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Introduction

At the beginning of the 20th century, Albert Einstein proposed a new phys-
ical theory: Special Relativity. The main difference to Newtonian physics
lies in the fact that time and space are no longer regarded as separate ob-
jects, and furthermore the speed of light is a universal constant, i.e. not
depending on the reference frame. Since the Newtonian law of gravitation
as an action-at-distance law was not compatible with this theory, Einstein
and other workers developed a relativistic theory of gravitation. The basic
idea lies in the principle of equivalence, which states [cf. [25]]

Einstein equivalence principle. In an arbitrary gravitational field
no local non-gravitational experiment can distinguish a freely falling non-
rotating system (local inertial system) from a uniformly moving system in
the absence of a gravitational field.

In short, gravity can be transformed away locally. As a consequence,
gravity is no longer regarded as a force, but is related to curvature of space-
time itself, which is caused by its matter content. As a mathematical model
of spacetime, one uses a four dimensional differentiable manifold M endowed
with a metric tensor g of signature (4, —, —, —), also called Lorentzian man-
ifold. In such a manifold, it is a mathematical fact that one can choose local
coordinates around any point p € M, called normal coordinates, such that
gij(p) = diag(1,—1,—1,—1), and in addition the components have vanishing
first derivatives, g;; » = 0. Neglecting higher derivatives, relative to normal
coordinates the neighborhood of p looks like Minkowski space. Because of
the signature of the metric g, one distinguishes non-zero vectors X € T, M
into three classes, namely we call X

timelike, when g(X, X) >0,
null or lightlike, when ¢g(X,X) =0,
spacelike, when ¢g(X,X) <0.

At each point p € M, the null vectors form a double cone in T, M, the so
called light cone, which separates the timelike from the spacelike vectors. It
is now postulated that massive objects can only move on timelike curves, i.e.
the velocity vectors of these curves are everywhere timelike, while photons
follow lightlike paths. In short, this postulate is called local causality. So far,
the metric has not been specified. As a consequence of the equivalence prin-
ciple and the requirement that all equations should be independent of the
coordinate choice, the world lines of free objects are described by geodesics.
The correct generalization of Newton’s equations to this framework are Fin-
stein’s field equations, which state that the spacetime metric g has to satisfy

1
R;; — ERgij =T,
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where R;; is the Ricci tensor, R is scalar curvature and T;; the energy mo-
mentum tensor, which is divergence-free and symmetric and describes the
matter fields that are contained in spacetime. Using that both sides are sym-
metric, the Einstein field equations provide a set of ten independent coupled
nonlinear partial differential equations in the metric and its first and second
derivatives. Due to the high complexity of these equations, at present only
a few exact solutions are known. An important family of solutions, which
are a model for the stationary axisymmetric asymptotically flat field outside
a rotating massive object, is the Kerr solution. In Boyer-Lindquist coordi-
nates (¢t,r,9,¢) withr > 0,0 <9 < 7, 0 < ¢ < 27, these solutions are
given by the line element

(adt — (1"2 + a2) d(p)Q,

A dr? in2 ¢
ds® = T (dt — asin® 9 dW)Q—U (% + d192> — SlI(l]
where U(r,9) = r?+a?cos® 9 and A(r) = r2—2Mr+a?. Here, M and a are
constants, M representing the mass and J = aM the angular momentum as
measured from infinity. A(r) vanishes at the values

ry =M+ M?2—a?,
where r_ characterizes the Cauchy horizon and r; the event horizon.

One can classify the Kerr solution by the parameters a and M:

M =la| =0: Minkowski metric

M > |a|] =0: Schwarzschild metric

M =la] > 0: extreme Kerr metric

M > |a] > 0: non-extreme Kerr metric .

Since this work mainly deals with the background of the Schwarzschild space-
time, we present a few characteristics of it. Due to the fact that a = 0, the
Schwarzschild solution represents a spherical symmetric empty spacetime
outside a spherical symmetric (non-rotating) massive body. It was the first
non-trivial solution of the Einstein field equations found by K. Schwarzschild
in 1916. In fact, most of the experiments to test the difference between
General Relativity and Newtonian theory rely on this solution. We briefly
mention a few examples, for more details see e.g. [25, 12]:

e Perihelion advance. General Relativity predicts the advance of the
perihelion of planetary orbits.

o Deflection of light. 1t was observed, that light is deflected when passing
by massive objects, as for example the sun.

e Spectral shift. Light falling towards a massive object should be blue-
shifted, while it is red-shifted when departing therefrom.



All these phenomena were not explained by the standard Newtonian theory.
The Schwarzschild solution as a special case of the Kerr solution is given by

oM oM\ !
ds? = (1 - T) dt? — (1 - T) dr? — r?(d9? + sin9 dy?) .

We first consider the region r > 2M. In this situation, the vector % is a

timelike Killing vector, which means that the flow of this vector field gen-
erates local isometries of the metric. Since the vector field % is orthogonal
to the family of hypersurfaces {t = const}, the Schwarzschild solution is
called static. Moreover, it is a spherical symmetric solution in the sense
that it is invariant uner the group of isometries SO(3) operating on the
spacelike two spheres {t,r constant}. According to Birkhoff’s Theorem this
solution is unique in the sense that, if there exists another static, spheri-
cally symmetric solution it is already locally isometric to the Schwarzschild
solution [cf. [14]]. One can also consider this solution for arbitrary r. Obvi-
ously, the metric has two singularities at r = 0 and r = 2M. In the region
0 < r < 2M there is a change in the dynamics in the sense that the vectors
% become spacelike, while % is timelike. Note that any object which is
once inside this region has inevitably go to r = 0. Hence, if the radius of a
star becomes smaller than 2M, collapse to a singularity cannot be avoided.
Moreover, if any signals are emmited from inside, they will never reach a
distant observer. Thus, we call the region r = 2M the event horizon and
such a singularity a black hole. Note that the singularity » = 2M can be
resolved by a simple coordinate transformation. To this end, we take the
Regge Wheeler coordinate 7, = r +2M log |r — 2M|. Then, v =t + 7, is an
advanced null coordinate and the Schwarzschild metric with respect to the
coordinates (v,r, ¥, @) takes the Eddington-Finkelstein form

2M
ds? = (1 - T) dv? — 2dvdr — r*(d¥* + sin®9 dy?) .

Obviously, in these coordinates, the surface r = 2M is no longer a singular-
ity. Moreover, one sees that the region r = 2M acts as a one-way membrane
in the sense that particles and photons can enter the region 0 < r < 2M
but never leave it.

The main interest of this work lies in the investigation of the stability
of the Schwarzschild spacetime. In general, the equations that describe the
physical fields couple to the Einstein equations. On the one hand, the metric
g affects the behavior of the physical fields; on the other hand, the behavior
of the physical fields yields a non-zero contribution to the energy momen-
tum tensor and thus influences the metric g as a solution of the Einstein
field equations. Since the Einstein equations is a system of nonlinear par-
tial differential equations, the full perturbation equations are in general too



complicated to analyze. Hence, we here restrict attention to the linearized
equations. The first major contribution in this topic was made in 1957, when
Regge and Wheeler studied the linearized equations for perturbations of the
Schwarzschild metric [23]. This work was continued in [30, 35], while more
recently the decay of the perturbation and all of its derivatives was shown in
[13] using a theorem by Wilcox. By heuristic arguments, in 1972 Price [19]
got evidence for polynomial decay of solutions of the scalar wave equation in
Schwarzschild, where the power depends explicitely on the angular mode. In
1973, Teukolsky [27] could derive by means of the Newman Penrose formal-
ism one single master equation that describes in the Kerr background the
evolution of a test scalar field (s = 0), a test neutrino field (s = £1/2), a test
electromagnetic field (s = 1) and linearized gravitational waves (s = £2).
In the vacuum case, the Teukolsky equation has the form [note that we use
a simplified formulation due to Whiting [32]]:

1
[GTABT - Z{ (r* +a®) 8, + ady, — (r — M)8}2 — 4s(r + ia cos 9)0;
1
+ Ocos g SIN% 0 Ocos g + 2 (a sin? 90, + 0, + is cos 19)2 ] O(t,r,9,0) =0.
sin

Here, the parameter s is also called the spin weight of the field. Note that it
is a quite complicated task in the case s # 0 to recover all the components of
the corresponding field from a solution of this equation. For further details
see [3, 33]. In two subsequent papers [28, 29], Teukolsky and Press discussed
the physical consequences of these perturbations. From the mathematical
point of view, the Teukolsky equation can be regarded as a hyperbolic PDE,
hence one is generally interested in the Cauchy problem for general initial
data of the field and its first time derivative on the hypersurface ¢ = 0.
Though any linearized perturbation is given by this equation, the rigorous
analysis of the equation remains a quite subtle point. Note that in the case
s # 0 complez coefficients are involved, which makes the analysis very com-
plicated. Hence, until now there are just a few rigorous results in this case.
In [9] local decay was proven for the Dirac equation (s = 1) in the Kerr
geometry (in the massless and massive case). Moreover, a precise decay rate
has been specified in the massive case [10]. More recently, there has been
a linear stability result for the Schwarzschild geometry under electromag-
netic and gravitational perturbations [11]. This result relies on the mode
analysis, which has been carried out in [32]. More work has been done on
the case s = 0, where the Teukolsky equation reduces to the scalar wave
equation. In the Schwarzschild case, Kay and Wald [17] proved a time in-
dependent L*°-bound for solutions of the Klein-Gordon equation. In [5], a
mathematical proof is given for the decay rate of solutions with spherical
symmetric initial data, which has been predicted by Price [19]. For general
initial data, the same authors derived another decay result [6], which is not
sharp, however. Furthermore, Morawetz and Strichartz-type estimates for



a massless scalar field without charge in a Reissner Nordstrgm background
with naked singularity are developed in [24]. And in [2] a Morawetz-type
inequality was proven for the semi-linear wave equation in Schwarzschild,
which is also supposed to yield decay rates.

In this work, we consider the Cauchy problem for the scalar wave equa-
tion (i.e. Teukolsky’s equation for s = 0) in the Schwarzschild background
(i.e. a=0)

0,2 =0, q)|t:0 =&, 8t§>|t20 =&,

with smooth initial data ®y, @1, which for simplicity is compactly supported
outside the event horizon. We first work out the program that has been used
to obtain decay of the scalar wave equation in the Kerr geometry in [7, 8].
The main difference lies in the fact that in Kerr the metric is only axisymmet-
ric (instead of static and spherical symmetric). This has the consequence,
that the classical energy density may be negative inside the ergosphere, a
region outside the event horizon in which the Killing vector corresponding
to time translations becomes spacelike. This makes it necessary to apply
special methods (spectral theory in Pontrjagin spaces, energy splitting esti-
mates, causality arguments) which are technically demanding and not easily
accessible. In Schwarzschild, however, due to the spherical symmetry, the
classical energy density is positive everywhere outside the event horizon.
This gives rise to a positive definite scalar product, making it possible to
apply Hilbert space methods, which let us derive an integral representation
for the solution of the Cauchy problem and out of this prove pointwise de-
cay. Moreover, using this integral representation, we obtain a rigorous proof
of Price’s law for solutions with spherical symmetric initial data and also
a decay rate for arbitrary initial data, which is not sharp, however. More
precisely, our main results are:

Theorem 1. Consider the Cauchy problem of the scalar wave equation in
the Schwarzschild geometry

Ug=0, (¢a iatgb)(oa'ra 3:) = @0(7", ‘T)

for smooth initial data ®¢ € C§((2M,00) x S%)? which is compactly sup-
ported outside the event horizon. Then there exists a unique global solution
®(t) = (p(t),i0:p(t)) € C®(Rx(2M, 00)x S?)% which is compactly supported
for all times t. Moreover, for fized (r,z) this solution decays as t — oc.

Theorem 2. Consider the Cauchy problem of the scalar wave equation in
the Schwarzschild geometry

O¢p=0, (¢0,i0:¢0)(0,7,7) = Po(r, )

for smooth spherical symmetric initial data ®¢ € C$°((2M, 00) x 5?)% which
is compactly supported outside the event horizon. Let ®(t) = (4(t),10:4(t)) €



C®(R x (2M,00) x S?)% be the unique global solution which is compactly
supported for all times t. Then for fized r there is a constant ¢ = c(r, @)
such that for large t

B < 5

Moreover, if we have initially momentarily static initial data, i.e. Oypg =0,
the solution $(t) satisfies
c
t_4 .

These results are proven at the end of Section 5, and Section 7, respec-
tively. In general, this work is organized as follows:

[#(8)] <

e In the first section we formulate the mathematical framework. In order
to get a more convenient form of the wave equation, we introduce
the Regge-Wheeler variable and rewrite the wave equation as a first-
order Hamiltonian system. The resulting Hamiltonian is a symmetric
operator with respect to the scalar product arising from the conserved
energy. Exploiting the spherical symmetry of the problem, it turns
out that it suffices to restrict in the following the problem for fixed
angular modes [ and m.

e In Section 2, we show, using standard results of the theory of sym-
metric hyperbolic systems together with Stone’s theorem, that the
corresponding Hamiltonian is essentially self-adjoint.

e It is our goal to apply Stone’s formula, which relates the propagator to
an integral over the resolvent. Thus, in Section 3 we give an explicit
construction for the resolvent. This construction is based on special
solutions ¢,¢ with exponential decay at +oo of the radial equation.
This is an ordinary differential equation of Schrédinger type

(=0 — & + Vi(u)(w,u) =0,

with potential

i) = (1-20) (2 + 1Y)

where the parameter w arises by separating the time ¢ in the Hamil-
tonian formalism via e ¢,

e In Section 4 we prove the existence of ¢,¢ by the formalism of the Jost
equation. Moreover, we obtain regularity results in the parameter w,
showing that the main difficulty is to analyze the solutions ¢ at w =0,
because there we find a loss of regularity which depends on the angular
mode .



e In Section 5 we show that the regularity results for ¢,¢ lead to an
integral representation for the solutions of the Cauchy problem for
fixed [ and m which holds pointwise. According to the theory of sym-
metric hyperbolic systems, the Cauchy problem has a unique smooth
solution. Thus, summing over the angular modes yields the desired
representation of this solution. Combining this representation with a
Sobolev imbedding argument, we obtain pointwise decay in time.

e In order to prove Price’s law, we have to determine the nature of the
irregularity in w at w = 0 of the Jost solutions ¢ To this end, in
Section 6 we develop a method to obtain an explicit expansion of the
Jost solutions in w.

e In Section 7 we improve the preceding expansion in the spherical sym-
metric case | = 0. Then we investigate the integral representation with
this more detailed expansion, which yields some regularity results of
the integrand of this representation with respect to w. By a Fourier
transform argument we get precisely the decay rate predicted by Price.

e In the last section we give a brief discussion on a possible strategy to
prove Price’s law in the case [ # 0.

Finally, I would like to thank my supervisor Felix Finster for his sugges-
tion to study this problem and his constant encouragement. Furthermore, 1
would like to thank Thierry Daudé for numerous discussions on the subject.
Thanks go to the DFG for their financial support. At last, I want to thank
my family, friends, especially my girlfriend Cornelia, who let me think about
other things than purely mathematics.
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1 Preliminaries

In this section we reformulate the wave equation as a first order Hamiltonian
system. This will make it possible to analyze the dynamics of the waves with
Hilbert space methods.

In the following we consider only the region r > 2M outside the event
horizon in the Schwarzschild background. Hence, writing down the scalar
wave equation with respect to Schwarzschild coordinates it has the explicit

form
0* 2M\ 1 (3 ,, 0

Here Ag2 denotes the standard Laplacian on the two sphere, which in the
coordinates (¥, ¢) is given by

2
L 9 sin® ¢ 0

Asr = sin? 1) Op? * 9(cos V) 9(cos¥)

(1.2)

In order to bring the equation (1.1) into a more convenient form, we first
introduce the Regge-Wheeler coordinate u by

u(r) := 71+ 2M log (ﬁ - 1) . (1.3)

The variable u takes values in the whole interval (—oo,00) as r ranges over
(2M, 00). It satisfies the relations

%_1—¥’ ou

1-2) 2 (1.4)

du 1 o 2M\ 0O
N r ) or’

In what follows the variable r is always implicitly given by u. Using the
Regge-Wheeler coordinate, the wave equation (1.1) transforms to

0% 1 6 2M\ [(2M  Age
[W‘;W” (1‘7) (r—s‘ -2 )] $=0. (15
To simplify this equation we multiply by r and substitute r¢ = 1 This leads
us to the Cauchy problem

0?2 02 2M\ (2M  Ag
[w—w+(1—7) (T—g_ 2 )] P(tu,9,0) =0

(,(pa Zatd))(oa u, 79; (P) = \IJO (ua 79; (P)

(1.6)

where the initial data ¥g € C§°(R x $?)? is smooth and compactly sup-
ported.
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The equation in (1.6) can be reformulated as the Euler-Lagrange equa-
tion corresponding to the action

S= /Z dt/z du/ll d(cos ) /02de L, V), (1.7)

where the Lagrangian is given by

2M\ 2M
2L = |0 —|0uyl® - (1 - T) r—3|¢|2 -

2M\ 1 1
1—=—) 5 [ —=10,%|* +sin® 9 |0, ). (1.8
(1-25) 5 (g0 s ¥1?) . (18)
As one sees immediately, the Lagrangian is invariant under time translations,
and thus Noether’s theorem gives rise to a conserved quantity, the energy

: Ey] = /_ : du /_ 11 d(cos 9) /0 %d?"’g, (1.9)

where £ is the energy density

2 =2 (5o e - £) =0+ o+
(2
(1) 5 (g oeor 0 v |
(1.10)
It is also easy to check directly that the above energy is conserved in time
for all smooth solutions of the wave equation that are compactly supported

for all times. Since we consider the wave equation outside the event horizon,
i.e. 7> 2M, it is clear that the energy density is positive everywhere.

