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Chapter 1 
 

1 General introduction 
 



2 Chapter 1.1  

1.1 G-protein coupled receptors 
G-protein coupled receptors (GPCRs) represent the most important class of qualified 

drug targets for pharmaceutical research and biomedical application. Approximately 

60 % of all commercially available drugs work by selective modulation of distinct 

members of this target family (Gurrath, 2001). The GPCRs constitute one of the 

largest gene superfamilies of the human genome (Civelli et al., 2001) encoded by 

approximately 720 genes (Malmstrom et al., 2001; Wise et al., 2004). The 

significance of GPCRs as drug targets lies in their physiological roles as cell-surface 

receptors responsible for transducing exogenous signals into cellular responses 

(Fang et al., 2003) enabling the communication between individual cells, tissues or 

organs. Activators of GPCRs are manifold including light, odorants, ions, small 

molecules, peptides and proteins (Bockaert and Pin, 1999). Although there is little 

conservation at the amino acid level among GPCR sequences and despite a broad 

variation in biological responses, the GPCRs are believed to share a characteristic 

common receptor protein topology. Based on the crystal structure of bovine 

rhodopsin (Palczewski et al., 2000; Schertler et al., 1993; Unger et al., 1997) several 

homology models exist for different GPCRs. The structure paradigm is a seven helix 

bundle that spans the cell membrane in an almost perpendicular orientation, thereby 

establishing a functional link between the extracellular space and the cytoplasm of 

the cell (Gurrath, 2001). The seven α-helical transmembrane regions consist of 20-25 

amino acids connected sequentially by intracellular and extracellular loops with an 

extracellular amino terminus (N-terminus) and an intracellular carboxy terminus (C-

terminus).   
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C-terminal tail
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Fig. 1: Scheme of the structure of 
bovine rhodopsin, based on x-ray crys-
tallographic analysis (adapted from 
(Ellis, 2004) ). ECL: extracellular loop; 
ICL: intracellular loop; TM: transmem-
brane domain. 
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Upon extracellular binding of an agonist, the central core domain (7TM domain) is 

believed to undergo a conformational change depending on the GPCR type 

(Kristiansen, 2004) followed by an activation of the GDP-bound G-protein on the 

cytosolic side of the membrane. The G-protein is a heterotrimeric protein composed 

of a Gα subunit and a Gβγ heterodimer. The agonist-promoted conformational 

change of the GPCR and subsequently of the G-protein itself leads to a release of 

GDP and binding of GTP at the α-subunit of the G-protein. GTP-binding causes the 

dissociation of the α-subunit from the βγ-subunit and further activation of different 

effector proteins by the two complexes. The slow intrinsic GTPase activity of the α-

subunit leads to a hydrolysis of GTP to GDP and Pi, thus terminating the Gα-induced 

effector activation and allowing the re-association of the subunits to begin a new 

cycle.   

At least 20 α-subunits, 6 β–subunits and 12 γ–subunits of G-proteins have been 

cloned and identified in mammals (Hamm, 1998; Kristiansen, 2004). According to 

structural and functional similarities of the α-subunits, G-proteins have been 

classified into four main families, namely the Gαs, Gαi/o, Gαq/11 and Gα12/13 (Cabrera-

Vera et al., 2003; Offermanns, 2003). 

The Gαs subunit mainly activates adenylyl cyclase (AC) leading to an increased 

production of cAMP, whereas the Gαi-subunit decreases cAMP production by 

inhibition of the enzyme. The modulated concentration of the second messenger 

cAMP can affect various protein kinases or modify gene transcription, eventually 

activating the final physiological response of the cell to the original extracellular 

stimulus. Degradation of cAMP by phosphodiesterases may terminate the signal. All 

nine isoforms of the membrane bound AC can be activated to different extends (only 

very weak stimulation of AC9 (Premont et al., 1996)) by forskolin, an agent 

commonly used in pharmacological studies to boost the cAMP production in the cell.  

The Gαq-subunit mainly stimulates phospholipase Cβ (PLCβ) catalyzing the cleavage 

of phosphatidyl-inositol-4,5-bisphosphate (PIP2) to the second messengers diacyl-

glycerol (DAG) and inositol-1,4,5-trisphosphate (IP3). IP3 binds to an IP3 receptor, a 

ligand-gated calcium channel in the membrane of the endoplasmic reticulum, leading 

to a release of calcium ions into the cytoplasm. In addition, IP3 is phosphorylated to 

inositol-1,3,4,5-tetrakisphosphate (IP4) with multiple functions. IP4 inhibits hydrolysis 

of IP3 by inositol phosphate 5-phosphatase, enhances IP3-induced store-operated 

Ca2+-entry and is supposed to act directly on unknown Ca2+ channels (Irvine, 2001). 
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However, in high concentrations IP4 can act as an antagonist at the IP3 receptor 

which may contribute to the termination of the calcium signal (Irvine, 2001). DAG 

activates protein kinase C, which in turn activates various intracellular proteins by 

phosphorylation. The signal is terminated by phosphorylation of DAG to phosphatidic 

acid, and dephosphorylation of IP3, which is then joined with phosphatidic acid to 

form PIP2 again.  

The proteins of the Gα12/13 family have recently been described to indirectly activate 

Rho GTPases via interaction with several guanine nucleotide exchange factors 

(Tanabe et al., 2004). In addition to the activation of effectors by the Gα-subunits, it 

has been shown that the different Gβγ heterodimers are also capable to interact with 

effector proteins, e.g. PLCβ (Katz et al., 1992) or AC (Tang and Gilman, 1991). 

Besides the described main signalling pathways of G-proteins, the mechanisms of 

signalling by G-proteins are much more complex and diverse (e.g. additional 

effectors or simultaneous functional coupling of GPCRs with distinct unrelated G-

proteins), and the knowledge is still expanding, described in a variety of reviews 

(Cabrera-Vera et al., 2003; Hermans, 2003; Kristiansen, 2004; Offermanns, 2003).

1.2 Receptor models 
One of the earliest simple mechanistic models of receptor-ligand equilibria is the 

occupancy theory, established by Clark (Clark, 1933, 1937). Clark’s model suggests 

that occupation of a receptor by a ligand (following the laws of mass action) can 

evoke an effect. In order to further differentiate drugs that simply occupied the 

receptor from those which, in addition, changed the receptor (to evoke a response), a 

proportionality factor (intrinsic activity) was added for the latter drugs (Ariens, 1954). 

Further extensions were made by the introduction of “efficacy” in order to make it 

more applicable to experimental pharmacology (Stephenson, 1956). With the 

discovery of the G-proteins (Sternweis et al., 1981), the classical model has proven 

inadequate (Kenakin, 1989). Auxiliary membrane-associated proteins have been 

introduced in the mobile receptor hypothesis of Cuatrecasas (Cuatrecasas, 1974) 

and the ternary complex model (De Lean et al., 1980). In the ternary complex model, 

the receptor (R) can interact with ligand (L) and G-Protein (G), leading to the four 

receptor species R, LR, RG and LRG existing in equilibrium. But this model, as the 

classical view, still considers agonist activation of the receptor as a prerequisite to G-

protein activation, and can not account for effects as constitutive activity and inverse 
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agonism. Therefore, the two-state theory was introduced leading to the extended 

ternary complex model described below. The two-state model (Leff, 1995) describes 

an equilibrium between an active (Ra) and an inactive (Ri) conformation of a receptor. 

Because of the intrinsic property of the receptor, the receptor system can have basal 

constitutive activity in the absence of an agonist. If a ligand is added, the equilibrium 

of receptor states will be shifted towards the preferred conformation. The active state 

will be preferred by an agonist, whereas an inverse agonist will stabilize the inactive 

conformation. Neutral competitive antagonists will bind to both conformations and do 

not change the basal constitutive activity. Partial agonists will shift the equilibrium 

towards the active conformation to a minor extent compared to a full agonist. 

 

In the extended ternary complex model (Samama et al., 1993), the simple ternary 

complex model is extended by the two different receptor states, leading to the six 

possible receptor states Ri, Ra, LRi, LRa, RaG and LRaG. G-protein coupling and 

receptor activation are separate steps, and receptor activation is a necessary 

precondition for G-protein coupling (Weiss et al., 1996a). In order to accomplish 

thermodynamic closure, the model was further extended to the cubic ternary complex 

model (CTC model) in which the inactive receptor state can also bind G-protein 

(Kenakin et al., 2000; Weiss et al., 1996a, b, c). As shown in Fig. 3, in the CTC 

model, eight receptor species exist in equilibrium.   

Ligands can bind to four different receptor states. Agonists will favour the active 

states (Ra and RaG) whereas inverse agonist will bind and stabilize the inactive 

receptor states (Ri and RiG). Partial agonists exhibit affinity to both receptor states 

Classical
Model

Ternary
Complex Model

Extended Ternary
Complex Model CTC Model

G-protein

inactive
Receptor

active
Receptor
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Classical
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Ternary
Complex Model
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G-protein

inactive
Receptor

active
Receptor

Receptor

Ligand

Fig. 2: Increasing  complexity of different pharmacological models. Graph adapted from (Weiss et al., 
1996a). 
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with a preference for the active state, still causing receptor activation, whereas pure 

antagonists will not preferably bind to a distinct receptor state and will therefore not 

alter the basal constitutive activity of the system. In this model, the two receptor 

states RaG and LRaG are capable of signalling. However, it should be mentioned that 

because of the large numbers of terms describing the conversion of the receptor 

species (not shown for clarity reasons) and the lack of estimatability of the single 

constants, the CTC model has a descriptive role and is not amenable to the fitting of 

real data (Kenakin et al., 2000). 
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Fig. 3: Geometric representation of the CTC model, adapted from (Gurrath, 2001). Ri: inactive 
receptor; Ra: active receptor; L: ligand; G: G-protein; filled arrows mark complexes capable of 
signaling. 
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1.3 Pancreatic polypeptides and their receptors 
 
The pancreatic polypeptide family consists of the three naturally occurring bioactive 

peptides neuropeptide Y (NPY), peptide YY (PYY) and pancreatic polypeptide (PP). 

PP was the first member isolated as a contaminant in chicken insulin (Kimmel et al., 

1968; Kimmel et al., 1975) and later in extracts of bovine insulin (Lin and Chance, 

1974). Because its function was unknown at that time, PP was named by its organ of 

origin. Seven years later, PYY was discovered while searching for C-terminally 

amidated peptides in the extracts of porcine intestine (Tatemoto, 1982b). Because of 

its flanking tyrosine residues it was named after the single letter abbreviation for 

tyrosine (Y). NPY was isolated in the same year from porcine brain using the same 

method as for PYY (Tatemoto, 1982a; Tatemoto et al., 1982). An additional peptide 

related to the PP-family was found in the anglerfish (Lophius spp. ) pancreas 

(Andrews et al., 1985). The 37 amino acid non-amidated peptide was later shown to 

be the precursor form of the now named fish pancreatic peptide (PY), which actually 

consists of 36 amino acids exhibiting Y residues and C-terminal amidation 

(Balasubramaniam et al., 1989). It seems that it has derived from a gene duplication 

of PYY only occurring in fish (Cerda-Reverter et al., 1998; Cerda-Reverter and 

Larhammar, 2000; Larhammar, 1996). 

The peptides NPY, PYY and PP are structurally closely related, consist of 36 amino 

acids each (with exception of chicken PYY consisting of 37 (Conlon and O'Harte, 

1992) and Burmese python PP consisting of 35 amino acids (Larhammar et al., 

2004)) with an amidated carboxy-terminus and share a considerable amino acid 

homology (Table 1). 

 

 

 

 

 

 

 

NPY is one of the most evolutionary conserved peptides known. Between mammals, 

only two of the 36 amino acids of NPY are variable, 22 positions are identical in all 

NPY sequences known (Larhammar, 1996). The second member of the pancreatic 

hNPY YPSKPDNPGEDAPAEDMARYYSALRHYINLITRQRY-NH2 

hPYY YPIKPEAPGEDASPEELNRYYASLRHYLNLVTRQRY-NH2 

hPP APLEPVYPGDNATPEQMAQYAADLRRYINMLTRPRY-NH2 

Table 1: Amino acid sequences of hNPY, hPYY and hPP. Amino acids which are homologous to 
the top sequence (hNPY) are shown in bold. The constant positions among all species 
(Larhammar, 1996)  are underlined for each peptide. 
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polypeptide family is less conserved with eight variable amino acids between 

mammals, whereas PP is one of the least-conserved peptides known (Conlon, 2002).  

The tertiary structure of avian PP has been elucitaded by X-ray crystallography 

(Blundell et al., 1981), which could also be confirmed using NMR data for PYY (Keire 

et al., 2000) and for the synthetic analogue [Leu31,Pro34]-NPY (Khiat et al., 1998). 

According to this PP-fold model, the amino acid residues 1-8 form a type II proline 

helix followed by a β-turn (residues 9-13). The α-helix formed by residues 14-31 runs 

roughly antiparallel to the polyproline helix forming a hydrophobic core by packing 

together nonpolar groups of these regions. The last four C-terminal amino acids form 

a flexible loop. 

 

 

 

 

 

 

 

 

 

  

Because of the arrangement of the polyproline helix and the amphiphilic α-helix due 

to the hydrophobic interactions, the peptide forms a U-shaped conformation, the so-

called PP-fold or hairpin structure. This folded structure results in a close association 

of the N- and the C-terminus of the molecule, an important feature for receptor 

recognition. Because of the high sequence homology, the PP-fold was also proposed 

for the structure of NPY (Allen et al., 1987) and confirmed by 2D-NMR data (Darbon 

et al., 1992). By contrast, a dimer of NPY in which the (bent) α-helices of the two 

NPY molecules form a handshake-type interaction with unordered N-terminal 

residues was described based on NMR studies (Cowley et al., 1992; Monks et al., 

1996). However, covalently cross-linked antiparallel dimeric analogs of NPY did not 

facilitate the binding to the Y2 receptor (Uegaki et al., 1997) indicating that the dimeric 

state is not essential for the interaction with the receptor. A conformation equilibrium 

between hand-shake dimer and monomeric PP-fold has been described using CD 

spectroscopy data (Nordmann et al., 1999) and it has been proposed that dimeric 
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NPY, which is abundant at high concentrations used for NMR studies may act in vivo 

at locally high concentrations as a slow-release form of active NPY monomers 

assuming the PP-fold. The dissociation of the NPY dimer at lower concentrations (in 

the low micromolar range) was also observed in FRET studies, but instead of the PP-

fold, a less ordered structure was described for the monomer (Bettio et al., 2002). 

The exact structure of NPY during the binding process still remains unclear, but it 

seems that interaction with the membrane before receptor binding plays an important 

role for the formation of the active conformation  (Bader et al., 2001). 

1.3.1 Distribution and physiological effects of PP-fold peptides 

1.3.1.1 Pancreatic polypeptide 

The hormone PP is almost exclusively expressed in an endocrine cell type (PP cells) 

of the duodenal pancreas which is different from those that store insulin, glucagons 

or somatostatin (Schwartz, 1983; von Horsten et al., 2004). PP cells are also found in 

the peripheral areas of the islet and within the exocrine portion and, more frequently, 

in the duodenal part of the pancreas (Ekblad and Sundler, 2002). In the 

gastrointestinal tract, PP cells are found in the gastric mucosa of opossum, cat and 

dog (Cox, 1998). In rat (El-Salhy et al., 1983) and man (Tsutsumi, 1984) a few PP 

cells appear in the gastric mucosa for a short postnatal period only. The expression 

of PP in the adrenal gland is controversial. PP-immunoreactive cells in the rat 

adrenal medulla have been described (Malendowicz et al., 1996; Vaillant and Taylor, 

1981), but studies using well-defined antibodies in RIA failed to reveal any 

expression of PP in adrenal medullary cells of the rat (Miyazaki and Funakoshi, 

1988). Contradictory results were also reported concerning the expression of PP in 

the central nervous system. In extracts from pig brain, PP has been found in several 

regions of the CNS by radioimmunoassays (Inui et al., 1985) and PP mRNA has 

been detected in rat brain (Bhattacharya et al., 1994; Whitcomb et al., 1994). 

However, in other studies, no PP mRNA (Pieribone et al., 1992) or peptide (Miyazaki 

and Funakoshi, 1988) could be detected in the rat brain. It has been suggested that 

the PP monitored in pig brain is rather of peripheral, mainly pancreatic origin 

(Fetissov et al., 2004) as it was shown that radiolabelled PP can overcome the blood-

brain barrier in mice (Banks et al., 1995). Cross reactivity with other peptides of the 

NPY family might account for the discrepancies in the results (Ekblad and Sundler, 

2002). Nevertheless, besides the controversial detection of PP peptide and its mRNA, 
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there are additional aspects discussed, suggesting that PP is expressed within some 

areas of the CNS (Whitcomb et al., 1997). In contrast to plasma PP, the 

immunoreactive PP in the CSF did not increase in response to feeding, insulin 

hypoglycaemia or infusion of exogenous PP (Inui et al., 1993) indicating a possible 

independent PP release from a central source.  

The effects of pancreatic polypeptide are primarily found in the digestive tract. PP 

release by the pancreas in response to meals is primarily under vagal control 

(Schwartz et al., 1976; Schwartz, 1983). Depending on dose, PP inhibits or 

stimulates gastric secretion, decreases gall bladder contraction, inhibits exocrine 

pancreatic secretion and suppresses gastric and upper intestinal motilities (for review 

see Hazelwood, 1993). In addition, PP has been found to inhibit ileum contractions 

(Feletou et al., 1999) and stimulate colon contractions (Pheng et al., 1999). Metabolic 

effects of PP include glycogenolysis, hyperglycerolemia, hypercholesterolemia, and a 

decrease in free fatty acid levels (Gehlert, 1998). As binding sites for PP have been 

found in several regions of the rat brain (Trinh et al., 1996; Whitcomb et al., 1997), 

central effects of PP are assumed. Centrally administered PP has been shown to 

stimulate feeding in rats (Campbell et al., 2003; Clark et al., 1984), mice (Asakawa et 

al., 1999; Katsuura et al., 2002) and dogs (Inui et al., 1991), whereas peripherally 

administered PP induced negative energy balance in mice by decreasing food intake 

and gastric emptying while increasing energy expenditure (Asakawa et al., 2003; 

Katsuura et al., 2002; Moran, 2003). In another study, it has been reported that i.v. 

administered PP reduces appetite and food intake in humans (Batterham et al., 

2003). 

 

1.3.1.2 Peptide YY 

PYY is mainly expressed in endocrine cells throughout the mucosa of the terminal 

ileum, colon, and rectum (Cerda-Reverter and Larhammar, 2000; Ekblad and 

Sundler, 2002). Very few immunoreactive (to PYY) cells are found in the gastric, 

duodenal, or jejunal regions of the gut (Lundberg et al., 1982). In contrast to all other 

gut peptides (except glicentin), the concentration of PYY along the gastrointestinal 

tract rises from stomach to rectum (Hazelwood, 1993). As PP, PYY is released in 

response to meals, unlike PP, vagal activity does not significantly contribute to its 

release. Beside intestinal endocrine cells, PYY has also been found in enteric 

neurons, islet cells of the pancreas and in the human adrenal glands (Ekblad and 
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Sundler, 2002). In the central nervous system, PYY-immunoreactive nerve cells have 

been found in several regions of the rat brain (Ekman et al., 1986). Finally, PYY-

immunoreactive material was detected by RIA in the lung of rat (Kraiczi et al., 1997) 

and syrian golden hamster (Keith and Ekman, 1990). 

The effects of PYY on the gastrointestinal tract are similar but more intense to those 

of PP. PYY causes a decrease in gastric acid secretion, gastric motility, exocrine 

pancreatic secretion, gall bladder activity, and intestinal motility (Hazelwood, 1993). 

In addition to these peripheral effects, PYY inhibits the secretion of fluid and 

electrolyte in the intestinal tract (Eto et al., 1997). As PYY is a potent vasoconstrictor, 

it may be responsible for the re-distribution of blood flow during digestion (Gehlert, 

1998). The expression of the polypeptide in the central nervous system indicates 

further neuronal functions. An anorectic effect of peripherally administered PYY3-36, 

which is formed by cleavage of PYY by dipeptidylpeptidase IV (DPP IV) in vivo, was 

described for rat, mice and humans (Abbott et al., 2005; Batterham et al., 2002), but 

the published results are in question as most attempts to replicate and extend the 

reported effects of PYY3-36 failed (Boggiano et al., 2005; Tschop et al., 2004). 

 

1.3.1.3 Neuropeptide Y 

NPY is one of the most abundant peptides within the CNS and sympathic nervous 

system of mammals, although it has also been found in the parasympathic and the 

enteric nervous system (Sundler et al., 1993). Within the central nervous system, the 

highest concentrations of NPY are found in the hypothalamus (Fetissov et al., 2004; 

Hazelwood, 1993). NPY is co-stored and co-released with noradrenaline in brainstem 

as well as in peripheral postganglionic sympathic fibres throughout the body (von 

Horsten et al., 2004). Vast parts of the vasculature and various organ systems are 

innervated by NPY-containing fibres including pancreas, intestinal tract, heart, glands, 

thyroid, lung, kidney, and gonads (Gehlert, 1998; von Horsten et al., 2004). 

Expression of NPY has been found in rat platelets (Myers et al., 1988), whereas no 

NPY mRNA was detected in human and porcine bone marrow (Ericsson et al., 1991). 

It has been proposed that the expression of the NPY gene in platelets of all species 

including humans is normally downregulated by unknown factors (von Horsten et al., 

2004). 

NPY is one of the most potent orexigenic peptides known. After central 

administration, NPY induces an increase in food intake in several species (Berglund 
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et al., 2003a; Levens et al., 2004; Pedrazzini et al., 2003), whereas centrally 

administered antisense oligonucleotides against NPY reduce feeding in rats (Hulsey 

et al., 1995). In obese Zucker rats (Dryden et al., 1995) and during poor metabolic 

condition such as fasting (Sahu et al., 1988), hypothalamic NPY and its mRNA are 

increased. Thus, NPY plays an important role in the regulation of appetite and 

obesity (Kalra and Kalra, 2004). Other effects of centrally administered NPY are 

decreased energy expenditure (Hwa et al., 1999), thermogenesis (Lopez-Valpuesta 

et al., 1996), anticonvulsant activity (Erickson et al., 1996), inhibition of sedation 

(Naveilhan et al., 2001), mood, and memory (Redrobe et al., 2002b; Redrobe et al., 

2004; Thiele and Heilig, 2004). NPY has been suggested to play a role in neuronal 

development (Hansel et al., 2001). It is involved in the regulation of reproduction by 

stimulation of luteinizing hormone-releasing hormone release (Kalra et al., 1998) and 

it has been implicated in the circadian rhythm (Yannielli and Harrington, 2001). NPY 

acts as antinociceptive peptide in pain modulation (Broqua et al., 1996; Wettstein et 

al., 1995) and is proposed to be involved in the regulation of ethanol consumption 

(Silva et al., 2002). NPY is a long-acting vasoconstrictor (Franco-Cereceda and Liska, 

1998) and plays an important role in the central and peripheral regulation of 

cardiovascular function (Morris, 2004). 

1.3.2 NPY receptors 

Neuropeptide Y, peptide YY and pancreatic polypeptide exert their biological actions 

in mammals by interacting with at least five distinct G protein-coupled receptors 

designated Y1, Y2, Y4, Y5 and y6 (Michel et al., 1998). All these receptors have been 

cloned. Surprisingly, there is a very low sequence homology of 27-31 % between the 

different subtypes. In addition to the mammalian NPY receptor subtypes, there are 

several receptor subtypes reported in fishes, namely the Ya, Yb and Yc receptors 

discovered in zebrafish (Starback et al., 1999), and the Y7 receptor found in zebrafish, 

frog and rainbow trout (Fredriksson et al., 2004; Larsson et al., 2005). Phylogenetic 

analyses show that the Y receptors can be separated into three subfamilies. 

Subfamily Y1 consist of the Y1, Y4 and Y6 receptors and the teleost fish Ya, Yb and Yc 

receptors (Larhammar and Salaneck, 2004). Subfamily Y2 includes the Y7 receptor, 

while no additional members of the Y5 family exist. 
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All NPY receptor subtypes belong to the class A, i.e. the rhodopsin-like GPCRs.  

 

The main signal transduction pathway of the NPY receptors is the coupling to 

pertussis toxin sensitive G proteins of the Gi/o family, leading to an inhibition of 

forskolin stimulated cAMP accumulation (Holliday et al., 2004; Michel et al., 1998). 

However, besides the predominant inhibition of adenylyl cyclase, elevation of the 

intracellular calcium concentration after Y receptor stimulation has been shown in 

cells natively expressing (Michel, 1998) as well as in cells heterologously expressing 

Y receptors (Bard et al., 1995; Gerald et al., 1995; Grouzmann et al., 2001; Selbie et 

al., 1995). But in contrast to the ubiquitous occurrence of cAMP signals, the Ca2+ 

response upon NPY receptor activation is very much dependent on the cell type 

(Holliday et al., 2004). In addition, inhibition of cAMP formation and elevation of the 

intracellular calcium concentration can influence PKA and PKC, leading to an altered 

gating of ion channels, which can contribute to the constriction of vascular smooth 

muscle (Tanaka et al., 1995) or anti-secretory actions in epithelial cells (Bouritius et 

al., 1998). In neurons, direct interactions of Gβγ or Gαi/o subunits with K+ and Ca2+ 

channels are discussed (Dascal, 2001). 

Receptor Binding Profile Selective Ligands Signal transduction 

Y1 
NPY ≈ PYY ≈ [Leu31, 
Pro34]NPY > NPY2-36 > 
NPY3-36 ≥ PP > NPY13-36 

[Phe7,Pro34]NPYa, BIBP3226b, 
BIBO3304b, SR120819Ab, 
LY357897b, J-115814b, H 
394/84b 

Gi/o inhibition of adenylyl 
cyclase; increase in 
intracellular [Ca2+] 

Y2 
NPY ≥ NPY2-36 ≈ NPY3-36 ≈ 
NPY13-36 >> [Leu31, 
Pro34]NPY 

NPY13-36a, 
Ac-[Lys28,Glu32]-(25-36)-NPYa, 
TASP-Va, T4-[NPY(33-36)]4b, 
BIIE0246b, JNJ-5207787b 

Gi/o inhibition of adenylyl 
cyclase; increase in 
intracellular [Ca2+] 

Y4 PP > PYY ≥ NPY > NPY2-36 PPa 
Gi inhibition of adenylyl 
cyclase; increase in 
intracellular [Ca2+] 

Y5 
NPY ≈ PYY ≈ NPY2-36 > 
hPP > [D-Trp32]NPY > 
NPY13-36 > rPP 

[Ala31,Aib32]NPYa, 
CGP 71683Ab, FR 233118b, 
L-152,804b 

Gi inhibition of adenylyl 
cyclase; increase in 
intracellular [Ca2+] 

y6 
(c)  NPY ≈ PYY ≈ [Leu31, 
Pro34]NPY >>PP 
(d)  PP > [Leu31, Pro34]NPY 
> NPY ≈ PYY 

- inhibition of adenylyl 
cyclase 

Y7 
PYY > NPY > NPY2-36 > 
NPY13-36 >> 
[Leu31,Pro34]NPY, NPY18-36 

- inhibition of adenylyl 
cyclyase 

a agonist; b antagonist; c according to (Weinberg et al., 1996); d according to (Gregor et al., 1996a) 

Table 2: Binding properties and signal transduction of NPY receptors 
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1.3.2.1 The NPY Y1 receptor 

The Y1 receptor was the first PP-fold peptide binding receptor to be cloned. It was 

found as a rat orphan receptor in 1990 (Eva et al., 1990) and was later shown to be a 

Y1 receptor based on its anatomical distribution (Krause et al., 1992). The cloning of 

the human Y1 receptor was first published in 1992 (Herzog et al., 1992; Larhammar 

et al., 1992). In contrast to the other PP-fold receptors, the coding region of the Y1 

gene harbors an 100 bp intron after TM5 (Herzog et al., 1993a). This intron has been 

shown to enhance the expression of  Y1 and Y5 receptors in vitro (Marklund et al., 

2002). In humans the Y1 receptor is a 384-amino acid protein. Across all species, the 

Y1 receptor displays greater than 95 % amino acid sequence identity in the 

transmembrane regions (Larhammar et al., 2001). 

