter-type exchange transfer [Val02, Dex53]). 
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The temporal fluorescence signals of a 4×10-5 molar solution of 2CzV-MEH-B in THF (solid 

line in part (a)) and of a 2CzV-MEH-B neat film (thickness 122 nm, solid line in part (b)) are 

shown in Fig. 4.5. The dotted curves show the detection system response functions (attenuated 

pump pulses directed to micro-channel plate photomultiplier or streak-camera). A single-

exponential fluorescence-decay is observed for the dye in solution with a fluorescence lifetime of 

τF = 1.5 ns. The fluorescence decay fits well for the neat film to a two-exponential fluorescence 

decay according to )]/exp()1()/exp([)( 2,11,10, FFFF txtxStS ττ −−+−=  with x1 = 0.72, and 

 
Fig. 4.5: Temporal fluorescence traces of 2CzV-MEH-B in THF (a) measured with micro-
channel-plate photomultiplier neat film (concentration 3.9 × 10-5 mol dm-3) and of 2CzV-MEH-B 
neat film (b) measured with streak-camera (film thickness 122 nm). Dotted curves show response 
functions. 
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τF,1 = 47.3 ps, x2 = 0.28,  τF,2 = 238 ps. The average fluorescence lifetime, defined as 

2,21,1, ///1 FFavF xx τ+τ=τ , is found to be 60 ps. The fluorescence self-quenching seems to be 

distance and orientation dependent causing the non-single-exponential decay. The self-quenching 

is thought to be caused by reductive electron transfer (HOMO level of excited molecule is filled 

by electron from neighbour molecule), oxidative electron transfer (electron in LUMO level of 

excited molecule moves to LUMO level of a neighbouring unexcited molecule), and charge 

recombination [Val02, Bal01, Shi07]. 

The radiative lifetime determined from the fluorescence lifetime, τF,av, and the fluorescence 

quantum yield, φF, is 

     
F

avF
rad φ

τ
τ ,= .             (4.5) 

The experimental results are τrad(solution) ≈ 1.74 ns and τrad(neat film) ≈ 0.97 ns. The radiative 

lifetime in the neat film is shorter than in the solution because of the higher refractive index of the 

neat film (Eq. 4.2: 3−∝ FArad nnτ ). The calculated monomeric radiative lifetimes, τrad,SB, determined 

by use of the Strickler-Berg formula (Eq. 4.2) give τrad,SB(solution) ≈ 1.74 ns and τrad,SB(neat film) 

≈ 1.22 ns. In liquid solution the experimental radiative lifetime, τrad, and the calculated 

monomeric Strickler-Berg radiative lifetime, τrad,SB (σa is the absorption cross-section per 

molecule) give the same value within our experimental accuracy, i.e. the emitting chromophore 

size and the molecule size are the same [Pet71]. This result is expected for diluted solutions (no 

dimers or higher aggregates present). The determined neat film radiative lifetime, τrad, is found to 

be slighter shorter than the calculated monomeric radiative lifetime, τrad,SB, indicating some 

partial delocalisation of the excited-state wavefunction over adjacent molecules [Hol01]. The 
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average wavefunction delocalisation factor is radSBraddelm ττ= /,  ≈ 1.26. This indicates that in the 

neat film, in about one quarter of cases the emitting chromophore consists of two adjacent 

molecules (wavefunction of emitting state extends over two monomeric units).  

4.1.2 Saturable absorption behaviour 

The experimental energy transmission, TE, of second harmonic picosecond ruby laser pulses 

(duration ΔtP = 35 ps, wavelength λP = 347.15 nm) through a 1 mm cell filled with 2CzV-MEH-B 

in THF as a function of the input peak pulse intensity, I0P, is shown by the circles in Fig. 4.6. The 

transmission rises from the small-signal transmission of T0 = 0.073 at low excitation intensity to 

TE ≈ 0.3 at excitation intensity I0P = 2×1010 W cm-2. The applied energy level system for the 

saturable absorption simulations is shown in Fig. 2.7 in chapter 2. The pump laser excites the dye 

molecules from the S0 ground-state 1 to a Franck-Condon level 2’ in the S1 band. From there the 

molecules relax to a thermalized level 2 with the Franck-Condon relaxation time constant, τFC 

(τFC = 0.5 ps is used in the simulations [Pen76]). From the S1 band excited-state absorption 

occurs to a higher lying singlet band Sn (level 3). The higher excited chromophores relax quickly 

back to the S1 band with a time constant, τex (τex = 60 fs is used in the simulations [Gra85]). The 

absorption anisotropy of the electric dipole interaction due to the orientation, θ, of the transition 

dipole moments relative to the polarization of the excitation pulses, and the reorientation of the 

transition dipole moments (time constants τor) are included in the analysis [Pen78]. 

The differential equation system for the determination of the intensity dependent pump pulse 

transmission [Hol00b] is: 
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where ,31   ),,,,( −=′′ itzrNi θ  are the level population number densities. The moving frame 

transformation 0/ cnztt −=′ and zz =′  is used, where t is the time, z is the propagation 

coordinate, n is the refractive index, and c0 is the velocity of light in vacuum. θ is the angle 

between the molecular transition dipole moment and the polarization direction of the pump laser  

[Feo64]. iN  is the orientation averaged population of level I. thN ,2′ is the thermal population of 

level 2′. 2,202,2
~

′′ = νν hch  is the energy difference between level 2 and 2′. Bk is the Boltzmann 

constant, and ϑ  is the temperature. 

The initial conditions are ,),,,( 01 ACNNztrN ==′−∞=′ θ  

0),,,(),,,( 32 =′−∞=′=′−∞=′ θθ ztrNztrN  and )/exp()/exp()0,,( 2222
0 PPPP ttrrIztrI ′−−==′′ . 
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N0 is the total dye number density, C is the dye concentration, and NA is the Avogadro constant. r 

is the radial coordinate; rP and tP are the 1/e-intensity pump beam radius and the pump pulse 

duration, respectively. 

The pump pulse energy transmission is  

∫ ∫
∫ ∫
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where l is the sample length. 

The solid curves in Fig. 4.6 are numerical fit simulations to the transmission measurements. 

The excited-state absorption cross-section is varied. The best fit to the experimental data is 

obtained for σex,P = 4×10-17 cm2. The ground-state absorption cross-section is σa,P = 9.4×10-17 

cm2. 

 

Fig. 4.6: Saturable absorption behaviour of 2CzV-MEH-B in THF. Circles are measured. Curves 
are calculated using excited-sate absorption cross-sections σex = 3 × 10-17 cm2 (1), 4 × 10-17 cm2 
(2), and 5 × 10-17 cm2 (3). 
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Table 4.1: Optical and spectroscopic parameters of 2CzV-MEH-B (light emitting oligomer 
ADS084BE) 
 

Parameter 2CzV-MEH-B in THF 2CzV-MEH-B neat film Comments 

λa,max (nm) 410 414 Fig. 4.3 

λem,max (nm) 492 516 Fig. 4.3 

λF,max (nm) 459 480 Fig. 4.4 

nA 1.4178 [Hel62] 1.68 for film: Fig. 4.2b 

nF 1.4105 [Hel62] 1.93 for film: Fig. 4.2b 

φF 0.86 0.062 Fig. 4.4 

PF 0.12 0.16 Fig. 4.4 

τF,av (ns) 1.5 0.06 Fig. 4.5 

τrad (ns) 1.74 0.97 Eq. 4.5 

τrad,SB (ns) 1.74 1.22 Eq. 4.2  

τor (ps) 375 26 Eq. 4.4 

Abbreviations: λa,max: wavelength of peak absorption of first absorption band. λem,max: wavelength 

of peak stimulated emission cross-section. λF,max: wavelength of fluorescence maximum. nF: 

average refractive index in fluorescence region. φF: fluorescence quantum yield. PF: degree of 

fluorescence polarisation. τF: fluorescence lifetime. τrad: radiative lifetime. τor: transition dipole 

moment reorientation time. 
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4.1.3 Laser performance 

The transverse pumped lasing of 2CzV-MEH-B/THF in a 1 cm × 1 mm dye-laser cell, the 

wave-guided travelling-wave lasing (amplification of spontaneous emission) of neat thin films of 

2CzV-MEH-B on microscope carrier plates, and the distributed-feedback laser action of neat thin 

films of 2CzV-MEH-B on corrugated Bragg gratings etched into a fused silica plate are studied. 

4.1.3.1 Transverse pumped low-Q laser  
 

 

Fig. 4.7: Spectral shapes of (a) low-Q laser emission, SLQL(λ)/SLQL,max of 2CzV-MEH-B in THF 
(concentration 4.46×10-4 mol dm-3, excitation energy density w0P = 7.66×10-4 J cm-2). 
(b) Travelling-wave laser emission, STWL(λ)/STWL,max, of 2CzV-MEH-B neat film (thickness 90 
nm, w0P = 4.0×10-4 J cm-2). For comparison the normalized fluorescence quantum distributions, 
EF(λ)/EF,max, are also displayed. 
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The dye 2CzV-MEH-B in THF with concentration 4.46 × 10-4 molar solution (dye number 

density =0N  2.69×1017 cm-3) was studied in a dye-laser cell of ls = 1 cm length and d = 1 mm 

length and was transverse pumped with line-focused picosecond second-harmonic pulses of the 

ruby laser system (pump beam cross-section 14.5 mm × 0.245 mm). The dye cell itself formed 

the optical laser resonator (low-Q resonator): the end surfaces of the cell acted as mirrors 

(reflectance 22 )1/()1( +−= nnR  = 0.03527, n = 1.4624 is refractive index of cell glass at 500 nm).  

In Fig. 4.7a the output spectrum of the low-Q laser, SLQL(λ), is shown. It belongs to an 

excitation pulse energy density of w0P = 7.66 × 10−4 J cm-2 The emission maximum is at λLQL,max 

= 501 nm. It coincides with the wavelength position of peak stimulated emission cross-section 

which occurs at 492 nm (see Fig. 4.3). The laser line-width is ΔλLQL ≈ 11.5 nm (FWHM) at the 

applied excitation pulse energy.  

The dependences of the laser output energy, WLQL, of the laser wavelength peak position, 

λLQL,max, and of the spectral halfwidth (FWHM), ΔλLQL, on the peak input pump laser energy 

density, w0P, are  displayed in Fig. 4.8a, b, and c, respectively. In Fig. 4.8a, above a certain 

threshold pump pulse energy density, w0P,th ≈ 0.6 mJ cm-2, the emission begins to rise beyond the 

spontaneous emission and amplified spontaneous emission level due to low-Q laser oscillation 

action. In Fig. 4.8b it is seen, that the wavelength position of light emission below laser oscillator 

threshold is at about 490 nm, and above laser threshold is at about 500 nm. The peak position of 

the stimulated emission cross-section is at about 492 nm. The red-shift of peak laser emission is 

caused by the S1-state excited-state absorption cross-section spectral distribution (peak of 

effective stimulated emission cross-section, )()()(, λσλσλσ exemeffem −= , occur at ≈ 500 nm). In 

Fig. 4.8c it is seen that the spectral halfwidth, ΔλLQL, of the light emission shrinks down from 
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about 55 nm before laser action ( thPP ww ,00 < ) to about 12 nm at laser threshold and rises slightly 

with rising excess pump pulse energy density due to gain saturation (excited state population 

depletion) combined with inhomogeneous broadening [Hol04a].  

 

Fig. 4.8: Low-Q laser oscillator performance of 2CzV-MEH-B/THF in a dye-laser cell. Dye 
concentration C0 = 4.46 × 10-4 mol dm-3.  
(a) Collected emission signal, WLQL, versus input pump pulse energy density, w0P. Full 
acceptance angle of fluorescence collection is Δθ = 0.83˚. Pump laser threshold energy density 
w0P,th ≈ 609 μJ cm-2. 
(b) Peak wavelength of low-Q laser oscillator, λLQL,max, versus input pump pulse energy density, 
w0P. 
(c) Spectral line-width (FWHM) of low-Q laser oscillator, ΔλLQL, versus input pump-pulse 
energy density, w0P. 
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Fig.4.9: Spectral lasing performance of low-Q laser oscillator. 
(a) Normalized spectral low-Q laser output, SLQL(λ)/w0P, of picosecond-laser transversely-
pumped 2CzV-MEH-B/THF in 10 mm × 1 mm dye-laser cell. Dye concentration C0 = 4.46×10-4 
mol dm-3. Cell wall thickness lw = 1.25 mm. 
(b) Spectral fluorescence light amplification, A(λ), for several pump laser energy densities, w0P.  

Low-Q laser emission spectra, SLQL(λ), normalized to the excitation pump pulse peak energy 

density, w0P, are shown in Fig. 4.9a for various pump pulse peak energy densities. Up to w0P ≈ 0.4 
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mJ cm-2 the normalized spectra are unchanged and are determined by the spontaneous emission, 

Ssp(λ) (normal fluorescence). At higher pump pulse energy densities the normalized spectra rise 

steeply in the wavelength range of maximum stimulated emission cross-section (see Fig. 4.3).  

In Fig. 4.9b the amplification of the spontaneous emission, A(λ), which is defined as  
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is displayed, where Nex,0 is the initial emission-state population number density. It is given by 
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Thereby w0P = I0P ΔtP is pump pulse peak energy density. N0 is the total molecule number density. 

wP,sat is the saturation energy density. It is given by [Pen88] 

  PaPsatP hw ,, / σν= ,          (4.16) 

σa,P is the ground-state absorption cross-section at the pump laser frequency νP. Eq. 4.15 is 

obtained by solving the rate equation for the ground-state population number density, 

0,00,1 exNNN −= , which reads 
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neglecting excited population recovery within the pump pulse duration (slow saturable absorption 

[Grö84]), and which has the solution  
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The second part of Eq. 4.14 is obtained by insertion of Eq. 4.15 in the first part of Eq. 4.14. For 

spPsp wS ,0/)(λ  the curve with w0P = 0.079 mJ cm-2 from Fig. 4.9a is used. Above the laser 

threshold pump pulse energy density, w0P > w0P,th ≈ 0.6 mJ cm-2 the amplification around the peak 

laser wavelength rises steeply. Over the whole displayed wavelength range it is A(λ) > 1 

indicating that σem(λ) > σex(λ).  

For vertical polarized excitation and vertical polarized emission detection, the spontaneous 

emission amplification, )(λA , of the short-length low-Q laser oscillator is approximately given 

by 
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With the resonator round-trip time 
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and the orientation factors for vertical polarized excitation and vertical polarized emission 

detection 
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and  
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r is the coordinate perpendicular to the direction of the pump laser propagation and perpendicular 

to the line-focus direction of the pump laser. z is the coordinate along the pump laser propagation. 

ls is the amplification length of the dye solution (inner dye cell length). lw is the wall thickness of 

the dye cell. ns and nw are the refractive indices of the dye solution and of the dye cell walls, 

respectively. c0 is the velocity of light in vacuum. d is the inner cell width. w0P is the peak pump 

laser energy density at the dye cell entrance. αp is the absorption coefficient of the dye solution at 

the pump laser wavelength λP = c0/νP. R is the reflectance of the dye cell. τor is the molecular 

reorientation time. σem(λ) and σex(λ) are the orientation averaged stimulated emission cross-

section and the orientation averaged excited-state absorption cross-section of the dye at λ. The 

orientation dependence of the stimulated emission cross-section is given by σem(λ)fem(t) [Pen76]. 

