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1. Introduction 
 

Since the first synthesis of [Ti(η5-P5)2]2- by Ellis and coworkers[1], the search for characterizable 

decaphosphaferrocene complexes has been a challenge in the field of phosphorus-containing 

complexes.[2] In addition, the lower phosphorus-containing complexes with [(RC)nP5-n]¯ ligands 

(n = 1–3) are of particular interest since η5-phospholyl complexes show activity in various 

homogeneous catalysis applications.[3,4,5] Among the series of ferrocene complexes with 

[(RC)nP5-n]¯  ligands (n = 0–5) the syntheses of A[6] and E[7] have been benchmarks in the 

development of polyphospholyl complex chemistry.[8] 
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Other ferrocenes of type B[9] as well as B' and C'[10,11,12,13] were synthesized later using 

phosphaalkyne as starting material, the missing 1,2,3-triphosphaferrocene C was only recently 

synthesized by Scherer and coworkers by treating the tetraphosphabicyclobutadiene complex 

[{Cp'''(CO)2Fe}2(μ,η1:η1-P4)] with diphenylacetylene.[14] 

An electrochemical investigation of the polyphosphaferrocenes shows[15,16] that the 

replacement of CR fragments by phosphorus atoms in the phospholyl ring enhances the 

electron richness and thus increases the electron density at the iron center. This modification 

made the phosphaferrocenes more difficult to oxidize. 

Unlike the simple metallocene analogues, the complexes of phosphaferrocene have ligating 

potential to transition metal centers with the ring phosphorus lone-pair electrons not only in π-

ligation but also in η1-or η2-metal ligation. 
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 The η1-ligating behaviour of the triphosphaferrocene [CpFe(η5-P3C2
tBu2)] (C´1) towards 

several transition metal ligand (MLn) centres (M = Cr, Mo, W, L = CO, n = 5; M = Fe, L = 

CO, n = 4) has been explored.[10,11,17,18] In all cases one of the two adjacent phosphorus atoms 

of the P3C2-ring is bonded to the metal center in the η1-type with its lone pair electrons 

(Figure 1.1). 

 

P P

P tButBu

MLn
Fe

 
 

Figure 1.1. η1-ligated complex involving one lone pair of electrons of the phosphorus atom. 
 

Both lone pairs of electrons on the adjacent phosphorus ring atoms of [Cp*Fe(η5-P3C2
tBu2)] 

(C´2) can participate in the ligation to transition metals as shown in the tetrametallic 

dinickel(0) tetracarbonyl complex [{Cp*Fe(η5-P3C2
tBu2)}2Ni2(CO)4] (F) in Figure 1.2[17]. 
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Figure 1.2. Complex F involving the lone pair electrons of the adjacent phosphorus atoms. 

 

 

Another example is the η2-ring-edge ligation of pentaphosphaferrocene to iridium(I) in 

compound G and the analogous Rh(I) complex H involving the pentaarsaferrocene.[19] 
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IrCp*CO
P P

P PP

Fe RhCp*CO
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As AsAs
As

Fe

 

    G                                                          H  

Figure 1.3. Examples of η2-ring-edge ligated complexes G and H. 

 

The unusual bonding in these compounds was found to involve an η2-ligation mode either 

through the P–P or As–As multiple bonds and an obvious elongation of P–P and As–As bond 

length in comparison to the uncoordinated compounds were resulted.  

Very recently several square planar Pt(II) complexes such as [PtCl2(PEt3){CpFe(η5-P3C2
tBu2}] 

have been prepared by Nixon and coworkers. These complexes are non-fluxional in solution 

and they unexpectedly always exclusively give the cis- isomers[20] rather than the expected 

less sterically demanding trans isomers (Figure 1.4). Under some conditions both of the two 

adjacent phosphorus atoms in C´2 can coordinate transition metal centers simultaneously such 

as the bis Pt(II) adduct cis, cis-[{PtCl2(PMe3)}µ-{CpFe(η5-P3C2
tBu2)}{PtCl2(PMe3)}] I2, 

which were obtained by Nixon and coworkers from further ligation of the other adjacent 

phosphorus atoms of the η5-P3C2
tBu2 ring in I1. 
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Figure 1.4. Two square planar Pt(II) complexes with cis conformations. 

 

Except for the above-mentioned triphosphaferrocene, two other compounds containing 

“naked” Pn-ligands have been studied for their reactivity, properties, and coordination 

behaviour. The μ-P2 complex [{CpMo(CO)2}2(μ,η2-P2)] (J) and the cyclo-P5 complex 
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[Cp*Fe(η5-P5)] (K) (Figure 1.5) were prepared by the thermolysis of P4 with the low-valent 

complexes [CpMo(CO)2]2 and [Cp*Fe(CO)2]2, respectively.[21,22,23] 

 
P P

Mo Mo
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Fe

J K
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Figure 1.5. Two examples of complexes with a “naked” Pn-ligand. 
 
 
In our group the use of the P2-ligand complex J in the coordination chemistry towards a 

cationic complex of Ag(I) and Cu(I) to form molecular dicationic complexes as well as the 

formation of 1D chain polymers was investigated.[24] 

The reaction of Ag(CF3SO3) and J in CH3CN results in the quantitative formation of 

[Ag2{Cp2Mo2(CO)4(µ,η2:η2-P2)}2{Cp2Mo2(CO)4(µ,η2:η1:η1-P2)}2][CF3SO3]2 (L), in which 

two tetrahedral Mo2P2 ligands bridge the two Ag(I) centers with an end-on mode whereas the 

other two Mo2P2 ligands coordinate these two silver centers with a side-on mode (Figure 1.6). 

 

 
 
Figure 1.6. Molecular structure of the dianion from L (hydrogen atoms are omitted for clarity). 

[24] 
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The reaction of CuBr with J yields a linear 1D chain of [Cu(µ-Br){Cp2Mo2(CO)4(µ,η2:η1:η1-

P2)}]∞ (M) consisting of planar six-membered Cu2P4 and four-membered Cu2Br2 rings, 

alternately arranged in an orthogonal manner (Figure 1.7).[24] 

 

 
 
Figure 1.7. Section of the 1D polymer chain structure of M (hydrogen atoms are omitted for 

clarity). [24] 

 

 

In the last decade O.J. Scherer and coworkers have intensively researched the reactivity of 

[Cp*Fe(η5-P5)] towards organometallic fragments. Besides its capacity to form cationic triple-

decker complexes[25] or undergo P5-transfer reactions,[26] there are reactions known in which 

the cyclo-P5 ring remains intact, or is cleaved to form polymer chain. Other fragments such as 

P4/P1, P3/P2, and P2 have been reported.[27, 28,29,30] In the case where the cyclo-P5 ring remains 

intact, a significant lengthening of the P–P bonds was resulted in the η5:η1, η5:η2, and 

η5:η2:η2:η1 coordination modes to organometallic fragments.[19,31,32,33] 

In our group the reactivity of [Cp*Fe(η5-P5)] with Cu(I) halides[34] has been investigated and 

it was found that with CuCl the 1D polymer [CuCl{Cp*Fe(η5:η1:η1-P5)}]∞ (N) (Figure 1.8) is 

obtained. With CuBr and CuI, however, the corrugated 2D polymers 

[CuX{Cp*Fe(η5:η1:η1:η1-P5)}]∞ (X = Br (O), I (P)) (Figure 1.9), respectively, are obtained. 
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Figure 1.8. Section of the 1D chain structure of complex N (H atoms are omitted for clarity). 

[34] 

 

In the crystal lattice of both O and P, the tetrahedrally distorted Cu(I) units coordinate to one 

halogen atom and three phosphorus atoms, each coming from three different [Cp*Fe(η5-P5)] 

fragments (Figure 1.9). Thus, a 1,3,4 substitution pattern at the cyclo-P5 ring through an 

η5:η1:η1:η1 coordination mode is created because of the additional third coordination to the 

Cu(I)X moiety at the cyclo-P5 rings in [CuX{Cp*Fe(η5:η1:η1:η1-P5)}]∞ (X = Br (O), I (P)). 

When compared to structure N, novel 2D coordination polymers were formed with layers 

separated by Cp*Fe moieties.  

 

 
Figure 1.9. View of the layered 2D complex P orthogonal to the crystallographic a,b plane (H 

atoms are omitted for clarity). [34] 
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The Cu2P4 rings O and P are in a boat-like conformation, unlike the planar Cu2P4 rings in the 

1D polymer of N. In comparison with the starting complex [Cp*Fe(η5-P5)] the P–P bond 

lengths of the complex [CuX{Cp*Fe(η5:η1:η1:η1-P5)}]∞ (X = Br, I) do not change. The 

tendency for the reaction of [Cp*Fe(η5-P5)] with CuCl on the one hand and CuBr/CuI on the 

other to yield products with different structures is difficult to explain. The CuCl product O 

contains linear chains that are separated from each other by π stacking between Cp* and 

cyclo-P5 moieties of different chains, [CuX{Cp*Fe(η5:η1:η1:η1-P5)}]∞ (X = Br, I) to form 2D 

networks through additional metal coordination to the cyclo-P5 rings rather than π stacking. [34] 

 

When pentaphosphaferrocene was treated with CuCl, a spherical fullerene-like molecule 

containing 90 noncarbon core atoms complex [{Cp*Fe-(η5:η1:η1:η1:η1:η1-

P5)}12{CuCl}10{Cu2Cl}5{Cu(CH3CN)2}5] (Q) was yielded.[35] When the stoichiometry of the 

starting materials and the concentration conditions change, it is possible to obtain exclusively 

soluble spherical molecules of the formula [{CpxFe(η5:η1:η1:η1:η1:η1-

P5)}12{CuBr}10{Cu2Br3}5{Cu(CH3CN)2}5] (Cpx = η5-C5Me5 (R), η5-C5Me4Et (S)) by reacting 

[Cp*Fe(η5-P5)] (E) with CuBr.  

In complexes R and S all phosphorus atoms of the cyclo-P5 ring of [Cp*Fe(η5-P5)] coordinate 

to the copper atoms of CuBr, which are further coordinated by phosphorus atoms of other 

cyclo-P5 rings, leading to the formation of six-membered P4Cu2 rings around the central 

cyclo-P5 ring (Figure 1.10a). The five- and six-membered ring alternation is similar to that 

seen in the fullerenes with the difference being due to the distorted tetrahedral coordination 

sphere of the Cu(I) ions. The six-membered rings are not planar, but folded along the Cu···Cu 

axis. The pseudo-hemispherically formed [Cu10Br10{CpxFe(η5-P5)}6] half-shells (Figure 1.10a) 

are joined by five [Cu2Br3]– and five [Cu(CH3CN)2]+ units (Figure 1.10b).  
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Figure 1.10 (a) View of a half shell of a molecule of S; (b) Complete ball-and-stick structure 

of a molecule of S; (c) Size comparison of the spherical molecules of C60, Q, and S (space-

filing model). [35] 

In comparison with complex Q, the spherical bodies of R and S are slightly larger. Complex S, 

for example, has an inside 12.9 Å (R: 12.2 Å) and an outside 21.4/23.7 Å (R: 21.4 Å) 

diameter that is about three times larger than the C60 fullerene (Figure 1.10c).[36] While 

heterofullerenes are known containing only a few boron, nitrogen,[37] and phosphorus 

atoms,[38] the complexes Q, R, and S exhibit a complete heteroatom composition and 

therefore represent a novel class of fullerene-like molecules. 
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2. Research objectives  
 

The discussed background presents many researched areas and introduces the unique position 

of Pn ligands complexes in supramolecular chemistry to form well defined spherical 

aggregates and networks as well as 1D and 2D polymers. It is substantive to continue 

investigating the chemistry of the phosphaferrocene as supramolecular building blocks with 

the modification of the [(RC)nP5-n]-ring (n = 0 – 2) by the replacement of one or more CR 

fragments by phosphorus atoms in the phospholyl ring and hydrogen atoms by the bulky tert-

butyl groups in the cyclopentadienyl ring of the phosphaferrocenes. Characterization of the 

resulting aggregates with the assistance of various techniques including NMR spectroscopy, 

mass spectrometry, and X-ray crystallography is also appropriate. The objectives of this work 

were as follows: 

 

• Synthesis and investigation of the properties of P-rich phosphaferrocene derivatives. 

• Use of phosphaferrocenes including [Cp'''Fe(η5-P3C2
tBu2)], [CpFe(η5-P3C2

tBu2)],  

[Cp'''Fe(η5-P3C2PhH)], [Cp'''Fe(η5-P4CtBu)] and [Cp'''Fe(η5-P5)] as building blocks with 

different transition metals to form novel supramolecular architectures. 

• Study of the properties of the obtained complexes. 
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3. Results and discussion 
 

The general goal lies in the use of Pn ligand complexes as linking units for the formation of 

supramolecular aggregates[35] such as 1D and 2D polymers and networks.[34] Thus, apart 

from the synthesis of 1,2,3-triphosphaferrocene[14] and pentaphosphaferrocene,[7] which 

were initially prepared by Scherer and coworkers, methods for 1,2,4-tri- and 1,2,3,4-

tetraphosphaferrocene complexes by using bicyclo-tetraphosphine complex as starting 

material were developed. 

 

 

3.1 Synthesis and studies of the properties of phosphaferrocenes 
 
3.1.1. Synthesis and studies of the properties of [Cp'''Fe(η5-P4CtBu)] and 

[Cp'''Fe(η5-P3C2
tBu2)] 

 

A mixture of [{Cp'''(CO)2Fe}2(μ,η1:η1-P4)] (1) and tBuC≡P in a ratio of 1:3 was stirred in 

toluene at 110 °C for 36 h. The color of this mixture changed from bright orange to brown 

during this time and the characteristic carbonyl band of 1 was not present in the IR-

spectrum. The target complex was separated from its by-products by chromatographic 

methods (Equation 3.1).  

 

Fe

P
P P P

P P
P P P P

P
P

FeCp'''Cp'''Fe

+P CtBu
Fe

Fe

P
P P

+ +

+

1 3 4

5 6

(3.1)

Fe(CO)2Cp'''
P PP

P
Cp'''(CO)2Fe

toluene,110° C

 
Cp''' = η5-C5H2

tBu3 
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In each of these thermolysis reactions a very broad signal appears in the 31P{1H} NMR 

spectrum of the reaction mixture at δ = 92 ppm (ω1/2 = 300 Hz), which suggests the 

presence of a polymeric product. The main products isolated are complexes 3 and 4, 

whereas the known cyclo-P5 complex 5[39] and 6 could only be obtained in small amounts.[40]  

The yield and ratio of the products can be influenced by the reaction time. When the 

reaction mixture is stirred for about 24 h, the most abundant product is compound 3 and 

complexes 5 and 6 are not detected. When the mixture is stirred for 48 h, the yield of 

compound 4 is larger than that of 3 and the yield of compound 5 increases, too, while 

compound 6 is absent.  

The structure of the main products suggests a P3/P1 fragmentation[41,42,43] of the bicyclo-

tetraphosphine complex 1. Similar observations were made for an indanyl-substituted 

derivative of 1 and 1-methylcyclohexylphosphaalkyne by Scherer and coworkers.[44] The 

crystals of complexes 3 and 5 are green and those of 4 are brown, whereas complex 6 forms 

red pink crystals. The compounds are readily soluble in toluene and CH2Cl2 and slightly 

soluble in nonpolar solvents, such as alkanes. They can be stored in a Schlenk tube under 

nitrogen at low temperature. 

The structures, NMR and mass spectra of compounds 3 and 4 have been discussed 

previously[40] and will not be addressed further. 

Complex 6 contains the first triphosphaallyl unit in a binuclear complex. Cyclo-P3C2 

ligands[45,46] and organoallylic EtE3 units (E = P, As)[47] were the only known phosphorus or 

allylic groups to bridge two metal centers until the present work.  
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Figure 3.1.1. Molecular structure of 6 in the crystal (Hydrogen atoms are omitted for clarity). 

Selected bond lengths (Å) and angles (°): Fe–P1 2.2059(12), Fe–P2 2.4463(13), Fe–Fe 

2.5893(11), P1–P2 2.1481(14), Fe–C1 2.102(3), Fe–C2 2.158(3), Fe–C3 2.102(4), Fe–C4 

2.103(4), Fe–C5 2.104(4), C1–Fe–P1 125.95(11), C1–Fe–P2 108.35(11), P1–Fe–Fe 

53.91(4), P1–P2–P1 100.66(8), P1–P2–Fe 56.95(4), Fe–P2–Fe 63.91(4). 

 

In the 1H NMR spectrum of compound 6 there are two singlets. The singlet at δ = 1.30 ppm 

represents two chemically and magnetically equivalent tert-butyl groups and the one at δ = 

1.21 ppm arises from the third tert-butyl group on the Cp'''-Ring.  

The 31P NMR spectrum shows two groups of signals representing an AA'M spin system, 

which is similar to that of compound 4. The triplet at δ = -380.9 ppm belongs to the PM atom 

and the two PA and PA' atoms show their signal in the form of doublet at δ = 677.8 ppm. The 
2J(PA,PM) coupling constant is 390.2 Hz and that of  2J(PM,PM') is 32.6 Hz. 

The molecular structure of 6[48] (Figure 3.1.1) reveals a cis orientation of the Cp''' groups, 

whereas the allylic P3 unit is directed away from the Fe–Fe axis. The P–P bond length of the 

allylic P3 moiety is 2.148(1) Å and thus shorter than a single bond and slightly longer than 

the P–P double bond of the EtP3 unit in [{(tripod)Co}2(μ,η3-EtP3)] (2.110 Å; tripod = 

CH3C(CH2PPh2)3).[47] The distance between the Fe atoms (2.589 (1) Å) is in the same range 

as those of various [{Cp'Fe(CO)2}2] complexes.[49] Since the electronic structure of  6 was 

not clear upon initial inspection, density functional theory (DFT) calculations were 

performed. Theoretical methods have proven to be a useful tool in analyzing the structure 
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and properties of phosphorus-containing transition-metal complexes.[1,2,50] Calculations were 

performed on the original complex 6 to analyze the steric influence of the bulky tBu groups 

(compound 6a has H atoms in place of the tBu groups found in 6). Structure optimizations 

on 6 and 6a confirm close-lying low-spin doublet states (Table 3.1.1) with an unpaired 

electron delocalized over the d orbitals of both Fe atoms. Comparison of the results obtained 

for 6 and 6a indicates that the steric repulsion between the tBu groups has an important 

influence on the electronic structure. For 6a, calculations yielded two almost degenerate 2A2 

and 2B1 states with the latter one being slightly less stable. These two states differ by the 

occupancy of the a2 and b1 orbitals, which are composed of dxz and dxy orbitals of the Fe and 

Fe' atoms (with both Fe atoms located on the y axis). 

 
Table 3.1.1. Comparison of the relative energies of different electronic states ∆E[kJ/mol] 

and selected structural parameters ([Å], [°]) for the central Fe2P3 unit of compounds 6a 

and 6 (BP86 calculations). 

[a] Symmetry point group 
 
 

The (b1)2(a2)1configuration of the 2A2 state facilitates a weak Fe–Fe´ bond interaction. 

Promoting one electron from the b1 to a2 orbital results in the 2B1 state ((b1)1(a2)2), which 

weakens the Fe···Fe' interaction and facilitates the P3→Fe π donation. In 6 the stability of 

the 2A and 2B states, which correspond to the 2A2 and 2B1 states of 6a, respectively, is 

reversed. The 2A state is now less stable because of the stronger Fe–Fe' interaction which 

results in a higher repulsion between bulky Cp'''-ligands. 

To rationalize the differences between different states of 6 and 6a an atoms-in-molecules 

(AIM)[51] topological analysis of the electronic charge density for both systems (Figure 

3.1.2) was performed. The bonding of the 2B state of 6 is similar to the 2B1 state of 6a. The 

  6a (C2v)[a]                                    6 (C2)[a]                              exp 
                        2A2                    2B1                     2A                   2B           
ΔE                 -3.2                    0.0                   9.1                    0.0 
Fe–Fe´           2.483                 2.741               2.640                2.832                  2.589 
Fe–P1            2.215                 2.192               2.219                2.202                  2.225 
Fe–P´1           2.215                 2.192               2.215                2.196                  2.206 
Fe–P2            2.488                 2.361               2.481                2.365                  2.446 
Fe–C          2.114–2.126     2.093–2.120     2.090–2.166    2.080–2.157     2.102–2.158 
P2–P1(1´)      2.189                 2.272                2.191                2.263                  2.148 
P1–P2–P1´     99.89                 94.46               97.99                 93.40                  100.71 
Fe–P1–Fe´     68.18                 77.40                73.07                 80.19                  71.51 
Fe–P2–Fe´     59.86                 70.95                64.28                 73.57                  63.92 
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2A and 2A2 states, however, differ because of the absence of the Fe–Fe' bond in 6, which is a 

result of the repulsion between the bulky tBu groups. 

 

P1
P2 Fe'Cp

P1'

CpFe

P1
P2 Fe'Cp

P1'

CpFe

P1

P2
CpFe Fe'Cp

P1'
2A2

2B1
2B 2A

 
Figure 3.1.2. Bonding schemes of the compounds 6a (2A2 and 2B1 states) and 6 (2A and 2B 

states) from the AIM analysis of electronic charge densities (Cp denotes η5-C5H5 in 6a and 

η5-C5H2
tBu3 in 6). 

 

The structural parameters calculated for the slightly less stable 2A state of 6 are in better 

agreement with experimental data than those calculated for the 2B state. Thus, the μ,η2:η2-

coordination of the allylic P3 ligand is the most probable one. Results obtained for 6 and 6a 

show that the weak Fe···Fe' interaction and repulsion between the bulky tBu groups are two 

competing effects. The DFT method may not be accurate enough to properly describe the 

balance of the two interactions. The energy difference between the two states is certainly 

within its margin for error. The delocalization of the unpaired electron over both Fe atoms is 

the reason that signals for an AA'M spin system are observed in the 31P NMR spectrum of 6, 

however, the paramagnetism might cause the large chemical shift differences in both signals, 

which is especially pronounced for the P1 and P1' atoms.  

 

 

 

 

3.1.2. Synthesis and studies on the properties of [Cp'''Fe(η5-P3C2PhH)] 
 

According to the synthetic procedure developed by Scherer and coworkers,[44] the mixture 

of [{Cp'''(CO)2Fe}2(μ,η1:η1-P4)] 1 and PhC≡CH in a ratio of 1:3 was stirred in toluene at 

110°C for 36 h. The reaction mixture was separated by column chromatography, which 

yielded a red (8) and a green fraction (9) (Equation 3.2).  
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Fe(CO)2Cp'''
P PP

P
Cp'''(CO)2Fe

PhC CH, 36h
P P P

HPh

P Ph

HPh

H
Fe Fe+

toluene, 110° C

1                                                                                    8                                    9

(3.2)

 
 

The oily compound [Cp'''Fe(η5-P3C2PhH)] (8) dissolves readily in CH2Cl2, THF, and in 

nonpolar solvents such as alkanes. It can be stored under an inert atmosphere at ambient 

conditions.  

The five-membered P3C2-ring of the sandwich complex 8 is composed of a P3 moiety 

originating from the butterfly complex 1 and PhC≡CH. The phosphorus atoms in this P3C2-

ring assume the 1, 2 and 3 positions. The related complexes [CpRFe(η5-P3C2Ph2)] (R = Cp''', 
iPr5C5) were prepared and studied by Scherer and coworkers.[14] 

In the EI-MS of compound 8 the molecular ion [Cp'''Fe(η5-P3C2PhH)]+ was found. 

Furthermore, fragments such as [Cp'''Fe(P2C2PhH)]+ and [Cp'''Fe(P2C2H2)]+ were also 

detected.  

The 1H NMR spectrum of 8 displays eight signals. The protons on the three tert-butyl groups 

give rise to the singlets at δ = 1.09, 1.12, and 1.41 ppm and the two protons (Hb and Hc) on the 

cyclopentadiene ring to two doublet of doublets at δ = 4.00 and 4.19 ppm. The doublet of 

doublet of doublets at δ = 6.24 ppm is assigned to the proton (Ha) on the P3C2-ring. The last 

two multiplets at δ = 7.07 and 7.80 ppm are attributable to the protons on the phenyl group. 

From the 31P, 1H coupled NMR spectrum the coupling constant of J(Ha,PA') = 40.08, J(Ha,PM) 

= 10.81 and J(Ha,PA) = 4.52 Hz were obtained (Figure 3.1.3). 

 

 

PA PM
PA'

HaPh

Hb

HcFe

 
                8 

Figure 3.1.3. Molecular structure of compound 8. 
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In the 31P{1H} NMR spectrum of 8 three signal groups of doublet of doublets which 

representing an AA'M spin system were detected. The signal at δ = 51.7 ppm is attributable to 

the PA atom with a coupling constant J(PA,PM) = 427.4 Hz and J(PA,PA') = 4.4 Hz, the signals 

at δ = 48.9 ppm with J(PM,PA') = 399.6 Hz belong to the PA' and those at δ = 15.2 ppm 

represent the PM in the P3C2-ring. 

Compound 9 is an air sensitive green solid. It dissolves readily in CH2Cl2, THF, and nonpolar 

solvents such as alkanes. It can be stored under an inert atmosphere at ambient conditions.  

The EI-MS of compound 9 revealed the molecular ion [Cp'''Fe(η5-PC4Ph2H2)]+. In addition, 

peaks corresponding to the cation [Cp'''Fe(C4Ph2H2)]+ with highst relative abundance and  to 

the cation [(C5H3
tBuiPr)Fe(PC4Ph2H2)]+ were detected.  

For compound 9 one can assume three possible isomeric structures (Figure 3.1.4). For the 

isomer 9c, a triplet would be expected in the proton-coupled 31P NMR spectrum, whereas 

isomer 9b would be expected to display either a triplet or a singlet, depending on whether the 

ortho-protons on the two neighboring phenyl groups couple to the phosphorus atom or not. 

Finally, isomer 9a would be expected to display either a doublet, due to coupling with Ha, or a 

doublet of doublets, due to coupling with Ha and the ortho-protons of the phenyl group at the 

2-position. The 31P NMR spectrum of complex 9 does, in fact, display a doublet of doublets at 

δ = -64.1 ppm (J(P,Ha) = 35.6 Hz; J(P,H) = 4.9 Hz) and therefore it can be inferred that 

complex 9 adopts the structure 9a.  

 

 

P

HH

Ph Ph
Fe

P

MeMe

H H
Fe

P

PhPh

H H
Fe

P

HPh

Ha Ph
Fe

  
                 9a                                 9b                                 9c               [CpFe(η5-PC4Me2H2)] 

Figure 3.1.4. Possible isomeric structures of compound 9 and the molecular structure of 

[CpFe(η5-PC4Me2H2)]. 

 

The arrangement of the phenyl groups in the PC4-ring of 9 (2 and 4 positions) is thus in 

contrast to that of the methyl groups in the PC4-ring of the similar phosphaferrocene 

[CpFe(η5-PC4Me2H2)] (positions 3 and 4), prepared by Mathey and coworkers.[52,53] The 

reason for this may be due to the steric demand of the relatively bulky phenyl groups in 9. 
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3.1.3. Synthesis and studies on the properties of [Cp'''Fe(η5-P5)]  
 

A mixture of [{Cp'''(CO)2Fe}2] and white phosphorus (P4) in a ratio of 1:1 was refluxed in 

decalin at 188 °C for 3 h.[39] The color of the reaction mixture changed from bright orange 

to greyish green during the stirring. Afterwards the reaction mixture was separated by 

column chromatography and a green fraction of 5 was yielded (Equation 3.3).  

 

 

P P
P P P

O

O
P4, 3h

decalin, reflux
(3.3)

5

FeFeFe
C

C

CO

OC

  
 

The green complex [Cp'''Fe(η5-P5)] (5) dissolves readily in CH2Cl2, THF, and is soluble in 

nonpolar solvents such as alkanes. It can be exposed to air for a short time and stored under an 

inert atmosphere at ambient conditions.  

In the EI-MS of compound 5 the molecular ion [Cp'''Fe(η5-P5)]+ was found. Furthermore, 

fragment attributable to the cation [Cp'''Fe(P3)]+ was also detected.  

The 1H NMR spectrum of compound 5 shows three signal groups: the peak at δ = 3.95 ppm 

represents two protons on the cyclopentadiene ring while the two singlets at δ = 1.08 and 

1.21 ppm correspond to the protons of the tert-butyl groups on the cyclopentadiene ring.  

As expected a singlet was also observed at δ = 165.4 ppm in the 31P{1H} NMR spectrum. 
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3.2. Study of the chemical properties and coordination behaviour of 

polyphosphaferrocenes 

 

3.2.1. Triphosphaferrocene [Cp'''Fe(η5-P3C2
tBu2)] as a ligand 

 
Different triphosphaferrocenes [Fe(η5-P2C3

tBu3)(η5-C5R5)] (R = H, Me) as ligands to prepare 

triphosphaferrocene transition metal carbonyl complexes were studied by Nixon and 

coworkers. It was observed that the first coordinating site involved one of the two adjacent 

phosphorus atoms in the P3C2 ring. Typical examples are [W(CO)5{CpFe(η5-P3C2
tBu2)}][11] 

and [M(CO)n{Cp*Fe(η5-P3C2
tBu2)}] (M = Cr, Mo, or W, n = 5).[10,18]   

In the solid-state structure of [{Cp*Fe(η2,η5-P3C2
tBu2)}{Cp*Rh(CO)}], the [Cp*Rh(CO)] 

fragment is η2-ligated to the P–P edge of the cyclo-P3C2
 

 ring and the P–P bond lengh 

elongates, by which the P–P bond order decreases because of the back donation from the 

appropriate d-orbitals of the Rh(I) center to the ring π* orbitals.[54] 

Interestingly, in complexes [{Cp*Fe(η5-P3C2
tBu2)}{M(CO)5}] the [M(CO)5] fragment 

undergoes a rapid 1,2-shift between the two adjacent P atoms of the cyclo-P3C2 ring in 

solution as indicated by their 31P{1H} NMR spectra (Figure3.2.1).  

 

(CO)5M
P

P P
Fe Fe

P
P P

(CO)5M

  
            M = Cr, Mo, or W, n = 5 

 

Figure 3.2.1. 1,2-shift between the two adjacent P atoms of the cyclo-P3C2 ring in 

[{Cp*Fe(η5-P3C2
tBu2)}{M(CO)5}].  

 

In the present work, the triphosphaferrocenes [Cp'''Fe(η5-P3
tBu2C2)], [CpFe(η5-P3

tBu2C2)] 

and [Cp'''Fe(η5-P3C2PhH)] were used to ligate CuX (X = Cl, Br, I) as well as Ag(I) and Au(I) 

salts. Different substitution pattern of the triphospholyl ring and the cyclopentadiene ring 

can influence the ligation properties of selected transition metals and the stability of the 

triphospholyl ring.  
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3.2.1.1. Reaction of [Cp'''Fe(η5-P3C2
tBu2)] with CuCl   

 

3.2.1.1.1. [Cp'''Fe(η5-P3C2
tBu2)] with CuCl in a stoichiometric ratio of 1:1 

 
Since the two adjacent phosphorus atoms in the cyclo-P3C2 ring of the triphosphaferrocene 

can ligate to transition metal centers in an end-on or side-on mode, it is reasonable to use 

Cu(I) salts to form complexes and it is expected, with the coordination feature of Cu(I), that 

different oligomers and polymers should be formed.  

A solution of CuCl in acetonitrile was carefully layered onto a solution of [Cp'''Fe(η5-

P3C2
tBu2)] (4) in CH2Cl2 in a 1:1 stoichiometric ratio at room temperature. Thus the air-

sensitive dark red crystalline dimeric copper complex [{Cp'''Fe(η5:η1:η1-P3C2
tBu2)}(μ-

CuCl)]2 (10) were obtained, in which two phosphaferrocenes bridge two CuCl units 

(equation 3.4).  
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tBu

tBu

tBu

tBu
tBu

P
P P

tBu

Fe
tBu + CuCl 

CH2Cl2/MeCN
RT

(3.4)

                           
                                                                                                        10 

The red crystalline compound 10 is only sparingly soluble in polar solvents such as CH2Cl2, 

CH3CN, and THF; it is insoluble in less polar solvents like toluene and hexane. It is air 

sensitive and can be stored under an inert atmosphere at ambient conditions.  

In the ESI-MS of compound 10 in MeCN the molecular ion is not found, but appropriate 

fragments such as [{Cp'''Fe(P3C2
tBu2)}2Cu2Cl]+, [{Cp'''Fe(P3C2

tBu2)}2Cu]+ and 

[{Cp'''Fe(P3
tBu2C2)}CuMeCN]+ were detected. These peaks suggest that the dimeric copper 

complex exists in solution. 

In the 1H NMR spectrum of the reaction mixture there are two singlets at δ = 0.9 and 1.0 

ppm, representing the protons of the tBu groups on the Cp''' ring. The singlet at δ = 1.1 ppm 

belongs to the protons of the two tBu groups on the P3C2-ring; and the singlet at δ = 4.1 ppm 

represents the two protons on the Cp''' ring. All these peaks are shifted upfield in 

comparison to the uncoordinated triphosphaferrocene 4 (δ = 1.24, 1.25, 1.36, and 4.6 ppm). 
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The 31P{1H} NMR spectrum of the reaction mixture represents an AM2 spin system with a 

triplet peak at 52.8 ppm and a broad signal at 27.6 ppm with a line width at half height (ω1/2) 

of 90 Hz. The 2J(PAPM) coupling constant is 44.2 Hz and is comparable to that of the 

starting material 4 (43.9 Hz). The comparison with the phosphorus chemical shifts of the 

free complex 4 (δ(PA) = 52.9 ppm and δ(PM) = 43.2 ppm) shows an upfield shift from the 

coordination of the lone pairs of the adjacent phosphorus atoms in the cyclo-P3C2 ring to 

copper atoms that also cause a broad signal while the chemical shift of the PA-atom remains 

almost unchanged. The broad signal at δ(PM) = 27.6 ppm shows there is no detectable 

coupling between the phosphorus and the copper centers. 