The pharmacological profile of the Y1 receptor is characterized by high affinity for 

NPY and PYY and a low affinity for PP (Cabrele and Beck-Sickinger, 2000). 

Truncation of the N-terminal part of NPY leading to NPY2-36 or NPY3-36 or NPY13-36 

results in a distinct decrease in affinity to the Y1, but not to the Y2 receptor. By 

contrast, Pro34-substituted analogs of NPY and PYY (e.g. [Pro34]NPY or 

[Leu31,Pro34]NPY) retain their high affinity for the Y1 but not for the Y2 receptor 

(Krause et al., 1992; Rose et al., 1995). However, the NPY analogs [Pro34]NPY and 

[Leu31,Pro34]NPY have still high affinity to the Y5 receptor (Gerald et al., 1996). 

Therefore, many more analogues of NPY were developed to further increase the Y1 

receptor selectivity including the exchange of some residues with D-amino acids and 

the synthesis of shortened and cyclized NPY derivatives (Mullins et al., 2001). The 

most significant preference for the Y1 receptor was obtained with [Phe7,Pro34]NPY 

(Soll et al., 2001). In addition, N-terminally shortened cyclic peptides (Takebayashi et 

al., 2000) and linear peptides containing β-ACC (β-aminocyclopropanecarboxylic acid) 

building blocks in position 32 and 34 (Koglin et al., 2003) have been reported to show 

high Y1 receptor affinity and selectivity despite the lack of the NPY N-terminus. 

Although short N-terminally truncated analogs of NPY are poor ligands at the Y1 

receptor, some C-terminally modified nonapeptides of NPY have been found to 

antagonize the NPY-induced increase in the intracellular calcium concentration in 

HEL cells with IC50 values in the low nanomolar range. Their sequences are 

INPIXRLRY, where X can be F, (4-Ph)-F, or (2,6-dichloro-benzyl)-Y, or INPXYRLRY, 

where X is Aib (aminoisobutyric acid), or INXIYRLRY, where X is (3,4-dehydro)-P 

(Cabrele and Beck-Sickinger, 2000). The homodimeric peptide GW1229, also called 
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GR231118 or 1229U91, is another N-terminally truncated analogue of NPY with high 

affinity to the Y1 receptor. It consists of the two nonapeptides IEPXYRLRY, where X 

is 2,3-diaminopropionic acid (Dpr) and which are connected by two E-Dpr lactam 

bridges. The peptide is an antagonist at the Y1 receptor but also an agonist with high 

affinity at the Y4 receptor (Daniels et al., 1995; Parker et al., 1998).  

The first nonpeptidic Y1 receptor antagonist described in the literature was the H2 

receptor agonist BU-E-76 (HE 90481) with a pA2 value of 4.43 in a Ca2+ assay using 

HEL cells (Michel and Motulsky, 1990). Later, more potent antagonists have been 

synthesized, e.g. the (R)-argininamides BIBP3226 (Rudolf et al., 1994) and 

BIBO3304 (Wieland et al., 1998). The first orally active Y1 antagonist, SR120819A 

(Serradeil-Le Gal et al., 1995) has been described in 1995. Furthermore, 

trisubstituted indoles as LY357897 (Hipskind et al., 1997) and 1,3-disubstituted 

benzodiazepines (Murakami et al., 1999) have been characterized as potent, 

selective Y1 antagonists. The morpholinopyridine J-115814 (Kanatani et al., 2001) 

and the dihydropyridine derivative H 394/84 (Malmstrom et al., 2001) were also able 

to block the Y1 receptor. Recently, a new class of tetrahydrocarbazole derivatives 

with modest antagonistic activity at the Y1 receptor was published (Di Fabio et al., 

2006).  
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Fig. 5: Various NPY Y1 receptor antagonists. 

BIBO3340; IC50 = 0.38 nM 
(Wieland et al., 1998) 

H 394/84; IC50 = 30 nM 
(Malmstrom et al., 2001) 



16 Chapter 1.3  

A detailed review on Y1 antagonists was given by Brennauer and co-workers 

(Brennauer et al., 2004). The Y1 mRNA distribution has been determined in man, rat, 

mouse and has been investigated in brain, heart, kidney and the gastrointestinal tract 

(Larsen et al., 1993; Nakamura et al., 1995; Wharton et al., 1993). In rat brain, Y1 

protein and mRNA have been reported in the cerebral cortex, hippocampus, 

thalamus, as well as in the hypothalamus (Fetissov et al., 2004; Kopp et al., 2002). 

NPY Y1 receptors are also located in blood vessels (Franco-Cereceda and Liska, 

1998), the amygdala (Silva et al., 2002) and human adipocytes (Serradeil-Le Gal et 

al., 2000). Among the NPY functions, the Y1 receptor is responsible for the most 

vascular effects (Capurro and Huidobro-Toro, 1999; Franco-Cereceda and Liska, 

1998; Wiest et al., 2006) and antinociceptive effects (Zhang et al., 2000), as well as 

decreased anxiety (Wahlestedt et al., 1993) and depression (Redrobe et al., 2002a). 

The Y1 receptor seems also to be implicated in the regulation of feeding (Kanatani et 

al., 2001; Mullins et al., 2001), ethanol intake (Schroeder et al., 2003) and arousal 

(Naveilhan et al., 2001). 

Y1 receptors are constitutively expressed in human erythroleukemia (HEL) (Motulsky 

and Michel, 1988) and in neuroblastoma SK-N-MC (Aakerlund et al., 1990) cells. Y1 

receptor activation leads to the inhibition of adenylyl cyclase and to an increase in the 

intracellular Ca2+ concentration. It has been proposed that the calcium response in 

HEL cells is preferentially mediated by the Gαi3 protein (Michel, 1998) as the calcium 

response as well as the Gαi3 expression is reduced after treatment of HEL cells with 

DMSO. The involvement of a PLCβ independent pathway (Motulsky and Michel, 

1988) as well as the activation of PLCβ (Daniels et al., 1992) have been described 

for HEL cells. In rabbit mesenteric small arteries, Y1 receptor activation (blocked by 

BIBP 3226) inhibits forskolin stimulated cAMP formation, increases intracellular 

calcium concentration and potentiates the actions of co-released noradrenaline 

(Prieto et al., 2000). In a recent review, the basal Gq/11 tone has been proposed to be 

decisive for the coupling of activated Y1 receptors to PLCβ (Holliday et al., 2004). 

Y1 receptor desensitization has been observed in isolated arterioles (Van Riper and 

Bevan, 1991) and in cells expressing endogenous or transfected Y1 receptors 

(Gicquiaux et al., 2002; Michel, 1994). For the desensitization of Ca2+ responses in 

HEL cells, a role for PKC is proposed (Daniels et al., 1992), whereas in cells and 

tissues, where the predominant Y receptor response is an inhibition of adenylyl 

cyclase, a recruitment of GPCR kinases (GRKs) trough Gβγ subunits followed by 
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phosphorylation of activated receptors and subsequent binding of a member  of the 

β-arrestin family is discussed (Holliday et al., 2004). 

The Y1 receptor shows a considerable agonist-driven internalization, which has been 

determined by radioligand binding (Parker et al., 2001b), confocal microscopy with 

fluorescent ligands (Fabry et al., 2000) or with GFP tagged Y1 receptor (Gicquiaux et 

al., 2002).  

1.3.2.2 The NPY Y2 receptor 

Originally, the Y2 receptor was postulated based on pharmacological studies with 

amino terminally truncated fragments of NPY  and PYY, such as NPY3-36 and 

NPY13-36, using vascular preparations (Wahlestedt et al., 1986). In contrast to the Y1 

receptor, the truncated peptides were full agonists with similar potency as the native 

peptides at the postulated Y2 receptor. Further peptidic agonists are the cyclic  NPY 

analogues Ac-[Lys28,Glu32]-(25-36)-NPY (cyclized by lactamization of the substituted 

residues) (Rist et al., 1996) and Cyclo S-S [Cys20,Cys24]-pNPY (Soll et al., 2001) or 

TASP-V (Malis et al., 1999), a molecule composed of a cyclic template connecting 

two C-terminal fragments NPY21-36.   

On the other hand, when positions 31 and 34 of NPY or PYY are replaced with the 

corresponding amino acids of PP (L and P), the resulting peptides show much lower 

affinity to the Y2 receptor, indicating that the C-terminal part is more important for 

binding at this receptor (Fuhlendorff et al., 1990). Even the single replacement at 

position 34 of NPY or PYY abolished the high affinity to the Y2 receptor (Potter et al., 

1991).  

The Y2 receptor cDNA was first cloned in 1995 from human SMS-KAN cells (Rose et 

al., 1995) and subsequently from human brain cDNA libraries (Gehlert et al., 1996a; 

Gerald et al., 1995) and the human neuroblastoma cell line KAN-TX (Rimland et al., 

1996). A peripheral PYY-preferring receptor mediating an inhibition of small intestinal 

secretion has been shown to be a Y2 receptor (Goumain et al., 2001). In man the Y1 

receptor is a 381-amino acid protein, which is, like the Y1 receptor, highly conserved 

between species with more than 90 % identity between different orders of mammals 

(Berglund et al., 2003a). However, compared to the Y1 and Y4 receptors, the Y2 

receptor shows only 30 % homology. 

The Y2 receptor is naturally expressed in SMS-KAN (Shigeri and Fujimoto, 1994), 

LN319 (Beck-Sickinger et al., 1992), CHP234 (Lynch et al., 1994) and SH-SY5Y 

(Connor et al., 1997) cells. In addition, Y2-like responses have been found in rat 
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neurons (Bleakman et al., 1991; Wiley et al., 1993). The major signal transduction 

pathway is an inhibition of adenylyl cyclase (Michel et al., 1998), but also other 

pathways, e.g. inhibition of Ca2+ release from intracellular stores (Shigeri and 

Fujimoto, 1994) or Ca2+ influx (Lynch et al., 1994) as well as Ca2+ release from 

intracellular stores (Perney and Miller, 1989) are described. The increase in the  

intracellular calcium concentration after activation of cells heterologously expressing 

the Y2 receptor is discussed controversially (see 4.1.1.2), but seems to be largely 

dependent on the cell type used.  

The TASP molecule T4-[NPY(33-36)]4, consisting of four truncated NPY fragments 

attached to a cyclic carrier molecule, has been shown to be a selective antagonist at 

the Y2 receptor (Grouzmann et al., 1997). In 1999, the first nonpeptide ligands, the L-

arginine derivative BIEE 0246 and related compounds were reported to be potent 

and selective Y2 receptor antagonists (Brennauer et al., 2004; Doods et al., 1999; 

Dumont et al., 2000). Recently, JNJ-5207787, a new selective Y2 receptor antagonist 

with nanomolar affinity was synthesized (Bonaventure et al., 2004; Jablonowski et al., 

2004). 

 

The Y2 receptor is predominantly located presynaptically, acting as an autoreceptor 

by inhibiting further release of NPY and other neurotransmitter (King et al., 2000; 

Smith-White et al., 2001; Wahlestedt et al., 1986). It is mainly expressed in the brain 

(Kaga et al., 2001), preferentially the hippocampus, but low expression has also been 

found in the gastrointestinal tract, in blood vessels and other peripheral tissue 

(Goumain et al., 1998; Goumain et al., 2001; Pheng et al., 1997; Zhang et al., 1997). 

As the Y2 receptor acts mainly as an autoreceptor, it modulates predominantly the 
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effects caused by the Y1 receptor. Hence, Y2 receptor activation by centrally released 

NPY increases anxiety (Nakajima et al., 1998) and arousal as well as blood pressure, 

which is decreased after activation of central Y1 receptors (Morton et al., 1999). In 

addition, the Y2 receptor can directly mediate vascular effects of NPY (Malmstrom, 

2001; Smith-White et al., 2002). The Y2 receptor plays a role in NPY-induced 

angiogenesis (Zukowska-Grojec et al., 1998)  and NPY-mediated effects on circadian 

rhythms (Golombek et al., 1996; Huhman et al., 1996). In the central nervous system, 

Y2 receptor agonists delay gastric emptying (Fujimiya et al., 2000; Ishiguchi et al., 

2001). Experiments with Y2 receptor knockout mice have shown that this receptor is 

also involved in the regulation of bone formation (Baldock et al., 2002), heart rate and 

food intake (Lin et al., 2004). The potential anorectic effect of the Y2 receptor agonist 

PYY3-36 is discussed in section 1.3.1.2. The Y2 receptor seems also be implicated in 

the modulation of ethanol consumption (Cowen et al., 2004; Thiele et al., 2004). 

Desensitization of the Y2 receptor after stimulation with NPY was observed in LN319 

cells (Grouzmann et al., 2001), but unlike the Y1 receptor, the Y2 receptor is not 

internalized after prolonged agonist stimulation (Gicquiaux et al., 2002; Parker et al., 

2001b) or is internalized very slowly. 

  

Based on pharmacological studies on mammalian tissues, the existence of another 

receptor subtype, designated as Y3, with the preferred peptide potency of 

NPY>NPY13-36>PYY has been proposed (Lee and Miller, 1998; Michel et al., 1998). 

Y3 receptor-like binding sites were found in human adrenal medulla where it mediates 

the NPY-induced secretion of catecholamines, in the rat nucleus tractus solitarius, in 

rat cardiac membranes, and in bovine chromaffin cells (Silva et al., 2002). The 

peptide NPY18-36 has been described to appear as an antagonist for the Y3 receptor 

mediated inhibition of isoproterenol-stimulated adenylyl cyclase activity of rat cardiac 

ventricular membranes (Balasubramaniam and Sheriff, 1990; Balasubramaniam et 

al., 1990). However, cloning of the receptor failed (Herzog et al., 1993b; Jazin et al., 

1993), and with the sequencing of the human genome it seems unlikely that such a 

protein exists. The observed results may be due to the involvement of homo- or 

heterodimerization of the known NPY receptors, which was described for the hY1, 

hY2 and hY5 (Dinger et al., 2003) as well as for the rhY4 (Berglund et al., 2003b) 

receptor or explained by ligand preferences induced by interactions with intracellular 

proteins such as G proteins. 
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1.3.2.3 The NPY Y4 receptor 

The third cloned human receptor of the PP-fold family was identified in 1995 and first 

called “PP1” receptor (Bard et al., 1995; Lundell et al., 1995) because of its high 

affinity for PP. Later, the Y4 receptor homologs of other species, e.g. rat (Lundell et 

al., 1996; Walker et al., 1997; Yan et al., 1996) or mouse (Gregor et al., 1996b), were 

cloned. The highest homology within the PP-fold family of receptors was found with 

the Y1 receptor (42 % identity), but the most interesting feature of the Y4 receptor is 

its low degree of sequence identity between species. The human and rat Y4 

sequences share only 75 % identity (Lundell et al., 1996). Apparently, the Y4 receptor 

and its favoured ligand PP co-evolved very rapidly to the present state in mammals 

(Larhammar and Salaneck, 2004). This is also reflected by the fact that PPs from 

other species have often much lower affinity to the Y4 receptor, e.g. aPP has a > 40-

fold lower affinity for the hY4 receptor compared to hPP (Gehlert et al., 1996b). NPY 

and PYY bind poorly to the rat Y4, better to the human Y4, and with high affinity to the 

native rabbit PP receptor (Parker et al., 2001a) or to the cloned chicken Y4 receptor 

(Lundell et al., 2002). In addition, the affinity for the rat receptor increases when 

position 34 of NPY or PYY is replaced by proline, whereas the human receptor is 

unaffected by this exchange (Berglund et al., 2003a). A unique feature of the hY4 

receptor is its very high affinity for hPP (Lundell et al., 1995) and a lower affinity for 

NPY, whereas the data vary widely with Ki values for NPY ranging from 2 nM (Bard 

et al., 1995) to > 1 µM (Voisin et al., 2000). The large variations may be explained by 

the use of different radioligands, as it has been shown that the frequently used 125I-

PYY appears to recognize only a fraction of the receptor population recognized by 
125I-PP (Berglund et al., 2001).  

The Y1 receptor antagonist GW1229 has been shown to be an agonist at the human 

Y4 receptor (Parker et al., 1998; Schober et al., 1998). Nonapeptide analogues 

related to GW1229 have been shown to have reasonable affinities for the hY4 

receptor without inhibiting cAMP formation, indicating an antagonism. However, none 

of those peptides exhibited significant antagonistic activity in a cAMP assay with Y4 

receptor expressing cells at a concentration of 100 nM (Balasubramaniam et al., 

2001). Recently, the peptide VD-11 (differing from GW1229 only by C-terminal 

oxymethylation) has been proposed for a Y4 receptor antagonist, as it did not 

promote the internalization of 125I-labeled hPP, which was observed for other Y4 

receptor agonists (Parker et al., 2005). In addition, VD-11  did not (or only to a small 
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degree) inhibit forskolin-stimulated cAMP formation nor stimulate [35S]GTP-γ-S 

binding (Parker et al., 2005). However, in a cAMP assay of a former study, the 

peptide (100 nM) was not able to shift the concentration-response curve of PP 

rightwards (Balasubramaniam et al., 2001). Several PP/NPY chimera with high 

affinity to the hY4 receptor have been synthesized, but these peptides are non-

selective, since they also bind to the Y5 receptor (Cabrele et al., 2001). Up to now, no 

nonpeptidic ligand for the Y4 receptor is known. 

The hY4 receptor is mainly expressed in the prostate, the colon and the small 

intestine (Lundell et al., 1995), where it is believed to mediate many of the PP-

produced gastrointestinal effects (Pheng et al., 1999). Y4 receptor binding sites and 

low mRNA levels are found in various human CNS regions (Fetissov et al., 2004; 

Lundell et al., 1995). As intracerebroventricular injection of GW1229 induced a 

release of luteinizing hormone (Raposinho et al., 2000), the Y4 receptor has been 

proposed to be involved in the regulation of reproduction, but later it was shown that 

this effect is also observed in Y4 receptor deficient mice (Raposinho et al., 2004a). As 

PP reduces appetite in humans (Batterham et al., 2003) and food intake in mice 

(Asakawa et al., 1999; Asakawa et al., 2003; Katsuura et al., 2002), the Y4 receptor, 

which is also expressed in orexin neurons of the hypothalamus (Campbell et al., 

2003), might be involved in appetite regulation (Moran, 2003). 

In terms of agonist-promoted desensitization and internalization, the published 

results are contradictory. No desensitization and internalization was observed in hY4 

receptor expressing CHO cells (Voisin et al., 2000), whereas considerable 

internalization was observed by Parker and co-workers (Parker et al., 2005; Parker et 

al., 2001b). 

Activation of the Y4 receptor leads to an inhibition of adenylyl cyclase, which is 

sensitive to pertussis toxin (Voisin et al., 2000). An increase in intracellular calcium 

concentrations was observed in LMTK- cells stably expressing the hY4 receptor. 

Functional assays for the Y4 receptor are discussed in detail in section 5.3.1. 

 

1.3.2.4 The NPY Y5 receptor 

The existence of a Y5 receptor was first proposed based on the observation that NPY 

and NPY2-36 produced a large increase in feeding after intracerebroventricular 

administration (Stanley et al., 1992), whereas the NPY analogue [D-Trp32]NPY 

selectively inhibited NPY-induced feeding (Balasubramaniam et al., 1994) despite its 
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low affinity for the Y1 and Y2 receptors (Balasubramaniam et al., 1996). Expression 

cloning of the Y5 receptor from rat hypothalamus was published in 1996 (Gerald et al., 

1996; Hu et al., 1996). The receptor is the largest protein of the PP-fold family of 

receptors, consisting of 445 amino acids in humans. It contains an extended third 

cytoplasmatic loop with about 100 amino acids more compared to the other NPY-

receptors. The genes for the Y1 and Y5 receptors are located on the same human 

chromosome, overlapping each other, which suggest an at least partially coordinated 

regulation of gene expression (Herzog et al., 1997). The Y5 receptor is well 

conserved with 88-90 % overall amino acid identity (Borowsky et al., 1998; Lundell et 

al., 2001) but shares low homology (approximately 30 %) with the Y1 or Y2 receptors 

(Larhammar and Salaneck, 2004). 

The Y5 receptor binds all three endogenous ligands, their long C-terminal fragments 

and Pro34-substituted ligands. Interestingly, rat PP has very low affinity to the rat and 

human Y5 receptor, wheras human and bovine PP had affinities similar to those of 

NPY and PYY (Borowsky et al., 1998; Gerald et al., 1996). The first Y5 selective 

agonist [Ala31,Aib32]NPY (Aib = aminoisobutyric acid), synthesized in 2000 (Cabrele 

et al., 2000) was active in a cAMP assay and was also able to induce feeding in rats. 

In addition, two selective, peptidic radioligands, [125I][hPP1-17,Ala31,Aib32]NPY 

(Dumont et al., 2003) and [125I][cPP1-7,NPY19-23,Ala31,Aib32,Gln34]hPP (Dumont et al., 

2004) were characterized. The first selective Y5 receptor antagonist was disclosed in 

1997 (Criscione et al., 1997). CGP 71683A showed a >1000-fold affinity to the Y5 

receptor compared to the Y1, Y2 and Y4 subtypes (Criscione et al., 1998). Various 

studies using this compound for the blockade of the Y5 receptor in vivo have been 

performed in order to determine the involvement of the Y5 receptor in feeding 

(Criscione et al., 1998; Duhault et al., 2000; Kask et al., 2001; Polidori et al., 2000), 

but due to its unfavourable properties (poor solubility, toxic side effects) and 

considerable affinity to other neurotransmitter receptors (e.g. muscarinic receptors 

and serotonin transporters) the compound was found to be an imprecise tool for the 

investigation of the role of the Y5 receptor in the regulation of food consumption 

(Della Zuana et al., 2001). A variety of analogues of CGP 71683A and other 

heterocyclic Y5 receptor antagonists have been synthesized (for a recent review see 

Brennauer et al., 2004). The expression of the Y5 receptor is mainly confined to the 

brain, primarily the hypothalamus, hippocampus and amygdala (Durkin et al., 2000; 

Fetissov et al., 2004; Parker and Herzog, 1998, 1999). The highest level of receptor 
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expression in the periphery was found in spleen, testis and pancreas (Gerald et al., 

1996; Goumain et al., 1998; Statnick et al., 1998). Studies with Y5 receptor agonists 

(Cabrele et al., 2000; Mashiko et al., 2003; Parker et al., 2000), knock-out animals 

(Kanatani et al., 2000b) and antisense knock-down (Schaffhauser et al., 1997) 

revealed that the Y5 receptor contributes to the regulation of feeding behaviour but is 

not the only receptor involved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In fact, Y5 receptor deficient mice show no hypophagic phenotype but even develop 

mild obesity (Marsh et al., 1998). In addition, some Y5 selective antagonists failed to 

inhibit food intake (Turnbull et al., 2002). Because of the contradictory results, the 

importance of the Y5 receptor in feeding behaviour is controversially discussed 

(Levens et al., 2004; Raposinho et al., 2004b). Other effects of Y5 receptor activation 

are inhibition of luteinizing hormone release (Raposinho et al., 2001), decrease of 

energy expenditure (Mashiko et al., 2003), and regulation of circadian rhythms 

(Yannielli et al., 2004), seizures (Woldbye and Kokaia, 2004) and brain excitability 

(Guo et al., 2002).  

The Y5 receptor heterologously expressed in HEC-1-B cells couples to an inhibition 

of adenylyl cyclase (Bischoff et al., 2001; Moser et al., 2000) but can also couple to 
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(Criscione et al., 1998) 
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an increase in intracellular calcium concentration when expressed in LMTK cells 

(Criscione et al., 1998; Kanatani et al., 2000a). Therefore, the signal transduction 

pathway seems to depend on the used cell line. Recently, endogenous expression of 

the Y1, Y2, and Y5 receptor has been described in SK-N-MC cells (Li and Ritter, 

2005). 

 

1.3.2.5 The NPY y6 receptor 

The y6 receptor was cloned in 1996 from a mouse genomic library and first 

designated as “Y5” or “PP2” (Gregor et al., 1996a; Weinberg et al., 1996). 

Homologous receptors were cloned from human, rabbit and monkey libraries 

(Matsumoto et al., 1996) and different designations were used before the subtype 

was renamed the y6 receptor (Michel et al., 1998). The receptor is functional 

expressed in rabbit and mouse, while no y6 gene was detected in rat (Burkhoff et al., 

1998). In humans and other primates, the receptor is non-functional because of a 

frameshift mutation (single base deletion) in the third intracellular loop causing an in-

frame stop codon after the 6th transbembrane region, leading to a truncated receptor 

protein, unable to bind any peptides of the PP-fold family (Rose et al., 1997). The y6 

receptor is presumably a transcribed pseudogene in primates, although it cannot be 

excluded that this receptor may oligomerize with other NPY receptors to form a 

functional protein or it may undergo post-transcriptional modification resulting in a 

functional receptor (Rose et al., 1997). Human y6 mRNA was detected in heart and 

skeletal muscle and at low levels in the hypothalamus (Matsumoto et al., 1996). The 

pharmacological profile of the expressed mouse y6 receptor is discussed 

controversially (Michel et al., 1998), but recent studies propose a Y1-like phenotype 

(Mullins et al., 2000).  

 

1.3.2.6 The NPY Y7 receptor 

In 2004, the Y7 receptor was discovered in the teleosts zebrafish and rainbow trout 

and the amphibians marsh frog and western clawed frog (Fredriksson et al., 2004; 

Larsson et al., 2005). The zebrafish Y7 receptor was functionally expressed in HEK 

293 EBNA cells and characterized by peptide binding studies. In contrast to the 

mammalian Y2 receptor, the zebrafish Y7 (as well as the zY2 receptor (Fredriksson et 

al., 2006)) receptor does not (or much weaker) bind N-terminally truncated fragments 
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of NPY. In addition, no binding was observed with the Y2 receptor antagonist 

BIIE0246 or the Y1 receptor ligands p[Leu31,Pro34]NPY or BIBP3226. Activation of the  

Y7 receptor expressed in HEK 293 EBNA cells leads to an inhibition of forskolin-

stimulated cAMP formation. The zY7 receptor is widely expressed in the 

gastrointestinal tract and eye, but also in the brain (Fredriksson et al., 2004). The 

function of the Y7 receptor remains to be explored. 
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2 Scope and Objectives 
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Scope and objectives of the work 
 

G-protein coupled receptors represent the most important class of drug targets in the 

field of drug discovery. GPCRs are associated with almost every major therapeutic 

category or disease class. The encoding of the human genome has further expanded 

the number of possible targets and there is a great need for the establishment of 

simple, fast and robust assays for the screening and characterization of large 

numbers of new compounds which have become available by the use of 

combinatorial chemistry.  

This thesis aims at the development of binding and functional assays for the NPY hY2, 

hY4 and rY4 receptor. Flow cytometry was chosen for the establishment of binding 

assays, as this technique allows the determination of binding constants in equilibrium 

without the need to separate bound from unbound ligand. Therefore, peptide ligands 

of the GPCRs are to be fluorescence labelled and used in binding assays as well as 

for the visualization of the binding using confocal microscopy. The respective 

receptors have to be recombinantly expressed by mammalian cells using non-viral 

and retroviral expression systems. For comparison of the determined binding 

constants, the establishment of a radioligand binding assay is planned and studies 

on receptor internalization and sequestration will be performed.  