At time t = 0 the transition dipole moment 01 SS −μ
r  is parallel to the vertical polarisation of the 

excitation and the stimulated emission cross-section is 3σem(λ). For time t >> τor the stimulated 

emission cross-section is σem(λ). The orientation dependence of the excited-state absorption 

cross-section is given by σex(λ)fex(t). If the transition dipole moments of S1-S0 emission and 

excited-state absorption are parallel then it is 1)/exp(2)( +−= orex ttf τ . If the transition dipole 

moments of S1-S0 emission and excited-state absorption are perpendicular to one another then it 

is )/exp(1)( orex ttf τ−−= . Eq. 4.18 neglects emission level depopulation due to the laser action, and 

is therefore only valid for moderate amplification factors (emission state depopulation given by 

fluorescence lifetime τF). The first sum term of Eq. 4.18 takes care of the amplified spontaneous 

emission, AASE. The effective gain length for this amplified spontaneous emission is 



4. Results and discussion: dye 2CzV-MEH-B  
 

 
 

60  

approximated by ls/2. The second sum term of Eq. 4.18 describes the amplification of the fed-

back light (laser oscillator), ALQL.  

 

Fig. 4.10: Spectral light amplification, A(λ=492nm), versus input pump pulse peak energy 
density, w0P. The experimental results are shown by the line-connected circles. The dashed curves 
are calculated amplifications due to the amplified spontaneous emission, AASE (first term of Eq. 
4.18). The solid curves are calculated total amplifications, A, including amplified spontaneous 
emission (AASE) and low-Q laser oscillation (ALQL). The top part (a) considers parallel orientation 
of ground-state and excited-state transition dipole moments. The bottom part (b) considers 
perpendicular orientation of ground-state and excited-state transition dipole moments. 
Experimental parameters are used in the calculations (σem(492nm) = 2.53×10-16 cm2). The 
excited-state absorption cross-section is varied using (1) σex = 0, (2) σex = 1×10-16 cm2, (3) σex = 
1.5×10-16 cm2, (4) σex = 2×10-16 cm2 and (5) σex = 4×10-16 cm2 
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In Fig. 4.10a the dotted-line connected circles show the light amplification at 492 nm versus 

the input pump pulse energy density. The solid curves are calculated A(λ) curves using (Eq. 4.18) 

the known dye laser parameters and varying the excited-state absorption cross-section, σex(492 

nm). The excited-state absorption transition dipole moment is assumed to be parallel to the 

ground-state absorption transition dipole moment (Eq. 4.20b). The dashed curves are calculated 

AASE(λ) curves (First sum of Eq. 4.18) for the same parameters. The steep rise in amplification 

occurs at the laser oscillator threshold where the light amplification compensates the output 

losses (small reflectance R). The best fit of the calculation to the experimental data points is 

obtained for σex(492nm) = 1.2×10-16 cm2.  

In Fig. 4.10b the same experimental data are shown as in Fig. 4.10a. Only the A(λ) and 

AASE(λ) curves are calculated for the situation of the excited-state absorption transition dipole 

moment perpendicular to the ground-state absorption transition dipole moment (Eq. 4.20b). The 

experimental data cannot be fitted by the theoretical curves. For times t < τor the S1-Sn excited 

state transition does not couple to the induced emission since excited-state absorption cross-

section for perpendicular oriented transition is zero, leading to a higher calculated amplification 

than experimentally observed. This indicates that for the considered transitions the transition 

dipole moments are not perpendicular to one another.  

In Fig. 4.11 the extracted σem,eff(λ) = σem(λ) - σex(λ) and σex(λ) spectra together with the 

σem(λ) spectrum (from Fig. 4.3) are shown for the situation of parallel orientation of the excited-

state absorption and the ground-state absorption transition dipole moments.  
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Fig. 4.11: Cross-sections of 2CzV-MEH-B in THF in lasing spectral region extracted by fit of Eq. 
4.18 to the amplification A(λ, w0P = 0.609 mJ cm-2) of Fig. 4.9b. Solid curve: effective stimulated 
emission cross-section spectrum, σem,eff(λ). Dashed curve: stimulated emission cross-section 
spectrum, taken from Fig. 4.3. Dash-dotted curve: excited-state absorption cross-section 
spectrum, σex(λ) =  σem(λ) - σem,eff(λ). 

At laser oscillator threshold the light amplification )exp( ,0,,, sthexLeffem NV lσ=  compensates the 

reflection losses 1−= RL . The effective stimulated emission is given by σem,eff,L =  σem,L - σex,L, 

where σem,L is the stimulated emission cross-section at the peak laser wavelength, and σex,L is the 

excited-state absorption cross-section at the peak laser wavelength. There occurs no laser action if 

σex,L ≥ σem,L. The laser oscillator threshold is defined by  
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where w0P,th is the pump laser threshold energy density. Rewriting Eq. 4.21 to the effective 

stimulated emission cross-section gives 
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Insertion of experimental values into Eq. 4.22 (R = 0.03527, λP = 347.15 nm, w0P,th = 6×10-4 J cm-

2, wP,sat = 6.09×10-3 J cm-2, N0 = 2.69×1017 cm-3, σa,P = 9.4×10-17 cm2, ls = 1 cm) gives σem,eff,L = 

1.33×10-16 cm2. This value is in good agreement with the result of Fig. 4.11. The laser threshold 

is the lower the higher the dye cell reflectance R, the higher the dye number density N0, the longer 

the excited dye cell length, the higher the dye absorption cross-section, σa,P, at the pump laser 

wavelength, the higher the stimulated emission cross-section σem,L, and the lower the excited-

state absorption cross-section σex,L. 

4.1.3.2 Neat thin film wave-guided travelling-wave laser  

The wave-guided travelling-wave laser action (wave-guided amplification of spontaneous 

emission) was studied using thin films of 2CzV-MEH-B spin-coated from a THF solution 

(concentration 15 mg/ml, speed 1600 rpm) onto microscope carrier plates (optical glass similar to 

Schott type BK7) and cut in the film region for optimum edge emission. A transverse pumping 

scheme was used. The pump pulse cross-sectional area (FWHM) at the sample was A = 14.5 × 

0.245 mm2. 

In Fig. 4.7b above the normalized edge-emitted travelling-wave laser spectral shape (TWL), 

)(/)()( max,TWLTWLTWLTWL SSS λλλ =′  is shown (solid line) for a pump pulse energy density of w0P = 

4×10-4 J cm-2. The wavelength of peak TWL emission, λTWL, max, is at 519 nm for the film. For 

comparison the shape of the fluorescence quantum distribution is included in the figure.  
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The dependences of the collected laser output energy, WTWL, of the laser wavelength peak 

position, λTWL,max, and of the spectral halfwidth (FWHM), ΔλTWL, on the peak input pump laser 

energy density, w0P, are  displayed in Figs. 4.12a, b, and c, respectively.  

 

Fig. 4.12: Wave-guided travelling-wave laser performance of a 2CzV-MEH-B neat film on an 
optical glass substrate. Film thickness, df = 90 nm; pumped film area, 5 mm × 0.245 mm.  
(a) Collected emission signal, WTWL, versus input pump pulse energy density, w0P. Full 
acceptance angle of fluorescence collection is Δθ = 0.3 rad. Curve is calculated by use of Eq. 4.23 
with a pump laser threshold energy density w0P,th = 35 μJ cm-2, a pump pulse energy density of 
gain saturation w0P,g,sat = 6 mJ cm-2, and a maximum output energy WTWL,max = 7.5 nJ. 
(b) Peak wavelength of travelling-wave laser, λTWL,max, versus input pump pulse energy density, 
w0P. 
(c) Spectral linewidth (FWHM) of travelling-wave laser, ΔλTWL, versus input pump pulse energy 
density, w0P. 
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In Fig. 4.12a, above a threshold pump pulse energy density, w0P,th ≈ 4×10-5 J cm-2, the 

emission begins to rise beyond the spontaneous emission level due to stimulated emission 

(amplification of spontaneous emission). At high pump pulse energy density the output signal 

saturates to a maximum value, WTWL,max ≈ 7.5 nJ. The experimental behaviour is fitted by  
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where w0P,g,sat ≈ 6×10-3 J cm-2 is the pump pulse energy density of gain saturation. The saturation 

is thought to be caused by the exciton-exciton annihilation processes at high densities of excited 

molecules [Kep96, Hol02b]. 

In Fig. 4.12b, above laser threshold the wavelength position of peak light emission, λTWL,max, 

blue-shifts from about 530 nm at low excitation energy density towards 519 nm towards the 

position of peak stimulated emission cross-section at high excitation energy density (reduction of 

ground-state re-absorption).  

In Fig. 4.12c it is seen that the spectral half-width, ΔλTWL, of the light emission shrinks 

around the laser threshold from a spontaneous emission line-width of ΔλF ≈ 85 nm to ΔλTWL ≈ 10 

nm, and then remains nearly constant. 

The initial laser slope efficiency, ηsl,ini, at threshold concerning the collected TWL light is 

obtained from Eq. 4.22 by [Hol04a] 
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where Aexp is the exposed film area. A value of ηsl,ini ≈ 0.002 is estimated. It should be noted that 

the true initial laser slope efficiency is larger since travelling-wave laser emission occurs in 
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forward and backward direction along the pump line focus and the emission angle at the film 

edge is larger than the acceptance angle of the collecting lens (Δθ = 0.3 rad). 

 

In Fig 4.13 the inverse ratio of the pump laser threshold energy density, wP,th,min /wP,th, versus 

the excited film length, lap, is presented in order to determine approximately the effective length 

of light amplification, lTWL. The constant dashed line approximates the behaviour for pumped 

lengths longer than the effective gain length, and the dash-dotted line approximates the situation 

for pump lengths shorter than the effective gain length. From the crossing point of the lines one 

obtains lTWL ≈ 1.15 mm. If the gain length is limited by ground-state tail absorption, α(λTWL,max), 

at the peak laser wavelength, λTWL,max ≈ 530 nm, then it is α(530 nm) ≈ 1−
TWLl  ≈ 8.7 cm-1 and the 

absorption cross-section is σa(530 nm) = α(530nm)/Nf ≈ 1×10-20 cm2. 

 

Fig. 4.13: Normalized inverse 
laser threshold pump pulse 
energy density, thPthP ww ,min,, /  , 

versus exposed film length, lap. 
The kink of the line gives the 
effective gain length, lTWL. Film 
thickness, df = 90 nm. 
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4.1.3.3 Distributed-feedback laser  

Distributed-feedback laser studies have been carried out for 2CzV-MEH-B neat thin films on 

corrugated gratings etched into a fused silica plate. Grating spacing of Λ = 320 nm, 300 nm, and 

280 nm were used. The grating size was 1.5 mm × 0.5 mm (groove length 0.5 mm). The exposed 

grating area was 0.9 × 0.13 mm2. The surface-emitted radiation was collected and detected. The 

laser wavelength, λDFB, is proportional to the grating spacing, and it increases with film thickness. 

TE modes (electrical field vector in film plane) and TM modes (electrical field vector 

perpendicular to film plane) are excited. The TE mode occurs at longer wavelength than the TM 

mode. A detailed description is given in [Hol02a]. 

Some lasing results are shown in Fig. 4.14 and some physical and spectroscopic parameters of 

the DFB lasers are collected in Table 4.2. In Fig. 4.14 the DFB laser spectra (solid curves) are 

compared with travelling-wave laser spectra (the same dash-dotted curves in each sub-figure), 

and with the shapes of the fluorescence quantum distributions. The spin-coated film on the 

substrate was 320 nm thick (solution 80 mg 2CzV-MEH-B per ml THF, spinning speed 2400 

rpm). The DFB laser spectra shown were measured with no polarizer in the detection path. In Fig. 

4.14a (grating spacing Λ = 320 nm) lasing occurred at λDFB = 513.5 nm (TM mode), the spectral 

width of ΔλDFB ≈ 2 nm. The applied pump pulse energy was WP ≈ 190 nJ, and the collected DFB 

laser energy was WDFB ≈ 0.6 nJ. In Fig. 4.14b (Λ = 300 nm) lasing occurred at λDFB = 513.5 nm 

with a spectral line-width of ΔλDFB ≈ 2.6 nm (TE mode) and at λDFB = 524.9 nm with ΔλDFB ≈ 1.2 

nm (TM mode). The pump pulse energy was WP ≈ 260 nJ, and the collected DFB laser energy 

was WDFB ≈ 3 nJ.  In Fig. 4.14c (Λ = 280 nm) lasing occurred at λDFB = 506.2 nm with ΔλDFB 

≈0.65 nm (TE mode). The pump pulse energy was WP ≈ 220 nJ, and the collected DFB laser 

energy was WDFB ≈ 1.2 nJ. 
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Fig. 4.14: Spectra of surface-emitting thin-film 2CzV-MEH-B distributed feed-back lasers (solid 
curves pumped area 0.9 mm × 0.13 mm, acceptance angle Δθ = 36°). For comparison edge 
emitted wave-guided thin-film travelling-wave laser emission spectrum (from Fig. 4.7b) and 
fluorescence quantum distribution (from Fig. 4.4) are included.  
(a) DFB laser A. Grating spacing Λ = 320 nm. Film thickness df = 320nm. Applied pump pulse 
energy density w0P = 1.6×10-4 J cm-2. 
(b) DFB laser B. Λ = 300 nm. df = 320nm. w0P = 2.2×10-4 J cm-2. 
(c) DFB laser C. Λ = 280 nm. df = 320nm. w0P = 1.9×10-4 J cm-2. 
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Depending on the grating spacing and the film thickness the DFB laser wavelength could be 

tuned across the main part of the fluorescence spectrum. The DFB laser action suppressed the 

travelling-wave laser action. 

A theoretical description of the DFB lasing allows the determinations of the polarisation 

mode (TE or TM, can also be determined by polarizer application), the number of the guided 

modes (κ = 0, 1 ,2, … e.g. TE0, TE1, TM0, …), the refractive index of the film (nf), and the angle 

of propagation of the wavevector of the mode in the film (θκ). These determinations are carried 

out in the following. 