Next we rewrite the Cauchy problem (1.6) in first-order Hamiltonian
form.
Letting

_( ¥
U= (iaﬂ/l , (1.11)
the Cauchy problem takes the form

0,0 =HY, | _, =T (1.12)

( M (1) ) . (1.13)

Here A is the differential operator

2M 2M 1

where H is the Hamiltonian

12



We use the energy E in order to introduce a scalar product such that the
Hamiltonian H is symmetric with respect to it. More precisely, we endow
the space C§°(R x 52)? with the energy scalar product {.,.) by polarizing F,
thus

[e'e} 1 2
(T, D) ::/ du/1 d(cosz?)/0 Z—i{@@@—l—@@wﬁt (1— g)

< |25 0+ 5 (g 00000+ 580 B Vom0 )| |
(1.15)
where again ¥ = (¢,i0;9)" and ® = (¢4,i0;¢)". Energy conservation im-
plies that for a solution ¥ of the Cauchy problem (1.12) which is compactly
supported for all times,

d d

0 = B[] = Z(¥,¥)=

= (0, 0) +(0,T) = i(HT, ) — (U, HT) .

Since the initial data ¥y € C§°(R x S?)? can be chosen arbitrarily, polar-
ization yields

(HU,®) = (U, H®), forall ¥,® c C(R x §%)2. (1.16)

Hence the operator H is symmetric on C§°(R x $2)? with respect to (.,.).

We will now use the spherical symmetry to simplify the problem. More
precisely, we make use of the fact that the angular dependence of the wave
equation in the Schwarzschild geometry involves only the Laplacian on the
two sphere. It is well-known that the spherical harmonics Y;,, (9, ¢), where
Il € Ny,|m| < I, are smooth eigenfunctions of Ag2 with the eigenvalues
—I(I + 1). Moreover, they form an orthonormal basis of the space L?(S?).
Thus we can decompose an arbitrary ¥ = (11, 12)7 € CP(R x §%)? in the
following way,

T (u,d, ) Z D W) Yim (9, ) (1.17)
=0 |m|<I

where for each component the sum converges for fixed u in L2(S?). Since the
Tlim = (pim pim)T are uniquely determined by %™ (u) = (Vi 9i(u N r2(s2)
it is clear that U™ (u) € C§°(R)? for all /,m. Using this decomposition, we
rewrite the norm of ¥ corresponding to the energy scalar product as

[e's) 1 27rd
)= [ auf dicoso) [ GE {1l + 00 +

13



SEICE
:f: Z/ " au{ WP + i ) +
m|<l

(I (). o

where in the first equation we have integrated by parts with respect to
(9, ). The second equation follows from the properties of the Yj,,. As one
can immediately see, the integrand for every summand in (1.18) is positive.
Hence again by polarizing we obtain for any angular mode [ an scalar product
(.,.); on C§°(R)? given by

Sy —_ —_— _
@)= [ {Gaa+ Vo + Vita } du, (119)
—0oQ
with the potential V;(u) defined as
oM\ (2M Il +1)
This definition leads to an isometry
o0
(CE®Rx57%4,) — DD (CF®?( 1)
=0 |m|<l
T - olm, (1.21)

Using (1.17), the Hamiltonian H also decomposes in the following way,

U(u,d, ) Z Z HyU™ (1) Yim (9, ) -

1=0 |m|<l

Here the H; act on C§°(R)? and are given by

H — ( —agfv;(u) (1) ) . (1.22)

Thus for fixed angular modes [ and m the Cauchy problem (1.12) simplifies
to
0 = Hulm o wim| = i (1.23)

where the initial data is in C$°(R)?. Moreover, the H; are symmetric on
C§°(R)? with respect to (.,.);, because for any ¥, ® € C$°(R)? the functions

U (u)Yy, and ®(u)Yy,, are in C§°(R x $2)2. Thus

(H¥, @), = (H(Y Yiy), ®Yimn) = (VYin, H(® Yiyn)) = (¥, Hi®), .

14



In particular, the norm with respect to (.,.); is constant for solutions of
(1.23) with compact support in u for all times. Therefore we again refer to
(.,.); as the energy scalar product.

Our strategy is to solve for a given inital data ¥y € C$°(R x S2)? the
Cauchy problem (1.23) for fixed angular modes [ and m, and to sum up
the solutions afterwards. Therefore, in what follows we will fix the angular
modes [, m and consider the problem (1.23). In order to avoid too many
indices, we usually omit the subscript [ in the Hamiltonian and energy scalar
product.

2 Spectral Properties of the Hamiltonian

In the previous section we introduced the energy scalar product (,) on the
space C§°(R)2. Since we cannot expect C§°(R)? to be complete with respect
to this inner product (and indeed it is not, because the energy scalar product
in the second component is just the usual L2-scalar product), we define the
Hilbert space H‘l,lo(]R) as the completion of C§°(R) within the Hilbert space

H}(R) = {u with ' € LA(R) and V,"/*u € LQ(R)}
endowed with the scalar product

<’U,,’U>1 = (Iu’laIUI)L2 + (‘/l uaU)L2 .

Note that this coincides with the energy scalar product on the first compo-
nent. Therefore, we choose /¢ = H‘I,EO(R) ® L?(R) endowed with the energy
scalar product as the underlying Hilbert space for our Hamiltonian H.

In the previous section we have seen that the Hamiltonian H is symmet-
ric on C§°(R)?. Before we can use functional analytic methods, we need to
construct a self-adjoint extension of H. In fact, we are able to prove the
following lemma:

Lemma 2.1. The operator H with domain 2(H) = C$°(R)? is essentially
self-adjoint in the Hilbert space F€.

In order to prove this lemma, we use the following version of Stone’s
theorem about strongly continuous one-parameter unitary groups. A proof
of this theorem can be found in [20, Section VIIIL.4].

Theorem 2.2. Let U(t) be a strongly continuous one-parameter unitary
group on a Hilbert space 7. Then there is a self-adjoint operator A on
such that U(t) = e4.

Furthermore, let D be a dense domain which is invariant under U(t) and
on which U (t) is strongly differentiable. Then i~ ' times the strong derivative
of U(t) is essentially self-adjoint on D, and its closure is A.

15



Now we apply this theorem:

Proof of Lemma 2.1. According to the theory of symmetric hyperbolic sys-
tems (cf. [15, Section 5.3]), the Cauchy problem

(07 — 02 4+ Vi(u)) ¢(t,u) =0 }
Yli=o = f , i0Wl=0 = g

with smooth, compactly supported initial data f,g € C§°(R) has a unique
solution 1 (t,u) € C*°(R x R) which is also compactly supported in u for all
times. Using this solution, we define for arbitrary ¢ € R the operators

Ut): CP(R)? —  C(R)?

)
( f ) ( P(t,.) )
g Zat’(ﬁ t, ) ’
which leave the dense subspace C§°(R)? C 4 invariant for all times ¢.
Due to the energy conservation, the U(t) are unitary with respect to the
energy scalar product and hence extend to unitary operators on the entire

Hilbert space ##. Furthermore, since the solution is uniquely determined
by the initial data, the U(t) have the following properties,

UO0)=1Id, U(t+s)=U()U(s) forallt,seR,

and thus they form a one-parameter unitary group. Due to the fact that
smooth initial data yields smooth solutions in ¢ and u, this group is strongly
continuous on ## and strongly differentiable on the domain C§°(R)?2. Cal-
culating i~ times the strong derivative one gets

a0 (1)~ ()= ()1 (2)

for all f,g € C§°(R), and the lemma follows from Theorem 2.2. O

For the further investigations of the Hamiltonian H, we consider its self-
adjoint closure which, for the sake of simplicity, we again denote by H. For
our purposes, it is not important to know the exact domain of definition
P(H) of the self-adjoint extension.

16



3 Construction of the Resolvent

Stone’s formula for the spectral projections of a self-adjoint operator A (cf.
[20] Theorem VII.13),

1 b

P Py | = slim — A—w—ie) t—(A- e) !
[ [a,b}—i_ (a,b)] Sé{% 27”:/& [( w ZE) ( w—l—ze) ] dw,
(3.1)

relates the spectral projections to the resolvent (here s-lim denotes the strong
limit of operators). In view of this relation, it is of interest to derive an
explicit representation of the resolvent.

N =

In the preceding section we have seen that there is a domain 2(H) such
that our Hamiltonian H is self-adjoint in the Hilbert space (%, (,)). From
this it immediately follows that the spectrum o(H) C R is on the real line
and therefore the resolvent (H —w)~! : J# — 4 exists for every w € C\ R.

Let us now fix w € C\ R We often denote the w-dependence by a
subscript , .We begin by reducing the eigenvalue equation HV = w¥ by
substituting the equation for the first component in the second equation.
We thus obtain the Schrodinger-type equation

(=05 + Vio(u) $(u) =0 (3.2)

with the potential

Vo(w) = o + Vi(w) = —? + (1 - ¥> (i—]‘f + l(l:; ”) . (33)

In what follows we refer to this equation simply as the Schrodinger equa-
tion. It can be regarded as the radial equation associated to the wave equa-
tion in (1.6). Our goal is to construct the resolvent (H —w) ! out of special
solutions of this equation. We introduce fundamental solutions q’ﬁw and q\Sw
of the Schrodinger equation (3.2) which satisfy asymptotic boundary condi-
tions at u = oo (the existence of these solutions will be proved in Section
4). More precisely, in the case Im (w) > 0 we impose that

- . - '
ugr_noo ezwu¢w(u) =1 ugr—noo (ezwuqﬁw (u)) =0 (34)
- N\ - AN I
3 —wwu _ 3 —wwu _
e () <0 69

whereas in the case Im (w) < 0,

- ’ . i ’ !
UBI_noo e_zwu¢w(u) =1 ’ ull)I—noo (6 Zwuqsw(u)) =0 (36)
. N . N !
: WU _ . wwu —
Jim e g (u) =1, Jim (e (w) = 0. (3.7)
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Since the resolvent exists, the map (H —w) : 2(H) — 4 is bijective
and in particular the kernel is trivial. Hence the solutions qgw, q\Sw are linearly
independent (otherwise they would give rise to a vector in the kernel due to
the exponential decay). Thus gzgw and éﬁw are indeed a system of fundamental
solutions with non-vanishing Wronskian

w(u, ) 1= o (W), () = &, (u)du (u) - (3-8)

Note that the Wronskian is independent of the variable u, as is easily ver-
ified by differentiating with respect to u and substituting the Schrédinger
equation.

In the next lemma, we use this fundamental system to derive the Green’s
function corresponding to (3.2).

Lemma 3.1. The function

1 , N e
Sw(U,U) = X { Qéw(u)(éw(’u) , ifu<w (39)
w(¢w; ¢w)
satisfies the distributional equations

<_68_; + Vw(u)> sw(u,v) = d(u —v) = (_aa_; + Vw(v)) sw(u,v) .

Proof. By definition of the distributional derivative we have for every test
function n € C§°(R),

o0

/oo n(u) [~8; + Vio(u)] s0(u, v)du = / (=03 + Vi (w))n(u)] s0(u, v)du .

-0 -0

It is obvious from its definition that the function s(.,v) is smooth except at
the point 4 = v, where its first derivative has a discontinuity. Thus, after
splitting up the integral, we can integrate by parts twice to obtain

/oo [(—35 + Voo (w)n(w)] su(u,v) du =

-0

- / ") (~02 + Vi (1)) 5011, 0) s+ T [7(00) By )] +

— u, v
[ 0 (-8 + Vo)) du ~ T In(w)ous )]

Since for u # v, s, is a solution of (3.2), the obtained integrals vanish.
Computing the limits with the definition (3.9), we get

/_Z (=00 + Vitwm(w)] sl ) du = (111}111; B 111\311,) n(w)Oysu(u,v) =
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1 , N N ,
= ()[4, (0)du(v) — Hu(0)u(v)] = n(v) ,
w(dw, Pu)
where in the last step we used the definition of the Wronskian (3.8). This
yields the first equation. The second equation is proven exactly in the same
way. U

With this function s,, we are now able to construct the resolvent. More
precisely,

Proposition 3.2. For every w € C\R, the resolvent (H —w)™! : # — H#
can be represented as an integral operator with the integral kernel

ko (1, 0) = 6(u — v) ( ! 8 ) + 5, v) ( w 1 ) . (3.10)

w w

Proof. We introduce the integral operator S, with the integral kernel
ky(u,v) on the domain

P(S.) = {(H —w)¥ | ¥ € C°(R)*} .

Let us verify that 2(S,,) is a dense subset of 5. Let ¢ € S be an arbitrary
vector. Because of the existence of the resolvent, the operator H — w :
P(H) — S is onto, and thus there is a vector ¢ € Z(H) with (H —w)y =
¢. Then due to the definition of the closure of H, there is a sequence
{¢n}tnen C C°(R)? with 9, — ¢ and Htp, — H1p as n — oo. This shows
that {(H — w)¥n}tnen C 2(S,,) converges to (H — w)y = ¢. We conclude
that 2(S,) is dense. We now calculate the operator product S, (H — w) on
C§°(R)2. For an arbitrary ¥ = (11,99)7 € C§°(R)? we have

o0

(S (H — wip) (u) = / b1, 0) (H = w)ip(v) dv =
0

B ( —wiy + s >(“)+
o[t (_—653:@(,1(2)) o) (1) wa.

Hence, according to Lemma 3.1,
S,(H —w)=1Id on CP(R)?.

This yields that S, = (H — w)~! on the dense set 2(S,). Since (H — w)™*
is a bounded operator, the claim follows. O
As mentioned at the beginning of this section, we can now apply Stone’s
formula for the spectral projections of H and get for every ¥ € 57
1

g [Fas + Plap] ¥ =
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= lim — /ab [(H —(wtie) = (H - (w— ie))_l] U dw

and this yields together with Proposition 3.2

:nmi/ab (/R (kw+z~€(.,v)—kw_ie(-,v))‘lf(v)dv) do,  (3.11)

e\0 271

where the limit is with respect to the norm in 4. It is therefore of special
interest how the kernels &, 1ic(u,v) and k,_;c(u,v) behave as € N\, 0. Since
these kernels are given explicitly in terms of the fundamental solutions éwiie
and (fbwiie, we will discuss their behavior in the next section.

4 The Jost Solutions of the Radial Equation

In this section we want to discuss the existence and the behavior of the
solutions ¢, ¢, of the Schrodinger equation (3.2), which in Section 3 we used
for the construction of the resolvent. We will prove the following theorem.

Theorem 4.1.

(i)

(ii)

For every w € D = {w €C|Imw < ﬁ}, there exists a unique solu-
tion ¢1(w,u) of the Schrodinger equation (3.2) satisfying the boundary
conditions (3.6) such that for every fized u € R the function ¢1(w,u)

18 holomorphic in w € D and continuous in D.

For every angular momentum number [, the solutions g\éw of the Schro-
dinger equation (3.2) with boundary conditions (3.7) are well-defined
and uniquely determined on the set

E:{wE(C‘Imng,uHéO}.

For each fized u € R, the function qu(u) is holomorphic in w € E and
continuous in E.

Furthermore, in the case | = 0, ¢w(u) may be continuously extended
tow=20.

Once having proven this theorem, we simply set

/ | p(w,u) ,if Imw >0
Po(u) = { d1(wy,u) L, if Imw<0 ’ (4.1)

as well as

bo(u) == dp(u) if Tmw >0, (4.2)

to obtain the solutions of Section 3. For Imw < 0 this is clear by definition.
But in the case of Imw > 0 the above defined ¢,,(u), ¢, (u) are indeed the
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unique solutions of the Schrédinger equation (3.2) with the desired boundary
conditions (3.4) and (3.5), respectively. This follows immediately by complex
conjugation of the Schrédinger equation due to the fact that our potential
V, is real.

For the proof of Theorem 4.1 we will formally manipulate the Schrédinger
equation with boundary conditions (3.6, 3.7) in order to get an appropriate
integral equation (which in different contexts is called the Jost or Lipman-
Schwinger equation). Then we will perform a perturbation expansion and
get estimates for all the terms of the expansion. A reference for this method
can be found e.g. in [22, Section XI.8]. Since this reference contains only an
outline of the proof, it seems worth working out the details.

To introduce the method, we begin with the solutions ¢ (w,u). First we
write the Schrodinger equation (3.2) in the form

(—j—; ~ ) dult) = W) (0). (43)

where W is a potential in L!(R) (later on, W will be replaced by V;). Next
we define for w € C the function G, (u) by

0 L ifu<0
1
Gy (u) == - sin(wu) ,ifu>0and w#0 (4.4)
—1 ,ifu>0and w=0

A simple computation shows that G, (u) defines a Green’s function for the
operator on the left hand side of the equation (4.3) in the sense that the
distributional equation

(_j_; _ w2) Gu(u) = 5(u)

holds. In order to build in the boundary condition (3.6), we make in equation
(4.3) the substitution ¢, (u) = e“* + ¢, (u) to obtain

(_j_; - w2) Fol) = — W (u) (1)

Solving this equation formally by convoluting the right hand side with G,
we get the formal solution

ult) = (W) ¥ Ga) ) = = [ Gulu= )W )du(o) do
Hence ¢, (u) satisfies the equation

fo(u) = e — / " Gl — o)W (0)u(v) do . (4.5)

—0o0
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which is referred to as the Jost equation with boundary conditions at —oo. Its
significance lies in the fact that we can now easily perform a perturbation
expansion in the potential W. Namely, making for ¢, the ansatz as the
perturbation series

o0
¢w = Z ¢c(uk) ; (46)
k=0
we are led to the iteration scheme
¢L(L?) (u) = eiwu

: ) (4.7)
pE W) = / Gl — )W (0) ) (v) dv

This iteration scheme can be used to construct solutions of the Jost equation.

We remark that under certain assumptions on W like continuity, the
Jost equation is equivalent to the corresponding Schrodinger equation with
appropriate boundary conditions. We will show this for our special case
W = V. A systematic method to rewrite second-order differential equations
with boundary conditions as integral equations can be found e.g. in [22,
Section XI.8 Appendix 2].

We now state a theorem about solutions of the Jost equation. We con-
sider more general potentials W than we have in our case, because it might
be of interest by itself.