For the development of functional assays, the signal transduction pathway ought to 

be redirected to the PLCβ pathway by stable co-transfection of the receptor gene and 

the gene encoding for the chimeric G-protein Gqi5. Receptor activation should then 

result in an increase of intracellular calcium concentration, which can be quantified by 

spectrofluorimetric and flow cytometric methods using fluorescent calcium indicator 

dyes.  

Additional stable co-transfection with the gene encoding for the apoaequorin protein 

targeted to the mitochondrium should convert the calcium signal into a luminescence 

signal, which can be detected by a luminescence plate reader, making the assay 

amenable to the 96-well format. The assays must be validated with known receptor 

ligands, and small compound libraries are to be screened for new potential receptor 

ligands. The calcium signal is planned to be visualized using confocal microscopy 

and a CCD camera to estimate a possible application in a HTS-instrument equipped 

with a CCD camera. 
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3.1 Stable expression of the hY2 receptor gene 

3.1.1 Introduction 

Several approaches to the development of binding assays for the Y2 receptor have 

been reported in the literature. Some authors use tissue preparation, e.g. rat 

forebrain tissue (Parker et al., 2002b), rabbit kidney membranes (Beck-Sickinger et 

al., 1992), rat jejunal crypt cells (Goumain et al., 2001) or human frontal cortex 

membrane homogenate (Dumont et al., 2000). Disadvantages of these preparations 

are the time consuming preparation procedure and the presence of other receptors 

especially NPY receptor subtypes, interfering with ligand binding to the Y2 receptor. 

To circumvent this problem, Y2 selective labeled ligands are used, and the 

pharmacological binding profile is determined with known NPY receptor ligands. 

Nevertheless, it cannot be excluded that binding is partly mediated by other receptor 

subtypes than the Y2 receptor. The frequently used Y2 receptor ligand hPYY binds 

with the same affinity to hY1 and hY2 receptors and even the Y2 preferring ligand 

hPYY3-36 shows considerable affinity to the Y1 receptor (Ki = 0.24 nM for the hY2 

receptor vs. Ki = 13.3 nM for the hY1 receptor) as has been reported by Gehlert and 

co-workers  (Gehlert et al., 1996a). 

Another receptor source for binding assays are cells constitutively expressing the Y2 

receptor, namely the astrocytoma cell line LN319 (Beck-Sickinger et al., 1992) and 

the two neuroblastoma cell lines SMS-KAN (Shigeri and Fujimoto, 1994) and 

CHP234 (Lynch et al., 1994). The receptor expression is sufficient for radioligand 

binding assays (especially when membrane preparations are used) but the 

aforementioned cell lines are not suited when higher expression levels of the Y2 

receptor are required, e.g. in cellular assays. 

 

3.1.1.1 Heterologous expression systems 

Heterologous expression has become an invaluable tool for the establishment of 

receptor binding assays. Recombinant GPCRs have been expressed in bacteria 

(Marullo et al., 1988), yeast (Weiss et al., 1995), insect cells (Figler et al., 1996), frog 

oocytes (Lee and Durieux, 1998) and mammalians cells (Neve and Neve, 1998). 

Although all of these expression systems produce receptors, there are substantial 

differences in expression levels and post-translational modification of the resulting 
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receptor proteins. For example, bacteria lack the machinery for protein glycosylation, 

which is a requirement for the correct folding and transport of some receptors to the 

cell surface (Tifft et al., 1992). Nevertheless, N-glycosylation is not always essential, 

and several GPCRs have been expressed in E. coli (for an overview, see 

Grisshammer, 1998). In insect cells proteins are post-translationally glycosylated, but 

these cells lack the galactose and sialic acid transferase and are therefore unable to 

convert N-linked oligosaccharides to complex sugars (Miller, 1988), resulting in 

GPCRs glycosylated to a lesser degree than their mammalian counterparts (Kobilka, 

1995). Concerning post-translational modifications, mammalian cells are best suited 

for the study of GPCRs in binding and functional assays.  

 

3.1.1.2 Transient versus stable transfection 

Heterologous expression of a GPCR in mammalian cells can be achieved by stable 

or transient transfection. In a transient expression system high levels of the gene 

product are expressed over a limited period of time shortly after transfection (usually 

2-4 days). Compared to stable transfection, in most cases this method yields higher 

expression levels which can be attained much more rapidly since the time consuming 

procedure to generate, isolate and characterize transfected cells is not required. 

Therefore, transient expression is often used for the purification of receptors, for the 

development of antibodies or as a receptor source for binding or functional assays. 

One drawback of transient expression is the fact that the transfection efficiency can 

vary considerably depending on the purity of the DNA preparations and the state of 

the cells to be transfected. Furthermore, the ratio of recombinant receptors to other 

cellular components can not be maintained at a constant level. This variable 

stoichometrie can interfere especially with functional assays. Stably transfected cells 

have incorporated the receptor cDNA into the genome and propagate it with each 

mitotic event. Therefore, a defined, constant quantity of the recombinant receptor is 

expressed for many generations. Another advantage of stable vs. transient 

transfection is that once a cell line, stably expressing the receptor, is generated, the 

laborious transfection procedure is not required anymore. 
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3.1.1.3 Choice of the host cell 

The host cell line into which the GPCR is to be transfected should not endogenously 

express other receptor subtypes which could interfere with the binding of the ligand. 

This allows the determination of binding and functional data on a null background. 

Other features of a host cell line to be considered are transfection efficiency, growth 

rate and routine maintenance. Concerning clonal selection, the cells should be able 

to grow at a very low density. Suspension cells are easier to culture and more 

convenient for the use in many applications, but in most cases they are more difficult 

to transfect. Most of the available cell lines are adherently growing cells, and in most 

cases standard cell lines as e.g. HEK 293, CHO-K1 or COS-7 are used. 

 

3.1.1.4 Choice of the expression vector 

There are many commercially available vectors that will enable expression of 

receptor cDNA in mammalian cells. Most of them contain a ColE1 or pUC derived 

origin of replication for propagation and the ampicillin resistance gene, encoding β-

lactamase for selection in Escherichia coli. The three key features promoter, 

transcription termination and RNA processing signals, and a selectable marker 

should be considered when selecting an appropriate expression vector. Viral 

enhancer-promoter sequences from the human cytomegalovirus (CMV) immediate 

early gene, the simian virus (SV-40) early gene, and the Rous sarcoma virus long 

terminal repeat (RSV LTR) are commonly used to achieve high levels of constitutive 

expression of the receptor. The cDNA is incorporated into the vector in the sense 

direction downstream of viral promoter elements and upstream of a polyadenylation 

signal. Although these promoters work well in a wide variety of cell lines, the 

suitability of a promoter depends on the host cell line used for transfection and 

should be tested if necessary. This also holds for RNA processing signals which are 

necessary for the stability of the transgenic mRNA. Polyadenylation signal and 

transcription termination signal sequences are commonly taken from SV-40 or the 

bovine growth hormone (BGH) gene. Dominant selectable markers which confer 

resistance to certain antibiotics are used to isolate stable transfectants. In most of the 

modern expression vectors the drug-resistance cassette is included in the same 

vector containing the cDNA of interest. However, it is also possible to co-transfect an 

expression vector with another vector containing the drug-resistance cassette. 



 Stable Expression of the hY2 Receptor Gene 33 

Commonly used selection markers are resistance to neomycin (G418), zeocin, 

blastocidin, hygromycin, puromycin and bleomycin.  

Usually, only the protein-coding region of the cDNA is inserted into the expression 

vector. Non-coding sequences upstream the translational start site may contain 

regulatory regions compromising gene expression. Also the 3’ untranslated region 

may impair gene expression, but this region is usually less problematic. The insertion 

of a Kozak’s consensus sequence (Kozak, 2002) at the translational start site can 

often enhance the expression of a foreign gene.  

 

3.1.1.5 Transfection of mammalian cells 

Many different techniques are known by which exogenous DNA can be incorporated 

and expressed by mammalian cells. These include direct methods like microinjection 

of RNA and DNA, transfection by calcium phosphate precipitation or lipofection, 

electroporation and particle-bombardment-mediated gene transfer. The cheapest 

method is the standard CaPO4 precipitation (Chen and Okayama, 1987), but in most 

cases higher transfection efficiencies can be achieved by electroporation or lipid-

mediated gene transfer reagents. Usually, each transfection protocol has to be 

optimized for each cell line. An alternative method is the use of viral vectors. 

Compared to mechanical and chemical transfection strategies, the use of 

recombinant viruses is very effective as viruses have evolved successful 

mechanisms for entering cells, transferring genetic material, and optimizing 

expression of the exogenous (viral) proteins. On the other hand, the virus-based 

systems are more challenging in terms of vector construction and the optimization of 

transfection efficiency. 

 

3.1.1.6 Selection and screening of cell clones 

Usually selection of transfected cells is carried out 2-3 days after transfection 

allowing the transfected cells to express the drug-resistance cassette. As drug 

sensitivity markedly varies among cell lines, the concentration of the antibiotic 

sufficient to kill the non-transfected wild type cells should be determined prior to the 

transfection or non-transfected cells should be incubated with the antibiotic as a 

control in parallel. Resistant cell clones are selected and propagated, but because 



34 Chapter 3.1  

the expression of the recombinant receptor can vary, the cell clones should be 

screened in binding or functional assays.  

Human Y2 receptors have been expressed in HEK293 (Berglund et al., 2002; 

Dautzenberg et al., 2005; Dumont et al., 2000), COS-7 and CHO (Gerald et al., 1995; 

Goumain et al., 2001; Rose et al., 1995) cells. In each case the authors used 

membrane preparations for the binding assays except for Rose and co-workers, who 

used whole cells.  

3.1.2 Materials and Methods 

 

3.1.2.1 Preparation of media and agar plates 

LB medium containing 1 % bacto tryptone (Difco, Detroit, USA), 0.5 % yeast extract 

(Roth, Karlsruhe, Germany) and 0.5 % NaCl (Merck, Darmstadt, Germany) was 

prepared by adding all ingredients to 1000 ml of millipore water (pH 7.0). For 

sterilization the medium was autoclaved for 20 min and then stored at 4 °C. 

Selective amp-LB resp. kan-LB medium was prepared by adding 100 mg/ml 

ampicillin (Sigma, Deisenhofen, Germany) or 30 µg/ml kanamycin (Sigma) to the 

sterile LB medium. 

For the preparation of selective agar plates, 1.5 % agar (Roth) was added to 1000 ml 

of LB medium and autoclaved. After sterilization, the medium was cooled to 60-65 °C, 

ampicillin (100 µg/ml) or kanamycin (30 µg/ml) was added and plates were prepared. 

Selective plates were stored at 4 °C for 3 to 4 weeks. 

SOC medium was prepared by addition of 0.25 ml of KCl (Merck) (1 M), 1 ml MgCl2 

(Merck) (1M) and 1 ml MgSO4 (Merck) (1 M) solution to 97 ml LB medium. After 

autoclaving, 1 ml of sterile 1 M glucose (Merck) solution was added. 

 

3.1.2.2 Preparation of competent E. coli  

Competent cells were prepared using the E. coli K12- XL-blue strain. 5 ml of an 

overnight culture were grown in LB medium. Then, 200 ml of sterile LB medium were 

inoculated with 2 ml of the overnight culture. Cells were grown with vigorous shaking 

(190 rpm) at 37 °C to an OD600 of 0.2. The bacterial suspension was aliquoted into 8 

prechilled, sterile polypropylene tubes and left on ice for 10 min. Cells were collected 

by centrifugation at 1500 g for 7 min at 4 °C, the supernatant was poured off, and 
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each cell pellet was resuspended in 5 ml of ice-cold CaCl2 solution containing 60 mM 

CaCl2, 10 mM PIPES and 15 % glycerol at pH 7. Cells were centrifuged for 5 min at 

1000 g, resuspended in 5 ml of ice-cold CaCl2 solution and incubated on ice for 30 

min. After another centrifugation step at 1000 g for 5 min the supernatant was 

discarded and each pellet was resuspended in 1 ml of ice-cold CaCl2 solution. 200 µl 

aliquots of cell suspension were pipetted into 1.5 ml microfuge tubes and left on ice 

for 2 h. Finally, competent cells were frozen in liquid nitrogen and stored at -80 °C. 

 

3.1.2.3 Transformation of E. coli  

For chemical transformation, 200 µl of competent cell suspension were thawed on ice 

and the plasmid DNA or the ligation product was added prior to incubation on ice for 

30 min. Cells were heat-shocked by transferring the tubes into a 42 °C water bath for 

90 s. For the recovery and expression of the antibiotic resistance gene needed for 

the positive selection of the transformants, 1 ml of SOC medium pre-warmed to 37 

°C was added, and the bacteria were incubated for 45 min at 37 °C with gentle 

shaking (200 rpm). 

20 - 50 µl of the transformant suspension were plated onto selective agar and the 

plates were incubated overnight at 37 °C. Colonies were picked and used for 

overnight cultures in selective medium. 

 

3.1.2.4 Preparation of plasmid DNA 

3.1.2.4.1 Mini-Prep 

Small scale alkaline lysis procedures for the preparations of DNA were performed 

according to the protocol described by Birnboim and Doly (Birnboim and Doly, 1979). 

Buffers were prepared as follows:  

Buffer P1: 50 mM tris-HCl (Serva, Heidelberg, Germany), 10 mM titriplex III (Merck) 

and 100 µg/ml Rnase A (MBI Fermentas, St. Leon-Rot, Germany) in millipore water, 

pH 8.0. 

Buffer P2: 0.2 M NaOH (Merck) and 1 % SDS (Sigma) in millipore water 

Buffer P3: 3 M KAc (Merck) in millipore water, pH 5.5 

5 ml of selective LB medium were inoculated with bacteria from an isolated colony 

and incubated overnight at 37 °C with vigorous shaking (200 rpm). 1.5 ml of this 
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culture was centrifuged for 30 s at 13000 rpm (Biofuge 13, Sartorius, Göttingen, 

Germany). The supernatant was discarded and the cell pellet was resuspended in 

100 µl of P1. For the degradation of bacterial RNA the cell suspension was incubated 

for 5 min at room temperature. Lysis of the cells was performed by addition of 200 µl 

of P2, gentle mixing and incubation on ice for 5 min. Addition of 150 µl ice-cold P3 

and further incubation for 10 min led to neutralization of the lysate and precipitation of 

SDS, denaturation of  proteins and chromosomal DNA. After centrifugation for 15 min 

at 13000 rpm the supernatant was transferred into a new reaction vessel and mixed 

with 400 µl of phenol-chloroform-isoamylalcohol (25:24:1) (Roth, Karlsruhe, Germany) 

by vigorous vortexing. Phase separation was achieved by centrifugation for 3 min at 

13000 rpm. The purified supernatant was transferred into a new tube and plasmid 

DNA was precipitated by addition of 1 ml of ice-cold ethanol (Mallinckrodt Baker, 

Griesheim, Germany). After centrifugation for 20 min at 13000 rpm, the pellet was 

washed with 1 ml of 70 % ethanol, air dried, and dissolved in 10 µl of millipore water. 

The DNA solutions were stored at -20 °C. 

3.1.2.4.2 Maxi-Prep 

Large scale preparations of plasmid DNA were performed using the Qiagen Plasmid 

Purification Kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions. 

3.1.2.4.3 Determination of DNA concentration  

Usually, a 1:50 dilution of a Maxi-Prep DNA was prepared, and the DNA 

concentration was determined photometrically according to the following equation: 

c (µg/ml) = 70 A260 – 40 A280 

 

3.1.2.5 Restriction enzyme digestion 

For the subcloning of DNA fragments and the restriction analysis of plasmid DNA the 

enzymes HindIII (Roche Diagnostics, Mannheim, Germany), NotI (MBI Fermentas, St. 

Leon-Rot, Germany), EcoRI (MBI Fermentas) and the corresponding reaction buffers 

provided by the manufacturers were used. When performing a double digestion, a 

buffer was chosen in which both enzymes showed no star activity and at least 50 % 

activity according to the manufacturer’s specifications. In general, enzyme restriction 

digestion was performed in 20 µl of millipore water containing 2 µl of the appropriate 



 Stable Expression of the hY2 Receptor Gene 37 

10x reaction buffer, 1 µl (10-15 U) of enzyme stock solution (resp. 2 µl for double 

digestion) and 500 - 1000 ng of DNA. The reaction was carried out for 90 min at 37 

°C in an Eppendorf reaction vessel, and enzymes were heat-inactivated for 15 min at 

70 °C. 

For agarose gel electrophoresis 5 µl of 6x gel loading buffer (Peqlab, Erlangen, 

Germany) were added to each sample. 

 

3.1.2.6 Agarose gel electrophoresis 

Agarose gels were prepared by dissolving 0.5 g of agarose (pegGOLD Universal-

Agarose; Peqlab) in 50 ml of TBE buffer containing 44.5 mM  tris-base (USB, 

Cleveland, USA), 44.5 mM boric acid (Merck) and 1.0 mM EDTA (Titriplex III; Merck). 

To visualize DNA, 2 µl of ethidium bromide solution (10 mg/ml in H2O; Janssen 

Chimica, Beerse, Belgium) were added. The warm agarose solution was poured into 

the gel chamber and let gel for 30 min. 

Prior to electrophoresis, TBE buffer was filled into the gadget and 25 µl of each 

sample were pipetted per pocket. As reference, the peqGOLD DNA (Peqlab) ladder 

mix was prepared according to the manufacturer’s instructions. 

Electrophoresis was performed for 60 - 90 min at 90 V until the tracking dye moved 

at least 2/3 of the gel length. Then, the gel tray was removed from the 

electrophoresis chamber and DNA bands were visualized by illumination with UV 

light at 254 nm (Gel Doc 2000; Bio-Rad Laboratories, München, Germany). Quantity 

One software (Bio-Rad) was used for data analysis. 

 

3.1.2.7 Recovery of DNA fragments from agarose gels 

DNA bands were excised from the gel under UV light (254 nm) with a clean, sharp 

scalpel and DNA was extracted using the QIAEX II (Qiagen, Hilden, Germany) 

purification kit according to the manufacturer’s protocol. Finally, DNA was eluted with 

20 µl of millipore water. 
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3.1.2.8 Subcloning of the pcDNA3-eGFP and pcDEF3-eGFP vector 

The pEGFP-N1 vector (BD biosciences, Heidelberg, Germany) was kindly provided 

by Prof. Männel, Institute of Pathology, University of Regensburg, Germany. The 

pcDNA3.1/His/lacZ vector was purchased from Invitrogen (Karlsruhe, Germany). 

 
 

 

 

The pcDEF3 vector was a gift from Dr. J. Langer, University of New Jersey, USA. 

This vector is a modified pcDNA3 vector with a EF-1 alpha promoter of pEF-BOS 

which replaces the CMV promoter of pcDNA3 (Goldman et al., 1996). 

 

The pcDNA3.1/His/lacZ vector was digested with HindIII and NotI using buffer B 

(Roche Diagnostics, Mannheim, Germany). DNA fragments were separated via gel 

electrophoresis revealing two expected bands of 5363 bp and 3214 bp (released 

His/lacZ-insert). The 5363 bp fragment was excised from the gel and purified using 

the QIAEX II purification kit. 

The pcDEF3 vector was digested with EcoRI and NotI using buffer H (Roche 

Diagnostics). The 6067 bp fragment was separated from the 27 bp fragment via gel 

electrophoresis and purified using the QIAEX II purification kit. 

The pEGFP-N1 vector was digested either with HindIII and NotI using buffer B or with 

EcoRI and NotI using buffer H. DNA fragments were separated over an agarose gel, 

and the eGFP inserts were purified using the QIAEX II purification kit. 

 

 

 

Fig. 8: Vector maps of pEGFP-N1 and pcDNA3.1/His/lacZ
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Fig. 9: Restriction analysis of pcDNA3-eGFP (A: linearizied vector, B: HindIII and NotI
digestion) and pcDEF3-eGFP (C: HindIII and NotI digestion, D: linearized vector) 

Ligation reactions were performed using the following cohesive-end ligation protocol: 

2 µl of linearized vector were incubated for 1 h at room temperature with 1 µl T4 

ligase (1 Weiss U/µl; MBI Fermentas, St. Leon-Rot, Germany), 2 µl 10x ligase buffer 

(MBI Fermentas) and increasing amounts (1 - 4 µl) of properly digested insert in 20 µl 

of millipore water. T4 DNA ligase was heat-inactivated by incubation at 65 °C for 10 

min. The samples were stored at -20 °C or directly used for transformation. 

5 ml of Amp-LB medium was inoculated with resistant bacteria and DNA was purified 

by Mini-Prep. Composition of plasmid DNA was confirmed by restriction enzyme 

digestion. The pcDNA3-eGFP plasmid was linearized with HindIII (6142 bp, lane A) 

and treated with HindIII and Not I resulting in the two expected bands (lane B) with 

5363 bp and 779 bp (very weak).  

Digestion of pcDEF3-eGFP with EcoRI resulted in the linearized vector with 6847 bp 

(lane D); treatment of pcDEF3-eGFP with HindIII and NotI led to the formation of two 

fragments with a length of 4746 and 2101 bp which was expected as the properly 

subcloned vector contains one HindIII restriction site at bp 265 and one NotI 

restriction site at 2366 bp.  
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For transient transfection, Maxi-Preps of pcDNA3-eGFP and pcDEF3-eGFP were 

prepared. 
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3.1.2.9 Cell culture 

CHO-K1 cells were maintained in Ham’s F12 medium supplemented with 10 % FCS 

in 75 cm2 flasks. Cells were grown in 5 % CO2, water saturated atmosphere at 37 °C. 

Subculturing was performed twice a week by 1:10 dilution after trypsinization. 

Cells were routinely monitored for mycoplasma contamination by PCR using the 

VenorGEM™ mycoplasma detection kit (Minerva Biolab, Berlin, Germany). 

 

3.1.2.10 Transient transfection of CHO-K1 cells with pcDNA3-eGFP and 
pcDEF3-eGFP using FuGENE and Metafectene  

FuGENE™ 6 transfection reagent was purchased from Roche Diagnostics, 

Mannheim, Germany and Metafectene™ was obtained from Biontex, München, 

Germany. 

One day before transfection, CHO-K1 cells were seeded in 500 µl of Ham’s F12 

medium plus 10 % FCS into 24-well plates. The cell density was adjusted that 60-70 

% confluence was reached at the day of transfection. 

DNA concentration was 300 and 600 ng/well and DNA (µg) per transfection reagent 

volume (µl) ratios were 1:4, 1:6 and 1:8. Concentrations of DNA stock solutions were 

650 µg/ml (pcDNA3-eGFP) and 437 µg/ml (pcDEF3-eGFP), respectively. 

Transfections were performed according to the manufacturers’ instructions. Briefly, 

DNA and transfection reagent were preincubated in serum-free Ham’s F12 medium 

for 15 min at RT. This mixture was added dropwise to the cells, and after 5 h of 

incubation in the incubator the medium was replaced with fresh culture medium. 24 

and 48 h after transfection the cells were analyzed by fluorescence microscopy and 

flow cytometry. 

3.1.2.10.1 Fluorescence microscopy 

Living cells were analyzed under a LEICA DM IRB inverse microscope equipped with 

a PL FLUOTAR 10x/0.30 Ph1 objective and a FITC fluorescence filter. Images were 

made with a Nikon Coolpix 4500 digital camera. 

3.1.2.10.2 Flow cytometry 

For flow cytometric determination of transient eGFP expression the medium was 

removed by suction and the cells were trypsinized by adding 300 µl of trypsine/EDTA 

solution for 5 min at RT. Trypsine was inactivated by addition of 700 µl of Ham’s F12 
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medium containing 10 % FCS, and the cells were detached by gentle pipetting before 

they were transferred into microcentrifuge tubes. CHO cells were centrifuged for 5 

min at 300 g in a microcentrifuge, and the cell pellets were resuspended in 500 µl of 

PBS containing 0.2 g of KCl, 0.2 g of KH2PO4, 1.15 g of Na2HPO4 and 8 g of NaCl in 

millipore water, pH 7.4. Cells were stored on ice until measurement. Samples were 

measured with a Becton Dickinson FACSCalibur™ flow cytometer; instrument 

settings were: FSC: E-1, SSC: 310, FL1: 450, Flow: HI (65µl/min), Time: 2 min.  

 
Fig. 10: Flow cytometric analysis of transient eGFP expression: Cells were gated in a density plot (a) 
and analysed in a FL1 vs. FSC dot plot. A quadrant was set to distinguish autofluorescence of wild 
type cells (b) from eGFP fluorescence of transfected cells (c) 

 
The homogeneous CHO cell population was gated as shown in the density plot 

diagram in Fig. 10a. A quadrant was set in a FL-1 vs. FSC dot plot in order to 

distinguish cellular autofluorescence from eGFP fluorescence and increase in 

fluorescence of the gated population (shown in red) could be determined using the 

statistical analysis program of the WinMDI software. 

3.1.2.10.3 Chemosensitivity assay 

The sensitivity of CHO-K1 cells to neomycin (G418) was determined by the crystal 

violet assay (Bernhardt et al., 1992). Cells were seeded in 100 µl medium at a 

density of ∼ 5 cells per microscope field (320x, Diavert microscope, Leitz, Wetzlar, 

Germany) in 96 well flat-bottomed microtitration plates (Nunc, Wiesbaden, Germany) 

and incubated overnight. Then, additional 100 µl of medium containing increasing 

concentrations of neomycin were added. Medium of the control cells contained no 

neomycin. 16 wells were used for each concentration. After various incubation times 

the culture medium was shaken off and cells were fixed with 100 µl 1 % 

glutardialdehyde in PBS for 20 min. The fixative was replaced by 180 µl of PBS and 

plates were stored at 4 °C. For the staining of the cells, PBS was discarded and cells 

a cb
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were incubated with 100 µl of 0.02 % crystal violet solution (N-hexamethyl-

pararosanilin ⋅ HCl in water) for 20 min. Wells were washed 3 times with deminer-

alized water followed by an incubation step with water for 20 min at room 

temperature. Water was discarded and plates were dried. Cell bound dye was 

extracted by addition of 200 µl 70 % ethanol and incubation for 3 h at RT with 

permanent shaking on a Köttermann 4010 shaker. Absorbance was measured at 578 

nm using a BioTek EL 309 Autoreader (Bad Friedrichshall, Germany) and the 

average and standard deviation values were calculated. Absorbance outside of the 

confidence interval (95%) was not considered for the calculations. 

 

3.1.2.11 Restriction analysis of the pcDNA3-hY2 vector and stable transfection 
of CHO-K1 cells 

 
The pcDNA3-hY2 expression vector was a gift from Dr. Patricia M. Rose (Department 

of Micobial Molecular Biology, Bristol-Myers Squibb, Princeton, New Jersey, USA). 

The hY2 insert (Rose et al., 1995, Genbank No. U32500) is subcloned into the BamHI 

and XbaI cassette of the multiple cloning site of the pcDNA3. 

Digestion with BamHI led to the linearized vector 

with 7211 bp (Fig. 11, lane A). A small band of 

uncut vector was visible. Double digestion with 

BamHI and XbaI (Fig. 11, lane B) using Buffer B 

released the hY2 insert with a length of 1888 bp. 

The second band at 5323 bp corresponded to the 

pcDNA3 vector fragment.  

One day before transfection, CHO-K1 cells were 

seeded in 500 µl of Ham’s F12 + 10% FCS on a 24 

well plate. Cell density was adjusted that the next 

day 70% optical confluence was reached. 300 ng of 

plasmid DNA and 2.4 µl FuGENE transfection 

reagent were incubated with serum-free Ham’s F12 

medium in a final volume of 20 µl for 15 min at RT. 