The DFB laser wavelength is given by [Car98, Mor97] 

    )sin(22
κθ

Λ
=

Λ
=λ fDFB n

pp
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 ,         (4.25) 

where )sin( kfnN θ=  is the effective refractive index, nf is the refractive index of the film, and θκ 

is the wavevector angle of incidence in the film. p is the grating order (here used p = 2). In the 

case of using the grating in second-order (p = 2) with surface emission the diffraction order is M 

= 1 (angle of diffraction θd = 0°) and the condition for constructive interference is given by 

[Hol02a] 

    DFBfnN λ=θΛ=Λ κ )sin( .          (4.26) 

At fixed grating spacing, Λ, and film refractive index, nf, the occurring laser wavelength, 

λDFB, is determined by the allowed propagation angles θκ which are determined by the resonance 

condition [Kog79] 
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where κ is the number of the guided mode (κ = 0,1,2,3,…), Λ+= /ctddeff  is the effective film 

thickness (d is film thickness, t is groove depth, c is groove width), φs is the phase change at the 

interface between the film and the substrate, and φc is the phase change at the interface between 

the film and the cover (air in our case). For TE modes these phase changes are (i = s or c) [Bir63]. 
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and for TM modes they are 
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To get a solution of Eq. 4.28 a minimum film thickness, dmin,TE for the TE0 mode (Eq. 4.1a) and 

dmin,TM for the TM0 mode (Eq. 4.1b), is required.  

For neat film of 2CzV-MEH-B the application of Eq. 4.26 to the measured λDFB values of Fig. 

4.14 determine the experimental effective refractive indices, )sin( κθ= fnN . At fixed N the 

application of Eq. 4.27 to the experimental situation (fixed λDFB, deff) determines the angle of 

propagation, θκ, the film refractive index, nf, the polarisation mode (TE or TM), and the number κ 

of the guided mode (for other parameters no solution at the fixed DFB laser emission wavelength, 

λDFB). The obtained parameters for the DFB laser spectra of Fig. 4.14 are listed in Table 4.2. The 

obtained film refractive indices, nf,TE and nf,TM, from the DFB laser analysis are included in Fig. 

4.2. The refractive indices obtained for the TE polarization and the TM polarization are 

approximately the same indicating that the spin-coated film on the grating is isotropic (no 

refractive index anisotropy due to special molecular alignment). The refractive indices obtained 

from the grating analysis agree reasonably well with the film refractive index data obtained from 

reflectance and transmittance measurement and Fresnel equation analysis. 
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Table 4.2: Physical and spectroscopic parameters of 2CzV-MEH-B distributed feedback 
lasers. 
 

Parameter DFB laser A DFB laser B  DFB laser C 

Λ (nm) 320 300  280 

t (nm) 50 50  50 

c (nm) 160 150  140 

df (nm) 320 320  320 

deff (nm) 345 345  345 

M 1 1 1 1 

λDFB (nm) 513.5 513.5 524.9 506.2 

N 1.605 1.712 1.750 1.808 

 TM TE TM TE 

κ 1 1 0 1 

θκ (°) 50.35 56.96 68.76 58.05 

nf 2.08 2.05 1.88 2.13 

dmin (nm) 69.47 36.15 89.27 31.23 

θcrit (°) 44.58 45.41 50.95 43.27 

l||, exc (mm) 0.9 0.9 0.9 0.9 

l⊥,exc (mm) 0.13 0.13 0.13 0.13 

 
Abbreviations: Λ: groove spacing. t: groove depth. c: groove width. df: film thickness. deff: 

effective film thickness in grating region. M: diffraction order. λDFB: distributed-feedback laser 

wavelength. N: effective refractive index. κ: guided mode number. θκ: propagation angle. nf: 

refractive index of film. dmin: minimal film thickness for wave-guiding. θcrit: critical angle for 

total internal reflection ( )/arcsin( fscrit nn=θ  with ns refractive index of substrate). l||, exc: length 

of exposed grating area. l⊥,exc: width of exposed grating area. 
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4.1.4 Conclusions 

For the oligomeric dicarbazovinylene-MEH-benzene emitter high fluorescence efficiency of φ 

≈ 0.86 was found in liquid solution. In the solid state the fluorescence efficiency reduced to φ ≈ 

0.062 due to fluorescence self quenching probably by charge transfer and subsequent non-

radiative charge recombination. The excited-state absorption cross-section spectrum in the lasing 

wavelength region was found to be (a factor of 3.2 at 492 nm) smaller than the stimulated 

emission cross-section allowing laser oscillation. In liquid solution a transverse pumped low-Q 

resonator dye cell laser was realized. Wave-guided travelling-wave laser edge emission was 

achieved for a thin film spin-coated on a glass substrate. Narrow spectral line-width surface 

emitting laser action with low laser threshold was obtained by transverse pumping of a spin-

coated film on corrugated gratings. 

 The performed laser studies show that the application of the blue and green emitting di-

carbazovinylene-MEH-benzene dye ADS084BE in organic light emitting devices may be 

extended to integrated-optics laser devices. 
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4.2 Triphenylamine dimer (TPB) and napthalene substituted 
triphenylamine dimer (β−ΝPB) 

 
The widely used electroluminescent 3-methyl-TPD [Hol00] and its structure isomer 4-methyl-

TPD [Phi03] turned out to work as efficient blue-wavelength thin-film lasers. Laser action was 

achieved for triphenylamine dimer (TPD) based conjugated and non-conjugated polymers 

[Hol02]. Here the hole transport materials N,N,N’,N’-tetraphenylbenzidine (abbreviated TPB, 

also called triphenylamine dimer TAD, TPD without methyl group) [Kam04, Sar06] and N,N’-

bis(2-naphtalenyl)-N,N’-bis(phenylbenzidine) (abbreviated β-NPB, also called naphtyl-

diphenylamine dimer β-NPD) [Gro99, Sat00] are investigated.  

The dyes are studied as neat thin films and dissolved in the organic liquid tetrahydrofuran 

(THF). Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence 

quantum distributions, fluorescence quantum yields, degrees of fluorescence polarisation, and 

fluorescence lifetimes are determined. In THF solution the excited-state absorption cross-sections 

of the dyes at 347.15 nm (wavelength of second harmonic of mode-locked ruby laser) are 

determined by saturable absorption measurements. The dyes are investigated for neat thin-film 

and organic-solution laser action. Low-Q laser oscillation is studied by transverse pumping the 

solutions in a rectangular cell. The solid-state dye lasing behaviour is investigated by transverse 

pumping a neat thin dye film on a glass plate and observing the amplification of spontaneous 

emission (wave-guided travelling-wave lasing).  

4.2.1 Optical and spectroscopic characterization 
 

The transmittance spectra, T(λ), and the reflectance spectra, R(λ), of a TPB and a β-NPB thin 

film on fused silica substrates are shown in Fig. 4.15. The transmittance and reflectance of blank 

substrate are also shown (dash-dotted curves). The films were prepared by spin-coating of THF  



4. Results and discussion: TPB and β-NPB dyes 
 

 
 

74  

 

 
 

Fig. 4.15: (a) Transmittance, T(λ), 
and (b) reflectance, R(λ), spectra of 
a TPB film (solid curves, thickness 
df = 69.5 nm) and a β-NPB film 
(dashed curves, df = 57 nm) on 
fused silica substrates. Films were 
prepared by spin-coating from THF 
solution. Dotted lines belong to 
blank fused silica. 
 

Fig. 4.16: (a) Absorption 
coefficient spectra, αf(λ), and (b) 
refractive index, n(λ), spectra of 
TPB film, β-NPB film, and fused 
silica substrate. 
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solutions. For TPB film preparation a dye concentration of 15 mg/ml was used and the spin- 

coater angular speed was 900 rpm. For β-NPB film preparation a dye concentration of 10 mg/ml 

was used and the spin-coater angular speed was 1200 rpm. The TPB film and the β-NPB have a 

transmission minimum at about 355 nm. The reflectance of both films has a minimum at about 

340 nm and a maximum at about 405 nm. 

The absorption coefficient spectra and the refractive index spectra together with the film 

thicknesses are extracted by a Fresnel equation approach [Pen98, Hol99] and are shown in Fig. 

4.16. The film thickness turned out to be df = 69.5 nm for TPB and df = 57 nm. The absorption 

maximum occurs at 354 nm for TPB and at 355 nm for β-NPB. At these wavelengths the light 

penetration depth is 1−= fpd α  = 57 nm for TPB and 63 nm for β-NPB. The refractive index 

spectra show the expected dispersion shapes. In the displayed wavelength range the film 

refractive indices are larger than the fused silica or optical glass refractive indices. Therefore 

optical wave-guiding takes place in films above a critical film thickness [Kog79]. By Eqs. 4.1a 

and 4.1b at λ = 420 nm, the critical film thicknesses are dmin,TE(TPB) = 48.1 nm, dmin,TM(TPB) = 

91.2 nm, dmin,TE(β-NPB) = 37.6 nm, and dmin,TM(β-NPB) = 79 nm.  

The absorption cross-section spectra, σa(λ), of TPB and β-NPB in THF and as neat film are 

displayed in Fig. 4.17 (the neat film curves are calculated assuming the same S0-S1 absorption 

cross-section integral for the solution and the film, see above). The absorption cross-section 

spectra of the film and the solution have similar shape, only the solution absorption spectra are 

approximately 6 nm blue-shifted. The TPB and β-NPB molecule number densities in the film are 

estimated to be faffN ,/σα=  ≈ 1.4×1021 cm-3 and 1.0×1021 cm-3, respectively (calculated at λ = 
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Fig. 4.17: Absorption cross-section, σa(λ), and stimulated emission cross-section, σem(λ), spectra 
of (a) TPB neat thin film (solid curves) and of tetrahydrofuran (THF) solution (dashed curves, 
concentration C = 2.1×10-4 mol dm-3), and (b) β-NPB neat thin film (solid curve) and of THF 
solution (dashed curves, C = 7.2×10-5 mol dm-3). 

353 nm). The mass densities, ρ, of the neat thin films are determined to be ( ) mAf MNN /=ρ  

≈1.136 g cm-3 for TPB and ≈ 0. 978 g cm-3 for β-NPB, where NA is the Avogadro constant and 

Mm is the molar mass. 
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Fig. 4.18: (a,c) Fluorescence quantum distributions, EF(λ), and (b,d) degrees of fluorescence 
polarization, PF(λ), of TPB (a,b) and β-NPB (c,d). Excitation wavelengths λexc = 343 nm for TPB 
ands λexc = 365 nm for β-NPB. Solid curves belong to neat films (df(TPB) = 69.5 nm, df(β-NPB) 
= 97 nm), and dashed curves belong to solutions in THF (concentrations C(TPB) = 2.95×10-5 mol 
dm-3, C(β-NPB) = 2.13×10-5 mol dm-3). 
 

The fluorescence quantum distributions, EF (λ)¸ of TPB and β-NPB in THF and as neat films 

are shown in Fig. 4.18a and Fig. 4.18c, respectively. The fluorescence quantum yields, φF, (Eq. 

3.5) of the solutions are φF(TPB) = 0.73±0.01, φF(β-NPB) = 0.28±0.01, and of the films are 

φF(TPB) = 0.36±0.01, φF(β-NPB) = 0.215±0.01. The results are collected in Table 4.3. The 

fluorescence in the solutions is higher than in the neat films (some self-quenching occurs).  
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The degrees of fluorescence polarisation, PF, of TPB and β-NPB are shown Fig. 4.18b and 

Fig. 4.18d, respectively, for both THF solutions and neat films. The average values are collected 

in Table 4.3. For TPB the values are PF(solution) = 0.065 and PF(neat film) = 0.105. For β-NPB 

the values are PF(solution) ≈ PF(neat film) ≈ 0.02. In the solutions the obtained degree of 

fluorescence polarization is determined by molecular reorientation, while in the neat films it is 

determined by site-to-site excitation transfer [Lak83]. 

The degree of fluorescence polarisation, PF, is related to the reorientation time, τor, of the 

transition dipole moments by Eq. 4.4. For TPB in THF it is PF ≈ 0.065 and τF ≈ 850 ps (see 

below) giving τor ≈ 106 ps. For TPB neat thin film it is PF ≈ 0.105 and τF ≈ 300 ps (see below) 

giving τor ≈ 67 ps. For β-NPB in THF and as neat film it is PF ≈ 0.02 while τF(THF) ≈ 3.76 ns and 

τF(neat film) ≈ 2.94 ns (see below) giving τor(THF) ≈ 130 ps and τor(neat film) ≈ 102 ps. The 

reorientation time in the solvent THF is determined by the viscosity and temperature dependent 

molecular reorientation ( )/( ϑητ Bhor kV= [Fle86] where η the dynamic viscosity, Vh is the 

hydrodynamic molecular volume, kB is the Boltzmann constant, and ϑ is the temperature). The 

short reorientation time in the neat films is caused by fast excitation transfer in the random 

oriented molecules in the neat films (dipolar Förster-type energy transfer [För51, Val02] and 

Dexter-type exchange transfer [För51, Dex53]). 

 The temporal fluorescence signals of a 7.8×10-5 molar solution of TPB in THF (line-

connected open circles) and of a TPB neat film (thickness df = 110 nm, line-connected dots) are 

shown in Fig. 4.19a. The dotted curve shows the detection system response function g(t) 

(attenuated pump pulses directed to micro-channel-plate photomultiplier). The lines are 

convolutions of the experimental response function with single-exponential decays according to,  
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Fig. 4.19: Temporal fluorescence traces of TPB (a) and β−NPB (b) in THF (thick dashed curves) 
and as neat films (thick solid curves). Dotted curves show response functions. The thin lines in 
(a) are calculated convolution curves (Eq. 4.29) and the thin dash-dotted lines in (b) are non-
linear regression fits. 
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The experimental fluorescence curves are compared with the theoretical convoluted single-

exponential decay curves in order to estimate the fluorescence lifetimes. For TPB in THF a value 

of τF ≈ 850 ps is determined. For the TPB neat film a value of τF ≈ 300 ps is obtained. 

The temporal fluorescence signals of a 2.4×10-5 molar solution of β-NPB in THF (dashed 

curve) and of a β-NPB neat film (thickness df = 66 nm, solid curve) are shown in Fig. 4.19b. The 

dotted curve gives the system response function. The fluorescence signal decays are fitted by 

single-exponential decay functions, i.e. )/exp()( 0, FFF tStS τ−= . The best fitting fluorescence 

lifetimes are τF(β-NPB in THF) = 3.76 ns, and τF(β-NPB neat film) = 2.94 ns. 

The radiative lifetime, τrad, of the emitting chromophores is given by the ratio of the 

fluorescence lifetime, τF, to the fluorescence quantum yield, φF, and is given by Eq. 4.5. The 

experimental values are τrad(TPB in THF) ≈ 1.16 ns, τrad(TPB neat film) ≈ 0.83 ns, τrad(β-NPB in 

THF) ≈ 13.4 ns, and τrad(β-NPB neat film) ≈ 13.7 ns.  

The stimulated emission cross-section spectra, σem(λ), of the solutions and the neat films has 

been calculated from the Einstein relation [Pet71, Des90] using Eq. 4.3. The stimulated emission 

cross-section spectra are included in Fig. 4.17.  