Theorem 4.2. Suppose that W is a measurable function obeying for a given
ug < 0 the condition [ |W (v)|dv < co. Define for u < ug the function
Py(u) by

_ Y ﬂ —(Imw+|Imw|)v
Py(u) = /_oo T Wl dv . (4.8)

Then:
(i) For each w € E = {w € C| Imw < 0,w # 0} the Jost equation
(4.5) has a unique solution ¢,(u) obeying lim ‘e_zw“¢w(u)| < 00.
U—r —00
Moreover, ¢,(u) is continuously differentiable in u on (—oo,ug) with

lim e “% ¢, (u) =1 and lim e “¥ ¢! (u) = iw. For each fized u,

the functions ¢, (u) and ¢},(u) are holomorphic in E and continuous
in E. They satisfy the bounds

|¢w(u) _ eiwu|
|¢L,(u) - iwei“’“| < e Im“’ep‘”(“)/ |W(v)|dv. (4.10)

e Im‘“‘ep“’(”) - 1‘ (4.9)

IA
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(ir) If [*2 |v||W (v)| dv < oo, for every u < ug the function ¢, (u) may be
continuously extended to w = 0. Moreover, (4.9), (4.10) hold also at
w=0.

(iii) If [*0 e™™|W (v)|dv < oo, for every u < ug the function ¢, (u) can be
extended to a holomorphic function in {w| Imw < %m}, continuous
in {w| Imw < %m} Moreover, in the interval 0 < Imw < %m the
inequalities (4.9),(4.10) are replaced by

1

|¢w(u)_ez’wu| < ﬁeuIrno.zePw(u)\/ e—2vaw|W(,U)‘dU (4.11)
w —o0

) u
|, (u) —iwe™™| < eulm“’ep“’(“)/ e MW (v)|dv . (4.12)
—0o0

In each case, ¢ obeys ¢, (u) = P(w,u) = ¢(—w,u).

We call this solution ¢ the Jost solution. For the proof of this theorem
we need a good estimate for the Green’s function G|, .

Lemma 4.3. For all u € C,

2|ul
inu| < ———¢lMmul 4.13
|sinu| < 1+|u|e (4.13)
Moreover, if w # 0 and v < u <0,
1 4| _ _
- o < v|Imw|—u Imw . 4.14
‘w sin(w(u 'u))‘ < TF jwol e (4.14)

1, the inequality (4.13) follows directly from the
(eiu — e*“‘) and the estimate

Proof. In the case |u]

>
Euler formula sinu = 2%

1

(1 + [ul)| sinul < (1+ ul)2el ™H < 2)ylel MUl

In the remaining case |u| < 1, we again use the Euler formula to obtain
: 1 u —iu 1 ! - tuT
(14 |u|)|sinu| = 5(1 + |u|)‘e —e ‘ = 5(1 + |u|)‘ 1zue dT‘ ,
and hence

: 1 2 ! uT 1 2 | Im |

(L ful)sinu] < S(jul+[uf*) [ [e"7]dr < S(lu| + [u*)2e"
—1

Now (4.13) follows by the assumption |u| < 1.
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In order to show (4.14) we use the identity
1 1

— sin(w(u — v)) = = (sin(wu)e™? — sin(wv)e™*)
w w
and apply (4.13),

L. 1 : WY : WY

—sin(w(u —v))| < @l (| sin(wu)e ‘ + ‘sm(wv)e D

w w

(4%3) 2|u| luImw| —vImw 2|U| e|vaw|e—uImw ) (415)
1+ |wul 1+ |wol

Due to the assumption 0 > u > v, we know that |v| > |u| and thus

20ul 2l

< ,  —u/Imw|-—vImw < —y|Imw| —ulmw .
1+ |wu| = 1+ |wy

Using these inequalities in (4.15) the claim follows. O

Note that the estimate (4.14) remains valid in the limit 0 # w — 0, if
one replaces < sin(w(u — v)) by the function u — v.

Now we are ready to prove Theorem 4.2:
Proof of Theorem 4.2.
Using the perturbation expansion (4.6) together with the iteration scheme
(4.7), one easily sees that we have already found a formal solution. So our
goal is to show that this series is well-defined and has the desired properties.
To this end, we shall prove inductively that

|¢£,k)(u)| <e™ Imw%Pw(u)k for all k € Ny, for all w,u (4.16)

such that P, (u) is well-defined by (4.8). Due to the integrability conditions
on the potential W in the statement of the theorem this is the case for u < g
and for all w € E (cf. (i), w € E (cf. (ii)), w € {Imw < m} (cf. (344)),
respectively. Furthermore, P, (u) is continuous in u as well as in w in these
domains. The first statement is obvious while the latter is due to the fact
that the integrand in the definition (4.8) is continuous in w and one directly
finds an integrable dominating function such that one can apply Lebegue’s
dominated convergence theorem.

We start the induction with the case £ = 0 for which (4.16) certainly is

satisfied. Thus assume that (4.16) holds for a given k. Then, estimating the
integral equation in (4.7) using (4.14) and (4.8), we obtain

60w < /_ G =)W ()| ()] dv
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“ 4|’U‘ —v|Imw|—u Imw —vImw 1 k
S / T‘u}'()le |W(‘U)|€ EPM(’U) dv
—c0 :
1 [* dP,
= e [ SR R do
s J—o0
|
- e ul w(k+1)!Pw(u)k+l’

where in the last step we used that P,(u) vanishes when u goes to —oo.
This concludes the proof of (4.16).
Summing over k, (4.16) yields the inequality

> [¢ ()] < e mImeeR ), (4.17)
k=0

Because of the continuity of P, (u), the series (4.6) converges uniformly for
u and w in compact sets. Using the iteration scheme (4.7), this series can
be written as

i ¢ (u) = e — i / ' Go(u— )W (v)gF (v)dv
k=0 k=1 "

and the bound (4.17) allows us to apply Lebesgue’s dominated convergence
theorem and to interchange the sum and the integral. Hence the series is
indeed a solution of the Jost equation (4.5).

Next we want to show that a solution of the Jost equation is continu-
ously differentiable with respect to u. To this end, we first compute for an
arbitrary u < ug the difference quotient,

1 ) )
_ _ _ zw(u+h) WU (4:5)
3 (¢w(u +h) = ¢o(u) —e +e )

u+h 1
/ L fsin(w(u+ b — v)) — sin(w(u — )] W)go () dv +  (4.18)

oo hw
u+h
+% /u " sin(w(u — v))W(v) ¢, (v) dv (4.19)

where h # 0. We may restrict attention to the case Imw < 0 and h > 0
(the other cases are analogous). Using the estimate

0 ( 2 sinfutu =) ) | = cos(utu - o)) <

<

(efu Imw+vImw + el Imw—v Imw)

N —

together with (4.17), we can apply the mean value theorem to the first

integrand to obtain the dominating function
% (efg(v) Imw vImw + eg(v) Imwefvlmw) |W('U)| evamwePw(v)

bl
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where £(v) € [u,u+ h]. Due to the integrability conditions on W, it is clear
that this function is integrable. Hence Lebesgue’s dominated convergence
theorem allows us to take the limit A — 0 in (4.18). This gives

/u cos(w(u — v))W (v)dw (v) dv

—0oQ
In order to treat the second integral, we choose h < hg, where hg is so small
that

‘—sm u—v))‘ <2 forall h < ho.
uu—|—h

1
This is possible because }llir% o sin(wh) = 1. Thus we can estimate (4.19)
-0 w
by

‘% /uu+h é sin(w(u — v))W (v) ¢, (v) d'u‘ <

<z [y W) do,

(700"“0)

and the last integral goes to 0 as h — 0 by Lebesgue’s monotone convergence
theorem using the fact that W € L'(—oo,ug). Hence (4.19) vanishes.
Alltogether we conclude that ¢, (u) is differentiable with derivative

U

Bl (u) = iwe™™ + / cos(w(u — v))W (v) by, (v)dv (4.20)

—0o0

which is continuous on (—oo,ug) because of the estimate (4.17).

The estimate (4.9) is a simple consequence of (4.16) together with the
perturbation expansion (4.6). For the proof of (4.10) we use the representa-
tion of the derivative (4.20) together with the inequality (4.17):

/i . iwu (4.20) “
) — we [ cos(iou — o) W (0)] [ ()] do

—0o0

@in [ 1 I I I I I P,
< / 2 (e_“ MWUiw 4 gt MWe™v m“’) |W(v)|e”?"™e w(¥) gy

< 7uImw Pw u)/ |d’U

where in the last step we used the fact that P,(v) and e™*'™% (with Imw <
0) are monotone increasing. The estimates (4.11) as well as (4.12) are shown
in the same way.

Let us now verify that for any fixed u, the function ¢, (u) is holomorphic
in w, and continuous on the domains as specified in (i), (i7) and (7i7). Due to
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the locally uniform convergence of the perturbation series, it suffices to show
that every ¢w ( ) has the desired properties. We do this inductively, where
the case k = 0 is trivial. Let us now assume that ¢w ( ) is holomorphlc in B

{Imw < 2m} respectively). In order to prove that ¢(k+ is holomorphic,

we want to apply Morera’s theorem. Thus we must show that ¢ is

continuous in w and that the integral

(k+1) (1) dw @ ' lsinwu—v W (v)6®) (v) dv dw 4.21
]gqsw (w) f/ (w(u — )W (0)$®) (0) (4.21)

oo W

vanishes for every closed contour 7 in E (or in case (i), for every contour
in {Imw < im}, respectively). Using the above estimates (4.14),(4.16)
together with the monotonicity of P, (u) in u we get the following bound for
the integrand

1

= sin(w(u —v))W ()¢ (v)| <
4
< ‘W(U)|1 +|I|UQ|JU| —uImw— 'u|Imw|—vIrnwk::l'P ( )k . (4'22)

Due to the induction hypothesis, the integrand is continuous in w. Moreover,
for a compact neighborhood K (wq) of a fixed wy contained in the specified
domains, (4.22) yields for the family %sin(w(u—v))W(v)qSS,k) (v), w € K(wo)
the uniformly dominating function

4|

1
—uImw—v max(| Imw|—|—Imw)_P k
1 + |v| min |w| b (W)

W (v)]

where the minimum and the maximum are taken in K (wp). This function
is integrable for K (wg) chosen sufficiently small due to the integrability
conditions on W. This lets us apply Lebesgue’s dominated convergence
theorem to show the continuity in w for ¢£,k+1) (u), which is given by the
integral (4.7). Moreover, (4.22) together with the continuity in w of P, (u)
yield that the integral

1 sin(w(u — v))W (v)¢® ()| dv dw < oo

fLE

exists for an arbitrary closed contour v in E (or {Imw < %m}, respectively).
By the theorem of Fubini, we may interchange the orders of integration in
(4.21). Because of the induction hypothesis, the integrand of (4.21) on
the right hand side is holomorphic. Thus the integral vanishes due to the

Cauchy integral theorem. We conclude that qﬁg,k) is holomorphic for every
k. Since ¢, (u) is holomorphic, the same argument together with equation
(4.20) yields that ¢!, is also holomorphic.
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It remains to prove uniqueness. Let 1, (u) be another solution of the
Jost equation obeying Em ‘e_’w“¢w(u)| < 00. Then we can find a ¢ > 0
U—>—00

with |¢w(u)| < ce™ MY for all u < ugy. Then as above one shows inductively

that
N

[ (1) = 3 ¢ ()| < et
=0
and taking N — oo we obtain 1, = ¢,,.
The uniqueness also implies that ¢(w,u) = ¢(—w,u), concluding the proof.
]

OOl

Remark 4.4. In order to treat the Schrédinger equation (3.2) with boundary
conditions at infinity (3.7), we derive the corresponding Jost equation with
boundary conditions at +o0o using the same procedure as on page 21:

o
; 1
u(u) =e % — / — sin(w(u — v))W(v)dy,(v) dv . (4.23)
w
u

It is obvious that the solution ¢, (u) of the Jost equation with boundary
conditions at —oo with potential W(—v) constructed in Theorem 4.2 gives
rise to a solution ¢, of (4.23) by defining ¢, (u) := ¢, (—u).

With the results of Theorem 4.2 it is now easy to prove Theorem 4.1:

Proof of Theorem 4.1. Let us apply Theorem 4.2 to the potential V;(u) given
by (1.20), which is obviously a smooth function in w. Furthermore, it van-
ishes on the event horizon 2M with the asymptotics V; = O(r —2M). Using
the definition (1.3) of the Regge-Wheeler coordinate u, this means that V;(u)
decays exponentially as u — —oo. More precisely, there is a constant ¢ > 0
such that

Vi(u)| < cezm  for small u .

Theorem 4.2 (i7i) yields for v < ug < 0 a solution ¢1(w,u) of the Jost
equation (4.5) with the desired properties. It remains to show that ¢; is
also a solution of the Schrdodinger equation (3.2) for u < ugy. (Due to the
Picard-Lindelof theorem, this solution of the linear equation can be uniquely
extended to u € R; the resulting function is analytic in w due to the an-
alytical dependence in w from the coefficients and initial conditions.) But
this follows immediately by differentiating equation (4.20) and using that
Vi = W is smooth, so that the whole integrand is at least differentiable with
respect to v. We have then proven the existence of (ﬁw. For the uniqueness,
we show that in our special case every solution of (3.2) with boundary con-
ditions (3.6) is a solution of (4.5). This can be done by integration by parts:
For let 1, (u) be such a solution. Then

/ L in(w(u — ) Vi(olho(v) do =

oo W
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u

= [ sinwtu — 0)(@ + W) do = u) - ¢
— 00

where the remaining terms vanish due to the boundary conditions. Since

we know that the solution of the Jost equation is uniquely determined, this

must be also the case for the solution of the Schrodinger equation. Thus we

have proven part (7).

For the proof of (ii) we refer to Remark 4.4. In contrast to the expo-
nential decay at —oo, the potential V;(u) has only polynomial decay at +oo.
More precisely, according to the definition of u, Vj(u) = O(l(lu%l)) fori >1,
Vo(u) = O(th_j\g), respectively, as u — oo. Thus we can apply the analogs of
Theorem 4.2 (%), (i%), respectively. This gives the existence and uniqueness of

N

the solution ¢,, for the Schrodinger equation with the stated properties. [

When taking the limit € N\, 0 in Stone’s formula (3.11), the behavior of
¢ (1) at w = 0 still causes problems. While in the case [ = 0 we know from
Theorem 4.1 that éﬁw can be continuously extended there, we do not yet
know what happens for [ # 0. The following theorem settles this problem
by showing that, after suitable rescaling, the solutions q\Sw have a well-defined
limit at w = 0:

Theorem 4.5. For every angular momentum number [, there is a solution
¢o of the Schridinger equation (3.2) for w = 0 with the asymptotics

. . 2 .
uli)nolo ul¢0(u) = @ZW\/_’ED = (—Z)l(2l -, (4.24)
where

_J@-1)-@-3)-..-3-1 , ifl#£0
(21—1)!!._{ ) A

This solution can be obtained as a limit of the solutions from Theorem 4.1,
in the sense that for all u € R,

do(w) = Jim w'dy(u) and ghlu) = lim w'g)(u). (4.25)

Note that the above properties of the solution ¢g really coincide in the
case [ = 0 with that of the solution ¢g already constructed in Theorem 4.1

(id).

For the proof of this theorem we use the same method as in the proof for
Theorem 4.1. However, the iteration scheme (4.7) does not work for [ # 0
in the limit w — 0, because the integral

@ == [ -0V do
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diverges (Vi(u) decays only quadratically at infinity for [ # 0). We avoid
this problem by adding the leading asymptotic term of the potential V; to
the unperturbed equation,

@, 1+
(_W —wt b s | du(u) = ~Wi(w)gu(u) - (4.26)
Now the perturbation term Wj(u) = Vj(u) — l(lu-i;l) has the asymptotics

Wi(u) = O('%8Y).
Fortunately, the unperturbed differential equation corresponding to
(4.26) can still be solved exactly. The solutions can be expressed in terms

of Bessel functions. For our further consideration, the two functions

ﬂ—quH%(wu), ha(l, wu) = MJ_l_%(wu) (4.27)

hi(l,wu) = 5 5

play an important role. Here the function J, (u) is the Bessel function of the
first kind (a good reference for the theory of the Bessel functions is [31]). It
solves Bessel’s differential equation

u’y" () +uy'(u) + (u? — v)y(u) = 0.

In addition, it is an analytic function in v and u for all values of v and u # 0
(if Rev > 0, it can be analytically extended even to u = 0). It has the series
expansion

o0 —1)™ u\ v+2m
Tolu) = ; mzr(sj —I—)m ) (3) (4.28)

and the following asymptotics for |u| > 1 (cf. [31] 7.21):

Ju(U)N\/%lcos (u—— ( )) i 1/2m)

m=0

—sin (u - g (u+ %)) . i (_1)(2151;;iT1+ 1)

m=0

. (4.29)

where we have used the notation

L'(v+m+3)
m!I‘(u—m+%) )

(v,m) :=

Moreover, the derivatives satisfy the recurrence formulas

ud(u) = ud, 1(u) —vJ,(u) and
ul,(u) = vJ,(u) —ud,i1(u) .
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The Wronskian of the functions J,, J_, (which both solve the same differen-
tial equation, since Bessel’s differential equation is symmetric in v) is given

by the formula
2sin(vw
w (Jy(u), J_y(u)) = _2sin(vm) . (4.30)
U
This yields that these functions form a fundamental system for Bessel’s

differential equation provided that v is not an integer.

In our applications we choose v = [ + % Thus the functions hq (I, wu)
and hs(l, wu) have the following asymptotics,

[ cos (wu -+ 1)%) , if jwu| > 1
hl(l,wu) ~ 4 +1 (4'31)
3i (%) , if jwu| < 1
\ P(§ + l) 2
[ cos (wu + Zg) , if Jwul > 1
ho(l,wu) ~ < VT rwuy - . (4.32)
— = if 1
‘F(%—l)(Q) ,if Jwu| <

Furthermore, the formula (4.30) for the Wronskian simplifies to
w (b1 (l,wu), he(l,wu)) = (—1)"w if [ is an integer , (4.33)

and this yields that in the case w # 0 the solutions hq, ho form a fundamental
system.