Complex 10 crystallizes in the monoclinic space group P21/n. The structure was determined 

by single-crystal X-ray diffraction as illustrated in Figure 3.2.2.  

 

 
Figure 3.2.2. Molecular structure of [(CuCl)2{Cp'''Fe(η5:η1:η1-P3

tBu2C2)}2] (10) in the 

crystal (H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): P1–P2 

2.0717(19), P1–Cu 2.1057(13), P2–Cu 2.2804(13), P1–C1 1.751(4), P2–C2 1.705(4), P3–

C1 1.670(5), P3–C2 1.792(5), P1–Fe 2.3346(14), P2–Fe 2.4568(14), P3–Fe 2.3009(13), 

Cu–Cl 2.1539(19), C1–Fe 2.266(5), C2–Fe 2.249(4), Cu–P1–P2 121.40(6), P1–P2–Cu 

124.14(6), P1–Cu–P2 114.20(6), P2–P1–C1 104.91(18), P1–P2–C2 95.72(18), P1–Fe–P2 

51.16(5), P1–P2–Fe 61.37(5), C1–P3–C2 102.0(2), P2–Cu–Cl 126.60(6), P1–Cu–Cl 

119.15(6).                                                                        
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Compound 10 consists of two triphosphaferrocene units which bridge two CuCl fragments 

via the two adjacent phosphorus atoms in the P3C2
tBu2 ring system, thus forming a six-

membered ring. The two copper atoms lie above and below the plane defined by the 

phosphorus atoms P1, P2, P1´ and P2´ (deviation of copper atoms from P1P2P1´P2´ plane = 

0.100(1) Å). This arrangement of the two copper centers is different to that of the similar 

compound [{Cp*Fe(η5:η1:η1-P3
tBu2C2)}{Ni(CO)2}]2 (F, Figure 1.2), in which the six-

membered ring consisting of four phosphorus and two nickel atoms exhibits a boat 

configuration.[17, 54] 

The coordination geometry of the copper atoms in 10 is trigonal planar with an average P–

Cu–Cl angle of 122.88(6)° and two different P–Cu bond lengths of 2.1057(13) Å and 

2.2804(13) Å. The P–P bond length (2.707(19) Å) in 10 is shorter than that in the 

uncoordinated triphosphaferrocene (2.121(3) Å), indicating that the two adjacent 

phosphorus atoms participate in η1-bonding to the Cu atoms through the phosphorus lone 

pairs. In comparison, the elongation of the P–P bond lengths in [Cp*RhCO{CpFe(η5-

P3C2
tBu2)}] arises from the back bonding of the rhodium d orbitals to the ring π* orbitals.[54]  

 

 

 

 

3.2.1.1.2. [Cp'''Fe(η5-P3C2
tBu2)] with CuCl in a stoichiometry ratio of 1:2 

 

A triphosphaferrocenic oligomer is formed when phosphaferrocene reacts with copper 

chloride in a 1:1 ratio. It is interesting to see whether a different complex will result when 

more than one equivalent of copper chloride is used.  

Direct mixing of CuCl and 4 in a ratio of 2:1 in a mixture of acetonitrile and CH2Cl2 at 

room temperature forms a brown powder, which could not be satisfactorily characterised, 

but when two equivalents of CuCl in an acetonitrile solution was layered onto a CH2Cl2 

solution of 4 at room temperature, the dark brown crystalline [{(Cp'''Fe)2(μ,η4:η1:η1-

P4)}{(μ-CuCl)2(MeCN)}]n (11) was formed after four weeks (equation 3.5). The P3C2-ring 

of 4 was fragmented to form a new triple-decker unit [{(Cp'''Fe)2(η4-P4)}] during the course 

of the reaction. This triple-decker unit coordinates readily to copper atoms to give a one-

dimensional coordination polymer.  
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Monomeric triple-decker compounds [{(CpRFe)2(η4-P4)}] (R = 1,3-(Me3Si)2C5H3 and 1,3,4-

(Me3Si)3C5H2) resulting from the reaction of [CpRFeBr(CO)2] and NaP5 were reported by 

Hey-Hawkins and coworkers.[55]   
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The polymeric compound 11 dissolves sparingly in DMF, and is insoluble in common 

solvents such as CH2Cl2, THF, and hexane. It is air sensitive and can be stored under an 

inert atmosphere at ambient conditions. 

The most abundant ion found in the ESI-MS spectra of complex 11 in MeCN at room 

temperature is the [(Cp'''Fe)2(η4-P4)]+ cation. In addition, a peak was detected corresponding 

to the [{(Cp'''Fe)2(P4)}Cu2]2+ cation confirming the existence of the metal coordinated 

triple-decker unit. In EI-MS spectrum the peak attributing to the [(Cp'''Fe)2(η4-P4)]+ cation 

with 100% relative abundant was also detected. This indicates that the triple-decker 

[(Cp'''Fe)2(η4-P4)] moiety is very stable. 

Due to its poor solubility, complex 11 was difficult to characterise by NMR, but adequate 

solubility for the mother liquor was observed. 

The 1H NMR spectrum of the mother liquor shows three peaks. The signal at δ = 4.60, 

reveals the two protons on the Cp'''-ring and the singlets at δ = 1.16 and 1.11 ppm represent 

the three tBu-groups on the Cp'''-ring, respectively. 

There are two broad signals in the 31P{1H} NMR spectrum of the reaction mixture of 11. 

One signal at δ = 66.5 ppm may be attributed to two phosphorus atoms in the middle of the 

[{(Cp'''Fe)2(μ,η4:η1:η1-P4)}] moiety with a line width at half height (ω1/2) of 510 Hz; the 

other signal at δ = 113.5 ppm (ω1/2= 610 Hz) may be assigned to the two phosphorus atoms 

at the end of the P4 skeleton. The latter chemical shift is downfield in comparison with that 

of the two phosphorus atoms in the middle of the P4 moiety due to coordination of the 

copper atoms to the two phosphorus atoms.  
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Table 3.2.1. 31P{1H} NMR spectra of 4 and its copper complexes in different solvents. For 

the reaction of 4 with CuBr and CuI, respectively will be compared in chapter 3.2.1.2. 

Mother 
liquor of the 
reaction  

      Solvent δ(PA) 
(ppm) 

δ(PM ) 
(ppm) 

J(PA,PM) 
(Hz) 

„Phosphabut-
adiene“ (ppm)

CD2Cl2 53.2 41.2 43.9   
CD2Cl2/MeCN: 6:1 53.1 41.0 44.0   
CD2Cl2/MeCN: 3:1 53.0 40.9 44.0   
CD2Cl2/MeCN: 2:1 53.0 40.8 44.0   
THF-d8/MeCN: 3:1 54.6 43.1 44.0   

       
Starting 
material 
 
       4 

C6D6 52.8 43.0 43.8   
4 + CuCl 
(1:1) 

THF-d8/MeCN: 3:1 52.8 27.6(br) 44.2   

CD2Cl2/MeCN: 3:1 50.4 28.7(br) 44.7   4 + CuBr 
(1:1) THF-d8/MeCN: 3:1 51.6 28.4(br) 44.7   

CD2Cl2/MeCN: 3:1 51.9 37.2 43.8 115.6  69.14 + CuCl 
(1:2) C6D6/CH2Cl2/MeCN:2:1:1 51.6 37.4 44.5 113.5  66.5
4 + CuBr 
(1:2) 

CD2Cl2/MeCN: 3:1 52.8 41.4 43.9 120.6 76.2 

4 + CuI   
(1:2) 

C6D6/DMF: 1:2 51.8 39.1 44.1 118.4 72.9 

 

The 31P{1H} NMR spectrum of the mother liquor shows two additional signals, one triplet 

at δ = 51.6 ppm and one doublet at δ = 37.4 ppm. According to the 31P{1H} NMR study of 

triphosphaferrocene and its copper complexes in different solvents (Table 3.2.1), the 

chemical shift of the triplet signal and coupling constant of these phosphorus spectra are 

similar to that of the uncoordinated compound 4. A small difference in chemical shift of the 

doublet signal in the NMR spectrum in comparison with the starting material indicates that 

a weak interaction between the Cu(I) species and the two adjacent phosphorus atoms in the 

cyclo-P3 ring of the starting material 4 may exist in the solution. The integration ratio of 

these signals at δ = 66.5, 113.5, 51.6, and 37.4 (4:4:1:2) matches the ratio of polymer 11 and 

that of the starting material (2:1). There is no 31P NMR spectroscopic evidence of the 

missing tBu2C2P fragment after the formation of the tetraphosphabutadiene complex in the 

reaction mixture of 11. 



 

 24

 
Figure 3.2.3. Section of the 1D polymeric structure of [{(Cp'''Fe)2(μ,η4:η4-P4)} 

{(CuCl)2(MeCN)}] (11) (H atoms are omitted for clarity). Selected bond lengths (Å) and 

angles (°): P1–P2 2.0956(19), P2–P3 2.3728(18), P3–P4 2.1023(17), P1–Cu1 2.1626(14), 

P4–Cu2 2.2285(12), P1–Fe1 2.2436(13), P2–Fe1 2.3538(13), P3–Fe1 2.3528(13), P4–Fe1 

2.2657(12), P1–Fe2 2.2462(13), P2–Fe2 2.3464(14), P3–Fe2 2.3482(11), P4–Fe2 

2.2591(12), Cu1–P1–P2 135.69(7), P1–P2–P3 105.44(7), P2–P3–P4 105.99(6), P3–P4–Cu2 

128.46(7), Cl1–Cu1–Cl2 102.86(6), P1–Cu1–Cl2 125.17(6), Cl1–Cu1–P1 131.91(6), Cl1–

Cu2–P4 121.23(6), Cl1–Cu2–Cl2 93.33(5), Cl2–Cu2–P4 116.65(5). 

 

The solid-state structure of 11 has been established by X-ray crystallography as shown in 

Figure 3.2.3. Complex 11 contains two phosphorus atoms at the two ends of the 

“phosphabutadiene” fragment in the triple-decker and are σ-bonded to two copper atoms in 

the [(μ-CuCl)2(MeCN)] unit to afford a one-dimensional polymer structure. The 

coordination geometry of one copper atom (Cu2) is tetrahedral with a Cu–P bond length of 

2.2285(12) Å and an average Cl–Cu–P bond angle of 118.9°. The other copper atom (Cu1) 

coordinates trigonally to one phosphorus atom and two chlorine atoms with a Cu–P bond 

length of 2.1626(14) Å and an average Cl–Cu–P bond angle of 128.5°. Three P–P bonds in 

the P4 skeleton show inequality: two short bonds (P1–P2 2.0956(19) and P3–P4 2.1023(17) 
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Å) and one long bond (P2–P3 2.3728(18) Å). A similar example for the inequable P4 

skeleton was also found in [{1,3,4-(Me3Si)2C5H3Fe}2(μ,η4:η4-P4)] (two short: 2.090(2) and 

2.093(2) Å, and one long: 2.436(2) Å)[55] (Figure 3.2.4).   

 

Fe

P
P P

P

R

R

Fe

 
R = -SiMe3 

Figure 3.2.4. Different P-P bonds in the complex [{1,3,4-(Me3Si)2C5H3Fe}2(μ,η4:η4-P4)]. 

 

 
   
 

3.2.1.2. Reaction of [Cp'''Fe(η5-P3C2
tBu2)] with CuBr and CuI 

 

3.2.1.2.1. [Cp'''Fe(η5-P3C2
tBu2)] with CuBr in a stoichiometric ratio of 1:1 

 
After layering an acetonitrile solution of CuBr onto a red CH2Cl2 solution of [Cp'''Fe(η5-

P3C2
tBu2)] (4) in a ratio of 1:1, the reaction mixture was kept at room temperature. A brown 

solution was formed. 

The 31P{1H} NMR spectra of this reaction mixture shows two signals, a triplet at δ = 51.6 

ppm and another broad doublet at δ = 28.4 ppm. These signals are similar to those of 10 

indicating that there could be a dimeric complex 12 with CuBr present in the reaction 

mixture (equation 3.6 and Table 3.2.1). 
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(3.6)

                              
                                                                                                  12 

These analyses are confirmed by the mass spectra of the reaction mixture. The ESI-MS in 

MeCN at room temperature shows the corresponding fragments such as 

[{Cp'''Fe(P3C2
tBu2)}2{Cu(MeCN)}2]+, [{Cp'''Fe(P3C2

tBu2)}2Cu]+, and 

[{Cp'''Fe(P3C2
tBu2)}Cu]+. Ions in the solution like those in the mass spectra of 10 were 

detected. These data indicate the presence of the dimeric complex with copper bromide. 

 

 

Since no crystals were obtained from the previously mentioned reaction, another experiment 

was carried out. A solution of CuBr in CH3CN was layered onto 4 in CH2Cl2 in the ratio of 

1:1 and after the two reactants diffused completely, the reaction mixture was concentrated 

and kept at -28 °C for two weeks. Dark brown plates of complex 13 were obtained 

(Equation 3.7).  

 

P P
P

tButBu
Fe
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CH2Cl2/CH3CN

RT

Fe
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Br

tBu

Fe

tBu

tBu

tBu
tBu

tBu

Cu
Br

CuBr P
P

tBu

tBu

tBu

P
P

tBu (3.7)
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The P3C2-ring of the starting material 4 in this reaction is fragmented. Only the two adjacent 

phosphorus atoms of the P3C2-ring remain in the synthesized P2C2 four-membered ring. 

Two fragments of [Cp'''Fe(η4-P2C2
tBu2)] are linked by two CuBr units to form a novel 

dimeric complex [{Cp'''Fe(η4:η1:η1-P2C2
tBu2)}(μ-CuBr)]2 (13). This experiment shows that 
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with different reaction conditions, the cyclo-P3C2 ring can split to rearrange into a four-

membered 1,2-diphosphete ring. 

  

 

Figure 3.2.5. Molecular structure of [(CuBr)2{Cp'''Fe(η4:η1:η1-P2C2
tBu2)}2] (13) in the 

crystal (H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): P1–

P2 2.1480(5), P1–C7 1.8647(5), P2–C6 1.7598(6), P1–Cu1 2.2483(4), P2–Cu1 

2.2245(7), Cu1–Br1 2.2863(6), P1–Fe1 2.2588(6), P2–Fe1 2.2809(6), C6–Fe1 

2.1445(7), C7–Fe1 2.1666(8), C6–C7 1.4061(4), P1–Cu1–P2 99.803(11), Cu1–P2–P1 

133.398(11), Cu1–P1–P2 126.79(2), C6–P2–P1 78.433(15), P2–P1–C7 77.847(12), P2–

C6–C7 105.595(14), C6–C7–P1 98.123(22). 

 

Complex 13 crystallizes in the triclinic space group P1  and the structure is illustrated in 

Figure 3.2.5. In complex 13, two copper centers are bridged by two cyclo-P2C2 rings, thus 

forming a six-membered ring with a planar conformation. This P4Cu2-ring together with the 

two P2C2-rings adopts a chair conformation. The copper atoms here are in a trigonal planar 

coordination mode with two phosphorus atoms and one bromine atom (average P–Cu–Br 

angle of 130.09°). The average P–Cu bond length is 2.2364 Å. The P–P bond length in 13 

(2.1480(5) Å) is longer than that of the starting material 4 (2.121(3) Å) because of the 

greater ring strain of the four-membered ring in comparison to the five-membered ring. This 

P-P bond length is almost the same as that in the complex [1,2-η-{(3,4-di-tert-butyl-η4-1,2-
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diphosphete)-Fe(CO)3}(Cr(CO)5)2] (2.147(2) Å) synthesized by Zenneck and coworkers 

and the both P–P bond lengths are shorter than that in the complex [(3,4-di-tert-butyl-η4-

1,2-diphosphete)(η8-COT)-Ti] (2.175 Å (av)).[56] The reason for that is the lone pairs of the 

two phosphorus atoms of the P2C2-ring participate in η1-bonding to the metal atoms. The 

average P–C bond length of P2C2-ring in complex 13 (1.8123 Å (av)) is similar to that in the 

two diphosphete complexes as shown below (1.816, 1.811 Å (av)). 

 

P
P

Fe

(CO)3

Cr(CO)5

Cr
P

P

(CO)5

Ti
COT

  
[1,2-η-{(3,4-di-tert-butyl-η4-1,2-                                    [(3,4-di-tert-butyl-η4-1,2- 
diphosphete)-Fe(CO)3}(Cr(CO)5)2]                                 diphosphete)(η8-COT)-Ti] 
 
 

Since there are 17 electrons in the valence orbitals of the [{Cp'''Fe(η4-P2C2
tBu2)}] moieties, 

complex 13 must be paramagnetic. This is confirmed by ESR spectroscopy. In the ESR 

spectrum a signal at g1 = 2.026 shows a hyperfine splitting with a = 10 mT, suggesting that 

there are unpaired electrons delocalized over the whole plane of the two four-membered 

rings, P2C2, and six-membered ring P4Cu2. The half field signal for an antiferromagnetic 

coupling of g2 = 5.3 indicates the existence of two unpaired electrons in this compound. The 

g1 factor for the ferrocenium cation, implies 17 valence electrons for the two iron atoms 

(Figure 3.2.6). 

 

 

 
 

         Figure 3.2.6. X-band ESR spectrum of the compound 13. 



 

 29

3.2.1.2.2. [Cp'''Fe(η5-P3
tBu2C2)] with CuBr and CuI in a stoichiometric 

ratio of 1:2 
 

The cyclo-P3C2 ring can be fragmented when [Cp'''Fe(η5-P3
tBu2C2)] is treated with two 

equivalents of CuCl or one equivalent of CuBr. It is assumed that apart from the accessible 

coordination of the Cu(I) center, the size of the halide also affects the ring fragmentation. In 

order to gain further insight into the coordination behaviour of triphosphaferrocene with 

copper halides, similar procedures to those for the synthesis of 11 were carried out. When 

two equivalents of CuX (X = Br, I), respectively, in acetonitrile were layered onto a CH2Cl2 

solution of 4, the air sensitive dark brown crystalline compounds [{(Cp'''Fe)2(μ,η4:η1:η1-

P4)}{(μ-CuX)2(MeCN)}]n (X = Br (14), I (15)) were formed. Even with one equivalent of 

CuI, compound 15 was obtained. As with the complex 11, the P3C2-ring of the starting 

material 4 was fragmented and rearranged to form a new triple-decker [{(Cp'''Fe)2(η4-P4)}] 

unit during the reaction (reaction equation 3.8). 
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Fe Fe
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tBu
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P

Fe

CuCu
CH2Cl2/MeCN

RT
(3.8)

n

 
 

The polymeric compounds 14 and 15 can be stored under an inert atmosphere. They are 

sparingly soluble in DMF and do not dissolve in common solvents such as CH2Cl2, toluene 

or THF. 

The ESI-MS of 14 at room temperature displays peaks corresponding to the cations of 

[{(Cp'''Fe)2(P4)}2Cu]+, [{(Cp'''Fe)2(P4)}Cu]+ and [(Cp'''Fe)2(P4)]+. In the ESI-MS spectrum 

of complex 15, the signals attributed to the cations of [{(Cp'''Fe)2(P4)}Cu2I]+, 

[{(Cp'''Fe)2(P4)}Cu2]2+ and [{(Cp'''Fe)2(P4)}]+ were also detected.  

Due to the poor solubility of the polymer in common solvents, the reaction solution of 14 

and 15 were taken for NMR measurement. There are two broad signals in the 31P{1H} NMR 

spectrum of the reaction solution of 14: one signal at δ = 76.2 ppm with a line width at half 
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height (ω1/2) of 520 Hz and the other signal at δ = 120.6 ppm (ω1/2= 490 Hz), which is 

assigned to the two phosphorus atoms at the end of the P4 skeleton.  

In the 31P{1H} NMR spectrum of the reaction solution of 15: one signal at δ = 72.9 ppm 

with a line width at half height (ω1/2) of 1300 Hz and the other signal at δ = 118.4 ppm 

(ω1/2= 650 Hz), which is assigned to the two phosphorus atoms at the end of the P4 skeleton 

(Table 3.2.1).  

The NMR spectra of 14 and 15 reveal that there are two different chemically inequivalent 

phosphorus atoms and this suggests that oligomers should exist in solution, in which two 

phosphorus atoms at the end of the P4 skeleton coordinate to the copper atoms. 

As in the case of 11, the 31P{1H} NMR spectra of the reaction solution of 14 and 15 show 

also two additional signals (14: 52.8 and 41.4 ppm, 15: 51.8 and 39.1ppm), which are only 

marginally different compared to those of the starting material (Table 3.2.1). These signals 

indicate that there are weak interactions between the Cu(I) species and the unreacted 

starting materials.  

 

Table 3.2.2. 31P NMR spectra of [{(Cp'''Fe)2(μ,η4:η1:η1-P4)}{(μ-CuX)2(MeCN)}]n 

in DMF/C6D6 and [{(CpRFe)2(μ,η4-P4)}] in C6D6. 

Chemical shift (ppm) 

[{(CpRFe)2(μ:η4-P4)}] 104.9 (br)  

11 78.5 (br) 

14 82.3 (br) 

15 90.2 (br) 

  
   CpR = 1,3,4-(Me3Si)3C5H2, X = Cl (11), Br (14), I (15) 
 

Since these triple-decker copper polymers (11, 14 and 15) dissolve sparingly in DMF, the 

NMR spectra of these solutions were recorded. In each NMR spectrum of the three 

solutions at room temperature, one broadened signal was detected (Table 3.2.2). These 

signals are comparable to that of [{(CpRFe)2(μ,η4-P4)}][55] and indicate that in solution the 

polymer chain may be depolymerised to [(Cp'''Fe)2(η4-P4)] moieties and a dynamic process 

was occurred (Figure 3.2.7). Considering the somewhat different chemical shifts in these 

spectra, there must be a weak interaction between the triple-decker [(Cp'''Fe)2(η4-P4)] unit 

and copper halides. 
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Figure 3.2.7. Proposed dynamic behaviour of the [(Cp'''Fe)2(η4-P4)] moiety in solution. 

 
Figure 3.2.8. Section of the structure of [{(CuBr)2MeCN}{(Cp'''Fe)2(μ,η4:η4-P4)}] (14) in 

the crystal (H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): P1–

P2 2.093(6), P2–P3 2.303(7), P3–P4 2.121 (6), P4–Cu2 2.160(5), P1–Cu1 2.183(6), P1–Fe1 

2.233(6), P2–Fe1 2.348(5), P3–Fe1 2.348(5), P4–Fe1 2.225(5), P1–Fe2 2.236(6), P2–Fe2 

2.344(5), P3–Fe2 2.348(6), P4–Fe2 2.250(5), Cu1–Br1 2.389(3), Cu1–Br2 2.403(3), Cu2–

Br1 2.437(5), Cu2–Br2 2.449(4), Cu1–P1–P2 129.8(3), P1–P2–P3 106.5(3), P2–P3–P4 

106.4(3), P3–P4–Cu2 124.2(3), Br1–Cu1–Br2 104.6(13), Br1–Cu1–P1 129.43(19), Br2–

Cu1–P1 125.28(18), Br1–Cu2–Br2 101.79(14), Br1–Cu2–P4 128.1(2), Br2–Cu2–P4 

123.1(2). 

 

The solid-state structures of 14 and 15 have been established by X-ray crystallography and 

the structures are shown in Fig. 3.2.8 and Fig. 3.2.9, respectively. In these complexes two 
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phosphorus atoms at the end of the “tetraphosphabutadiene” fragment in the triple-decker 

complex are bound to two copper atoms in the [(μ-CuX)2(MeCN)] unit to form a one-

dimensional polymer. Similar to complex 11, the coordination geometry of one copper atom 

(Cu2) is tetrahedral with a Cu2–P4 bond length of 2.1596(5) Å for 14 and 2.2458 (18) Å for 

15 and X–Cu2–P4 bond angles averaging 125.6°(2) for 14 and 117.64°(6) for 15. The other 

copper atom (Cu1) coordinates planar trigonally to one phosphorus atom and two chlorine 

atoms with Cu1–P1 bond lengths equal to 2.183(6) Å for 14 and 2.1994(16) Å for 15 and 

X–Cu1–P1 bond angles averaging 127.36° for 14 and 126.3° for 15. In parallel with the 

case of complex 11 and [{(CpRFe)2(μ:η4-P4)}], three P–P bonds in the P4 skeleton show 

inequality, two short bonds (P1–P2 2.093(6) Å and P3–P4 2.121(6) Å in 14) and (P1–P2 

2.103(2) Å and P3–P4 2.105(2) Å in 15) and one long bond (P2–P3 2.303(7) Å in 14 and 

2.3382(19) Å in 15) (Table 3.2.3). The P–Fe bond length of these tetraphosphabutadiene 

moieties are also found to be in two groups: short Fe–P1 (14: 2.233(6), 15: 2.2429(17) Å) 

and Fe–P4 (14: 2.225(5), 15: 2.2480(16) Å) bonds; and long Fe–P2 (14: 2.348(5), 15: 

2.3520(15) Å) and Fe–P3 bonds (14: 2.348(5), 15: 2.3531(15) Å). 

 

Table 3.2.3. Comparison of the different P-P bond length in complexes [{(CpRFe)2(μ:η4-

P4)}] and 11, 14 and 15. 

“short bonds” (Å) “long bond” (Å)  

P1–P2 P3–P4 P2–P3 

[{(CpRFe)2(μ:η4-P4)}] 2.090 (2) 2.093 (2) 2.436 (2) 

11 2.0956 (19) 2.1023 (17) 2.3728 (18) 

14 2.093 (6) 2.121 (6) 2.303 (7) 

15 2.103 (2) 2.105 (2) 2.3382 (19) 

 
CpR = 1,3,4-(Me3Si)3C5H2 
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Figure 3.2.9. Section of the structure of [{(CuI)2(MeCN)}{(Cp'''Fe)2(μ,η4:η4-P4)}] (15) in 

the crystal (H atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): P1–

P2 2.103(2), P2–P3 2.3382(19), P3–P4 2.105(2), P4–Cu2 2.2458(18), P1–Cu1 2.1994(16), 

P1–Fe1 2.2429(17), P2–Fe1 2.3520(15), P3–Fe1 2.3531(15), P4–Fe1 2.2480(16), P1–Fe2 

2.2467(16), P2–Fe2 2.3515(18), P3–Fe2 2.3480(17), P4–Fe2 2.2565(16), Cu1–I1 2.5652(8), 

Cu1–I2 2.5639(8), Cu2–I1 2.7003(12), Cu2–I2 2.7116(2), Cu1–P1–P2 129.83(8), P1–P2–

P3 106.09(9), P2–P3–P4 106.41(9), P3–P4–Cu2 115.19(9), I1–Cu1–I2 107.20(3), I1–Cu1–

P1 128.17(5), I2–Cu1–P1124.41(5), I1–Cu2–I2 99.3(4), I1–Cu2–P4 119.46(6), I2–Cu2–P4 

115.82(6). 
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3.2.2. The Triphosphaferrocene [CpFe(η5-P3C2
tBu2)] as a Ligand 

 

3.2.2.1. Reaction of [CpFe(η5-P3C2
tBu2)] with CuCl  

 
Due to the similarity of the structures of [CpFe(η5-P3C2

tBu2)] and [Cp'''Fe(η5-P3C2
tBu2)], it 

was of interest to determine whether the difference in the substitution pattern of the 

cyclopentadiene rings would affect the reactivities and the coordination properties of the 

triphosphaferrocene. Thus, one and two equivalents of CuCl were reacted with [CpFe(η5-

P3C2
tBu2)], respectively. From both reactions the same red crystals of 16 were obtained. The 

formation is similar to the dimeric copper complex [{Cp'''Fe(η5:η1:η1-P3C2
tBu2)}(μ-CuCl)]2 

(10), in which two phosphaferrocenes are linked by two CuCl centers (equation 3.9). But in 

contrast to 10, complex 16 reveals tetrahedrally coordinated copper atoms. 
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The red crystalline compound 16 is soluble in MeCN, but it dissolves only sparingly in 

CH2Cl2 and THF. The complex is stable at room temperature and can be stored under an 

inert atmosphere.  

In the positive ESI-MS spectrum of 16 at room temperature, a peak with 100% relative 

abundance was assigned to the cation of [{CpFe(P3C2
tBu2)}2Cu]+. Another peak was 

detected corresponded to the [{CpFe(P3C2
tBu2)}2Cu2Cl]+ cation. This indicates the existence 

of the dimeric complex of 16 in solution. 

The 1H NMR spectrum of 16 in CD2Cl2 displays two singlets at δ = 1.33 ppm and δ = 4.79 

ppm, which represent the protons on the tBu group and the Cp ring (signals of the free 

ligand are at δ = 1.29 ppm and δ = 4.71 ppm).[54] 

The 31P{1H} NMR spectrum of 16 in CD2Cl2 shows one slightly broadened triplet (δ(PA) = 

33.1 ppm) and one broad doublet (δ(PM) = 15.4 ppm) with coupling constant of J(PA,PM) ≈ 
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45.7 Hz. Compared with the corresponding chemical shifts of the free ligand [CpFe(η5-

P3C2
tBu2)] (δ(PA) = 40.2 ppm and δ(PM) = 39.6 ppm),[17] the doublet peak is broadened and 

shifted upfield due to the coordination of the two adjacent phosphorus atoms in the P3C2-

ring with their lone pairs to copper atoms.  

Complex 16 crystallizes in the monoclinic space group P21/n and, as is the case with the 

dimeric copper complex 10, compound 16 consists of two CuCl fragments doubly bridged 

by two triphosphaferrocene units via the two adjacent phosphorus atoms of the P3C2
tBu2 

ring system. In parallel with complex 10, a six-membered ring is formed which is not 

strictly planar (deviation of the copper atoms from the P2P3P2´P3´ plane = 0.189(1) Å). 

The two five-membered P3C2 rings and the P2P3P2´P3´ plane are coplanar, and a “stair-

like” arrangement of the whole molecule can be determined (Figure 3.2.10). 

 

 
 

Figure 3.2.10. Molecular structure of [(CuCl)2{CpFe(η5:η1:η1-P3
tBu2C2)}2] (16) (H atoms 

are omitted for clarity). Selected bond lengths (Å) and angles (°): P2–P3 2.1163(2), P2–Cu 

2.2891(3), P3–Cu 2.2804(4), P2–C1 1.7742(3), P3–C6 1.7740(3), P1–C1 1.7661(3), P1–C6 

1.7841(3), P2–Fe1 2.3405(2), P3–Fe1 2.3351(2), P1–Fe1 2.3026(2), Cu1–Cl1 2.2902(2), 

C1–Fe1 2.1311(1), C6–Fe1 2.1340(2), Cu–P2–P3 123.569(4), P2–P3–Cu1 124.560(4), P2–

Cu1–P3 111.018(4), P3–P2–C1 99.181(5), P2–P3–C6 99.906(5), P2–Fe1–P3 53.826(2), 

P2–P3–Fe1 63.219(2), C1–P1–C6 99.249(5), P3–Cu1–Cl1 113.491(3), P2–Cu1–Cl1 

105.506(3).     
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The copper atoms are tetrahedrally bonded to two phosphorus atoms of two different cyclo-

P3C2 rings, one chlorine atom, and one nitrogen atom of an acetonitrile molecule (average 

P–Cu–Cl angle 109.50(8)°). This is in contrast to complex 10 where the copper atoms 

coordinate trigonally to two phosphorus atoms and one chlorine atom. The reason may be 

the steric hindrance of the bulky tBu groups attached to the cyclopentadiene ring of complex 

10 to allow only the trifold coordination of copper atom. The Cu–P bond lengths (2.2847(19) 

Å) in 16 are longer than that in the complex 10 (2.1930(15) Å) suggesting that the Cu–P 

interaction is also influenced by the coordination geometry. Likewise, no variation of the P–

P bond lengths was found in 16 (2.116(2) Å) and the free ligand [CpFe(η5-P3C2
tBu2)] 

(2.114(1) Å). 

 

 
3.2.2.2. Reaction of [CpFe(η5-P3C2

tBu2)] with CuBr 
 
With the same layering technique as in the procedure for the preparation of 10, [CpFe (η5-

P3C2
tBu2)] and CuBr were reacted in a ratio of 1:1. The reaction solution was kept at room 

temperature and red crystalline plates were yielded.  

This compound dissolves moderately in MeCN and sparingly in CH2Cl2. It can be stored 

under an inert atmosphere at ambient conditions. 

The structure of the red crystalline complex was determined by single-crystal X-ray 

diffraction and shown to consist of a polymer chain in which tetraphosphabutadiene 

moieties bridge (CuBr)2 units in a similar manner to that observed in complex 11. However, 

due to crystal twinning, the structure could only be partly solved.  

 

The ESI-MS spectrum of the mother liquor in MeCN reveals the peaks attributed to the 

cations of [{FeCp(P3C2
tBu2)}2Cu2BrMeCN]+, [{FeCp(P3C2

tBu2)}2Cu]+, and 

[{FeCp(P3C2
tBu2)}Cu2Br(MeCN)2]+ suggests, that there should be a dimeric copper 

complex (17) similar to 16 (Figure 3.2.11) in the reaction solution. 
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Figure 3.2.11. Proposed structure of the dimeric complex 17. 

 

The 31P{1H} NMR spectrum of the mother liquor shows one triplet (δ = 33.5 ppm) and one 

broadened doublet signal (δ = 14.6 ppm). The broadened doublet is shifted 25 ppm upfield 

compared to the starting material. This NMR spectrum, which is very similar to that of 

compound 16 and 19 (Table 3.2.4), may confirm the existence of the dimeric copper 

complex 17 in mother liquor. 