 The maximum of the stimulated emission cross-section spectrum of the TPB neat film is about 

5 nm red-shifted compared to TPB dissolved in THF. The vibronic structure is more pronounced 

in the neat film than in the solution. The peak stimulated emission cross-sections are larger than 

the peak S0-S1 absorption cross-sections because of smaller spectral broadening of the emission 

spectra compared to the absorption spectra ( )(~ filmneatemνΔ  ≈ 2500 cm-1, )filmneat(~
aνΔ  ≈ 

4600 cm-1, inhomogeneous spectral broadening of absorption spectra). 
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 The maximum of the S1-S0 stimulated emission cross-section of β-NPB is roughly a factor of 

ten smaller than the maximum cross-section of the first absorption band. This indicates that first 

exited-state S1 is hidden in the tail of the broad first absorption band (note that 

∫≈∫ −− 0110 )()( SS emSS a dd ννσννσ  according to the relation between the Einstein coefficients of 

absorption and emission [Des90, Pet71]). The neat film emission shoulder around 550 nm is 

likely due to photo-induced excited-state dimer (excimer, dimeric exciton) formation [Val02, 

And04, Ban06].  

4.2.2 Saturable absorption behaviour 

The experimental energy transmission, TE, of second harmonic picosecond ruby laser pulses 

(duration ΔtP = 35 ps, wavelength λP = 347.15 nm) through a 1 mm cell filled with either TPB or 

β-NPB in THF as a function of the input peak pulse intensity, I0P, is shown by circles in Fig. 

4.20a and 4.20b respectively. The transmission rises from the small-signal transmission of T0 ≈ 

0.1 at low excitation intensity to TE(TPB) ≈ 0.52 and TE(β-NPB) ≈ 0.4 at excitation intensity I0P = 

2×1010 W cm-2. The solid curves in Fig. 4.20a and 4.20b are numerical simulations to the 

transmission measurements obtained by using the Eqs. 4.6- 4.13 described in section 4.1.2. The 

best fit to the experimental data is obtained for σex,P(TPB) = 4×10-17 cm2 and σex,P(β-NPB) = 

7×10-17 cm2.  
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Fig. 4.20: Saturable absorption behaviour of (a) TPB and (b) β-NPB in THF. Circles are 
measured. Curves are calculated using excited-state absorption cross-sections σex,P listed in the 
figures. Pump laser pulses: second harmonic of picosecond ruby laser (wavelength 347.15 nm, 
duration 35 ps FWHM).  
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Table 4.3: Optical and spectroscopic parameters of TPB and β-NPB  
 

Parameter TPB in THF TPB neat 

film 

β-NPB in THF β-NPB 

neat film 

Comments 

λa,max (nm) 347.5 354 350 355 Fig. 4.17 

λem,max (nm) 394 400 426 419 Fig. 4.17 

λF,max (nm) 394 398.5 420 417 Fig. 4.18 

nF 1.4138 [Hel62] 1.90 1.4116 [Hel62] 1.93 for film: Fig. 4.16b 

φF 0.73±0.01 0.36±0.01 0.28±0.01 0.215±0.01 Fig. 4.18 

PF 0.065±0.01 0.105±0.01 0.02±0.005 0.02±0.005 Fig. 4.18 

τF (ns) 0.85±0.05 0.3±0.05 3.76±0.1 2.94±0.1 Fig. 4.19 

τrad (ns) 1.16 0.83 13.4 13.7 Eq. 4.5 

τor (ps) 106±15 66.5±7 130.5±30 102±25 Eq. 4.4 

Abbreviations: λa,max: wavelength of peak absorption cross-section of first absorption band. 

λem,max: wavelength of peak stimulated emission cross-section. λF,max: wavelength of fluorescence 

maximum. nF: average refractive index in fluorescence region. φF: fluorescence quantum yield. 

PF: degree of fluorescence polarisation. τF: fluorescence lifetime. τrad: radiative lifetime. τor: 

transition dipole moment reorientation time. 
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4.2.3 Laser performance 

The transverse pumped lasing in a 1 cm × 1 mm dye-laser cell and the wave-guided 

travelling-wave lasing (amplification of spontaneous emission) of neat thin films on microscope 

carrier plates are studied. Laser action is achieved for TPB but no laser action is observed for β-

NPB. 

4.2.3.1 Transverse pumped low-Q laser 

As described above in section 4.1.3.1 in the low-Q lasing studies the dye solution in a 1 cm 

×1 mm fused silica cell was transversally pumped with line-focused picosecond second-harmonic 

pulses of a ruby laser system (pump beam cross-section 14.5 mm × 0.245 mm). The dye cell itself 

forms the optical laser resonator (low-Q resonator): the end surfaces of the cell acts as mirrors 

(reflectance 22 )1/()1( +−= nnR  = 0.0361, n = 1.4691 is refractive index of cell glass at 410 nm).  

In Fig. 4.21a a normalized output spectrum of the low-Q laser, SLQL(λ)/SLQL,max, is shown. 

The active medium is 3.2×10-4 molar TPB in THF. The applied excitation pulse energy density 

for the laser spectrum in Fig. 4.21b was 34.2 mJ cm-2. The emission maximum is at λLQL,max = 

411 nm. It is red-shifted compared to the wavelength position of peak stimulated emission cross-

section which occurs at 394 nm. The laser line-width is ΔλLQL ≈ 10 nm (FWHM).  

The dependences of the laser output energy, WLQL, of the laser wavelength peak position, 

λLQL,max, and of the spectral halfwidth (FWHM), ΔλLQL, on the peak input pump laser energy 

density, w0P, are displayed in Fig. 4.22a, b, and c, respectively. In Fig. 4.22a, above a certain 

threshold pump pulse energy density of laser action, w0P,th ≈ 3 mJ cm-2, the emission rises steeply 

beyond the spontaneous emission and amplified spontaneous emission level due to low-Q laser 

oscillation action. In Fig. 4.22b it is seen, that the wavelength position of light emission below 

laser oscillator threshold is at about 425 nm, and above laser threshold it is at about 410 nm. The 



4. Results and discussion: TPB and β-NPB dyes 
 

 
 

85  

  

Fig. 4.21: Spectral shapes of (a): low-Q laser emission, SLQL/SLQL,max, of TPB in THF 
(concentration 3.2×10-4 mol dm-3, excitation energy density w0P = 34.2 mJ cm-2). 
(b): wave-guided travelling wave laser emission, STWL/STWL,max, of TPB neat film (thickness 262 
nm, w0P = 227 μJ cm-2). For comparison the normalized fluorescence quantum distributions, 
EF(λ)/EF,max, are also displayed. 
 
peak position of the stimulated emission cross-section is at about 394 nm. The wavelength 

position of the peak laser emission is thought to be caused by ground-state re-absorption. In Fig. 

4.22c it is seen that the spectral halfwidth, ΔλTWL, of the light emission shrinks down from about 

48 nm before laser action ( thPP ww ,00 < ) to about 15 nm above laser threshold.  
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Fig. 4.22: Low-Q laser oscillator performance of TPB/THF in a dye-laser cell (1 cm length, 1 mm 
thick) transverse pumped with line-focused (beam cross-section 14.5 mm × 0.245 mm) second 
harmonic pulses of a mode-locked ruby laser (ΔtP ≈ 35 ps, λP = 347.15 nm). Dye concentration C0 
= 3.2×10-4 mol dm-3.  
(a) Collected emission signal, WLQL, versus input pump pulse energy density, w0P. Full 
acceptance angle of fluorescence collection is Δθ = 0.82°. Pump laser threshold energy density 
w0P,th ≈ 3 mJ cm-2. 
(b) Peak wavelength of low-Q laser oscillator, λLQL,max, versus input pump pulse energy density, 
w0P. 
(c) Spectral line-width (FWHM) of low-Q laser oscillator, ΔλLQL, versus input pump-pulse 
energy density, w0P. 

Insertion of experimental values into Eq. 4.22 (R = 0.0361, w0P,th = 3×10-3 J cm-2, wP,sat = 

4.0×10-3 J cm-2, N0 = 1.92×1017 cm-3, σa,P = 1.43×10-16 cm2, ls = 1 cm) gives σem,eff,L = 3.28×10-17 
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cm2. Using σem,L = 2.35×10-16 cm2 (λL = 411 nm) an excited-state absorption cross-section of 

σex,L = 2.02×10-16 cm2 is determined.  

The dye β-NPB in THF showed no indication of low-Q laser action (no spectral narrowing of 

the emission). The same arrangement as for TPB in THF was used. The applied dye number 

density was N0 = 1.77×1017 cm-3, and pump pulse energy densities up to 0.057 J cm-2 were 

applied (w0P,th > 0.057 J cm-2). The pump pulse saturation energy of β-NPB is wP,sat = 2.89×10-3 J 

cm-2 (λP = 347.15 nm, σa,P = 1.99×10-16 cm2). Insertion of these parameters into Eq. 4.22 gives 

σem,eff,L < 1.97×10-17 cm2 and σex,L = σem,L - σem,eff,L > 4.3×10-18 cm2. 

4.2.3.2 Neat thin film wave-guided travelling-wave laser  

The wave-guided travelling-wave laser action (wave-guided amplification of spontaneous 

emission) was studied using thin films of TPB and β-NPB spin-coated from a THF solution 

(concentration 20 mg/ml, speed 750 rpm, film thickness 262 nm for TPB; concentration 10 

mg/ml, speed 750 rpm, film thickness 102 nm for β-NPB) onto microscope carrier plates (optical 

glass similar to Schott type BK7) and cut in the film region for optimum edge emission.  

In Fig. 4.21b an edge-emitted travelling-wave laser spectral shape is shown (solid line) for 

TPB. A pump pulse energy density of w0P = 2.27×10-4 J cm-2 was used. For comparison the shape 

of the fluorescence quantum distribution is included in the figure. For the β-NPB neat film, no 

indication of travelling wave lasing was observed up to a pump pulse energy density of 1.8×10-2 J 

cm-2 (no spectral narrowing, curves are not shown).  

The dependences of the collected laser output energy, WTWL, of the laser wavelength peak 

position, λTWL,max, and of the spectral halfwidth (FWHM), ΔλTWL, on the peak input pump laser 

energy density, w0P, are  displayed in Figs. 4.23a, b, and c, respectively, for a TPB neat film 
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(thickness 262 nm). For β-NPB no travelling wave laser action was observed and therefore no 

curves are shown.  

 

Fig. 4.23: Wave-guided travelling-wave laser performance of a TPB neat film on an optical glass 
substrate. Film thickness, df = 262 nm; pumped film area, 5 mm × 0.245 mm.  
(a) Collected emission signal, WTWL, versus input pump pulse energy density, w0P. Full 
acceptance angle of fluorescence collection is Δθ = 0.3 rad. Curve is calculated by use of Eq. 4.23 
with a pump laser threshold energy density w0P,th = 130 μJ cm-2, a pump pulse energy density of 
gain saturation wP,g,sat = 2.3 mJ cm-2, and a maximum output energy WTWL,max = 5.5 nJ 
(b) Peak wavelength of travelling-wave laser, λTWL,max, versus input pump pulse energy density, 
w0P. 
(c) Spectral linewidth (FWHM) of travelling-wave laser, ΔλTWL, versus input pump pulse energy 
density, w0P. 
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In Fig. 4.23a, above a threshold pump pulse energy density, w0P,th ≈ 1.3×10-4 J cm-2, the 

emission begins to rise beyond the spontaneous emission level due to stimulated emission 

(amplification of spontaneous emission). At high pump pulse energy density the output signal 

saturates to a maximum value, WTWL,max ≈ 5.5 nJ.  The experimental behaviour is fitted by using 

the Eq. 4.23. The pump pulse energy density of gain saturation, wP,g,sat ≈ 2.3×10-3 J cm-2 is used. 

The saturation is thought to be caused by exciton-exciton annihilation processes at high densities 

of excited molecules [Kep96, Hol02b]. 

In Fig. 4.23b, the wavelength position of peak light emission, λTWL,max, is at about 424 nm 

independent of the excitation energy density. Its position coincides with the first vibronic 

sideband of the stimulated emission cross-section spectrum (Fig. 4.17a). Laser emission at the 

wavelength of peak stimulated emission cross-section (≈ 400 nm) is thought to be hindered by 

ground-state re-absorption and possibly increased excited-state absorption.  

In Fig. 4.23c it is seen that the spectral halfwidth, ΔλTWL, of the light emission shrinks around 

the laser threshold from a spontaneous emission line-width of ΔλF ≈ 48 nm to ΔλTWL ≈ 15 nm, 

and then remains nearly constant. 

The initial laser slope efficiency, ηsl,ini, at threshold concerning the collected TWL light is 

obtained by using Eq. 4.24. A value of ηsl,ini ≈ 2×10-4 is estimated. 

In Fig. 4.24, for the investigated TPB neat film the inverse ratio of the pump laser threshold 

energy density, wP,th,min/wP,th, versus the excited film length, lap, is presented in order to determine 

approximately the effective length of light amplification, lTWL. The constant dashed line 

approximates the behaviour for pumped lengths longer than the effective gain length, and the 

dash-dotted line is a guide line for the situation of pump lengths shorter than the effective gain 
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length. From the crossing point of the lines one obtains lTWL ≈ 2.2 mm. If the gain length is 

limited by ground-state tail absorption, α(λTWL,max), at the peak laser wavelength, λTWL,max ≈ 424 

nm, then it is α(424 nm) ≈ 1−
TWLl  ≈ 4.55 cm-1 and the absorption cross-section is σa(424 nm) = 

α(424nm)/Nf ≈ 3.25×10-21 cm2.  

 

Fig. 4.24: Inverse laser threshold pump pulse energy density, 1
,0

−
thPw , versus exposed film length, 

lap. The crossing of the dashed and the dash-dotted guide-lines determines the effective gain 
length, lTWL. Film thickness, df = 262 nm. 
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4.2.4 Conclusions 

For the light-emitting hole-transport materials TPB (N,N,N’,N’-tetraphenylbenzidine) and β-

NPB (N,N’-bis(2-naphtalenyl)-N,N’-bis(phenylbenzidine) relatively high fluorescence quantum 

yields were obtained. The determined efficiencies are φ(TPB/THF) = 0.73, φ(β-NPB/THF) = 

0.28, φ(TPB neat film) = 0.36 and φ(β-NPB neat film) = 0.215. The peak stimulated emission 

cross-section of β-NPB, σem(428 nm) = 2.44×10-17 cm2was found to be approximately a factor of 

ten smaller than the peak stimulated emission cross-section of TPB, σem(411 nm) = 2.97×10-16. 

The substitution of phenyl groups by naphthalene groups caused the formation of a low lying 

weakly absorbing state (S1-state) with long radiative lifetime and small stimulated emission 

cross-section. Laser action was achieved for TPB both in tetrahydrofuran solution and as neat 

film. No laser action was achieved for β-NPB because of its low stimulated emission cross-

section spectrum and due to the dominance of excited-state absorption.  