Thus for w # 0 we take as the Green’s function for the operator on the
left hand side of (4.26) the standard formula

1
w(h1, ha)

where hy j5(wu) = hyp(l,wu) and © denotes the Heaviside function defined
by O(z) =1 if z > 0 and O(z) = 0 otherwise. Note that S, is also well-
defined in the limit w — 0. For this we use the asymptotics and the value
of the Wronskian and get for very small w,

Su(u,v) = O(v —u) (b1 (wv)ho(wu) — by (wu)he(wv)) ,  (4.34)

. (it w 1~ _ 1,
i%s‘“(u’v) = Jm— '2F(%+l) (-1 (v )
_ (—1)l+17T ( 1yl _ 1 —l)
2+0)T G+ (3-0)

_ (=1)* 17 cos(nl) (UH'lu_l B uH'lv_l)
20+ 17
- 5 i : (vl“u*l _ ul+1,ufl) ’
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where we have used some elementary properties of the Gamma function.
This also shows that the Green’s function converges to the Green’s function
So(u,v) given by the above formula for the solutions u'*!, 4! of the unper-
turbed differential operator on the left hand side of (4.26) for w = 0.

We now proceed with the perturbation series ansatz

[e.e]
gu(u) = D ¢V (W), (4.35)
m=0
which, as at the beginning of this section, leads to the iteration scheme
o
$0mH) () = — / S (1, 0) Wi (o)™ (v) s . (4.36)
u
As initial function we take
o0 (u) = wle 3 JTZHS, (wu)
2 3

where H ,52) is another solution of Bessels equation (called Bessel function of
the third kind or second Hankel function). It is related to J, by

J oy (u) — e’™ ], (u)

—isin(vm)

H(u) = :

and has for large |u| the asymptotics
2 (u—Ln(v+1)) > (v,m)
H(2) ~ —i(u—gm(v+3 E : ’ . 4.
v (u) V 7rue ’ ’ (2iu)™ (4.37)

Thus, our initial function ¢£JO) (u) solves the unperturbed equation, and we
have the relation

¢O (u) = w! ((—i)l“hl(z,wu) + ilhg(l,wu)) (4.38)
together with the asymptotics
: 1
O (u) = whe ™ (1 +0 (E)) Jif jwul > 1. (4.39)

Moreover, the function ¢&° ) converges in the limit w — 0 pointwise for all
u > ug > 0

lim ¢ (u) = il% (g)*l . (4.40)

Since we are interested in statements for w = 0, it is convenient in what
follows to restrict w to the domain

F={weC|Imw<0,|w <1}.
The following lemma yields that our perturbation series (4.35) is well-

defined.
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Lemma 4.6. For every uy > 0, the iteration scheme (4.35),(4.36),(4.38)
converges locally uniformly for all u > ug and w € F. In particular, the
functions ¢, (u) are for fized u a continuous family in w € F. They satisfy
the integral equation

bo(u) = 6O (u) / 8 () Wi (0) i (v) v - (4.41)

Proof. In order to prove the lemma, we need to derive good bounds for the
initial function ¢S’ ) (u) as well as for the Green’s function S, (u,v). To this
end, we exploit the asymptotics of h1, hys. We thus obtain the bound

1 U :
1 @enme () <. 142
& <lPe e (L) <6 (1.42)

Likewise, for the Green’s function we have (note that v > u > 0),

u —1 v I+1
Co| —— - if 1
2(1+|w|u) (1+|w|v> o] <

v
Ca—o
1+ |wlo

|Sw (u,v)|

IN

and

|Sw(u,v)\ ev|Imw|+uImw ’ if |wu| > 1.

The last inequality follows from the asymptotics
1
10 (1, )] ~ ‘—sin(w(u—v))‘, if Jwu| > 1,
w

in the same way as the second inequality of Lemma 4.3. Combining these
cases we find a constant such that

u - v I+1 e

" < v|Imw|+uImw . 4.43

sl <0 (57m) () 49
Hence defining the function @, by

v

=C —_—

Qw(u) 4/u 1+ |w|v

which is well-defined for all w € F and v > up > 0 due to the asymptotic

of Wy, it is straightforward to show inductively (cf. proof of Theorem 4.2)
that for all m € N

—1 m
¢l ()| < € (L> gutme Qu(W)™ (4.45)

1+ |w|u m!

o

|Wi(v)| dv, (4.44)

Now we proceed exactly as in the proof of Theorem 4.2, where the inequal-
ity (4.45) can be considered as the analogue of (4.16). It follows that the
series (4.35) converges locally uniformly in w and u and satisfies the integral
equation (4.41). Furthermore, one shows inductively applying Lebesgue’s
dominated convergence theorem, that for fixed u each ¢£,m) (u) depends con-
tinuously of w € F. It follows that the same is true for the series due to
local uniform convergence. O
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We are now ready to prove Theorem 4.5:

Proof of Theorem 4.5. According to Lemma 4.6, our perturbation series
(4.35) satisfies the integral equation (4.41). Using the recurrence formu-
las for the derivatives of J,(u), one obtains

Ophi(lwu) = —%hl(l,wu) + whi(l — 1, wu),

l
Ouho(l,wu) = —Ehg(l,wu) — wha(l — 1,wu) , respectively.

This allows us to estimate the behavior of 8, S, (u,v). Exactly as for S, (u,v),
we obtain the following asymptotic formulas,

U —1-1 v I+1 e

8. < C v| Imw|+uImw .
[OuS(u,v)] < 5(1—|—|w|u) (1+|w\v) ¢

Following the same arguments of the proofs of Theorems 4.1 and 4.2, and

combining them with the above estimates and asymptotic formulas we now
have the following results:

1) One can differentiate @, (u) with respect to u, and ¢},(u) is given by

#ow) = (49) () - / " 0,8 (0, 0)Wi(0)u(v) do

In particular, Lebesgue’s dominated convergence theorem yields that
for fixed u, ¢/,(u) is continuous in w € F.

2) ¢u(u) and ¢} (u) obey the following estimates,

N

-l
ot = 00 < 0 () (-]

-1 Oo
! u u U lmw
|¢c,u(u) - (¢S))) (U)| < Cs (m> eQu (o)l / v|Wi(v)|dv .

Thus @, (u) ~ wle™™* and ¢, (u) ~ —iw e ™" as u — oo.

3) Differentiating ¢, (u) twice with respect to u shows that ¢, (u) is a
solution of the Schrédinger equation (3.2) for all u > ug. Further-
more, from the asymptotics at infinity combined with the uniqueness
statement in Theorem 4.1, we know that

bo(u) = wdy(u) , ifw£0,u>ug. (4.46)
Obviously, this extends to all u € R.

Thus we have proven the continuity statement (4.25) for all u > ug. On the
other hand, we know from the Picard-Lindel6f theorem that for 4 on compact
intervals, the solutions depend continuously on w. This yields (4.25) for all
u € R

Finally, the asymptotics (4.24) is a simple consequence of (4.40). O
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5 An Integral Spectral Representation

In the previous section we derived some regularity results for the solutions
¢ and ¢,. We already know (cf. Section 3) that these solutions are a
system of fundamental solutions of the Schrédinger equation (3.2) in the
cases Imw < 0 and Imw > 0, respectively. Thus the Wronskian w(d;w, ¢w)
is non-vanishing in these regions, which implies that the integral kernel
ky(u,v) of the resolvent is well defined. Since our next goal is to get the
limit in (3.11), we prove in the next lemma that the continuous extension
of the solutions qéw, q\Sw to the real axis again yields a system of fundamental
solutions. More precisely,

Lemma 5.1. The Wronskian w(d,,¢.) does not vanish for w € R\ {0}.
In particular, ¢, ¢, are fundamental solutions for the Schrodinger equation
(8.2). In addition, this remains true for the solutions ¢y and ¢g in the case
w = 0.

Proof. Let us begin with the statement for qgo, do:
For w = 0, the solutions ¢g(u), ¢o(u) have the asymptotics

uli)r_nooqéo(u) =1 and  lim u'go(u) = (—i)' (20 — 1!

Looking at the construction of these solutions, one sees that qgo is a real so-
lution, while ¢y is either purely real or imaginary (depending on the value of
1). The Schrodinger equation for w = 0 reduces to ¢ (u) = Vi(u)d(u) with a
everywhere positive potential V;. Hence, exploiting the special asymptotics,
the solution q’So is convex and Re ¢y (Im ¢y, respectively) is either convex
or concave depending on /. In any case, we see that </;0 and ¢g are linearly
independent, and thus w(dg, ¢o) # 0.

In order to prove the main part of the Lemma, we consider a complex
solution z = z; + 2o of the Schrédinger equation, where {z1, 22} is a funda-
mental system of real solutions, especially w(z1,z2) = ¢ # 0. Setting y = %’,
a simple computation shows that

where the right hand side is well defined because w(z1, z2) # 0 implies that
|z| # 0 everywhere. As a consequence, we have Imy # 0 everywhere. Thus
it follows that for all u either Imy(u) > 0 or < 0, due to the continuity of
the solution z in wu.

Applying this result to the solutions q'Sw and qBW, respectively, and exploit-
ing their asymptotics, one sees that Im,(u) and Imy,(u) have different
signs for all u. Therefore,

w(ﬁéwa stw) = (f')w(u)q\%(u) - %(U)@w(U) = qgw(u)ésw(u) (?)w(u) - yw(u)) #0.
O
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As a consequence we have the following

Corollary 5.2. The function s,(u,v) given by (3.9) is continuous in
(w,u,v) for w € {Imw < 0}, (u,v) € R2.

Proof. We already know that for fixed ug < 0, gz’Sw(u(]) is continuous in w on
{Imw < 0}. Thus as solutions of the linear differential equation (3.2), which
depends analytically on w and smooth on u, the family ¢, (u) is (at least)
continuous in (w,u) in the region {Imw < 0} x R. Analogously this holds
for w'¢,(u) according to Theorems 4.1 and 4.5. Since s, (u,v) is invariant if
we substitute w!g,, (u) for ¢, (u), the preceding lemma yields the claim. [

Note that the corollary is also true if w is in the upper half plane. The
essential statement in this corollary is that one can extend s, (u,v) contin-
uously in w up to the real axis.

From the definitions (4.1) and (4.2), we have for w € {Imw # 0} the

relations

Sw(u,v) = sg(u,v) , hence ky(u,v) = ky(u,v) .

This allows us to simplify the expression (3.11). Evaluating for fixed u the
right hand side of (3.11) we obtain for any ¥ € J# as well as for any bounded
interval [a,b] C R

P{%_%/ab (/R Im (kw_ie(u,v))\lf(v)dv> dw .

According to the above corollary, we know that Imk,(u,v) is continuous
in (w,u,v) for w € {Imw < 0}, (u,v) € R2. Thus, if we restrict ¥ to
the dense set C§°(R)?2, we integrate a continuous integrand over a compact
interval. Hence, considering the limit as a pointwise limit for any u, we may
interchange the limit and integration. Thus for any ¥ € C§°(R)2, [a,b] C R
bounded and u the right hand side of (3.11) converges pointwise to

= /ab (/suppw Im(kw(u,fu))\li(v)dv> du

Hence, together with the norm convergence in (3.11), the spectral projec-
tions of H are for every u described by the formula

b
%(P[a,b] + Poy)) ¥(u) = —1/a (/Supp@ Im(kw(u,v))\ll(v)dv) dw . (5.1)

T
In particular, this representation yields that P, 5 = Pap)-

As an immediate consequence we have the following
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Corollary 5.3. The spectrum o(H) of the operator H is absolutely contin-
uous, i.e. o(H) = 04.(H).

Proof. The corollary is equivalent to the statement that the spectral measure
(U,dP, V) of any U € 4 is absolutely continuous. This is clear by (5.1)
for any U € C§°(R)2. But since this subset is dense, this also holds on the
whole Hilbert space 2. O

Next we want to write the integrand in (5.1), i.e dv, in a more

Supp -
compact way. We first note that for real w the complex conjugates of ¢,
and ¢, are again solutions of (3.2). Hence, for any w € R\ {0} the pair

{QZ’SW, ¢w} forms a fundamental system for this equation due to the boundary

conditions. Thus we can express ¢, as a linear combination of ¢, and ¢,

du () = Aw)du () + n(w)du(u) (w eR\{0}),

where A and p are referred to as transmission coefficients. The Wronskian
of ¢, and ¢, can be expressed by

w (dudu) = n@)w (fo, do) = ~2iwn(w)

where in the last step we used the asymptotics (3.6). Moreover, we introduce
the real fundamental solutions

$u(u) = Redy(u) , ¢ (u) = Imdy(u)
and denote the corresponding eigenvectors of the Hamiltonian H by

O (u) = (¢ (u), wepg, (u) "
Using the above definitions, a short calculation shows that for w # 0 we
can express the imaginary part of the Green’s function s, (u,v) by

2
Im s, (u,v) Z (u)¢® (v) , (5.2)
where the coefficients t,5(w) are given by

) = 14 Re (50) ) =tale) =~ (2) |

tos(w) = 1 — Re (%(@) . (5.3)

Since we know that Im s, (u,v) is continuous for w € R and the expression
(5.2) holds for all w € R\ {0}, it extends to w = 0. With (5.2), the integrand
n (5.1) can be written as

/ Ztab w) s () iy (v )( j}) T (v)dv) =

Supp‘I/ a, b=1
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- Y a0t [ )+ ot )

a,b=1 supp¥

where the 1; denote the two components of V.

Since ¢, (u) solves the Schrodinger equation (3.2), it satisfies the relation
(= 02+ Vi(v)gl(v) = w?¢l,(v). Using this and integrating by parts, this
simplifies to

Z tap () @ () (@8, T) . (5.4)

a,b=1

(Note that in this case the energy scalar product of ®° and ¥ is well defined,
because ¥ has compact support. Whereas in general this does not exist for
arbitrary ¥ € 7, due to the fact that ®?, ¢ J2.)

With (5.4), we now obtain a more compact representation for the spectral

projections. Moreover, we can use (5.4) to express the solution operators
—itH
€ .

Proposition 5.4. Consider the Cauchy Problem (1.23) for compactly sup-
ported smooth initial data ¥y € C§°(R)?. Then the solution has the integral
representation

\I/(t) = e_itH\I/():
1

2
L1
—iwt a b
= — — E t Pt (D) Uy dw . 5.5
271' Re w2ab:1 ab(w) w< w? 0> w ( )

Here the integral converges in norm in the Hilbert space €.

Proof. We use the following variation of Stone’s formula to obtain for any
bounded interval (¢,d) C R

e " (Pl + Pea) ¥
d .
=lim [ ™ [(H-w—ie)" —(H-w+ie)” '] ¥dw,
eNO0 /.
where the limit is with respect to the norm of . Since we know that
Pie,q) = Pc,a), it follows that this expression is equal to et P,a)¥. Using
the explicit formula for the resolvent, for every u € R the right hand side is
equal to

y\%—% / ¢ it ( /R Im(kwie(u,v))\lf(v)dv> dw | (5.6)

Due to the continuity of the imaginary part of the kernel k, (u,v), we may
take for Uy € C§°(R)? and (c,d) bounded the pointwise limit for any u € R.
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Hence, using (5.4) we can simplify (5.6) to

14 1 &
5] € Z“tﬁ D tap(w) ®E () (B0, To) dw
¢ a,b=1

and together with the norm convergence it follows that this term is equal
to e~ H P,qy¥o(u). Using the abstract spectral theorem and that e 1 g
a unitary operator, it is clear that e="#P_, ,,¥; — e "#¥; in norm as
n — 00. U

This proposition extends to the following theorem.

Theorem 5.5. For any fized u € R the integrand in the representation (5.5)
is in L*(R,C?) as a function of w. In particular, the representation (5.5) of
the solutions holds pointwise for every u € R, i.e.

1

2
1
_ —iwt b
W(tw) = 5- /]R e ;b_:l tap(w) @2 (u) (DL, Tp) duw . (5.7)

Moreover, for u fized, the function U(t,u) vanishes as t — co.

Proof. Since we know that the integrand is continuous in w, it is in
L'([a,b],C?) for any bounded interval [a,b]. Thus it remains to analyze
the integrand for large |w|.

To this end, we must investigate the asymptotic behavior of the funda-
mental solutions q'Sw and q\Sw in w. We constructed these solutions with the
iteration scheme (4.7) as solutions of the Jost equation. For the proof of this,
the estimate (4.14) played an essential role. Since in this case we consider
real w with |w| 3> 1, we can use the simple estimate | sin(w(u —v))| < ﬁ
instead of (4.14), which now holds for every u,v € R. Thus, proceeding
exactly in the same way as in the proof of Theorem 4.2, we now obtain the
following estimates for the several terms in the series expansion (4.6)

1 |

B0 < Pt where Putu) = [ L vito,

for any k € N and v € R. Thus the solution ¢, (u) (w # 0) is given for all
u € R by this series expansion and obeys the uniform bound

, . 5 )
|pus (1) — €| < efo) 1 < eVl _ 1
since V; € L*(R). In particular,

|bu(w)| <1+ 0 (ﬁ)—|> for |w| > 1. (5.8)
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Next we investigate the w-dependence of <¢>fL, \Ilo>. We integrate by parts
to obtain

(@, 00y = [ ) (ra) o) + Vi) () o

supp¥o

where Uy = (¢1,%2)7 (note that the boundary terms drop out, because
Uy € C§°(R)?). Since ¢, (u) is a solution of the Schrédinger equation (3.2),
we substitute =3 (—¢? (w)” + Vi(u)gl,(u)) for ¢}, (u) and integrate by parts
twice,

= [ o V) Vihs — 9+ Vi)

w
supp¥o

We can now iterate this procedure as often as we like due to the fact that
Uy € CP(R)? and V; € C®(R). Thus using the bound (5.8), we obtain
arbitrary polynomial decay in w for <(D2,, \IIO>.

Thus it remains to control the coefficients ¢,(w) for large |w|. According
to the definition of the transmission coefficients A(w) and p(w), they satisfy
the following relations,

w(py, bu) = 2iwp(w) and w(g\bw,q’ﬁ_w) = —2iwA(w) .

In order to calculate the Wronskians, we substitute the Jost integral equa-
tions (4.5),(4.23) for b, and ¢, respectively, as well as the corresponding
integral equations for the derivatives (for instance (4.20) in the case ¢,,) and
obtain immediately

u(w):1+(’)(%) , A(@:@(%).