 

Table 3.2.4. 31P{1H} NMR of [CpFe(η5-P3C2
tBu2)] and its dimeric complexes. 

Compound        solvent δ(PA) 
(ppm) 

δ(PM) 
(ppm) 

J(PA,PM) 
 (Hz) 

 [CpFe(η5-P3C2
tBu2)] CDCl3 40.2 (t) 39.6 (d) 45.4 

      16 CD2Cl2/MeCN: 3:1 33.1 (t) 15.3 (br) 45.4 
       17 CD2Cl2/MeCN: 3:1 33.5 (t) 14.6 (br) 44.6 
       18 a) CD2Cl2/MeCN: 3:1 34.9 (br) 8.2 (br)  
      19 b) THF-d8/CH2Cl2: 3:1 34.3 (t) 12.7 (d) 44.3 
 
a) For the synthesis of 18 c.f. chapter 3.2.2.3 
b) For the synthesis of 19 c.f. chapter 3.2.2.4 

 
Unfornunately, no single crystal suitable to X-ray diffraction of 17 could be obtained. 
 
 
 
 
3.2.2.3. Reaction of [CpFe(η5-P3C2

tBu2)] with CuI 
 
Previous studies of the coordination behaviour of [Cp'''Fe(η5-P3C2

tBu2)] (4) and [CpFe(η5-

P3C2
tBu2)] (7) with copper halides showed that dimeric copper complexes 10, 13, 16 and 17 

were obtained when the triphosphaferrocene reacts with CuCl or CuBr in a ratio of 1:1, but 
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only one polymer product was yielded, regardless of whether one or two equivalents of CuI 

were used to react with 4. Thus, two equivalents of copper iodide were used when treated 

with [CpFe(η5-P3C2
tBu2)]. 

An acetonitrile solution of CuI was carefully layered onto a CH2Cl2 solution of [CpFe(η5-

P3C2
tBu2)] in a 2:1 stoichiometry at room temperature. Slow diffusion yielded an air-

sensitive red crystalline compound 18 (equation 3.9), which can be stored under an inert 

atmosphere at ambient conditions. The same product was obtained by treating of [CpFe(η5-

P3C2
tBu2)] and CuI in a 1:1 stoichiometric ratio. 

 

P P
P

Fe + CuI 
MeCN/CH2Cl2

RT

P
P

P

P
P

PP

P
P

Cu
I I

Cu
I

Cu Cu
I

Cu
I

Cu Cu
II

P
P

P

MeCN

18

(3.9)

= [CpFe(P3C2
tBu2)]

 

Compound 18 dissolves moderately in CH2Cl2, MeCN, sparingly in THF, and not in 

nonpolar solvents such as alkanes.  

In the EI-MS spectrum of 18, the [{CpFe(P3C2
tBu2)}3Cu7I6]+, [{CpFe(P3C2

tBu2)}3Cu5I6]+ 

and [{CpFe(P3C2
tBu2)}3Cu4I5]+ cations were detected. These fragments show a successive 

loss of copper and iodine atoms from the original molecule under the condition of electron 

impact. 

The 1H NMR spectrum of 18 shows three signals, two multiplets (δ = 0.80 and 1.23 ppm) 

representing the tBu group on the P3C2-ring of the molecule. This indicates that the protons 

on the two tBu groups are chemically and magnetically inequivalent. The third signal at δ = 

3.56 ppm belongs to the protons on the cyclopentadiene ring. 

In the 31P{1H} NMR spectrum of 18 there are two broad signals centered at δ = 8.2 and 34.9 

ppm, respectively. In comparison with the corresponding chemical shifts of the free 

complex [CpFe(η5-P3
tBu2C2)] (δ(PA) = 39.6 ppm and δ(PM) = 40.2 ppm), a significant 
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upfield shift of the signal corresponding to the adjacent phosphorus atoms in the P3C2 ring is 

observed. 

The molecular structure of 18 was determined by single-crystal X-ray diffraction as 

illustrated in Figure 3.2.11. In complex 18 three fragments of [CpFe(η5-P3C2
tBu2)] are 

connected to each other through the two adjacent phosphorus atoms of the P3C2 rings and 

the copper atoms of (CuI)7 unit.  

 

  
 
Figure 3.2.12. Molecular structure of 18 in the crystal (H atoms are omitted for clarity). 

Selected bond lengths (Å) and angles (°): P1–P1 2.1102(6), P3–P3 2.1093(5), P1–C31 

1.752(12), P2–C31 1.779(15), P3–C41 1.7499(9), P1–Cu2 2.2337(4), P3–Cu3 2.2425(3), 

Cu1–I2 2.712(5), Cu1–I3 2.671(3), Cu2–I1 2.897, Cu2–I3 2.5889(11), Cu3–I1 2.9077(15), 

Cu3–I2 2.5848(14), Cu3–I3 2.5975(14), Cu3–P3–P3 123.42(7), Cu2–P1–P1 122.60(9), 

Cu2–I1–Cu2 102.48(8), Cu3–I1–Cu3 103.86(6), Cu2–I1–Cu3 144.60(3). 

 

The (CuI)7 unit consists of a cubic shaped (CuI)4 unit and a chair-like six-membered (CuI)3 

ring. The three copper atoms of the (CuI)3 unit are bonded to an iodine atom (I1) of the 

(CuI)4 unit. In this distorted cubic (CuI)4 unit all Cu atoms exhibit the tetrahedral 

coordination geometry which shows a “cubane”-like tetranuclear cuprous halide cluster 

(Figure 3.2.13). One of the causes of the distortion is probably the variation of the Cu····Cu 
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distances (ranging from 2.731(5) to 3.060(3) Å), which is quite common in CuI clusters.[57] 

It indicates that a weak attractive potential between the metal centers, which is, very 

sensitive to steric effects and the electronic properties of the ligands[58]. The average Cu–I 

bond length (2.708 Å) in the (CuI)4 unit is slightly longer than those in the complexes 

Cu4I4(PPh2Me)4 (2.698 Å) and Cu4I4(PPh3)4 (2.691 Å)[59] and longer than that in the similar 

complex [{Cp*Fe(η5:η1:η1-P3C2
tBu2)}4(CuI)7] (2.683 Å) obtained in our group by Andrea 

Schindler[60]. The average Cu–P bond length (2.238 Å) in the (CuI)4 unit is almost the same 

as that in [{Cp*Fe(η5:η1:η1-P3C2
tBu2)}4(CuI)7] (2.237 Å) but slightly shorter than those in 

Cu4I4(PPh2Me)4 (2.250 Å) and Cu4I4(PPh3)4 (2.252 Å). 

Cu

X Cu

X
Cu

X

X

Cu
L

L

L

L  
Figure 3.2.13. Tetranuclear cuprous halide cluster Cu4(μ3-X4)L4. 

 

The iodine atom (I1) in the core connected to six copper atoms has a relatively longer 

average distance (2.902 Å) in comparison to the rest of the Cu–I bond lengths (2.631Å) and 

is shorter than that in [{Cp*Fe(η5:η1:η1-P3C2
tBu2)}4(CuI)7] (2.941 Å) (Figure 3.2.12). One 

copper atom of the (CuI)4 unit and one of the (CuI)3 unit are bridged by the two adjacent 

phosphorus atoms of the cyclo-P3C2 ring on the triphosphaferrocene moiety with the “side 

on” coordination mode.  

       
                                                                                                    
                      18                                                     [{Cp*Fe(η5:η1:η1-P3

tBu2C2)}4(CuI)7] 
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Figure 3.2.14. Cage structure of 18 and [{Cp*Fe(η5:η1:η1-P3

tBu2C2)}4(CuI)7]. 
 
The only difference in the structures between 18 and [{Cp*Fe(η5:η1:η1- P3C2

tBu2)}4(CuI)7] 

is the “head” copper atom (Cu1 and Cu7, respectively) of the (CuI)7 unit. In the 

[{Cp*Fe(η5:η1:η1-P3C2
tBu2)}4(CuI)7] the copper atom (Cu7) coordinates to a phosphorus 

atom of a fourth [Cp*Fe(η5-P3C2
tBu2)] fragment whereas in 18 the copper atom (Cu1) 

coordinates to the nitrogen atom of  a MeCN molecule (Figure 3.2.14). 

 

 

 
3.2.2.4. Reaction of [CpFe(η5-P3C2

tBu2)] with Ag[Al{OC(CF3)3}4] 
 
Previous experiments with different silver salt solutions such as AgCF3SO3, AgCF3CO2 and 

Ag[Al{OC(CF3)3}4] layered onto the [CpFe(η5-P3C2
tBu2)] solution result in precipitation of 

silver on the schlenk wall after a few days. The reason may come from the instability of 

silver salts in solution. It is reasonable to stir the reaction mixture in a minimal amount of 

time. Thus, direct mixing of the reactants was carried out rather than the layering technique. 

A mixture of [CpFe(η5-P3C2
tBu2)] with Ag[Al{OC(CF3)3}4] in a 1:1 ratio in a solution of 

CH2Cl2 and MeCN was stirred at room temperature for one hour, afterwards the black 

powder that was produced during the reaction was filtered and the filtrate was kept at about 

4 °C until the air- and light-sensitive red orange crystalline compound 19 was formed 

(equation 3.10). 
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Compound 19 dissolves in THF, MeCN, and sparingly in CH2Cl2; it is not soluble in 

nonpolar solvents such as alkanes. It can be stored under an inert atmosphere at low 

temperature. 

In the negative ESI-MS spectrum of 19 in MeCN at room temperature a peak with 100% 

relative abundance corresponding to the [Al{OC(CF3)3}4]¯ anion was detected. The positive 

ESI-MS spectrum reveals a peak with the highest relative abundance corresponds to the 

[{CpFe(η5-P3C2
tBu2)}2Ag]+ cation. In addition, a peak attributed to the [{CpFe(η5-

P3C2
tBu2)}AgMeCN]+ cation was detected. This indicates that the dimeric silver complex 

[{CpFe(η5-P3C2
tBu2)}2Ag2]2+ is most likely present in solution. 

The 1H NMR spectrum of 19 shows two signals. One singlet at δ = 1.43 ppm represents the 
tBu group of the P3C2 ring. The singlet at δ = 3.58 ppm belongs to the protons on the 

cyclopetadiene ring. 

In the 31P{1H} NMR spectrum of 19 there are two signals, one triplet at δ = 34.3 ppm and 

one broad doublet at δ = 12.7 ppm which represent the two adjacent phosphorus atoms of 

the P3C2 ring. The corresponding chemical shifts of 19 are shifted upfield in comparison to 

that in the free complex [CpFe(η5-P3
tBu2C2)] (δ(PM) = 39.6 ppm and δ(PA) = 40.2 ppm). An 

upfield shift of the signals is also observed in 16 and 17 (Table 3.2.2.). 

 
 

  
 
Figure 3.2.15. Structure of the cationic part of complex 19 (H atoms are omitted for clarity). 

Selected bond lengths (Å) and angles (°): P2–P3 2.0893(3), P2–Ag1 2.4323(3), P3–Ag1 

2.4623(4), P1–C1 1.7510(3), P1–C2 1.8225(3), P1–Fe1 2.3092(3), P2–Fe1 2.3301(2), P3–
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Fe1 2.2709(3), C1–Fe1 2.1397(2), C2–Fe1 2.1084(2), Ag1–P2–P3 121.332(7), Ag1–P3–P2 

119.374(5), P2–Ag1–P3 115.416(4). 

 

Similar to the dimeric copper complexes 10 and 16, the cationic part of compound 19 

consists of two triphosphaferrocene units doubly bridged to two silver centers by the two 

adjacent phosphorus atoms of the P3C2
tBu2 ring system forming a six-membered ring 

(Figure 3.2.15). The two silver atoms lie above and below the plane defined by the 

phosphorus atoms P2, P3, P´2 and P´3 (deviation of silver atoms from P2P3P´2P´3 plane = 

0.424(1) Å) and are triply coordinated to two phosphorus atoms of two different P3C2 rings 

and one nitrogen atom of an acetonitrile molecule, creating a P–Ag–P angle of 115.42(4)°. 

The two slightly different Ag–P bond lengths are observed (2.4323(3), 2.4623(4) Å) in 19 

and both are remarkably longer than the Cu–P bond length (2.2847(19) Å) in the compound 

16. The P–P bond length (2.0893(3) Å) in 19 is shorter than that in 16 (2.116(2) Å) and the 

free complex [Fe(η5-P3C2
tBu2)] (2.114(1) Å)[54]. 

 

 

 
 
3.2.3. The triphosphaferrocene [Cp'''Fe(η5-P3C2PhH)] as a ligand 
 
3.2.3.1. Reaction of [Cp'''Fe(η5-P3C2PhH)] with copper halides 
 
While the previous investigation of the reactivity and coordination behaviour of 1,2,4-

triphosphaferrocenes shows that only two adjacent phosphorus atoms can coordinate to a 

copper center keeping the cyclo-P3C2 ring intact or fragmented during the reaction, no 

coordination of the third phosphorus atom occurs because of the probable steric hindrance of 

the two bulky tert-butyl groups. It is expected that 1,2,3-triphosphaferrocene would form 

oligomers or polymers with 1,2-, 1,3- or 1,2,3-coordination modes. Copper(I) halides were 

treated with [Cp'''Fe(η5-P3C2PhH)] and red crystals were obtained from a layering reaction 

involving CuBr/MeCN and [Cp'''Fe(η5-P3C2PhH)]/CH2Cl2 (equation 3.11). Treatment of 

[Cp'''Fe(η5-P3C2PhH)] with CuCl and CuI, respectively, yielded amorphous products which 

could not be adequately characterised. 
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Complex 20 dissolves sparingly in CH2Cl2 and MeCN, and is not soluble in THF and toluene. 

It can be stored under an inert atmosphere at ambient conditions. 

Because of the limited solubility of the complex 20, the mother liquor of the reaction mixture 

was used for NMR measurement. Three slightly broadened doublet of doublets (δ = 40.5, 37.7 

and 0.2 ppm) representing a AA'M spin system were present in the 31P{1H} NMR spectrum. 

In comparison to the signals of the uncoordinated [Cp'''Fe(η5-P3C2PhH)] compound (δ = 51.7, 

48.9 and 15.2 ppm), a 10 – 15 ppm upfield shift is observed. The coupling constants (J(PA,PM) 

= 436.4 and J(PM,PA´) = 419.6 Hz) are somewhat larger than that of starting material 

[Cp'''Fe(η5-P3C2PhH)] (J(PA,PM) = 427.4 and J(PM,PA´) = 399.6 Hz). 

In the ESI-MS spectrum of 20 in MeCN, peaks corresponding to the cations 

[{Cp'''Fe(P3C2PhH)}2Cu3Br2]+, [{Cp'''Fe(P3C2PhH)}2Cu2Br]+ and [{Cp'''Fe(P3C2PhH)}2Cu]+ 

were detected. 
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Figure 3.2.16. Possible oligomers in the solution of complex 20. 

 

The NMR and mass spectra suggest that complex 20 is depolymerised to oligomers in 

solution (Figure 3.2.16). 
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Figure 3.2.17. Section of the 1D polymeric structure of complex 20 (H atoms are omitted for 

clarity). Selected bond lengths (Å) and angles (°): P1–P2 2.128(2), P2–P3 2.124(2), P1–C18 

1.743(5), P3–C37 1.781(5), P1–Cu1 2.2394(17), P3–Cu2 2.2175(16), P4–P5 2.122(2), P5–P6 

2.117(2), P4–C36 1.744(6), P6–C44 1.782(5), P6–Cu4 2.2214(17), P4–Cu3 2.2012(17), Cu1–

Br1 2.4701(10), Cu1–Br2 2.7372(10), Cu1–Br3 2.4153(10), Cu2–Br1 2.4797(10), Cu2–Br2 

2.5245(10), Cu3–Br2 2.6205(9), Cu3–Br3 2.4347(10), Cu3–Br4 2.4761(10), Cu4–Br2 

2.6240(10), Cu4–Br4 2.4701(10), P1–Cu1–Br3 121.68(5), P4–Cu3–Br3 119.25(5), P3–Cu2–

Br1 102.59(5), P6–Cu4–Br2 114.36(5). 

 

The structure of complex 20 has been established by X-ray crystallography and is shown in 

Figure 3.2.17. It consists of a polymer chain, in which a (CuBr)4 unit is doubly bridged by the 

[Cp'''Fe(η5-P3C2PhH)] moieties in a 1,3 coordination mode. Each copper atom of this unit 

which consists of three annelated four-membered (CuBr)2 rings, coordinated in a distorted 

tetrahedral fashion to one phosphorus atom from four different [Cp'''Fe(η5-P3C2PhH)] units 

with an average P–Cu–Br angle of 114.5° and P–Cu bond length of 2.2199 Å (Figure 3.2.18). 

The P–P bond lengths in the cyclo-P3C2 rings (P1–P2 2.128 (2), P2–P3 2.124 (2) Å) of 

complex 20 are comparable to that in [Cp'''Fe(η5-P3C2Ph2)][14] (P1–P2 2.1287(14), P2–P3 

2.1193(15) Å). 
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Figure 3.2.18. Cage structure of (CuBr)4 in 20. 

 

 
 
 
 
3.2.3.2. Reaction of [Cp'''Fe(η5-P3C2PhH)] with [(PtCl2PEt3)2] 
 
According to the results of Nixon and coworkers, the Pt(II) center of [{PtCl2(PR3)}2] 

coordinates to 1,2,4-triphosphaferrocene to form the sterically unfavourable cis-isomers and 

the complexes are non-fluxional in solution.[20] Similar results were expected from the 

reaction of 1,2,3-triphosphaferrocene with a half equivalent of [{PtCl2(PEt3)}2]. Furthermore, 

one and two equivalents of [{PtCl2(PEt3)}2] were also used to react with the 

triphosphaferrocene.  

A mixture of [Cp'''Fe(η5-P3C2PhH)] and [{PtCl2(PEt3)}2] in CH2Cl2 in a ratio of 2:1 was 

stirred at room temperature for one hour to form a brown solution. After remove of the 

solvent under vacuum, a brown powder of 21 was obtained (equation 3.12). 

The compound 21 is soluble in CH2Cl2 and THF, but not in nonpolar solvents such as alkanes. 

It can be stored under an inert atmosphere at low temperature. 
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The 31P{1H} NMR spectrum of 21 contains four signal groups. The doublet of doublet of 

doublets signal with 195Pt satellites centered at δ = 77.1 ppm is attributed to Pc, which 

coordinates to the Pt(II) center with a large coupling constant J(Pc,Pt) = 4017.5 Hz. The 

coordination of Pc (not Pa) with Pt was confirmed by the P–H coupling constant (J(Pc,Ha) = 

28.2, J(Pa,Ha) = 6.5 Hz) in the 31P NMR spectrum. In comparison to the uncoordinated 

compound [Cp'''Fe(η5-P3C2PhH)] (δ(Pc) = 48.9 ppm) this signal is shifted about 10 ppm 

downfield. The reason may be the back bonding from the d-orbitals of the Pt center to the Pc 

atom. The signals attributed to Pa are centered at δ = 17.4 ppm and have the smallest P-Pt 

coupling constant (J(Pa,Pt) = 30 Hz), while the signals centered at δ = -68.2 ppm which have 

the largest P–P coupling constant (J(Pb,Pc) = 517.5 Hz) must belong to the Pb atom. The 

doublet at δ = 9.9 ppm belongs to the Pd atom with 195Pt satellites centered at δ = 0.1 and 20.2 

ppm (J(Pd,Pt) = 3212.9 Hz). The Pd and Pc atoms must be in the cis position, because of its 

relatively small coupling constant (J(Pd,Pc) = 28.0 Hz), otherwise the coupling between Pc and 

Pd would be much larger (about 500Hz) (Figure 3.2.19). The sharp signals representing these 

four phosphorus atoms in the 31P{1H} NMR spectrum of 21 at room temperature indicate that 

no dynamic process exists in solution. 
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Figure 3.2.19. 31P{1H} NMR spectrum of complex [{Cp'''Fe(µ,η5:η1-

P3C2PhH)}{PtCl2(PEt3)}]. Signals with a, b, c, and d represent the P atoms coupled with the 

isotope 195Pt (peaks marked with an asterisk are due to impurity). 
 

In the mass spectra of the reaction solutions of [Cp'''Fe(η5-P3C2PhH)] with one and two 

equivalents of [{PtCl2(PEt3)}2] no signals representing the expected product or its fragments 

are detected. 

The 31P NMR spectra of the reaction solutions of [Cp'''Fe(η5-P3C2PhH)] with one and two 

equivalents of [{PtCl2(PEt3)}2] show one singlet at δ = 11.3 ppm with two satellites (δ = -0.5 

and 23.1 ppm, J(P,Pt) = 3831.3 Hz) attributed to the phosphorus atom of [{PtCl2(PEt3)}2]. 

Except for minor impurities, no other peaks appear in the spectrum. The NMR and mass 

spectral data suggest that the triphosphaferrocene decomposes when more equivalents of 

[PtCl2(PEt3)] are present.  

A possible explanation for the coordination of only one [PtCl2(PEt3)] unit to the P3C2-ring of 

compound 8, as illustrated in equation 3.12, is that the quadratic planar coordination mode of 

platinum is sterically demanding. It is difficult for a second [PtCl2(PEt3)] unit to coordinate to 

the cyclo-P3C2 ring of compound 8, as in the case of the complex [CpFe(η5-P3C2
tBu)] does,[20] 

because of the bulky Cp'''-group. 
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 3.2.3.3. Reaction of [Cp'''Fe(η5-P3C2PhH)] with [W(CO)5THF] 
 

Since 1,2,3-triphosphaferrocene has three phosphorus atoms in the phospholyl ring, it is 

attractive to explore whether all three phosphorus atoms can coordinate to metal centers 

simultaneously. An alternative approach with tungstenpentacarbonyl units as Lewis acids was 

used for this purpose. 

In a first approach, one and two equivalents, respectively, of [W(CO)5THF] were mixed with 

[Cp'''Fe(η5-P3C2PhH)] and stirred for one hour. Afterwards, the red-orange solutions were 

concentrated to about one-third of the original volume and the concentrates were kept at -28 

°C. From both concentrates the air sensitive red-orange crystalline compound 22 was obtained 

(equation 3.13). 

Complex 22 dissolves in CH2Cl2 and THF, moderately in nonpolar solvents such as alkanes. 

It can be stored under an inert atmosphere at low temperature. 

 

 

tBu
tBu

tBu

+ 

P P P
Ph H

tBu
tBu

tBu

CH2Cl2
RT

(3.13)

22

W(CO)5THF][
(CO)5W W(CO)5

P P P
Ph H

, 1h
Fe Fe

 
 

In the EI-MS spectrum of 22 the fragment with the highest relative abundance is attributable 

to the [Cp'''Fe(P3C2PhH)]+ cation. In addition, the cations [Cp'''Fe(P3C2PhH)W(CO)5]+ and 

[Cp'''Fe(P3C2PhH)W]+ are also detected in the mass spectra. These mass spectral data indicate 

that an adduct compound of [Cp'''Fe(η5-P3C2PhH)] and [W(CO)5] must exist. 

 

The solid-state structures of 22 have been established by X-ray crystallography as shown in 

Figure 3.2.20. In complex 22, two phosphorus atoms in the cyclo-P3C2 ring coordinate to two 

tungsten centers with an average P–W bond length of 2.502 Å. The coordination geometry of 

the two phosphorus atoms is distorted trigonal. Due to the repulsion between the two bulky 

W(CO)5 units, the two P–W bonds curl upwards slightly from the cyclo-P3C2 plane in order to 

keep the two W(CO)5 units away from each other. In comparison to the P2–P3 bond length 
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(2.130(3) Å), the P1–P2 bond length is obviously shorter (2.112(3) Å) resulting from the 

coordination of the lone pairs of the two phosphorus atoms to the tungsten centers. 

  

  
Figure 3.2.20. Molecular structure of 22 in the crystal (Hydrogen atoms are omitted for 

clarity). Selected bond lengths (Å) and angles (°): P1–P2 2.112(2), P2–P3 2.130(2), P1–C22 

1.746(8), P3–C21 1.772(6), P1–W2 2.488(2), P2–W1 2.515(2), Fe–P1 2.332(2), Fe–P2 

2.369(2), Fe–P3 2.363(2), P1–P2–P3 100.54(11), P3–P2–W1 124.69(10), P2–P1–W2 

137.41(11), W2–P1–C22 122.7(3), P2–P1–C22 97.5(3). 

 

In the 31P{1H} NMR spectrum of 22 at room temperature, except for a broadened doublet (δ = 

38 ppm) attributable to the PA´ atom which shifts by 10 ppm upfield relative to that of  the 

starting material (δ(PA´) = 48 ppm), one unexpectedly huge upfield shift of PM (δ = -81 ppm, 

in the starting material δ(PM) = 15 ppm) was found. The PA (δ = 49 ppm) signal of the 

complex is slightly different from that of the starting material (52 ppm). As the temperature is 

reduced, the signals of the 31P{1H} NMR spectrum become clearer. At -40 °C the spectrum 

shows sharp signals. The doublet of doublets at δ = 49 ppm attributing to the PA and the 

doublet of doublets at δ = 37.4 ppm representing the PA´ show tungsten satellites with 

coupling constants J(PA,W) = 250.6 and J(PA´,W) = 251.8 Hz, respectively. These spectra 

indicate that complex 22 exhibits a dynamic process in solution. At room temperature, the two 

tungsten centers change their positions between the three phosphorus atoms of the P3C2-ring 

very quickly and is manifested by the three broad signals in the 31P{1H} NMR spectrum. At 

low temperature, this motion is slower and the two tungsten centers are fixed on the PA and 
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PA´ of the P3C2-ring (Figure. 3.2.21). It is difficult to explain why the two tungsten centers 

coordinate to the PM and PA´ atoms in the solid state, but to the PA and PA´ in solution at low 

temperature.  

The coupling constant of J(PM,PA´) (466.3 Hz) is slightly larger than that of J(PA,PM) (462.3 

Hz),  but in the starting material exactly the opposite is observed (J(PA,PM) = 427.4 and 

J(PM,PA´) = 399.6 Hz).  
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Figure.3.2.21. Proposed dynamic behaviour of 22 in solution. 

 

As discussed previously, treatment of [Cp'''Fe(η5-P3C2PhH)] with one half equivalent of 

[{PtCl2(PEt3)}2], one or two equivalents of [W(CO)5THF] and two equivalents of CuBr, 

respectively, yields products in which the P3C2-ring is coordinated to metal centers in a 1-, 

1,2-, and 1,3-coordination mode, respectively. When an excess (> three equivalents) of 

[W(CO)5THF] was stirred with [Cp'''Fe(η5-P3C2PhH)] over night and the reaction solution 

was kept at -28 °C for one week, orange-red plates of 23 were obtained (equation 3.14).  

 

tBu
tBu

tBu

+ 

P P P
Ph H

tBu
tBu

tBu

CH2Cl2
RT

(3.14)

23

W(CO)5THF][
, 12h

W(CO)5
P P P

Ph H

(CO)5W
(CO)5WFe Fe

 
Complex 23 dissolves readily in CH2Cl2 and THF, moderately in nonpolar solvents such as 

alkanes. It is air sensitive and can be stored under an inert atmosphere at low temperature. 
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In the EI-MS spectra of 23 no molecular ion was detected, but fragments such as [Cp'''Fe(η5-

P3C2PhH){W(CO)5}2]+, [Cp'''Fe(η5-P3C2PhH)W(CO)5]+, and [Cp'''Fe(η5-P3C2PhH)W]+ were 

found. These data indicate that [Cp'''Fe(η5-P3C2PhH){W(CO)5}3] can not exist under the 

electron impact conditions and suggests it may be not as stable as [Cp'''Fe(η5-

P3C2PhH){W(CO)5}2] (22). 

The solid-state structure of 23 has been established by X-ray crystallography as shown in 

Figure 3.2.22. 

 

 
Figure 3.2.22. Molecular structure of 23 in the crystal (Hydrogen atoms are omitted for 

clarity). Selected bond lengths (Å) and angles (°): P1–P2 2.125(2), P2–P3 2.121(2), P1–C17 

1.755(7), P3–C16 1.751(6), P1–W1 2.5154(15), P2–W2 2.5135(17), P3–W3 2.5120(17), Fe–

P1 2.3653(17), Fe–P2 2.3808(19), Fe–P3 2.3508(19), P1–P2–P3 99.45(9), P1–P2–W2 

130.49(8), W2–P2–P3 129.43(8), W1–P1–P2 128.19(8), W3–P3–P2 133.92(9). 

 

Complex 23 possesses three phosphorus atoms in the phospholyl ring coordinated to three 

different [W(CO)5] units. The P2–W2 bond, which is coplanar with the cyclo-P3C2 ring, has a 

bond length similar to the other two P–W bonds (P2–W2 2.5135(17), P1–W1 2.5154(15), P3–

W3 2.5120(17) Å). Because of the repulsion of the two tBu groups on the cyclopentadienal 

ring, the P1–W1 and P3–W3 bonds are bent upwards from the cyclo-P3C2 plane (Figure 

3.2.22 and Figure 3.2.23). The average distance of W–P in 23 (2.514 Å) is longer than that in 

22 (2.502 Å), the average P–P bond length (2.123 Å) is slightly longer than that in 22 (2.121 
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Å) and is almost same as that in complex [Cp'''Fe(η5-P3C2Ph2)] (2.124 Å).[9] The average P–

Fe bond length in 23 (2.366 Å) is longer than that in 22 (2.355 Å). All these bond length 

elongations in 23 compared to 22 may be caused by steric factors. 

 

  
Figure 3.2.23. Top view of the molecule of 23 in the solid-state configuration. Hydrogen 

atoms are omitted for clarity. 

 

The 31P{1H} NMR spectrum of complex 23 shows three slightly broadened doublet of 

doublets attributed to the PA (δ = 2.7 ppm), PA´ (δ = -3.7 ppm), and PM (δ = -54.9 ppm) atoms, 

respectively. All signals shift upfield in comparison to the uncoordinated complex 8. 

Compared to the chemical shift of PM in complex 22, the upfield shift here is not so enormous 

(Table 3.2.5). The coupling constant J(PM,PA´) (412.4 Hz) and J(PA,PM) (446.7 Hz) are 

somewhat smaller than that of complex 22 (J(PM,PA´) = 466.3 and J(PA,PM) = 462.3 Hz).  

 

Table 3.2.5. Comparison of the 31P NMR spectral data of [Cp'''Fe(η5-P3C2PhH)] and its 

tungsten complexes 22 and 23. 

 δ(PA) 

(ppm) 

δ(PM) 

(ppm) 

δ(PA´) 

(ppm) 

J(PA,PM) 

(Hz) 

J(PM,PA´) 

(Hz) 

[Cp'''Fe(η5-P3C2PhH)] 51.7 15.2 48.9 427.1 399.6 

[Cp'''Fe(η5-P3C2PhH){W(CO)5}2] 49.1 -80.9 38.0 462.3 466.3 

[Cp'''Fe(η5-P3C2PhH){W(CO)5}3] 2.7 -54.9 -3.7 446.7 412.4 
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3.2.4. Tetraphosphaferrocene [Cp'''Fe(η5-P4CtBu)] as a ligand 
 

Until now, the chemical properties and the ligation abilities of the cyclo-PnC5-n (n =1-5) 

moieties in the 1,3-di-phosphaferrocenes [Fe(η5-P2C3
tBu3)(η5-C5R5)] (R = H[11]; R = Me[10]) 

and the 1,2,4-tri-phosphaferrocenes [Fe(η5-P3C2
tBu2)(η5-C5R5)] (R = H[11]; R = Me[13]) were 

studied in the Nixon group, while these of [Fe(η5-P5)(η5-C5R5)] (R = Me) were studied in 

our group. These investigations show that the lone pair of electrons on each phosphorus 

atom in the cyclo-PnC5-n  (n =1-5) ligands gives a ligation propensity that leads to binuclear 

and tetranuclear adducts, polymer chains, or even fullerene-like nanoballs, in which the 

cyclo-PnC5-n  ring remains intact or fragmentises. The ligation mode of the cyclo-PnC5-n  

ligand toward the transition metal center can be either side-on or end-on. In the 1,2,4-

triphosphaferrocene metal complexes, only two neighboring phosphorus atoms of the P3C2 

ring ligate to the metal center. It is interesting to study how the replacement of one or more 

CR fragments by a phosphorus atom in the phospholyl ring affects the tetraphospholyl ring 

and how the ligation properties and steric factors are influenced. The investigations of 

tetraphosphaferrocene ([Cp'''Fe(η5-P4CtBu)]) as a ligand for copper halides, silver and gold 

salts were executed in this work and are discussed. 