 The performed studies showed that the triphenylamine dimer TPB, similar as its methyl 

derivatives 3-methyl-TPD [Hol00] and 4-methyl-TPD [Phi03], is a good violet laser dye both in 

liquid solution as well as in the neat solid state. Besides its application as hole-transport material 

in organic light emitting devices TPB may find application in violet liquid dye lasers and solid-

state integrated-optics laser devices. 
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4.3 Triphenylamine (TPA) and tris-3 methyl- triphenylamine (m-
MTDAB) 

 
The molecule triphenylamine (TPA) and derivatives thereof are applied as hole transport 

materials in electrophotography [Bro78, Abk86], and in organic light emitting diodes [Tan89, 

Van96]. They are used in the backbone [Nom04, The02] or in side-groups [Kol96, Liu00] of 

polymers applied in light emitting diodes. Laser action was also achieved on triphenylamine 

based conjugated polymers [Hol01c] and triphenylamine-dimer based conjugated and non-

conjugated polymers [Hol02]. 

 Star-shaped oligomers and dendritic structures of triphenylamines are attractive photo- and 

electro-active organic materials because of their amorphous nature [The02, Shi05]. Methyl-

substituted derivatives of the starburst molecule, 1,3,5-tris(diphenylamino)benzene (TDAB) 

belong to low-molecular-mass organic materials which form stable amorphous glasses with glass 

transition temperatures above room temperature [Ish91, Ish93]. 1,3,5-tris(3-

methylphenylphenylamino)benzene (m-MTDAB) has stable amorphous glass properties below 

49 °C, it crystallizes at about 88 °C, and melts at 183 °C [Ish93]. Its synthesis is described in 

[Ish91]. It is used as hole-transport material in light emitting devices.  

Here triphenylamine (TPA) dissolved in tetrahydrofuran (THF) and m-MTDAB dissolved in 

(THF) and as neat thin film are characterized by absorption and emission spectroscopy. 

Absorption cross-section spectra, stimulated emission cross-section spectra, fluorescence 

quantum distributions, fluorescence quantum yields, degrees of fluorescence polarisation, and 

fluorescence lifetimes are determined. The nonlinear transmission behaviour of the samples at the 

second harmonic of a picosecond ruby laser is studied and the responsible excited-state 

absorption cross-section is extracted. The amplification or attenuation of spontaneous emission 
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(ASE) is investigated by transverse sample pumping with second harmonic pulses of a mode-

locked ruby laser in order to check the lasing ability of these materials and to determine the 

excited-state absorption cross-section spectra of the samples in the fluorescence spectral region. 

4.3.1 Optical and spectroscopic characterization 

 The reflectance and transmittance spectra of a neat thin film of starburst triphenylamine 

oligomer m-MTDAB on a fused silica substrate are shown in Fig. 4.25 (solid curves). The thin 

film was prepared by spin-coating of m-MTDAB THF solution of dye concentration 10 mg/ml at 

a speed of 450 rpm. The dashed curves in Fig. 4.25 show the reflectance and transmittance curves 

of the fused silica substrate. The fitting of the experimental spectra to the Fresnel laws of 

reflection and transmission allows the determination of the optical constants n(λ) (refractive 

index spectrum) and α(λ) (absorption coefficient spectrum) and the film thickness df [Pen98, 

Hol99]. The optical constants spectra are shown in Fig. 4.26. The film thickness turned out to be 

df = 52 nm. The absorption maximum occurs slightly below 316 nm (limit of experimental 

measurement range). At 316 nm wavelength the light penetration depth is 1−α= fpd  = 52.5 nm. 

The refractive index spectrum shows the expected dispersion shape. Therefore the optical wave-

guiding takes place in films above a critical film thickness [Kog79]. At  λ =400 nm minimum 

wave-guiding thicknesses of dmin,TE = 63.5 nm by Eq. 4.1a and dmin,TM = 97.4 nm by Eq. 4.1b are 

calculated (nf = 1.7677, ns = 1.47024). 

For triphenylamine (TPA) molecule no good films could be made by spin-coating because of 

crystallisation. 
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Fig. 4.25: (a) Transmittance, T(λ), 
and (b) reflectance, R(λ), spectra 
of a m-MTDAB neat film on a 
fused silica substrate. Dotted lines 
belong to blank fused silica. 

Fig. 4.26:(a) Absorption coefficient 
spectra, αf(λ), and (b) refractive 
index, n(λ), spectra of m-MTDAB 
neat film(thickness df = 52 nm)  and 
fused silica substrate.  
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The absorption cross-section spectra, σa(λ), of TPA, m-MTDAB in THF and of m-MTDAB 

neat film are displayed in Fig. 4.27. The neat film curve is calculated assuming the same S0-S1 

absorption cross-section integral for the solution and the film. The film absorption cross-section  

 

Fig. 4.27: Absorption cross-section, σa(λ), stimulated emission cross-section, σem(λ), and excited-
state absorption cross-section spectra, σex(λ). Dots show excited-state absorption cross-sections 
of THF solutions at pump laser wavelength λP =347.15 nm. 
(a) TPA in tetrahydrofuran (THF).  
(b) m-MTDAB neat film and m-MTDAB in THF 

spectrum below 316 nm was obtained by transmission measurement relative to a blank fused 

silica plate. TPA/THF absorption spectrum has peak at 300 nm. The dye m-MTDAB/THF also 
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has its absorption maximum at 300 nm. The peak absorption of the m-MTDAB film is at 307 nm. 

The m-MTDAB molecule number density in the film is estimated to be faffN ,/σα=  ≈ 

8.43×1020 cm-3 (calculated at λ = 316 nm). The mass density, ρ, of the m-MTDAB neat thin films 

is determined to be ( ) mAf MNN /=ρ  ≈ 0.874 g cm-3, where NA is the Avogadro constant and Mm 

=621.83 g mol-1 is the molar mass. 

  

Fig. 4.28: Fluorescence quantum distributions, EF(λ), of (a) 4×10-5 molar TPA in THF, and of (b) 
5×10-4 molar m-MTDAB in THF and m-MTDAB neat film. Excitation wavelength: 311 nm. 
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The fluorescence quantum distributions, EF (λ)¸ of TPA in THF and of m-MTDAB in THF 

and as neat film are shown in Fig. 4.28a and 4.28b, respectively. The fluorescence quantum 

yields, (Eq. 3.5) ∫ λλ=φ dEFF )( , are φF(TPA/THF) = 0.012±0.001, φF(m-MTDAB/THF) = 

0.128±0.005, and φF(m-MTDAB neat film) = 0.123±0.005. The fluorescence efficiency of TPA 

in solution is rather low. Some rotation freedom of the phenyl groups may cause non-radiative 

decay by internal conversion [Amo87, Val02]. The starburst molecule m-MTDAB seems to be 

more rigid giving lower non-radiative decay. The m-MTDAB film shows a short-wavelength 

monomeric emission similar to the solution emission (peak at 379 nm) and a long-wavelength 

broad-band excimeric emission (peak at 450 nm, excited-state charge re-distribution over more 

than one molecule, bound complex formation in the excited state [Val02]). The fluorescence 

efficiency of the neat film is composed of monomeric and excimeric contribution, i.e. φF(m-

MTDAB neat film) = φF,M + φF,Ex, with φF,M ≈ 0.082, and φF,Ex ≈ 0.041. 

 The degrees of fluorescence polarisation, PF, were measured to be 0.035±0.005 for TPA in 

THF, and 0.055±0.005 for m-MTDAB in THF. For isotropic media with parallel orientation of 

the absorption and emission transition dipole moments, PF approaches 0.5 if there occurs no 

reorientation within the fluorescence lifetime; and PF approaches 0 if complete reorientation 

occurs within the fluorescence lifetime [Lak83]. 

Temporal fluorescence signals of a 1.5×10-3 molar solution of TPA in THF (a), of a 4.7×10-5 

molar solution of m-MTDAB in THF (b), and of a m-MTDAB neat film (c) at 407 nm 

(monomeric part, thin solid curve) and at 500 nm (excimeric part, thick sold cure) are shown in 

Fig. 4.29. The dotted curves show the detection system response function (attenuated pump 

pulses directed to micro-channel-plate photomultiplier). Single-exponential fluorescence-decays 

are fitted to the fluorescence decay parts (dash-dotted curves.). The obtained fluorescence  
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Fig. 4.29: Temporal fluorescence traces. Excitation with second harmonic pulses of mode-locked 
ruby laser (duration ΔtP = 35 ps, wavelength λP = 347.15 nm). Dotted curves show response 
function of detection system. Dash-dotted curves display single-exponential regression fits, 

]/)(exp[)( 00, FFF ttStS τ−−= , where t0 is the temporal start position of fitting.  
(a) TPA in THF. Concentration C = 1.5×10-3mol dm-3. Fluorescence detection at λobs = 407 nm 
(spectral width 10 nm). Fluorescence lifetime: τF = 1.63 ns.   
(b) m-MTDAB in THF. C = 4.7×10-5 mol dm-3, λobs = 407 nm, τF = 2.2 ns.  
(c) m-MTDAB neat film of thickness df = 335 nm. Thin solid curve: λobs = 407 nm, τF = 2.3 ns 
(monomeric emission). Thick solid curve: λobs = 500 nm (spectral width 4.4 nm), τF = 4.66 ns 
(excimeric emission).  
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lifetimes are τF(TPA/THF) = 1.63 ns, τF(m-MTDAB/THF) = 2.19 ns, τF(m-MTDAB neat film, 

monomeric) = τF,M = 2.3 ns, and τF(m-MTDAB neat film, excimeric) = τF,Ex = 4.66 ns,. During 

the short-wavelength component emission (τF,M) the fluorescence of the long-component 

emission builds up and decays with a slower decay time (τF,Ex) (exited-state excimer formation 

within excited monomer lifetime).  

The radiative lifetime, τrad, may be determined from the fluorescence lifetime, τF, and the 

fluorescence quantum yield, φF, according to Eq. 4.5. The experimental results are τrad(TPA/THF) 

≈ 136 ns and τrad(m-MTDAB/THF) ≈ 17.2 ns.   

For the m-MTDAB neat film the situation is more complex. The following reaction scheme 1 

is expected.  

M + M + hνL M + M* M2*

M + M M + M

kM

kE

kF,Ex

     (Scheme 1) 

A corresponding energy level scheme is shown in Fig. 4.30. Level 1 considers two monomers, M 

+ M, in the ground-state. Level 2 describes the situation immediately after excitation of one 

monomer, M* + M. Level 3 considers the formed excimer, M2*. Finally level 4 describes the 

unstable ground-state dimer, M2, which separates back to two monomers, M + M. After 

excitation the relevant relaxation dynamics is described by 

   2
2 )( Nkk

dt
dN

EM +−= ,         (4.30a) 

   3,2
3 NkNk

dt
dN

ExFE −= .        (4.30b) 
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Fig. 4.30: Level scheme illustration of photo-induced excited-state dimer formation, and 
monomeric and excimeric light emission. 

  kM is the monomeric decay rate to the ground-state. kE is the transfer rate to the excimeric 

form. 1
,2,

−τ=+= MFEMF kkk  is the monomeric fluorescence rate. 1
,3,

−τ= ExFFk  is the excimeric 

fluorescence rate. The solution of the equation system 4.30a is     

    ( )MFtNtN ,.0,22 /exp)( τ−= ,        (4.31a) 

and the solution of Eq. 4.30b (linear inhomogeneous differential equation) gives 

    ( ) ( )[ ]MFExF
ExFMF

E ttkNtN ,,1
,

1
,

0,23 /exp/exp)( τ−−τ−
τ−τ

= −− .    (4.31b) 

The total fluorescence quantum yield, φF, is composed of a monomeric contribution and a 

excimeric contribution  

    ExFMFF ,, φ+φ=φ .           (4.32) 

These contributions are 

    
Mrad

MF
MFMrad

Mrad
MF k

N

dttNk

,

.
,,

0,2

0 2,
.

)(

τ
τ

=τ==φ ∫
∞

,     (4.33a) 
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( )
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             (4.33b) 

with the monomeric radiative τrad,M, and the excimeric radiative lifetime τrad,Ex. Approximating kM 

in 1
,,

−=+= MFEMMF kkk τ  by 1
,,

−τ== MradMradM kk  gives 1
,

1
,

1
,

1
, )1( −−−− τ−φ=τ−τ= MradMFMradMFEk . 

Insertion into Eq. 4.33b gives 

Exrad

ExF
MF

Exrad

ExFMFMF

ExradMrad

ExFMFMF
ExF

,

,
,

,

,,
1
,

,,

,,
1
,

, )1(
)1()1(

τ
τ

φ−=
τ

τφ−φ
=

ττ
ττ−φ

≈φ
−−

,    (4.34a) 

and 

ExF
exF

MF
Exrad ,

,

,
,

1
τ

φ
φ−

≈τ .          (4.34b) 

Using the experimental parameters, τF,M = 2.3 ns and φF,M = 0.082, gives 1
,,,

−φτ=τ MFMFMrad  = 

τrad,M ≈ 28 ns. The parameters for the excimeric contribution are τF,Ex = 4.66 ns and φF,Ex = 0.041, 

giving τrad,ex ≈ 104 ns.  

The reorientation time, τor, of the emission transition dipole moments may be extracted from 

the degree of fluorescence polarisation, PF, by the relation Eq. 4.4, For TPA in THF it is PF ≈ 

0.035 and τF = 1.63 ns giving τor ≈ 100 ps. For m-MTDAB in THF the parameters are PF ≈ 0.065 

and τF = 2.19 ns giving τor ≈ 270 ps. In the solutions the transition dipole moment reorientation is 

determined by molecular reorientation.  

The stimulated emission cross-section spectra, σem(λ), of the investigated molecules may be 

determined by the Einstein relation Eq. 4.3. The calculated stimulated emission cross-section 

spectra are included in Fig. 4.27. From the Einstein relation between absorption and emission it is 
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known that the S0-S1 absorption cross-section integral, ∫ ννσ da )( , is about the same as the 

stimulated emission cross-section integral, ∫ ννσ dem )( , and the S0-S1 absorption cross-section 

spectrum and the S1-S0 emission cross-section spectrum are mirror symmetric. This shows that 

for both TPA and m-MTDAB the S0-S1 transitions are only weakly allowed, their absorption 

bands are located in the long-wavelength absorption tails of the molecules and their shapes are 

hidden in the stronger absorbing S0-Sn absorption bands (n ≥ 2). For m-MTDAB in solid state the 

monomeric S1-S0 and the excimeric S1-S0 stimulated emission cross-section spectra are extracted. 

The emission cross-section intergral for the molecules in mommeric state is roughly a factor of 

two larger than for the molecules in excimeric state. 