Hence the coefficients ¢,,(w) remain (at least) bounded, according to their
definition (5.3).
We conclude that the integrand in (5.7) is in L*(R,C?) as a function of
w. Thus the right hand side in the integral representation (5.5) converges
also pointwise and, together with the norm convergence, (5.7) follows.
Since for u fixed, ¥(t,u) is a Fourier transform of a L! -function, the
Riemann-Lebesgue lemma applies. Hence ¥ (¢,u) vanishes as t — oo. O

In the next step we extend this proposition to the Cauchy problem (1.6).

Theorem 5.6. Consider the Cauchy problem (1.6) for smooth and com-
pactly supported initial data. Then there exists a unique smooth solution,
which is compactly supported for all times.
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Moreover, decomposing the initial data Uy into spherical harmonics, the
solution has the representation

o
U(tu,9,0) = Y e U (w)Yim (9, ¢) - (5.9)
1=0 |m|<I

Proof. For the existence and uniqueness of such a solution we apply the
theory of linear symmetric hyperbolic systems (cf. [15]). Since the equation
in (1.6) is defined on R x R x S? we have to work in local coordinates for
S?. We demonstrate the idea in the chart (U, (9, <,0)), where U is an open,
relative compact subset of S2 such that (29, ) are well defined on U.

Letting ® = (044, 0y, Ocos 9, Optp, )T we can write the equation as
the first order system

A%0,® + A0, B + A%Oeos9® + A%0,® + BE =0,

where the matrices A%, B are given by
2MN\ 1 2MN\ 1 1
A’ =diag (1,1, (1 - — ) —sin®¥, (1 - — — <51,
r ) r? r ) r2sin?9

Al = (a}), with aly=ad =-1,

2M\ 1
A% = (a2), with a?; = a3, = — (1 - —) r—sin219,

r
2MN\ 1 1
3 : 3 3
A’ = (a%) y with A1y = Gy = — (1 — T) T_QSiDQﬂ
. 2M\ 1
B = (b) , with b3 = (1 — T) 7‘_22 cos¥ ,
2M\ 2M
bis = (1——> 3 bs1 =1,
r r

and all other coefficients vanish. By multiplying this system with the term
(1 — %) - r2, we obtain a linear symmetric hyperbolic system on Rx Rx U
in the sense that the A’ are symmetric and A° is uniformly positive definite
on RxR x U. Since the initial data ¥ has compact support, we can restrict
the system to Rx V' x U, where V' C R is an open, relative compact set with
supp¥g C V x §2. Considering the system on this domain, the matrices
A*, B remain uniformly bounded. Since we can cover S? by a finite number
of such charts, the theory of symmetric hyperbolic systems yields an €1 > 0
such that there is unique and smooth solution (¢, u,z) for all t < €; on
R x V x S? with initial data ¥,.

Moreover, this solution has finite propagation speed, which is indepen-
dent of u (this is physically clear from causality; it follows mathematically
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by considering lens-shaped regions for our symmetric hyperbolic systems).
Thus there exists an € > 0 (possibly smaller than 1) such that the solution
¥(t, u, ) has compact support in V' x S? for all times ¢ < ¢. Tterating this
argument for the Cauchy problem with initial data (¢(e,u, z),i0;9 (e, u, x))
(and choosing V' C R sufficiently large), we get a unique and smooth solu-
tion (¢, u,z) with compact support for all ¢ < 2¢ and so forth. Thus we
have proven the existence of a global solution % (t,u,z) € C®(R x R x §?)
which is unique and compactly supported for all times ¢.

In order to prove the representation (5.9), we consider the restriction
of the solution U (t,u,z) = (1(t,u,),i041(t, u, z))T of the Cauchy problem
(1.12) in Hamiltonian form to fixed modes I, m

\I}lm(tau)nm(ﬁa ()0) = <\P(t7 u)aY—lm>L2(S’2)Y—lm(ﬁa 80) :

Then U (t,u)Y;, (9, ) is a solution of (1.12) with the smooth and com-
pactly supported initial data U5™(u)Y}, (9, ¢). Thus U™ (¢, u) is a solution
of the Cauchy problem (1.23), and due to the uniqueness of such solutions

T (t,u) = e HHIghT (y,)

The uniqueness of the decomposition into spherical harmonics yields (5.9).
O

We are now ready to prove pointwise decay.

Theorem 5.7. Consider the Cauchy problem of the scalar wave equation in
the Schwarzschild geometry

O¢=0, (qsa ZatQS)(O, T, :I") = (}O(Ta IE)

for smooth initial data ®y € C§°((2M,00) x S?)? which is compactly sup-
ported outside the event horizon. Then there exists a unique global solution
®(t) = (p(t),i0:(t)) € C®(Rx(2M, 00)x 5?)2 which is compactly supported
for all times t. Moreover, for fizxed (r,z) this solution decays as t — oo.

Proof. The existence and uniqueness of solutions of the Cauchy problem
follow directly from Theorem 5.6 after the substitution v = r¢. Thus it
remains to show the pointwise decay.

The conserved energy for solutions which are compactly supported for
all times ¢ implies that for every ¢

19 (8 u, 9, )17 = |To(u, 9, ) |* = Z > v Wi

=0 |m|<I

where for the second equation we used the isometry (1.21). Hence, defining

Tl (t,u,9,¢) : ZZ\letqum(ﬁw)
=L |m|<i
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we can find for every € > 0 a number Ly such that
o
[&% (0, 0) 7 = 32 3 I @) <.
I=Lo |m|<I
Let us now consider the Cauchy problem (1.6) with initial data
o
HYo =Y > (HY")Yim -
1=0 |m|<I

Obviously, this data is also smooth and compactly supported and thus gives
rise to the solution

o0 o0
> 3 (e ) Yin = 3 3 (Hie ) Vi = 0
=0 |m|<I =0 |m|<I

where in the second equation we again used the uniqueness of the decompo-
sition into spherical harmonics. Thus for every € > 0 there is a L; (without
restriction > Lg) such that

|HT ()| < e, for all times ¢ .

Proceeding inductively, we find for every number N and for every € > 0 a
number Ly such that

|H 5N (t)|| < e, foralltandn < N .

Let K C R x S? be an arbitrary compact subset with smooth boundary.
Then, due to the definition of the energy, there exists a constant Cy(K) > 0
such that for WLV = (LN plv)T

[0 ey + Ity 2y < ColB) [T

Applying the same argument to HUIN = ( §N,A¢1LN)T, where A is the
differential operator given by (1.14), there is a C1(K) > 0 such that

A |2 aey + 5V ey < CLlBOIHEEY |

Since the differential operator A is of the form A = —A + X, where X is
a first order differential operator, it is in particular a second order elliptic
partial differential operator. Thus, for u € C®°(R x §2) and for each U CC
V CC R x §2 (CC denotes relative compact) there is an estimate (cf. [26,
p.379 (11.3)])

[ull g+ ) < CllAullgr(vy + Cllull greeryy  for all k > 0.
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It follows that there exist new constants Cy(K),C;(K) such that
1™ a2 iy + b ey < Co(ENTN ||+ Cu (K| HE] .

Iterating this inequality, we obtain constants Cy(K), ..., Cx(K) such that

k
TN s ey + 13N ey < Co(B)[H" TV

n=0

In particular, for every € > 0 there is a number L such that
||\IJL(t)||H2(K) <e¢ forallt.

Thus the Sobolev embedding theorem yields (possibly after enlarging L)
||\IJL(t)||Loo(K) <e forallt.

Furthermore, due to the pointwise decay for fixed modes [, m which was
shown in Theorem 5.5, we can find for any € > 0 and (u,z) € R x S? a
time ¢p and a number L such that for the solution ¥(t,u,z) of the Cauchy
problem (1.6),

-1
| (¢, u, )| < Z Z [T () Vi ()] + |0 (8, u, )| < e forall £ > tg .
=0 |m|<lI

Since 1 = r¢, this concludes the proof. O

6 Expansion of the Jost solutions q\bw

Since the w-dependence of the Jost solutions gZSw plays an essential role in the
analysis of the integral representation, we show in this section a method to
expand these solutions at the critical point w = 0. We start with an explicit
calculation:

Lemma 6.1. For allu >0, w e R\ {0}, >0,¢g€Ny andp €N,

ooe—Ziwm—em log?(z) dr — i 7)1, =M () (2w —|—e3)p_1
u P B m &

m=0

’ {((1:1—)1)1; (;r;l)-:z;l log™ ™1 [(2iw + €)u] + ki_() cx(m) log [(2iw + €)u]

_qyPtl i (_1)k(_1)m m! [(2zw +E)U]k} ’ (61)

ko1 (k —p+1)m+ig!

where the coefficients ¢y, involve the coefficients ag, ..., aq of the series expan-
sion of the I'-function at 1 — p.
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Proof. In order to prove this, we write the integral as A-derivatives,

2iwz—ez 10 o _ C
/u e — dr = /\qu()\)

A=0

with the generating functional,

where in the last step we introduced the new integration variable v = . In
the following we will write z = (2iw + ¢)u for reasons of convenience. The
integral on the right hand side is also known as the Exponential Integral
E,_x(z) with the series expansion

e > (—1)k k
Ep A(2) =T(1—p+A) 22 1—§ A
2o (k= pt At DA

for small A # 0 [as a reference cf. [34]]. Using the series expansion of the
[-function at 1 — p € Z \ N, where the I'-function has a pole of first-order,
we obtain

Fy(\) = u PP i +ia A | P AL
P (p—1)IA = "
- (—1)
_g(k—p+/\+1)k!zk]
_ P | e (1Pt (A -1 z—,\ooa n
= p++[p ((p—)!( )\ )_|_ nz_%")\>

_ (—1)* | 63
A CE R R I

Using z~* = e *1°8%  we immediately get the formulas

i z—)\ -1 - (_1)n+1 10gn+1(z)
din A —o n+1
ar A _ m
T (u ) T log™ (u)
dm - _ m m
—= () = )
one directly verifies the claim setting (6.3) in (6.2). O

Directly in the same way, one proves an analogue lemma for the case
peEL\N:
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Lemma 6.2. Forallu >0, w e R\ {0},e>0,g€eNy andp € Z\ N,

q
Z (;i) log? "™ (u ){ 2iw + ¢)? ch log [(2iw + €)u]

—p+12 5 p+ J:l,;, [(in+8)u]k}(6-4)

where the coefficients ci, involve the coefficients ag, ..., aq of the series expan-
sion of the I'-function at 1 — p

Compared to Lemma, 6.1, here the logarithmic term is of lower order due
to the fact that the Gamma-function has no singularity for positive integers.

In order to apply this lemma to our integral representation, we have to
derive an asymptotic expansion for the potential V;(u) at +o00. Therefore,
we have the following

2 1
Lemma 6.3. For the potential Vi(u) = |1 — 2M M + I+1) we
(u) r(u)3 r(u)?

have the asymptotic expansion
p—

k 2 k—1 k—2
log log"® ™ (u) log"™*(u)
= E Cpg -I— Cht1h—1"" 577 +0 ) , (6.5)
p=2¢q=0

as u — oo , with k > 2 and real coefficients cpq, where e.g. the first coeffi-
cients are given by

co0=1l(1l+1), e =4l+1)M

c30 = 2M — 2MI(1 +1)(1 + 21og(2)) — 4MI(I + 1) log(M)

cao = 120(1 + 1) M? |

ey = —4AM?*(=3 +1(1 + 1)(5 + 8log(8)) + 61(l + 1) log(M)) ,
Furthermore, in the case | = 0 the coefficients ¢,y 2 vanish.

Proof. First we have to find an expression for r in terms of the Regge-
Wheeler coordinate v. Remember that u = r + 2M log(53; — 1), which is
equivalent to

ezt = (ﬁ — 1) eant 1
In order to resolve this equation with respect to r, we use the principal
branch of the Lambert W function denoted by W (z). This is just the inverse
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function of f(z) = ze® on the positive real axis. [As a reference cf. [4].]
Hence, we obtain
r=2M +2M W (e 1) . (6.6)

Moreover, for W we have the asymptotic expansion

W(z) = log z—1log(log z)—l—z Z crm (log(log 2))™ 1 (log ) ~F=™=1 | (6.7)
k=0m=0

. . k
as z — oo. Here, the coefficients ¢y, are given by cgm = %(—1)’c [k—:_?]’

where [ k—:_ql] is a Stirling cycle number. In particular, applying this ex-

pansion to (6.6), we get the series representation

r(u) :2M+2M[% —1-1log (%—1)

aa u m+l ;4 —k-m—1
+3 Y am (e (557 -1)" (1) -
k=0 m=0

This allows us to expand the powers T%, %3 and %4 to any order in u/2M —1
using the method of the geometric series. Together with the expansion

u u oM 1 /2M\"
log(— —1)=log |— (1 - == )| = logu—1log(2M) - = [ =—
Og<2M ) Og[2M( u)] ogu—log(2M) Zn(u) ’

n=1
which holds for v > 2M, the result follows. O
These two lemmas let us expand the solution q\Sw (u) in the following way.

Lemma 6.4. For | = 0, w € R\ {0} and fized u > 0, the fundamental
solution ¢, (u) can be represented as

(\ﬁw(u) = e—iwu + gO(wa U,) + 2iw log(2iw)gl (wa ’U,) + 2iw92(wa ’U,) ) (68)
where the functions go,g1 and g are C*(R) with respect to w.
In order to prove this, we need the following version of Lemma 4.3.

Lemma 6.5. For allu € C and n € Ny,

n L. 2t [ Tm u|
au E Sy ‘ S me . (69)
Moreover, if w# 0 and v > u > 0,
1 . C(n) v"*!
a [; sin(w(u — v))] ‘ < melemeuImw ’ (6.10)

for some constant C(n), which is just depending on n.
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Proof. The proof follows essentially the arguments of the proof of Lemma
4.3, where we have shown the case n = 0, when one substitutes v — —v,u —
—u. Namely, in the case |u| > 1, Eulers formula for the sin-function imme-
diately yields

(1 + Ju]

1 1 1

Ou (_ Sin“) ‘ =(1+ |U|)‘ — — sinu+ —cosu| < el mul
u u ”

And inductively we get

(1 + ful)

o 1sinu ‘ < gntlg/mul
u u —_

For |u| < 1 we rewrite (1/u)sinu as an integral, in order to obtain the
estimate

1 1 [ .
(1+ |ul)|O) (5 sinu) ‘ =(1+ |u|)‘§/ (i7)" ™" d’r‘ < 2¢lmul

-1

which shows the first claim. As a consequence, we get for w # 0 and all
n € N the estimate

an (é sin(wu)) ‘ -

1+ |wyl

1
uton, (— sin(wu)) ‘
wu

2n—|—1 ‘u|n+1

eltm(wu)l (6.11)

Using the identity

L. L. L. —iwuy
—s —v))=—s - —s )
- in(w(u —v)) " in(wu)e " in(wv)e

we get
‘8“, (% sin(w(u — v))) ‘ < ‘é (sin(wu) (—iv)e™™? — sin(wv)(—iu)e ") ‘

1 ) 1 )
+ ‘8&, (; sin(wu)) e -0, (; sin(wv)) e "W .

Using the estimates (6.11) and (6.9) for n = 0 together with the assumption
v > u > 0, we see as in the proof of Lemma 4.3 that the first term is bounded
by

e’u|Imw|—|—uImw .

‘l (sin(wu) (—iv)e™™" — sin(wv) (—iu)e™ ") ‘ < i
w 14 |wy

For the second term we use (6.11)

‘Bw (l sin(wu)) e W _ g, (l sin(wv)) e twu
w w
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< 4u? u| Imw|+vImw 4v?
= 1+ |wul 1+ |wy|

v|Imw|+uImw
)

and obtain due to the assumption v > u >0

< 8v?
14 |wo|

ev| Imw|+uImw

Thus, we have shown (6.10) for n = 1. We proceed inductively to conclude
the proof. O

Note that the estimate (6.10) remains valid in the limit 0 # w — 0 for
all n, because

(u— )"t | if n even,

lim O (lsin(w(u—u))) I S

RSN 0 . if n odd.