 

 

3.2.4.1. Reaction of [Cp'''Fe(η5-P4CtBu)] with CuCl  
 

3.2.4.1.1. [Cp'''Fe(η5-P4CtBu)] with CuCl in a stoichiometric ratio of 1:1 

 
CuCl in CH3CN was layered onto a solution of [Cp'''Fe(η5-P4CtBu)] in CH2Cl2 in a 1:1 ratio 

and kept at room temperature for two months. The color of the mixture turned gradually from 

green to dark green with some brown tone; red brown plates of [{Cp'''Fe(η4-

P3CtBuP(O)tBu)}4{(μ-Cu2Cl)(MeCN)2}2{(μ-CuCl)2(MeCN)}2] (24) were obtained. This 

compound does not dissolve in common solvents such as CH2Cl2 and THF and can be stored 

under an inert atmosphere at ambient conditions. 
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Figure 3.2.24. Molecular structure of 24 in the crystal (Hydrogen atoms are omitted for clarity, 

the N3CCN3 bridge in the structure represents two disordered CH3CN molecules). Selected 

bond lengths (Å) and angles (°): P1–P2 2.1404(4), P2–P3 2.1244(3), P3–P4 2.1596(2), P1–

Cu1 2.2474(4), P2–Cu2 2.2784(4), P7–Cu1 2.4139(5), P8–Cu2 2.3677(4), P4–Cu3 2.1256(4), 

Cu1–Cl1 2.3520(3), Cu2–Cl1 2.2784(4), Cu3–Cl2 2.2764(3), Cu3–Cl3 2.2801(3), P4–P3–P2 

88.556(9), Cu2–Cl1–Cu1 89.917(6), P1–Cu1–P7 110.581(10), Cu3–Cl3–Cu4 75.209(7), Cl2–

Cu3–Cl3 96.9291(7), Cl2–Cu3–P4 134.081(10), P4–Cu3–Cl3 128.444(10), Cl2–Cu4–Cl3 

93.225(6). 

 

The molecular structure of 24 was determined by single-crystal X-ray diffraction as 

illustrated in Figure 3.2.24. In compound 24 four tetraphosphaferrocene units are connected 

by two (CuCl)2 fragments via one phosphorus atom and doubly connected by two Cu2Cl 

fragments via two phosphorus atoms of the P4C-ring. This implies that two chloride ions 

have been lost. The whole molecule is a ring with four tetraphosphaferrocene moieties.  

The phosphorus atoms P3 and P6 are each connected to a tBu group and an oxygen atom 

indicating that the cyclo-P4C ring has been partially oxidized during the long reaction time. 

Each of the two Cu2Cl units in the structure of 24, may be seen as imparting a positive 
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charge to the molecule. Meanwhile the oxygen atoms O1x and O2x, which form double 

bonds with P6 and P3, respectively (av bond length: 1.547Å), [61] could be connected 

through a proton (hydrogen bridge). The P3C-coordination mode of the P4C unit in 24 

would mean that the ferrocene moieties represent only 17 VE species. However, the 

diamagnetism of the overall complex suggests that these moieties are best described as 18 

VE [Cp'''Fe(η4-P3CtBuP(O)tBu)]¯ species. The molecule is thus neutral (Figure 3.2.25). 

Unfortunately, no Raman and IR spectra could be recorded to proof the existence of the 

hydrogen atom. It is difficult to explain the origin of the oxygen atoms, which may come 

from the solvent or poorly sealed schlenks over the long reaction time. The tert-butyl group 

connected on the phosphorus atom may have come from the decomposed starting material. 

The coordination geometry of two copper atoms (Cu3) in the complex 24 are trigonal planar 

whereas the rest copper atoms are tetrahedrally coordinated and two of them (Cu4) are 

bridged by two disordered MeCN molecules.  
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Figure 3.2.25. Proposed charge balance in the half of complex 24. 

 

The average distance of coordinated phosphorus-iron atoms in complex 24 (2.3183 Å) is 

shorter than that in the uncoordinated tetraphosphaferrocene (2.3673 Å). There are two 

groups of P–Cu bonds: a long group that represents bond lengths of the two adjacent 

phosphorus atoms bound to the copper atoms in the double bridge (P1–Cu1: 2.2474(4) Å, 

P2–Cu2: 2.2784(4) Å), and a group with short bond lengths represents the phosphorus 

atoms bound to the copper atoms of the (CuCl)2 bridge (P4–Cu3: 2.1256(4) Å, P5–Cu4: 

2.2217 Å). The average bond length of P2–P3 and P3–P4 (2.1503 Å) is longer than that of 
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the uncoordinated tetraphosphaferrocene (2.1185 Å) because the P4C-ring of complex 24 is 

η4-ligated instead of η5 to the iron atom and the P3 as well P6 atoms are out of the ring 

plane. 

In the 31P NMR spectrum of the reaction solution of 24, four broad signals at δ = 15.3, 25.1, 

57.0, and 87.9 ppm were detected. This alludes to the fact that the four phosphorus atoms of 

the P4C ring in the compound 24 are chemically and magnetically inequivalent. In 

comparison to the starting material 3 (δ = 80.4, 122.8 ppm) the chemical shifts of the 

phosphorus atoms are shifted upfield. Since complex 24 shows broad signals, no coupling 

constant can be resolved. 

In the ESI-MS spectrum, peaks corresponding to [Cp'''Fe(P4OtBuC)Cu2Cl]+ and 

[Cp'''Fe(P4OtBuC)CuCl]+ are detected. 

 

 

3.2.4.1.2. [Cp'''Fe(η5-P4CtBu)] with CuCl in a stoichiometric ratio of 1:2 
 
Since one more phosphorus atom is present in the phospholyl ring of [Cp'''Fe(η5-P4CtBu)] 

compared to triphosphaferrocene, it is also expected that the cyclo-P4C ring can coordinate 

to more metal centers. Indeed, when two equivalents of CuCl in MeCN were carefully 

layered onto a CH2Cl2 solution of [Cp'''Fe(η5-P4CtBu)], brown crystals of the polymeric 

complex [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuCl)2]∞ (25) were formed, in which a 

[Cp'''Fe(η5-P4CtBu)] moiety is linked via two phosphorus atoms in the phospholyl ring by 

two Cu centers to another [Cp'''Fe(η5-P4CtBu)] moiety. The third phosphorus atom of this 

phospholyl ring coordinates to a copper atom of a (CuCl)2 unit, which is bridged again by 

two [Cp'''Fe(η5-P4CtBu)] moieties (Equation 3.15) to form a second chain. 
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Complex 25 is sparingly soluble in CH2Cl2 and acetonitrile, but insoluble in toluene and 

hexane; it can be stored in an inert atmosphere at ambient conditions. 

The molecular structure of 25 was determined by single-crystal X-ray diffraction and is 

illustrated in Figure 3.2.26. 

 
Figure 3.2.26. Section of the 1D polymeric structure of 25 in the crystal (Hydrogen atoms 

are omitted for clarity). Selected bond lengths (Å) and angles (°): P1–P2 2.1176(5), P2–P3 

2.1173(6), P3–P4 2.0826(6), P2–Cu1 2.2350(6), P3–Cu1 2.2879(6), P4–Cu2 2.1490(5), 

Cu1–Cl1 2.3284(8), Cu1–Cl2 2.3827(8), Cu2–Cl1 2.2566(8), Cu2–Cl2 2.2580(8), Cu1–P2–

P3 123.392(23), P2–P3–Cu1 127.016(19), P3–Cu1–P2 105.641(3), P3–P4–Cu2 

115.523(26), Cl1–Cu2–Cl2 102.552(8), Cl1–Cu1–Cl2 96.762(8), P4–Cu2–Cl1 127.17(13), 

Cl1–Cu2–Cl2 102.55(8), P4–Cu2–Cl2 130.27(22). 

 

In the solid state structure of 25, the tetraphosphaferrocene bridges (CuCl)2 fragments to 

form a chain, and two chains connect each other via the P–Cu bonds. Two P4C rings bridge 

two copper atoms, thus forming a six-membered ring. One of the two copper atoms, Cu(1), 

coordinates tetrahedrally with two phosphorus atoms and two chlorine atoms while the 

other copper atom, Cu(2), is in a trigonal planar environment and is surrounded by one 

phosphorus atom and two chlorine atoms. The distances between the Cu(1) atom and the 
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two phosphorus atoms are different (Cu(1)–P(2): 2.2350(6) Å, Cu(1)–P(3): 2.2879(6) Å) 

and are both longer than the Cu(2)–P(4) (2.1490(5) Å) bond lengths. The P–P bond lengths 

of P(2)–P(3) (2.1173(6) Å) and P(3)–P(4) (2.0826(6) Å) in complex 25 are shorter than 

those in the uncoordinated tetraphosphaferrocene 3 (2.131(12) Å, 2.106(14) Å). This is an 

effect of the three phosphorus atoms participating in η1-bonding with the Cu atoms through 

the phosphorus lone pairs. The other P(1)–P(2) bond lengths differ only slightly (25: 

2.1176(5) Å, 3: 2.119(11) Å).  

The positive ESI-MS of 25 in MeCN at room temperature shows a peak with 100% relative 

abundance corresponding to [Cp'''Fe(P4CtBu)CuMeCN]+. In addition, fragments 

corresponding to [{Cp'''Fe(P4CtBu)}2Cu]+ and [{Cp'''Fe(P4CtBu)}2Cu2Cl]+ were also 

detected. These ESI-MS results suggest that the polymeric structure of 25 is cleaved by 

MeCN and oligomers are present in solution. This suggestion is confirmed by the 31P NMR 

spectrum of the reaction solution in a mixture of C6D6, CH2Cl2, and CH3CN.  

The 31P{1H} NMR spectrum of the reaction mixture at room temperature presents broad 

signals of an AA´MM´ spin system with δ(PA) (107.1 ppm) and δ(PM ) (57.7 ppm). In 

comparison with the phosphorus chemical shifts of the free complex 3 (δ(PA) = 122.8 ppm 

and δ(PM) = 80.4 ppm), an obvious upfield shift occurred probably due to the coordination 

of the lone pairs of the phosphorus atoms in the P4C ring to the copper atoms. Since the four 

phosphorus atoms of each P4C-ring of polymer 25 are not chemically equivalent, this signal 

pattern suggests that a dynamic process occurs in solution at room temperature.  

Variable temperature spectra were thus recorded in a 3:1 mixture of THF-d8 and CH3CN. At 

room temperature in this mixture, there are signals of an AA´MM´ spin system at 119.2 and 

73.6 ppm. By lowering the temperature to 0 °C, a slightly high field shift of the signals at 

115.6 and 67.9 ppm is observed. When the temperature is reduced, the signals broaden 

further and at -30 °C the spectrum is reminiscent of an ADMN spin system. The broad 

signals, attributable to PA and PA´, are split into two broad signals centered at about 116 and 

106 ppm, respectively (Figure 3.2.28). The integration ratio of these three broad signals is 

1:1:2. These spectral data indicate that at room temperature, a fast equilibrium between 25a 

and 25b takes place and the oligomer [{Cp'''Fe(η5-P4CtBu)}2(CuClMeCN)2] 25a may be 

dominant, in which two phosphorus atoms (PM and PM´) of the P4C-ring are coordinated to 

the copper(I) centers. However, at low temperature this exchage slows down. The monomer 

[{Cp'''Fe(η5-P4CtBu)}{CuCl(MeCN)2}] 25b takes the dominat side of the equilibrium and is 

revealed in the 31P NMR spectrum (Figure 3.2.27). 
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Figure 3.2.27. Proposed  equilibrium of oligomer 25a and monomer 25b in solution.  

 

 
Figure 3.2.28. Variable temperature 31P{1H} NMR spectra of  the reaction mixture of 25 

in a 3:1 mixture of THF-d8 and CH3CN. 

 

 

3.2.4.2. Reaction of [Cp'''Fe(η5-P4CtBu)] with CuBr and CuI 
 

3.2.4.2.1. Reaction of [Cp'''Fe(η5-P4CtBu)] with CuBr in a ratio of 1:1 
 

When CuBr in CH3CN was layered onto a green solution of [Cp'''Fe(η5-P4CtBu)] in CH2Cl2 

in a 1:1 ratio, dark green needles of the complex [{Cp'''Fe(μ,η5:η1-

P4CtBu)}2(P8C4
tBu4)2(Cu3Br3)2(MeCN)2] (26) were formed.  

This compound dissolves sparingly in MeCN and CH2Cl2, but does not dissolve in toluene 

and hexane. Therefore, no NMR investigation were possible for 26. It is air sensitive and 

can be stored under an inert atmosphere at ambient conditions. 

30405060708090110 120 130 140150160 170 100
 (ppm)

 -30 °C 
 

              

 

0 °C 

27 °C 



 

 61

The molecular structure was determined by single-crystal X-ray diffraction and is illustrated 

in Figure 3.2.29. 

 
Figure 3.2.29. Molecular structure of [{Cp'''Fe(μ,η5:η1-P4CtBu)}2(P8C4

tBu4)2 

(Cu3Br3)2(MeCN)2] (26) in the crystal (Hydrogen atoms are omitted for clarity). Selected 

bond lengths (Å) and angles (°): P2–P3 2.2429(6), P3–P4 2.2122(4), P4–P5 2.1963(6), P5–

P6 2.2181(6), P7–P8 2.2007(4), P7–P4 2.2093(7), P1–C1 1.6524(3), P2–C1 1.8120(4), P1–

C6 1.8594(4), P2–C6 1.9316(3), P3–C11 1.8388(4), P6–C11 1.8486(3), P7–C16 1.8697(3), 

P8–C11 1.9049(4), P8–C16 1.8561(3), P9–P10 2.1075(4), P10–P11 2.1089(3), P11–P12 

2.0825(6), P9–C21 1.7824(4), P12–C21 1.7487(3), P1–Cu1 2.2494(4), P10–Cu1 2.2607(7), 

P4–Cu2 2.3150(4), P7–Cu2 2.3096(4), P5–Cu3 2.2534(3), Br3–Cu1–Br1 107.75(13), Br2–

Cu2–Br1 112.42(11), Br3–Cu3–Br2 106.86(10), C1–P1–C6 88.025(16), C1–P2–P3 

100.739(15), P2–P3–P4 94.405(9), P3–P4–P5 94.987(1), P4–P5–P6 94.602(12), P5–P6–

C16 97.710(14), C16–P7–P8 53.511(9), C11–P8–P7 96.807(9). 

 

The complex 26 contains four fragments, two of them are [Cp'''Fe(η5-P4CtBu)] moieties and 

the other two fragments are cage units composed of eight phosphorus and four carbon atoms, 

which are connected by two six-membered rings of (CuBr)3 units. In the (CuBr)3-ring, a 

chair-like arrangement is formed. Two of the copper atoms are tetrahedrally coordinated by 
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two phosphorus atoms and two bromine atoms. The third copper atom is also tetrahedrally 

connected to two bromine atoms, one phosphorus atom, and one CH3CN molecule. 

The cage unit consists of a cunean-like structure of P6C2, in which two phosphorus atoms 

(P3 and P5) connect to a P2C2 moiety. Three of the carbon atoms coordinate tetrahedrally 

with three phosphorus atoms and a tert-butyl group, whereas the fourth carbon (C1) 

coordinates with two phosphorus atoms and one tert-butyl group. The P1-C1 bond length of 

1.652(1) Å indicates a double bond in comparison to the other P-C bond length (av. 1.865 Å) 

of the cage. 

                  
                       

                   P8C4 cage of  26                                    P11 cage of [{CpR(OC)4Fe3}P11] 

Figure 3.2.30.Comparison of the cage structures of 26 and [{CpR(OC)4Fe3}P11]. 

 

The framework of the P8C4 cage is comparable to the P11 structure [{CpR(OC)4Fe3}P11] 

(CpR = 1,2,4-C5H2
tBu3, C5

iPr5) prepared by Scherer and coworkers[14], in which the P8 

cunean is connected via the two phosphorus atoms P7 and P8 to a P3 moiety whereas in 

complex 26 a C2P2 unit connects to the P6C2 cunean. This cage of P8C4 also reveals an 

interesting polycyclic structure consisting of the annelation of one three-membered, two 

four-membered, and four five-membered rings (Figure 3.2.30). 

The P–P bond lengths of the P8C4 cage lie in the range of 2.1966(5) Å (P4–P5) and 2.2426(6) 

Å (P2–P3). The average values of the P–P bonds (2.21 Å) differ slightly from that in 

[{CpR(OC)4Fe3}P11] (2.22 Å), but are similar to the compounds (Me3EtN)3P11
[62] and 

(iC3H7)3P11 (2.21 Å) [63,64]. The average length of the P–Cu bond of 26 (2.281 Å) is a little 

longer than that in [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuBr)2]∞ (2.267 Å) (27). 

The ESI-MS spectrum of 26 reveals cation peaks corresponding to the P8C4 cage structure 

[(P8C4
tBu4)2Cu2]+ and [(P8C4

tBu4)Cu]+. Furthermore, peaks attributable to [{Cp'''Fe(η5-

P4CtBu)}Cu3Br2]+ and [Cp'''Fe(η5-P4CtBu)CuBr]+ were also detected. 
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C1 
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 63

3.2.4.2.2. [Cp'''Fe(η5-P4
tBuC)] with CuBr and CuI in a ratio of 1:2 

 

A similar procedure to that used for the synthesis of 25 was carried out, in which 

acetonitrile/CH2Cl2 solutions of CuBr and CuI, respectively, were layered onto CH2Cl2 

solutions of [Cp'''Fe(η5-P4CtBu)] in a 2:1 ratio, thus yielding [{Cp'''Fe(η5:η1:η1:η1-

P4CtBu)}2(μ-CuBr)2]∞ (27) and [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuI)2]∞ (28), 

respectively. One equivalent of CuI in acetonitrile/CH2Cl2 solutions layered on CH2Cl2 

solutions of [Cp'''Fe(η5-P4CtBu)] also results in the formation of complex 28. 

The brown crystalline compounds 27 and 28, dissolve sparingly in CH2Cl2 and acetonitrile, 

and do not dissolve in toluene and hexane. These compounds can be stored under an inert 

atmosphere at ambient conditions. 

The molecular structures of 27 and 28 were determined by single-crystal X-ray diffraction 

and are illustrated in Figure 3.2.31. and Figure 3.2.32., respectively. The structures of 27 

and 28 are similar to that of 25.  

 
Figure 3.2.31. Section of the 1D polymeric structure of 27 in the crystal (Hydrogen atoms 

are omitted for clarity). Selected bond lengths (Å) and angles (°): P1–P2 2.092(2), P2–P3 

2.103(2), P3–P4 2.119(2), P3–Cu1 2.2586(17), P2–Cu1 2.3296(17), P1–Cu2 2.2123(18), 

Cu1–Br1 2.4995(10), Cu1–Br2 2.4840(10), Cu2–Br1 2.4243(11), Cu2–Br2 2.3736(11), P2–

Cu1–P3 103.25(6), P2–P3–Cu1 124.96(9), P3–P2–Cu1 127.85(8), P2–P1–Cu2 106.26(8), 
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Br1–Cu1–Br2 101.71(3), Br1–Cu2–Br2 107.33(4), Br1–Cu2–P1 123.29(6), P1–Cu2–Br2 

126.57(6). 

 

The difference in these three otherwise similar structures lies in the coordination geometry 

of the copper atoms in the (CuX)2 (X = Cl (25), Br (27), I (28)) unit. Except for one 

tetrahedrally coordinated copper atom in all three complexes, the coordination geometry of 

the other copper atoms in 25 is trigonal, with the sum of the three angles around the copper 

atom being 360°. This sum in 27 is 357.2° and in complex 28 is 336.3° in which the copper 

atom (Cu1) coordinates tetrahedrally. The distance between this copper atom (Cu1) and the 

iodine atom (I2) of the other (CuI)2 units in 28 is 2.848 Å whereas those distances are 3.666 

Å in 25 and 3.111 Å in 27. The distance between Cu1 and I2 indicates a chemical bond 

exists (The sum of van der Waals radii of copper and iodine is 3.38 Å[65]). Thus, a tendency 

to obtain a higher coordination number of the halogen atom was observed in the case of the 

iodide derivative 28, in which a ladder-like (CuI)4 substructure was formed. From the Table 

3.2.6, a gradual increase in bond length of Cu–P, P–P, P–Fe, and Cu–X from 25 to 28 can 

be observed. 

 
 

Figure 3.2.32. Section of the polymeric structure of 28 in the crystal (Hydrogen atoms are 

omitted for clarity). Selected bond lengths (Å) and angles (°): P1–P2 2.1224(1), P2–P3 

2.1292(1), P3–P4 2.1070(1), P2–Cu2 2.2594(1), P3–Cu2 2.3384(2), P4–Cu1 2.3143(1), 
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Cu1–I1 2.561(2), Cu1–I2 2.626(2), Cu2–I1 2.643(2), Cu2–I2 2.681(2), P2–Cu2–P3 

102.33(16), P2–P3–Cu2 125.7(2), P3–P4–Cu1 102.70(19), P3–P2–Cu2 27.7(2), I1–Cu2–I2 

107.97(7), I1–Cu1–I2 101.54(8), I1–Cu1–P4 120.69(13), P4–Cu1–I2 114.04(15). 

 

Table 3.2.6. Comparison of selected bond lengths (Å) and distances between selected  

atoms in [Cp'''Fe(η5-P4CtBu)] 3 and its copper halide complexes. 

 25 27 28 3 

Cu(1)–P(2) 2.2350(6) 2.2586(4) 2.2594(1)  
Cu(1)–P(3) 2.2879(6) 2.3296(3) 2.3384(2)  
Cu(2)–P(4) 2.1490(5) 2.2124(4) 2.3143(1)  
P(1)–P(2) 2.1176(5) 2.1191(3) 2.1224(1) 2.119(11) 
P(2)–P(3) 2.1173(6) 2.1030(3) 2.1292(1) 2.131(12) 
P(3)–P(4) 2.0826(6) 2.0925(3) 2.1070(1) 2.106(14) 
P–Fe(av.) 2.3735 2.3728 2.3874 2.3673 
Cu–X(av.) 2.3064 2.4454 2.6275  

 
 
In the positive ESI-MS of 27 at the room temperature, peaks attributable to 

[{Cp'''Fe(P4CtBu)}2Cu]+ and [Cp'''Fe(P4CtBu)CuBr]+ were detected. Furthermore fragments 

attributable to [{Cp'''Fe(P4CtBu)}2Cu]+ and [Cp'''Fe(P4CtBu)Cu2]+ were also detected in the 

ESI-MS spectrum of 28. The fragments in these mass spectra are very similar to those in the 

spectrum of 25 and indicate that the two complexes dissolve under depolymerisation. 

 

Table 3.2.7. Comparison of the 31P NMR chemical shifts of compound [Cp'''Fe(η5-P4CtBu)] 

(3) and its copper complexes. 

Compound          Solvent δ(PM, PM') ppm δ(PA, PA') ppm 

3 C6D6 81.6 122.8 
C6D6/CH2Cl2/MeCN 57.7 107.1 25 
THF-d8/MeCH: 3:1 73.6 119.2 

27 THF-d8/MeCH: 3:1 74.2 119.7 
THF-d8/MeCH: 3:1 74.3 120.2 28 
C6D6/CH2Cl2/MeCN 65.4 113.7 

 

Since the complexes 25, 27, and 28 are only sparingly soluble in common solvents, reaction 

mixtures were used for NMR measurement. In the corresponding mother liquor, detection 

of a monomeric or oligomeric copper complex was evident from the 31P{1H} NMR spectra 

of 28 (δ(PA, PA') = 120.2 ppm and δ(PM, PM') = 74.43 ppm) and 27 (δ(PA, PA') = 119.7 ppm 

and δ(PM, PM') = 74.2 ppm). These spectra show the AA'MM'-spin system and their shifts 
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are almost at the same position as those of the mother liquor of 25 (Table 3.2.7). The signals 

corresponding to PM and PM´ are 15 – 25 ppm for the C6D6 containing solutions and about 7 

ppm for THF-d8 containing solutions upfield shifted in comparison to those of the starting 

material, due to the coordination of the phosphorus atoms with copper atoms. Considering 

the mass spectral data of 27 and 28, there may be dimeric copper oligomers present in the 

reaction solution similar to that of 25 (Figure 3.2.33). 

 

 

 

PA' PM'

PA
PM

Cu
PM' PA'

PM
PA

Cu

MeCN

MeCN
X

X
Cp'''
Fe

Cp'''
Fe

X = Br, I  
Figure 3.2.33. Proposed oligomer structures in the reaction solution of [Cp'''Fe(η5-P4CtBu)] 

and CuX (X = Br, I). 

 

 
3.2.4.3. Reaction of [Cp'''Fe(η5-P4CtBu)] with Ag[Al{OC(CF3)3}4]  
 

A mixture of [Cp'''Fe(η5-P4CtBu)] and Ag[Al{OC(CF3)3}4] in CH2Cl2 in a 2:1 ratio was 

stirred for one hour at room temperature, during which time the color of the reaction 

mixture turned from green to red brown. Afterwards the black powder, which resulted 

during the course of the stirring, was filtered and the filtrate was concentrated under reduced 

pressure and stored at -28 °C. Air- and light-sensitive dark red brown plates of 29 were 

isolated (equation 3.16). 
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[Cp'''Fe(  5-P4CtBu)]  + Ag[Al{OC(CF3)3}4] η
CH2Cl2
RT, 1h

Ag
P P

P P

P P
P P Ag

P

P
P

P

P

PP

P Fe Cp'''
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2+

 
 

Compound 29 is soluble in CH2Cl2 and THF, but is not soluble in nonpolar solvents such as 

alkans. It can be stored under an inert atmosphere at low temperature (-28 °C). 

The structure of complex 29 was determined by single-crystal X-ray diffraction and is 

illustrated in Figure 3.2.34. The dication is composed of four [Cp'''Fe(η5-P4CtBu)] moieties 

and two silver atoms. Two silver centers are doubly bridged by two [Cp'''Fe(η5-P4CtBu)] 

units via two adjacent phosphorus atoms of the P4C ring, thus forming a six-membered 

P4Ag2-ring. Two further [Cp'''Fe(η5-P4CtBu)] moieties, one per silver center, coordinate as 

terminal ligands. Similar to the P4Cu2-rings in the complexes 10 and 16, the two silver 

atoms lie above and below the P6P7P6´P7´ plane (deviation of silver atoms from the plane 

= 0.520(1) Å). Each silver atom coordinates to three phosphorus atoms from three different 

[Cp'''Fe(η5-P4CtBu)] moieties and the coordination geometry of the silver atom is slightly 

pyramidal since the average P–Ag–P angle is 115.73°. The bond length of P6–P7 (2.105(2) 

Å) is shorter than the other two P–P bond lengths (P5–P6 2.1202(2) Å, P7–P8 2.1178(2) Å) 

in the P4C ring, which has a 2,3 substitution pattern because of the donation of the lone pairs 

of the adjacent phosphorus atoms to the silver atom. The average Ag–P bond length is 

2.5068 Å.  
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Figure 3.2.34. Structure of the dication of 29 in the crystal (Hydrogen atoms are omitted for 

clarity). Selected bond length (Å) and angles (°): P1–P2 2.118(2), P2–P3 2.112(2), P3–P4 

2.118(2), P1–C11 1.768(6), P4–C11 1.7766(1), P2–Ag 2.4955(16), P5–P6 2.1202(2), P6–

P7 2.105(2), P7–P8 2.117(2), P5–C21 1.765(6), P8–C21 1.7707(3), P6–Ag 2.5046(18), Ag–

P7 2.5204(15), P(1-4)–Fe1 2.3627, P(5-8)–Fe2 2.3665, Ag–P6–P7 118.66(8), Ag–P7–P6 

125.91(8), P2–Ag–P6 119.53(6), P2–Ag–P7 117.53(5), P6–Ag–P7 110.08(5). 

 
In the negative ESI-MS spectrum of 29 at room temperature, the peak with 100% relative 

abundance corresponds to the anion [Al{OC(CF3)3}4]¯ was detected. The positive ion ESI-

MS reveals a peak attributable to [{Cp'''Fe(η5-P4CtBu)}2Ag]+. The ESI-MS spectrum 

suggests that monocationic silver complex should exist in solution. 
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Figure 3.2.35. Variable temperature 31P{1H} NMR spectra of 29 in a solvent mixture of 

THF-d8/CH2Cl2. 

 

To study the cation equilibria in solution, variable temperature 31P{1H} NMR spectroscopy 

of 29 in a solvent mixture of THF-d8/CH2Cl2 was carried out. At room temperature, only 

two broad signals of an AA'MM' spin system centered at δ = 112 and 54.5 ppm are 

observed, shifted upfield relative to the uncoordinated complex 3 (121.7 and 77.3 ppm). At 

-40 °C the signal at δ = 112 is split into two broad signals, centered at δ = 120 and 93 ppm 

and the spectrum becomes characteristic of an ADMN spin system. Upon further reduction 

of the temperature, the signals are shifted slightly to higher field and become broader 

(Figure 3.2.35). Since the spectrum at room temperature reveals broadened signals typical 

of an AA´MM´ spin system, a dynamic process involving fast exchange between 29a and 

29b may be inferred, during which the coordination of the silver(I) center to the initial PM 

and PM' atoms in the P4C-rings is changing. At low temperatures, this exchange process 

becomes slower on the NMR time scale and the four phosphorus atoms in each P4C-ring of 

29a and 29b are rendered chemically and magnetically inequivalent. Thus, the 31P{1H} 

NMR spectrum at -60 °C is typical of an ADMN spin system (Figure 3.2.36). At -110 °C, 

the signals become even broader and no longer display any fine structure, which is probably 

indicative of the formation of the dimer. 
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Figure 3.2.36. Proposed cation equilibria of 29 in solution.  

 

 

 

3.2.4.4. Reaction of [Cp'''Fe(η5-P4CtBu)] with AuCl[SC4H8] 
 
Since the coordination of Cu(I) and Ag(I) salts with tetraphosphaferrocene presents various 

well-defined aggregates, the extension of the investigation to Au(I) salts is attractive. 

Considering the instability of [AuCl(SC4H8)] in solution, brief mixing of the 

phosphaferrocene with the gold salt was carried out.  

The first attempts with [AuCl(SC4H8)] in MeCN layered on [Cp'''Fe(η5-P4CtBu)] in CH2Cl2 

or the two reactants mixing directly in CH2Cl2, in a stoichiometric ratio of 1:1 and 2:1 

respectively, only resulted in the formation of black powder.  

Therefore, a mixture of [AuCl(SC4H8)] and [Cp'''Fe(η5-P4CtBu)] in CH2Cl2 in a 1:2 ratio 

was stirred for one hour at room temperature in the dark, afterwards the black powder which 
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resulted during the reaction was filtered and the filtrate was concentrated under vacuum and 

stored at -28 °C. Air- and light-sensitive dark red brown plates of complex 30 were isolated 

(equation 3.17). 

Compound 30 dissolves in CH2Cl2, but not in nonpolar solvents such as hexane. It can be 

stored under an inert atmosphere at low temperature. 

 

 

Fe
Cp'''

AuCl(SC4H8)][
Fe
Cp'''

P
P P

P P P
P P

AuCl
(3.17)

30

CH2Cl2
RT, 1h

 
 

The molecular structure of 30 was determined by single-crystal X-ray diffraction and is 

illustrated in Figure 3.2.37. 

 

 

.  

Figure 3.2.37. Molecular structure of 30 in the crystal (Hydrogen atoms are omitted for 

clarity). Selected bond lengths (Å) and angles (°): P1–P2 2.1172(2), P2–P3 2.1067(2), P3–

P4 2.1138(3), P1–C1 1.7628(3), P4–C1 1.7766(1), P2–Au 2.2325(5), Au–Cl 2.2967(5), P1–

Fe 2.3362(2), P2–Fe 2.3661(2), P3–Fe 2.3873(2), P4–Fe 2.3716(6), C1–Fe 2.1992(5), Au–

P2–P3 125.837(6), Au–P2–P1 120.305(4), P2–Au–Cl1 175.205(7). 

 

In compound 30, one phosphorus atom (P2) of the P4C-ring is bonded to a gold atom with a 

P–Au bond length of 2.2325(5) Å. The average distance between this phosphorus atom (P2) 
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and the two adjacent phosphorus atoms (P1 and P3) (2.112Å) is shorter than that in the 

uncoordinated tetraphosphaferrocene (2.125 Å) because of the lone pair donation of the 

phosphorus atom to the gold atom. Because of the shortening of this P–P bond length, the 

bond angle of P1–P2–P3 (108.73°(3)) is larger than that in the uncoordinated 

tetraphosphaferrocene (103.7°(3)).  

In the ESI-MS spectrum of 30 in MeCN at room temperature a fragment attributable to 

[{Cp'''Fe(η5-P4CtBu)}AuClMeCN]+ was detected. Furthermore, a peak attributable to 

[{Cp'''Fe(η5-P4CtBu)}2Au]+ was also found and this suggests that under certain conditions 

the gold atom can coordinate to more phosphorus atoms. 

 

 
Figure 3.2.38. Top view of the complex 30. 

 

To study the dynamic behaviour of 30 in solution, variable temperature 31P NMR 

spectroscopy of the compound in CH2Cl2/THF-d8 (3:1) was carried out. At room 

temperature there are two broad signals which represent an AA'MM' similar spin system 

(70.2 and 108.5 ppm). These signals are about 10 ppm upfield shifted relative to the 

uncoordinated complex 3 (81.6 and 122.8 ppm). As the temperature is reduced, the signals 

are shifted gradually to higher field and become broader. At -60 °C, the downfield signal 

corresponding to the PA/PA' atoms is split into two broad signals centered at 108.6 and 118.9 

ppm and the spectrum represents an ADMN spin system. At -120 °C, these two broad 

signals are split further into two broad doublets centered at 111.9 and 125.8 ppm, the 

coupling constants (J(PA,PM) = 421.0 Hz; J(PA,PD) = 0.7 Hz) being somewhat smaller than 

those of uncoordinated 3 (J(PA,PM) = 431.2, J(PA,PA') = 54.7 Hz) according to the spectrum 
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simulation. The signal of the PM/PM' atoms is split into two broad doublet of doublets 

centered at 72.4 and 78.2 ppm at -120 °C with the coupling constants (J(PM,PN) = 465.2 Hz; 

J(PA,PN) = 59.5 Hz) being larger than those of uncoordinated 3 (J(PM,PM') = 425.1 and 

J(PA,PM') = 9.4 Hz). The approximate integration ratio of these two signals is 1:1 (Figure 

3.2.39). 