4.3.2 Reverse saturable absorption behaviour 

 The experimental energy transmissions, TE, of second harmonic picosecond ruby laser pulses 

(duration ΔtP = 35 ps, wavelength λP = 347.15 nm) through 1 mm cells filled with either TPA or 

m-MTDAB in THF as a function of the input peak pulse intensity, I0P, are shown by circles in 

Fig. 4.31. The transmissions decrease from the small-signal transmission of T0(TPA) = 0.157 and 

T0(m-MTDAB) = 0.12 at low excitation intensity to TE(TPA) ≈ 0.073  and TE(m-MTDAB) ≈ 

0.042 at excitation intensity I0P = 2.5×1010 W cm-2. One speaks of saturable absorption if the 

transmission rises with excitation intensity [Her67, Pen88] and of reverse or inverse saturable 

absorption if the transmission decreases with rising intensity [Tut93, Jos98]. Reverse saturable 

absorption is applied for optical limiting [Jos98]. The solid curves in Fig. 4.31 are numerical 

simulations to the transmission measurements. The differential equation system for the intensity 

dependent pump pulse transmission is given in [Hol00b] and are (Eqs. 4.6 - 4.13) shown above. 

For the solid curves in Fig. 4.31 the excited-state absorption cross-section is varied. The best fit 
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to the experimental data is obtained for σex,P(TPA) = 9×10-18 cm2 and σex,P(m-MTDAB) = 4×10-17 

cm2. The ground-state absorption cross-sections are σa,p(TPA) = 1.85×10-18 cm2 and σa,P(m-

MTDAB) = 1.86×10-17 cm2. The slow-absorber ground-state depletion saturation intensities, 

)/( ,, PPaPsatP thI Δ= σν , for TPA and m-MTDAB in THF are indicated in Fig. 4.31.  

 

Fig. 4.31: Reverse saturable absorption behaviour of TPA (a) and m-MTDAB (b) in THF. Circles 
are measured. Curves are calculated using excited-state absorption cross-sections σex,P listed in 
the figure. Pump laser pulses: second harmonic of picosecond ruby laser (wavelength 347.15 nm, 
duration 35 ps FWHM). IP,sat, of ground-state population depletion is indicated.  
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4.3.3 Attenuation and amplification of spontaneous emission  

TPA/THF and m-MTDAB/THF solutions in a 1 cm × 1 mm fused silica dye-laser cell and a 

neat film of m-MTDAB on an optical glass substrate were transverse pumped and the 

attenuation/amplification of the spontaneous emission along the pumped region was studied by 

measuring the output light along the line-focus direction perpendicular to the pump pulse 

propagation direction. 

The obtained emission output spectra are shown in Fig. 4.32a, b, and c for 2.25×10-2 molar 

TPA in THF, 1.52×10-3 molar m-MTDAB in THF, and a 725 nm thick m-MTDAB neat film 

(exposed length 5 mm), respectively. The emitted light from the solution is collected within an 

acceptance angle of 0.82°. For the edge emission from the wave-guided film an acceptance angle 

of 0.3 rad was used. For the liquid solutions no change in the spectral shape is observed for the 

different pump pulse energy densities. For the neat film some spectral changes with excitation 

energy density are seen. 

The dependence of the collected output energy on the input pump pulse energy density is 

shown in Fig. 4.33 for TPA in THF (a), and m-MTDAB in THF (b). The slow-absorption ground-

state depletion saturation energy densities, Eq. 4.16 PaPsatP hw ,, /σν= , [Pen91, Pen92] are 

indicated. The rise of the output energy with pump pulse energy density in the absence of any 

attenuation or amplification, WASE,no, is shown by the dash-dotted curves in Fig. 4.33. They are 

given by 

    
( )
( )satPP

satPP
ASEnoASE ww

ww
WW

,0,0

,0
0,, /exp1

/exp1
−−
−−

=         (4.35) 

where WASE,0 is the output energy at the lowest applied excitation energy density w0P,0. In the case 

of TPA in THF the measured output energy is lower than WASE,no indicating attenuation of 
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Fig. 4.32 Emission spectra of picosecond pump pulse excited samples (excitation wavelength λP 
= 347.15 nm, pulse duration ΔtP = 35 ps, pump pulse beam profile: 14.5 mm × 0.254 nm) for 
various pump pulse excitation energy densities, w0P, (amplification or attenuation of spontaneous 
emission). 
(a) Transverse pumped 0.0225 molar TPA in THF in 1 cm × 1 mm cell. Full collection angle: 
0.82°. The curves belong to w0P = 0.77 mJ cm-2 (1), 3.07 mJ cm-2 (2), 9.09 mJ cm-2 (3), 28.5 mJ 
cm-2 (4), and 75.1 mJ cm-2 (5). 
(b) Transverse pumped 1.52×10-3 molar m-MTDAB in THF in 1 cm × 1 mm cell. Full collection 
angle: 0.82°. The curves belong to w0P = 0.27 mJ cm-2 (1), 1.28 mJ cm-2 (2), 2.84 mJ cm-2 (3), 
9.69 mJ cm-2 (4), 19.6 mJ cm-2 (5), and 49.88 mJ cm-2 (5). 
(c) Transverse pumped m-MTDAB neat film. Film thickness: 725 nm. Length of film exposed: 5 
mm. Full collection angle of edge-emitted light: 0.3 rad. The curves belong to w0P = 0.0622 mJ 
cm-2 (1), 0.115 mJ cm-2 (2), 0.294 mJ cm-2 (3), 0.67 mJ cm-2 (4), 1.75 mJ cm-2 (5), 3.14 mJ cm-2 
(6), and 17.3 mJ cm-2. 
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spontaneous emission due to excited-state absorption larger than stimulated emission. In the case 

of m-MTDAB in THF the measured output energy practically coincides with WASE,no indicating 

no, over the spectrum integrated, attenuation or amplification of spontaneous emission. For the 

investigated m-MTDAB neat film the output emission is displayed separately for the monomeric 

 

Fig. 4.33: Collected attenuated or amplified spontaneous emission energy, WASE, versus pump 
pulse excitation energy, w0P. The same experimental conditions apply as in Fig. 4.32. The dash-
dotted lines show the expected dependence in absence of attenuation or amplification of the 
spontaneous emission (Eq. 4.35).  
(a) TPA in THF, (b) m-MTDAB in THF and (c) m-MTDAB neat film. 
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emission and the excimeric emission. In both cases at high excitation it is WASE < WASE,no 

showing that the excited-state absorption is larger than the stimulated emission with larger 

difference for the excimeric form than for the monomeric form. 

In Fig. 4.34 the attenuation or amplification,  
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of the spontaneous emission for several pump pulse energy densities is displayed. Thereby Nex,0 is 

the initial emission-state population number density. It is given by Eq. 4.15. 
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For satPP ww ,0 <<  one obtains 
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where αP,0 is the small-signal absorption coefficient. The second part of Eq. 4.36 is obtained by 

insertion of Eq. 4.37a in the first part of Eq. 4.36. For spPsp wS ,0/)(λ  the curves with the lowest 

excitation energy density in Fig. 4.32 are used. In the displayed wavelength region it is A < 1 

(attenuation) for TPA in THF and for m-MTDAB neat film, while it is A (λ < 410 nm) ≥ 1 (slight 

amplification to unmodified behaviour) for m-MTDAB in THF.  

For vertical polarized transverse excitation and vertical polarized longitudinal emission 

detection the spontaneous emission attenuation or amplification, )(λA , for satPP ww ,0 <<  is 

approximately given by  
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Thereby the orientation factor, f(t), for parallel oriented transition dipole moments of ground-state 

absorption (σa), stimulated emission (σem), and excited-state absorption (σex) is given by 
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r is the coordinate perpendicular to the direction of the pump laser propagation and perpendicular 

to the line-focus direction of the pump laser. z is the coordinate along the pump laser propagation. 

ls is the pumped length of the sample. The effective length for amplification or attenuation of 

spontaneous emission is approximated by ls/2. d is the sample thickness along the pump pulse 

direction. w0P is the peak pump laser energy density at the sample entrance. αP is the absorption 

coefficient of the sample at the pump laser wavelength λP. τor is the reorientation time of the 

transition dipoles. σem(λ) and σex(λ) are the orientation averaged stimulated emission cross-

section and the orientation averaged excited-state absorption cross-section at λ. σa(λ) is the 

orientation averaged ground-state absorption cross-section in the fluorescence spectral region. Its 

contribution takes into account the reduced fluorescence re-absorption due to ground-state 

population depletion (the spontaneous emission is by this contribution more strongly absorbed 

than the amplified spontaneous emission). The orientation dependence of the cross-sections is 

given by σ (λ)f(t) [Pen76].  

 Eq. 4.38 may be employed to determine the excited-state absorption cross-section spectrum, 

σex(λ), from the amplification/attenuation, A(λ,w0P) displayed in Fig. 4.34. The obtained excited-

state absorption spectra are included in Fig. 4.27. For m-MTDAB the excited-state absorption 
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cross-section spectrum is only calculated from the solution amplification/attenuation results since 

for the neat film the transition dipole reorientation time is not well known. The excited-state 

absorption cross-section spectrum of m-MTDAB in solution is larger than the stimulated 

emission cross-section spectra belonging to the monomeric and excimeric emission of the neat 

film explaining the observed spontaneous emission attenuation.  

 

Fig. 4.34: Spectral attenuation or amplification, A(λ), of the spontaneous emission at selected 
input pump pulse excitation energy densities, w0P, for TPA in THF (a), m-MTDAB in THF (b), 
and m-MTDAB neat film (c). 
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Table 4.4: Optical and spectroscopic parameters of TPA and m-MTDAB 
 

Parameter TPA in THF m-MTDAB in 

THF 

m-MTDAB       

neat film 

Comments 

λa,max (nm) 300 300 307 Fig. 4.27 

λF,max (nm) 363 383 379 Fig. 4.28 

nF 1.4182 [Hel62] 1.4155 [Hel62] 1.7677 a) 

1.694 b) 

for film:  

Fig. 4.26b 

φF 0.012 0.128 0.123 

0.082 a) 

0.041 b) 

Fig. 4.28 

PF 0.035 0.055   

τF (ns) 1.63 2.19 2.3 a) 

4.66 b) 

Fig. 4.29 

τrad (ns) 136 17.2 28 a) 

104 b) 

Eq. 4.5 

τor (ps) 100 270  Eq. 4.4 

σa,P (cm2) 1.85×10-18 1.86×10-17 3.6×10-17 Fig. 4.27 

wP,sat (J cm-2) 0.31 0.0308 0.016 Eq. 4.16 

a: monomeric emission. b: excimeric emission. 
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4.3.4 Conclusions 

The fluorescence efficiency of TPA in solution, φ(TPA/THF) = 0.012 was found rather low 

due to some rotation freedom of the phenyl groups that may cause non-radiative decay by internal 

conversion. The fluorescence efficiency of the starburst molecule m-MTDAB was found 

approximately the same is both liquid and solid form i.e. φ(m-MTDAB/THF) = 0.128, and φ(m-

MTDAB neat film) = 0.123. The photo-excitation of m-MTDAB neat films led to excimer 

formation showing up in red-shifted emission and elongated emission lifetime. In the nonlinear 

transmission studies at 347.15 nm with second harmonic pulses of a mode-locked ruby laser 

reverse saturable absorption was observed. The excited state absorption cross-section of 

σex,P(TPA/THF) = 9×10-18 cm2, and σex,P(m-MTDAB/THF) = 4×10-17 cm2 was found to be lower 

than the ground state absorption of σa,P(TPA/THF) = 1.85×10-18 cm2 and σa,P(m-MTDAB/THF) = 

1.86×10-17 cm2. The transverse picosecond laser pumped attenuation/amplification of 

spontaneous emission was exploited to determine the excited-state absorption behaviour of the 

materials in the fluorescence spectral region. For m-MTDAB in THF a weak amplification of 

spontaneous emission in the wavelength range from 370 nm to 405 nm was found, while for TPA 

in THF and m-MTDAB neat films only attenuation was observed indicating that the excited-state 

absorption is higher than the stimulated emission inhibiting any laser action.  
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4.3 Poly-phenylene-bipyridine polymer (PPBpy) 
Laser action was achieved for various luminescent polymers as already mentioned in 

introduction: poly-phenylenevinylenes (PPV) [Lem00], poly-phenylene-ethynylenes (PPE) 

[Hol97], ladder-type poly-para-phenylenes (PPP) [Lem00], polyfluorenes (PF) [Hel02], poly-

phenylacethylenes (PPA) [McG00], poly-arylene-vinylenes (PAV) [Hol01], poly(dialkoxy-

phenylene-vinylene)s [Hol01] (including MEH-PPV [Hol04a], M3EH-PPV [Hör01] and MEH-

DOO-PPV [Hör01]), poly-thiophenes (PT) [Gra98], triphenylamine (TPA) based conjugated 

polymers [Hol01c], and triphenylamine dimer (TPD) based conjugated and non-conjugated 

polymers [Hol02]. Here a rigid backbone conjugated phenylene/bipyridine polymer, poly[2,2’-

bipyridine-5,5’-diyl-(2,5-dihexyl-1,4-phenylene)] (abbreviated PPBpy) [Fra01] as a new class of 

luminescent polymers, is characterized spectroscopically and investigated for neat thin-film and 

organic-solution laser action. 

The polymer is studied in 1,1,2,2-tetrachloroethane (TCE) and as a thin film on a glass 

substrate. Absorption cross-section spectra, stimulated emission cross-section spectra, 

fluorescence quantum distributions, fluorescence quantum yields, degrees of fluorescence 

polarisation, and fluorescence lifetimes are determined. The saturable absorption of the polymer 

at 347.15 nm (second harmonic of picosecond ruby laser) is measured and analysed. The 

amplification of spontaneous emission (travelling-wave lasing) in a PPBpy neat film and the low-

Q lasing of PPBpy/TCE in a rectangular cell (cell windows act as low reflectivity resonator 

mirrors) are studied by transverse sample pumping. The distributed-feedback lasing of PPBpy 

spin-coated on corrugated gratings etched into a quartz glass is investigated. 

The synthesis of rigid backbone conjugated phenylene/bipyridine polymer poly[2,2’-

dipyridine-5,5’-diyl-(2,5-dihexyl-1,4-phenylene)] (abbreviated PPBpy) is described in [Fra01]. In 
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brief palladium catalyzed cross-coupling reaction (Suzuki reaction [Miy95]) of a dialkyl 

substituted benzene-diboronic acid with 5,5’-dibromo-2,2’-dipyridine was applied. 

4.4.1 Absorption cross-section spectra 

The transmission spectrum of PPBpy thin film (thickness ≈ 215 nm) on a fused silica 

substrate is shown in Fig. 4.35.  

 

The absorption cross-section spectra, σa(λ), of PPBpy in TCE and of PPBpy neat film are 

displayed in Fig. 4.36. σa(λ) of the neat film is calculated assuming the same S0-S1 absorption 

cross-section integral for the solution and the film (Eq. 3.3). The absorption cross-section 

spectrum of the solution is somewhat broader than that of the neat film and has a shoulder at 365 

nm in the long-wavelength absorption tail. 