Proof of Lemma 6.4: First, remember that the solution qﬁw(u) is given by
the perturbation series

u(u) = ¥ (u),
k=0

where the summands follow the iteration scheme

B0 = e, 6w = [ sinwu—)) Vo) o) o , (612

w

2M\ 2M
with potential Vp(u) = (1 - —— . According to Lemma 6.3, this
r(u) ) r(u)?

potential can be represented for large u as Vy(u) = i; + h(u), with h(u) =
u

logu
o0 < g ) Next, we split this iteration scheme up. To this end, we define

ul
o (u) = —/ %sin(w(u —v))h(v)e ™ dv , (6.13)
and analogously,
2(1 <1 . C30 —jwv
¢ (u) == —/u " sin(w(u — ’U))U—36 dv . (6.14)

Thus, obviously gb((ul) (u) = qASS)(u) + (;5((‘}1) (u). Now we iterate these two func-
tions

F0) = [ Lm0 o)d @ o, k21,

w

49



analogously for q@&kﬂ)(u). Hence, we have the formal decomposition
bu(u) = "+ ¢ (w) + > 6P (w) . (6.15)
k=1 k=1

Both series are well-defined. In order to show this, we use the bound

4|

—_— 1
= 14wyl (6.16)

‘% sin(w(u — U))‘

from Lemma 6.5 for real w [Note that this estimate is also valid for the case
v > u > 0]. Hence, we get inductively the estimates (cf. Section 4)

k
B ()] < Ry 20

N N u)k
A0 < Aol 20

for all k > 0, where the functions R, R and P are given by

~ . o0 4 C30

Ro(u) = /u 1+ |w|'u‘ v3 ‘ dv,

- * 4y

Ry(u) = /u m”l(“)\ dv ,
R ')

Po() = /u Ml do

Thus, the series qAS((,Jk) (u) as well as > q@&k) (u) converge locally uniformly
with respect to 4 and w. In the next step we show that, for fixed u > 0,
> <i~5¢(uk) (u) is C'(R) with respect to w. To this end, it suffices to prove that
each summand 435,’“), k> 1, is C! and that the series Zaqus,k) converges
locally uniformly in w. Due to the estimates (6.10),(6.16), we have the
inequality

2, B sin(w(u — 'u))h(v)e_i“’”] <

12 v?
<
14 |wlv

4v? 160?
Y )| =
1+ |wlv 1+ |wlv

h(v)‘ + h(v)| . (6.17)
Hence, the second term is an integrable bound, uniformly in w, for the first
derivative of the integrand. It follows that ¢8 )(u) is C'! with respect to w,
bounded by

o] 2
] < [~

14+ |wlv

\h(v)| dv =: B0 (u) .
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Together with the estimate

~ 1 [ 1602 1=
< = < =RW
Ro(u) < 4 / arrLOIL R OR

one shows inductively that qzs,kﬂ)(u) is C! with respect to w, bounded by

(Pt

0,40 )] < AP @) =2

This yields that the sum 8w¢~5¢(uk) converges locally uniformly in w. Hence,
the sum ) quuk) (u) is C'(R) with respect to w. According to the decompo-

sition (6.15), it remains to analyze the w—dependence of } 5 (u). To this
end, we compute the first summand:

~ 1 o0 . . .
R L T

1 ) o0 C30 1 : o0 C30 _9;
— —_¢ Wy = dv — — etwu —36 2iwv dv .
21w w U 2w w U

Integrating the second term by parts, we obtain

1 —iwu €30 iwu €30 2wy iwu * c30 . — 24w
= et = — W e +e (—2iw)e dv
u

21w 2u? 2u? —202
— plwu } e—21w’u dv .
u v

The series expansion of Lemma 6.1 in the limit ¢ — 0 yields

) (u) = cﬂeiw“{%w(log (2iwu) + co)

2
—u~! 3 ﬂ iwu)”
k:%;# (k= 1)k 2 } . (6.18)

Intuitively, the only term which is not C' is the term involving 2iw log(2iwu).
More precisely, defining

1&5}) (u) — gﬁg}l) (’u,) — c3oei“’“iw ]Og (2'qu) , (619)

and iterating this by

P = - [

we show next that the sum ) zﬁgc) (u) is C*! with respect to w. By definition
this holds for the initial function 1/35,1)(11) In order to prove this for the

*1

sin(w(u - NVo(0)9l (v) dv, k> 1,
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sum, we apply the same method as above. To this end, we need good
estimates for the initial functions qu}) (u) and szpé,l) (u). Estimating the
integral representation of dA)((Ul ) (u), we obtain for arbitrary u > 0 and w € R,

00
(1) Wy 1 2 ‘:‘A(l) ‘< Cﬂ :Cﬂ
ww (’U,) +c30e W Og( ’qu) ¢w (u) =/, 202 dv 2
1
|w]

On the other hand, looking at the series in (6.18), we obtain for all u <
the estimate

90 ()] = |52 { 2icocy - % i G b <

6.20
k= Ot1 (k—1)k! » (6:20)

2| ™

with a suitable constant ¢. Thus, we get for all u > 0 and w € R the estimate
~ C 3
‘¢&1)(u)| < " + c|w|| log(2iwu)| 1[ﬁ,m)(“) , (6.21)

where ¢ is chosen suitably and 1 (.) denotes the characteristic function. In

order to estimate the derivative awzﬁé}) (u), we use in the domain u > -

Wl
|w| # 0, the following bound for 8wq3£,1) (u) [see also (6.17)],

- 1602 |e30
2 (IPw)| < / T4 [olol 08
u
o0
~ E |630| dv S 16630 S 16 C30 -

wl Ju  v? |w|u

Together with the analogon to estimate (6.20) in the region u < |71|, we
obtain the bound

10,90 (u)| < &+ &(1 + ulw|)| log(2iwu)| 1[ﬁ’w)(u) : (6.22)

where © > 0,w € R and ¢ is an appropriate constant. For reasons of sim-
plicity, we choose ¢ = ¢ such that both inequalities (6.21),(6.22) hold. Using
these inequalities, we show by induction, in the same way as above, that
ﬁ&k)(u) is C! with respect to w and obeys the estimates

X cP,(u)h1 ¢ » (1)F2
Wl < S S B, e

k—1 k—2
a0 < Ty soru) W) ()

for all £ > 2,4 > 0 and w € R, where r is given by

© 4|w|v? .
r(|w]) == /L e Vo)l og(@iwn)| do

[w]

52



Due to (6.23),(6.24), the sums Zz&&’“) (u) and Zaw&(uk)(u) converge locally
uniformly in w. Hence, we conclude that Z'Jz&k) (u) is well defined and
continuously differentiable with respect to w.

Thus, it remains to look at the term we get by the iteration of

I (1) := e30e™%iw log(2iwu) = icsy wlog(2iw)e™® + icsy wlog(u)e™™ .

To this end, we split up the iteration, exactly as we did for the iteration of
q§£,k) (u), i.e. we define

2w = - [ g ol = ) ()Y (o) o
1

0w = - [ 5s

and iterate these functions,

w—v)) 59 () dv,

FED () 1= — / L sinw(u — ) Vo @)/d® () dv , k> 2,

w

analogously for @&kﬂ)(u). Next, in exactly the same way as for ¢(), one
sees that

e ~

> 0% () = 2iw log(2ies) f(w, u) + 2iewfo(w, )

k=2

where fi(.,u) and fo(.,u) are C' with respect to w. Finally, by an exact
calculation
1

w o
19512) (u) = ’icgow log(2iw)e™"" / 62“‘”’@ dv
u

Y A
+ic§0we_“’m/ 62“’"’( + og’u) dv ,
" 4v?

together with the series expansion of Lemma 6.1 in the limit ¢ — 0 we obtain

1 )
Zz’cgo w(1 + 2log(2iw))e "

o0 _1\k
X [(—2iw)(log (=2iwu) +co) —u Z ﬁ (—inu)k]

k=0,k1

21: (;) logl_m(u){(—%w) X

m=0

I (u) =

1 .
+—ick, we™ ™ [
2
-1 m—+2
(i log™ ! (—2iwu) E cx logh( 2iwu)>
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- ~Dk(=1)mm!
—u Z ((k)—(l)m)‘Hk;! (—QZwu)k}] .

k=0,k#p—1

Proceeding in the same way as for Zz&ﬂ“) (u) [i.e. we omit the logw-terms
in the square brackets, and iterate these functions|, we again get terms of
the form

2iw log(2iw) f3(w,u) + 2w f4(w, u)

with continuously differentiable functions f3(.,u), f4(.,u). So after simplifi-
cations there remain terms of the form

(2iw)? log® (2iw) log” (—2iw) log® (u)e ™% .

These are obviously C! with respect to w and so is their iteration, due to
the fact that the additional w-order yields directly integrable bounds for all
w. This completes the proof. O

Next, we try to apply the idea of this proof to the case [ > 1. Therefore,
we make some remarks about the fundamental solutions w'¢,;(u) (see also
Section 4). The fundamental solutions were constructed as the series

o
Whu(w) =Y (), (6.25)
m=0
where the ¢(™) are given by the iteration scheme
o) == [ Suu o) Wil ) do. (6.26)
with potential, cf. also Lemma 6.3,
I(l+1 logu ¢
Wi(u) = Vi(u) — 1) 5 ) - C31—g3 + =28 + h(u) (6.27)
U U U
1 2
where h(u) = O ( Oi4u>
for large u, and Green’s function
B (_1)l+1 B
Su(u,v) = " (h1(l,wv)ho(l,wu) — k(L wu)ha(l,wv)) ,  (6.28)
where

TWu TWu
hi(l,wu) = [ == dip1jp(wu) , he(lwu) =4[ —=J11/a(wu) , (6.29)

and J, denotes the Bessel function of the first kind. As initial function
¢c(uo) (u) we have chosen

s TWU

¢ (u) = wte= 15 JTRHD ()
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where H,(,Q) denotes the second Hankel function. Since [ is an integer, these
functions are directly connected to the spherical Bessel functions and sim-
plify significantly. Namely, h1, ho have the following representations [cf. [1,
Chapter 10]]

1 1 1 1
hi(l,wu) = P(l + 2’ wu) sin(wu — §l7r) +QU+ §,wu) cos(wu — Elﬂ) (6.30)

1 1 1 1
ho(l,wu) = P(l + 3 wu) cos(wu + §l7r) -QU+ 2 wu) sin(wu + §l7r) (6.31)

where P, () are finite polynomials given by

1 3 (U4 3,2k)
P(l+§awu) = kz_%(—l) “wu)
[3(-1)] 1
1 B L+ 1264 1)
Q(l + 27wu) - ( 1) (2wu)2k+1 )
k=0
with . (i + k)
+ k)!
e e T
And the initial function can be expressed by
l 1
0) (0N — i ((+3,k)

k=0

Due to the recurrence formulas for the derivatives of the Bessel functions,
we have the identities

Ouhi(l,wu) = uhy (I — 1, wu) — ihl(l,wu) ,
w
Owho(l,wu) = —uho(l — 1,wu) — ihg(l,wu) .
w

As a consequence,

20+ 1
OwSu(u,v) = — l:}— S,
-1 +1
+ v ~ (h1(l — 1, wv)ho(l,wu) + hi(l,wu)ha(l — 1,wv))
—1)¢
+ u( w) (h1(l,wv)ho(l — 1,wu) + hi(l — 1,wu)ho(l,wv)) .

This allows us to derive the necessary estimates for the Green’s function
Sw(u,v). In the proof of Lemma 4.6 we have already seen (exploiting the
asymptotics)

u —1 v I+1 | |
S ’ <C vaw—|—uImw’
1Sl 0)] < 1(1+\w|u> (1+|w|v> g
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for v > u > 0 and an appropriate constant C. In order to derive an estimate
for 0,5, and small |w|, we make use of

hi(l,wu) ~ Ky (wu) ™+ ko (wu)t 3
ho(l,wu) ~ k3(wu)™ + ky(wu) 72, if jwju < 1,

and certain constants ki, ..., k4 [refer to the series expansion of the Bessel
functions [1, 9.1.10]] to obtain (note that v > u > 0),

u -1 v 1+2
< if 1.
|0 Sw(u,v)| < Ca (1 n |w\u) (1 n |w|v) , if Jwly <

For large arguments |w|u > 1 we use (6.30),(6.31) and get by a straightfor-
ward calculation

OuwSuw(u,v) ~ ;—221 sin(w(u —v)) + 9, [% sin(w(u — 'U))] , if |wlu > 1.

Together with (6.10), we obtain

2
|Sw (u, )| < Cgl_l_luwe””mw‘*'“lmw , i |w|u > 1.

Combining these estimates, we find a constant C' such that

-1 I+1
u v
< % v v| Imw|+uImw 6.33
108 (u, )] _C<1—|—|w|u> (1+|w|v) ve - (6:33)

for v > u > 0. Moreover, looking at (6.32) we get the following bounds for
the initial function,

—l
(0) < u uImw
$Ow| < ¢ (71+|w|u> enime (6.34)
-l
(0) < L uImw. .
Pl < G (15in) ue (6.59

These estimates allow us to proceed in exactly the same way as in the proof
of Lemma 6.4. As analogon to ¢£,1 ) (u) we obtain the term

_/ S (u,v) (C311(:)$ + cﬂ) ‘(UO) (v) dv,

v3

which we calculate using (6.30),(6.31) and (6.32). Essentially, we get inte-
grals of the shape

w : i, log?v s log? v
Wy 2iwv Wy
(wu)mwm kT <C6e /u € e dv + Cre /u p3tktm dv)
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where g € {0,1},0 < n,m,k < I. Note that the terms involving w singu-
larities resolve, due to the fact that wlq\ﬁw is continuous with respect to w.
Computing these integrals via Lemma 6.1 (in the limit ¢ — 0), we see (as
before) that the only terms not being C' with respect to w are of the form

ei“’“ﬁ(21’&))’“"’"‘""2 (log2(2z’wu) + log u log(2iwu) + log(2iwu)) ,
(6.36)
modulo coefficients. Now, we apply the same iteration with analog estimates
and all in all we have shown:

Lemma 6.6. For | > 1, w € R\ {0} and fized v > 0 the fundamental
solutions w'¢,(u) have the representation

wléﬁw(u) = ¢£,0) (u) + g3(w,u) + 2iwlog?(2iw)gs(w, u)
+2iwlog(2iw)gs (w, u) + 2iwgs(w,u) , (6.37)

where the functions g3, gs,gs and gs are C'(R) with respect to w.

7 The decay rate for spherical symmetric initial
data

In this section we consider the case [ = 0. According to Theorem 5.5, the
solution of the Cauchy problem for compactly supported smooth initial data
Uy € C§°(R)? has the pointwise representation

U(t,u) = —% /R gt ( /Supp% T (s, (1, v)) ( “, ! ) \Ifo('u)dv) dw |
(7.1)

where s, (u,v) is piecewise defined by (3.9) and represents the Green’s
function for the Schrédinger equation (3.2). According to the equations
(5.2),(5.3), the imaginary part of s, (u,v) is symmetric with respect to the
arguments u,v. Thus, for all u,v € R

s (o))
(s (u,v) =1 (w(éw,%)» (72)

where qéw, (}SM are the Jost solutions in the case [ = 0. Our goal is now to
use the Fourier transform (7.1), in order to get detailed decay rates. To this
end, we have to analyze the integral kernel, hence essentially (7.2).

Since we already know that q’Sw is analytic on a neighborhood of the real
line, it remains to understand q\Sw at the point w = 0. To this end, we want
to use an expansion as in Lemma, 6.4. The problem is that this expansion
is not sufficient for this purpose. Thus, we apply a similar method in order
to gain
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Lemma 7.1. For =0, w € R\ {0}, n > 3 and fized u > 0, we get for the
fundamental solution ¢, (u) the representation

n
Dul) = e 4 go(wyu) - > (2iw) log? (2iw) logh (~2iw)gige w, )
i>j+k=1
(7.3)
where the functions go, g;jr € C™(R) with respect to w.

In order to prove this, we need the following lemma.

Lemma 7.2. Let u > 0, n € N and h € C®(R;) be a smooth function
satisfying fuoo v h(w)| dv < co.
Then:

()

o0

f(sl)(u) = —/ l sin(w(u — U))h(v)e_iw” dv

w
is C™(R) with respect to w.

(ii) For all k> 1

o0

1

FE ) == [ sin(utu - 0)Vo()lP0) dv.
u

are C™(R) with respect to w and the series Y BL”ngk)(u), m < n,

converge locally uniformly. B

In particular, Zfé,k)(u) is C™(R) with respect to w.

Proof. This is shown in exactly the same way as the statement that the
functions q@&k) in the proof of Lemma 6.4 as well as the series are C! with
respect to w. In order to show the differentiability up to the n-th order, we
use the estimates of Lemma 6.5. O

Proof of Lemma 7.1. Because of complex calculations we show this at first
in the case n = 3. To this end, we split up the iteration scheme (6.12) of
the fundamental solutions in the following way. According to Lemma 6.3,
we can write the potential Vj as

552X logt(v)
Vo(v) =) oy +76(0)
p=3 q=0

where ¢ is a smooth function for v > u behaving asymptotically at infinity
3
as O (M) Thus, defining

6

o () := — /00 1 sin(w(u — v))rg(v)e Y dv

w
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and for all k > 1

o
- 1 -
FED @) == [ sin(olu - 0)Vo()d ) v,
v W
Lemma 7.2 yields that Jsff) € C3(R) with respect to w and is a contribu-

tion to go(w,u) in the statement of the lemma. Thus, we have to compute
the remaining term

5 p—3
~ oo 1 . 10 —ZUJU
¢ (u) := —/ " sin(w(u — v)) Z Zcpq g dv.
u p=3 qg=0

We do this essentially in the same way as we computed the terms qAS(l) , 9@ in
the proof of Lemma 6.4. We split up the sin(w(u — v)) with Euler’s formula
and integrate by parts and obtain

p—2

4
. 1 .
_ _ezwu/ _c;(; § : § : Og v e~ 2wy g, ’ (7.4)
u =3 ¢g=0

where the coefficients ¢,; depend on the integral functions of the terms
log" v/v°. Now, we apply Lemma 6.1 in the limit £ \, 0 and get

o
iwu €30 ) o , 1 A\
= — < 2iw log(2 - — d(2
et { iw log(2iwu) " E & (2iwu) }

k=0

. 1 1
n ezwu%{(%w)? (Z ]og2(2iwu) + log(2iwu)(c — = log u))

1 o
+ (c+ clogu) " E i (2iwu) }
k=0

3

+ eiwu{(%w)?’ Z clog®(2iwu) log® u

s+t=1
—I—chog ug de (2iwu) } (7.5)

with appropriate constants ¢ and dj, which are of the form

(CDH D)™ m!
(k—p+1)m+ig!l”

dp = [cf. Lemma 6.1]

Since the series-terms are obviously C?(R) with respect to w, this expression
of ngSS) (u) fits into the desired expansion (7.3). In the next step we have to
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iterate (7.5). To this end, we treat each term in the curly brackets separately.
We show this exemplarily for the first term which we denote by

) 1
W) = e“"“%{%w log(2iwu) — — de(%wu)k} (7.6)
u k=0
- glwu /oo €30 230 2w g,
o 202

In order to derive sufficient bounds for all v > 0, we use different methods
for the regions |w|u > 1 and |w|u < 1. First, let u be such that |wju > 1,
and by integrating by parts we get:

ab(u) = e /00 co_ 1 e 2w dy
o 202 (—2iw)3 "
€30 _ju 1 €30 _jwu 1 3630 jwu 1
= — — 7.7
40’ w2 (ZZ'w)26 u? + (2iw)3e ut (7.7)
_eiwu /oo % .1 36—21'0.111 dv .
uw U0 (2iw)

Using this expression and elementary integral estimates, we get for all
u > 0 satisfying |w|u > 1 the bounds

1
|a(1) (u)‘ < CW ’
1
|8woz(1) (u)‘ < CW )
|Bf,a(1) (u)‘ < cﬁ ,
u
|8f,oz(1) (w)| < cm , (7.8)

with suitable constants c. Moreover, comparing the infinite sum of (7.6)
with the exponential function, one directly sees that it is C3 with respect to
w. It satisfies for all u > 0 with |w|u < 1 the bounds