Then, the transfection mixture was added dropwise 

to the cells following incubation at 37 °C, 5% CO2, water saturated atmosphere. After 

5 h the medium was replaced and incubation of the cells was continued. 48 h post 

Fig. 11: Restriction analysis of 
the vector pcDNA3-hY2. A: 
after linearization;  B: after 
BamHI and XbaI digestion  
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transfection the cells were trypsinized and transferred into 6 well plates in presence 

of selective medium containing 400 µg/ml geneticin. Resistant cells were passaged 

(splitting 1:10) every 3-4 days for 4 weeks.  

 

3.1.2.12 Analysis of selected cell clones for the specific binding of Cy5-pNPY 

After 4 weeks of propagation in selective medium transfected cells were seeded at 

very low density (< 10 cells/ml) in 150 mm tissue culture dishes (Becton Dickinson, 

Franklin Lakes, NJ., USA). Cells were grown to isolated colonies of 50-100 cells 

within 1 - 2 weeks. The medium was removed by suction, and 7 ml of trypsine/EDTA 

were added for 3-5 min at room temperature. Using an inverse microscope (Leitz, 

Wetzlar, Germany) with a 32x objective, cell colonies were picked with a sterile 

pipette and transferred to a 24-well-plate containing selective medium. Single clones 

were expanded and tested for specific binding at the flow cytometer as described in 

3.2.2.3. 
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3.1.3 Results and Discussion 

3.1.3.1 Optimization of the transfection procedure 

In stable transfection the critical steps are the efficiency of cellular uptake of the 

exogenous DNA and the frequency of stable integration into the chromosomal DNA 

of the recipient cells. Because it is difficult to influence the latter process, stable 

transfection was optimized by exploring the conditions leading to maximum transient 

transfection efficiency. CHO-K1 cells were chosen for transfection as these cells 

grow rapidly and are known for transfection efficiency. For the optimization of the 

transient transfection protocol, CHO-K1 cells were transfected with the pcDNA3-

eGFP and the pcDEF3-eGFP vector. Transfection efficiency was determined by flow 

cytometry 24 h after transfection. Effects of the expression vector, the transfection 

reagent and the amount DNA were quantified via the expression of eGFP (Chalfie et 

al., 1994). 
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As shown in Fig. 12, with respect to transfection efficiency FuGENE was superior to 

metafectene in case of both vectors and almost all DNA-reagent ratios tested. 

Additionally, metafectene appeared to be much more cytotoxic against CHO cells as 

the total cell number (counted for 2 min) was less than 50 % compared to that of the 

FuGENE transfected cells. 

a b 

Fig. 12: Transient transfection of CHO-K1 cells with pcDNA3-eGFP and pcDEF3-eGFP using 
FuGENE (panel a) and metafectene (panel b) transfection reagent with varying amounts of DNA 
and ratios of DNA / transfection reagent. 
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This was confirmed by fluorescence microscopy as exemplarily shown in Fig. 13. 

Using FuGENE, transfection efficiency was higher than 45 % in all samples. The 

highest eGFP expression (76 %) was reached with 600 ng of pcDEF3-eGFP vector 

and a DNA/reagent ratio of 1:4. To save costs, for further transfections a DNA 

amount of 300 ng/well and a DNA/reagent ratio of 1:6 were chosen for both vectors 

as the transfection efficiency under these conditions was by far sufficient (higher than 

than 50 %). 

In the literature the concentrations of neomycin 

(Geneticin®, G418) used for the selection of 

transfected CHO-K1 cells range from 100 µg/ml 

(Parker et al., 2001a) to 1000 µg/ml (Gehlert et al., 

1997). The sensitivity of CHO-K1 cells to neomycin 

was determined in a crystal violet assay. As shown 

in Fig. 14, the antibiotic was cytocidal at all 

concentration tested. Cell growth was inhibited with 

increasing concentrations of geneticin.  

No difference was measured between 400 µg/ml 

and 500 µg/ml. For the selection of transfected 

cells, a concentration of 400 µg/ml of the antibiotic 

was chosen as wild type cells die in selective 

medium after an incubation period of three days. 

 

 

a b

Fig. 13: Microscopic image of CHO-K1 cells transfected with pcDNA3-eGFP; overlay of phase 
contrast and fluorescence (green) images. a: FuGENE, 300 ng DNA, ratio 1:4; b: metafectene,  600 
ng DNA; ratio 1:8.  
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3.1.3.2 Stable transfection of CHO-K1 cells with the hY2 receptor gene 

CHO-K1 cells were transfected and selected under optimized conditions and cell 

clones were analysed for the specific binding of cy5-pNPY (see 3.2.2.1). Clone 9 was 

found to exhibit high specific binding as shown in Fig. 15. The geometric mean of 

total cell bound fluorescence after incubation with 10 nM cy5-pNPY was 401 relative 

fluorescence units (RFU). It was reduced when the cells were incubated in the 

presence of 1 µM unlabeled pNPY (unspecific binding; geometric mean: 92), 

corresponding to an unspecific binding of 23 %.  

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Flow cytometric binding assay 

3.2.1 Introduction 

Flow cytometry provides a sensitive and quantitative method for the measurement of 

fluorescence or light scattering of cells. During the measurement the cells are 

hydrodynamically focused in a laminar flow of sheath fluid. Therefore, in the flow cell 

the single cells pass through the laser beams sequentially. The light is scattered and 

detected by a photomultiplier tube and a photodiode, respectively. Scattered light 

intensity in a narrow angle of 0.5 to 2.0° (forward scatter light, detected in the FSC 

channel, photodiode) depends on the size of the particles, whereas the light intensity 

scattered at an angle of 90 ° (sideward scatter light, detected in the SSC channel) 

depends on the inner structure of the cells (granularity). Fluorescence light emitted 

 unspecific binding 
 total binding 

Fig. 15: Total and unspecific  (in presence of 1 µM pNPY) 
binding of 10 nM cy5-pNPY to CHO-hY2-K9 cells (clone 9). 
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by fluorescent dyes associated with the cell is spectrally separated from the sideward 

scatter light by mirrors and filters and detected by different photomultipliers. The 

FACSCalibur™ flow cytometer is equipped with an argon laser (λ = 488 nm) and an 

additional red diode laser (λ = 635 nm).  

 

Fig. 16: Optical setup of the FACSCalibur™ flow cytometer. The cells are illuminated in the flow cell by 
an argon and a red diode laser. Scattered light and fluorescence are spectrally separated by filters 
and dichroic mirrors and detected by different photomultiplier tubes  (adapted from Mayer, 2002). 

 

The scattered light from the argon laser is detected in the FSC and the SSC 

channels. Fluorescence resulting from excitation at 488 nm is detected by the 

photomultipliers FL-1, FL-2 and FL-3. The photomultiplier FL-4 detects only the red 

fluorescence emitted after excitation with the diode laser. The optical setup of the 

FACSCalibur™ is shown in Fig. 16. 

Flow cytometry is widely used for the analysis of blood cells, which can be separated 

due to the unique light-scattering properties of individual cell populations in 

combination with immunophenotyping by fluorescence labeled antibodies. In addition, 

this technique has been used for the investigation of DNA content (Simon et al., 

1992), oxidant production (Robinson et al., 1994), cell cycle (Dressler and Seamer, 

1994), activation of reporter genes (Ropp et al., 1995), apoptosis (Darzynkiewicz et 

al., 1997), calcium elevation (June and Rabinovitch, 1994), membrane potential 

(Shapiro, 1994) and pH changes (Boyer and Hedley, 1994). 
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The application of flow cytometric binding assays has been described e.g. for the 

chemokine receptor CXCR4 (Hatse et al., 2004), the EGF receptor (Stein et al., 2001) 

or the α-factor receptor in yeast (Bajaj et al., 2004). 

The main advantage of a flow cytometric binding assay compared to a classic 

radioligand binding assays is the fact that the separation of bound and free ligand is 

not required. The probe volume, defined by the intersection of the laser beam with 

the sample stream is very small (several picoliters (Nolan and Sklar, 1998)). 

Therefore, the background signal caused by free dye is very low compared to the 

signal from the cell and becomes neglegibly small, if the concentration of free dye is 

not too high. Thus, binding of fluorescent ligands to GPCRs can be determined at 

equilibrium. 

3.2.2 Materials and Methods 

3.2.2.1 Synthesis and purification of cy5-pNPY 

Porcine NPY (peptide content: 70 %) was synthesized and provided by Prof. Dr. A. 

Beck-Sickinger, Institute of Biochemistry, University of Leipzig. The cyanine dye Cy5 

was purchased from Amersham Biosciences, Little Chalfont, Buckinghamshire, UK. 

For the labelling reaction, 0.5 mg of pNPY were dissolved in 20 µl of DMSO (Merck, 

Darmstadt, Germany) and 250 µl of 0.1 M sodium carbonate/bicarbonate buffer, pH 

9.5, containing 33 % acetonitrile (Mallinckrodt Baker, Deventer, Netherlands) were 

added. One portion of Cy5 (ca. 0.2 mg) was dissolved in 20 µl of anhydrous DMSO 

and added to the peptide solution. Under these conditions, the dye is coupled to the 

ε-amino group of K4 of pNPY. After 3 h of incubation at room temperature the labelled 

pNPY was purified by HPLC using the following instrumentation: a Hitachi F1000 

fluorescence detector was adjusted for the detection of the tyrosine fluorescence (λex 

= 275 nm; λem = 305 nm) of the peptide and an HPLC 430 UV/VIS detector (Kontron, 

Neufahrn, Germany) was used to detect absorbance of the dye at 649 nm. Pump, 

gradient mixer and autosampler were from Kontron, Neufahrn, Germany. The 

Nucleosil 300 5-C18 column (Macherey-Nagel, Düren, Germany) was thermostatted 

at 35 °C with a Shimadzu CTO-2A column oven. The gradient was formed by a 

mixture of solvent A (acetonitrile / 0.1 % trifluoracetic acid in millipore water: 60/40) 

and solvent B (0.1 % trifluoracetic acid in millipore water). After 15 min of 

equilibration with 50 % solvent A at a flow rate of 1 ml/min the sample was injected 
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and the fraction of solvent A was raised to 80 % over 40 min in a linear manner. After 

each HPLC run a washing step of 10 min with 100 % A was performed. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

For the purification of cy5-pNPY, 40-50 µl of the reaction mixture were injected. The 

retention time of unlabeled pNPY was 15.8 min, whereas cy5-labeled pNPY was 

eluted after 18 min indicated by the concomitant increase in absorption and tyrosine 

fluorescence. Peaks were collected by hand and absorbance at λ = 649 nm was 

determined. 

 

3.2.2.1.1 Estimation of the molar extinction coefficient of hydrolysed cy5 dye in 

mobile phase 

Due to the very low amounts of cy5 and cy5-pNPY, the determination of the 

extinction coefficients by photometric measurement of samples of defined weights is 

impossible. Therefore, the manufacturer’s specification (ε = 250000 M-1 cm-1 at λ = 

649 nm in millipore water) was used. As cy5-pNPY is not completely soluble in 

millipore water the effect of the solvent on the extinction coefficient was measured. 

For this purpose equal amounts of hydrolyzed dye obtained from HPLC were 

dissolved in the same volume of various solvents with increasing amounts of 

acetonitrile and absorbance at λ = 649 nm was determined. 

 

time [min]
0 10 20 30 40

ab
so

rb
an

ce
 a

t 6
49

 n
m

0

200

400

600

800

1000

1200

1400

ty
ro

si
ne

 fl
uo

re
sc

en
ce

200

400

600

800

1000

1200

1400
absorbance at 649 nm
tyrosine fluorescence

Fig. 17: A: Structure of cy5-pNPY(1). B: HPLC purification of 1. a: unlabeled pNPY; b: cy5-pNPY. 
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Table 3: Influence of solvent composition on the extinction coefficient of cy5. 

solvent absorbance ε [M-1 cm-1] related to 
ε (millipore water) 

millipore water 0.4271 250000  
PBS buffer, pH 7.1 0.4467 261472 

TFA (0.1%) 0.3853 225533 
TFA (0.1%) / MeCN  80/20 0.5357 313568 
TFA (0.1%) / MeCN  60/40 0.5215 305256 
TFA (0.1%) / MeCN  40/60 0.5296 309998 
TFA (0.1%) / MeCN  20/80 0.5279 309003 

 MeCN  not soluble --- 
 
The addition of acetonitrile led to an increase in absorbance resulting in calculated 

extinction coefficients of 305256 to 313568 [M-1 cm-1]. The mobile phase at 18 min 

(i.e. retention time of cy5-pNPY) contained 38.1 % acetonitrile. For the determination 

of cy5-pNPY concentration in mobile phase, a molar extinction coefficient of 310000 

M-1 cm-1 was assumed. 

The labelled peptide was aliquoted (1 nmol) into 1.5 ml microtubes (NeoLab, 

Heidelberg, Germany), and the solvent was evaporated in the vacuum concentrator 

at room temperature. Aliquots were stored at -80 °C. 

 

3.2.2.2 Y2 receptor antagonists 

The Y2 receptor antagonists BIIE0246 (2) and the structural analogs 3-8 (Fig. 18) 

were synthesized by Albert Brennauer.  
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3.2.2.3 Flow cytometry 

In general, cells were grown to 80-90 % confluence, trypsinized and resuspended in 

Ham’s F12 medium, containing 10 % FCS for the inactivation of trypsine. Cells were 

counted, centrifuged for 5 min at 1200 rpm (Minifuge RF, Heraeus, Hanau, Germany) 

and resuspended at a density of 106 cells/ml in binding buffer (Sheikh and Williams, 

1990), containing 25 mM Hepes, 2.5 mM CaCl2 and 1 mM MgCl2 in millipore water, 

pH 7.4, supplemented with 1 % BSA and 0.1 mg/ml bacitracin (Sigma, Deisenhofen). 

Cells were incubated at room temperature in 1.5 ml polypropylene tubes which were 

siliconized using Sigmacote™ (Sigma, Deisenhofen, Germany) to prevent protein 

adsorption. The incubation was accomplished with gentle shaking (120 rpm) in the 

dark to circumvent cell aggregation and photobleaching of the dye. 

Samples were measured without further processing with a Becton Dickinson 

FACSCalibur™ flow cytometer; instrument settings were: FSC: E-1, SSC: 280 V FL4: 

800 V, Flow: HI; measurement stopped when 20000 gated events were counted. The 

cells were gated and the geometric means of fluorescence were calculated using the 

WinMDI software. For the screening of cell clones, 490 µl of cell suspension were 

incubated with 10 µl of cy5-pNPY (250 nM in 10 mM HCl plus 0.1 % BSA) for 60-90 

minutes. Cell clones with high specific cell-bound fluorescence were expanded and 

analyzed in saturation experiments. 

Association kinetics was determined by incubation of CHO-hY2-K9 cells with 5 nM 

cy5-pNPY. Samples were taken at different time periods and measured. 

For saturation experiments, 485 µl of cell suspension were added to 10 µl of cy5-

pNPY and 5 µl of solvent resp. unlabelled pNPY (for the determination of total resp. 

unspecific binding). Cells were incubated for 120 min at room temperature. 

Competition experiments were performed using 485 µl of cell suspension, 10 µl of 

cy5-pNPY (final concentration 5 nM) and 5 µl of test compound. Incubation time was 

120 min at room temperature. The constant Ki for the inhibition of cy5-pNPY binding 

by unlabeled competitors was calculated from the concentration of unlabeled 

competitor, producing 50 % inhibition (IC50) of the specific cy5-pNPY binding using 

the following relation Ki = IC50 · [Kd / (Kd + L)] where Kd is the dissociation constant 

and L the concentration of cy5-pNPY (Cheng and Prusoff, 1973). 

 



52 Chapter 3.2  

3.2.2.4 Confocal microscopy 

CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells (see 4.2.3.1) were seeded in 200 µl Ham’s F12 

medium containing 10 % FCS on a Lab-Tek® II, 8 chamber coverglass system (Nalge 

Nunc, Naperville, IL, USA) two days prior to the experiment and were grown to 50-70 

% confluence. The medium was replaced with 200 µl of L-15 Leibowitz medium 

(Sigma) containing 10 nM cy5-pNPY and incubated at room temperature for 30 min. 

For the visualization of unspecific binding, 1 µM of unlabeled pNPY was added to the 

incubation medium. Cells were washed with PBS (3.1.2.10.2) and fixed with 

paraformaldehyde (4 % in PBS) for 30 min. Nuclei were stained with 500 nM Sytox® 

Green (Invitrogen, Karlruhe, Germany) in PBS for additional 30 min at room 

temperature, followed by a washing step with PBS. Confocal microscopy was 

performed with a Zeiss Axiovert 200 M microscope, equipped with the LSM 510 laser 

scanner, using a Plan-Apochromat 63x/1.4 objective with oil immersion. For the 

excitation of the cyanine dye, the 633 nm laser line was used with a laser power of 

51 %. Fluorescence was detected using the 650 nm longpass filter. The nuclear dye 

Sytox® Green was excited at 488 nm with a laser power of 3 %. Emitted fluorescence 

was detected using a 505 nm longpass filter. The scanning mode was multi track. 

Control scans were performed without Sytox® Green to exclude that cy5-pNPY 

fluorescence is detected in the channel of the nuclear dye. 

 

3.2.3 Results 

3.2.3.1 Flow cytometric binding assay 

Before competition binding experiments were performed, the incubation time, 

allowing the system to approach equilibrium, was determined (Fig. 19). 
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Fig. 19: Equilibrium binding 
experiment. CHO-hY2-K9 cells 
were incubated with 5 nM Cy5-
pNPY at room temperature. 95 % 
of maximum binding was reached 
after 112.4 min (mean values ±
SEM, n=3). 
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As after 112.4 min (t1/2 = 12.5 min) 95 % of maximum binding was reached, an 

incubation period of 2 h was considered appropriate. 

Accordingly, a Kd of 5.2 ± 2.1 nM was determined in a flow cytometric saturation 

experiment with a fit to a one site hyperbolic curve (Fig. 20a). As the fraction of 

unspecific binding was below 30 % (21.5 %) at 5 nM cy5-pNPY, this concentration of 

the labeled ligand was chosen for competition assays as shown in Fig. 20b. the 

investigared Y2 antagonists (Fig. 18) displaced the fluorescent ligand cy5-pNPY (Fig. 

20b).  

 

 

 

 

 

The known Y2-selective antagonist BIIE0246 (2) (Doods et al., 1999) bound with high 

affinity (Ki = 2.6 ± 1.2 nM) to the hY2 receptor. This is in good agreement with the 

literature as the authors (Doods et al., 1999) reported on an IC50 value of 3.3 nM, 

determined with hY2 receptor expressing SMS-KAN cells and [125I]neuropeptide Y as 

radioligand. Goumain and co-workers  published Ki values for the rat Y2 receptor 

ranging  from 6.5 nM (rat jejunal crypt cells) to 9.0 nM (CHO-rY2 cells) determined 

with [125I]PYY as radioligand (Goumain et al., 2001) and Dumont and co-workers 

determined an IC50 of 15 nM using HEK 293 cells transfected with the rat Y2 receptor 

cDNA and [125I]PYY3-36 as radioligand (Dumont et al., 2000). 

Compound 4 containing the α-diphenylmethyl residue also showed high affinity with a 

Ki value of 6.8 ± 2.3 nM. Exchange of the piperazine by a piperidine ring reduced the 

Fig. 20: Flow cytometric experiments with CHO-hY2-K9 cells. a: saturation assay with cy5-
pNPY; unspecific binding was determined in the presence of 1 µM unlabeled pNPY. b: 
Competition assay with 5 nM cy5-pNPY in presence of various concentrations of antagonists; 
unspecific binding was determined in the presence of 1 µM pNPY (mean values ± SEM, n=3). 
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affinity as shown for substance 3 (Ki = 41.6 ± 12.9 nM). Further alterations of the 

argininamide structure led to decreased affinities of compounds 5 (Ki = 976.2 ± 250.8 

nM), 6 (Ki = 1753 ± 492 nM), 7 (Ki = 2065 ± 652 nM) and 8 (Ki = 96.7 ± 23.6 nM). 

 

Binding affinities of peptide ligands were determined using CHO-hY2-K9-qi5-mtAEQ-

A7 cells described in chapter 4.2 .  

 

 
 

 

 

The results (Fig. 21) confirmed the typical pharmacological profile of the Y2 receptor. 

pNPY and pPYY bound with high affinity (Ki values 0.8 ± 0.2 nM resp. 0.4 ± 0.1 nM). 

For comparison, Gerald et al. used [125I]-PYY and membranes of transiently 

transfected COS-7 cells in a radioligand binding assay and determined comparable 

Ki values (Ki (pNPY) = 0.85 nM and Ki (pPYY) = 0.35 nM) (Gerald et al., 1995). The 

Y2 preferring ligand pNPY13-36 bound with high affinity (Ki = 1.7 ± 0.4 nM) which has 

been also reported by Gerald et al. (Ki = 2.82 nM), whereas the Y1 preferring ligand 

[L31, P34]-pNPY was not able to displace cy5-pNPY up to a concentration of 1000 nM.  

 

3.2.3.2 Confocal microscopy 

Binding of cy5-pNPY (1) to CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells (see section 4.2) 

was visualized by means of confocal microscopy. As shown in Fig. 22, the 

fluorescence-labeled ligand enriched at the cell membrane. This binding was 

abolished in the presence of 1 µM pNPY. The counterstaining of the nuclei with 

Sytox® Green was used to ensure that the scanning plane was within the cells. 

Fig. 21: Competition of various peptide 
ligands with 5 nM cy5-pNPY for the 
binding to CHO-hY2-K9-qi5-mtAEQ-A7 
cells (mean values ± SEM, n=3). 
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Fig. 22: Confocal microscopy of CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells incubated with 10 nM cy5-
pNPY. Total binding (Ia-c) and unspecific binding (IIa-c) in the presence of 1 µM unlabeled pNPY. 
Fluorescence of cy5-pNPY is shown in green (a); nuclei were stained with 500 nM Sytox® Green, 
shown in red (b). Merged images shown in panels c. For instruments settings see section 3.2.2.4. 

 

The formation of clusters of fluorescent ligand within the cells might indicate receptor-

mediated internalization as the formation of such clusters is also reported for Y1-

expressing SK-N-MC cells binding carboxyfluorescein-NPY (Fabry et al., 2000), 

although the Y2 receptor is characterized by a lower rate of internalization compared 

to the Y1 receptor when expressed in CHO cells (Parker et al., 2001b). However, it 

cannot be excluded that these clusters are artefacts due to fixation. Nevertheless, 

internalized agonist [3H]-pNPY was also found in radioligand binding studies (see 

3.3.3). Further experiments should include three-dimensional laser scanning 

microscopy of living cells with an appropriate counterstaining in order to localize 

internalized cy5-pNPY more precisely.  
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3.3 Whole cell radioligand binding assay 

3.3.1 Introduction 

To compare the flow cytometric binding data determined with the stably transfected 

CHO-hY2-K9 cells not only with data from the literature but also with a standard 

binding assay, a radioligand binding assay with whole cells was established. For this 

purpose CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were used as the affinity of the agonist 

cy5-pNPY to the hY2 receptor was not altered after transfection of CHO-hY2-K9 cells 

with the Gqi5 construct (see section 4.1.3.3). Additional transfection of the cells with 

the mtAEQ construct should not affect the binding properties of the hY2 receptor. 

The most common preparations used for binding assays are isolated membranes. 

The use of intact cells for binding assays provides some advantages but some 

disadvantages as well. The most obvious advantage using whole cells is that the 

receptor can be studied in its natural environment in the cell membrane. Any 

gradients of pH or other ions that normally exist across the membrane remain intact, 

and also the intracellular parts of the receptor remain in their natural cytosolic 

environment containing G-proteins, nucleotides, ions, enzymes and other proteins. 

Binding of receptor ligands can only occur from the extracellular side of the 

membrane as it is expected under physiological conditions unless the ligand is able 

to cross the membrane by diffusion of other mechanisms. Binding properties are 

determined using the same preparations as the ones used for the measurement of 

functional parameters (although some functional assays are already performed with 

membranes) making the data more comparable. The preparation of the samples is 

faster and more convenient compared to the preparation of membranes. This is very 

advantageous when many cell clones are screened for expression of the 

recombinant receptor. Changes in receptor expression due to agonist-induced 

desensitization, internalization, and down-regulation can be determined as well as 

changes in subcellular distribution and modification (e.g. phosphorylation). 

Adherently growing cells are convenient for whole cell radioligand binding assays in 

multiwell plates as separation of free radioligand from bound radioligand is 

accomplished simply by suction of the incubation medium followed by washing steps. 

Using flow cytometry, only the intact, whole cells are gated and the amount of cell-

bound fluorescent ligand can be determined at equilibrium.  
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The disadvantages using intact cells for binding assays originate mainly from the 

dynamics of living cells. Receptors are constantly being synthesized, degraded, 

internalized and recycled, making it difficult to find equilibrium conditions where 

constant numbers of cell surface receptors are present. Exposure to agonists will 

often alter these processes, leading to a loss of cell surface receptors. Agonist-

induced internalization of labeled agonist can greatly increase the apparent non-

specific binding or regulatory changes in receptor properties as phosphorylation or 

uncoupling may occur and seriously alter the binding properties of receptors 

measured on whole cells. Furthermore, it is very difficult to vary or control the assay 

conditions inside the cell, e.g. pH value or the concentration of other ions or GTP. 

Because the only radiolabeled ligands for the Y2 receptors known so far are agonists, 

the rate of receptor internalization should be considered when using such 

radioligands. 

 

3.3.2 Materials and Methods 

3.3.2.1 Radioligand binding assay 

[3H]-pNPY (specific activity: 1.91-3.96 TBq/mmol) was purchased from Amersham 

Biosciences. The CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were seeded at a density of 

25000 cells/well in 500 µl Ham’s F12 medium plus 10 % FCS on 24-well plates 

(Falcon Plastics 3226) two days before the experiment. The medium was removed 

by suction, and 200 µl of binding buffer (see section 3.2.2.3) were added. 25 µl of test 

compound (10-fold the final concentration in binding buffer) were added prior the 

addition of 25 µl of the 10-fold concentrated radioligand in binding buffer. Cells were 

incubated at room temperature under slight shaking for 2 h. Then, the supernatant 

was sucked off and the adherent cells were washed twice with ice-cold buffer. Lysis 

of the cells was accomplished by the addition of 200 µl of lysis buffer, containing 8 M 

urea (Merck), 3 M acetic acid (Merck) and 1 % Triton-X-100 (Sigma) in millipore 

water, followed by 30 min incubation at room temperature under slight shaking. The 

lysates were transferred into scintillation vials and each well was washed with 

another 200 µl of lysis buffer. After addition of 2 ml of Rotiscint-eco (Roth, Karlsruhe, 

Germany) and vigorous shaking radioactivity was measured in a LS 1801 ß-counter 

(Beckmann Instruments, München, Germany). Unspecific binding was determined in 

the presence of 1 µM of unlabeled pNPY. Assays were performed in triplicate.   
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3.3.2.2 Acid extraction of cell-associated radioligand 

Cells were prepared and incubated with the radioligand as described in section 

3.3.2.1. Acid extraction procedure was performed as described (Haigler et al., 1980; 

Parker et al., 2001b; Sullivan and Schonbrunn, 1986). After the incubation with the 

radioligand the cells were washed twice with 500 µl of ice-cold binding buffer to 

remove non-specifically adsorbed radioligand and then treated with 200 µl ice-cold 

0.2 M acetic acid, 0.5 M NaCl at pH 2.5 (acid wash solution) for 15 min. The cell 

monolayer was washed with another 200 µl of ice-cold acid wash solution and the 

collected acid extract was counted with the ß-counter. The cells were lysed and the 

lysate was measured as described in 3.3.2.1. 