 

                                                                                 
                                                                                                           
                                                                                                            
                                          
                                                                                                                -120 °C 
 
 
                     
               
                                                                                                                -100 °C 
  
 
 
 
                                                                                                                   -60 °C 
 
 
 
 
                                                                                                                     27 °C  
 

        
 
Figure 3.2.39. 31P{1H} NMR spectra of compound 30 at different temperatures (peaks marked 

with an asterisk are due to impurity). 

 

A fast sigmatropic shift of the gold(I) center between the PM and PM´ atoms in the P4C-ring 

of the 30a to 30b in the solution at room temperature would be expected to give the simple 

spectra of two broad signals, since this shift results in two sets of chemically equivalent 

phosphorus atoms PA and PA´ as well as PM and PM´. By “freezing” this motion in solution 

each of the two enantiomers 30a and 30b would be expected to show a doublet of doublets 

of doublets for the two phosphorus atoms PM and PN (Figure 3.2.40).  
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Figure 3.2.40. Proposed sigmatropic shift of the Au(I) center between the PM and PN atoms 

in the P4C-ring at low temperature in solution. 
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3.2.5. [Cp'''Fe(η5-P5)] as a ligand in coordination chemistry 
 

The complex [Cp*Fe(η5-P5)] as a building block for supramolecular architectures has been 

exhaustively researched in our group. Reactions of this cyclo-P5 ligand with CuX (X = Cl, 

Br, I) and various Ag(I) and Au(I) salts yield oligomers, 1D and 2D coordination polymers 

as well as remarkable fullerene-like nanoballs.[34,35] In view of the similarity of [Cp'''Fe(η5-

P5)] with [Cp*Fe(η5-P5)], it was of interest to examine whether the steric factor of the bulky 
tBu group on the cyclopentadiene ring can influence the reactivity and the coordination 

behavior of the cyclo-P5 ligand. Reactions of [Cp'''Fe(η5-P5)] with CuX as well as Ag(I) and 

Au(I) salts were carried out and the results are discussed below. 

 

 

3.2.5.1. Reaction of [Cp'''Fe(η5-P5)] with CuCl 
 

Since pentaphosphaferrocene has five phosphorus atoms in the cyclo-P5 ring, it should 

coordinate to more transition metal centers and lead to more complicated 1D and 2D 

polymers.  

A CH2Cl2 solution of [Cp'''Fe(η5-P5)] (5) was carefully layered with a 1:1 CH2Cl2/THF 

mixture, onto which a layer of acetonitrile/CuCl solution was placed. The reactants were 

used in a stoichiometric ratio of 1:2. The reaction solution was allowed to diffuse at room 

temperature and air-sensitive dark brown crystals of [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-

CuCl)2(MeCN)]∞ (31) were yielded. This neat solvent layer is essential in preventing the 

diffusion from occurring too fast, therefore avoiding the formation of amorphous material. 

The reaction proceeds very quickly. A color change from green to brown is observed almost 

immediately after the two reactants are mixed. No crystals could be obtained from the 

reaction between [Cp'''Fe(η5-P5)] and CuCl in a stoichiometric ratio of 1:1, although the 

NMR and mass spectra of the reaction solution are comparable to that of the 1:2 reaction 

solution. 
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The dark brown crystals of 31 dissolve readily in CH2Cl2, but are not soluble in nonpolar 

solvents such as alkanes. They are stable under nitrogen and can be stored under an inert 

atmosphere at ambient conditions. 

 

 
   [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuCl)2(MeCN)]∞(31)  [{Cp*Fe(η5:η1:η1:η1-P5)}(μ-CuBr)]∞[34]

 
                             
Figure 3.2.41. View of a section of the polymeric structure of 31, demonstrating the 

coordination geometry around the Cu atoms and [{Cp*Fe(η5:η1:η1:η1-P5)}(μ-CuBr)]∞, 

respectively (Hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles 

(°) of 31: P1–P2 2.1144(2), P2–P3 2.0978(1), P3–P4 2.1089, P4–P5 2.1111(2), P5–P1 
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2.1093(2), P1–Cu1 2.2504(1), P2–Cu3 2.2910(2), P7–Cu1 2.3403(2), P6–Cu3 2.2393(1), 

P4–Cu2 2.2138(1), P9–Cu4 2.2017(1), Cu1–Cl1 2.3628(2), Cu1–Cl2 2.3268(3), Cu2–Cl1 

2.3609(3), Cu2–Cl2 2.4000(2), P1–Cu1–P7 107.93(7), P2–Cu3–P6 107.05(7), Cl1–Cu1–

Cl2 96.53(6), Cl1–Cu2–Cl2 94.62(6). 

 

Complex 31 crystallizes in the monoclinic space group P21/c. As in the case in the complex 

[{Cp*Fe(η5:η1:η1:η1-P5)}(μ-CuBr)]∞  synthesised in our group[34]
, 31 contains an η1:η1:η1-

coordinated P5 ring in a 1,2,4 substitution pattern. Two adjacent phosphorus atoms (P1, P2 

and P6, P7) of the cyclo-P5 rings of two different [Cp'''Fe(η5-P5)] moieties coordinate to two 

different metal centers (Cu1 and Cu3) to form a six-membered P4Cu2 ring. The two copper 

atoms (Cu1 and Cu3) in the P4Cu2 ring, which coordinate tetrahedrally to two phosphorus 

atoms and two chlorine atoms, are different from those in [{Cp*Fe(η5:η1:η1:η1-P5)}(μ-

CuBr)]∞, which coordinate three phosphorus atoms from three different [Cp*Fe(η5-P5] 

moieties. The P–Cu bond lengths in this P4Cu2 ring are different (Cu–P 2.2503(1), 2.3403(2) 

Å) and the angles around the copper atoms deviate from an ideal tetrahedral (P–Cu–P 

107.93°(7), Cl–Cu–Cl 96.53°(6)). This difference may be due to the three bulky tert-butyl 

groups on the cyclopentadiene ring of 31 in comparison to the relatively less steric influence 

of the Cp* groups in the complex [{Cp*Fe(η5:η1:η1:η1-P5)}(μ-CuBr)]∞.  

The third phosphorus atom (P4 or P9) in 31 coordinates to the third copper atom (Cu2 or 

Cu4) of a (CuCl)2 moiety and the coordination geometry of the copper atom is tetrahedral 

with a bond length of Cu–P (2.2138(1) Å), which is shorter than the other two Cu–P bond 

lengths in the Cu2P4 ring. The Cl–Cu–Cl and P–Cu–Cl bond angles are 94.62°(6) and 

104.36°(5), respectively (Figure 3.2.41).  
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Figure 3.2.42. View of the 2D structure of complex 31 orthogonal to the a,b plane (C, H, 

and Fe atoms are omitted for clarity). 
 

Complex 31 represents a 2D coordination polymer in which the layers are separated by the 

Cp'''Fe moieties (Figure 3.2.43). The structure of 31 consists of an alternating array of six-

membered Cu2P4 rings and 24-membered Cu8Cl4P12 rings (Figure 3.2.42) whereas in the 

structure of [{Cp*Fe(η5:η1:η1:η1-P5)}(μ-CuBr)]∞ comprises an alternating array of six-

membered Cu2P4 rings and Cu4P12 rings. The P–P distances within the nearly planar cyclo-

P5 moieties of 31 (ranging from 2.098(2) to 2.114(2) Å) are comparable to that in 

[{Cp*Fe(η5:η1:η1:η1-P5)}(μ-CuBr)]∞ (ranging from 2.099(2) to 2.108(2) Å) and 

[{Cp*Fe(η5:η1:η1:η1-P5)}(μ-CuI)]∞ (2.114(3)–2.120(3) Å). 
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Figure 3.2.43. View of the 2D layer structure of complex 31 along the crystallographic b 

axis (H atoms are omitted for clarity). 

 
In the positive ESI-MS of 31 in MeCN at room temperature, a peak corresponding to 

[Cp'''Fe(η5-P5)CuCl]+ and [{Cp'''Fe(η5-P5)}2Cu]+ were detected. These mass data indicate 

the likely existence of monomeric and oligomeric complexes with [Cp'''Fe(η5-P5)] units in 

solution. 

The 31P{1H} NMR spectrum of 31 in THF-d8/MeCN at room temperature shows a broad 

signal at δ = 163.9 ppm. Since the five phosphorus atoms of the P5 ring in the solid state 

structure of compound 31 are chemically and magnetically inequivalent, there could be a 

dynamic process in solution at room temperature, and due to the larger solubility, complex 

31 could also depolymerize in solution. Variable temperature spectra were recorded in a 3:1 

mixture of THF-d8 and CH3CN. At -20 °C the signal is shifted to δ = 160.4 ppm. As the 

temperature descends, the signal becomes broader and shifts upfield. At -60 °C the signal is 

split into three broadend signals centered at δ = 153.0, 8.1 and 5.6 ppm. At -80 °C the 
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signals shift further centered at δ = 136.1, 8.6 and 5.4 ppm. These signals at high field imply 

the phosphorus atoms which coordinate the copper centers. The NMR data indicate 31 is 

depolymerized in solution to monomeric and oligomeric species, in which some interactions 

between the [Cp'''Fe(η5-P5)] moiety and CuCl is present (Figure 3.2.44). 
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Figure 3.2.44. Proposed monomer/dimer equilibrium in solutions of  31. 

 

 

 

3.2.5.2. Reaction of [Cp'''Fe(η5-P5)] with CuBr 
 

3.2.5.2.1. Reaction of [Cp'''Fe(η5-P5)] with CuBr in a ratio of 1:2 
 

Using a synthetic method similar to that for the synthesis of 31, air sensitive dark brown 

crystals of [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuBr)2(MeCN)]∞ (32) were obtained by treating 

[Cp'''Fe(η5-P5)] with CuBr in a stoichiometric ratio of 1:2 (equation 3.19). Complexes 31 

and 32 are isostructural. 

 As with 31, complex 32 dissolves in CH2Cl2, but is not soluble in nonpolar solvents such as 

alkans. It can be stored under an inert atmosphere at ambient conditions. 
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[Cp'''Fe(   5-P5)]η + CuBr
MeCN/CH2Cl2/THF

RT, 2 weeks
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(3.19)

 32P P
P

P
P = [Cp'''Fe(   5-P5)]η

 
 

In the positive ESI-MS of 32 in MeCN at room temperature, peaks corresponding to the 

cations [{Cp'''Fe(P5)}2Cu2Br]+, [{Cp'''Fe(P5)}2Cu]+, and [Cp'''Fe(P5)CuMeCN]+ were 

detected. Similar to the case of 31 the mass data indicate the likely existence of monomeric 

and oligomeric complexes with [Cp'''Fe(η5-P5)] units in solution. 

In the 31P{1H} NMR spectrum of 32 at room temperature, a broad signal at δ = 165.9 ppm 

was detected. Variable temperature spectra were also recorded in a 3:1 mixture of THF-

d8/CH3CN up to -120 °C showing that with decreasing temperature the signal broadens and 

shifts upfield without signal splitting. This indicates that there may only be monomeric 

and/or oligomeric fragments in the solution. This suggestion is in agreement with the mass 

spectra of 32, in which some oligomeric fragments are evident. 

 

The molecular structure of 32 was determined by single-crystal X-ray diffraction and is 

illustrated in Figure 3.2.45.  
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Figure 3.2.45. Section of the structure of 32 (H atoms are omitted for clarity). Selected bond 

lengths (Å) and angles (°): P11–P12 2.1068(2), P12–P13 2.1047, P13–P14 2.1063(2), P14–

P15 2.1037, P15–P11 2.1084(2), P11–Cu2 2.2562(2), P15–Cu2 2.3073(3), P23–Cu1 2.2123, 

P13–Cu4 2.2146, Cu2–Br1 2.4703, Cu2–Br2 2.4442, Cu1–Br1 2.48973, Cu1–Br2 2.4870. 

 

In parallel with the molecular structure of 31, complex 32 contains two [Cp'''Fe(η5-P5)] 

moieties that are doubly connected by two copper atoms, thus forming an almost planar six-

membered ring. The third phosphorus atom of the P5 ring is connected to a (CuBr)2 unit in a 

2D structure forming an η5:η1:η1:η1 coordinated cyclo-P5 ring in a 1,2,4-coordination mode. 

The copper atoms in the P4Cu2 ring also coordinate tetrahedrally to two phosphorus atoms 

and two bromine atoms with different bond lengths (Cu–P 2.2562(2), 2.3073(3) Å and Cu–

Br 2.4442(3), 2.4703(3) Å) and with P–Cu–P and Br–Cu–Br angles of 109.87°(9) and 

107.11°(8), respectively. The two P–Cu bond lengths of the P4Cu2 ring are comparable to 

that in complex 31 (2.2503(1), 2.3404(2) Å) and are longer than the third Cu–P bond 

lengths (2.2123(3) and 31 2.2138(1) Å) (Figure 3.2.45). 
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3.2.5.2.2. Reaction of [Cp'''Fe(η5-P5)] with CuBr in a ratio of 1:1 
 

Using the three layer technique for the synthesis of 31, a MeCN solution of CuBr was 

layered onto a solvent mixture of CH2Cl2/MeCN, which was layered on a red CH2Cl2 

solution of [Cp'''Fe(η5-P5)] (5) in a 1:1 stoichiometric ratio. Dark brown needles of 

[{Cp'''Fe(μ,η5:η1:η1-P5)}4(CuBr)3]∞ (33) were obtained, which are stable under nitrogen and 

dissolve in CH2Cl2.  

In the positive ESI-MS of 33 in MeCN at room temperature similar fragments to those in 

the mass spectrum of 32 are observed, corresponding to the cations [{Cp'''Fe(P5)}2Cu]+, 

[{Cp'''Fe(P5)}Cu2BrMeCN]+, and [Cp'''Fe(P5)Cu]+. These data suggest the polymer 33 

depolymerizes in solution. 

This suggestion was confirmed by the 31P{1H} NMR spectra. The spectrum at room 

temperature exhibited a broad signal at δ = 166.1 ppm. Variable temperature spectra were 

also recorded in a 3:1 THF-d8/CH3CN solution and showed that with decreasing 

temperature the signal broadens and shifts upfield without signal splitting (even at -130 °C). 

Considering the chemical shift of the starting material (δ = 165 ppm) and the broadened 

signal, there could be a [Cp'''Fe(η5-P5)] moiety interacting with CuBr units in solution. 

 

The molecular structure of 33 was determined by single-crystal X-ray diffraction and is 

illustrated in Figure 3.2.46. 
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Figure 3.2.46. View of the 2D layer structure of complex 33, orthogonal to the a,b plane (C, 

H and Fe atoms are omitted for clarity). 

 
Complex 33 is a 2D polymer in which a (CuBr)3 unit is connected to four [Cp'''Fe(η5-P5)] 

moieties, with the P5 ring of the [Cp'''Fe(η5-P5)] moieties coordinating in a 1,3 substitution 

pattern to two different (CuBr)3 units. Each Cu2 atom in the (CuBr)3 unit is disordered over 

two positions with equal occupancy. The coordination geometry of the Cu2 is trigonal 

planar with the bond angle Br1–Cu2–Br being 127.3°(2) and Br1–Cu2–P4 being 105.9°(2), 

while the other two copper atoms (Cu1) coordinate in a distorted tetrahedral manner to two 

phosphorus atoms from two different [Cp'''Fe(η5-P5)] moieties and two bromine atoms 

(Figure 3.2.46). The Cu2–P bond length (2.393(8) Å) is between those of the other two 

Cu1–P bond lengths (Cu1–P1 2.230(5), Cu1–P4 2.568(5) Å). The Cu2–Br1 bond length 

(2.561(5) Å) is longer than the other two Cu–Br bond lengths (Cu1–Br1 2.406(4), Cu1–Br2 

2.447(3) Å).  
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Figure 3.2.47. Section of the coordination geometry around the Cu atoms within the 

polymeric structure of complex 33 (H atoms are omitted for clarity, Cu2 is disordered over 

two positions with equal occupancy). Selected bond lengths (Å) and angles (°): P1–P2 

2.102(7), P2–P3 2.111(7), P3–P4 2.120(8), P4–P5 2.105(6), P5–P1 2.109(6), Cu2–P4 

2.393(8), Cu2–Br1 2.561(5), Cu1–P1 2.230(5), Cu1–P4 2.568(5), Cu1–Br1 2.406(4), Cu1–

Br2 2.447(3), Br1–Cu2–Br1 127.3(2), Br1–Cu2–P4 105.9(2), P1–Cu1–P4 93.28(19), P1–

Cu1–Br1 121.53(17), Br1–Cu1–Br2 112.45(13), Br2–Cu1–P4 99.01(15). 

 

 

 

3.2.5.3. Reaction of [Cp'''Fe(η5-P5)] with CuI 
 

An acetonitrile solution of CuI was carefully layered onto a CH2Cl2 solution of [Cp'''Fe(η5-

P5)] in a 2:1 stoichiometric ratio at room temperature, and after the very slow diffusion was 

complete, the air-sensitive dark brown crystalline complex [{Cp'''Fe(μ,η5:η1:η1-

P5)}4(CuI)4]∞ (34) was obtained. 

Complex 34 dissolves sparingly in CH2Cl2 and MeCN, but is not soluble in hexane and 

toluene. 
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The positive ESI-MS of 34 in MeCN at room temperature reveals fragments attributable to 

the cations [{Cp'''Fe(P5)}2Cu2I]+, [{Cp'''Fe(P5)}2Cu]+ and [Cp'''Fe(P5)CuMeCN]+.  

 

The 31P{1H} NMR spectrum of 34 at room temperature displays a broad signal at δ = 163.7 

ppm. Due to the low solubility of 34 no variable temperature NMR investigations were 

possible. This indicates, together with the mass spectral data, that there should be oligomers 

in solution. 

The molecular structure of 34 was determined by single-crystal X-ray diffraction and is 

illustrated in Figure 3.2.48. 

 

 
 

Figure 3.2.48. View of the 2D structure of complex 34 orthogonal to the a, b plane (C, H 

and Fe atoms are omitted for clarity). Selected bond lengths (Å) and angles (°): P1–P2 

2.086(13), P2–P3 2.124(11), P3–P4 2.093(10), P4–P5 2.097(10), P5–P1 2.115(11), P2–Cu2 

2.249(9), P4–Cu3 2.246(6), P11–P12 2.112(10), P12–P13 2.098(11), P13–P14 2.082(14), 

P14–P15 2.106(16), P15–P11 2.087(10), P11–Cu8 2.256(6), P14–Cu9 2.353(12), P19–

Cu12 2.254(8), P6–Cu4 2.262(8), Cu9–I9 2.569(7), Cu9–I8 2.728(7), Cu12–I9 2.642(4), 

Cu12–I8 2.694(4), P14–Cu9–I9 118.3(3), I8–P9–I9 106.9(3), I8–Cu12–I9 112.72(14), I8–

Cu12–P19 101.2(2). 
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In complex 34, the cyclo-P5 rings of the pentaphosphaferrocene moieties are connected to 

ladder-like (CuI)4 units in a 1,3-substitution pattern. Two copper atoms of each (CuI)4 unit, 

consisting of three annelated four-membered rings, coordinate tetrahedrally to three iodine 

atoms and one phosphorus atom while the other two copper atoms coordinate pyramidally 

to two iodine atoms and one phosphorus atom in the P5 ring. Thus, a novel double layer 2D 

polymer is formed (Figure 3.2.49). 

 

 
Figure 3.2.49. Double layer 2D polymeric structure of complex 34 (H atoms are omitted for 

clarity). 

 

Since there are five lone pairs of electrons available on the cyclo-P5 ring, each of them has 

the potential to coordinate to a metal center. Two-dimensional complexes can be formed. 

Because of the steric factor, successively larger cluster structures of (CuX)n are necessary to 

connect different [Cp'''Fe(η5-P5)] moieties (in 31 (CuCl)2, in 33 (CuBr)3, and in 34 (CuI)4). 

The average distance between the copper and halogen atoms in the cluster increases (2.3195 

Å in (CuBr)3 of 33 and 2.6583Å in the cage (CuI)4 of 34). The size of the copper halides can 

also affect the coordination mode of P5-ring (in 31 and 32 1,2,4-, in 33 and 34 1,3-

substitution pattern). 
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3.2.5.4. Reaction of [Cp'''Fe(η5-P5)] with silver salts  
 

3.2.5.4.1. Reaction of [Cp'''Fe(η5-P5)] with Ag[Al{OC(CF3)3}4] 
 

A mixture of [Cp'''Fe(η5-P5)] and Ag[Al{OC(CF3)3}4] in CH2Cl2 was stirred at room 

temperature for one hour and was then layered with pentane. An air- and light-sensitive 1D 

polymer was obtained in the form of dark brown needles (equation 3.20). 

Compound 35 is soluble in CH2Cl2 and THF, moderately soluble in toluene and acetonitrile, 

but insoluble in nonpolar solvents such as alkanes. It can be stored under an inert 

atmosphere at -28 °C. 

 

 

nAg[Al{OC(CF3)3}4] + 2n
CH2Cl2

RT
[Al{OC(CF3)3}4]n   (3.20)       
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Crystals of 35 have been characterized by X-ray diffraction and a section of the polycation 

therein is illustrated in Figure 3.2.50. 
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Figure 3.2.50. Portion of the cationic chain of 35. (C, H, and Fe atoms are omitted for 

clarity) Selected bond lengths (Å) and angles (°): P1–P2 2.1247(9), P2–P3 2.1118(8), P3–

P4 2.1053(8), P4–P5 2.1283(9), P5–P1 2.1537(9), P1–Ag2 2.7342(8), P5–Ag2 2.7337(8), 

P19A–Ag2 2.6525(12), P20A–Ag2 2.793(3), P9–Ag2 2.6916(7), P11–Ag2 2.8757(8), P1–

Ag2–P5 46.39(2), P19A–Ag2–P20A 45.08(8), P1–Ag2–P11 80.77(2), P9–Ag2–P20A 

80.94(5), P11–Ag2–P9 79.57(2).  

 
 
Complex 35 crystallizes in the triclinic space group P1 with two formula units in the unit 

cell. The core of this cation consists of a chain of Ag(I) cations that are doubly bridged at 

the cyclo-P5 moieties of the [Cp'''Fe(η5-P5)] units in an η2:η1 fashion. The coordination 

geometry around the Ag(I) centers is tetrahedral, with six phosphorus atoms of four cyclo-P5 

moieties being coordinated through two side-on and two end-on coordination modes. A 

similar complex [Ag{Cp*Fe(η5:η2:η1-P5)}2]n[Al{OC(CF3)3}4]n was obtained in our group[66], 

which displays 1,2,3-coordination mode of the cyclo-P5 ring and is different from the 1,2,4-

coordination mode of the cyclo-P5 ring in 35. The polymeric core of 35 could be regarded as 

being built up of a chain of eight-membered Ag2P6 rings fused to two three-membered AgP2 

rings. The P–P bond lengths in the AgP2 rings (2.1537(9) Å) are obviously longer than the 

other P–P bond lengths of the cyclo-P5 ring (2.1248 Å (av.)), which may be due to the π-

coordination mode, and are comparable to those in [Ag{Cp*Fe(η5:η2:η1-
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P5)}2]n[Al{OC(CF3)3}4]n (2.156(4) Å). The two P–P edges directly adjacent to those of the 

AgP2 rings are also slightly elongated (2.1247(9) and 2.1283(9) Å) in comparison to the 

other two P–P bond lengths (2.1053(8) and 2.1118(8) Å) and they are all longer than those 

in the uncoordinated starting material (2.0792 Å (av.))[14]. The average Ag–P bond length 

(2.7468 Å) is longer than that of 19 (2.4473 Å) and 29 (2.5068 Å), possibly due to steric 

hindrance. The silver center in 35 coordinates to six phosphorus atoms, in 29 to three 

phosphorus atoms and in 19 to two phosphorus atoms.  

 

In the positive ESI-MS of 35 in MeCN/CH2Cl2 at room temperature, the peak with 100% 

relative abundance was assigned to [{Cp'''Fe(η5-P5)}2Ag]+ and the peak with 100% relative 

abundance in the negative ESI-MS corresponds to [Al{OC(CF3)3}4]¯ were detected. This 

ESI-MS spectrum indicates, that in solution the monocation [{Cp'''Fe(η5-P5)}2Ag]+ probably 

exists. This behaviour is similar to that of [Ag{Cp*Fe(η5:η2:η1-P5)}2]n[Al{OC(CF3)3}4]n.[66] 
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Figure 3.2.51. Proposed monomer/oligomer cation equilibria in solution. 
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The 31P{1H} NMR spectrum of 35 at room temperature shows only one signal. In the cyclo-

P5 rings of the polymer chain 35 there are three coordinated and two uncoordinated 

phosphorus atoms and therefore the appearance of the spectrum is attributed to dynamic 

behaviour in solution. In order to gain further insight into this dynamic behaviour, variable 

temperature 31P{1H} NMR spectroscopy of the compound in THF-d8/CH2Cl2 was 

performed. At room temperature only a singlet at 162.1 ppm is observed, shifted marginally 

upfield relative to uncoordinated 5 (164.7 ppm). As the temperature is reduced, the signal is 

shifted gradually to higher field and becomes broader. At -100 °C the signal is split into two 

broad signals. At -110 °C the broad signals are split further (Figure 3.2.52). 

                                                                

 
Figure 3.2.52. Variable temperature 31P{1H} NMR spectra of 35 in a 3:1 mixture of THF-d8 

and CH2Cl2 at 25 °C, -90 °C, -100 °C and -110 °C. 

 

These variable temperature spectra, together with the data provided by the mass spectrum 

suggest that a monomer/oligomer equilibrium may exist in solution, similar to that of 

[Ag{Cp*Fe(η5:η2:η1-P5)}2]n[Al{OC(CF3)3}4]n.[66] At room temperature, the cyclo-P5 ring of 

a monocation probably “rotates” and thus only one signal is observed. As the temperature is 

reduced, the signal is split into two broad signals, which may either be attributable to the 

“freezing” of this P5-ring rotation or the increase in the proportion of oligomeric species or a 
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combination of both. The upfield signal most likely represents the coordinated phosphorus 

atoms in the cyclo-P5 rings, while the lowfield signal the uncoordinated ones (Figure 3.2.51). 

Unfortunately, it is not possible to perform a meaningful integration of the signals. 

     

   

 

3.2.5.4.2. Reaction of [Cp'''Fe(η5-P5)] with AgSO3CF3 

                                                                                                                                                                               

A mixture of AgSO3CF3 and [Cp'''Fe(η5-P5)] in CH2Cl2 was stirred in a ratio of 1:2 at room 

temperature and the color of the reaction mixture turned from green to greenish brown. 

Further concentration gave powder precipitated from the solution. 

The positive ESI-MS of the reaction solution at room temperature shows a peak with 100% 

relative abundance corresponding to [{Cp'''Fe(η5-P5)}2Ag]+. In the negative ESI-MS, the 

peak with 100% relative abundance corresponds to [CF3SO3]¯ was found. The mass spectral 

data depicts a similar fragment to that observed for 35 and suggests that the reaction mixture 

should contain the same monocation [{Cp'''Fe(η5-P5)}2Ag]+. 

The 1H NMR spectrum of the reaction solution shows three signal groups: the peak at δ = 

4.16 ppm represents two protons while the two singlets at δ = 1.14 and 1.26 ppm correspond 

to the protons of the tert-butyl groups in the cyclopentadiene ring.  

A singlet at δ = 166.1 ppm was also observed in the 31P{1H} NMR spectrum at room 

temperature. 
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4. Experimental 

 

4.1 General remarks 
 
4.1.1 Methods 
 
All manipulations, except where otherwise noted, were conducted under argon in a Braun 

Labmaster 130 glovebox or on a vacuum line (≤ 10–3 mbar) using standard Schlenk 

techniques under prepurified nitrogen or argon. All experiments were carried out exclusively 

under nitrogen. Solvents were degassed under vacuum and saturated with nitrogen prior to 

distillation. n-Pentane and n-hexane were distilled from LiAlH4; diethyl ether and 

tetrahydrofuran from sodium/benzophenone; toluene from sodium; and methylene chloride, 

acetonitrile, and dimethylformamide from CaH2. Deuterated benzene was degassed under 

reduced pressure, saturated with argon, distilled from sodium/benzophenone, and stored over 

activated 4 Å molecular sieves. All other deuterated solvents were degassed by three freeze-

pump-thaw cycles, vacuum transferred from an appropriate drying agent, and stored over 

activated 4 Å molecular sieves. Kieselgur was routinely stored at 110 °C prior to use, then 

dried under vacuum and freed from traces of moisture with the aid of a heat gun. Photolysis 

reactions were carried out with a Hanau mercury vapor lamp (TQ 150). 

 

4.1.2 Spectroscopy and analysis 
 
NMR spectra were recorded on a Bruker AC250, Bruker AMX 300, Bruker Avance 300, or 

Bruker Avance 400. Chemical shifts are given in parts per million (ppm) and are referenced to 

tetramethylsilane (1H NMR) or 85% phosphoric acid (31P NMR) as external standards. 

Chemical shifts in low field relative to the standard are designated by positive signs. All 

coupling constants J are given as absolute values in Hertz (Hz).  

Mass spectrometry was conducted with the mass spectrometer ThermoQuest Finnigan TSQ 

7000 for ESI-MS and on a Varian MAT 711, MAT 8200, MAT 8230, or Finnigan MAT 95 

for FD-MS and EI-MS. 

Infrared spectra were recorded on a Bruker IFS280 FT-IR spectrometer or Varian FTS 800 

spectrometer.  

Elemental analyses were carried out at the microanalytical laboratories of the University of 

Regensburg. 
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All X-ray crystallographic analyses were performed either by Prof. Manfred Scheer, the X-ray 

crystallography department of the University of Regensburg, or Dr. Alexander V. Virovets 

(Russian Academy of Sciences (Siberian Division), Novosibirsk, Russia). The data were 

collected on either a STOE IPDS or an Oxford Diffraction Gemini Ultra CCD diffractometer. 

All the yield calculations refer to the corresponding P-containing starting materials. 

 

 

4.2. Preparation of starting material 

 

4.2.1 Synthesis of [Cp'''Fe(η5-P4CtBu)] and [Cp'''Fe(η5-P3C2
tBu2)] 

 
tBuC≡P (0.223 g, 2.23 mmol) was added to a solution of [{Cp'''(CO)2Fe}2(μ,η1:η1-P4)] (1) 

(1.82 g, 2.23 mmol) in toluene (150 ml) at room temperature. The reaction mixture was 

heated under reflux for 36 h. After the removal of all volatile materials in vacuum, the residue 

was dissolved in dichloromethane (10 ml) and transferred onto silica gel. The 

chromatographic work-up on a silica gel column (40 × 2.5 cm), eluted with 

hexane/dichloromethane (10:1), gave first a red fraction of 6, then an orange-red fraction of 4, 

a green fraction of 5, and finally an olive-green fraction of 3. Each product was recrystallized 

from n-hexane. A fifth band (green) contained the proposed polymeric compound mentioned 

in the main text. If, as in some cases, the separation was not complete after column 

chromatography, the separation was completed in a glovebox by thin layer chromatography 

(TLC) using a hexane/dichloromethane (10:1) solvent mixture. 

 

[Cp'''Fe(η5-P4CtBu)] (3): Yield: 60 mg (11%) 

 
1H NMR (C6D6, RT, 250 MHz): δ = 1.62 (s, 9H), 1.20 (s, 9H), 1.35 (s, 18 H), 4.22 (s, 2H) 

ppm. 
31P{1H} NMR (C6D6, RT, 250 MHz, AA´MM´ spin system): δ(PA) = δ(PA´) = 81.6 (m, 2P), δ 

(PM) = δ(PM’) = 122.8 (m, 2P) ppm, 1J(PA,PM) = -431.2 Hz, 2J(PA,PM´) = 9.4 Hz, 3J(PA,PA´) = -

54.7 Hz, 1J(PM,PM´) = -425.2 Hz (simulated values).  

EI-MS (70 eV, 100 °C): m/z = 482 [Cp'''Fe(P4CtBu)]+ (100%), 382 [Cp'''FeP3]+ (71%), 121 

[C5H4
tBu] + (23.8%). 
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[Cp'''Fe(η5-P3C2
tBu2)] (4): Yield: 110 mg (20%) 

1H NMR (C6D6, RT, 250 MHz): δ = 1.25 (s, 9H), 1.24 (s, 18H), 1.36 (s, 18H), 4.58 (s, 2H) 

ppm. 
31P{1H} NMR (C6D6, RT, 250 MHz, AB2 spin system): δ(PA) = 52.6 (t, 1P), δ(PB) =42.7 (d, 

2P) ppm, 2J(PA, PB) = 43.9 Hz. 

EI-MS (70 eV, 60 °C): m/z = 520 [Cp'''Fe(P3
tBu2C2)]+ (4%), 432 [Cp'''FeP2

tBuC2]+ (71.5%), 

295 [(C5H3
tBu2)FeP2]+ (100%), 233 ([Cp''']+ (28%). 

 

[Cp'''Fe(η5-P5)] (5): Yield: 4 mg (2%) 

 
1H NMR (C6D6, RT, 250 MHz): δ = 1.08 (s, 9H), 1.21 (s, 18 H), 3.9 (s, 2H) ppm. 
31P NMR (C6D6, RT, 250 MHz): δ = 165.4 ppm (s). 

 

[(Cp'''Fe)2(η3:η3-P3)] (6): Yield: 5 mg (2%) 

 
1H NMR (C6D6, RT, 250 MHz): δ = 1.22 (s, 9H), 1.30 (s, 18 H), 4.16 (s, 2H) ppm. 
31P NMR (C6D6, RT, 250 MHz, AA´M spin system): δ(PA), δ(PA´) = 677.8 (dd, 1P), δ(PM) = -

380.9 (t, 2P) ppm, J(PA,PM) = 390.2 Hz, J(PA´,PA) = 32.6 Hz. 