Fig. 4.35: Transmission spectrum 
of a PPBpy neat film (thickness df 
≈ 215 nm) on a fused silica 
substrate. 
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The stimulated emission cross-section spectrum, σem(λ), of the neat film is included in Fig. 

4.36. It is calculated from the S0-S1 absorption spectrum and the fluorescence quantum 

distribution (see Fig. 4.37a) using the Strickler-Berg formula Eq. 4.2 and the Einstein relation Eq. 

4.3. For the PPBpy neat film a Strickler-Berg radiative lifetime of τrad,SB = 1.19 ns is determined 

using λu =280 nm, nA ≈ 1.85, nF ≈ 1.75, (see distributed feedback laser analysis below). 

 

Fig. 4.36: Absorption cross-section, σa(λ), and stimulated emission cross-section, σem(λ), spectra 
of thin film (solid curves) and of 1,12,2-tetrachloroethane (TCE) solution (dashed curve, 
concentration 7×10-5 mol dm-3) of PPBpy. Upper border, λu, of S0-S1 transition of film used for 
stimulated emission cross-section calculation is included. 
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4.4.2 Fluorescence behaviour 

The fluorescence quantum distributions, EF (λ)¸ of PPBpy in TCE and of PPBpy neat film are 

shown in Fig. 4.37a. The fluorescence quantum yield, φF, (Eq. 3.5), ∫ λλ=φ dEFF )( , of the 

solution is φF = 0.84±0.02 and of the film is φF = 0.27±0.02. The fluorescence in the solution is 

high. In the film the fluorescence quantum yield is reduced by self-quenching. The fluorescence 

peak of the neat film occurs at 393 nm. In the TCE solution there is a short-wavelength step at 

380 nm and a broad emission with maximum at 460 nm. The emission around 380 nm is  

 

Fig. 4.37: (a) Fluorescence quantum distributions, EF(λ), and (b) degrees of fluorescence 
polarization, PF(λ), of PPBpy in TCE and as neat film. 
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attributed to single polymer emission, while the dominant broad structure-less emission in the 

blue to the yellow spectral region is thought to be due to emission from excited-state aggregates 

(excimers, aggregate excitons) [Val02, Ban06, And04].  

The degrees of fluorescence polarisation, PF, of PPBpy in TCE and of PPBpy neat film are 

shown in Fig. 4.37b. In the solution it is PF ≈ 0.13, and in the neat film it is PF ≈ 0.14. 

The degree of fluorescence polarisation, PF, is related to the reorientation time, τor, of the 

transition dipole moments by Eq. 4.4. For PPBpy in TCE it is PF ≈ 0.13 and τF = 1.51 ns, giving 

τor ≈ 376 ps. The PPBpy thin film has a PF ≈ 0.14 and τF ≈ 300 ps giving τor ≈ 97 ps. 

The temporal fluorescence signals of PPBpy neat film (thickness ≈ 215 nm) and of 1×10-4 

molar PPBpy in TCE are shown in Fig. 4.38a and 4.38b, respectively. The dotted curves show the 

detection system response function (attenuated pump pulse directed to micro-channel-plate 

photomultiplier). In Fig. 4.38a convolutions of the experimental response function with single-

exponential decays are shown. The curves are calculated according to Eq. 4.29. 

A comparison of the experimental fluorescence curve with the theoretical convoluted single-

exponential decay curves gives a fluorescence lifetime of τF = 300±50 ps for the PPBpy neat film. 

In Fig. 4.38b the fluorescence decay of PPBpy in TCE is simulated by a two-component single-

exponential regression fit according to )]/exp()/exp([)( 2,21,10, FFFF txtxStS ττ −+−= , giving the 

fractions x1 = 0.87 and x2 = 0.13 with the fluorescence lifetimes τF,1 = 1.71 ns and τF,2 = 137 ps. 

An average fluorescence lifetime of τF ≈ 1.51 is obtained using the relation: 2,21,1 FFF xx τττ += . 

The radiative lifetime determined from the fluorescence lifetime, τF, and the fluorescence 

quantum yield, φF, is given by Eq. 4.5 The experimental results are τrad(solution) ≈ 1.80 ns and 

τrad(neat film) ≈ 1.11 ns. The radiative lifetime in the neat film is shorter than in the solution  
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Fig. 4.38: Temporal fluorescence traces of PPBpy neat film (a) and of 1×10-4 molar PPBpy in 
TCE (b) measured with micro-channel-plate photomultiplier. Fluorescence traces are recorded at 
428 nm (spectral width of applied interference filter was 3.4 nm). Dotted curves show the 
response function. The calculated curves in (a) are convolutions of single-exponential decays 
with response function. Calculated curve in (b) is a bi-exponential regression fit. 

because of the higher refractive index of the neat film (see Eq. 4.2: 3−∝ FArad nnτ ). The calculated 

monomeric radiative lifetimes, τrad,SB, determined by use of the Strickler-Berg formula (Eq. 4.2) 
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gives τrad,SB(neat film) ≈ 1.19 ns. Within our experimental accuracy the determined neat film 

radiative lifetime, τrad, is found to be the same as the calculated repeat unit based radiative 

lifetime, τrad,SB, indicating  that the excited-state wavefunction is localized to a repeat unit 

[Hol01]. The average wavefunction delocalisation factor is radSBraddelm ττ= /,  ≈ 1.  

The fluorescence lifetime of PPBpy neat film is only 300 ps (φF ≈ 0.27). The fluorescence 

quenching is thought to be to due to inter-chain charge separation (polaron formation) [Hol02b, 

Fro97, Sil01]. For PPBpy in TCE a two-component fluorescence emission is observed both in the 

fluorescence spectrum (Fig. 4.37) and the fluorescence decay (Fig. 4.38b). The short-wavelength 

and short lifetime emission is thought to be due to single repeat unit emission. The long-

wavelength and long lifetime emission is thought to be due to emission from excited-state 

aggregates (excimers, aggregate excitons) [And04, Ban06]. The quenching of the single repeat 

unit fluorescence is expected to be due to excitation transfer to the excited-state aggregates 

[Shi07]. 

4.4.3 Saturable absorption behaviour 

The experimental energy transmission, TE, of second harmonic picosecond ruby laser pulses 

(duration ΔtP = 35 ps, wavelength λP = 347.15 nm) through a 1 mm cell filled with PPBpy in TCE 

as a function of the input peak pulse intensity, I0P, is shown by the circles in Fig. 4.39. The energy 

transmission remains practically remains unchanged over the displayed intensity range from 

5×106 W cm-2 to 1×1010 W cm-2. The slow-absorber saturation intensity is given by [Her67] (Eq. 

2.2).  

For PPBpy in TCE a value of IP,sat.sl = 1.8×108 W cm-2 is calculated (νP = c0/λP, c0 is vacuum 

light velocity, λP = 347.15 nm, σa,P = 9.2×10-17 cm2, ΔtP =35 ps). Since no change in transmission 

with excitation intensity is observed even beyond the saturation intensity, it is concluded that the 



4. Results and discussion: Polymer PPBpy 
 

 
 

119  

pump pulse excited-state absorption is approximately the same as the pump pulse ground-state 

absorption, i.e. σex,P ≈ 9.2×10-17 cm2. 

 
 

Fig. 4.39: Saturable absorption behaviour of PPBpy in TCE. Measured energy transmission 
versus input pump pulse peak intensity is shown. Pump laser pulses: second harmonic of 
picosecond ruby laser (wavelength 347.15 nm, duration 35 ps FWHM). 
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Table 4.5: Optical and spectroscopic parameters of polymer PPBpy 
 

Parameter PPBpy in TCE PPBpy neat film Comments 

λa,max (nm) 320 320 Fig. 4.36 

λF,max (nm) 380 and 461 394 Fig. 4.37 

nF 1.5084 [Hel62] 1.75 for film: DFB laser 

analysis 

φF 0.86 0.27 Fig. 4.37a 

PF 0.13 0.14 Fig. 4.37b 

τF (ns) 1.71 and 0.137 0.30 Fig. 4.38 

τrad (ns) 1.76 1.11 Eq. 4.5 

τrad,SB (ns)  1.19 Eq. 4.2  

τor (ps) 376 97 Eq. 4.4 

Abbreviations: λa,max: wavelength of peak absorption of first absorption band. λem,max: wavelength 

of peak stimulated emission cross-section. λF,max: wavelength of fluorescence maximum. nF: 

average refractive index in fluorescence region. φF: fluorescence quantum yield. PF: degree of 

fluorescence polarisation. τF: fluorescence lifetime. τrad: radiative lifetime. τor: transition dipole 

moment reorientation time. 
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4.4.4 Laser Performance 

The transverse pumped lasing of PPBpy/TCE in a 1 cm × 1 mm dye-laser cell, the wave-

guided travelling-wave lasing (amplification of spontaneous emission) of a neat thin film of 

PPBpy on a microscope carrier plate, and the distributed-feedback laser action of a neat thin film 

of PPBpy on corrugated Bragg gratings etched into a fused silica plate are studied. 

4.4.4.1 Transverse pumped low-Q laser  

 A 1.1×10-3 molar solution of PPBpy in TCE (repeat unit number density =0N  6.62×1017 cm-3)  

 

Fig. 4.40: Spectral shapes of (a): low-Q laser emission, SLQL(λ)/SLQL,max of PPBpy in TCE 
(concentration 7.9×10-4 mol dm-3, excitation energy density w0P = 5 mJ cm-2). 
(b): Travelling-wave laser emission, STWL(λ)/STWL,max, of PPBpy neat film (thickness 950 nm, w0P 
= 1.5 mJ cm-2). For comparison the normalized fluorescence quantum distributions, EF(λ)/EF,max, 
are also displayed. 
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kept in a dye-laser cell of ls = 1 cm length and d = 1 mm length was transverse pumped with line-

focused picosecond second-harmonic pulses of a ruby laser system (pump beam cross-section 

14.5 mm × 0.245 mm). The cell itself formed the optical laser resonator (low-Q resonator): the 

end surfaces of the cell acted as mirrors (reflectance 22 )1/()1( +−= nnR  = 0.03616, n = 1.4696 is 

refractive index of cell glass at 406 nm). 

In Fig. 4.40a a output spectrum of the low-Q laser, SLQL(λ), is shown. It belongs to an 

excitation pulse energy of w0P = 5 mJ cm-2. The emission maximum is at λLQL,max = 406 nm. It is 

slightly red-shifted compared to the wavelength position of the repeat unit based peak 

fluorescence emission, but strongly blue-shifted compared to excimeric emission. The laser line-

width is ΔλLQL ≈ 13 nm (FWHM) at the applied excitation pulse energy. The occurrence of the 

laser emission at the single repeat unit short-wavelength excitation position indicates that the 

excimeric emission is formed after the monomeric excitation, and that the laser emission build-up 

time (roughly cell round-trip time ttr ≈ 100 ps) is shorter than the excimer emission build-up time 

(given by fast fluorescence decay time τF2 ≈ 137 ps). 

The dependences of the laser output energy, WLQL, of the laser wavelength peak position, 

λLQL,max, and of the spectral halfwidth (FWHM), ΔλLQL, on the peak input pump laser energy 

density, w0P, are  displayed in Fig. 4.41a, b, and c, respectively. In Fig. 4.41a, above a certain 

threshold pump pulse energy density of laser action, w0P,th ≈ 1.4 mJ cm-2, the emission rises 

steeply beyond the spontaneous emission and amplified spontaneous emission level due to low-Q 

laser oscillation action. In Fig. 4.41b it is seen, that the wavelength position of light emission 

below laser oscillator threshold is at about 452 nm, and above laser threshold is at about 407 nm. 

The laser emission occurs at the peak of effective repeat-unit based stimulated emission cross-
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section, )()()(, λσλσλσ exemeffem −= . In Fig. 4.41c it is seen that the spectral halfwidth, ΔλTWL, of 

the light emission shrinks down from about 90 nm before laser action ( thPP ww ,00 < ) to about 15 

nm above laser threshold.  

 

Fig. 4.41: Low-Q laser oscillator performance of PPBpy dissolved in TCE filled in a dye-laser 
fused silica cell (1 cm length, 1 mm thick) transverse pumped with line-focused (beam cross-
section 14.5 mm × 0.245 mm) second harmonic pulses of a mode-locked ruby laser (pulse 
duration ΔtP ≈ 35 ps, wavelength λP = 347.15 nm). Concentration C0 = 1.1×10-3 mol dm-3.  
(a) Collected emission signal, WLQL, versus input pump pulse energy density, w0P. Full 
acceptance angle of fluorescence collection is Δθ = 0.82°. Pump laser threshold energy density 
wP,th ≈ 1.4 mJ cm-2. 
(b) Peak wavelength of low-Q laser oscillator, λLQL,max, versus input pump pulse energy density, 
w0P. 
(c) Spectral line-width (FWHM) of low-Q laser oscillator, ΔλLQL, versus input pump-pulse 
energy density, w0P. 
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At laser oscillator threshold the light amplification )exp( ,0,,, sthexLeffem NV lσ=  compensates the 

reflection losses 1−= RL . The effective stimulated emission is given by σem,eff,L =  σem,L - σex,L, 

where σem,L is the stimulated emission cross-section at the peak laser wavelength, and σex,L is the 

excited-state absorption cross-section at the peak laser wavelength. There occurs no laser action if 

σex,L ≥ σem,L.  

Insertion of experimental values into Eq. 4.22 (R = 0.03616, w0P,th = 1.4×10-3 J cm-2, wP,sat = 

6.2×10-3 J cm-2, N0 = 6.62×1017 cm-3, σa,P = 9.2×10-17 cm2, ls = 1 cm) gives σem,eff,L = 2.48×10-17 

cm2.  

4.4.4.2 Neat thin film wave-guided travelling-wave laser  

The wave-guided travelling-wave laser action (wave-guided amplification of spontaneous 

emission) was studied using a thin film of PPBpy spin-coated from a TCE solution (concentration 

20 mg/ml, speed 600 rpm, obtained film thickness ≈ 850 nm) onto a microscope carrier plate 

(optical glass similar to Schott type BK7) and cut in the film region for optimum edge emission. 

 In Fig. 4.40b an edge-emitted travelling-wave laser spectral shape is shown (solid line) for a 

pump pulse energy density of w0P = 1.5 mJ cm-2. For comparison the shape of the fluorescence 

quantum distribution is included in the figure.  

The dependences of the collected laser output energy, WTWL, of the laser wavelength peak 

position, λTWL,max, and of the spectral halfwidth (FWHM), ΔλTWL, on the peak input pump laser 

energy density, w0P, are  displayed in Figs. 4.42a, b, and c, respectively.  

 In Fig. 4.42a, above a threshold pump pulse energy density, w0P,th ≈ 1.3×10-4 J cm-2, the 

emission begins to rise beyond the spontaneous emission level due to stimulated emission 

(amplification of spontaneous emission). At high pump pulse energy density the output signal 

saturates to a maximum value, WTWL,max ≈ 0.04 nJ and wP,g,sat ≈ 5.5×10-4 J cm-2 is the pump pulse 
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energy density of gain saturation. The experimental behaviour is fitted by Eq. 4.23. The 

saturation is thought to be caused by exciton-exciton annihilation processes at high densities of 

excited molecules [Hol02b, Kep96]. 