 

3.3.2.3 HPLC analysis of adsorption of BIIE0246 

A solution of compound 2 in binding buffer II (5 µM) was prepared in a glass vessel 

aliquoted into different types of assay vessels and incubated at room temperature for 

2 h. Prior to injection acetonitrile was added to the samples to a final concentration of 

15 % yielding the composition of the initial mobile phase. Samples were filtrated 

using Millex®-HN (0.45 µm) syringe driven filter units (Millipore Corp., Billerica, MA, 

USA) and subsequently analyzed by HPLC. Separation and quantification of the 

samples was performed using an HPLC system by Thermo Separation Products 

(Egelsbach, Germany) equipped with a SN 4000 controller, a P4000 pump, an 

AS3000 autosampler and a Spectra FOCUS UV-VIS detector. A Nucleodur 100-5 

C18 column (Macherey-Nagel, Düren, Germany) was thermostatted at 30 °C. 

Solvents were acetonitrile and 0.05 % aqueous trifluoracetic acid.  
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(2) Injection of 50 µl of a 100 µM 
solution. The compound was eluted 
at 16.8 min. The peak at 20.3 min 
results from a by-product generated 
during synthesis. 
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After 10 min of equilibration with 15 % acetonitrile, 95 µl of the sample were injected 

and the fraction of acetonitrile was raised to 85 % over 30 min as a linear gradient at 

a flow rate of 0.8 ml/min. Absorbance was detected at 210 and 254 nm.  

The purity of the compound was analyzed with HPLC revealing two peaks at 16.8 

and 20.3 min. The fractions were collected and analyzed with ESI-MS. The first peak 

(16.8 min) is the product peak consistent with the calculated exact mass of 895 g/mol. 

The second fraction contained a compound with a mass of 897 g/mol. Presumably, 

this impurity was formed during the synthesis by hydrogenolysis of the triazolidine 

ring. The same ratio of product to by-product was found in a six months old solution 

of 2 in DMSO and in a freshly prepared solution. Therefore, it can be excluded that 

the by-product was formed during storage in solution.  

 

3.3.3 Results 

The internalization of hY2 receptors stably expressed in CHO-hY2-K9-qi5-K9-mtAEQ-

A7 cells after exposure to the agonist [3H]-pNPY was determined. The acid extraction 

of cell associated ligand was used to discriminate between externally bound ligand 

from internalized ligand. The ligand stripped from washed cells by ice-cold 

CH3COOH/0.5 M NaCl was considered as dissociated from cell-surface receptors, 

whereas the residual radioactivity determined after cell lysis was considered as 

internalized ligand (Parker et al., 2001b). All experiments were done at room 

temperature (22 °C) by analogy with the radioligand binding assays. 
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Fig. 24: Kinetics of labeling of 
cell surface and internalized 
receptors with 0.48 nM [3H]-
pNPY. Data were fitted to a 
single rectangular hyperbolic 
curve (2 parameter). The half-
time to maximum binding was 
4.1 ± 1.2 min for surface 
receptors and 8.8 ± 4.1 min for 
internalized receptors. The 
fraction of internalized recep-
tors was 10.7 % in equilibrium. 
Unspecific binding was deter-
mined in presence of 1 µM 
pNPY (mean values ± SEM,
n=3). 
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As shown in Fig. 24, t1/2 of maximum binding to surface receptors was 4.1 ± 1.2 min. 

95 % of maximum binding (2107 dpm) was reached after 77.4 min. Therefore, an 

incubation time of 2 h was considerd sufficient to reach equilibrium in competition 

assays using comparable concentrations of radioligand. For internalized receptors, 

binding kinetics was slightly delayed with a t1/2 of of 8.8 ± 4.1 min. 10.7 % of 

specifically bound radioligand was internalized at equilibrium.  

To compare whether the transfection with the Gqi5 construct has an effect on receptor 

internalization an analogous experiment was performed with CHO-hY2-K9 cells.  
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In Fig. 25, the kinetics of radioligand binding (0.51 nM) to surface receptors and 

receptor internalizaton is shown. With respect to maximum binding to surface 

receptors t1/2 (15.2 min) was delayed compared to the Gqi5- and mtAEQ-transfected 

cells but the fraction of internalized receptors was almost the same (10.2 %). These 

data suggest that the transfection with the Gqi5 and the mtAEQ constructs have no 

significant effect on receptor internalization following exposure to [3H]-pNPY. 

Hypertonic sucrose has been shown to prevent receptor-mediated endocytosis of 

GPCRs (Grady et al., 1995). Therefore, the effect of high concentrations of sucrose 

on the internalization of the hY2 receptor was determined. The result is shown in Fig. 

26. For internalized receptors, the maximum observed binding relative to control was 

62.2 % at 0.25 M and 41.3 % at 0.5 M sucrose. t1/2 estimates of maximum binding 

were 15.0 min and 3.5 min for 0.25 M and 0.5 M sucrose, respectively, compared to 

6.8 min in the control. In parallel, the rate of ligand binding to cell-surface receptors 

was lowered. Maximum binding to surface receptors was reduced relative to control 

Fig. 25: Kinetics of the labeling 
of cell surface receptors and 
receptor internalization with 0.51 
nM [3H]-pNPY. Data were fitted 
to a single rectangular hyperbolic 
curve (2 parameter). t1/2 of maxi-
mum binding was 15.2 ± 3.8 min 
for surface receptors and 36.7 ±
31.7 min for internalized re-
ceptors. The fraction of inter-
nalized receptors was 10.2 % at 
equilibrium. Unspecific binding 
was determined in the presence 
of 1 µM pNPY (mean values ±
SEM, n=3). 



 Whole Cell Radioligand Binding Assay for the hY2 Receptor 61 

(33.2 % and 30.3 % at 0.25 M and 0.5 M sucrose, respectively). Therefore, the 

percentage of internalized receptors was increased in the presence of sucrose while 

the absolute amount of internalized receptor decreased. The data suggest that the 

diminished receptor internalization is due to the decreased binding of the ligand to 

cell-surface receptors and not a result of the inhibition of receptor-mediated 

endocytosis caused by the hypertonic sucrose solution.  
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Many receptors of the rhodopsin family were described as partly cryptic, hidden, 

masked, or compartmentalized, for example the thrombin receptor (Kawabata and 

Kuroda, 2000), the α2 adrenergic receptor (Adler et al., 1987) and the 5-HT1B 

receptor (Adham et al., 1993). Also the cloned guinea-pig Y2 receptor expressed in 

CHO cells as well as the rat Y2 receptor, natively expressed in the rat forebrain, have 

been shown to consist of two fractions (Parker et al., 2002b). One fraction is readily 

accessible to radiolabeled agonists and comprises less than 30 % of Y2 receptors 

detected in the membrane preparation of the cell homogenate. The larger fraction of 

Y2 receptors is sequestered and not accessible for agonists in intact cells. This 

masking of the Y2 receptor could be abolished by the addition of phenylarsine oxide 

(PAO), resulting in an increased binding of agonist to intact cells by fourfold to 

fivefold.   

The existence of a hY2 receptor reserve, which could be unmasked by PAO, was 

investigated (Fig. 28). At a concentration of 30 µM the membrane-permeable, vicinal 

cysteine-bridging phenylarsine oxide caused a strong increase in [3H]-pNPY binding 

to CHO-hY2-K9-qi5-K9-mtAEQ-A7 cell monolayers (external).  

 

Fig. 26: Effect of sucrose 
on the labeling of surface-
attached and internalized 
receptors. The 
concentration of [3H]-pNPY 
was 0.48 nM (mean values 
± SEM, n=3). 
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Because this activation of additional surface sites was not saturated over the 

observed interval, no reliable kinetic estimates could be made. After 120 min of 

incubation, the increase was 4.2-fold compared to the control. This is consistent with 

the results of Parker et al. who determined a fourfold to fivefold increase in [125I]-

hPYY13-36 binding to CHO cell monolayers expressing the guinea-pig Y2 receptor in 

the presence of 30 µM PAO (Parker et al., 2002b). The fraction of internalized 

receptor after 120 min was almost unchanged with 11.5 % in the presence and 12.4 

% in the absence of PAO. 

Unmasking of sequestered surface receptors by PAO was also described for 

macroglobulin, transferrin and mannose-tipped glycoprotein receptors (Kaplan et al., 

1985). The mechanism of the activation of masked surface receptor by PAO remains 

unclear. As PAO is well membrane-permeable, target proteins can be supposed in 

the membrane as well as at intracellular sites. Parker and co-workers referred to 

many possible explanations such as alteration of the communication between the 

extracellular matrix and the actin cytoskeleton, de-anchoring of the receptor due to a 

change of membrane protein arrangement, increase in cell permeability, alteration of 

the state of receptor aggregation, or modification of proteasome subunits. Even G-

protein β- and γ-subunits that contain vicinal cysteins might be modified by PAO 

(Parker et al., 2002b). Further experiments, e.g. using confocal microscopy to 

visualize subcellular distribution of Y2 receptors in the presence of PAO, should be 

done to discover the mechanism of PAO activation of masked surface receptor sites. 

Fig. 27: Unmasking of a hY2 receptor 
reserve by PAO. The number of 
external and internal binding sites 
labeled by [3H]-pNPY is increased in 
presence of 30 µM of PAO compared 
to the control. The concentration of 
[3H]-pNPY was 0.50 nM (mean 
values ± SEM, n=3). 
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The determination of the Kd value of the radioligand is inevitable for the calculation of 

Ki values according to the Cheng-Prusoff equation (Cheng and Prusoff, 1973). 

Therefore, a saturation experiment was performed to determine the Kd value of [3H]-

pNPY. The result is shown in Fig. 29. The radioligand bound with high affinity and a 

Kd value of 0.7 ± 0.2 nM. This value is almost identical with the Ki value of pNPY 

determined in the flow cytometric binding assay (Ki = 0.8 ± 0.2 nM, see section 

3.2.3.1). 
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Other peptide ligands were tested in various radioligand competition assays. The 

assays were performed with different concentrations of [3H]-pNPY and Ki values were 

calculated according to the Cheng-Prusoff equation. Competition curves are 

summarized in Fig. 30. 
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Fig. 29: Saturation experiment with 
CHO-hY2-K9-qi5-K9-mtAEQ-A7 
cells. The determined Kd value of 
[3H]-pNPY is 0.8 ± 0.2 nM (mean 
values ± SEM, n=3). 

 

Fig. 30: Inhibition of [3H]-pNPY 
binding to CHO-hY2-K9-qi5-
K9-mtAEQ-A7 cells. The con-
centration of the radioligand 
was 0.49 nM for pPYY, 1.43 
nM for pNPY and pNPY13-36,
0.43 nM for cy5-pNPY and 
0.54 nM for hPP, GW1229 as 
well as BW1911U90. 
Calculated Ki values are 
described in the text (mean 
values ± SEM, n=3). 
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[3H]-pNPY was displaced from the CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells by the 

peptides with a pharmacological profile consistent for the Y2 receptor. As expected, 

pPYY showed the highest affinity (Ki = 0.06 ± 0.01 nM), followed by pNPY and 

pNPY13-36 (Ki = 0.4 ± 0.1 nM and 1.7 ± 0.4 nM). The Ki value of cy5-pNPY was 3.0 ± 

1.3 nM in the radioligand binding assay. This value is slightly lower compared to the 

Kd values determined in the flow cytometric saturation assays (5.3 nM and 5.3 nM 

determined with CHO-hY2-K9 cells and CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells, 

respectively) but still in the same range. The peptides hPP and GW1229 bound with 

low affinity (Ki = 67.9 ± 26.9 nM and 105.1 ± 29.9 nM) compared to pPYY and pNPY.  

The Y2 selective antagonist BIIE0246 (2) was tested in the radioligand binding assay. 

1.0 nM [3H]-pNPY was displaced by 2 with an IC50 value of 66.3 nM (Fig. 31). 
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The calculated Ki = 27.6 ± 10.9 nM is more than tenfold higher compared to the Ki 

value determined with the flow cytometric binding assay (Ki = 2.6 nM, see Fig. 20b). 

Therefore, the adsorption of the compound to the material of the used 24-well plates 

(Falcon®) was investigated and compared to the adsorption to other microplates and 

and different cups.  

Compound 2 was incubated for 2-3 h at room temperature at a concentration of 5 µM 

in binding buffer. The amount of “non-adsorbed” compound was determined using 

HPLC and compared to the reference prior to incubation. As shown in Fig. 32, after 

incubation of the compound in the 24-well plate used for the radioligand binding 

assay, only 39 % of the compound was recovered. Bearing in mind that adsorption 

was determined at a very high concentration of 5 µM (due to the detection limit of the 

HPLC), one can assume that the percentage of adsorbed compound will be even 

higher when used at concentrations in the nanomolar range. 

Fig. 31: Competition 
binding of 1.01 nM 
[3H]-pNPY in the 
presence of 2 (mean 
values ± SEM, n=3).  
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Adsorption occurred also during incubation of the compound with the other tested 

materials. 89 % of the compound was recovered following incubation in siliconized 

reaction vessels used for the flow cytometric binding assay. Incubation in the 

lumitrac® 200 96-well plate used for the aequorin assay led to adsorption of 42 % of 

the compound and 31 % of the compound were adsorbed to surface material after 

incubation in untreated (not siliconized) reaction vessels. Adsorption to the 24-well 

plate used for the radioligand binding assay could be reduced to 3 % by coating the 

well-plate with fetal calf serum overnight, but the Ki value of 2 determined using the 

coated plate (Fig. 33) was still 10-fold higher compared to the flow cytometric binding 

assay. A Ki value of 36.1 nM determined in a SPA assay using SMS-KAN 

membranes and [125I]-PYY was published by Dautzenberg. As this assay was 

performed in a 96-well-plate (Dautzenberg, 2005) adsorption can not be excluded. 
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Fig. 32: Adsorption of compound 
2, used as 5 µM solution in 
binding buffer, to various 
materials (mean values ± SEM, 
n=3). 

Fig. 33: Inhibition of 0.46 nM [3H]-
pNPY binding to CHO-hY2-K9-qi5-
K9-mtAEQ-A7 cells in presence of 
BIIE0246 (2). The assay was 
performed in a 24-well plate coated 
with fetal calf serum (mean values 
± SEM, n=3). 
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Because of the structural similarities of the compounds the adsorption of compounds 

3-8 to the solid phase used for binding assays is supposed to be similar to 2. 

Nevertheless, it can not be excluded that different compound-specific adsorption 

effects interfere with the determination of the Ki values, especially when measured at 

low concentrations. 

 

3.4 Conclusions 
The flow cytometric binding assay using CHO cells, stably transfected with the hY2 

receptor gene, and cy5-labelled pNPY is a reliable and robust method for the 

determination of binding data at equilibrium. As summarized in Table 4 for the tested 

peptide ligands, the calculated Ki values are comparable with the data obtained from 

a radioligand binding assay.  

Table 4: Comparison of Ki values calculated from flow cytometric and radioligand binding assay. (a: 
saturation experiment; ND: not determined) 

ligand Ki [nM] 
flow cytometric assay 

Ki [nM] 
radioligand binding assay 

pPYY 0.38 ± 0.10 0.059 ± 0.012 
pNPY 0.76 ± 0.20 0.40 ± 0.08 

pNPY13-36 1.69 ± 0.42 1.67 ± 0.41 
cy5-pNPY 5.23 ± 2.15a 3.01 ± 1.25 

[L31,P34]-pNPY > 100 ND 
[3H]-pNPY ND 0.72 ± 0.15 

 

Lipophilic compounds such as 2 and related structures tend to adsorb to the 

materials used in the assay. The Ki value determined in the flow cytometric binding 

assay is in the same range as that described in the literature. But because of its 

lipophilic properties, the compound tends to adsorb to the “plastics” material resulting 

in decreased free concentrations as described in case of the radioligand binding 

assay in 3.3.3. These effects must be kept in mind when affinity data of argininamide 

2 and related compounds are determined. 
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Chapter 4 
 

4 Development of functional 
assays for the human NPY Y2 

receptor 
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4.1 Flow cytometric calcium assay 

4.1.1 Introduction 

4.1.1.1 Functional assays for the NPY Y2 receptor 

For the determination of the activity of Y2 receptor ligands, potent and robust 

functional assays are required. In contrast to classical binding assays, which can only 

detect molecules occupying the same binding pocket as the labelled ligand, 

allosterism can be detected in functional assays too (Kenakin, 2004). The most 

commonly used assay is based on the inhibition of forskolin-induced cAMP formation 

(Beck-Sickinger et al., 1992; Goumain et al., 2001) as the Y2 receptor is known to 

couple to the Gi/o pathway (Michel et al., 1998). The human neuroblastoma cell line 

SMS-KAN endogenously expressing the hY2 receptor was found to couple to three 

intracellular signal transduction pathways (Shigeri and Fujimoto, 1994). Activation of 

the Y2 receptor led to a decrease in angiotensin II- or bradykinin-induced Ca2+ 

release from intracellular stores and resulted in an inhibition of forskolin-stimulated 

cAMP accumulation as well as in high ω-conotoxin-sensitive K+-induced calcium 

influx. These pathways are indirect mechanisms as they are based on the inhibition 

of stimuli and they are not well suited for the establishment of functional assays. For 

example, in cAMP assays the forskolin-mediated prestimulation can vary even in 

substrains of the same cell line (Dautzenberg, 2005), and the agonist-mediated 

inhibition of cAMP formation rarely exceeds 60 % of the forskolin signal (Coward et 

al., 1999) resulting in a limited dynamic range and a low signal-to-noise ratio of the 

assay. In addition, assays aiming at the quantification of adenylylcyclase inhibition 

are variable, time consuming and inappropriate for high throughput applications. The 

GTPγ35S scintillation proximity assay (Ferrer et al., 2003) has been successfully 

applied to the hY2 receptor (Dautzenberg et al., 2005), although the determined EC50 

values of Y2 receptor agonists were 3- to 10-fold higher, compared to the cAMP 

assay. Furthermore, this intricate and expensive technique requires the purification of 

membrane components and the handling of radioisotopes, and lacks the intrinsic 

signal amplification, occuring in living cells under physiological conditions.  

The most convenient signal transduction pathway for the establishment of functional 

assays is an increase in intracellular calcium concentration following receptor 

activation. Changes in [Ca2+]i can be easily measured using fluorescent indicator 
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dyes (for an overview see Tepikin, 2001) or genetically encoded calcium indicators 

such as as aequorin (see section 4.2) or cameleons (Miyawaki et al., 1999; Miyawaki 

et al., 2001). 

 

4.1.1.2 Coupling of NPY Y2 receptor activation to the phospholipase C 
pathway 

Reports in the literatur on Y2 receptor coupling to mobilization of intracellular calcium 

are controversal. An increase in the intracellular calcium concentration in hY2 

transfected HEK293 cells was described by Gerald (Gerald et al., 1995) but was not 

observed by Dautzenberg (Dautzenberg et al., 2005). For CHP-234 cells (Lynch et 

al., 1994) and CHO cells transfected with the hY2 gene (Rose et al., 1995) calcium 

responses were also reported. By contrast, only a very slight increase in intracellular 

calcium was measured in our laboratory in the spectrofluorimetric fura-2 assay using 

transfected CHO cells stably expressing the human Y2 receptor.  

An increase in intracellular calcium as a result of GPCR activation via the 

phospholipase C pathway is usually mediated by α-subunits of heterotrimeric G 

proteins of the Gq family (Offermanns, 2003). However, IP3 generation mediated by 

βγ-subunits of Gi upon receptor activation is discussed too (Offermanns and Simon, 

1995). The Gq family comprises the Gq, G11, G14 and G15/16 proteins. Gq and G11 are 

almost ubiquitously expressed in mammalian cells, whereas expression of G14 is 

restricted to kidney, lung and spleen. The more distantly related G15 and G16 proteins 

were found to be only expressed in a subset of hematopoietic cells (Amatruda et al., 

1991; Wilkie et al., 1991). Because G15 and G16 are (unlike the other members of the 

Gq family) capable to link the activation of many Gs-, Gi- and Gq-coupled receptors to 

the phospholipase C pathway with subsequent intracellular Ca2+ increase, co-

expression of G16 and GPCRs has been successfully performed (Knight et al., 2003; 

Milligan et al., 1996; Offermanns and Simon, 1995; Stables et al., 1997; Zhu and 

Birnbaumer, 1996) aiming at the development of functional assays with a simple and 

robust readout (e.g. FLIPR assay). However, the coupling of G16 is less effective to 

Gi- compared to Gs-coupled receptors (Knight and Grigliatti, 2004; Kostenis, 2001). In 

order to improve the coupling of Gi-coupled receptors to the PLC/IP3 pathway, 

several chimeric G proteins derived from Gq were constructed (Conklin et al., 1996; 

Conklin et al., 1993; Coward et al., 1999). Replacement of the five C-terminal amino 
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acids of Gq with the corresponding Gi residues considerably enhanced the coupling 

efficiency to Gi-coupled receptors. Other modifications of Gq proteins are discussed 

by Kostenis (Kostenis, 2001) and Milligan and Rees (Milligan and Rees, 1999). 

Chimeric G proteins have already been used for the mobilization of calcium from 

intracellular stores in response to agonist stimulation by the generation of appropriate 

cells (Coward et al., 1999; Dautzenberg, 2005; Dautzenberg et al., 2005; Knight and 

Grigliatti, 2004). 

 

4.1.1.3 Flow cytometric calcium assay 

Flow cytometric kinetic measurements of calcium mobilization require a technique 

which allows continuous registration during the addition of an agonist without 

interrupting the sample flow. Several sophisticated techniques have been developed 

using a stopped-flow mixing approach in order to reduce (Nolan et al., 1995) or using 

microfluidic mixing approaches to completely abolish (Edwards et al., 2004; Jackson 

et al., 2002a; Jackson et al., 2002b; Nolan and Sklar, 1998; Scampavia et al., 1995) 

the dead-time needed for mixing the cell suspension with the sample before the 

measurement. A simple technique was established by Schneider (Schneider, 2005) 

using a purpose-build glass sample tube closed by a silicon septum. Variable 

volumes of ligand solutions can be added by injection with a hamilton syringe to a 

stirred cell suspension during continuous measurement. As the FACSCalibur flow 

cytometer is equipped with an argon and a red diode laser providing only the two 

fixed wavelengths at 488 and 635 nm for excitation of fluorescent Ca2+ indicator dyes, 

Schneider chose the non-ratiometric Ca2+ indicator dye fluo-4 (excitation maximum = 

494 nm) for the measurement of calcium responses with flow cytometry (Schneider, 

2005). The increase in fluorescence emission due to binding of intracellular calcium 

could be detected in channel 1 (FL-1, see Fig. 16) of the flow cytometer. Schneider 

constructed concentration-response curves for the thrombin receptor agonist 

thrombin on HEL cells using a spectrofluorimetric (fura-2) and a flow cytometric (fluo-

4) calcium assay and concluded that both assays are comparable.  

 

4.1.1.4 Spectrofluorimetric calcium assay 

The use of the ratiometric Ca2+ indicator fura-2 is a standard method for the 

measurement of intracellular calcium mobilization (Daniels et al., 1992; Petr and 
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Wurster, 1997). Binding of Ca2+ results in a shift of the excitation maximum so that 

intracellular calcium concentration can be calculated using the ratio (R) of 

fluorescence intensity after alternating excitation at two different wavelengths (see 

4.1.2.5). Therefore, the signal (R) is independent of intracellular dye concentration, 

which can vary due to diffences in the loading of the cells or because of dye leakage. 

This is the main advantage of ratiometric calcium indicator dyes compared to non-

ratiometric ones. The use of fura-2 has been successfully applied to HEL cells for the 

determination of functional data of hY1 receptor ligands (Gessele, 1998). 

 

4.1.2 Materials and Methods 

4.1.2.1 Standard media and cloning procedures 

Agar plates, LB and amp-LB media were prepared as described in 3.1.2. Competent 

E. coli cells were prepared using the TOP10 E. coli strain (Invitrogen, Karlsruhe, 

Germany) by analogy with the procedure described in chapter 3.1.2.2. For 

transformation with the pcDNA1 vector, containing the supF gene for selection, one 

Shot® TOP10/P3 competent cells were purchased from Invitrogen. Transformation, 

preparation of the plasmid DNA, restriction enzyme digestion and agarose gel 

electrophoresis were performed as described in chapter 3.1.2. 

 

4.1.2.2 Subcloning of pcDNA3.1/hygro-qi5 

The pcDNA1-qi5-HA vector was a generous gift of Dr. Bruce R. Conklin, Gladstone 

Institute of Cardiovascular Disease, University of California, San Francisco, USA. 

The construct Gqi5 originates from q4WT, which encodes for Gq alpha with an HA 

epitope engineered into an internal site that does not seem to affect receptor 

coupling in multiple studies (Wedegaertner et al., 1993). The last 5 C-terminal amino 

acids of the encoded construct are exchanged from Gq alpha to Gi alpha residues 

(EYNLV to DCGLF). As the carboxyl-terminus of the G alpha protein is a key 

determinant of receptor specificity (Conklin et al., 1996; Conklin et al., 1993), this 

construct allows many Gi-coupled receptors to stimulate phospholipase C (PLC). The 

construct Gqi5 was subcloned into the Bam HI/NsiI cassette of the pcDNA1 vector.  

The pcDNA3.1/Hygro vector was a gift of Dr. Thomas Dobner, Institute of 

Microbiology and Hygiene, University of Regensburg, Germany. 
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The restriction sites NsiI and XbaI downstream of the construct couldn’t be used for 

subcloning because of the absence of a NsiI restriction site in the multiple cloning 

site of the target vector and the presence of an XbaI site within the construct at bp 

834. Therefore, a new EcoRV site was introduced at the 3’-end of the construct by 

PCR. Primers were synthesized by MWG (Ebersberg, Germany). The sense primer 

matches to the T7 promoter/priming site of the pcDNA1 and the antisense primer 

contains the mutated EcoRV restriction site (in bold): 

 

sense:  5’-TAA TAC GAC TCA CTA TAG GG-3’  (20 b, Tm: 53.2 °C) 

antisense:  5’-CGC GAT ATC ATG CAT TCA GAA GAG GCC AC-3’  

(29 b, Tm: 68.1 °C) 

 

PCR reactions were prepared in a 

final volume of 50 µl containing 5 µl 

10x PCR buffer (peqLab, Erlangen, 

Germany), 20 ng of dsDNA template, 

15 pmol of each primer, 5 µl of 

dNTP mix (2 mM, MBI Fermentas), 

1 U of Pwo-DNA-polymerase 

(peqLab, Erlangen, Germany) and 

millipore water. PCR was performed 

in a Mastercycle gradient 

Thermocycler (Eppendorf, Hamburg, 

Germany) using a linear 

temperature gradient during the 

annealing step. 

Cycling parameters were:  

1) initial denaturation:      95 °C, 60 s 

         2) denaturation:        95 °C, 30 s 

         3) annealing:         50 – 60 °C, 1 min 

         4) extension:         72 °C, 2 min 

         5) final extension:      72 °C, 5 min 

         6) hold:                             4 °C 

       Steps 2) – 4) were repeated 30 times. 

Fig. 34: Formation of qi5 construct with 
introduced EcoRV restriction site at 
increasing annealing temperatures (A – D: 
50 °C – 60 °C). Concomitant formation of a 
by-product (black arrow) in D. 
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Formation of the PRC product with the expected size (1145 bp) was best with 

annealing temperature of 60 °C (Fig. 34). A by-product of 5000 bp (Fig. 34, black 

arrow) was also detected. The PCR product (1145 bp) was excised from the gel and 

purified with the QIAEX II purification kit (Quiagen, Hilden, Germany). DNA was 

eluted with 20 µl of millipore water. 