EI-MS (70 eV, 90 °C): m/z = 671 [(Cp'''Fe)2(P3)]+ (5.7%), 614 [Cp'''Cp''Fe2P3]+ (8.4%), 382 

[Cp'''Fe P3]+ (27.8%).  

 

Fifth fraction: 31P NMR (250 MHz, C6D6): δ = 92 ppm, ω1/2 = 300 Hz. 

 

 

4.2.2 Synthesis of [Cp'''Fe(η5-P3C2PhH)] 
 
PhC≡CH (0.9 g, 8.8 mmol) was added to a solution of [{Cp'''(CO)2Fe}2(μ,η1:η1-P4)] (1) (1.8 g, 

2.2 mmol) in toluene (200 ml) at room temperature. The reaction mixture was heated under 

reflux for 18 h. After removal of all volatile material in vacuum, the residue was dissolved in 

dichloromethane (10 ml) and transferred onto silica gel. Chromatographic work-up on a silica 

gel column (40 x 2.5 cm) eluting with hexane/toluene (20:1) gave the red fraction of 8, then a 

green fraction of 9. Yield: 8 150 mg (14%), 9 480 mg (43.6%) 

 

 



 

 96

[Cp'''Fe(η5-P3C2PhH)] (8) 

 
1H NMR (C6D6, RT, 400.13 MHz): δ = 1.09 (s, 9H), 1.12 (s, 9H), 1.41 (s, 9 H), 4.00 (dd, 1H, 

Cp'''), 4.19 (dd, 1H, Cp'''), 6.24 (ddd, 1H, P3C2-ring), 7.07 (m, 3H, C6H5), 7.80 (m, 2H, C6H5) 

ppm. 
31P{1H} NMR (C6D6, RT, 161.98 MHz, AA´M spin system): δ(PA) = 51.7 (dd), δ(PA´) = 48.9 

(dd), δ(PM) =15.2 (dd), J(PA,PM) = 427.1 Hz, J(PM,PA´) = 399.6 Hz, 2J(PA,PA´) = 4.4 Hz.  
31P NMR (C6D6, RT, 161.98 MHz, AA´M spin system): δ(PA) = 51.7 (ddd), δ(PA´) = 48.9 

(ddd), δ(PM) =15.2 (ddd), 2J(PA´,Ha) = 40.1, 3J(PM,Ha) = 10.8, 4J(PA,Ha) = 4.5 Hz. 

EI-MS (70 eV): m/z = 484 [Cp'''Fe(P3C2PhH)]+ (65%), 452 [Cp'''Fe(P2C2PhH)]+ (8.2%), 377 

[Cp'''Fe(P2C2H2)]+ (15%). 

 

[Cp'''Fe(η5-PC4Ph2H2)] (9) 

 
1H NMR (C6D6, RT, 400.13 MHz): δ = 1.12 (s, 9H), 1.32 (s, 9H), 1.56 (s, 9 H), 3.62 (dd, 1H, 

Cp'''), 3.77 (dd, 1H, Cp'''), 4.65 (d, 1Ha , PC4-ring), 6.15 (d, 1H, PC4-ring), 7.26 (m, 6H, C6H5), 

7.77 (m, 4H, C6H5) ppm.  
31P NMR (C6D6, RT, 161.98 MHz): δ = -64.1(dd) ppm, (2J(P,Ha) = 35.6 Hz; 4J(P,H) = 4.9 Hz).  

EI-MS (70 eV): m/z =  524 [Cp'''Fe(PC4Ph2H2)]+ (28%), 493 [Cp'''Fe(C4Ph2H2)]+ (100%), 

421[(C5H3
tBuiPr)Fe(PC4Ph2H2)]+ (4.8%). 

 

 

4.2.3 Synthesis of [Cp'''Fe(η5-P5)] 
 
A mixture of white phosphorus (0.49 g, 3.95 mmol) and [{Cp'''Fe(CO)2}2] (0.9 g, 2.0 mmol) 

in decalin (200 ml) was stirred at 188 °C under reflux for 3 h. After removal of all solvent in 

vacuum, the residue was dissolved in dichloromethane (10 ml) and transferred onto silica gel. 

Chromatographic work-up on a silica gel column (20 × 2.5 cm) eluting with hexane gave a 

green fraction of 5. Yield: 457 mg (40%). 

 
1H NMR (C6D6, RT, 400.13 MHz): δ = 3.95 (s, 2H), 1.08 (s, 9H) 1.21 (s, 18H) ppm. 
31P{1H} NMR (C6D6, RT, 161.98 MHz): δ = 165.4 (s, 5P) ppm. 

EI-MS (70 eV): m/z =  444 [Cp'''Fe(P5)]+ (100%), 382 [Cp'''Fe(P3)]+ (43%). 
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4.3 Synthesis of the complexes based on [Cp'''Fe(η5-P3C2
tBu2)] 

 
4.3.1 Synthesis of [{Cp'''Fe(η5:η1:η1-P3C2

tBu2)}(μ-CuCl)]2 (10) 
 

A mixture solution of CuCl (7.5 mg, 0.075 mmol) in CH2Cl2/CH3CN (5 ml/5 ml) was layered 

onto a solution of [Cp'''Fe(η5-P3C2
tBu2)] (40 mg, 0.075 mmol) in 10 ml of CH2Cl2 at room 

temperature. After 2 weeks, red crystals of 10 were obtained on the wall of the Schlenktube. 

Yield: 0.010 mmol, 12 mg (50.4%).   

 
1H NMR (CD2Cl2, 27 °C, 400.13 MHz): δ = 4.1 (s, 4H), 0.9 (s, 36H), 1.0 (s, 18H), 1.1 (s, 36H, 

P3C2-ring) ppm. 
31P{1H} NMR (THF-d8/MeCN, 27 °C, 161.98 MHz, AM2 spin system): δ(PA): 52.8 ppm (t), 

δ(PM): 27.6 (br) ppm (ω1/2 = 90 Hz), J(PA,PM) = 44.2 Hz. 

ESI-MS (MeCN, RT): m/z = 1203 [{Cp'''Fe(P3C2
tBu2)}2Cu2Cl]+ (3.1%), 1103 

[{Cp'''Fe(P3C2
tBu2)}2Cu]+ (21.5%), 624 [Cp'''Fe(P3C2

tBu)CuMeCN]+ (100%). 

Elemental analysis: Calculated (%) for C108H188Cl4Cu4Fe4P12 (2477.74): C 52.35, H 7.65, 

found: C 48.92, H 7.82. 

 

 

4.3.2.  Synthesis of [{(Cp'''Fe)2(μ,η4:η4-P4)}{CuCl}2(MeCN)]∞ (11) 
 
CuCl (15 mg, 0.15mmol) in a CH2Cl2 /CH3CN (2 ml/3 ml) solution was layered onto a 

solution of [Cp'''Fe(η5-P3C2
tBu2)] (39 mg, 0.075 mmol) in 5 ml CH2Cl2 and the solution was 

kept at room temperature. After four weeks, dark brown crystals were obtained on the wall of 

the Schlenktube. Yield: 20 mg (52.5%). 

 
1H NMR (CD2Cl2, 27 °C, 400.13 MHz): δ = 4.32 (s, 2H), 0.97 (s, 18H), 1.04 (s, 9H) ppm. 
31P{1H} NMR (CD2Cl2/MeCN, 27 °C, 161.98 MHz): δ = 115.6 (br, 2P) (ω1/2 = 450 Hz), 69.1 

(br, 2P) ppm (ω1/2 = 520 Hz).  
31P{1H} NMR (C6D6/MeCN, 27 °C, 161.98 MHz): δ = 113.5 (br, 2P) (ω1/2 = 610 Hz), 66.5 

(br, 2P) ppm (ω1/2 = 510 Hz).  
31P{1H} NMR (C6D6/DMF, 27 °C, 161.98 MHz): δ = 78.5 (br) ppm (ω1/2 = 1300 Hz). 

ESI-MS(MeCN, RT): m/z =  826 [{(Cp'''Fe)2(P4)}Cu2]+ (100%), 702 [(Cp'''Fe)2(P4)]+ (34.8%), 

536 [(Cp'''Fe)(CpFe)(P4)]+ (9.0%). 
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4.3.3.  Synthesis of [{Cp'''Fe(μ,η4:η1:η1-P2C2
tBu2)}{CuBr(MeCN)}]2 (13) 

 
A solution of CuBr (3 mg, 0.019 mmol) in CH3CN (2 ml) was layered onto a solution of 

[Cp'''Fe(η5-P3C2
tBu2)] (10 mg, 0.019 mmol) in 3 ml CH2Cl2 at room temperature. After 

complete diffusion of the two phases, the reaction mixture was concentrated under reduced 

pressure to about one half of the original volume (2.5 ml) and stored in a refrigerator at 4 °C. 

After 2 weeks the brown crystalline complex of 13 was obtained on the wall of the 

Schlenktube. Yield: 5 mg (38.8%) 

 

ESI-MS (MeCN, RT): m/z =  1103 [{Cp'''Fe(P2C2
tBu2)}2Cu2]+ (2.5%), 489 [Cp'''Fe(P2 

C2
tBu2)]+ (4.2%). 

ESR (RT): g = 2.026, a1 = 10 mT, g (half field) = 5.3. 

 

 

Synthesis of the proposed dimeric complex of [{Cp'''Fe(μ,η5:η1:η1-

P3C2
tBu2)}(CuBr)]2(12) 

 
A solution of CuBr (6 mg, 0.038 mmol) and CH3CN (2 ml) was layered onto a solution of 

[Cp'''Fe(η5-P3C2
tBu2)] (20 mg, 0.038 mmol) in 3 ml CH2Cl2 at room temperature. After 

complete diffusion of the two phases, the red brown reaction mixture was used for NMR and 

mass spectroscopic measurement. 

 
31P{1H} NMR (THF-d8/MeCN, 27 °C, 161.98 MHz, AM2 spin system): δ(PA) = 51.6 (t), δ(PM) 

= 28.4 (br) ppm, J(PA,PM) = 44.7 Hz. 

ESI-MS (MeCN, RT): m/z = 1247 [{Cp'''Fe(P3C2
tBu2)}2Cu2Br]+ (1.0%), 1103 

[{Cp'''Fe(P3C2
tBu2)}2Cu]+ (1.7%), 832 [Cp'''Fe(P3C2

tBu)Cu3BrMeCN]+ (3.1%), 624 

[Cp'''Fe(P3C2
tBu)CuMeCN]+ (22%), 582 [Cp'''Fe(P3C2

tBu)Cu]+ (82%). 

 

 

4.3.4. Synthesis of [{(Cp'''Fe)2(μ,η4:η4-P4)}(CuBr)2(MeCN)]∞ (14) 
 
A solution of CuBr (12 mg, 0.075 mmol) and 5 ml CH3CN was layered onto a solution of 

[Cp'''Fe(η5-P3C2
tBu2)] (20 mg, 0.0375 mmol) in 7 ml CH2Cl2 at 4 °C. After 1 week, a dark 
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brown crystalline complex was obtained at the bottom of the Schlenktube. Yield: 16 mg 

(73.4%). 
31P{1H} NMR (CD2Cl2/MeCN, 27°C, 161.98 MHz): δ = 120.6 (br, 2P) (ω1/2 = 490 Hz), 76.2 

(br, 2P) ppm (ω1/2 = 520 Hz). 
31P{1H} NMR (C6D6/MeCN, 27°C, 161.98 MHz): δ = 120.0 (br, 2P)  (ω1/2 = 520 Hz), 74.8 

(br, 2P) ppm (ω1/2 = 520 Hz). 
31P{1H} NMR (C6D6/DMF, 27 °C, 161.98 MHz): δ = 82.3 (br) ppm (ω1/2 = 970 Hz). 

ESI-MS (MeCN, RT): m/z = 1611 [{(Cp'''Fe)2(P4)}2Cu2Br]+ (0.22%), 1467 

[{(Cp'''Fe)2(P4)}2Cu]+ (0.54%), 765 [(Cp'''Fe)2(P4)Cu]+ (7.0%), 702 [(Cp'''Fe)2(P4)]+ (100%). 

 

 

4.3.5. Synthesis of [{(Cp'''Fe)2(μ,η4:η4-P4)}(CuI)2(MeCN)]∞ (15) 
 
A solution of CuI (18.3 mg, 0.096 mmol) in CH2Cl2/CH3CN (2 ml/3 ml) solvent was layered 

onto a solution of [Cp'''Fe(η5-P3C2
tBu2)] (25 mg, 0.048 mmol) in 5 ml CH2Cl2 at room 

temperature. After one week, a dark brown crystalline complex was obtained on the wall of 

the Schlenktube. Yield: 15 mg (33.4%). 

 
31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz): δ = 118.4 (br, 2P) (ω1/2 = 650 Hz), 72.9 (br, 2P) 

ppm (ω1/2 = 1300 Hz).  
31P{1H} NMR (C6D6/DMF, 27 °C, 161.98 MHz): δ = 90.2 (br) ppm (ω1/2 = 650 Hz). 
1H NMR (CD2Cl2, 27 °C, 400.13 MHz): δ = 4.58 (s, 2H), 1.11 (s, 18H), 1.04 (s, 9H) ppm. 

ESI-MS (MeCN, RT): m/z = 953 [(Cp'''Fe)2(P4)Cu2I]+ (4.4%), 891 [(Cp'''Fe)2(P4)CuI]+ (4.0%), 

826 [(Cp'''Fe)2(P4)Cu2]+ (39.0%), 765 [(Cp'''Fe)2(P4)Cu]+ (5.4%), 702 [(Cp'''Fe)2(P4)]+ (100%). 

 

 

 
4.4 Synthesis of the complexes based on [CpFe(η5-P3C2

tBu2)] 
 
4.4.1 Synthesis of [{CpFe(μ,η5:η1:η1-P3C2

tBu2)}(CuCl)(MeCN)]2 (16) 
 
A solution of CuCl (7.5 mg, 0.075 mmol) in CH2Cl2/CH3CN (5 mL/5 ml) was layered onto a 

solution of [CpFe(η5-P3C2
tBu2)] (27 mg, 0.075 mmol) in 10 ml CH2Cl2 at room temperature. 

After the reaction mixture diffused completely, the solution was concentrated and kept in 
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refrigerator at about 4 °C for one week. A red crystalline compound was obtained on the wall 

of the Schlenktube. Yield: 10 mg (10%). 

 
1H NMR (CD2Cl2, 27 °C, 400.13 MHz): δ = 4.79 (s, 5H), 1.33 (s, 18H) ppm. 
31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz, AM2 spin system): δ(PA) = 33.1(t), δ(PM) = 15.4 

(br) ppm (ω1/2 = 100 Hz), J(PA,PM) = 45.7 Hz.. 

ESI-MS (MeCN, RT): m/z = 964 [{CpFe(P3C2
tBu2)}2Cu3Cl2]+ (20%), 866 

[{CpFe(P3C2
tBu2)}2Cu2Cl]+ (92%), 767 [{CpFe(P3C2

tBu)}2Cu]+ (96.4%). 

Elemental analysis: Calculated (%) for C68H104N4Cl4Cu4Fe4P12 (1968.56): C 41.49, H 5.32, N 

2.84, found: C 36.52, H 5.0, N 2.0. 

 

 
4.4.2 Reaction of [CpFe(η5-P3C2

tBu2)] with CuBr  
 
A solution of CuBr (17 mg, 0.11 mmol) in CH3CN (5 ml) was layered onto a solution of 

[CpFe(η5-P3C2
tBu2)] (20 mg, 0.056 mmol) in 5 ml CH2Cl2 at room temperature. After the 

reaction mixture diffused completely, the solution was concentrated to ca. 5 ml and kept at 

about 0 °C for one week. A red crystalline compound was obtained on the wall of the 

Schlenktube. Yield: 10 mg. The mother liquor was used for the following NMR and mass 

spectrospopic measurement. 

 
1H NMR (C6D6/MeCN, 27 °C, 400.13 MHz): δ = 4.71 (s, 5H), 1.26 (s, 18H) ppm. 
31P{1H} NMR (C6D6/MeCN, 27 °C, 161.98 MHz, AM2 spin system): δ(PA) = 33.5 (t, 1P), 

δ(PM) = 14.6 (br, 2P) ppm, J(PA,PM) = 44.6 Hz.. 
31P{1H} NMR (CD2Cl2/MeCN, 27 °C, 161.98 MHz, AM2 spin system): δ(PA) = 25.7 (t, 1P), 

δ(PM) = 2.6 (br, 2P) ppm. 

ESI-MS (MeCN, RT): m/z = 456 [{CpFe(P3C2
tBu2)}CuMeCN]+ (28%), 599 

[{CpFe(P3C2
tBu2)}Cu2BrMeCN]+ (100%), 640 [{CpFe(P3C2

tBu2)}Cu2Br2MeCN]+ (78%), 

767 [{CpFe(P3C2
tBu2)}2Cu2]+ (18%), 910 [{CpFe(P3C2

tBu2)}2Cu2Br]+ (17%), 951 

[{CpFe(P3C2
tBu2)}2Cu2BrMeCN]+ (20%).  
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4.4.3 Synthesis of [{CpFe(η5:η1:η1-P3C2
tBu2)}3(CuI)7MeCN] (18) 

 
A solution of CuI (21 mg, 0.11mmol) in CH3CN (6 ml) was layered onto a solution of 

[CpFe(η5-P3C2
tBu2)] (20 mg, 0.056 mmol) in 6 ml CH2Cl2. After the reaction mixture 

diffused completely, the solution was concentrated to ca. 5 ml, layered with 5 ml of pentane, 

and allowed to sit for one week. A red crystalline complex was obtained on the wall of the 

Schlenktube. Yield: 20 mg (43.5%)  

 
31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz, AM2 spin system): δ(PA) = 34.9 (br) (ω1/2 = 180 

Hz), δ(PM) = 8.2 (br) ppm (ω1/2 = 240 Hz). 
1H NMR (CD2Cl2, 27 °C, 400.13 MHz): δ = 3.56 (m, 5H), 1.22 (m, 9H), 0.8 (m, 9H) ppm. 

EI-MS (70 eV): m/z = 2260 [{CpFe(P3C2
tBu2)}3Cu7I6]+ (22.5%), 2133 

[{CpFe(P3C2
tBu2)}3Cu5I6]+ (30%), 1945 [{CpFe(P3C2

tBu2)}3Cu4I5]+ (29%). 

 

 

4.4.4 Synthesis of [{CpFe(μ,η5:η1:η1-P3
tBu2C2)}(AgMeCN)]2[Al{OC 

(CF3)3}4]2 (19) 
 
A mixture of Ag[Al{OC(CF3)3}4] (30 mg, 0.028 mmol) and [CpFe(η5-P3C2

tBu2)] (20 mg, 

0.028 mmol) in 10 ml of CH2Cl2 and 5 ml MeCN was stirred in the dark for six hours. 

Afterwards the reaction mixture was filtered over diatomaceous earth and the filtrate was kept 

at 4 °C for one week. A red-orange needle crystalline compound was obtained on the wall of 

the Schlenktube.Yield: 15 mg (9%). 

 
1H NMR (THF-d8, 27 °C, 400.13 MHz): δ = 3.57 (s, 5H), 1.43 (s, 18H) ppm.  
31P{1H} NMR (THF-d8, 27 °C, 161.98 MHz, AM2 spin system): δ(PA) = 34.3 (t), δ(PM) = 

12.7 (d) ppm, J(PA,PM) = 44.1 Hz. 

Positive ESI-MS (MeCN, RT): m/z = 811 [{CpFe(P3C2
tBu2)}2Ag]+ (100%), 500 

[CpFe(P3C2
tBu2)AgMeCN]+ (93.5%). 

Negative ESI-MS (MeCN, RT): m/z = 967 [Al{OC(CF3)3}4]- (100%). 
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4.5. Synthesis of the complexes based on [Cp'''Fe(η5-P3C2PhH)] 
 
4.5.1. Synthesis of [{Cp'''Fe(η5:η1:η1-P3C2PhH)}4(µ-CuBr)4]∞ (20) 
 
A solution of CuBr (30 mg 0.21 mmol) in CH3CN (8 ml) was layered onto a solution of 

[Cp'''Fe(η5-P3C2PhH)] (50 mg, 0.10 mmol) in 8 ml CH2Cl2. After complete diffusion of two 

layers at room temperature, the mixture was concentrated under reduced pressure to about one 

half of the original volume (ca. 8 ml) and the concentrate was than layered with 8 ml of 

pentane. After one week, red plate crystals were obtained on the wall of the Schlenktube. 

Yield: 15 mg (38.6%) 

  
31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz, AA´M spin system): δ(PA) = 40.5, δ(PA´) = 37.8, 

δ(PM) = 0.2 ppm, J(PA,PM) = 436.4 Hz, J(PM,PA´) = 425.7 Hz. (reaction mixture) 

ESI-MS (MeCN, RT): m/z = 1319 [{Cp'''Fe(P3C2PhH)}2Cu3Br2]+ (5.7%), 1175 

[{Cp'''Fe(P3C2PhH)}2Cu2Br]+ (6%), 1031 [{Cp'''Fe(P3C2PhH)}2Cu]+ (20%), 588 

[{Cp'''Fe(P3C2PhH)}2CuMeCN]+ (100%). 

 

 

4.5.2. Synthesis of [Cp'''Fe(μ,η5:η1-P3C2PhH)PtCl2PEt3] (21) 
 
A solution of [Cp'''Fe(η5-P3C2PhH)] (20 mg, 0.041 mmol) and [(PtCl2PEt3)2] (16 mg, 0.02 

mmol) in 10 ml CH2Cl2 was stirred for one hour at room temperature. An orange-red solution 

was formed. After concentration under reduced pressure to about one third of the original 

volume, 5 ml hexane was added and brown powder was yielded. Yield: 20 mg (55.9%) 

 
31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz): δ(Pa) = 17.4 ppm, δ(Pb) = -68.2 ppm, δ(Pc) = 

77.1 ppm, δ(Pd) = 10.0 ppm, J(Pa,Pb) = 420.8 Hz, J(Pb,Pc) = 517.5 Hz, J(Pc,Pd) = 28.0 Hz, 

J(Pa,Pt) = 30 Hz, J(Pb,Pt) = 149.0 Hz, J(Pc,Pt) = 4017.5 Hz, J(Pd,Pt) = 3212.9 Hz.  
31P NMR (CD2Cl2, 27 °C, 161.98 MHz): J(Pa,Ha) = 6.5 Hz, J(Pc,Ha) = 28.2 Hz. 

ESI-MS (MeCN, RT): m/z = 750 [Cp'''Fe(P3C2PhH)PtCl2]+ (3.6%), 767 

[Cp'''Fe(P3C2PhH)PtPEt2]+ (1.7%), 812 [Cp'''Fe(P3C2PhH)PtCl2PEt]+ (1.4%). 
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4.5.3. Synthesis of [{Cp'''Fe(μ,η5:η1:η1-P3C2PhH)}{W(CO)5}2] (22) 
 
A solution of [Cp'''Fe(η5-P3C2PhH)] (20 mg, 0.041 mmol) and [W(CO)5THF] (30 mg, 0.08 

mmol) in 15 ml THF was stirred for one hour at room temperature. The color of the reaction 

solution changed from red to red orange. After removal of all solvent in vacuum, the residue 

was dissolved in about 2 ml dichloromethane and the solution was kept at -28 °C for one 

week. Orange-red crystals were obtained (10 mg, 21.5%). 

 

 31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz, AA´M spin system): δ(PA) = 49.1 ppm, δ(PM) = 

-80.9 ppm, δ(PA´) = 38.0 ppm 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz, AA´M spin system): δ(PA) = 48.5 

ppm, δ(PM) = -81.0 ppm, δ(PA´) = 38.1 ppm 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -40 °C, 161.98 MHz, AA´M spin system): δ(PA) = 48.8 

ppm, δ(PM) = -85.0 ppm, δ(PA´) = 37.4 ppm 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -80 °C, 161.98 MHz, AA´M spin system): δ(PA) = 48.7 

ppm, δ(PM) = -87.0 ppm, δ(PA´) = 37.2 ppm, J(PA,PM) = 462.3 Hz, J(PM,PA´) = 466.3 Hz, 

J(PA,PA´) = 14.9 Hz, J(PA,183W) = 250.6 Hz, J(PA´,183W) = 251.8 Hz.  

IR(CH2Cl2): ν(CO) [cm-1]: 2976, 1975, 1950. 

EI-MS (70eV): m/z = 484 [Cp'''Fe(P3C2PhH)]+ (100%), 667 [Cp'''Fe(P3C2PhH)W]+ (42%), 

807 [Cp'''Fe(P3C2PhH)W(CO)5]+ (66%), 1131 [{Cp'''Fe(P3C2PhH)}{W(CO)5}2]+ (35%). 

 

 

4.5.4. Synthesis of [{Cp'''Fe(μ,η5:η1:η1-P3C2PhH)}{W(CO)5}3] (23) 
 
A solution of [Cp'''Fe(η5-P3C2PhH)] (20 mg, 0.041 mmol) and [W(CO)5THF] (60 mg, 0.16 

mmol) in 25 ml THF was stirred for 16 hours at room temperature. After removal of all 

solvents in vacuum the residue was dissolved in about 3 ml of dichloromethane and the 

solution was kept at -28 °C for one week. Orange-red crystals were obtained (20 mg, 33.4%). 

  
31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz, AA´M spin system): δ(PA) = 2.7 ppm, δ(PM) = -

54.9 ppm, δ(PA´) = -3.7 ppm, J(PA,PM) = 412.4 Hz, J(PM,PA´) = 446.7 Hz. 

 IR(CH2Cl2): ν(CO) [cm-1]: 2055, 1942, 1908. 

EI-MS (70eV): m/z = 484 [Cp'''Fe(P3C2PhH)]+ (10%), 668 [Cp'''Fe(P3C2PhH)W]+ (54%), 807 

[Cp'''Fe(P3C2PhH)W(CO)5]+ (17%), 1131 [{Cp'''Fe(P3C2PhH)}{W(CO)5}2]+ (5%). 
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4.6 Synthesis of the complexes based on [Cp'''Fe(η5-P4CtBu)] 

 

4.6.1. Synthesis of complex [{Cp'''Fe(η4-P3CtBuP(O)tBu)}4{(μ-

Cu2Cl)(MeCN)2}2{(μ-CuCl)2(MeCN)}2] (24) 

 
A solution of CuCl (2 mg, 0.02 mmol) in a mixture of CH2Cl2 /CH3CN (3 ml/3 ml) was 

layered onto a solution of [Cp'''Fe(η5-P4CtBu)] (10 mg, 0.02 mmol) in 6 ml CH2Cl2. After the 

two layers were completely diffused, the mixture was slowly concentrated under reduced 

pressure to about one third of the original volume (ca. 4 ml). The concentrate was kept at 

room temperature for four months and a red brown crystalline complex was obtained on the 

wall of the Schlenktube. Yield: 12 mg (50%). 

 
31P{1H} NMR (CD2Cl2, 27 °C, 161.98 MHz): δ = 15.3 (br), 25.1 (br), 57.0 (br), 87.9 (br) ppm. 

(reaction solution) 
1H NMR (CD2Cl2, 27 °C, 400.13 MHz): δ = 5.3 (s, 2H), 1.96 (br, 36H) ppm. 

ESI-MS (MeCN, RT): m/z = 659 [Cp'''Fe(P4OtBu)Cu2Cl]+ (2.5%), 596 

[Cp'''Fe(P4OtBuC)CuCl]+ (0.25%). 

 

 
4.6.2. Synthesis of [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuCl) 2]∞ (25) 
 
A solution of CuCl (7.5 mg, 0.075 mmol) in a mixture of CH2Cl2/CH3CN (2 ml/3 ml) was 

layered onto a solution of [Cp'''Fe(η5-P4CtBu)] (18 mg, 0.0375 mmol) in 5 ml CH2Cl2. After 

the two layers of solvent were completely diffused, the mixture was slowly concentrated 

under reduced pressure to about one third of the original volume. The concentrate was kept at 

room temperature for one month and a brown crystalline complex was obtained on the wall of 

the Schlenktube. Yield: 12 mg (55.4%). 

 
1H NMR (THF-d8/CH2Cl2 (3:1) 27°C, 400.13 MHz): δ = 4.41 (s), 1.61 (s), 1.40 (s), 1.30 (s) 

ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 0 °C, 161.98 MHz, AA´MM´ spin system): δ(PM/PM') = 

69.7 (br), δ(PA/PA') = 115.6 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz, AA´MM´ spin system): δ(PM/PM')  

= 73.6 (br), δ(PA/PA') = 119.2 (br) ppm. 
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ESI-MS (MeCN, RT): m/z = 1127 [{Cp'''Fe(P4CtBu)}2Cu2Cl]+ (11%), 1027 

[{Cp'''Fe(P4CtBu)}2Cu]+ (25.5%), 586 [Cp'''Fe(P4CtBu)CuMeCN]+ (100%). 

 

 

4.6.3. Synthesis of [{Cp'''Fe(η5-P4CtBu)}2(P8C4
tBu4)2(Cu3Br3)2(MeCN)2] (26) 

 
A solution of CuBr (3 mg, 0.021mmol) in CH3CN (5 ml) was layered onto a solution of 

[CpFe(η5-P4CtBu)] (10 mg, 0.021 mmol) in 5 ml CH2Cl2. After the 2 layers of solvent were 

completely diffused, the mixture was slowly evaporated and afterwards kept at 4 °C. After 

two months, dark green needle-like crystals were obtained on the wall of the Schlenktube. 

Yield: 8 mg (74.6%) 

ESI-MS (MeCN, RT): m/z = 586 [(P8C4
tBu4)Cu]+ (100%), 624 [Cp'''Fe(P4CtBu)CuBr]+ (24%), 

1171 [(P8C4
tBu4)2Cu2]+ (22%), 1315 [{Cp'''Fe(P4CtBu)}2Cu3Br2]+ (6.3%). 

 

 

 

4.6.4. Synthesis of [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuBr) 2]∞ (27) 
 

A solution of CuBr (10.8 mg, 0.075 mmol) in CH2Cl2 /CH3CN (2 ml/3 ml) was layered onto a 

solution of [CpFe(η5-P4
tBuC)] (18 mg, 0.0375 mmol) in 5 ml of CH2Cl2. After the two layers 

were completely diffused, the mixture was slowly concentrated under reduced pressure to 

about one third of the original volume. The concentrate was kept at room temperature for four 

weeks and brown crystals were obtained on the wall of the Schlenktube. Yield: 10 mg (30%). 

 
1H NMR (THF-d8/CH2Cl2 (3:1), 27°C, 400.13 MHz): δ = 4.41 (s), 1.61 (s), 1.40 (s), 1.24 (s) 

ppm. 
31P{H} NMR (THF-d8/CH2Cl2 (3:1), 27°C, 161.98 MHz, AA´MM´ spin system): δ(PM/PM') = 

74.2 (br), δ(PA/PA') = 119.7 (br) ppm. 

ESI-MS(MeCN, RT): m/z = 1315 [{Cp'''Fe(P4CtBu)}2Cu3Br2]+ (6.35%), 

1171[{Cp'''Fe(P4CtBu)}2Cu2Br]+ (22.0%), 624 [Cp'''Fe(P4CtBu)CuBr]+ (23%). 
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4.6.5. Syntheses of [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuI) 2]∞ (28) 
 
A solution of CuI (14.3 mg, 0.15 mmol) in CH2Cl2 /CH3CN (2 ml/5 ml) was layered onto a 

solution of [Cp'''Fe(η5-P4
tBuC)] (18 mg, 0.0375 mmol) in 7 ml CH2Cl2. After three weeks, a 

light brown crystalline complex was obtained on the wall of the Schlenktube. Yield: 15 mg 

(19.8%). 

 
1H NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 400.13 MHz): δ = 4.41 (s, 2H), 1.61 (s, 9H of tBu in 

P4C-ring ) 1.40 (s, 18H), 1.29 (s, 9H) ppm. 
31P{1H} NMR (C6D6/MeCN, 27 °C, 161.98 MHz, AA´MM´ spin system): δ(PM/PM') =  65.4 

(br), δ(PA/PA') = 113.7 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz, AA´MM´ spin system): δ(PM/PM') 

= 74.3 (br), δ(PA/PA') = 120.2 (br) ppm.  

ESI-MS (MeCN, RT): m/z = 1155 [{Cp'''Fe(P4
tBuC)}2CuI]+ (1.8%), 1027 

[{Cp'''Fe(P4
tBuC)}2Cu]+ (6.4%), 610 [Cp'''Fe(P4

tBuC)Cu2]+ (48.0%). 

 

 

4.6.6. Syntheses of [Ag2{Cp'''Fe(η5:η1:η1-P4CtBu)}2{Cp'''Fe(η5:η1-P4CtBu)}2] 

[Al{OC(CF3)3}4]2 (29) 

 
A mixture of Ag[Al{OC(CF3)3}4] (30 mg, 0.06 mmol) and [Cp'''Fe(η5-P4CtBu)] (55 mg, 0.115 

mmol) in 10 ml CH2Cl2 was stirred for one hour. Afterwards the black powder was filtered 

over diatomaceous earth and the elute was evaporated under reduced pressure to about one 

third of the original volume. The concentrated solution was kept at -28 °C for four weeks and 

red brown crystals of 29 were obtained on the wall of the Schlenktube. Yield: 10 mg (8.6%). 