‘lid (2iwu)k| < €
U U
1 o0
O, " Z (2iwu k) < ¢
k=0
1 o0
o (a Z (2iwu) k) < cu
o0
o 1 Z (2iwu)* < e’ (7.9)
w u =

k=0
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Using (7.8),(7.9), we verify that iterating the sum first with rg followed
by the full iteration with the potential Vj, we obtain a C®-function. For
the remaining term cso/2e™%2iw log(2iwu) we use the identity log(2iwu) =
log(2iw)+1log u together with Lemma 7.2 to show that the first iteration with
r¢ followed by the full iteration with the potential Vj yields a term of the
form 2iw log(2iw) f110(w,u) + wfio0(w, ), fi10, fioo € C>(R) with respect to
w, fitting into the expansion (7.3). Thus, it remains to compute the integral

0 1 5 p—3 )
—/ — sin(w(u — v) ZZCP‘I oD () dv .

p=3 ¢=0

We do this exemplarily for the term

w v

B () = — /u T L Gin(e(u — ) 2200 (o) do (7.10)

A complex calculation, using Lemma 6.1 and Lemma 7.3, which will be
stated and proven afterwards, yields

B (u) = 21w log(Ziw)e_iw“c{(—%w) log(—2iwu) — % i dk(—Ziwu)k}
k=0

2
; 1
+ 2iwe_’“’"%{(—2iw)( ~5 log? (—2iwu)

1 oo
+log(—2iwu)(c + logu)) — (c+ clog u)a Z dk(—2iwu)k}
k=0

o0

+ ei‘"u{c(%w)2 log(—2iwu) + Z —2iwu) } , (7.11)

k=

with suitable constants c,d;. Hence 8®)(u) goes with (7.3). So far, we
cannot finish this scheme, but if one has a close look, one sees that the
most irregular term at w = 0, namely 2iwlog(2iw), now appears with a
1/u decay, while the other irregularities appear with an additional w-power.
Furthermore, due to the bounds (7.8) together with direct integral estimates,
we obtain for all u with |w|u > 1 the bounds

89 ()| < C/oo v 11 o<

1+ |w|v v3 v?|w| ut|w|

1
(2) < e
0,690 < e
|83ﬂ(2)(u)| < ¢ 21
u?|wl

038P (u)| < e (7.12)
N T ufwl
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Using in the region |w|u < 1 for the sum-terms in (7.11) estimates analog to
(7.9), we conclude in the same way as before, that iterating these first with
rg¢ followed by the full iteration with the potential V and summing up, we
obtain C3—terms. We split up the remaining log-terms by log(—2iwu) =
log(—2iw) + log(u) and use Lemma 7.2 to show that applying the same
procedure yields terms that go with (7.3). Hence, we have to analyze the
integral

[ Lot S 500

p=3 q=0

exemplarily we treat the term

o
7B (u) == —/ 1 sin(w(u — U))ciz,?ﬁ@) (v) dv . (7.13)
w W v
Computing this expression with the same methods one sees that the term
with 2iwlog(2iw) decays as 1/u? and the w?log®(42iw)-terms decay as
log!(u)/u. With bounds analog to (7.12),(7.9) the same procedure applies
and yields terms that match with (7.3). Once again it remains to analyze

5 p—3

1 log?(v
—/u — sin(w(u — v) ZZCP‘I e 3)(U)d’l),

p=3 ¢=0

and exemplarily
_/00 lsin(w(u —)) 307( ) (v) dv .
. W v3

Calculating this, one checks that the 2iw log(2iw)-term decays as 1/u?, the
w? log® (£2iw)-terms decay as log’(u) /u? and the w3 log™ (+2iw)-terms decay
as log™(u)/u. Applying this scheme two times more, all terms which are
not C? with respect to w decay at least as log®(u)/u3. Subtracting these
terms from the full term, we obtain a C3-term which is decaying at least as
log®(u)/u?, according to estimates analog to (7.12),(7.9) and estimating |w|
by 1/u in the region |w|u < 1. So Lemma 7.2 applies for the full iteration
with the potential ;) and we get a C3-term. Due to their decay, we are able
to iterate the subtracted log w-terms also with the full potential Vj and get
terms that match with (7.3). Thus, the scheme can be stopped after finitely
many calculations and the lemma, is proven for n = 3. For n > 4 we split
the potential in the way

RS logi(v)
Vo(v) = chqu + rats(v) 5

p=3 q¢=0
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and proceed with the same calculations. In (7.7) we have to integrate by
parts up to the n-th order, in order to obtain as analogon to estimate (7.8)

‘Bgla(l)(u” < 2! , m<mn.
jwl
The next difference appears in the estimates (7.12). These cannot be done
for n > 4 by simple integral estimates as a matter of convergence. Thus, we
have to subtract from the result of the analog calculation to (7.7) for o) ()
the first n — 3 exact terms of the form

C )
—e L+
wu

C

—i 1
e L PP (),

and get form < n
omsPw)]| < o /oo

+‘8;"/ lsin(w(u—v))ci;,o(l)(u)‘

1 sin(w(u — 'U))Cﬂ (a(l) (u) — p(l)(u)) ‘

w v3

w v

bl

where for the first integral this can be done by elementary integral estimates,
and for the second integral we have to integrate the subtracted terms by
parts, as we did to obtain the estimates for a(!) (u). Keeping these differences
in mind, we can conclude exactly in the same way as for n = 3, which yields

the claim for arbitrary n.
g

We now state the missing lemma.

Lemma 7.3. Let u > 0 and w € R\ {0}. For the calculation of the iteration
of the infinite sums that appear in the integration in Lemma 6.1 with an
arbitrary part of the potential, log?u/uP, cf. Lemma 6.3, we obtain the
identity

> 1 10g?v108° v 4wy oo
- / — sin(w(u — v)) o8 U&tvei""“de(i%wv)k dv
u

w vP v P
1 ) s+q 00
= et Z clog!(u) Z diy (F2iwu)* (7.14)
1=0 k=0
s+q m+1
+(2iw)P T2 Fiwu Z Z clog” (F2iwu) log* 7™ (u) , (7.15)
m=0 r=1

for suitable constants dyy, c.
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Proof. Let us denote m =g+ s > 0 and n =p+1 > 4. In order to compute
the integral on the left hand side in the lemma, we insert a convergence
generating factor

- / — sin(w(u — v))ﬂeiu‘”’ Z dy, (£2iwv)* dv
u

w o™ o
= lim ” e 1 sin(w(v — u))weﬂ“’” i di, (£2iwv)* dv. (7.16)
N0, w ol k B

k=0

In the next step we interchange the integral and the infinite sum. This can
be done for any ¢ > 2|w| by a dominating convergence argument, if one
estimates the modulus of the sum very roughly by exp(2|w|v). Thus, the
two expressions

/00 1 sin(w(v — u))e_wweﬂw” i di,(£2iwv)* dv
u W " F
k=0
and
o o0 m
1 lo ;
Z dk(:|:2iw)k/ — sin(w(v — u))efﬂ’ﬁeiu’”’vlC dv
u W o™
k=0
coincide for any € > 2|w|. Moreover, both expressions are analytic in ¢ for
Ree > 0. So by the identity theorem for analytic functions both expressions
coincide for any £ > 0. So (7.16) is equal to

n—k
u W v

lim i di, (£2iw)" /00 1 sin(w(v —u))e ¥ log™ v Y eFiwv g,
e\0 o

Once again we rewrite sin(w(v — u)) with Eulers formula and integrate by
parts [note that one has to be careful with the e-terms that are generated
by this integration by parts, but in the limit € N\, 0 they vanish] to obtain

> : X o A )

Z :*:2’&(4} e:szu/ e:I:ZZwvfstc o d’U,
v

k u 1=0

with suitable constants ¢ arising from the integral function of log™ v/v™*
Now we apply Lemma 6.1, Lemma 6.2, take the limit € N\, 0 and get

m oo l
Zde +2iw) qu’wch()log “Hu) x

1=0 k=0 i=0
i+1 ' 1 [
{(Z}ZZz'ou)nk2 Z clog?[F2iwu] — g Z dr(:FZz'wu)’"}.
7=0 r=0,r#n—k—2
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We reorder the two infinite sums to one infinite sum, which can be done
because of the structure of the coefficients di, d, of the exponential integral
that lets us compare the new coefficients to the coefficients of the exponential
series, and get the expression (7.15). O

Next, we need a similar expansion for the derivative ¢/, (u).

Lemma 7.4. For | = 0, w € R\ {0}, n > 3 and fized v > 0, the first
u-derivative of ¢, (u) satisfies the expansion

n
Pl (u) = —iwe " +ho(w,u)+ Z (2iw)* log? (2iw) log® (—2iw)hyjr(w, u)
i>j+k=1
(7.17)
where the functions ho, hijr, € C™(R) with respect to w.

Proof. In order to prove this, we use the fact that ngL,(u) satisfies for u > 0
an integral equation analog to (4.20)

) = —iwe™ — [ cosluu ~ 0)Vo)d(v) do

We estimate cos(w(u — v)) and its w—derivatives for real w and v > u > 0
by
|00 cos(w(u —v))| < (v —u)" < (20)", neNy. (7.18)

Thus, using this estimate for n = 0 together with the iteration scheme (6.12)
for ¢y, (u), we obtain a well defined iteration scheme for the u-derivative, cf.
proof of Theorem 4.2:

¢('U(u) = Zzﬁgg)(u), where
k=0

PO = —iwe ™ = (40) (u), (7.19)
W) = = [ eoselu - )W) do = (469 )

with £ > 0. Due to this iteration scheme together with the estimates
(7.18) that replace the bounds (6.10) and the identity cos(w(u — v)) =
1/2(e™(#=v) 4 ¢@(v=1)) we can use the decompositions of the ¢L(Uk), which we
have made in the proof of Lemma 7.1. In particular, we apply the procedure
of this proof, in order to show the claim. O

Now, we use the expansions (7.3),(7.17), in order to analyze the w-depen-
dence of the essential part of the integral kernel

Im(éw@m)) |
(s o)
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At this stage, it is enough to set n = 4 in (7.3),(7.17) for our purposes. Look-
ing at the integral representation (7.1) of the solution, we see that u € R is
fixed while v € R varies in a compact set, the support of our initial data V.
Due to the Picard-Lindelof theorem and the analytical dependence in w of
the Schrodinger equation from the coefficients, the expansions (7.3),(7.17)
extend to any u, and v, respectively, on compact sets. Moreover, the follow-
ing properties follow directly by the construction of the expansions.

Corollary 7.5. For 4 > i = j+k > 1 the function gk, hiji can be con-
structed such that they obey the equalities

gijk(w,u) +o(w*) = cijr (€7 + go(w,u)) and
hijk(wa u) +o(w"®) = Cijk ho(w,u) , for i even
K Wy TN (720)
gijk(w,u) +o(w*) = ¢k + go(w,u)) and
hijk(w u) +o(w"®) = Cijk ho(w,u) , for 4 odd.

where K is an arbitrary integer and the c;j are real constants, in particular
not depending on u.

Proof. We show this exemplarily for the first terms g119, h110. In this situa-
tion, (7.20) holds because the first term, where (2iw) log(2iw) appears, ap-
pears with ¢39/2 €** and there are no other terms with this w-dependence
except the terms that are generated by this [cf. the calculations (7.5),(7.11)].
Thus, g110(w,u) is generated by €™, which is just the complex conjugate
of e™™"  and this behavior is kept by the iteration scheme. So any C*-
term that is generated is the complex conjugate of a corresponding term
of go. This is valid, until one finishes the iteration scheme with the argu-
ments at the end of the proof of Lemma 7.1, by what the o(w"”)-term arises.
Since one can do arbitrary many calculations and in each iteration at least
a +2iwlog(+2iw) is generated, the x can be chosen arbitrary. Moreover,
looking at the iteration scheme (7.19), the equalities for hi19(w,u) are a
consequence of the arguments for g119(w, u), because of the fact that by the
calculations concerning this scheme no additional highest order log-terms,
i.e. © = j + k, are generated. O

In the following assume that x = 5. We expand the functions g;;x(w,u)
and hjjx(w, ) in their Taylor polynom with respect to w at w = 0 up to the
fourth order:

4
1

gijk(w,u) = Y ) 5 9ijk | yw™ + ik (W, u)
m=0 .
11

hije(w,u) = Z ﬁal;nhijk‘(o,u)wm + gijr(w,u) ,
m=0 ’

where the remaining terms r;;x(w, u), gijk(w, u) € C*(R) behave for small w
as o(|w|*). Note that, due to this fact, any logarithmic irregularity multiplied
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with 755, gijx yields a C*-term with respect to w. Moreover, we expand for
fixed u the fundamental solution ¢, (u) and its u—derivative ¢/ (u)

o0 o0

bu(w) =Y cr(wu®,  §(w) = di(u)’,

which exist, because these are analytic in w for fixed u. Since the fundamen-
tal solutions ¢, ¢ are real for w = 0, the coefficients g (0, u), ho(0,u), co(u)
and dy(u) are real for all u € R. Using all these properties, we expand

Pu (1) (v)
w($, 9)

with the ansatz of a geometrical series with respect to w. Note that, accord-
ing to Lemma 5.1, the Wronskian does not vanish for w = 0. By a straight-
forward calculation it is shown that, essentially using (7.20), the terms with
the highest logarithmic order, i.e. (2iw)?log(2iw)’ log(—2iw)*,i = j+k, van-
ish. Thus, we have to pick out the terms (2iw)? log(2iw)? log(—2iw)* with
7+ k=1, in order to get the lowest regularity. Looking at the calculations
(7.5) and (7.11) [Note that these are the only possible terms, where a term
with this irregularity appears the first time, according to our construction.
The others are just a consequence out of these and hence a contribution to
functions gy;i|, the desired terms appear in ng the first time as

, (7.21)

e~ ((2iw)? log(2iw)(c + clogu) — c(2iw)? log(—2iw)) , (7.22)

where a (2iw)? log(2iw) log u shows up in the first line of (7.11), if one sep-
arates log(—2iwu) = log(—2iw) + logu. All other such terms appearing in
the second line of (7.11) as well as in the second line of (7.5) vanish because
of their coefficients. Applying the same arguments as before, it follows that
G201 (w, 1) + o(w®) = c(e” ™" + go(w,u)) and hogy (w, u) + o(w®) = cho(w, u).
Hence, the terms with (2iw)? log(—2iw) cancel in the w-expansion of (7.21).
Because of the additional log u-term, we get

g210(w,u) + o(w™) = 1 (e_i“’“ + go(w,u)) + CQ(e_i“’“ logu + g(w,u)) ,

and
1 ,
hzlo(w, u) + O(WK) = Clho(w, U) + Cgh(w, U) + ZCgoezwu s

with appropriate real constants ci, ca, where the last term appears by a direct
calculation of () (u) with the part csp/v® of the potential Vy(v). Further-
more, g(w,u), h(w,u) are C*-functions with respect to w, where g(w,u) is
generated by the iteration of e ™ logu and h(w,u) the consequence out of
this in (7.19). One directly verifies that ¢g(0,u),h(0,u) are real, in general
non-vanishing. Putting all these informations together, one sees that there
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appears a term with (2iw)? log(2iw) in the w-expansion of (7.21), which is
generated on the one hand by the g(0,u),h(0,u), and on the other hand
by the 2iw log(2iw)-part multiplied with the w-contribution of first order of
q'S, q'S’ . This represents the part with the highest irregularity with respect to
w. Moreover, the related coefficients are purely real, depending on u,v and
in general non-vanishing. Using the identity

log(2iw) = zg sign(w) + log(2|w]) ,

and taking the imaginary part of (7.21), which is just the essential part of
our integral kernel, we obtain as the lowest regular w-term in the expansion
of (7.2) at w=10

co(u)g20(v) w? sign(w) , (7.23)

where the function goo(v) arises out of the foregoing calculation. The sym-
metry of (7.2) with respect to u, v yields immediately goo(v) = kco(v) with
an appropriate constant k # 0.

In the next step we want to use (7.23), in order to derive the decay of
the solution U(¢,u) given by (7.1). To this end, first we have to analyze
the behavior of the w-derivatives of the integrand up to the fourth order for
large |w|.

Lemma 7.6. For u € R and compactly supported smooth initial data Vg €
C§°(R)? of the Cauchy problem, the w-derivatives of the integrand in the
integral representation (7.1)

o (/supp% h%%) ( :2 j} ) \Ilo(u)dv> . me{0,..,4},

(7.24)
have arbitrary polynomial decay in w for |w| — oco.

Proof. We proceed essentially as in the proof of Theorem 5.5, where the
case m = 0 was shown. To this end, we have to investigate the behavior
of ¢ (u), ¢y (v) in w for u € R fixed and v in the compact set supp¥y. We
start with ¢,. We assume that |w| > 1 and ug € R is arbitrary. Obviously,
we find for any v > u > up and m € {0, ...,4} a constant C(ug) such that

o [1 sin(w(u — v))} | < L (o)1 + o)™ - (7.25)

w jwl

Furthermore, splitting the potential as

w

5 p—

Z Cpqlog v) + 76(v)

p=34q

Il
)
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and following an analog calculation as in (7.7), we obtain for the w-deriva-
tives of the first iteration ¢£}) (u) for allw > 1 and m € {0, ..., 4} the estimate

1

‘BZLQZS&I)W)‘ < ﬁCaum‘Q : (7.26)
w

with an appropriate constant Cy. [Note that this is just an analogue to the

estimate (7.8).] For all u < 1 and m € {0, ...,4} we get

‘85,'%8) (u)‘ < ‘BL” /1 %sin(w(u —0))Vo(v)e™™ dv‘

+[arr / 1 sin(w(u — v))Vo(v)e= do
1

w

1 m
< |w|f(m u +03 Z|u|k,
k

where f is a continuous function with respect to u and the second term
arises by the same method as we used for the estimate (7.26). Defining Cy
by

Cs:= max max] { (f(m u) + C?, Z|U|k> + |u‘)2_m} )

me{0,...,4} u€luo,1

and C5 := max(Cs,Cy4), we obtain for all u > ug and m € {0,...,4} the
bound )
oo )] < [ Oo (0L + a2 (7.27)
w
In order to estimate the derivatives of the second iteration 455,2) (u) up to the
fourth order, we subtract the first exact term out of the integration by parts

n (7.26), 4030 2e*"“’“, from the first iteration QSS) (u) and obtain for u > 1
iwu

and m < 4 the bounds

o (60 () = 2ot | < ﬁcum?’. (7.28)

4iwu?