The purified insert and 2 µg of the pcDNA3.1/Hygro vector were both digested with 

BamHI (MBI Fermentas) and EcoRV (MBI Fermentas) using SuRE/Cut buffer B 

(Roche Diagnostics) for 3 h at 37 °C. DNA fragments were purified with the Qiagen 

PCR purification kit (Qiagen) and eluted with 20 µl of millipore water. 

For the ligation reactions, 2 µl of linearized vector were incubated with 2, 4, 6, or 8 µl 

of insert in the presence of 1 Weiss unit of T4 DNA ligase (MBI Fermentas), 2 µl of 

10x ligation buffer (MBI Fermentas) and water in a final volume of 20 µl. The samples 

were incubated for 60 min at room temperature and directly used for transformation 

without inactivation of the T4 ligase. 
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Transformation of E. coli was carried out with 10 µl of each ligation product. 

Ampicillin resistant bacterial colonies were propagated in overnight cultures using 

amp-LB medium and the plasmid DNA was isolated by MiniPrep as described in 

chapter 3.1.2.  Correct insertion of the Gqi5 construct was verified by restriction 

analysis (Fig. 35). The new pcDNA3.1/Hygro-qi5 vector has a length of 6656 bp with 

a BamHI site at 929 bp, an EcoRV site at 2023 bp and two EcoRI sites at 1853 and 

3420 bp. Restriction enzyme digestion with BamHI and EcoRV releases the Gqi5 

construct (1094 bp) from the vector (5562 bp) as shown in Fig. 35, A. Double 

Fig. 35: Restriction analysis of 
the pcDNA3.1/Hygro-qi5 vector. 
A: BamHI / Eco RV digestion; 
B: BamHI / EcoRI digestion 
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digestion of the plasmid with BamHI and EcoRI leads to three DNA fragments with 

lengths of 924, 1567 and 4165 bp (Fig. 35, B). Plasmid DNA was purified using the 

Qiagen Plasmid Purification Kit (Qiagen, Hilden, Germany), the construct was 

sequenced (Entelechon, Regensburg, Germany) and the sequence was compared 

with that obtained fom Dr. Conklin. Five conservative mutations were found: G144A, 

A157T, G158C, C159G, and G288A (counted from the ATG start codon of the 

construct). 

 

4.1.2.3 Transfection of CHO-hY2-K9 cells 

CHO-hY2-K9 cells were seeded in 500 µl of Ham’s F12 supplemented with 10 % FCS 

on a 24-well plate. On the day of transfection, 60-70 % confluence was reached. The 

pcDNA3.1/Hygro-qi5 vector was linearized with Eam11051 for 1 h at 37 °C and 

subsequently purified with the Quiagen PCR purification kit (Quiagen). The DNA was 

assumed to be 90 % of the amount of the applied DNA as the manufacturer specifies 

90-95 % recovery of the DNA after purification. For transfection, 300 ng of linearized 

plasmid and 1.8 µl of FuGENE™ were used per well. Transfections were performed 

according to the manufacturer’s instructions. Medium was replaced 24 h after 

transfection. Two days post-transfection, the cells were trypsinized and transferred 

into 25-cm2 tissue culture flasks (Becton Dickinson, Franklin Lakes, N.J., USA) with 

Ham’s F12 containing 10 % FCS, 400 µg/ml of geneticin and 400 µg/ml of 

hygromycin, respectively. Untransfected CHO-hY2-K9 cells were maintained in the 

same selective medium as a negative control. Cells were passaged by 1:10 splitting 

every 3 days. After 3 weeks control cells were dead and single clones of the 

transfected cells were selected as described in 3.1.2.12 and expanded for analysis in 

a flow cytometric calcium assay. 

 

4.1.2.4 Flow cytometric calcium assay 

Cells were grown for 2 days to 70-90 % confluence, trypsinized and detached with 

Ham’s F12 supplemented with 10 % FCS to inactivate trypsine. Cells were counted 

in a hemocytometer, centrifuged for 5 min at 300 g at room temperature and 

resuspended at a density of 2.66 ·106 cells / ml in loading buffer (Gessele, 1998) 

containing 120 mM NaCl, 5 mM KCl, 2 mM MgCl2, 1.5 mM CaCl2, 25 mM HEPES 

and 10 mM glucose at pH 7.4. For the preparation of the loading suspension, 3 µl of 
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fluo-4-AM (Molecular Probes; 1 mM stock solution in anhydrous DMSO) were added 

to 5 µl of pluronic™ F-127 (Molecular Probes; 20 % stock solution in DMSO) and 

mixed carefully before addition of 1 ml of loading buffer containing 2 % BSA. 330 µl 

of loading suspension were added to 1 ml of cell suspension resulting in a cell 

number of 2 · 106 cells / ml and a dye concentration of 0.7 µM.  

The cells were incubated in the dark for 30 min at room temperature and recentri-

fuged at 300 g for 5 min. After resuspension in loading buffer at a density of 0.5 - 1 · 
106 cells/ml, the cells were incubated again for 30 min at room temperature in the 

dark; during this postincubation step, the AM-ester is intracellularly cleaved and thus 

the calcium indicator is trapped in the cell.  
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Measurements were performed in a purpose-built glass tube closed by a silicon 

septum as described (Schneider, 2005). This instrumentation allows injections into 

the samples during continuous flow cytometric measurements. A tube containing 1 

ml of the cell suspension was connected with the flow cytometer under permanent 

stirring and the recording was started. Instrument settings were: FSC: E-1; SSC: 280; 

FL-1: 350; flow: high. 

After 30 s of measurement of the basal fluorescence 10 µl of peptide agonist solution 

were injected with a hamilton syringe and data were recorded for another 90 s. The 

needle of the flow cytometer was washed with millipore water after each 

measurement. Raw data were first averaged with the WinMDI software and then 

exported to Sigma Plot™ 8.0. 

Fig. 36: Structure of the fluo-4 AM ester. 
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Data were further smoothed (running average) with SigmaPlot™. The level of 

increase in fluorescence was calculated from the difference between the baseline 

(mean fluorescence of the first 25 s) and the highest value of the averaged curve. 

These amplitudes of the averaged signals were used to construct concentration-

response curves. For the determination of EC50 values of agonists, every third 

measurement was a 100 % reference signal elicited with 1 µM pNPY.  

Dilutions of Y2 receptor antagonists (Fig. 18) were made in DMSO, and 10 µl of 

antagonist was preincubated with 990 µl of cell suspension for 1 min before the 

measurement. Calcium response was triggered with 10 µl of 70 µM pNPY in 10 mM 

HCl containing 0.1 % BSA. The 100 % reference signal was induced in every third 

measurement, too. In this case, cells were preincubated in the presence of the 

solvent without antagonist. EC50 and IC50 values were calculated with Sigma Plot™ 

(Version 8.0, SPSS Inc.) using the equation of the four parameter logistics function. 

Fig. 37: Flow cytometric 
calcium assay. Fluorescence 
of fluo-4-loaded cells was 
recorded in channel 1 (FL-1) 
over 2 min. After 30 s, 
injection of 100 nM pNPY 
causes an increase in fluo-
rescence of gated qi5-trans-
fected CHO-hY2-K9 cells. 
Values were averaged with 
WinMDI software (blue line). 
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4.1.2.5 Spectrofluorimetric calcium assay 

The spectrofluorimetric calcium assay with the ratiometric Ca2+ indicator fura-2 was 

performed as described for HEL cells by Gessele (Gessele, 1998). Cells were grown 

to 70-80 % confluence, trypsinized and resuspended in FCS containing medium for 

trypsine inactivation. Cells were counted, centrifuged at 300 g for 5 min and 

resuspended at 1.3 · 106 cells/ml in loading buffer. 0.75 ml cell suspension were 

added to 0.25 ml of loading suspension containing 20 mg of BSA, 5 µl of pluronic F-

127 (20 % in DMSO) and 4 µl of fura-2/AM (Molecular Probes; 1 mM in anhydrous 

DMSO) in 1 ml of loading buffer. The addition of pluronic F-127 facilitates the 

solubilization of the lipophilic calcium indicator dye and the following dye loading as 

described for fluo-3 in (M. E. Granados, 1997) and (Kao et al., 1989). Final 

concentrations were: 1· 106 cell/ml, 1 µM fura-2/AM, 0.2 % DMSO and 0.025 % 

pluronic F-127. The cells were incubated for 30 min at room temperature in the dark, 

centrifuged and resuspended in the same volume of loading buffer. In order to 

achieve complete intracellular cleavage of the AM-ester, the cells were incubated for 

additional 30 min in the dark, washed twice with loading buffer and resuspended at a 

density of 1 · 106 cells/ml.  
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For the measurement, 1 ml of the cell suspension was transferred into a cuvette 

containing 1 ml of loading buffer under stirring. The baseline was recorded for 30 s 

before the agonist was added. Antagonists were added to the cell suspension 1 min 

before the calcium signal was triggered by the addition of a fixed concentration of 

Fig. 38: Structure of the fura-2 AM 
ester. 
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agonist. Every third measurement was a reference signal. For the determination of 

agonist activity, the reference signal was triggered by 1 µM pNPY; for the 

determination of IC50 values of antagonists, the reference signal was elicited in the 

absence of antagonist. Instruments settings were λex = 340 and 380 nm (alternating) 

with slit = 10 nm and λem = 510 nm with slit = 10 nm. Stirring was low and 

temperature was 25 °C.  

The ratio R of fluorescence intensity at 510 nm after excitation at 340 and 380 nm 

was used for the calculation of the calcium concentration according to the 

Grynkiewicz equation (Grynkiewicz et al., 1985): 

 

 

 

 

The KD value is the dissociation constant of the fura-2-Ca2+ complex. Rmax is the 

fluorescence ratio in presence of a saturating Ca2+ concentration, determined after 

the addition of 10 µl of digitonin solution (2% in water, Sigma), which caused lysis of 

the cells and saturation of the dye with the calcium ions of the loading buffer. Rmin is 

the ratio in absence of free Ca2+, determined after the addition of 50 µl of EGTA 

solution (600 mM in 1 M tris buffer, pH 8.7) to the lysed cells. The correction factor 

SFB is the ratio of fluorescence intensity at 510 nm after excitation at 380 nm of the 

Ca2+ free and Ca2+ saturated dye.  

[ ] SFB
R)(R

)R(RKCa
max

min
D

2 ⋅
−

−
⋅=+



 Flow Cytometric Calcium Assay for the hY2 Receptor 79 

4.1.3 Results and discussion 

4.1.3.1 Characterization of the transfectants using peptidic agonists in the 
flow cytometric calcium assay 

Four weeks after transfection of CHO-hY2-K9 cells with the linearized Gqi5 construct 

and culturing in selective medium, 24 cell clones were selected, expanded and 

analysed in the flow cytometric calcium assay. Following injection of 20 nM pNPY, 

clone 9 showed a robust increase in fluorescence. As shown in Fig. 39A, this 

increase was concentration dependent and reached its maximum at 1 µM pNPY with 

a 5.3–fold increase in fluorescence (from 26.7 to 140.6 RFU). This maximum 

increase is dependent on the condition of the cells, especially on the degree of 

confluence, and varies between different cell preparations. The strongest calcium 

responses were obtained using cells which had grown to ca. 80 % confluence in two 

days. In order to account for this variation and for alterations of the fluorescence 

signal due to dye leakage during the test series 100 % reference samples were 

included by injection of 1 µM pNPY (every third measurement). This allowed the 

construction of concentration-response curves (Fig. 39B). The EC50 value of pNPY at 

the hY2 receptor was 18.1  ± 2.9 nM. The Y2 preferring agonist pNPY13-36 caused a 

comparable effect with an EC50 value of 13.3 ± 6.2 nM and the ligand pPYY was 

even more potent with an EC50 value of 7.9 ± 5.5 nM. This pharmacological profile is 

characteristic of the human Y2 receptor. Dautzenberg  reported on EC50 values in the 

same range determined in a FLIPR assay using Gqi9-transfected SMS-KAN 

(Dautzenberg, 2005) or HEK293 cells co-transfected with hY2 and Gqi9 (Dautzenberg 

et al., 2005). 
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Fig. 39: Flow cytometric Ca2+ assay with CHO-hY2-K9-qi5-K9 cells loaded with fluo-4. A:
concentration dependent increase in fluorescence after injection of pNPY. B: concentration-
response curves of Y2 agonists. Maximal reference signal was elicited with 1 µM pNPY (mean 
values ± SEM, n=3). 
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4.1.3.2 Comparisation of wild type and transfected CHO cells 

In order to evaluate the effect of the stable co-transfection with the Gqi5 construct, 

CHO, CHO-hY2-K9 and CHO-hY2-K9-qi5-K9 cells were loaded with fura-2 and 

anylysed with respect to their response upon stimulation with pNPY. 

 
 

 
 
 

 

As expected, wild-type CHO cells did not respond to the addition of 50 nM pNPY. A 

slight increase in the intracellular calcium concentration was observed with CHO cells 

stably transfected with the hY2 receptor gene. But this increase rarely exceeded 20 % 

of the basal calcium concentration and is not sufficient for the development of a 

robust functional calcium assay. After the transfection with the construct encoding for 

the chimeric G protein, stimulation of the cells with the Y2 agonist pNPY led to a 

strong calcium signal, providing a sufficient signal-to-noise ratio for the establishment 

of robust functional assays. 

Fig. 40: Increase in the intra-
cellular calcium concentration in 
CHO cells loaded with fura-2. 
The calcium response was eli-
cited with 50 nM pNPY. 
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4.1.3.3 Binding properties of the transfected cell line 

In order to evaluate whether the transfection with the Gqi5 construct influences 

precoupling of the receptor and G protein and therefore alters the affinity of ligands,  

the Kd value of cy5-pNPY was determined in a saturation experiment using CHO-

hY2-K9-qi5-K9 cells.   

 

 

 

 

 

 

 

 

 

As shown in Fig. 41, the Kd value of cy5-pNPY determined with Gqi5-transfected cells 

is 5.5 ± 1.7 nM. Compared to the Kd value of 5.2 ± 2.2 nM determined with CHO-hY2-

K9 cells (see Fig. 20a), the affinity of cy5-pNPY remains almost unchanged after 

transfection with the Gqi5 construct.  

4.1.3.4 Effect of solvents on intracellular calcium mobilization 

As test compounds selected for functional and binding assays are usually dissolved 

in DMSO, the effect of this solvent was determined in the fluo-4 assay. The calcium 

signal was elicited with 70 nM pNPY and the cell suspension was preincubated for 1 

min with increasing concentrations of DMSO. As shown in Fig. 42, up to 1 % DMSO 

the calcium signal was only slightly reduced (by 4-8 %) compared to the reference.  
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Fig. 42: Effect of DMSO on the 
calcium response. CHO-hY2-K9-qi5-
K9 cells were preincubated with the 
indicated concentrations of DMSO 
or DMF for 1 min. Then the calcium 
response was elicted with 70 nM 
pNPY (mean values ± SEM, n=3). 
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Fig. 41: Saturation 
experiment with CHO-
hY2-K9-qi5-K9 cells. 
Cy5-pNPY binds with a 
Kd value of 5.5 ± 1.7 nM. 
Unspecific binding was 
determined in the pre-
sence of 1 µM un-
labeled pNPY (mean 
values ± SEM, n=6).  
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With increasing concentrations of DMSO the signal dropped down to 79 % of the 

reference at 2 % DMSO and to 51 % at 5 % DMSO, respectively. Preincubation of 

the cells with 1 % DMF resulted in a decrease of the calcium signal to 65.8 %. 

Therefore, the determination of antagonistic activity was performed at a final DMSO 

concentration of 1 %.  

4.1.3.5 Effect of the speed of injection  

Another important parameter of the flow cytometric calcium assay is the velocity of 

agonist injection. Upon bolus injection the calcium response is fast and intense, 

whereas after slow injection of the agonist the calcium signal is reduced and delayed 

which is typical for receptor desensitization. Relatively low concentrations of the 

agonist cause receptor phosphorylation by both second messenger-dependent 

protein kinases and G protein-coupled receptor kinases (GRKs) during the injection 

period. 

Usually, phosphorylation is followed by binding of arresting proteins (e.g. β-arrestins) 

which enables receptor internalization via clathrin-coated vesicles and subsequent 

receptor sequestration or resensitization (Ferguson et al., 1998). The interaction of 

NPY receptors and β-arrestin 2 is described by Berglund and co-workers (Berglund 

et al., 2003c). As shown in Fig. 43, injection of the agonist over a period of 2 s 

reduced the calcium signal by 59 % compared to a bolus injection. 
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These data point out that injection of the agonist should be as fast as possible. Slow 

injection reduces the calcium response and impairs the quality of determined data.  
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used as agonist. A: bolus injection. 
B: injection over a period of 2 s. 
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4.1.3.6 Characterisation of antagonists in the flow cytometric calcium assay 

NPY Y2 receptor antagonists (3-8, Fig. 18) derived from BIIE0246 (2) were analysed 

with respect to their antagonistic activity in the flow cytometric calcium assay. The 

assay was performed with CHO-hY2-K9-qi5-K9 cells and 70 nM pNPY to trigger 

intracellular calcium mobilisation. The cell suspension was preincubated with the 

antagonists for 1 min at a final DMSO concentration of 1 %.  

The Y2 selective antagonist BIIE0246 (2) inhibited the pNPY-induced intracellular 

calcium increase with an IC50 value of 20.4 ± 2.9 nM. Dautzenberg et al. reported on 

an IC50 of ∼ 100 nM determined in a FLIPR assay with hY2- and Gqi9-cotransfected 

HEK293 cells using 10 nM PYY (Dautzenberg et al., 2005). It is important to notice 

 

 

 

 

 

 

 

 

 

 

 

 

 

that in the FLIPR assay, agonist and antagonist are added simultaneously, whereas 

in the flow cytometric calcium assay, the cells were preincubated with the antagonist 

for 1 min. Furthermore, the more potent agonist PYY was used. Nevertheless, the 

IC50 values determined in the different assays are in the same order of magnitude. 

Surprisingly, compounds 3, 4 and 8 were more active compared to 2 with IC50 values 

of 3.9 ± 1.2 nM, 5.3 ± 0.5 nM and 10.7 ± 1.1 nM, respectively. This result was 

unexpected as the compounds showed lower affinities compared to 2 in the flow 

cytometric binding assay. In the fluo-4 assay, compounds 5, 6 and 7 were less active 

than 2 with IC50 values of 101.1 ± 18.0 nM, 536.5 ± 179.5 nM and 168.7 ± 62.3 nM, 

respectively. This was also the case in the binding assay although compound 6 had a 

higher affinity compared to 7. 
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Fig. 44: Flow cytometric 
fluo-4 Ca2+ assay for Y2R 
antagonists. Inhibition of 
pNPY (70 nM)-induced 
calcium response in CHO-
hY2-K9-qi5-K9 cells (mean 
values ± SEM, n=3-7).  
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Fig. 46: Inhibition curves of Y2
receptor antagonists obtained in 
a spectroflluorimetric Ca2+ assay 
using fura-2. Cells were 
preincubated with the 
antagonists 2, 4 and 5 1 min 
before the signal was elicted with 
70 nM pNPY (mean values ±
SEM, n=3). 

 

4.1.3.7 Spectrofluorimetric calcium assay 

The CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were also used to assess Y2 receptor 

agonists and antagonists in the spectrofluorimetric fura-2 assay. As shown in Fig. 45, 

the concentration-response curves correspond to those obtained in the flow 

cytometric fluo-4 assay (Fig. 39) and the aequorin assay (Fig. 59). The EC50 values  

 

of pNPY and the Y2 preferring ligand pNPY13-36 are 16.9 nM and 18.6 nM respectively.  

Y2 antagonists were tested in the fura-2 assay with a fixed agonist concentration of 

70 nM pNPY as shown in Fig. 46. The IC50 value of 2 was 28.9 ± 2.0 nM and thus in 

the same range as the IC50 values obtained in the fluo-4 (20.2 nM) and aequorin 

assay (29.1 nM, Fig. 60). Compound 4 was more active (IC50 = 14.5 ± 1.5 nM) 

compared to 2 in the fura-2 assay, as this is the case in the fluo-4 assay, too. In the 
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Fig. 45: Spectrofluorimetric 
Ca2+ assay with CHO-hY2-
K9-qi5-K9-mtAEQ-A7 cells 
and fura-2 as calcium indi-
cator. Every third measure-
ment was a 100 % reference 
signal elicted with 1 µM 
pNPY. The EC50 value of 
pNYP and pNPY13-36 is 16.9 
± 2.5 nM and 18.6 ± 1.5 nM, 
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aequorin assay compound 4 was less active (see Fig. 60) compared to 2 and also in 

the flow cytometric binding assay compound 4 showed lower affinity compared to 2.  

The IC50 value of 5 is with 201.4 ± 37.3 nM between the IC50 value determined in the 

fluo-4 assay (101.1 nM) and in the aequorin assay (313.0 nM, Fig. 60).   

The main difference between the fura-2 and the fluo-4 assay on one hand and the 

flow cytometric binding and the aequorin assay on the other hand is the incubation 

time. In the former ones the cells and the antagonist were incubated for one minute 

before the agonist is added, whereas in the binding and the aequorin assay 

incubation times were 2 h resp. 1 h.  
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4.2 Aequorin assay 

4.2.1 Introduction 

Since its isolation from the jellyfish Aequoria victoria (Shimomura et al., 1962) natural 

aequorin has been widely used to visualize changes of intracellular calcium (Blinks, 

1978; Cobbold, 1980; Gilkey et al., 1978; Ridgway and Ashley, 1967; Ridgway et al., 

1977). The active holoprotein is formed in vitro in the presence of molecular oxygen 

and 2-mercaptoethanol from the 21-kDa protein apoaequorin and its cofactor, 

coelenterazine (Shimomura and Johnson, 1975). The chromophore coelenterazine is 

attached to the protein by a peroxide linkage and therefore carries its own oxidizing 

agent (Jones et al., 1999; Shimomura and Johnson, 1978). 

The binding of Ca2+ to the three Ca2+-binding sites causes a conformational change, 

converting the protein into an oxygenase (luciferase). Light emission (λmax = 470 nm) 

occurs as a result of an intramolecular reaction in which coelenterazine is oxidized to 

coelenteramide and CO2, catalyzed by luciferase.  

 

 
 

Aequorin luminescence increases linearly with the calcium concentration between 

about 500 nM and 10 µM, where its sensitivity is highest (Gurney, 1990). The 

photoprotein responds very quickly to changes in [Ca2+]. Luminescence increases 

with a time constant of ∼ 10 ms, sufficient for the measurement of calcium responses. 

Aequorin is highly specific for Ca2+. Beside Sr2+ and Ba2+, which are about 100-fold 

less potent than Ca2+, Ln3+ is able to trigger luminescence. Mg2+ competes with Ca2+ 

N
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Fig. 47: Bioluminescence reaction and regeneration of aequorin in vitro. Native coelenterazine n (R 
= OH) or coelenterazine h (R = H) is oxidized to the respective coelenteramide accompanied by 
the emission of light. 
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for binding but is not able to release luminescence and at the levels of Mg2+ found in 

cells, the competing effect of Mg2+ should be small (Gurney, 1990). Because 

aequorin can not penetrate across the plasma membrane, the purified photoprotein 

had to be microinjected, limiting its use as a calcium indicator in cells. Cloning of the 

apoaequorin cDNA sequence (Inouye et al., 1985; Prasher et al., 1985) allowed the 

recombinant expression of apoaequorin, which greatly simplified and extended 

aequorin-based Ca2+ measurements. Reconstitution of recombinantly expressed 

active aequorin, can be obtained in living cells by simple addition of coelenterazine to 

the medium. The highly hydrophobic cofactor has been shown to permeate across 

the cell membranes of various cell types, ranging from the slime mold Dictyostelium 

discoideum to mammalian and plant cells (Pozzan et al., 1994). Alterations of the C-

terminus of the protein abolish or dramatically impair Ca2+-dependent luminescence 

(Nomura et al., 1991), whereas manipulations at the N terminal of aequorin are well 

tolerated. Therefore, chimeric aequorin cDNAs have been prepared targeting the 

photoprotein to specific intracellular localizations as cytoplasm, mitochondria, 

nucleus, Golgi apparatus, endo- or sarcoplasmic reticulum or subplasmalemma 

region (Brini et al., 1999; De Giorgi et al., 1996; Magalhaes et al., 2001; Robert et al., 

2000; Sala-Newby et al., 2000). Transfection of cells with these chimeras allowed the 

selective measurement of calcium concentrations in defined subcellular regions of 

the cell, which has not been achieved with fluorescent indicator dyes. There are 

further advantages of aequorin compared to commonly used fluorescent dyes. 

Because there are usually no luminescent proteins present in mammalian cells, the 

background signal is extremely low, resulting in an excellent signal-to-noise ratio. 

Aequorin luminescence does not need excitation light, which simplifies 

instrumentation and avoids phototoxicity. Because of its wide dynamic range, 

aequorin allows the determination of increases in [Ca2+]i concentrations ranging from 

approximately 0.3 µM to > 10 µM. Furthermore, in contrast to fluorescence indicator 

dyes used at high concentrations (usually 20-200 µM) aequorin (usually 

recombinantly expressed < 1 µM) does not significantly affect endogenous Ca2+ 

buffer capacity (Brini et al., 1995). In addition, fluorescence dyes applied as AM-

esters release hydrolysis products into the cell which may alter the physiological 

response. By contrast, no toxic products are formed during the aequorin reaction. 

The main disadvantage of aequorin with respect to the fluorescent indicator dyes is 

the low amount of light generated by the photoprotein. Less than one photon is 
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emitted by one aequorin molecule compared to > 104 photons in the case of 

fluorescent dyes. Furthermore, aequorin is consumed during the measurement, while 

this phenomenon is negligible in case of fluorescent dyes. For these reasons, 

aequorin is poorly suited for single-cell measurements. A promising approach is the 

fusion of GFP and aequorin allowing an efficient intramolecular chemiluminescence 

resonance energy transfer (CRET) increasing the quantum yield of the luminescence 

reaction (Baubet et al., 2000). 

The use of cytoplasmically expressed apoaequorin for functional GPCR assays was 

first described by Button and Brownstein (Button and Brownstein, 1993) and was 

further modified and extended (Knight and Grigliatti, 2004; Knight et al., 2003; Ungrin 

et al., 1999). The comparison of cytoplasmically expressed (cytAEQ) and 

mitochondrially targeted (mtAEQ) apoaequorin used as a reporter for GPCR 

signalling (Stables et al., 1997; Stables et al., 2000) showed that both constructs 

yielded the same functional data. However, the luminescence signal obtained with 

the mtAEQ construct was 10-fold higher compared to cytAEQ. These results were 

confirmed for different transfected cell lines (Dupriez et al., 2002).  

λ = 470 nm

γ 
α β 

α

Fig. 48: Signal transduction pathway of GPCRs coupled to Gq. Receptor activation leads to IP3
generation and subsequently to the release of Ca2+ from the endoplasmic reticulum. Local high 
Ca2+ concentrations in close vicinity to the mitochondrium activate the low affinity Ca2+ uniporter. 
Further explanations in the text. 
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The increase in the mitochondrial calcium concentration results indirectly from the 

activation of Gq-coupled receptors.  

The proposed signal transduction pathway is shown in Fig. 48. After activation of the 

GPCR and exchange of GDT by GTP, the α-subunit of the G protein activates 

phospholipase Cβ, resultings in the generation of DAG and IP3. Activation of IP3 

gated Ca2+ channels in the membrane of the endoplasmic reticulum causes a release 

of calcium ions into the cytoplasm. As the affinity of the Ca2+ uniporter in the inner 

membrane of the mitochondria is very low (under physiological Mg2+ concentrations, 

the Kd is > 10 µM) the IP3-triggered increase in bulk cytosolic [Ca2+] (which hardly 

exceeds 1-2 µM) is insufficient to activate mitochondrial calcium transporters. 