 
1H NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 400.13 MHz): δ = 4.45 (s, 2H), 1.59 (s, 9H of tBu in 

P4C-ring) 1.38 (s, 18H), 1.29 (s, 9H) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz, AA´MM´ spin system): δ(PM/PM') 

= 54.1 (br), δ(PA/PA') =111.9 (br) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -40 °C, 161.98 MHz, ADMN spin system): δ(PM/PN) = 

54.6 (br), δ(PD) = 93.3 (br), δ(PA) = 118.9 (br) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -60 °C, 161.98 MHz, ADMN spin system): δ(PM/PN) = 

50.6 (br), δ(PD) = 91.3 (br), δ(PA) =118.5 (br) ppm.  
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31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -110 °C, 161.98 MHz, ADMN spin syste): δ(PM/PN) = 

51.3 (br), δ(PD) = 88.7 (br), δ(PA) = 118.0 (br) ppm.  

Positive ESI-MS (MeCN, RT): m/z = 1071 [{Cp'''Fe(P4CtBu)}2Ag]+ (22.5%), 630 

[Cp'''Fe(P4CtBu)AgMeCN]+ (55%). 

Negative ESI-MS: m/z = 967 [Al{OC(CF3)3}4]- (100%). 

 

 

4.6.7.  Syntheses of [CpFe(η5:η1-P4CtBu)AuCl] (30) 
 
A mixture of [AuCl(SC4H8)] (18 mg, 0.058 mmol) and [CpFe(η5-P4

tBuC)] (28 mg, 0.058 

mmol) in 15 ml CH2Cl2 was stirred in the dark for one hour. Afterwards the resulted black 

powder was filtered over diatomaceous earth and the filtrate was concentrated under reduced 

pressure to about one third of the original volume. The concentrated solution was kept at -28 

°C for four weeks and brown plates of 30 were obtained. Yield: 5 mg (21.8 %). 

 
1H NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 400.13 MHz): δ = 4.42 (s, 2H), 1.60 (s, 9H of tBu in 

P4C-ring ) 1.40 (s, 18H), 1.31 (s, 9H) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.97 MHz, AA'MM' spin system): δ(PM/PM') = 

70.2 (br), δ(PA/PA') =108.5 (br) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -60 °C, 161.97 MHz, ADMN spin system): δ(PM/PN) = 

74.8 (br), δ(PD) = 108.6 (br), δ(PA) =118.9 (br) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -100 °C, 161.97 MHz, ADMN spin system): δ(PM/PN) = 

75.2 (br), δ(PD) = 113.5 (br), δ(PA) = 125.8 (br) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -120 °C, 161.97 MHz,): δ(PN) = 72.4 (br), δ(PM) = 78.2 

(br), δ(PD) = 111.9 (br), δ(PA) = 125.8 (br) ppm. J(PM,PN) = 465.2, J(PD,PN) = 421.0,  J(PM,PA) 

= 415.8, J(PM,PD) = J(PA,PN) = 59.5, J(PA,PD) = 0.7 Hz. (simulated values. ADMN spin 

system: PD = P1, PN = P2, PM = P3, PA = P4) 

ESI-MS (MeCN, RT): m/z = 1161 [{Cp'''Fe(P4
tBuC)}2Au]+ (9.2%). 
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4.7. Synthesis of the complexes based on [Cp'''Fe(η5-P5)] 
 
4.7.1. Synthesis of [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuCl)2(MeCN)]∞ (31) 
 
A solution of CuCl (15 mg, 0.15 mmol) in acetonitrile (3 ml) was carefully layered by a 

solvent mixture of CH2Cl2 and THF (2 ml) in a ratio of 1:1, onto which a CH2Cl2 solution (3 

ml) of [Cp'''Fe(η5-P5)] (34 mg, 0.075 mmol) was layered. The reaction mixture diffused at 

room temperature very slowly to yield air-sensitive dark brown crystals of 

[{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuCl)2(MeCN)]∞ (31).Yield: 10 mg (24%). 

 
1H NMR (THF-d8/MeCN, 27 °C, 400.13 MHz): δ = 4.26 (s, 2H), 1.34 (s, 18H), 1.21 (s, 9H) 

ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz): δ = 163.9 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -20 °C, 161.98 MHz): δ = 160.4 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -60 °C, 161.98 MHz): δ = 153.0, 8.1, 5.6 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -80 °C, 161.98 MHz): δ = 136.1, 8.6, 5.4 (br) ppm. 

ESI-MS (MeCN, RT): m/z = 951 [{Cp'''Fe(P5)}2Cu]+ (1.4%), 832 

[{Cp'''Fe(P5)}{CpFe(P5)}CuCl]+ (4.5%), 544 [Cp'''Fe(P5)CuCl]+ (67%).  

 

 

4.7.2. Synthesis of [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuBr)2(MeCN)]∞ (32) 
 
A solution of CuBr (22 mg, 0.15 mmol) in 3 ml acetonitrile was carefully layered onto a 3 ml 

CH2Cl2 solution of [Cp'''Fe(η5-P5)] (34 mg, 0.075 mmol) and the reaction mixture was kept at 

room temperature for two weeks. Dark brown crystals were obtained. Yield: 20 mg (44.5%). 

 
1H NMR (THF-d8/CH2Cl2 (3:1), 27°C, 400.13 MHz): δ = 4.18 (s, 2H), 1.34 (s, 18H), 1.22 (s, 

9H) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz): δ = 165.9 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -20 °C, 161.98 MHz): δ = 164.2 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -60 °C, 161.98 MHz): δ = 163.4 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -100 °C, 161.98 MHz): δ = 162.6 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -130 °C, 161.98 MHz): δ = 162.3 (br) ppm. 

ESI-MS (MeCN, RT): m/z = 1095 [{Cp'''Fe(P5)}2Cu2Br]+ (5.2%), 951 [{Cp'''Fe(P5)}2Cu]+ 

(19%), 548 [Cp'''Fe(P5)CuMeCN]+ (88%).  
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4.7.3 Synthesis of [{Cp'''Fe(η5:η1:η1-P5)}4(μ-CuBr)3]∞ (33) 
 
A solution of CuBr (11 mg, 0.075 mmol) in 2 ml of acetonitrile was carefully layered by a 1 

ml solvent mixture of CH2Cl2 and THF in a ratio of 1:1, onto which a 3 ml CH2Cl2 solution of 

[Cp'''Fe(η5-P5)] (34 mg, 0.075 mmol) was layered. After the reaction mixture diffused 

completely at room temperature, the solution was kept at 4 °C for two weeks and an air-

sensitive dark brown crystalline complex was obtained. Yield: 5 mg (36.6%)  

 
1H NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 400.13 MHz): δ = 4.18 (s, 2H), 1.34 (s, 18H), 1.20 (s, 

9H) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz): δ = 166.11 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -20 °C, 161.98 MHz): δ = 164.32 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -60 °C, 161.98 MHz): δ = 162.17 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -80 °C, 161.98 MHz): δ = 162.28 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -100 °C, 161.98 MHz): δ = 162.34 (br) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -120 °C, 161.98 MHz): δ = 162.12 (br) ppm. 

ESI-MS (MeCN, RT): m/z = 951 [{Cp'''Fe(P5)}2Cu]+ (22.5%), 691 [Cp'''Fe(P5)Cu2BrMeCN]+ 

(21.4%), 507 [Cp'''Fe(P5)Cu]+ (36%).  

 

 

4.7.4. Synthesis of [{Cp'''Fe(η5:η1:η1-P5)}4(μ-CuI)4]∞ (34) 
 
A solution of CuI (29 mg, 0.15 mmol) in a solvent mixture of acetonitrile (3 ml) and THF (1 

ml) was carefully layered onto a CH2Cl2 (4 ml) solution of [Cp'''Fe(η5-P5)] (34 mg, 0.075 

mmol) and the reaction mixture was kept at room temperature for two days and a dark brown 

crystal was obtained. Yield: 10 mg (20.6%). 

  
1H NMR (THF-d8/MeCN, 27 °C, 400.13 MHz): δ = 4.26 (s, 2H), 1.34 (s, 18H), 1.21 (s, 9H) 

ppm. 
31P{1H} NMR (THF-d8/MeCN, 27 °C, 161.98 MHz): δ = 163.7 (br) ppm. 

ESI-MS (MeCN, RT): m/z = 1141 [{Cp'''Fe(P5)}2Cu2I]+ (8%), 951 [{Cp'''Fe(P5)}2Cu]+ (37%), 

548 [Cp'''Fe(P5)CuMeCN]+ (100%).  
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4.7.5. Synthesis of [Ag{Cp'''Fe(η5:η2:η1-P5)}2]n[Al{OC(CF3)3}4]n (35) 
 
A mixture of Ag[Al{OC(CF3)3}4] (20 mg, 0.019 mmol) and [Cp'''Fe(η5-P5)] (17 mg, 0.0375 

mmol) in 3ml of CH2Cl2 was stirred for one hour. Afterwards the solution was layered by 3 

ml of hexane and this was kept at -28°C for one week. Brown crystalline needles were 

obtained on the wall of the Schlenktube. Yield: 10 mg (26.6%). 

 
1H NMR (THF-d8, 27 °C, 400.13 MHz): δ = 4.31 (s, 2H), 1.35 (s, 18H), 1.21 (s, 9H) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz):  δ = 162.1 (s) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -70 °C, 161.98 MHz):  δ = 156.4 (s) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -80 °C, 161.98 MHz):  δ = 156.3 (s) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -90 °C, 161.98 MHz):  δ = 171.5 (br), 166.5 (br), 155.9 

(br) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -100 °C, 161.98 MHz):  δ = 169.1 (br), 163.2 (br), 

155.6 (br) ppm.  
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), -110 °C, 161.98 MHz):  δ = 173.4 (br), 172.0 (br), 

170.6 and 151.2 (br) ppm.  

Positive ESI-MS (MeCN, RT): m/z = 995 [{Cp'''Fe(P5)}2Ag]+(100%). 

Negative ESI-MS (MeCN, RT): m/z = 967 [Al{OC(CF3)3}4]- (100%). 

 

 

4.7.6. Reaction of [Cp'''Fe(η5-P5)] with AgSO3CF3 
 
A mixture of AgSO3CF3 (10 mg, 0.0375 mmol) and [Cp'''Fe(η5-P5)] (34 mg, 0.075 mmol) in 

10 ml of CH2Cl2 was stirred in the dark for one hour. Afterwards the resulted green powder 

was filtered over diatomaceous earth and the greenish brown filtrate was concentrated under 

reduced pressure to about one half of the original volume. The concentrated solution was used 

for the NMR and mass spectroscopic measurements. 

 
1H NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 400.13 MHz): δ = 4.16 (s, 2H), 1.26 (s, 18H), 1.14 (s, 

9H) ppm. 
31P{1H} NMR (THF-d8/CH2Cl2 (3:1), 27 °C, 161.98 MHz):  δ = 166.1 ppm.  

Positive ESI-MS (MeCN, RT): m/z = 995 [{Cp'''Fe(P5)}2Ag]+(100%). 

Negative ESI-MS (MeCN, RT): m/z = 148 [CF3SO3]- (100%). 
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5. Conclusions 

 
In the preceding work, chemical properties and coordination behaviors of different Pn-ligand 

complexes (see below) were studied and following aspects are engaged: i) the lone pairs of 

electrons on the phosphorus atoms in the Pn-ligands give a ligation propensity to transition 

metal centers, which lead to oligomers or polymers; ii) The ligation mode of  P5-nCn-ring (n = 

0-2) ligands toward the transition metal centers can be side-on or end-on; iii) The P5-nCn-ring 

(n = 0-2) of polyphosphaferrocenes during their reactions with transition metal salts can 

remain intact or fragmentise; iv) Replacement of CR fragments by phosphorus atoms in the 

P5-nCn-ring (n = 0-2) and different substituent groups on the cyclopentadiene ring additionally 

coordinated to the iron atom can influence the results of the coordination; and v) different 

copper halide clusters can be formed in these coordination reactions. 
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5.1  Triphosphaferrocene [Cp'''Fe(η5-P3C2
tBu2)] (4) as a ligand 

 

Reactions of the triphosphaferrocene [Cp'''Fe(η5-P3C2
tBu2)] (4) with CuX (X = Cl, Br) in a 

ratio of 1:1 lead to the formation of dimeric copper complexes (reaction a in Scheme 5.1). In 
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these reactions, the two adjacent phosphorus atoms in the cyclo-P3C2 ring ligate the copper 

centers and the P–P bond lengths are shortened in comparison to that in the uncoordinated 

ligand because of the coordination of these two phosphorus atoms to the copper centers 

through the phosphorus lone pairs. 

When the reaction condition of the triphosphaferrocene with CuBr in a ratio of 1:1 changes, 

another dimeric copper complex was obtained (reaction b in Scheme 5.1). In this reaction, the 

P3C2-ring is fragmentized and a new four-membered P2C2-ring of a 1,2-diphosphete is formed. 

The ESR study shows that the complex is paramagnetic and there are 17 electrons in each Fe 

valence orbital. These unpaired electrons of two iron atoms are probably delocalized over the 

whole area consisting of two P2C2-rings and the six-membered P4Cu2 ring. 
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Scheme 5.1. Products based on [Cp'''Fe(η5-P3C2
tBu2)] (4). 

 

In the reaction of 4 with two equivalents of CuX (X = Cl, Br and I), the P3C2-ring is also 

fragmented and rearranged to form a novel tetraphosphabutadiene ligand in a triple-decker 



 

 113

unit of [{(Cp'''Fe)2(η4-P4)}] (reaction c in Scheme 5.1). The two phosphorus atoms at the end 

of the tetraphosphabutadiene ligand in the [{(Cp'''Fe)2(η4-P4)}] unit can coordinate to the 

metal center to form the 1D polymers 11, 14 and 15. The ESI-MS spectra of the complexes 11, 

14 and 15 suggest that the triple-decker units are quite stable. 

In all these reactions of the triphosphaferrocene complex 4 with transition metal salts, only the 

two adjacent phosphorus atoms in the cyclo-P3C2 ring coordinate to the metal centers. The 31P 

NMR spectra of the reaction mixture of [Cp'''Fe(η5-P3C2
tBu2)] and CuX (X = Cl, Br and I) in 

a ratio of 1:2 show that unaltered [Cp'''Fe(η5-P3C2
tBu2)] interacts by the two adjacent 

phosphorus atoms with CuX units. The reason for the “inactive” third phosphorus atom may 

be the steric hindrance of the two bulky tert-butyl groups on the P3C2-ring. Furthermore, the 

unusual fragmentation reaction of the P3C2-ring of 4 in reaction c with an excess of CuX (X = 

Cl, Br and I) to form novel polymers containing the tetraphosphabutadiene ligand is probably 

a result of the steric strain imposed by the tBu groups of the Cp'''- and the P3C2-rings.  

 

 

5.2. The Triphosphaferrocene [CpFe(η5-P3C2
tBu2)] (7) as a Ligand 

 

The reaction of [CpFe(η5-P3C2
tBu2)] (7) with CuCl in a stoichiometric ratio of 1:1 leads to a 

dimeric copper complex 16, in which two [CpFe(η5-P3C2
tBu2)] moieties bridge the copper 

centers through their two adjacent phosphorus atoms in the P3C2-rings (reaction a in Scheme 

5.2). With two equivalents of CuCl, the same product (16) was yielded. In contrast to the Cp''' 

derivate 10, the coordination environment of the copper atoms in 16 is tetrahedral due to the 

coordination of an additional MeCN ligand. Obvioursly, due to the bulky Cp''' substituent in 

10 the copper atom can only adopt a trigonal planar coordination mode. 

A dimeric complex similar to 16 was also obtained by treating [CpFe(η5-P3C2
tBu2)] with 

Ag[Al{OC(CF3)3}4] (reaction b in Scheme 5.2). In this dimeric silver complex 19, the two 

silver atoms are triply coordinated to two phosphorus atoms of two different P3C2 rings and 

one nitrogen atom of an acetonitrile molecule. 
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 Scheme 5.2. Products based on [CpFe(η5-P3C2

tBu2)] (7). 

 

The reaction of [CpFe(η5-P3C2
tBu2)] with CuI in a 1:2 ratio leads to an oligomeric complex 

(18) (reaction c in Scheme 5.2). In 18 the (CuI)7 unit, which consists of a distorted (CuI)4 

cubic and a chair-like six-membered (CuI)3 ring, is surrounded by three [CpFe(η5-P3C2
tBu2)] 

moieties. 

In all three cases (16, 18 and 19), two adjacent phosphorus atoms in the P3C2-ring coordinate 

to the metal centers simultaneously and the P–P bond lengths in 18 and 19 are shortened in 

comparison to that in the starting material 7 as a result of the coordination of the lone pairs of 

the phosphorus atoms to the metal centers. In contrast, the P–P bond length in 16 remains 

unchanged in comparison to the uncoordinated [CpFe(η5-P3C2
tBu2)] (7) complex. 

 

 

5.3. The Triphosphaferrocene [Cp'''Fe(η5-P3C2PhH)] (8) as a Ligand 
 

The reaction of [Cp'''Fe(η5-P3C2PhH)] (8) with CuBr leads to complex 20. This complex is 

made up of a polymer chain, in which (CuBr)4 units were doubly bridged by two [Cp'''Fe(η5-

P3C2PhH)] moieties, which  coordinates in a 1,3-coordination mode of the P3C2-ring (reaction 

a in Scheme 5.3). Unlike the cubic shaped (CuI)4 unit in complex 18, the (CuBr)4 unit in 20 
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consists of three annelated four-membered (CuBr)2 ring. As a polymer, the solubility of 20 is 

low. The NMR and mass spectra suggest that 20 dissolves under depolymerization to 

oligomeric species. 

The reaction of 8 and [{PtCl2(PR3)}2] in a stoichiometric ratio of 2:1 leads to a adduct product 

(21) (reaction b in Scheme 5.3). The 31P NMR spectrum shows that the Pc atom in the P3C2-

ring coordinates the platinum atom. Complex 21 represents a sterically demanding cis-

platinum complex and is nonfluxional in solution. When one or more equivalents of 

[{PtCl2(PR3)}2] react with compound 8, no further adduct products were obtained except for 

the decomposition of the starting material 8. Since 21 could not be crystallographically 

characterised, no precise information on the topology of the Pt center coordinated to the P3C2-

ring of 8 is available. Thus, it remains uncertain why only one Pt centre can coordinate. 

However, assuming a nearly coplanar arrangement of the square planar Pt complex and the 

P3C2-ring, steric crowding might be responsible for hindering further substitution. 

In contrast reactions of 8 with tungstenpentacarbonyl units reveal multiple coordination 

behaviour of the P3C2-ring of 8. When 8 is treated with one or two equivalents of tungsten 

pentacarbonyl, complex 22 was yielded (reaction c in Scheme 5.3). In the 22, the two adjacent 

PM and PA´ atoms coordinate to the tungsten centers in the solid state. The bond length of PM–

PA´ is longer than that of PM–PA and reveals the steric interaction of both W(CO)5 units. 

Unlike the platinum complex 21, the tungsten derivative 22 shows dynamic behavior in 

solution according to the variable temperature 31P NMR spectra. Interestingly, the spectra at 

low temperatures reveal that the PA and PA´ atoms coordinate to the tungsten centers, which is 

in contrast to the solid state structure. 

When three equivalents of tungstenpentacarbonyl reacted with [Cp'''Fe(η5-P3C2PhH)], 

complex 23 was obtained (reaction d in Scheme 5.3). In this complex, all three phosphorus 

atoms in the phospholyl-ring coordinate to three tungsten centers. Due to the coordination of 

all phosphorus atoms to the tungsten pentacarbonyl moieties the P-P bonds are lengthend. In 

comparison to the Pt(II) complex, tungsten seems to coordinate more readily to Pn-ligands. 
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Scheme 5.3. Products based on [Cp'''Fe(η5-P3C2PhH)]. 

 

In comparison to the 1,2,4-triphosphaferrocenes, in which only the two adjacent phosphorus 

atoms in the P3C2-ring can coordinate to metal centers, all three phosphorus atoms in 

[Cp'''Fe(η5-P3C2PhH)] can ligate to metal centers and the coordination modes are more 

various (1-, 1,2-, 1,3- and 1,2,3-coordination mode). 

 

 

5.4 .Tetraphosphaferrocene [Cp'''Fe(η5-P4CtBu)] (3) as a ligand 
 

The reaction of [Cp'''Fe(η5-P4CtBu)] (3) with CuCl in a ratio of 1:1 leads to the formation of 

complex 24, which contains four [Cp'''Fe(η5-P4CtBu)] moieties. In this complex, three 

phosphorus atoms in the P4C-ring ligate to copper atoms (reaction a in scheme 5.4). The 

reaction of  3 with CuBr in the ratio of 1:1 can also lead to oligomer 26. In complex 26, the 
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P4C-ring was fragmented and rearranged into a P8C4 unit, which consists of a cunean-like 

structure of a P6C2 moiety which is connected by a four-membered P2C2-ring.  
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Scheme 5.4. Products based on [Cp'''Fe(η5-P4CtBu)] (3). 

 

The reactions of compound 3 and CuX (X = Cl, Br and I) in a stoichiometric ratio of 1:2 

result in the formation of the polymers 25, 27 and 28 (reaction c in scheme 5.4). In these 

polymers, two adjacent phosphorus atoms in the P4C-ring of [Cp'''Fe(η5-P4CtBu)] coordinate 

to two copper centers to form a six-membered ring. The [Cp'''Fe(η5-P4CtBu)] moieties are 

linked by coordination to (CuX)2 moieties via the third neighboring phosphorus atoms, thus 

forming a double chain structure. The coordination geometry of one copper atom in the 

(CuX)2 unit is tetrahedral while that of the other copper atom ranges from trigonal (25) to 

tetrahedral (28) depending on the size of the halide. 

The reaction of 3 with Ag[Al{OC(CF3)3}4] leads to the formation of a dicationic complex, 

which contains four [Cp'''Fe(η5-P4CtBu)] moieties (reaction d in scheme 5.4). In comparison 

with the dimeric silver complex 19, each silver atom of 29 coordinates to three phosphorus 
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atoms from three different phosphaferrocenes. Since the lone pair of electrons of the two 

adjacent phosphorus atoms in the two P4C-rings donate to the silver atoms, the P–P bond 

lengths are shortened in comparison to that in the uncoordinated ligand 3. This is similar to 

the case of the two adjacent phosphorus atoms in the P3C2-ring of 1,2,4-triphosphaferrocene 

ligating to two copper atoms. Complex 29 dissolves in CH2Cl2 and THF. In the solution of 29, 

the [Ag2{Cp'''Fe(η5:η1:η1-P4CtBu)}2{Cp'''Fe(η5:η1-P4CtBu)}2]2+ dication is depolymerised to 

the [Ag{Cp'''Fe(η5:η1:η1-P4CtBu)}2]+ monocation. This monocation fragment was also found 

in the mass spectrum. The variable temperature 31P{1H} NMR spectra of solutions of 29 

reveal dynamic behavior of the monocation. At room temperature fast exchange between 29a 

and 29b results in an AA´MM´ spin system. At low temperature, this motion is slowed down 

and the NMR spectra are typical of an ADMN spin system representing the four chemically 

and magnetically inequivalent phosphorus atoms in the P4C-rings (Figure 3.2.34 and 3.2.35). 

Compound [Cp'''Fe(η5-P4CtBu)] reacts with [AuCl(SC4H8)] leading to an adduct product (30), 

in which one phosphorus atom on the P4C-ring coordinates to the gold atom (reaction e in 

scheme 5.4). Dynamic behavior of 30 was also observed in solution. At room temperature, the 
31P NMR spectrum shows an AA´MM´ spin system. At low temperature, the 31P NMR 

spectrum shows an ADMN spin system, which represents four chemically inequivalent 

phosphorus atoms and reveals a windscreen wiper behaviour of the AuCl moiety. 

In comparison with the triphosphaferrocenes 4 and 7, the introduction of a fourth phosphorus 

atom in 3 leads to additional coordination modes (1-, 2,3-, 1,2,3- and 1,2,4-) of the P4C-ring. 

 

 

5.5 . Pentaphosphaferrocene [Cp'''Fe(η5-P5)] (5) as a ligand 
 

If all positions of the five-membered phospholyl ring are occupied by phosphorus atoms, 

coordination to metal centers involving even the entire P5 ring can be expected. Indeed, 2D 

polymers 31 and 32 were obtained by treating [Cp'''Fe(η5-P5)] with CuX (X = Cl, Br) in a 

stoichiometric ratio of 1:2 (reaction a in Scheme 5.5). In these complexes, three phosphorus 

atoms in the P5-ring coordinate to three copper centers in a 1,2,4-coordination mode to form 

2D polymers.  

The reaction of [Cp'''Fe(η5-P5)] with CuBr in a stoichiometric ratio of 1:1 leads to 

[{Cp'''Fe(μ,η5:η1:η1-P5)}4(CuBr)3]∞ (33) (reaction b in Scheme 5.5). In complex 33, a (CuBr)3 
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unit connects four [Cp'''Fe(η5-P5)] moieties in a 1,3-coordination mode of the cyclo-P5 ring to 

form a 2D polymer. 

As the size of the halide increases, the number of the atoms in CuX cluster grows too. When 

[Cp'''Fe(η5-P5)] is treated with CuI in a 1:2 stoichiometric ratio, two (CuI)4 units connect eight 

[Cp'''Fe(η5-P5)] moieties in a 1,3-coordination mode of the cyclo-P5 ring to form an even a 

double-layer 2D polymer complex (34) (reaction c in scheme 5.5). 
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Scheme 5.5. Products based on [Cp'''Fe(η5-P5)] (5). 

 

The polymers 31-34 dissolve in CH2Cl2 under depolymerisation. This is confirmed by the 
31P{1H} NMR of these complexes.  

The reaction of [Cp'''Fe(η5-P5)] with Ag[Al{OC(CF3)3}4] leads to the polymer 35 (reaction d 

in Scheme 5.5). In the cationic chain of 35, silver atoms are doubly bridged by [Cp'''Fe(η5-P5)] 

moieties and each silver coordinates six phosphorus atoms with two end-on and two side-on 

modes. In comparison to the Cp*-substituted derivate [Ag{Cp*Fe(η5:η2:η1-

P5)}2]n[Al{OC(CF3)3}4]n synthesised in our group, in which a 1,2,3-coordination mode of the 

cyclo-P5 ring was observed, the 1,2,4-coordination mode in 35 demonstrates the steric 
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influence of the bulky Cp''' group in 35. The 31P{1H} NMR spectra suggest that complex 35 

dissolves in CH2Cl2/THF under depolymerization. This suggestion is confirmed by the ESI-

MS mass spectrum, since the fragment of a [{Cp'''Fe(η5-P5)}2Ag]+ monocation with 100% 

relative abundance was detected. The 31P NMR spectra at different temperatures also reveal 

dynamic behavior of 35 in solution. 
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7. Appendix 

 

7.1. Directory of abbreviations 

 
1D, 2D, 3D One-, two-, three-dimensional 
Ar Aryl group 
tBu   tert-Butyl, -C(CH3)3 
Cp Cyclopentadienyl, η5

-C5H5 
Cp' tert-Butylcyclopentadienyl, η5-tBuC5H4 
Cp'' 1,3-Di-tert-butylcyclopentadienyl, η5-1,3-tBu2C5H3 
Cp''' 1,2,4-Tri-tert-butylcyclopentadienyl, η5-1,2,4-tBu3C5H2 
Cp* Pentamethylcyclopentadienyl, η5-C5(CH3)5 
Cpx Any cyclopentadienyl ligand, as specified in text 
δ Chemical shift 

ω1/2 Half-width 
DME 1,2-Dimethoxyethane, MeOCH2CH2OMe 
DMF Dimethylformamide, (CH3)2NCHO 
EI-MS Electron-ionization mass spectrometry 
ESI-MS Electrospray ionization mass spectrometry 
Et Ethyl, -CH2CH3 
Hz Hertz 
IR Infrared 
J Coupling constant 
L Ligand 
M Metal atom 
Me Methyl, -CH3 
NMR Nuclear magnetic resonance 
Ph Phenyl, -C6H5 

iPr                               iso-Propyl, -CH(CH3)2 

ppm Parts per million 
X Halogen/halide or pseudohalide 
THF Tetrahydrofuran, C4H8O 
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br broad 
s singlet 
d doublet 
t   triplet 
q quartet 
sept septet 
m multiplet 
 

Combinations of multiplicity symbols are also used, such as “dd” for “doublet of doublets” 
 

 

7.2. Directory of compounds      

 

1 [{Cp'''(CO)2Fe}2(μ,η1:η1-P4)]  

2 tBuC≡P 

3 [Cp'''Fe(η5-P4CtBu)] 

4 [Cp'''Fe(η5-P3C2
tBu2)] 

5 [Cp'''Fe(η5-P5)] 

6 [(Cp'''Fe)2(η3:η3-P3)] 

7 [CpFe(η5-P3C2
tBu2)] 

8 [Cp'''Fe(η5-P3C2PhH)] 

9 [Cp'''Fe(η5-PC4Ph2H2)] 

10 [{Cp'''Fe(η5:η1:η1-P3C2
tBu2)}(μ-CuCl)]2 

11 [{(Cp'''Fe)2(η4:η4-P4)}{μ-CuCl}2(MeCN)]∞ 

12 [{Cp'''Fe(η5:η1:η1-P3C2
tBu2)}(μ-CuBr)]2 

13 [{Cp'''Fe(η4:η1:η1-P2C2
tBu2)}{μ-CuBr(MeCN)}]2 

14 [{(Cp'''Fe)2(η4:η4-P4)}(μ-CuBr)2(MeCN)]∞ 

15 [{(Cp'''Fe)2(η4:η4-P4)}(μ-CuI)2(MeCN)]∞ 

16 [{CpFe(η5:η1:η1-P3C2
tBu2)}(μ-CuCl)(MeCN)]2 

17 [{CpFe(η5:η1:η1-P3C2
tBu2)}(μ-CuCl)(MeCN)]2 

18 [{CpFe(η5:η1:η1-P3
tBu2C2)}3(CuI)7MeCN] 

19 [{CpFe(η5:η1:η1-P3
tBu2C2)}(μ-AgMeCN)]2[Al{OC(CF3)3}4]2 

20 [{Cp'''Fe(η5:η1:η1-P3C2PhH)}4(µ-CuBr)4]∞ 
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21 [Cp'''Fe(μ,η5:η1-P3C2PhH)PtCl2PEt3] 

22 [{Cp'''Fe(μ,η5:η1:η1-P3C2PhH)}{W(CO)5}2] 

23 [{Cp'''Fe(μ,η5:η1:η1-P3C2PhH)}{W(CO)5}3] 

24                        [{Cp'''Fe(η4-P3CtBuP(O)tBu)}4{(μ-Cu2Cl)(MeCN)2}2 

                                   {(μ-CuCl)2(MeCN)}2] 

25 [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuCl) 2]∞ 

26 [{Cp'''Fe(η5-P4CtBu)}2(P8C4
tBu4)2(Cu3Br3)2(MeCN)2] 

27 [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuBr) 2]∞ 

28 [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuI) 2]∞ 

29                        [Ag2{Cp'''Fe(η5:η1:η1-P4CtBu)}2{Cp'''Fe(η5:η1-P4CtBu)}2] 

                                   [Al{OC(CF3)3}4]2 

30 [CpFe(η5:η1-P4CtBu)AuCl(SC4H8)] 

31 [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuCl)(MeCN)]∞ 

32 [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuBr)]∞ 

33 [{Cp'''Fe(η5:η1:η1-P5)}4(μ-CuBr)3]∞ 

34 [{Cp'''Fe(η5:η1:η1-P5)}4(μ-CuI)4]∞ 

35 [Ag{Cp'''Fe(η5 η2:η1-P5)}2]n[Al{OC(CF3)3}4]n 
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7.3. Crystallographic Data for the Reported Structures 
   
7.3.1. [{Cp'''Fe(η5:η1:η1-P3

tBu2C2)}(μ-CuCl)]2 (10) 
      
Crystal data and structure refinement for 10.  
Empirical formula C27H47ClCuFeP3 

Formula weight 619.40 

Crystal size 0.15 × 0.08 × 0.02 mm 

Crystal description   plate 

Crystal colour dark red 

Crystal system Monoclinic 

Space group P21/n 

Unit cell dimensions   a = 12.531(3) Å,   α = 90° 

 b = 15.849(3) Å,   β = 90.00(3)° 

 c = 14.912(3) Å,    γ = 90° 

Volume 2961.6(10) Å3 

Z, Calculated density 4,  1.389 Mg/m3 

Absorption coefficient 1.475 mm-1 

F(000) 1304 

Measurement device type STOE-IPDS diffractometer  

Measurement method rotation 

Temperature 203(2) K 

Wavelength 0.71073 Å 

θ range for data collection 2.57 to 27.47° 

Index ranges   -15 ≤ h ≤ 11, -18 ≤ k ≤ 17, -19 ≤ l ≤ 17 

Reflections collected / unique 9210 / 4667 [R(int) = 0.0706] 

Reflections greater I>2\s(I) 3484 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4667 / 0 / 313 

Goodness-of-fit on F2 1.045 

Final R indices [I>2sigma(I)] R1 = 0.0507, wR2 = 0.1211 

R indices (all data) R1 = 0.0768, wR2 = 0.1373 

Largest diff. peak and hole                               0.593 and -0.671 e Å-3 
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7.3.2. [{(Cp'''Fe)2(η4:η1:η1-P4)}{ μ-CuCl(MeCN)}2] ∞(11) 
       
Crystal data and structure refinement for 11· CH2Cl2. 