Thus, in order to estimate the w-derivatives of the second iteration:

@) < |om / " L sinfau - )10 (40(0) = ~2e) aol

w diwu?

4iwu?

[e.e]
1 )
+lory / L sine(u — ) Vo) e o)
u

Using the estimates (7.28),(7.25), and once again the method of splitting
up the potential and integrating by parts for the second integral, we get for
u > 1 and m < 4 the bounds

o792 ()| < —Cum,



and thus, following the foregoing arguments for all u > wg (after possibly
enlarging C5) the estimates

1
02242 )] < 7O+ )™ (729)
Using (7.25) and (7.29), we obtain for the w-derivatives of the third
iteration for all u > ug

ome )] < | é (1) [7on (L ointoto - w)) Vo) o) do
< 1601(u0)05ﬁ/:0(1+|v|)m_4|;lj—|%(v) dv . (7.30)

Note that interchanging the integral and the w-derviatives is permitted, be-
cause the w-derivatives of the integrand are integrable due to the estimates
(7.25),(7.29) and the 1/v3-decay of the potential V;(v). We show by induc-
tion in n for all u > ug the inequality

1 1

) ()| < 16C1 (o) Cs — Qu(rm, )

W] !Pw(u)”_3, Vn >3,

(n—3)
(7.31)
where the functions @, (m,u) and P,(u) are given by the integrals

= - v m—4 1 v) dv
Quimu) = [+ pl) V) d
P,(u) = 1601(u0)C6/u ﬁVo(’U) dv ,

where Cy is a constant chosen such that for all z > v > ug

A+|z)f™<Cs(Q+ )™, 0<k<m<4.

The initial step is now given by (7.30). So assume that (7.31) holds for n.
Then, according to the iteration scheme,

ewosrvw)| < [ (7) [t phm L v
k=0 u
><1601(u0)05ﬁQw(k,v)ﬁﬂ,(v)”3 dv| .

Using the inequality

Qu(k,v) < Cg(1+ |v|)k7me(m,U)
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and the monotonicity of ()., we obtain

%wmmm)51Mu%xﬁi/wmqw@u+mw*iﬂmm
1
xCg(1 + |’U|)k_me(m,v)me('u)"_3 dv
1 % dp, 1 -
< 1604 (10)Cs 7 Qulrm ) /u ) g P

1 1 .
— 1601(u0)05me(mau)me(u) 2,

and (7.31) follows. In particular, we get for all u > ug and m < 4 the
estimate

1 1

m J P e T P - m—2 | - m—4
O ) = O] < Cors(1 )™ 4 T Cs(1 -+ u)
+1GC1(u0)C5ﬁQw(m,u)eP‘“(“) , (7.32)

and the right hand side obviously tends to zero as |w| — oc.
In an analog way using the iteration scheme (4.7) for ¢, one shows for
all u < ug and m € {0, ...,4}

o
/ , 1
O o (w) — O™ | < = My(m,u)" = eMelm®) — 1 (7.33)

where M, (m,u) is given by
c; [ m
Mo(m,u) == m/ (1 + [o) Vo (v) dv ,
—00

with a sufficiently large constant C7. Note that this integral is well de-
fined, and in particular the estimate is obtained easier, due to the fact
that Vp(v) decays exponentially as v — —oo. Moreover, the right hand
side in (7.33) also goes to zero as |w| — oo. Thus, due to (7.32) and
(7.33), the w-derivatives of the fundamental solutions up to the fourth order
O™, (1), d,, (v) are controlled for large |w| by constants, which depend on
u and the support of the initial data ¥jy. One also shows with these results
and applying the same arguments to d)fu, ¢LJ that the Wronskian w(q’S, ¢) be-
haves as O(|w|) and 8™w(, ¢),m < 4 is bounded by constants as |w| — oc.
Hence, interchanging in the representation (7.24) the differentiation with
respect to w and the integral, which is no problem because of the compact
support of Wy, making the substitutions

Bot) = =5 () + Vo)) |
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2du() = 3 (-9 + Vo@)du®) + = (~udl0) + Vo) uihu(v))

as well as the analog substitutions for the second, third and fourth w-
derivative [Note that in the region |w| > 1 ¢, (v) is C* with respect to
w, cf. Lemma 7.1, n = 4] and integrating by parts with respect to v, one im-
mediately has decay at least of 1/w?. Thus iterating this procedure, which
can be done because Vjy and ¥ are smooth, yields arbitrary decay in w and
the lemma is proven. O

Remark 7.7. Since the method of the proof does not depend on the highest
order w-derivative, the statement of Lemma 7.6 can be extended to arbitrary
m. The only point where one has to be careful is the derivation of (7.29),
since for w-derivatives of higher order one has to calculate and subtract more
exact terms than in (7.28), due to convergence problems. If (7.29) is not
sufficient, in order to start the induction, one has to iterate this procedure
appropriately many times.

We are now ready to state and prove our main theorem:

Theorem 7.8. Consider the Cauchy problem of the scalar wave equation in
the Schwarzschild geometry

O¢p =0, (¢0,i0:¢0)(0,7,7) = Po(r, )

for smooth spherical symmetric initial data ®y € C§°((2M,00) x S?)? which
is compactly supported outside the event horizon. Let ®(t) = (¢(t),i10:p(t)) €
C®(R x (2M,00) x S?)? be the unique global solution which is compactly
supported for all times t. Then for fized r there is a constant ¢ = c(r, ®g)
such that for large t

c
()] < 75 - (7.34)
Moreover, if we have initially momentarily static initial data, i.e. Oypg =0,
the solution $(t) satisfies
c
()] < 37 - (7.35)

Proof. First, we decompose our initial data ®g into spherical harmonics.
Due to the spherical symmetry we obtain ®¢(r,d,¢) = @o(r)Yoo(d, ¢),
where ®(r) € C§°((2M,00))2. Introducing the Regge-Wheeler coordinate

u(r) and making the substitution ¥(¢,u) = r(u)®(¢,r(u)), we apply Theo-
rem 5.5. Thus, our solution has the representation

B(t,r,0,0) = %\D(t,u(r))Yoo(ﬁ, o),

where (¢, u) satisfies

U(t,u) =
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_% /R it ( /supp% Im(%) ( 52 01) )\Po(v)dv) dw, (7.36)

with initial data Wo(u) := r(u)®q(u) and the Jost solutions ¢, ¢ in the case
I = 0. According to the detailed analysis of (7.21) with respect to w, the
term

m (%) — ¢o(u)g20(v)w? sign(w) — e32(u) g3z (v)w? log? |w]
—c31(u)g31 (v)w® log |w| — e30(u)g30 (v)w? sign(w)

is C3(R) with respect to w for fixed u € R, v € supp¥, where the c;;(u),
gij(v) denote the appropriate coefficient functions. [Note that these are
linearly dependent due to the symmetry of (7.2) with respect to u,v.] Thus,
defining

F () = ( /@ Ir{%) ( “, ! )‘I’O(U)dv)l ,

where the subscript denotes the first vector component, the term

flw,u) := f(w,u) - (CO(U)d2O(¢3) w? sign(w) + cz2(u)ds2 (15) w* log” |w]
ez (u)ds1 (43) w® log ] + e (u)dao (13) w® sign(w) )n(w)
=: f(w’u) - T(w’u) ’

is also C3(R) with respect to w. Here, 93 denotes the second component of
the initial data Wy,

b)) = [ gy do,
supp Yo
and n(w) € C§°(R) is a smooth cutoff-function which is identically to 1 on
a neighborhood of w = 0 and 0 outside a compact set. Moreover, because
of Lemma 7.6 the 07" f(w,u), m € {0,1,2,3} have rapid decay for large |w|
and are in particular L'(R) with respect to w. Thus, due to (7.36), the first
component of ¥ satisfies
1 - 1 )
Pt,u) = —= / e fw,u) dw — — / e “r(w,u) dw
R R

™ ™

— _ﬁ (/Rf(w,u)ai’,e_m dw+/Rr(w,u)Bf,e_M dw) :

We write the second integral as ffoo + fooo, integrate every integral three
times by parts and obtain

PL(t,u) = ﬁ <4co(u)d20(¢g)+/ efi“’taf,f(w,u) dw

R
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0 . oo .
+/ e 3 r(w, u) dw +/ e 3 r(w, u) dw) .
0

-0

Note that the other boundary terms vanish, because the 97 f (w), m < 3 have
rapid decay and n(w) = 0 outside of a compact set. Obviously, all integrals
are well defined, and the Riemann-Lebesgue lemma shows the claim in the
first case. If the initial data is initially momentarily static, all the d;;(13)
vanish and the entries in the matrix in (7.36) yield an additional w. Hence,
the highest irregular term is co(u)dag (1§ )w? sign(w), and the same arguments
as before conclude the proof. U

Remark 7.9. The decay rates 1/¢3, and 1/t*, respectively, are optimal in the
sense that there exists initial data such that these cannot be improved. This
is obvious due to the fact that co(u) > 0.

8 Discussion and outlook on the case [ # 0

According to Price’s Law [19], the Im-component ®™(t,u) = LT (¢ u)
of a solution for the Cauchy problem (1.6) in Schwarzschild spacetime with
compactly supported smooth initital data generally falls off at late times ¢ as
t=2=3 and ¢~ 2~* for initially momentarily static initial data, respectively.
This has been confirmed in the previous section for spherical symmetric
initial data, i.e. in the case [ = 0 [cf. Theorem 7.8]. Moreover, there is
numerical evidence which lets us conjecture this to be correct [16]. In this
section, we briefly discuss whether the methods of the preceding section still
apply to the case when the angular mode [ is non-zero, and if not, about
different ansatzes that might be worth trying.

To this end, let us reconsider the construction of the fundamental solu-
tions gZSwl of the Schrodinger equation (3.2), which are given by the equa-
tions (6.25) to (6.32). Hence, we still have finite expressions for the Green’s
function S, (u,v) as well as for the initial function ¢£,0) (v), which involve es-
sentially the plane waves et™", ¢*%? Expanding all these expressions and
deriving estimates analog to (6.33) and (6.35) for higher order w-derivatives,
we can improve Lemma 6.6 in the same way as Lemma 6.4 following the ar-
guments of the proof of Lemma 7.1. Also, a similar result to Corollary 7.5
seems straightforward. The problem now arises, when we have to derive an
w—expansion of the essential part of the integral kernel

Im <7¢§‘“l(u,) q\s‘fl (”)> . (8.1)
w(dr, d1)

The main difficulty can be seen as follows. If we proceeded in the same way
as in the case [ = 0, the lowest regular term with respect to w should appear
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with the power w?*2 [cf. proof of Theorem 7.8] in order to satisfy Price’s
law. But due to the fact that the first irregularity in w looks as follows,

ey 240w (c log? (2iwu) + clog ulog(2iwu) + ¢ log(2iwu)) ,

[cf. equation (6.36)], we would have to find a systematic way in order to
check that the coefficients in front of terms with lower regularity vanish.
Because of the complexity of the calculations we did not succeed in this
point. Thus, following the same arguments as for [ = 0 together with the
analog result to Corollary 7.5, which would involve 2iw log? (2iw) as highest
irregularity, we would have to assume wlog|w| as the lowest regular term in
the expansion of (8.1). Except for this problem, we do not expect any further
difficulties in extending Lemma 7.6 to [ # 0, apart from the complexity of
the calculations and the estimates. Thus, for arbitrary [ it follows a similar
statement to Theorem 7.8, but with the decay |¢(t)| < ¢/t2, and in the case
of momentarily static initial data |¢(t)| < ¢/t?, respectively. The proof uses
essentially the arguments of the proof of Theorem 7.8, with the difference
that one basically has to check the inequality

! ; c
‘/ log |w|e™ " dw‘ <-.
-1 t
To this end, one makes the substitution z = wt and splits up the integrals
to obtain

1 . 1 1 . t
/ log |wle “! dw = Z(/ log |zle ** dz — logt/ e “*dz
-1 -1 —t

-1 t
+/ log(—z)e™"* dz +/ log ze™** dz) .
—t 1

Computing the second integral and integrating the last two integrals by
parts yields

1( [ ; I A 1t
== (/ log |z|le ¥ dz + —,/ —e ¥dz+ —,/ —e dz) ,
t 1 1) z 1)1 2

and the inequality follows, after having integrated the last two integrals once
again by parts followed by standard integral estimates. However, in view of
Price’s law, this result is not satisfying. This led us to try another ansatz
that seemed to be promising. This must be considered at first as a vague
idea. But it might encourage the reader to go on with this problem.

The main idea is to rewrite the second fundamental solution (}Sw in terms
of the first gz’Sw. To this end, we use the fact that for an ODE of Schrédinger
type, which is in our case (=02 — w? + Vj(u))é(u) = 0, and an associated
solution ¢1(u), a linearly independent second solution is given by

bo(t) = Ay (1) /u m ds
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with an arbitrary constant A. Thus, for our given data ¢y, ¢ and w(w) :=
w (¢, dw), we formally define

o0

bl

Yw(u) == _(l;w(u)/ (;UE:))Q

in order to obtain a second linearly independent solution. We expect the
integral for Imw < 0 to be well defined, because of the asymptotic behavior
of our fundamental solutions at £oc. This suggests exponential increase of
| (u)| as el™«/% when u — co. Hence, suppose that everything is well
defined for Imw < 0. Then, due to the construction, w(qéw,qu) = w(w),
and thus the solutions gz’Sw, Py — (}Sw are linearly dependent. For Imw < 0 the
boundary conditions are defined such that 1, (u) — ¢o(u) — 0 as u — oo
and this would yield together with the linear dependency of q’Sw, Py — <2)w,
that 1, (u) — ¢ (u) = 0. Hence

w(w)
¢§w(35)2

Since we are interested in real w, we would like to obtain a similar formula
for that case. A difficulty is that the asymptotic behaviors at +oo of q’Sw
are expected to be plane waves. Hence, in order to ensure the convergence
of the integral we must insert an additional convergence generating factor
e %%, Moreover, it is not clear that the boundary conditions of 1, and éSw
coincide. Provided that these technical difficulties can be handled, one gets
the formula

dr, where Imw <0.

dotu) = =dutw [

X C [ w(w)
u) = —¢dy(u) lim e = dz , 8.2
() = il [ e (32)
valid for all w € R\ {0}. We now use this formula in the definition (3.9) of
the Green’s function s, (u,v) and obtain for all u,v € R and w € R\ {0} for
the essential part of the integral kernel

Tm (s, (u,v)) = Im(éw(u)qéw(v) lim Uooe” 3 (135)2 dw) : (8-3)

Since q’Sw is analytic with respect to w, it remains to analyze the integral
in order to obtain the highest irregularity with respect to w. At this stage,
all the foregoing calculations indicate to consider the regions |w|v < C and
|w|v > C separately. Hence, we split up the integral:

00 1 C/lw| 1 00 1
/ e T dz :/ e % da:-i—/ e T dz .
v bu(z)? v bu(z)? C/lw] bu(z)?

The intention is to choose C = C(w) such that the first integral of this
splitting is analytic with respect to w, whereas the second integral should
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yield the required irregularity. In order to treat the first integral it seems
convenient to work in the “natural” variable wr, where one might check
that the fundamental solution d;w is analytic with respect to wr. Hence,
there might exist such a C(w) to ensure analyticity of the integral. On the
other hand, for the second integral we want to use a refined version of the
expansion of Lemma 6.6. To this end, one could express the fundamental
solution ¢, in the denominator for all w € R\ {0} by

~ ~

B () = a(w)u(u) + Bw)du(u) . (8-4)

This is motivated by the fact that

w(éw,wléw) = _Ziwl—l—lﬂ(w) ) w(éwawlés_w) = 2iwl+1a(w) s

which follows from a short calculation using the asymptotics. Since the left
hand sides in both equations are continuous in w according to Lemma 5.1

and using the improved expansion of Lemma, 6.6, we expect the coefficients
a(w), B(w) to behave like

1

alw) = m(c + cwlog?(2iw) + cwlog(2iw) + 71 (w)) ,
1

Blw) = m(c + cwlog?(2iw) + cwlog(2iw) + 2 (w)) ,

where the c are appropriate constants and 71,79 € C?*+*(R) with respect
to w, 11/2(w) = O(|w|) for small |w|. Moreover, a simplified calculation

assuming that the fundamental solution ¢, (z) ~ e~ for z > C/w, w > 0,
C arbitrary, yields

oo efsw 1

lim o= 2iw (a(w)e*%c + 5(“’)) o(w)

bl

N0 Jog (aw)e ™ + B(w)etr)?

where one uses the method of periodic integrals, i.e. one substitutes ap-
propriately such that one can reduce the integral to a contour integral over
the unit circle and applies the residue theorem. Hence, if one chose Cy(w)
appropriately, it should be possible that the right hand side is ~ w?*!. At
this point, one has to take into account that |3(w)|? — |a(w)|? = 1, which is a

consequence of a straightforward computation of w(d,, ¢.) using (8.4) and
the asymptotics of éﬁw, so one has to choose Cy(w) carefully. Furthermore,
one wants to substitute in this integral a refined version of the expansion
of gfﬁw of Lemma 6.6. One has to be careful with the contour, because due
to the perturbation there might appear an additional pole on or inside the
unit circle. All in all, together with improved estimates it might be possible
to obtain as leading irregularity w?+?log?(2iw). At this point, there still
remains the problem of matching these two expansions of the integral, i.e.

7



to choose one C(w) such that both results hold or to consider the region,
where C(w)/|w| and Cy(w)/w overlap. In particular, one has to be care-
ful with the transformation u — r(u), which involves logarithms. But these
logarithms should just change the phase of c}S, which can be chosen arbitrary,
which might also resolve this problem. As already mentioned, this should
be regarded as an ansatz, where a lot of details had to be checked rigorously.
This might be not easy but seems to be manageable at first view, and we
would like to encourage the reader to go on with these ideas.
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