The reason for the parallel and rapid increase in cytoplasmic and mitochondrial 

calcium concentrations is the close vicinity of endoplasmic reticulum and 

mitochondrium (Rizzuto et al., 1992; Rizzuto et al., 1993; Rizzuto et al., 1998; 

Rizzuto et al., 2000). Local high [Ca2+] microdomains induced by the release from the 

ER are sufficient to activate the low affinity mitochondrial Ca2+ uniporter (Pinton et al., 

1998; Szabadkai et al., 2003) triggering the increase of mitochondrial [Ca2+] and 

therefore the aequorin luminescence signal. The termination of the large 

mitochondrial Ca2+ uptake (up to 10 µM) is caused by diffusion of Ca2+ from the 

microdomains into the residual cytosol. The role of mitochondrial calcium has been 

reviewed (Duchen, 2000; Pozzan et al., 2000; Pozzan and Rizzuto, 2000). 

Mitochondrially targeted aequorin has been used for the establishment of functional 

assays for GPCRs in insect and mammalian cells (Dupriez et al., 2002; Le Poul et al., 

2002; Stables et al., 1997; Torfs et al., 2002). The multiple transfection of mammalian 

cells with GPCR, chimeric G protein and mitochondrially targeted aequorin has 

shown to be a successful approach for the establishment of functional assays. 
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Fig. 49: Restriction analysis of the 
pMTAEQ vector with BamHI. 

Fig. 50: Restriction analysis of the 
pcDNA3.1/Zeo-mtAEQ plasmid. 
A: Eam11051 digestion. B: Eco RI 
digestion 

4.2.2 Materials and Methods 

4.2.2.1 Subcloning of pcDNA3.1/zeo-mtAEQ 

The pMTAEQ vector was a generous gift from Prof. Dr. Stan Thayer, Department of 

Pharmacology, University of Minnesota, USA. 

The plasmid contains the apoaequorin-encoding 

cDNA fused to a sequence encoding a 

mitochondrial-targeting peptide from subunit VIII of 

human cytochrome c oxidase. The construct was 

subcloned into the EcoRI site of the host vector. 

The total vector has a length of 5908 bp with 

BamHI sites at 345, 1740, 2837 and 3300 bp. 

Approximately 1 µg of pMTAEQ plasmid DNA was 

provided on a filter paper. The DNA was eluted with 

20 µl of millipore water at room temperature and 

directly used for transformation. Resistant colonies 

were propagated in overnight cultures, and the 

plasmid DNA was isolated with MiniPrep. 

Restriction enzyme digestion with BamHI led to the 

formation of the four expected bands at 463 bp 

(very weak), 1097 bp, 1395 bp and 2953 as shown 

in Fig. 49. Plasmid DNA was prepared with the 

Qiagen Plasmid Purification Kit (Qiagen, Hilden, 

Germany).  

2 µg of the pMTAEQ vector were digested with 

EcoRI, and the released insert (779 bp) was 

isolated from the gel using the QIAEX II (Qiagen, 

Hilden, Germany) purification kit. 

The pcDNA3.1/Zeo vector was a gift of Dr. Thomas 

Dobner, Institute of Microbiology and Hygiene, 

University of Regensburg, Germany. The vector 

was linearized with EcoRI and purified with the 

Quiagen PCR purification kit (Quiagen). To avoid 

self-ligation, the linearized vector was treated with 
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0.003 U of phosphatase from calf intestine (Roche Diagnostics) for 1 h at room 

temperature and subsequently purified with the Quiagen PCR purification kit.  

For the ligation reactions, 2 µl of linearized vector was incubated with 2, 4, 6, or 8 µl 

of insert in presence of 1 weiss unit T4 DNA ligase (MBI Fermentas), 2 µl of 10x 

ligation buffer (MBI Fermentas) and water at a final volume of 20 µl. The samples 

were incubated for 60 min at room temperature and directly used for transformation 

without inactivation of the T4 ligase. 

Transformation was performed as described in chapter 3.1.2.3. Resistant colonies 

were used for overnight cultures and the plasmid DNA was isolated by MiniPrep. 

Treatment with EcoRI released the mtAEQ insert (779 bp) and the empty linearized 

pcDNA3.1/zeo vector (5015) as shown in Fig. 50A. Restriction enzyme digestion with 

Eam11051 linearized the vector generating a DNA fragment with 5794 bp (Fig. 50B). 

Plasmid DNA was purified on large scale with the Quiagen Plasmid Purification Kit 

(Quiagen). 

 

4.2.2.2 Aequorin assay 

4.2.2.2.1 Stable transfection of CHO-hY2-K9-qi5-K9 cells 

Plasmid linearization and transfection with the pcDNA3.1/Zeo-mtAEQ vector was 

performed by analogy with the procedure described in section 4.1.2.3. The selective 

medium contained 400 µg/ml of G418, 400 µg/ml of hygromycin and 250 µg/ml of 

zeocin (InvivoGen, San Diego, USA). Transfected cells were maintained in selective 

medium for 3 weeks; untransfected control cells died due to this treatment. Selected 

stable transformants were maintained in selective medium and passaged 1:10 twice 

a week. 

4.2.2.2.2 Screening of the cell clones 

3 weeks after transfection cells were seeded at very low densities in selective 

medium (see 4.2.2.2.1) into 150 mm tissue culture dishes (Becton Dickinson, 

Franklin Lakes, NJ., USA) and grown to isolated colonies for 1-2 weeks. Isolated 

colonies were picked with a sterile pipette as described in section 3.1.2.12 and 

transferred into a 96-well plate (Nunc). All cell clones were grown to maximum 

confluence. Then the medium was sucked off, cells were trypsinized and transferred 

into a white 96-well luminescence plate with transparent bottom (Nunc) by 1:20 
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dilution. On the day of the experiment most of the cell clones were confluent. The 

medium was removed and 50 µl of Ham’s F12 medium containing 10 % FCS and 2 

µM coelenterazine h were added per well. The plate was incubated at room 

temperature for 2 h in the dark. The medium was sucked off and 50 µl of loading 

buffer (see section 4.1.2.4) were added. The plate was inserted into the GENios 

Pro™ (Tecan, Salzurg, Austria) plate reader and 50 µl of 0.2 % triton-X-100 in loading 

buffer were injected per well. Luminescence was recorded for 13.5 s in 200 ms 

integration steps as shown exemplarily for row E in Fig. 51. Instrument settings were: 

no attenuation. 

 

 

 

 

 

 

 

 

 

 

Cell clones with the strongest luminescence signal indicating a high aequorin 

expression were selected and maintained in selective medium for further 

investigations. 

 

4.2.2.2.3 Comparison of CHO-hY2-K9-qi5-K9-mtAEQ cell clones with respect to 

luminescence response upon  pNPY-stimulation 

Selected cell clones were seeded in Ham’s F12 medium containing 10 % FCS on 

175-cm2 culture flasks. On the day of the experiment, the confluence had reached 

80-90 %. Cells were trypsinized, detached with Ham’s F12 medium containing 10 % 

FCS and counted. After centrifugation at 300 g for 5 min, cells were resuspended in 

DMEM without phenol red supplemented with 1 % FCS at a density of 107 cells/ml. 

Coelenterazine h (1 mM stock solution in methanol) was added to the cell 

suspension to a final concentration of 2 µM, and reconstitution of the holoenzyme 

was accomplished by incubation for 2h at room temperature under gentle stirring in 
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Fig. 51: Analysis of CHO-
hY2-K9-qi5-K9-mtAEQ cell 
clones loaded with 2 µM 
coelenterazine h in 
response to 0.1 % triton-X-
100. Measurements were 
made in a TECAN Genios 
Pro plate reader. 
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the dark. Cell suspensions were diluted with loading buffer (see 4.1.2.4) to 5 · 105 

cells/ml and incubated in the dark at room temperature for 30 min.  

pNPY dilutions were prepared as 100-fold concentrated feed solutions in 10 mM HCl 

containing 0.1 % BSA and were then diluted 1:25 with loading buffer containing 0.1 

% BSA. 50 µl of each dilution were pipetted into a 96-well luminescence plate.  

150 µl of the stirred cell suspension were injected to each well and luminescence 

was recorded over 40 s as a series of 200 ms integrations. 

Luminescence [RLU] was plotted against time [s] and the area under the peak was 

calculated with SigmaPlot™ Software and used to construct concentration-response 

curves. 

4.2.2.2.4 Optimisation of assay parameters 

CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were seeded, cultured, harvested and 

incubated with coelenterazine h for 2 h as described in section 4.2.2.2.3. Cells were 

diluted with loading buffer to 5·105 cells/ml and incubated for the indicated periods of 

time. 10-fold dilution series of peptide agonist were prepared in loading buffer with a 

blank sample containing solvent and a 100 %-sample containing 0.1 % triton-X-100 

(final assay concentration) instead of pNPY solution was included per row. The assay 

was performed according to section 4.2.2.2.3 except that 180 µl of cell suspension 

were injected to 20 µl of sample dilution. For the construction of concentration-

response curves, the blank value was subtracted from each value and the 

percentage of maximum luminescence was calculated using the value of the 100 %-

sample for each time point. 

For the calculation of pIC50 values of 2 after various incubation times the logit-

transformation was used. The maximum signal was induced by 300 nM pNPY and 

antagonist concentrations reducing the pNPY-induced luminescence signal to 20 % - 

80 % were used. The percentage inhibition (P) relative to control (no antagonist) was 

determined and the logit (P) was calculated using following equation: 

 
 
 
 
The logit (P) is plotted versus log (antagonist) and the pIC50 values (logit (P) = 0) are 

calculated by linear regression.  

 

(P) logit = 
(%) P - % 100

(%) P log
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4.2.2.2.5 Measurements with 2 injectors 

CHO cells were prepared as described in 4.2.2.2.3 and incubated for the indicated 

periods of time. A 10-fold concentrated pNPY dilution series (containing 1 % BSA) 

was pipetted into the 96-well plate and 162 µl of the cell suspension were 

autoinjected per well to 18 µl of the peptide solution. Luminescence was recorded for 

43 s (peak 1) before the injection of the 1 % triton-X-100 solution (20 µl). Emitted 

luminescence was recorded for another 22 s (peak 2) and the area under the two 

peaks was calculated with SigmaPlot™ 8.0. Fractional luminescence was calculated 

by dividing the area of the agonist peak by the sum of the areas of peak 1 and 2. In 

each row, a blank sample containing solvent only and a triton-X sample containing 

0.1 % triton-X-100 (final assay concentration) were included. For the construction of 

concentration-response curves, the blank value was subtracted from each value.  

4.2.2.3 Analysis of mRNA expression of the transfected constructs by RT-PCR 

The four cell lines CHO-K1, CHO-hY2-K9, CHO-hY2-K9-qi5-K9 and CHO-hY2-K9-qi5-

K9-mtAEQ-A7 were seeded on 75-cm2 culture flasks in Ham’s F12 medium 

containing 10 % FCS and were grown to 70-90 % confluence. All materials used for 

the RNA isolation and reverse transcription were RNAse-free or treated with DEPC 

water (0.1 % DEPC (Fluka, Steinheim, Germany) in millipore water). The cells were 

trypsinized and the mRNA of each cell type was isolated with the RNeasy Mini Kit 

(Qiagen) according to the manufacturer’s instructions. The concentration of the 

mRNA was determined photometrically at λ = 260 nm using the following relation: 

A260 = 40 µg/ml. 

cDNA was prepared by reverse transcription according to the following protocol:  

1 µg of RNA and 1 µl of oligo (dT12-18) primer solution (Invitrogen) were added in10 µl 

of autoclaved DEPC water. The solution was heated for 5 min to 70 °C in the 

thermocycler and then cooled on ice. A master mix was prepared by addition of 16 µl 

of 5x first strand buffer (Invitrogen), 16 µl of dNTP mix (MBI Fermentas), 2 µl of DTT 

(Roche, Basel, Switzerland) and 4 µl of M-MLV reverse transcriptase (200 u/µl, 

Invitrogen). 10 µl of the master mix were added to each 10 µl RNA solution and then 

incubated for 1 h at 37 °C. Finally, the enzyme was heat-inactivated for 2 min at 95 

°C. The cDNA samples were stored at -20 °C. 

For the amplification of specific cDNA fragments a primer mix containing 1 pmol/µl of 

each primer in millipore water was prepared. The PCR sample contained 2 µl of 
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cDNA solution, 2 µl of primer mix, 2 µl of 10x PCR buffer (Qiagen), 2 µl of dNTP mix, 

11 µl of millipore water and 1 µl of Taq DNA polymerase (5 u/µl; Qiagen).  

Cycling parameters were: 

   1) initial denaturation: 95 °C,  30 s 

   2) denaturation:  95 °C, 30 s 

   3) annealing:   60 °C, 30 s 

   4) extension:   72 °C, 90 s 

   5) final extension:  72 °C, 2 min 

   6) hold:   4 °C 

Steps 2) – 4) were repeated 34 times. 4 µl of 6x gel loading buffer were added to the 

PCR reaction and agarose gel electrophoresis was performed as described in 3.1.2.6. 

The PeqGOLD 100bp DNA ladder (Peqlab) was used as reference. Primers were 

synthesized by MWG. The sequences are shown in Table 5. 

Table 5: Sequences of the used primers. 

gene sense primer antisense primer 
amplified 
product 
length 

β-actin 5’- CGG GAT CCC CGC CCT 
AGG CAC CAG GGT G - 3’ 

5’- GGA ATT CGG CTG GGG 
TGT TGA AGG TCT CAA A -3’ 286 bp 

hY2 
5’- AAT AGG TGC AGA GGC 

TGA TGA GAA CC -3’ 
5’- TAA TCA GGA AGC TGA 

TTC GCT TGG AGA -3’ 497 bp 

Gqi5 
5’- CAC CTT CAT CAA GCA 
GAT GAG GAT CAT CCA -3’ 

5’- AAG AGG CCA CAG TCC 
TTA AGG TTC A -3’ 918 bp 

mtAEQ 5’- TAC TCC GTG CCA TCA 
TGT CCG TCC T -3’ 

5’- TAG GGT GCA TCA CCA 
CCG TAG AGC TTC TTA -3’ 707 bp 

 

The antisense primer for the Gqi5 construct hybridizes with the part of the sequence 

where the nucleotides encoding for the Gq protein are exchanged by the nucleotides 

of Gi to avoid amplification of untransfected Gq cDNA.  

4.2.2.4 Analysis of the dissociation kinetics of 2 replacing cy5-pNPY 

Preparation of CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells and flow cytometric measure-

ments were performed as described in 3.2.3.1. Dissociation of bound cy5-pNPY was 

initiated by injection of 100 nM of 2 to the stirred cell suspension and the cell-bound 

fluorescence was recorded in channel 4 (FL-4). The averaged raw data were fitted to 

the equations f = y0+a·e(-bx) (one dissociation rate constant) and f = y0+a·e(-bx) + c·e(-dx)   

(two dissociation rate constsants) without constraints. 
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4.2.3 Results 

4.2.3.1 Selection of transfected cell clones 

The CHO-hY2-K9-qi5-K9 cells were transfected with the Eam11051-linearized 

pcDNA3.1/Zeo-mtAEQ vector. 96 cell clones were loaded with 2 µM coelenterazine h 

and screened on the basis of their luminescence signal after cell lysis caused by 

0.1% triton-X-100 (see Fig. 51). Provided that the cell density per well is similar, a 

strong luminescence signal should indicate high expression of functional 

apoaequorin. Three cell clones were selected, expanded and tested for their 

functional response upon agonist challenge. 

 

 

 

 

 

 

 

 

 

 

As shown in Fig. 52, the particular cell clones responded differently. Each clone 

showed a saturable, concentration-dependent increase in luminescence upon 

stimulation with pNPY. The strongest signals were obtained with clones B4 and E7 

(Fig. 52b) but even injection of the cells to solvent without agonist led to an increase 

in luminescence as shown exemplarily for clone E7 in Fig. 52a. This results in a high 

basal signal and therefore impairs the signal to noise ratio. The injection of cell 

suspension of clone A7 to solvent led only to a minimal increase in basal 

luminescence (Fig. 52a), resulting in a higher signal-to-noise ratio. The maximum 

increase in the luminescence signal upon saturating concentrations (3 µM) of pNPY 

was 16-fold with clone A7 compared to 9.3- and 5-fold with the clones B4 and E7 

respectively. Injection of the pool of transfected cells to solvent led to a basal signals 

ranging from the ones of clone A7 to those of E7. With this mixture of cell clones a 

maximum signal to noise ratio of 11.6 was obtained. Cell clones B4 and E7 were 

Fig. 52: Luminescence responses of isolated CHO-hY2-K9-qi5-K9-mtAEQ cell clones after 
stimulation with increasing concentrations of pNPY (n=3; mean values ± SEM). 
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frozen and the cell line CHO-hY2-K9-qi5-K9-mtAEQ-A7 was used for the 

investigations on assay parameters.  

4.2.3.2 Optimisation of assay parameters 

In order to obtain reproducible results cells have to be prepared in a way that their 

response is constant during the measurement. As a single luminescence signal with 

these cells takes at least 40 s (see Fig. 52a), the measurement of a complete 96-well 

plate takes 64 min. The stability of the signal during this period is a prerequisite for 

the application of the assay in the 96-well format. The signal intensity depends on the 

concentration of reconstituted aequorin within the cells and the stimulus caused by a 

defined agonist concentration. As the latter remains unchanged during the 

measurement, parameters have to be found to provide constant concentrations of 

reconstituted aequorin. Due to the basal Ca2+ concentration within the mitochondria, 

aequorin is constantly discharged, but on the other hand, sufficient coelenterazine is 

available to reconstitute active aequorin because coelenterazine is kept continually in 

the cell suspension. Incubation conditions have to be found which allow a constant 

steady-state level of active aequorin depending on the equilibrium between entry of 

coelenterazine in the cell by passive diffusion, reconstitution of aequorin from 

apoaequorin and its consumption in the basal nonstimulated cell’s conditions. In the 

literature there are different coelenterazine loading conditions described. For 

example Stables and colleagues report on the reconstitution of the holoenzyme by 

incubation of adherent growing transiently transfected CHO cells with 5 µM 

coelenterazine for 3 h at 37 °C in culture medium (Stables et al., 1997). This 

Fig. 53: Effect of postincubation time on the concentration-response curves of pNPY. CHO-hY2-
K9-qi5-K9-mtAEQ-A7 cells were incubated for 2 h with 2 µM coelenterazine h and post-
incubated for 90 min (panel a) or 3 h (panel b). Total aequorin (100 %) was discharged after cell 
lysis by 0.1 % triton-X-100. Measurment time of each curve was 8 min (40 s per concentration). 
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procedure requires large amounts of the cofactor as only a small number of cells is 

loaded in a large volume. Incubation at 37 °C seems not to be very economic as 

more aequorin is consumed under basal conditions at higher temperatures (Blinks, 

1978; Dupriez et al., 2002). Loading of the cells in suspension at a high cell density 

and subsequent dilution appeared to be an effective and economic method (Dupriez 

et al., 2002). After dilution with loading buffer, cells were “postincubated” at room 

temperature for different periods and concentration-response curves of pNPY were 

recorded. As shown in Fig. 53a, postincubation of 90 min is insufficient as 

luminescence signals increase during the measurement. Reproducible concentration-

response curves were obtained after 3 h of postincubation (Fig. 53b). The data points 

of all curves were in the same range with acceptable deviations. This allows a 

temporal assay window of at least 64 min, sufficient for the measurement of a whole 

96-well plate.  

Another aspect of the aequorin assay is the use of different coelenterazine derivates 

and their employed concentrations. As the synthetic commercially available derivates 

are very expensive, the coelenterazine h derivate was chosen based on published 

results (Dupriez et al., 2002). Using CHO-K1 cells stably coexpressing apoaequorin 

and the human 5-HT2B receptor in a functional aequorin assay, coelenterazine h 

proofed to be superior to the native and to the other synthetic derivatives 

coelenterazine n, f, hcp, cp and the benzyl derivative in terms of sensitivity and 

signal-to-noise ratio. To determine the optimal concentration of the cofactor, the cells 

were incubated in the presence of increasing concentrations of coelenterazine h. 

Cells were diluted and postincubated for 3 h. The results are shown in  

Fig. 54. There is no distinct tendency, but the strongest signals and the lowest EC50 

values were obtained after loading of the cells with cofactor at a concentration of 2 

µM. 
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Fig. 54: Effect of various concentrations of
coelenterazine h during the loading pro-
cedure. Cells were loaded for 2 h, diluted 
and postincubated for 3 h at room tem-
perature (mean values ± SEM, n=3).   
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As test compounds are often dissolved in DMSO, the sensibility of the assay 

depending on the DMSO content was investigated. Cells were loaded with 2 µM 

coelenterazine h and postincubated with increasing DMSO concentrations for 3 h. 

Concentration-response curves of the agonist pNPY are shown in Fig. 55. Increasing 

concentrations of DMSO led to an elevated basal signal. This effect is presumably 

due to the impairment of the cells by the solvent. At 1 % of DMSO there is still a 

distinct concentration-dependent increase in emitted light after stimulation with pNPY 

(Fig. 55a). The EC50 value is in the same range (147.9 nM) as that of control cells, 

which were postincubated in absence of solvent (EC50 = 165.7 nM). Calculation of 

the percentage of maximal luminescence using the signal of cells lysed by 0.1 % 

triton-X-100 (100 % value) results  in concentration-response curves almost identical 

for control cells and those incubated with 1 % DMSO (Fig. 55b). A reason for this is  

 

 

 

 

 

the higher basal consumption of aequorin in unstimulated cells in the presence of 

DMSO, which diminishes the 100 % value (triton-X-100) and increases the 0 % value. 

Incubation with 2 % and 5 % solvent caused considerably higher basal signals and 

greater deviations.  

The maximally emitted light (100% value, not shown) of cells incubated with 5 % 

DMSO is only 45 % of the maximal signal obtained with the control cells, whereas the 

blank signal was 2.3-fold as high as the blank signal of the control cells. 

As a final concentration of 1 % DMSO only marginally affected the concentration-

response curves, this concentration can be used in the screening of antagonists 
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Fig. 55: Effect of DMSO. CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were loaded with 2 µM 
coelenterazine h for 2 h, diluted and postincubated for 3 h with indicated DMSO contents. In panel a
total emitted light is calculated from peak integrations of each signal. In panel b the percentage of 
maximal luminescence is calculated with the 100 % triton-X-100 signal as standard (mean values ±
SEM, n=3). 
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dissolved in DMSO. Additionally, in the assay, the antagonists dissolved in DMSO 

are preincubated with the cells for 1 h (see section 4.2.3.4) instead of 3 h, which 

diminishes the effect of the solvent. 

4.2.3.3 Aequorin agonist assay 

Peptidic neuropeptide Y receptor ligands were investigated in the aequorin assay 

under the optimized conditions, described in 4.2.3.2. Luminescence responses are 

exemplarily shown for pNPY in Fig. 56a. The first, minor peak is caused by the 

injection procedure due to cell damage; the main peak results from receptor 

activation by the agonist. In accordance with the literature, pPYY proved to be a 

potent agonist at the hY2 receptor with an EC50 value of 41.2 ± 4.2 nM. pNPY, [A19]-

pNPY and the Y2 preferring ligand pNPY13-36 showed similar agonistic activity with 

EC50 values of 121.8 ± 19.8 nM, 146.5 ± 36.6 nM and 156.3 ± 14.1 nM respectively. 

[L31,P34]-pNPY, a selective agonist for Y1 relative to Y2, showed no agonistic activity 

up to a concentration of 3 µM. These data correspond to the typical Y2 receptor 

pharmacology, although the EC50 values are much higher compared to functional 

data determined in the fura-2 and fluo-4 assay.  

 

 

 

 

 

 

 

 

c (peptide) [nM]
1 10 100 1000 10000

%
 o

f m
ax

. l
um

in
es

ce
nc

e

0

10

20

30

40
pPYY
pNPY
[A19]pNPY
pNPY13-36
[L31,P34]pNPY

time [s]
0 10 20 30 40

lu
m

in
es

ce
nc

e 
[R

LU
]

0

5e+4

1e+5

2e+5

2e+5

3e+5

3e+5
0 nM
3 nM
10 nM
20 nM
30 nM
50 nM
100 nM
200 nM
300 nM
500 nM
1000 nM

a 

b

Fig. 56: Aequorin assay with CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells. 180 µl of cell suspension 
were injected to 20 µl of peptide solution. a: luminescence responses to increasing 
concentrations of pNPY. b: concentration-response curves of peptide ligands. Reference 
signal was elicited with 0.1 % triton-X-100 (mean values ± SEM, n=3-4). 
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4.2.3.4 Aequorin antagonist assay 

Because the Tecan Genios Pro plate reader was initially equipped with only one 

injector, it is impossible to add the antagonist to the cell suspension (or vice versa) 

and trigger the luminescence signal by the addition of an agonist after one minute by 

analogy with the fura-2 and fluo-4 assays. Injection of the cell suspension into a 

mixture of agonist and antagonist results in IC50 values much higher compared to the 

fluorescence based assays because of the lack of preincubation of the cells in the 

presence of the antagonist (data not shown, see also 4.2.3.7). When the antagonist 

receptor interaction has reached equilibrium the signal should be independent from 

the time of the addition of the agonist, provided that the cells are still excitable and a  

 

 

 

 

 

 

 

 

 

 

 

constant concentration of active aequorin is available (see Fig. 53). The effect of the 

preincubation time of the cells in the presence of antagonist is shown in Fig. 57.  

Cells were preincubated with 20, 40 and 60 nM of 2 and the signal was elicited with 

300 nM pNPY. IC50 values were calculated using the logit-transformation. Constant 

pIC50 values (7.4 - 7.5) were obtained after preincubation of the cells in the presence 

of the antagonist for 60-90 min. Therefore, a preincubation time of 60 min should be 

sufficient and determined IC50 values should be constant during the measurement of 

a whole plate (64 min). Y2 receptor antagonists were investigated in the aequorin 

assay using 200 nM pNPY to elicit the luminescence signal (Fig. 58).  

Fig. 57: Determination of pIC50
values after various preincu-
bation times using the logit-
transformation (mean values ±
SEM, n=3). 
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Compared to the flow cytometric fluo-4 assay the IC50 values obtained with the 

aequorin assay are higher and also the order of the inhibitory activities differs in the 

case of compounds 3, 4, and 8. An explanation for this deviating behaviour of the 

compounds in the two functional assays may be the different preincubation times of 

the cells in the presence of the antagonist and unequal adsorption of the test 

compounds to the different materials (glass and polystyrole). 

These adsorption effects are not only restricted to nonpeptidic antagonists but can 

also occur with peptidic agonists. In the assay, agonist solutions were pipetted into 

the 96-well-plate prior to the injection of the cell suspension. The addition of 1 % BSA 

to the peptide solution reduced adsorption effects resulting in lower EC50 values as 

shown in Fig. 59. pPYY, pNPY and pNPY13-36 showed lower EC50 values with 8.8 ± 

2.4 nM, 30.9 ± 2.2 nM and 58.3 ± 9.9 nM. These EC50 values are in the same range 

as those determined in the fluo-4 and fura-2 calcium assay.  
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Fig. 59: Aequorin assay with 
CHO-hY2-K9-qi5-K9-mtAEQ-
A7 cells. Peptide solutions 
were prepared in the  presence 
of 1 % BSA to reduce adsorp-
tion to the surface of the well-
plate (mean values ± SEM
n=3-9). 

Fig. 58: Aequorin assay with 
CHO-hY2-K9-qi5-K9-mtAEQ-
A7 cells. The reference 
signal was triggered with 200 
nM pNPY. IC50 values are: 
36.1 ± 4.3 nM (2), 68.9 ±
13.0 nM (3), 75.4 ± 17.3 nM 
(4), 349.1 ± 34.5 nM (5), 
869.4 ± 61.1 nM (6) and 84.0 
± 15.7 nM (8) (mean values 
± SEM, n=3-6). 