  

Fig. 4.42: Wave-guided travelling-wave laser performance of a PPBpy neat film on an optical 
glass substrate. Film thickness, df = 950 nm; pumped film area, 0.15 mm × 0.245 mm.  
(a) Collected emission signal, WTWL, versus input pump pulse energy density, w0P. Full 
acceptance angle of fluorescence collection is Δθ = 0.3 rad. Curve is calculated by use of Eq. 4.23 
with a pump laser threshold energy density wP,th = 130 μJ cm-2, a pump pulse energy density of 
gain saturation wP,g,sat = 0.55 mJ cm-2, and a maximum output energy WTWL,max = 0.04 nJ 
(b) Peak wavelength of travelling-wave laser, λTWL,max, versus input pump pulse energy density, 
w0P. 
(c) Spectral linewidth (FWHM) of travelling-wave laser, ΔλTWL, versus input pump pulse energy 
density, w0P. 
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In Fig. 4.42b, the wavelength position of peak light emission, λTWL,max, blue-shifts from about 

410 nm at low excitation energy density to 403 nm at high excitation energy density (efficient 

amplification of spontaneous emission at position of peak effective stimulated emission cross-

section).  

In Fig. 4.42c it is seen that the spectral halfwidth, ΔλTWL, of the light emission shrinks around 

the laser threshold from a spontaneous emission line-width of ΔλF ≈ 70 nm to ΔλTWL ≈ 11 nm, 

and then remains nearly constant. 

 

In Fig. 4.43 the inverse ratio of the pump laser threshold energy density, wP,th,min/wP,th, versus 

the excited film length, lap, is presented in order to determine approximately the effective length 

of light amplification, lTWL. The constant dashed line approximates the behaviour for pumped 

lengths longer than the effective gain length, and the dash-dotted line approximates the situation 

for pump lengths shorter than the effective gain length. From the crossing point of the lines one 

Fig. 4.43: Normalized inverse 
laser threshold pump pulse 
energy density, thPthP ww ,min,, / , 

versus exposed film length, lap. 
The kink of the line gives the 
effective gain length, lTWL. Film 
thickness df = 950 nm. 
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obtains lTWL ≈ 0.15 mm. If the gain length is limited by ground-state tail absorption, α(λTWL,max), 

at the peak laser wavelength, λTWL,max ≈ 403 nm, then it is α(403 nm) ≈ 1−
TWLl  ≈ 67 cm-1 and the 

absorption cross-section is σa(403 nm) = α(403 nm)/Nf ≈ 1.1×10-19 cm2 (repeat unit number 

density of neat film Nf ≈ 6.2×1020 cm3). 

A value of ηsl,ini ≈ 2.6×10-4 is estimated using the Eq. 4.24. It should be noted that the true 

initial laser slope efficiency is larger since the emission angle at the film edge is larger than the 

acceptance angle of the collecting lens (Δθ = 0.3 rad). It is also the effective gain length, lTWL, 

shorter than the pump laser width, dw, indicating that amplified spontaneous emission occurs in 

all directions of the plane (light emitted into the film plane is dumped in the un-pumped film 

plane). 

4.4.4.3 Distributed-feedback laser  

Distributed-feedback laser studies have been carried out for a PPBpy neat thin film on 

corrugated gratings etched into a fused silica plate. Grating spacing of Λ = 300 nm, and 280 nm 

were used. The grating size was 1.5 mm × 0.5 mm (groove length 0.5 mm). The exposed grating 

area was 0.9×0.13 mm2. The surface-emitted radiation was collected and detected. The laser 

wavelength, λDFB, is proportional to the grating spacing, and it increases with film thickness. TE 

modes (electrical field vector in film plane) and TM modes (electrical field vector perpendicular 

to film plane) are excited.  

Some lasing results are shown in Fig. 4.44 and some physical and spectroscopic parameters of 

the DFB lasers are collected in Table 4.6. In Fig. 4.44 the DFB laser spectra (solid curves) are 

compared with travelling-wave laser spectra (the same dash-dotted curves in each sub-figure),  
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Fig. 4.44: Spectra of surface-emitting thin-film PPBpy distributed feedback lasers (solid curves, 
pumped area 0.9 mm × 0.13 mm, acceptance angle Δθ = 36°). For comparison normalized edge-
emitted wave-guided thin-film travelling-wave laser emission spectrum (from Fig. 4.41) and 
normalized fluorescence quantum distribution (from Fig. 4.37) are included. Several parameters 
are listed in Table 4.6. 
(a) DFB laser A: Grating spacing Λ = 300 nm. Film thickness df ≈ 275 nm. Applied pump pulse 
energy density w0P = 1.0 mJ cm-2. 
(b) DFB laser B: Λ = 280 nm. df ≈ 275 nm. w0P = 1.1 mJ cm-2. 

and with the shapes of the fluorescence quantum distributions (the same dash curves in each sub-

figure). The spin-coated film on the substrate was ≈ 275 nm thick (determined by distributed 

waveguide resonance condition, Eq. 4.27). The DFB laser spectra shown were measured with a 
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polarizer in s-direction in the detection path for TE mode emission detection. In Fig. 4.44a 

(grating spacing Λ = 300 nm) lasing occurred at λDFB = 483.7 nm (TE mode) with a spectral 

width of ΔλDFB ≈ 1.3 nm. The applied pump pulse energy was WP ≈ 1.2 μJ, and the collected 

DFB laser energy was WDFB ≈ 0.03 nJ. In Fig. 4.44b (Λ = 280 nm) lasing occurred at λDFB = 

415.36 nm with a spectral line-width of ΔλDFB ≈ 0.9 nm. The pump pulse energy was WP ≈ 1.3 

μJ, and the collected DFB laser energy was WDFB ≈ 0.5 nJ.  

Depending on the grating spacing and the film thickness the DFB laser wavelength can be 

tuned across the main part of the fluorescence spectrum. The DFB laser action suppresses the 

travelling-wave laser action. 

In a trial and error fit of Eq. 4.27 to the known )sin( κθ= fnN , the parameters deff and θκ are 

determined and finally df and nf are calculated. The obtained values are df ≈ 275 nm, nf(483.7nm) 

≈ 1.70, and nf(415.4 nm) ≈ 1.75 (see above Table 4.5).  

The transmission through the film at the pump laser wavelength λP = 347.15 nm outside the 

grating area was measured to be TP = 0.33. Knowing the film thickness the absorption coefficient 

of the film was determined to be fPP dT /)ln(−=α  ≈ 4.0×104 cm-1. The PPBpy repeat unit 

number density in the film is estimated to be PaPfN ,/ σα=  ≈ 6.2×1020 cm-3 (σa,P ≈ 6.5×10-17 cm2, 

see Fig. 4.36). The mass density, ρ, of the PPBpy neat thin films is determined to be 

( )MNN Af /=ρ  ≈ 0.41 g cm-3, where NA is the Avogadro constant and M = 398.6 g mol-1 is the 

molar mass of a repeat unit. The low density indicates a lot of free volume in the polymer solid 

state and a kinked structure of the conjugated polymer. This may explain the small measured 

degree of fluorescence polarisation and the chromophore localisation to single repeat unit (no 

coherent delocalisation of the excitation over several repeat units). 
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Table 4.6: Physical and spectroscopic parameters of PPBpy distributed feedback lasers. 
 

Parameter DFB laser A DFB laser B 

Λ (nm) 300 280 

t (nm) 50 50 

c (nm) 150 140 

df (nm) ≈ 275 ≈ 275 

deff (nm) ≈ 300 ≈ 300 

M 1 1 

λDFB (nm) 483.66 415.36 

N 1.6122 1.4834 

 TE0 TE1 

κ 1 1 

θκ (°) 71.71 57.89 

nf 1.7 1.75 

dmin (nm) 79.13 58.80 

θcrit (°) 59.39 57.06 

l||, exc (mm) 0.9 0.9 

l⊥,exc (mm) 0.13 0.13 

 

Abbreviations: Λ: groove spacing. t: groove depth. c: groove width. df: film thickness. deff: 

effective film thickness in grating region. M: diffraction order. λDFB: distributed-feedback laser 

wavelength. N: effective refractive index. κ: guided mode number. θκ: propagation angle. nf: 

refractive index of film. dmin: minimal film thickness for wave-guiding. θcrit: critical angle for 

total internal reflection ( )/arcsin( fscrit nn=θ  with ns refractive index of substrate). l||, exc: length 

of exposed grating area. l⊥,exc: width of exposed grating area. 
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4.4.5 Conclusions 

The high fluorescence efficiency of the luminescent polymer PPBpy in liquid solution (φ ≈ 

0.86) was partly self-quenched in the solid state (φ ≈ 0.27). Dominant excimeric fluorescence 

emission was observed for the polymer in 1,1,2,2-tetrachloroethane (TCE) at the applied repeat 

unit concentration of 1.1×10-4 mol dm-3. In the nonlinear transmission studies at 347.15 nm, it 

was found that the excited state absorption is approximately the same as the ground state 

absorption (no saturable absorption and no reverse saturable absorption). The effective stimulated 

emission cross-section of PPBpy in TCE at 403nm, determined by laser thresholds measurements 

turned out to be σem,eff,L = 2.48×10-17 cm2, which allows good laser action. Wave-guided 

travelling-wave laser action of a transversely pumped neat film and distributed feed-back laser 

action of a transversely pumped neat film on corrugated gratings were achieved with low laser 

threshold.  

 The performed laser studies on PPBpy show that conjugated phenylene/bipyridine polymers 

form a further class of lasing luminescent polymers besides the poly-phenylenevinylenes [2,3], 

poly-phenylenes-ethynylenes [Hol97], poly-para-phenylens [Lem00], polyfluorenes [Hel02], 

poly-phenylacetylenes [McG00], poly-arylene-vinylenes [Hol01], poly(dialkoxy-phenylene-

vinylene)s [Hol04], and triphenylamine as well as triphenylamine dimer based polymers 

[Hol01c]. 
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5. Summary  

In this work electroluminescent molecules were investigated by optical spectroscopy. Their 

lasing ability was studied in liquid solutions using a low–Q laser oscillator arrangement. In neat 

films wave-guided amplification of spontaneous emission was investigated. Some studies 

concerning the distributed feedback laser action of neat films on corrugated gratings were made. 

The investigated materials were the triphenylamine molecule TPA, the triphenylamine 

starbust molecule m-MTDAB, the triphenylamine dimer TPB, the napthyl-diphenylamine dimer 

β-NPD, the oligomer dicarbazovinylene-MEH-benzene 2CzV-MEH-B, and the phenylene-

bipyridine polymer PPBpy. 

The molecule triphenylamine (TPA) in tetrahydrofuran (THF) and the starburst 

triphenylamine oligomer 1,3,5-tris(3-methylphenylphenylamino)benzene (m-MTDAB) in THF 

and as neat film were characterized. The fluorescence decay was studied by picosecond laser 

excitation and time-resolved signal detection. Reverse saturable absorption was observed in 

picosecond laser nonlinear transmission measurements (laser duration 35 ps, laser wavelength 

347.15 nm). The lasing ability of the compounds was tested by picosecond laser transverse 

pumped amplification or attenuation of spontaneous emission. The excited-state absorption cross-

section spectra of the samples in the fluorescence spectral regions were extracted from the 

amplification/attenuation of spontaneous emission. Weak amplification of spontaneous emission 

was observed for m-MTDAB in THF around the fluorescence maximum (370 to 405 nm). For 

TPA in THF and m-MTDAB neat film attenuation of spontaneous emission occurred over the 

whole fluorescence region (excited-state absorption stronger than stimulated emission). 
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The molecules N,N,N’,N’-tetraphenylbenzidine (TPB, triphenylamine dimer TAD) and N,N’-

bis(2-naphtalenyl)-N,N’-bis(phenylbenzidine) (β-NPB, naphtyl-diphenylamine dimer β-NPD) 

dissolved in tetrahydrofuran (THF) and as neat films were studied. The excited-state absorption at 

the pump laser wavelength was determined by saturable absorption measurement. Low-Q laser 

oscillation of TPB in THF was achieved by transverse pumping the solution in a cell. The 

excited-state absorption of TPB in THF at the laser wavelength was extracted from the laser 

threshold. In TPB neat films wave-guided travelling-wave lasing was achieved. No laser action 

was obtained for β-NPB because of very small S1-S0 stimulated emission strength, and the 

presence of the excited-state absorption in the fluorescence wavelength region. 

The oligomeric molecule 1,4-bis(9-ethyl-3carbazovinylene)-2-methoxy-5-(2’-ethyl-

hexyloxy)-benzene (abbreviated 2CzV-MEH-B) dissolved in tetrahydrofuran (THF) and as neat 

film was investigated upon its optical spectroscopic properties and its lasing properties. Again the 

excited-state absorption at the pump-laser wavelength was determined by saturable absorption 

measurements. Laser oscillation of the dye in THF in a rectangular cell was achieved by 

transverse pumping. From the emission behaviour around threshold the excited-state absorption 

cross-section spectrum in the laser active spectral region of the material was extracted. The wave-

guided travelling-wave lasing behaviour of the emitter as neat film was studied by analysis of the 

amplification of the transverse pumped spontaneous emission. Surface emitting distributed-

feedback lasing was achieved with a neat film on corrugated second-order periodic gratings. 

The luminescent polymer, poly[2,2’-bipyridine-5,5’-diyl-(2,5-dihexyl-1,4-phenylene)] 

(abbreviated PPBpy) dissolved in tetrachloroethane (TCE) and as neat film was characterized 

optically by absorption, emission spectroscopy and saturable absorption measurements. Low-Q 

laser oscillation of the polymer in TCE was achieved and used to determine the effective 
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stimulated emission cross-section at the lasing wavelength. Travelling-wave lasing of a neat film 

of the polymer was achieved. Surface-emitting distributed-feedback lasing was obtained with a 

neat film on corrugated second-order periodic gratings. 

The investigated electroluminescent molecules are applied in organic light emitting devices 

(OLEDs). The investigated polymer is a potential candidate for polymer light emitting devices. 

For their application in light emitting devices a high quantum yield of electroluminescence is 

sufficient. But for the application of the electroluminescent materials in laser devices it is 

indispensible that the stimulated emission cross-section is higher than the excited state absorption 

cross-section. Good OLED performance of an electroluminescent material is a precondition for 

good organic lasers, but in each case the effective stimulated emission cross-section (stimulated 

emission cross-section–excited state absorption cross-section) has to be determined to get 

information about its lasing ability as was done in this work. 

The oligomeric emitter 2CzV-MEH-B, the triphenylamine dimer TPB, and the phenylene-

bipyridine polymer PPBpy turned out to be good organic active media for laser action in the 

violet and blue spectral region. 
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