Empirical formula C37H63Cl4Cu2Fe2NP4  

Formula weight 1097.24 

Crystal size 0.25 × 0.10 × 0.08 mm 

Crystal description   rod 

Crystal colour brown to black 

Crystal system Orthorhombic 

Space group Pbcn 

Unit cell dimensions   a = 24.7495(17) Å,   α = 90° 

 b = 16.9685(11) Å,   β = 90° 

 c = 23.9773(15) Å,   γ = 90°  

Volume 10069.6(11) Å3 

Z, Calculated density 8,  1.448 Mg/m3  

Absorption coefficient 1.870 mm-1 

F(000) 4512 

Measurement device type STOE-IPDS diffractometer  

Measurement method rotation 

Temperature 173(1) K 

Wavelength 0.71073 Å 

Monochromator graphite 

θ range for data collection 1.89 to 25.28° 

Index ranges   -29 ≤ h ≤ 29, -20 ≤ k ≤ 20, -28 ≤ l ≤ 28 

Reflections collected / unique 70439 / 9107 [R(int) = 0.0892] 

Reflections greater I>2\s(I) 5233 

Absorption correction Numerical  

Max. and min. transmission 0.9226 and 0.7260 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9107 / 0 / 424 

Goodness-of-fit on F2 0.830 

Final R indices [I>2sigma(I)] R1 = 0.0438, wR2 = 0.0991 

R indices (all data) R1 = 0.0844, wR2 = 0.1079 

Largest diff. peak and hole                               0.596 and -0.262 e. Å-3 
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7.3.3. [{Cp'''Fe(η4:η1:η1-P2
tBu2C2)}{μ-CuBr(MeCN)}]2 (13) 

 
Crystal Data and Details of the Structure Determination for 13·2CH2Cl2   

Empirical formula C56H98Br2Cu2Fe2P4Cl2,  

Formula weight 1435.62   

Crystal size 0.22 × 0.14 × 0.04 mm 

Crystal description   plate 

Crystal colour dark brown 

Crystal system Triclinic 

Space group P1  

Unit cell dimensions   a = 1.072(3) Å,   α= 84.271(19)° 

 b = 11.461(2) Å,  β = 75.60(2)° 

 c = 14.659(4) Å,  γ = 63.03(2)° 

Volume 1605.6(8) Å3 

Z, Calculated density 1, 1.485 Mg/m3 

Absorption coefficient 8.477 mm-1 

F(000) 742 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 150 K 

Wavelength 1.54178 Å 

θ range for data collection 4.3 to 51.7° 

Index ranges   -11 ≤ h ≤ 10, -10 ≤ k ≤ 11, -14 ≤ l ≤ 14 

Reflections collected / unique 8218 / 3413 [R(int) = 0.099] 

Reflections greater I>2\s(I) 1688 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3413/168/331 

Goodness-of-fit on F2 1.032 

Final R indices [I>2sigma(I)] R1 = 0.1010, wR2 = 0.2594 

R indices (all data) R1 = 0.1834, wR2 = 0.3174 

Largest diff. peak and hole                               -2.27 and 1.84 e Å-3 
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7.3.4. [{(Cp'''Fe)2(η4:η4-P4)}(μ-CuBr)2(MeCN)]∞ (14) 
 
Crystal data and structure refinement for 14·CH2Cl2 

Empirical formula C37H63Br2Cu2Fe2NP4Cl2 

Formula weight 1115.26 

Crystal size 0.400 × 0.020 × 0.010 mm 

Crystal description   needle 

Crystal colour dark green    

Crystal system Orthorhombic 

Space group P212121 

Unit cell dimensions   a = 10.1451(3) Å,   α = 90° 

 b = 13.4635(4) Å,   β = 90° 

 c = 33.2088(16) Å,  γ = 90° 

Volume 4535.9(3) Å3 

Z, Calculated density 4,  1.633 Mg/m3 

Absorption coefficient 10.766 mm-1 

F(000) 2264 

Measurement device type Oxford Diffraction Gemini Ultra  

Measurement method omega-scan 

Temperature 150 K 

Wavelength 1.54184 Å 

θ range for data collection 2.66 to 62.94° 

Index ranges   -11 ≤ h ≤ 9, -15 ≤ k ≤ 15, -35 ≤ l ≤ 38 

Reflections collected / unique 15442 / 6822 [R(int) = 0.0575] 

Reflections greater I>2\s(I) 5218 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.61961 and 0.49105 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6822 / 0 / 271 

Goodness-of-fit on F2 1.115 

Final R indices [I>2sigma(I)] R1 = 0.0962, wR2 = 0.2259 

R indices (all data) R1 = 0.1200, wR2 = 0.2373 

Absolute structure parameter                              0.493(17) 

Largest diff. peak and hole                               1.603 and -1.353 e.A-3 
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7.3.5 [{(Cp'''Fe)2(η4:η4-P4)}(μ-CuI)2(MeCN)]∞ (15) 
 
Crystal data and structure refinement for 15 

Empirical formula C37H63Cl2Cu2Fe2I2NP4 

Formula weight 1209.24 

Crystal size 0.24 × 0.17 × 0.10 mm 

Crystal description   block 

Crystal colour brown  

Crystal system                                          Orthorhombic 

Space group P212121 

Unit cell dimensions   a = 10.2433(6) Å,  α = 90° 

 b = 13.3511(8) Å,   β = 90° 

 c = 33.422(2) Å,     γ = 90° 

Volume 4570.7(5) Å3 

Z, Calculated density 4,  1.757 Mg/m3 

Absorption coefficient 3.175 mm-1 

F(000) 2408 

Measurement device type Bruker SMART Apex  

Measurement method CCD area detector 

Temperature 100(2) K 

Wavelength 0.71073 Å 

θ range for data collection 1.64 to 28.00° 

Index ranges   -12 ≤ h ≤ 13, -17 ≤ k ≤ 12, -40 ≤ l ≤ 42 

Reflections collected / unique 20115 / 10078 [R(int) = 0.0370]  

Reflections greater I>2\s(I) 7915 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 0.773 and 0.462 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10078 / 17 / 515 

Goodness-of-fit on F2 0.990 

Final R indices [I>2sigma(I)] R1 = 0.0376, wR2 = 0.0710 

R indices (all data) R1 = 0.0535, wR2 = 0.0735 

Absolute structure parameter                              0.469(17) 

Largest diff. peak and hole                               1.167 and -0.916 e.A-3 
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7.3.6. [{CpFe(η5:η1:η1-P3C2
tBu2)}(μ-CuCl)(MeCN)]2 (16) 

 
Crystal data and structure refinement for 16. 

Empirical formula C34H52Cl2Cu2Fe2N2P6 

Formula weight 984.28 

Crystal size 0.25 × 0.24 × 0.18 mm 

Crystal description   plate 

Crystal colour red 

Crystal system                                          Monoclinic 

Space group P21/n  

Unit cell dimensions   a = 11.5601(11) Å, α = 90° 

 b = 7.3514(6) Å,     β = 97.286(15)° 

 c = 24.991(4) Å,     γ = 90° 

Volume 2106.7(4) Å3 

Z, Calculated density 2, 1.552 Mg/m
3
 

Absorption coefficient 2.052 mm
-1 

F(000) 1008 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 200(2) K 

Wavelength 0.71073 Å 

θ range for data collection 3.22 to 25.80° 

Index ranges   -14 ≤ h ≤ 14, -8 ≤ k ≤ 8, -30 ≤ l ≤ 26 

Reflections collected / unique 9475/3719 [R(int) = 0.0637]  

Reflections greater I>2\s(I) 2613 

Absorption correction No Abs. 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 3707 / 0 / 217 

Goodness-of-fit on F2 0.999 

Final R indices [I>2sigma(I)] R1 = 0.0656, wR2 = 0.1653 

R indices (all data) R1 = 0.0942, wR2 = 0.1791 

Largest diff. peak and hole       1.032 and -1.001 e.Å
-3
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7.3.7. [{CpFe(η5:η1:η1-P3C2
tBu2)}3(μ-CuI)7(MeCN)] (18) 

 
Crystal data and structure refinement for 18  

Empirical formula C92H168Cu14Fe6I14NP18 

Formula weight 4846.99 

Crystal size 0.13 × 0.11 × 0.07 mm 

Crystal description   block 

Crystal colour red  

Crystal system                                          orthorhombic 

Space group Cmcm 

Unit cell dimensions   a = 15.592(3) Å, α = 90° 

 b = 26.504(3) Å, β = 90° 

 c = 21.542(3) Å, γ = 90° 

Volume 8902.2 (2) Å3 

Z, Calculated density 2, 1.808 g/cm3 

Absorption coefficient 26.348 mm-1 

F(000) 4602 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 105 K 

Wavelength 1.5418 Å 

θ range for data collection 3.29 to 65.01° 

Index ranges   -18 ≤ h ≤ 17, -30 ≤ k ≤ 30, -25 ≤ l ≤ 23 

Reflections collected / unique 37709/4030 [R(int) = 0.0482]  

Reflections greater I>2\s(I) 3226 

Absorption correction multi-scan 

Max. and min. transmission 1.668 and 0.529 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 4030/7/234 

Goodness-of-fit on F2 0.997 

Final R indices [I>2sigma(I)] R1 = 0.0499, wR2 = 0.1916 

R indices (all data) R1 = 0.0582, wR2 = 0.1966 

Largest diff. peak and hole       3.594 and -1.565 e.Å
-3
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7.3.8. [{CpFe(η5:η1:η1-P3C2
tBu2)}(μ-AgMeCN)]2[Al{OC(CF3)3}4]2  (19) 

 
Crystal data and structure refinement for 19·2CH2Cl2  

Empirical formula C62H56Ag2Fe2P6N2Cl4O8Al2F72 

Formula weight 3142 

Crystal size 0.08 × 0.06 × 0.05 mm 

Crystal description   prism 

Crystal colour orange 

Crystal system                                          monoclinic 

Space group P21/c 

Unit cell dimensions         a=10.7479(9) Å,    α = 90°  

       b=31.3800(49) Å,  β=97.78(1)° 

 c=15.6278(29) Å,  γ = 90° 

Volume 5222.23(14) Å3 

Z, Calculated density 2, 2.054 g/cm3 

Absorption coefficient 8.893 mm-1 

F(000) 3160 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 293 K 

Wavelength 1.54184 Å 

θ range for data collection 2.82 to 51.36° 

Index ranges   -10 ≤ h ≤ 10, -31 ≤ k ≤ 31, -15 ≤ l ≤ 14 

Reflections collected / unique  18263 / 5575 [R(int) = 0.0558] 

Reflections greater I>2\s(I) 2954 

Absorption correction semi-empirical from equivalents 

Max. and min. transmission 1.17191 and 0.74373 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 5575 / 0 / 416 

Goodness-of-fit on F2 1.308 

Final R indices [I>2sigma(I)] R1 = 0.1456, wR2 = 0.3788 

R indices (all data) R1 = 0.2069, wR2 = 0.4004 

Largest diff. peak and hole       1.465 and -1.096 e.Å
-3
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7.3.9. [Cp'''Fe(η5-P3C2PhH)4(CuBr)4]∞ (20) 
 
Crystal data and structure refinement for 20·2CH3CN.  

Empirical formula C54H76Br4Cu4Fe2N2P6 

Formula weight 1760.18 

Crystal size 0.060 × 0.060 × 0.020 mm 

Crystal description   plate like 

Crystal colour orange 

Crystal system                                          Triclinic 

Space group P1  

Unit cell dimensions         a = 15.1002(10) Å,  α = 110.545(7)° 

       b = 15.5709(11) Å,  β = 94.432(6)° 

 c = 16.3950(12)Å,   γ = 104.171(6)° 

Volume 3442.8(5) Å3 

Z, Calculated density 2,  1.690 Mg/m3 

Absorption coefficient 10.019 mm-1 

F(000) 1750 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 123 K 

Wavelength 1.54184 Å 

θ range for data collection 3.07 to 62.95° 

Index ranges   -17 ≤ h ≤ 17, -17 ≤ k ≤ 17, -18 ≤ l ≤ 18 

Reflections collected / unique 25040 / 10799 [R(int) = 0.0395] 

Reflections greater I>2\s(I) 8079 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.07613 and 0.89630 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 10799 / 0 / 734 

Goodness-of-fit on F2 1.079 

Final R indices [I>2sigma(I)] R1 = 0.0411, wR2 = 0.0846 

R indices (all data) R1 = 0.0619, wR2 = 0.0894 

Largest diff. peak and hole                               1.208 and -0.577 e.A-3 
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7.3.10. [Cp'''Fe(η5-P3C2PhH){W(CO)5}2] (22) 
 
Crystal data and structure refinement for 22.  

Empirical formula C35H35FeO10P3W2 

Formula weight 1132.07 

Crystal size 0.03 × 0.06 × 0.14 mm 

Crystal description   thin plate 

Crystal colour red 

Crystal system                                          Monoclinic 

Space group C2/c 

Unit cell dimensions         a = 32.8307(5) Å,     α = 90° 

       b = 11.56806(18) Å, β = 107.9860(17)° 

 c = 21.5150(3) Å,     γ = 90° 

Volume 7771.8 (2) Å3 

Z, Calculated density 8, 1.935 Mg/m3 

Absorption coefficient 15.281 mm-1 

F(000) 4352 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method Omega-scan 

Temperature 123 K 

Wavelength 1.54184 Å 

θ range for data collection 2.8 and 51.5° 

Index ranges   -33 ≤ h ≤ 27, -11 ≤ k ≤ 10, -21 ≤ l ≤ 21 

Reflections collected / unique 11470 / 4150 [R(int) = 0.032]  

Reflections greater I>2\s(I) 3534 

Absorption correction multi-scan 

Max. and min. transmission 0.37878 and 1.0000 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4150 / 0 / 466 

Goodness-of-fit on F2 1.066 

Final R indices [I>2sigma(I)] R1 = 0.0325, wR2 = 0.0693 

R indices (all data) R1 = 0.0431, wR2 = 0.0743 

Largest diff. peak and hole                               -0.92 and 1.02 e.A-3 
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7.3.11. [Cp'''Fe(η5-P3C2PhH){W(CO)5}3] (23) 
 
Crystal data and structure refinement for 23·CH2Cl2.  

Empirical formula C41H37FeO15P3W3Cl2  
Formula weight 1540.89 

Crystal size 0.200 × 0.170 × 0.130 mm 

Crystal description   prism 

Crystal colour puple 

Crystal system                                          Triclinic 

Space group P1  

Unit cell dimensions         a = 11.4506(6) Å, α = 78.287(4)° 

       b = 12.8637(7)Å,  β = 78.727(4)° 

 c = 18.9303(9) Å,  γ = 65.317(5)° 

Volume 2461.6(2) Å3 

Z, Calculated density 2,  2.079 Mg/m3 

Absorption coefficient 17.411 mm-1 

F(000) 1460 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 123 K 

Wavelength 1.54184 Å 

θ range for data collection 2.40 to 62.17° 

Index ranges   -13 ≤ h ≤ 13, -14 ≤ k ≤ 14, -20 ≤ l ≤ 21 

Reflections collected / unique 23456 / 7607 [R(int) = 0.0219] 

Reflections greater I>2\s(I) 7083 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.61563 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 7607 / 0 / 595 

Goodness-of-fit on F2 1.034 

Final R indices [I>2sigma(I)] R1 = 0.0343, wR2 = 0.0848 

R indices (all data) R1 = 0.0370, wR2 = 0.0868 

Largest diff. peak and hole                               2.298 and -2.830 e.A-3 
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7.3.12. [{Cp'''Fe(η4-P3CtBuP(O)tBu)}4{(μ-Cu2Cl)(MeCN)2}2{(μ-CuCl)2 (MeCN)}2] (24) 

 
Crystal Data and Details of the Structure Determination for 24 

Empirical formula C114Cl6Cu8Fe4N6O4P16 

Formula weight 3077.32 

Crystal size 0.28 × 0.04 × 0.03 mm 

Crystal description   needle 

Crystal colour dark green 

Crystal system                                          Orthorhombic 

Space group P212121 

Unit cell dimensions         a = 23.016(5) Å, α = 90° 

       b = 23.738(5) Å, β = 90° 

 c = 15.658(3) Å, γ = 90° 

Volume 8555(3) Å3 

Z, Calculated density 2, 1.212 Mg/m3 

Absorption coefficient 1.622 mm-1 

F(000) 2992 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 150 K 

Wavelength 0.71073 Å 

θ range for data collection 1.56 to 26.78° 

Index ranges   -29 ≤ h ≤ 24, -28 ≤ k ≤ 28, -19 ≤ l ≤ 19 

Reflections collected / unique 72242 / 16745 [R(int) = 0.0842] 

Reflections greater I>2\s(I) 13085 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 16745 / 0 / 757 

Goodness-of-fit on F2 1.037 

Final R indices [I>2sigma(I)] R1 = 0.0917, wR2 = 0.2553 

R indices (all data) R1 = 0.1111, wR2 = 0.2767 

Largest diff. peak and hole                               2.540 and -1.382 e.A-3 

Flack parameter                                                   0.43 
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7.3.13. [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuCl)2]∞ (25) 
 
Crystal Data and Details of the Structure Determination for 25·CH2Cl2 

Empirical formula C23H40Cl4Cu2FeP4 

Formula weight 764.17 

Crystal size 0.02 × 0.04 ×0.10 

Crystal description   plate 

Crystal colour brown 

Crystal system                                          Triclinic 

Space group P1  

Unit cell dimensions         a = 10.049(2) Å, α = 81.37(3)° 

       b = 12.045(2)Å, β = 87.98(3)°  

 c = 14.813(3) Å, γ = 87.13(3)° 

Volume 1769.7 Å3 

Z, Calculated density 2,  1.434 Mg/m3 

Absorption coefficient 3.445 mm-1 

F(000) 778 

Measurement device type STOE-IPDS diffractometer 

Measurement method rotation 

Temperature 203 K 

Wavelength 0.71073 Å 

θ range for data collection 1.7 to 22.4° 

Index ranges   -9 ≤ h ≤ 10, -12 ≤ k ≤ 12, -15 ≤ l ≤ 13 

Reflections collected / unique 7796 / 4292 [R(int) = 0.152] 

Reflections greater I>2\s(I) 2057 

Absorption correction none 

Data / restraints / parameters 4292 / 0 / 314 

Goodness-of-fit on F2 1.065 

Final R indices [I>2sigma(I)] R1 = 0.1221, wR2 = 0.3132 

R indices (all data) R1 = 0.2180, wR2 = 0.3775 

Largest diff. peak and hole                               1.23 and -1.03 e.A-3 

 

 



 

 140

7.3.14. [{Cp'''Fe(η5-P4CtBu)}2(P8C4
tBu4)2(Cu3Br3)2(MeCN)2] (26) 

 
Crystal Data and Details of the Structure Determination for 26·4C2H3N    

Empirical formula C96H166Br6Cu6Fe2N6P24  
Formula weight 3120.04 

Crystal size 0.26 × 0.04 × 0.03 mm 

Crystal description   needle 

Crystal colour green 

Crystal system                                          Monoclinic 

Space group P21/c 

Unit cell dimensions         a = 16.531(3) Å, α = 90° 

       b = 14.727(6) Å,  β = 104.73(3)° 

           c = 28.715(6) Å, γ = 120° 

Volume 6761(3) Å3 

Z, Calculated density 2, 1.533 Mg/m3 

Absorption coefficient 3.231mm-1 

F(000) 3160 

Measurement device type STOE-IPDS diffractometer 

Measurement method rotation 

Temperature 203 K 

Wavelength 0.71073 Å 

θ range for data collection 1.9 to 24.0° 

Index ranges   -18 ≤ h ≤ 15, -16 ≤ h ≤ 16, -32 ≤ h ≤ 26 

Reflections collected / unique 18900/9865 [R(int) = 0.208] 

Reflections greater I>2\s(I) 3757 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 9865 / 0 / 643 

Goodness-of-fit on F2 0.958 

Final R indices [I>2sigma(I)] R1 = 0.0878, wR2 = 0.1439 

R indices (all data) R1 = 0.2379, wR2 = 0.1998 

Largest diff. peak and hole                               -0.82 and 0.74 e/Å3 
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7.3.15. [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuBr)2]∞ (27) 
 
Table 1.  Crystal data and structure refinement for 27.  

Empirical formula C22H38Br2Cu2FeP4 

Formula weight 769.15 

Crystal size 0.24 × 0.18 × 0.17 mm 

Crystal description   needle 

Crystal colour yellow to brown 

Crystal system                                          Trigonal 

Space group R3  

Unit cell dimensions         a = 41.272(3) Å, α = 90° 

       b = 41.272(3) Å,  β = 90° 

           c = 10.012(7) Å,  γ = 120° 

Volume 14770(18) Å3 

Z, Calculated density 18, 1.556 Mg/m3 

Absorption coefficient 4.359 mm-1 

F(000) 6912 

Measurement device type STOE-IPDS diffractometer 

Measurement method rotation 

Temperature 123(1) K 

Wavelength 0.71073 Å 

θ range for data collection 1.97 to 25.86° 

Index ranges   -50 ≤ h ≤ 50, -50 ≤ k ≤ 50, -12 ≤ l ≤ 12 

Reflections collected / unique 36362 / 6337 [R(int) = 0.0807] 

Reflections greater I>2\s(I) 3616 

Absorption correction Analytical 

Max. and min. transmission 0.5227 and 0.4431 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6337 / 0 / 280 

Goodness-of-fit on F2 0.786 

Final R indices [I>2sigma(I)] R1 = 0.0368, wR2 = 0.0746 

R indices (all data) R1 = 0.0767, wR2 = 0.0811 

Largest diff. peak and hole                               0.595 and -0.523 e.Å-3 
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7.3.16. [{Cp'''Fe(η5:η1:η1:η1-P4CtBu)}2(μ-CuI)2]∞ (28) 
 
Crystal data and structure refinement for 28 

Empirical formula C22H38Cu2FeI2P4 

Formula weight 863.15 

Crystal size 0.536 × 0.016 × 0.014 mm 

Crystal description   needle 

Crystal colour light yellow 

Crystal system                                          Trigonal 

Space group R3  

Unit cell dimensions         a = 42.269(3) Å,   α = 90° 

       b = 42.269(3) Å,   β = 90° 

           c = 10.0582(8) Å,  γ = 120° 

Volume 15563(2) Å3 

Z, Calculated density 18,  1.658 Mg/m3 

Absorption coefficient 3.612 mm-1 

F(000) 7560 

Measurement device type STOE-IPDS diffractometer 

Measurement method rotation 

Temperature 123(1) K 

Wavelength 0.71073 Å 

θ range for data collection 2.10 to 20.00° 

Index ranges   -38 ≤ h ≤ 40, -40 ≤ k ≤ 40, -9 ≤ l ≤ 9 

Reflections collected / unique 18614 / 3235 [R(int) = 0.1615] 

Reflections greater I>2\s(I) 1558 

Absorption correction Numerical 

Max. and min. transmission 0.9583 and 0.8021 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 3235 / 0 / 275 

Goodness-of-fit on F2 0.576 

Final R indices [I>2sigma(I)] R1 = 0.0378, wR2 = 0.0654 

R indices (all data) R1 = 0.0944, wR2 = 0.0747 

Largest diff. peak and hole                               0.535 and -0.490 e.Å-3 
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7.3.17. [Ag2{Cp'''Fe(η5:η1:η1:-P4CtBu)}2{Cp'''Fe(η5:η1:-P4CtBu)}2] [Al{OC(CF3)3}4]2 (29) 
 
Crystal data and structure refinement for 29. 

Empirical formula C138H192Ag2Al2F72Fe4O10P16 

Formula weight 4367.54 

Crystal size 0.018 × 0.096 × 0.061 mm 

Crystal description   plate 

Crystal colour brown 

Crystal system                                          Triclinic 

Space group P1  

Unit cell dimensions         a = 15.274(2) Å, α = 104.909(9)° 

       b = 17.1586(17) Å, β = 107.086(11)° 

           c = 18.7961(19) Å, γ = 95.886(10)° 

Volume 4464.7(9) Å
3 

Z, Calculated density 1, 1.624 Mg/m
3
 

Absorption coefficient 6.862 mm
-1

 

F(000) 2212 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 103(2) K 

Wavelength 1.54178 Å 

θ range for data collection 2.58 to 51.18° 

Index ranges   -14 ≤ h ≤ 15, -16 ≤ k ≤ 17, -18 ≤ l ≤ 18 

Reflections collected / unique 24732 / 9506 [R(int) = 0.0396] 

Reflections greater I>2\s(I) 6331 

Absorption correction multi-scan 

Max. and min. transmission 1.2263 and 0.7748  

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 9506 / 1 / 1125 

Goodness-of-fit on F2 0.992 

Final R indices [I>2sigma(I)] R1 = 0.0402, wR2 = 0.0976 

R indices (all data) R1 = 0.0706, wR2 = 0.1114 

Largest diff. peak and hole       0.694 and -0.704 e.Å
-3
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7.3.18. [{Cp'''Fe(η5:η1-P4CtBu)}(μ-AuCl)][(SC4H8)](30) 
 
Crystal Data and Details of the Structure Determination for 30 

Empirical formula C22H38AuClFeP4, CH2Cl2   

Formula weight 799.60   

Crystal size 0.08 × 0.15 × 0.20 mm 

Crystal description   block 

Crystal colour dark brown 

Crystal system                                          Orthorhombic 

Space group P212121 

Unit cell dimensions         a = 9.6911(11) Å, α = 90° 

       b = 17.063(5) Å, β = 90° 

           c = 18.1151(16) Å, γ = 90° 

Volume 2995.5(10) Å
3 

Z, Calculated density 4, 1.773 Mg/m
3
 

Absorption coefficient 17.524 mm
-1

 

F(000) 1576 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 123 K 

Wavelength 1.54184 Å 

θ range for data collection 3.45 to 64.91° 

Index ranges   -11 ≤ h ≤ 8, -19 ≤ k ≤ 19, -21 ≤ l ≤ 20 

Reflections collected / unique 17654 / 4892 [R(int) = 0.1009] 

Reflections greater I>2\s(I) 4442 

Absorption correction multi-scan 

Max. and min. transmission 1.40508 and 0.38663 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 4892 / 0 / 166 

Goodness-of-fit on F2 1.062 

Final R indices [I>2sigma(I)] R1 = 0.0626, wR2 = 0.1539 

R indices (all data) R1 = 0.0704, wR2 = 0.1655 

Largest diff. peak and hole                               3.01 and -4.05  e.Å
-3
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7.3.19. [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuCl)2(MeCN)]∞ (31) 
 
Crystal data and structure refinement for 31·2C6H4Cl2 

Empirical formula C31H40Cl6Cu2FeNP5   

Formula weight 977.14   

Crystal size 0.130 × 0.100 × 0.070 mm 

Crystal description   platelike 

Crystal colour brown  

Crystal system                                          Monoclinic 

Space group P21/c 

Unit cell dimensions         a = 16.4942(10) Å, α = 90° 

       b = 16.6306(10) Å, β = 106.2320(10)° 

           c = 15.2677(10) Å,  γ= 90° 

Volume 4021.11(5) Å3 

Z, Calculated density 4, 1.614 Mg/m3 

Absorption coefficient 9.825 mm-1 

F(000) 1976 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 123 K 

Wavelength 1.54184 Å 

θ range for data collection 2.79 to 62.22° 

Index ranges   -18 ≤ h ≤ 18, -18 ≤ k ≤ 18, -17 ≤ l ≤ 17 

Reflections collected / unique 43051 / 6294 [R(int) = 0.0291] 

Reflections greater I>2\s(I) 5349 

Absorption correction multi-scan 

Max. and min. transmission 0.41268 and 1.00000 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6294 / 0 / 425 

Goodness-of-fit on F2 1.039 

Final R indices [I>2sigma(I)] R1 = 0.0266, wR2 = 0.0677 

R indices (all data) R1 = 0.0323, wR2 = 0.0707 

Largest diff. peak and hole                               0.717 and -0.282 e.A-3 
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7.3.20. [{Cp'''Fe(η5:η1:η1:η1-P5)}(μ-CuBr) 2(MeCN)]∞ (32) 
 
Crystal Data and Details of the Structure Determination for 32·2C6H4Cl2 

Empirical formula C31H40Br2Cu2FeNP5Cl4  

Formula weight 1066.04 

Crystal size 0.16 × 0.10 × 0.06 mm 

Crystal description   plate 

Crystal colour brown 

Crystal system                                          Monoclinic  

Space group                                                      P 21/c 

Unit cell dimensions         a = 16.76410(10) Å,  α = 90° 

       b = 16.4557(2) Å,      β = 106.3860(10)° 

           c = 15.53930(10) Å,   γ = 90° 

Volume 4112.63(7)  Å3 

Z, Calculated density 4,  1.722  Mg/m3 

Absorption coefficient 10.688 mm-1 

F(000) 2120 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 123 K 

Wavelength 1.54184 Å 

θ range for data collection 2.75 to 62.17° 

Index ranges   -19 ≤ h ≤ 18, -17 ≤ k ≤ 18, -17 ≤ l ≤ 17 

Reflections collected / unique 29378 / 6383 [R(int) = 0.0421] 

Reflections greater I>2\s(I) 5160 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.00000 and 0.56969 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 6383 / 0 / 425 

Goodness-of-fit on F2 1.064 

Final R indices [I>2sigma(I)] R1 = 0.0403, wR2 = 0.1006 

R indices (all data) R1 = 0.0530, wR2 = 0.1140 

Largest diff. peak and hole                               1.041 and -0.615 e/Å3 
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7.3.21. [{Cp'''Fe(η5:η1:η1-P5)}2(μ-CuBr)3]∞ (33) 
 
Crystal Data and Details of the Structure Determination for 33   

Empirical formula C34H58Br3Cu3Fe2P10 

Formula weight 1318.55   

Crystal size 0.22 × 0.14 × 0.04 mm 

Crystal description   plate 

Crystal colour brown 

Crystal system                                          Tetragonal  

Space group                                                      I 4  

Unit cell dimensions         a = 13.7650(19) Å, α = 90° 

       b = 13.7650(19) Å, β = 90° 

           c = 25.552(5) Å,      γ = 90° 

Volume 4841.5(13) Å3 

Z, Calculated density 4, 1.809 Mg/m3 

Absorption coefficient 12.369 mm-1 

F(000) 2624  

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 123 K 

Wavelength 1.5418 Å 

θ range for data collection 3.5 to 51.1° 

Index ranges   -12 ≤ h ≤ 13, -12 ≤ k ≤ 10, -24 ≤ h ≤ 25 

Reflections collected / unique 4466 / 2294,  [R(int) = 0.057] 

Reflections greater I>2\s(I) 2152 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 2294 / 0 / 249 

Goodness-of-fit on F2 1.089 

Final R indices [I>2sigma(I)] R1 = 0.0636, wR2 = 0.1717 

R indices (all data) R1 = 0.0681, wR2 = 0.1759 

Largest diff. peak and hole                               -0.59 and 0.65 e/Å3 
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7.3.22. [{Cp'''Fe(η5:η1:η1-P5)}4(μ-CuI)4]∞ (34) 
       
Crystal data and structure refinement for 34.  

Empirical formula C68H116Cu9Fe4I9P20 

Formula weight 3562.46   

Crystal size 0.510 × 0.390 × 0.040 mm 

Crystal description   plate 

Crystal colour brown 

Crystal system                                          Monoclinic  

Space group                                                      C2/c 

Unit cell dimensions         a = 25.7748(7) Å, α = 90° 

       b = 25.7261(5) Å, β = 95.795(2)° 

           c = 34.0933(6) Å, γ = 90° 

Volume 22491.2(9) Å3 

Z, Calculated density 8,  2.104 Mg/m3 

Absorption coefficient 28.166 mm-1 

F(000) 13616 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 150(1) K 

Wavelength 1.5418 Å 

Monochromator graphite 

θ range for data collection 2.43 to 51.06° 

Index ranges   -25 ≤ h ≤ 25, -25 ≤ k ≤ 24, -34 ≤ l ≤ 34 

Reflections collected / unique 28722 / 11581 [R(int) = 0.0763] 

Reflections greater I>2\s(I) 7814 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.62451 and -0.00319 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 11581 / 0 / 731 

Goodness-of-fit on F2 1.046 

Final R indices [I>2sigma(I)] R1 = 0.0916, wR2 = 0.2624 

R indices (all data) R1 = 0.1309, wR2 = 0.2898 

Largest diff. peak and hole                               2.710 and -2.175 e.Å-3 
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7.3.23 [Ag{Cp'''Fe(η5:η2:η1-P5)}2]n[Al{OC(CF3)3}4]n (35) 
 
Crystal data and structure refinement for 35.  

Empirical formula C100H116Ag2Fe4P20Al2F72O8 

Formula weight 3926.13 

Crystal size 0.408 × 0.049 × 0.018 mm 

Crystal description flat rod 

Crystal colour brown to red 

Crystal system Triclinic 

Space group P1  

Unit cell dimensions a = 11.0690(11) Å, α = 89.562(11)° 

 b = 21.991(3) Å,     β= 85.907(11)° 

 c = 30.807(5) Å,      γ = 80.095(9)° 

Volume 7368.3(17) Å3 

Z, Calculated density 2, 1.770 Mg/m3 

Absorption coefficient 8.625 mm-1 

F(000) 3904 

Measurement device type Oxford Diffraction Gemini Ultra 

Measurement method omega-scan 

Temperature 150(1) K 

Wavelength 1.5418 Å 

θ range for data collection 2.49 to 62.89°  

Index ranges                                                -12 ≤ h ≤12, -24 ≤ k ≤ 25, -35 ≤ l ≤ 35 

Reflections collected / unique 106402 / 23426 [R(int) = 0.0491] 

Reflections greater I>2\s(I) 15914 

Absorption correction Semi-empirical from equivalents 

Max. and min. transmission 1.17131 and 0.58772 

Refinement method                                        Full-matrix-block least-squares on F2  

Data / restraints / parameters   23426 / 0 / 1932 

Goodness-of-fit on F2                                     1.082  

Final R indices [I>2sigma(I)] R1 = 0.0549, wR2 = 0.1450 

R indices (all data) R1 = 0.0809, wR2 = 0.1556 

Largest diff. peak and hole                                  3.058 and -2.686 e.Å-3  
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