 Aequorin Assay for the hY2 Receptor 103 

As expected, [L31,P34]-pNPY and hPP had no agonistic activity up to a concentration 

of 3 µM. No signal was obtained after addition of the peptides rPP, [K4]-hPP, [hPP19-

23, P34]-pNPY, GW1229 and BW1911U90 up to a concentration of 3 µM, too (data not 

shown).  

As the high EC50 value of pNPY obtained in absence of BSA (see Fig. 58) was due to 

adsorption effects, inhibition curves of Y2 antagonist were measured again using a 

lower concentration of the agonist (70 nM).  

 

 

 

 

 

 

 

 

 

 

 

The differences of the obtained IC50 values compared to those determined with an 

agonist concentration of 200 nM were small, never exceeding 40 %. Compound 9 

was selected after the screening of various substances synthesized by F. Graichen 

and C. Hutzler at a single concentration of 1 µM (data not shown). The structure of 9 

is shown in Fig. 61. 

 

 

 

Compound 9, a potent hY1 antagonist (IC50 = 34.5 nM, determined in a spectro-

fluorimetric fura-2 calcium assay with HEL cells and 10 nM NPY (Graichen, 2002)) is 

derived from the known Y1 antagonist BIBP 3226. 

Fig. 60: Inhibition curves of Y2
receptor antagonists. 
Reference signal was triggered 
with 70 nM pNPY. IC50 values 
are:  29.1 ± 3.0 nM (2), 69.1 ±
4.7 nM (3), 72.6 ± 3.9 nM (4), 
313.0 ± 74.5 nM (5), 521.4 ±
54.3 nM (6), 781.5 ± 53.2 nM (7), 
50.6 ± 7.7 nM (8) and 2203.4 ±
123.1 nM (9) (mean values ±
SEM, n=3-6).  
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104 Chapter 4.2  

4.2.3.5 Aequorin assay with two injectors 

As the Tecan Genios Pro™ plate reader was upgraded with a second injector, it 

became possible to inject a triton-X-100 solution to the cell suspension immediately 

after the aequorin luminescence signal. The subsequent addition of the detergent 

causes cell lysis and leads to the consumption of the residual active aequorin which 

has not been discharged during the transient luminescence signal caused by the 

activation of the Y2 receptor. Therefore, the total luminescence can be calculated for 

each sample instead of using an external triton-X-100 reference as a 100 % standard. 

This approach makes the signals independent from variations in cell number which 

may occur due to sedimentation in the course of the measurement. 

 
The course of the measurement is shown in Fig. 62. The aequorin signal (peak 1, 

from ‘a’ to ‘b’) rose with increasing concentrations of the agonist pNPY, whereas the 

light produced by the residual fraction of charged aequorin (peak 2, from ‘b’ to end) 

decreased. The fraction of integrated luminescence was determined for each ligand 

concentration by dividing the area under peak 1 by the sum of the areas under peak 

1 and 2. 
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Fig. 62: Aequorin assay with CHO-hY2-K9-qi5-
K9-mtAEQ-A7 cells using two injectors. The cells 
were “postincubated” for 3 h and then injected 
into the agonist (pNPY) solution at time point ‘a’. 
Injection of 0.1 % triton-X-100 at time point ‘b’ 
leads to cell lysis and causes the consumption of 
the residual active aequorin. 
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In order to determine, whether the postincubation step after loading of the cells with 

the cofactor coelenterazine could be omitted when the fractional luminescence for 

each well was measured, the cells were injected to the pNPY solution after various 

periods of postincubation.  

As shown in Fig. 63a, due to the slow formation of active aequorin from the 

apoprotein and the cofactor, the total luminescence emitted after cell lysis increased 

with longer periods of postincubation reaching a constant maximum after 3 h. This 

effect could not be corrected by the calculation of the fractional luminescence as 

shown in Fig. 63b. Although the determined EC50 values were in the same range 

(EC50 = 21.0, 14.3, 12.6, 10.6 and 8.8 nM for 0, 1, 2, 3 and 4 h of postincubation), the 

maximal fractional luminescence increased with longer postincubation times by 

analogy with the experiments performed with CHO-hY4-K13b-qi5-K8-mtAEQ-E11-

K11 cells (see section 5.3.3.2). Therefore, a postincubation period of 3 h is 

necessary, especially for the distinction between full agonists and partial agonists. 
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Fig. 63: Influence of the period of postincubation on the luminescence signals of CHO-hY2-K9-qi5-
K9-mtAEQ-A7 cells. Cells were incubated for 2 h with 2 µM coelenterazine h and subsequently 
incubated for various periods of time. a: total luminescence emitted after cell lysis caused by 0.1 % 
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4.2.3.6 Comparison of mRNA expression by transfected cells 

In order to confirm the stable transfection of the cells with the hY2, Gqi5 and mtAEQ 

genes the mRNA expression was analyzed. RNA was isolated and a RT-PCR was 

performed. 

 

 

 

 

 

 

 

No mRNA of any transfected construct but a weak band of unspecific PCR product 

with a length of 800 – 900 bp was detected in CHO-K1 wild type cells (Fig. 64A). As 

expected, hY2 receptor mRNA (497 bp) was identified in all transfected cell lines (B-D) 

and mRNA of the mtAEQ construct (707 bp) was found only in the mtAEQ-

transfected cells. The PCR product for the Gqi5 mRNA was found only in CHO-hY2-

K9-qi5-K9 cells (lane C) as a very weak band and was not detectable in CHO-hY2-

K9-qi5-K9-mtAEQ-A7 cells. As the PCR was performed simultaneously with 8 

primers, self-annealing of the primers or formation of secondary structures could not 

be excluded. Therefore, the PCR was repeated only with the primers for the Gqi5 

construct and the β-actin control (Fig. 65). The PCR product with the expected size 

(918 bp) was now easily detectable and was found only in the cells stably transfected 

with the Gqi5 construct (lane C, D). 

Fig. 64: mRNA transcription by transfected cells. A: CHO-K1 cells B: CHO-hY2-K9 cells C: CHO-
hY2-K9-qi5-K9 cells D: CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells M: marker. 
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4.2.3.7 Antagonism of BIIE0246 

Concentration-response curves of pNPY were determined in the presence of the Y2-

selective antagonist BIIE0246. The cells were preincubated with increasing 

concentrations of the antagonist for 1 h before injection of increasing concentrations 

of the agonist. 
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The concentration-response curves were shifted to the right with a concomitant 

depression of the maximum indicating mixed competitive-noncompetitive antagonism. 

This is in contrast to the competitive antagonism proposed for BIIE0246 (Dumont et 

al., 2000; Weiser et al., 2000). On the other hand, El Bahh and co-workers (El Bahh 

et al., 2002) described an apparently insurmountable antagonism in hippocampal 

slices. Moreover, an insurmountable antagonism was found in the rat colon bioassay 

(Dumont et al., 2000). El Bahh and co-workers suggested that BIIE0246 is a 

competitive antagonist, but because of its lipophilicity, the compound is enriched in 

Fig. 66: Concentration-response 
curves of pNPY in the presence 
of BIIE0246 (2). CHO-hY2-K9-
qi5-K9-mtAEQ-A7 cells were 
preincubated with 2 for 1 h. 
Increasing concentrations of the 
antagonist led to a rightward shift 
and to a depression of the 
maximum of the luminescence 
signal. (mean values ± SEM,
n=3). 

Fig. 65: mRNA 
expression of transfected 
cells. PCR was performed 
only in presence of primer 
pairs of Gqi5 and β-actin. 
A: CHO-K1 cells. B: CHO-
hY2-K9 cells C: CHO-hY2-
K9-qi5-K9 cells D: CHO-
hY2-K9-qi5-K9-mtAEQ-A7 
cells M: marker. 
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the membrane providing a much higher local concentration near the receptors 

compared to the concentration in the organ bath, simulating an insurmountable 

antagonism.  

Surprisingly, there was no depression of the concentration-response curves in the 

aequorin assay observed without preincubation of the cells with the antagonist. (Fig. 

67). After injection of the cell suspension to a mixture of agonist and antagonist 

higher concentrations of antagonist were needed to shift the concentration-response 

curves rightward. Schild regressions revealed a pA2 value of 6.37 which is in 

dramatic contrast to the Ki value determined in the flow cytometric binding assay. 

However, comparing these data one has to consider that the binding assay was 

performed at equilibrium. Additionally, the strong adsorption of 2 to the 96-well plate 

(see Fig. 32) has to be regarded and usually much more data points are required for 

reliable calculations when performing a Schild plot. Nevertheless, these data indicate 

that the apparent mixed antagonism can be separated into two mechanisms with 

different kinetics.  
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Therefore, the dissociation kinetics of BIIE0246 was measured. The cells were 

incubated with 5 nM cy5-pNPY for 2 h until equilibrium was reached (see Fig. 19). 

The bound fluorescence was recorded in channel 4 with the flow cytometer, and after 

2 min 100 nM of 2 was injected to the cell suspension. The displacement of bound 

cy5-pNPY by 2 was followed recording the cell-bound fluorescence as shown in Fig. 

68.  

Fig. 67:  Concentration-response 
curves of pNPY in the presence 
of the indicated concentrations of 
2. CHO-hY2-K9-qi5-K9-mtAEQ-
A7 cells were injected into a 
mixture of agonist and antagonist 
(mean values ± SEM, n=3)  
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The kinetics of displacement of cy5-pNPY by 2 can be described more precisely with 

a two-exponential fit (R=0.994) compared to a function which assumes only one 

dissociation rate constant (R=0.979). As cy5-pNPY is an agonist, this ligand 

distinguishes between precoupled and uncoupled receptors, and might bind to as 

well as dissociate from the two different receptor states with different kinetics. 

Another explanation is the presence of two different binding sites for the antagonist 2. 

The antagonist binds faster to the binding site of the labeled ligand as a competitive 

antagonism occurs when agonist and antagonist are added at the same time (Fig. 

66). Binding to another allosteric binding site is slower indicated by a second 

dissociation rate constant and the presence of a mixed competitive-noncompetitive 

antagonism after preincubation of 2 with the cells. 

In addition, the antagonist (100 nM) displaces only 44 % of the specific binding 

(unspecific binding was 44 [RFU], determined in presence of 1 µM pNPY). This is in 

contrast to the binding data determined with CHO-hY2-K9 cells (in competition with 5 

nM cy5-pNPY, see section 3.2.3.1) where the same concentration of 2 displaced 

more than 90 % of the specifically bound cy5-pNPY (Fig. 20b).  The data suggest 

that cy5-pNPY binds partially in an irreversible binding mode to the hY2 receptor. 

Recently, similar results were described by Dautzenberg and Neysari analyzing the 

binding kinetics of [125I]-NPY and [125I]-PYY to membranes of hY2-expressing SMS-

KAN and HEK293 cells (Dautzenberg and Neysari, 2005). After preincubation with 

the radioligand (120 min), not more than 20 % of bound [125I]-NPY or [125I]-PYY could 

be displaced from the receptor by addition of 10 µM NPY, PYY or BIIE0246. This 

irreversible binding mechanism was not observed for the hY1 or mY5 receptor. In 

addition, in a FLIPR assay using HEK293 cells stably expressing the hY2 receptor 

Fig. 68: Dissociation kinetics of 2
replacing cy5-pNPY at the hY2
receptor recorded by flow cytometry. 
Data are best fitted with a model 
using two rate constants (red) 
compared to a model with one rate 
constant (blue). 
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and the chimeric Gqi9 protein, simultaneous addition of the agonist PYY and the 

antagonist 2 revealed a competitive antagonism whereas an insurmountable 

antagonism (with a minimal rightward shift of the EC50 values) was observed after 30 

min preincubation in presence of the antagonist. Dautzenberg suggested that the 

observed insurmountable effect of 2 is due to a lack of dissociation from its receptor 

sites (Dautzenberg and Neysari, 2005). Hence, the dissociation kinetics of the hY2 

receptor has to be considered in binding and functional assays. When available, 

measurements of binding kinetics should be performed with a labeled antagonist 

instead of labeled agonist in order to exclude different binding kinetics to different 

receptor states as well as dynamic processes as desensitization and internalization 

during the binding process. 

 

4.3 Other techniques to measure a calcium response in 
CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells 

4.3.1 Introduction 

Confocal microscopy has often been used for the measurement of intracellular 

calcium concentrations in single cells (Lipp et al., 2001). However, the highly 

sophisticated instrumentation makes this technique not very well suited for the 

application in a functional assay for routine compound screening. In addition, single 

cell measurements can vary to a high degree depending on the sample preparation 

which is unfavorable for quantitative determinations. Nevertheless, confocal 

microscopy is a useful tool for the visualization of changes in intracellular calcium. 

The use of plate readers equipped with a CCD camera for the detection of flash 

luminescence has already been described (Dupriez et al., 2002). Therefore, it was 

investigated whether the light generated by the transfected CHO cells upon agonist 

binding was sufficient for the detection with a CCD camera. 

4.3.2 Materials and methods 

4.3.2.1 Confocal microscopy 

CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were seeded in 200 µl Ham’s F12 + 10 % FCS 

on a Lab-Tek® II, 8 chamber coverglass system (Nalge Nunc, Naperville, IL, USA) 

two days prior to the experiment and were grown to 50-70 % confluence. 330 µl of 
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loading suspension were prepared as described in section 4.1.2.4 and added to 1 ml 

of L-15 Leibovitz medium (Sigma). The medium of the cells was displaced with 300 µl 

of this solution and the cells were incubated for 30 min at room temperature. Then, 

cells were washed once with loading buffer (see section 4.1.2.4) and incubated for 30 

min with 270 µl of Leibowitz medium at room temperature. The chamber was 

installed into a Zeiss Axiovert 200 M microscope, equipped with the LSM 510 laser 

scanner using a Plan-Apochromat 63x/1.4 objective with oil immersion. The laser 

power was set to 3 %, using the wavelength of 488 nm and the 505 longpass filter. A 

region of interest was defined for a single cell and a time series was adjusted with a 

scan speed which allows scanning one frame within 4 s. The measurement was 

started and 30 µl of pNPY solution (1 µM in loading buffer) were added to the cell 

chamber. 

4.3.2.2 Luminescence detection with CCD camera 

CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were prepared as described in section 4.2.2.2. 

A 4-fold concentrated dilution series of pNPY was prepared in loading buffer and 50 

µl of each concentration were pipetted into a black, flat bottomed Cellstar 96-well 

plate (Greiner bio-one, Solingen, Germany). 150 µl of the cell suspension were 

added per well at once per row with a multichannel pipette and the plate was 

immediately transferred into a darkbox. Recording was started with a Hamamatsu 

1394 ORCA-II BTA 512 cooled CCD camera; settings were: gain: 2, exposure: 60 s, 

binning: 4 (16 bit). Total light dose was calculated with SimplePCI® software.  

 

4.3.3 Results 

4.3.3.1 Confocal microscopy 

The calcium response could be visualized on the single cell level with confocal 

microscopy. Cells were loaded with fluo-4 and the signal was induced by the addition 

of 100 nM pNPY. Prior to the experiment, a single cell was scanned permanently for 

2 min with the same laser power in order to estimate the effect of photobleaching. 

During this scanning process no distinct decrease in fluorescence was observed 

(data not shown). 
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As shown in Fig. 69 addition of 100 nM pNPY to the adherent growing cell results in 

a steep increase in fluorescence, reaching its maximum after 8 s followed by a slow 

decrease in fluorescence intensity over one minute. The kinetics differs slightly from 

the one obtained with the flow cytometer as shown in Fig. 37 due to relevant 

differences between the two methods. Dye-loading, postincubation, injection of 

agonist (no stirring) and, most important, long measuring time (4 s per image) of a 

single cell and therefore low temporal resolution result in an imprecise description of 

the kinetic course using the confocal microscope. In addition, as shown in Fig. 37, 

there is a high variation in fluorescence between different individual cells, which can 

not be displayed by confocal microscopy. High consumable costs, the inconvenient 

handling especially during the addition of the agonist and the very sophisticated 

quantification of calcium responses account for the inferiority of confocal microscopy 

compared to flow cytometry. 

4.3.3.2 CCD camera 

As many instruments used for high throughput screening are equipped with a CCD 

camera, it was investigated if the light intensity generated in the aequorin assay is 

sufficient for quantitative measurements with a CCD camera.  

Fig. 69: Time series of CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells loaded with 
fluo-4 in response to 100 nM pNPY measured with confocal microscopy. 
Scanning time was 4 s per image. Images are shown in false colors (the 
warmer the color, the higher the fluorescence intensity). 
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As shown in Fig. 70, the luminescence light recorded for 60 s rises with increasing 

concentrations of the agonist. In spite of the difficult handling as described in section 

4.3.2.2 the results were reproducible, and a quantitative analysis became possible.  

In order to compare the results obtained from the CCD camera, the same cell 

preparation was used in an aequorin assay performed with the TECAN Genios Pro 

plate reader. The calculated EC50 values are in the same range as shown in Fig. 71. 

The highest concentration of 3 µM pNPY was not used for the determination of the 

EC50 value with the CCD camera because the increase in luminescence starts 

immediately during transferring the plate into the darkbox and is therefore not 

completely detected by the CCD camera. This is also the reason for the higher 

deviations at high agonist concentrations. Nevertheless, these results show that the 

aequorin assay can be used for high-throughput applications using instruments 

equipped with a CCD camera. 

 

Fig. 70: Overlay picture of 
false color presentation of 
light intensities generated 
by CHO-hY2-K9-qi5-K9-
mtAEQ-A7 cells detected 
with a CCD camera. Lumi-
nescence signals were 
triggered by addition of 
increasing concentrations 
of pNPY. 

Fig. 71: Comparison of concentration-response curves generated with a Hamamatsu 1394 
ORCA-II BTA 512 CCD camera (panel a) and with a TECAN Genios Pro plate reader (panel b) 
(mean values ± SEM, n=3). 
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4.4 Conclusions 
 
The stable co-transfection with the hY2 receptor and the Gqi5 gene led to a robust 

calcium signal after receptor activation. The cells showed unaltered binding 

properties compared to the hY2-transfected cells and proved to be suitable to 

establish fluorescence-based functional assays. Additional stable transfection of the 

cells with the apoaequorin gene targeted to the mitochondrial matrix converted the 

calcium signal into a luminescence signal which could be quantitated by a 

luminescence plate reader. The pharmacological constants of receptor agonists as 

well as antagonists determined in the three different functional assays are in good 

agreement as summarized in Table 6. Slight deviations may result from different 

incubation periods in presence of the antagonists and different adsorption to the 

synthetic material of microplates, cups and other small parts used in the assays. 

 
Table 6: Functional data of selected compounds determined in different calcium assays on hY2 
receptor expressing cells. 

Y2 receptor ligand Flow cytometry 
(fluo-4) 

Spectrofluorimetry 
(fura-2) Aequorin 

pNPY 18.1 ± 2.9a,c 16.9 ± 2.5 a,d 30.9 ± 2.2 a,d 
       pNPY13-36 13.3 ± 6.2 a,c 18.6 ± 1.5 a,d 58.3 ± 9.9 a,d 

pPYY 7.9 ± 5.5 a,c ND 8.8 ± 2.4 a,d 
2 20.4 ± 2.9 b,c 28.9 ± 2.0 b,d 50.9 ± 12.9b,d 
3 3.9 ± 1.2 b,c ND 69.1 ± 4.7 b,d 
4 5.3 ± 0.5 b,c 14.5 ± 1.5 b,d 73.4 ± 6.1 b,d 
5 101.1 ± 18.0 b,c 201.4 ± 37.3 b,d 359.4 ± 23.8 b,d 
6 536.5 ± 179.5 b,c ND 521.4 ± 54.3 b,d 
7 168.7 ± 62.3 b,c ND 781.5 ± 53.2 b,d 
8 10.7 ± 1.1 b,c ND 50.6 ± 7.7 b,d 

a
 EC50 [nM] of agonists; bIC50 [nM] of antagonists, calcium mobilization induced with 70 nM pNPY 

cdetermined with CHO-hY2-K9-qi5-K9 cells; ddetermined with CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells 
 
 

The calcium signal could be visualized by confocal microscopy as well as by a CCD 

camera indicating the suitability of the aequorin assay for the application in HTS-

instruments equipped with a CCD camera.
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5 Binding and functional assays 
for the NPY Y4 receptor 
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5.1 Development of a flow cytometric binding assay for 
the rat NPY Y4 receptor 

5.1.1 Introduction 

The rat Y4 receptor gene was first cloned in 1996 from rat genomic DNA (Lundell et 

al., 1996) (GenBank: Z68180) and from a rat whole brain cDNA library (Yan et al., 

1996) (GenBank: U42388). One year later, the receptor was cloned from a rat spleen 

genomic library (Walker et al., 1997) and the sequence was submitted to the 

GenBank (Accession No.: U84245). The sequence published by Yan et al. differed in 

one amino acid, containing a serine instead of a proline in position 23. Various 

reports on binding assays for the rat Y4 receptor have been published using 

transfected cells and [125I]-rPP (Walker et al., 1997; Yan et al., 1996), [125I]-hPP 

(Berglund et al., 2001; Eriksson et al., 1998; Parker et al., 2002a; Parker et al., 2005), 

[125I]-GR231118 (Dumont and Quirion, 2000) or [125I]-Leu31, Pro34-PYY (Gehlert et al., 

1997). All described assays require an iodinated radioligand and comprise the 

general drawback that a filtration step is needed in order to separate bound from 

unbound radioligand. Therefore, a flow cytometric binding assay by analogy with the 

assay described for the human Y2 receptor (see section 3.2) would be convenient.  

5.1.2 Materials and Methods 

5.1.2.1 Cell culture 

All cell lines were maintained at 37 °C and 5 % CO2 in water saturated atmosphere. 

CHO-rY4 cells (Berglund et al., 2001) were obtained from Prof. Dr. S. Parker, College 

of Medicine, University of Tennessee, Memphis, USA. Cells were maintained in 

Ham’s F12 medium supplemented with 10 % FCS and 100 µg/ml G418. Subculturing 

was performed twice a week.  

HEL cells were cultured in RPMI 1640 plus 5 % FCS and diluted weekly 1:10 with 

fresh medium. CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells were maintained as described in 

4.2.2.2.1. HEC-1-B-hY5 cells and HEC-1-B-hY4 cells (clone 1 and 3) (Moser, 1999) 

were cultured in EMEM containing non-essential amino acids, 2.2 g/l NaHCO3, 110 

mg/l sodium pyruvate, 10 % FCS and 400 µg/ml G418. Subculturing by 1:10 dilution 

was performed every week.  

The screened cell lines and their culture conditions are listed in Table 7. 
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Table 7: Culture conditions and origin of tested cell lines 

Cell Line Origin (Reference) Culture Medium Passaging 

CAPAN-1 human pancreas adenocarcinoma 
(Fogh et al., 1977b) RPMI + 20 % FCS 1:2 – 1:4 

every week 

COLO-320 human colon adenocarcinoma 
(Quinn et al., 1979) RPMI + 10 % FCS 1:5 

twice a week

DU-145 human prostate carcinoma 
(Stone et al., 1978) RPMI + 10 % FCS 1:3 – 1:5 

twice a week

LNCAP human prostate carcinoma 
(Gibas et al., 1984) RPMI + 10 % FCS 1:4 

every week 

HT-29 human colon carcinoma 
(Fogh et al., 1977a) McCoy’s + 10 % FCS 1:5 

every week 

PANC-1 human pancreas carcinoma 
(Lieber et al., 1975) DMEM + 10 % FCS 1:10 

every week 

PC-3 human prostate carcinoma 
(Kaighn et al., 1979) 

45 % Ham’s F12 + 45 % 
RPMI + 10 % FCS 

1:10 
every week 

PC-12 rat adrenal pheochromocytoma 
(Greene and Tischler, 1976) RPMI + 10 % FCS 1:10 

every week 

SW-403 human colon adenocarcinoma 
(Leibovitz et al., 1976) DMEM + 10 % FCS 1:10 

every week 
 

5.1.2.2 Y4 receptor ligands 

The peptides hPP and rPP were synthesized by Dr. C. Cabrele, Institute of 

Pharmacy, University of Regensburg. The Y1 antagonist / Y4 agonist GW1229 (also 

described as GR231118 or 1229U91) was a gift from Dr. J. Daniels, Glaxo Wellcome 

Inc. 

5.1.2.3 Synthesis and purification of cy5-[K4]-hPP and S0586-[K4]-hPP 

The peptide [K4]-hPP (peptide content: 70 %) was synthesized and provided by Prof. 

Dr. A. Beck-Sickinger, Institute of Biochemistry, University of Leipzig. The fluorescent 

cyanine dye S0586 was purchased from FEW chemicals (Wolfen, Germany). 

Labeling of the peptide was performed by analogy with the labeling procedure of 

pNPY described in 3.2.2.1. For the purification of the labeled peptide by HPLC, the 

same instrumentation and eluents as described in 3.2.2.1 were used with a modified 

gradient. After 15 min of equilibration with 50 % of solvent A at a flow rate of 1 ml/min 

the sample was injected and the fraction of solvent A was raised in a linear manner 

to 56.8 % over 30 min and subsequently to 71,2 % over 10 min. Afterwards, the 

column was washed with 100 % of solvent A and then re-equilibrated with 50 % of 

solvent A for 15 min.  
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5.1.2.3.1 Synthesis and purification of cy5-[K4]-hPP (10) 

0.5 mg of [K4]-hPP were dissolved in 20 µl of DMSO, and 250 µl of labeling buffer 

(see 3.2.2.1) were added. One portion of cy5 was dissolved in 20 µl of anhydrous 

DMSO and added to the peptide solution. The UV/VIS detector was set to 649 nm. 

The product was eluted after 35 min. The structure of the labeled peptide (exact 

mass: 4818.2 g/mol) was confirmed by ESI-MS revealing the following peaks: m/z = 

964.5 for [M+5H]5+ ; m/z = 1205.6 for [M+4H]4+ ; m/z = 1607.2 for [M+3H]3+ ; and m/z 

= 2410.1 for [M+2H]2+. Sequencing of the N terminus verified the coupling of the dye 

at the K4 position of the peptide. 
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5.1.2.3.2 Synthesis and purification of S0586-[K4]-hPP (11) 

0.5 mg of [K4]-hPP were dissolved in 400 µl of labeling buffer. 0.28 mg of S0586  

(348 nmol) were dissolved in 20 µl of anhydrous DMSO and added to the peptide 

Fig. 72: HPLC-purification 
of cy5-[K4]-hPP 

 

 

 

 

Fig. 73: Purification of 
S0586-[K4]-hPP 
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solution. The UV/VIS detector was set to 645 nm. The product was eluted after 37.5 

min. The structure of the labeled peptide (exact mass: 4848 g/mol) was confirmed by 

ESI-MS revealing the following peaks: m/z = 809.0 for [M+6H]6+ ; m/z = 970.6 for 

[M+5H]5+ ; m/z = 1213.4 for [M+4H]4+ ; and m/z = 1617.5 for [M+3H]3+. 

 

5.1.2.4 Flow cytometry 

Cell samples were prepared and the flow cytometric measurements were performed 

with the same instrument settings as described in 3.2.2.3. The cells were 

preincubated for 90 – 120 min at room temperature in a final volume of 0.5 ml and 

analyzed without further processing. Unspecific binding at the rY4 receptor was 

determined in the presence of 1 µmol/L of unlabeled hPP or GW1229, respectively. 

Competition binding experiments were performed using cy5-[K4]-hPP (2 nM).  

For the screening of cell lines, the cells were incubated with 10 and 20 nM of 10. 
Unspecific binding was determined in the presence of 1 µM hPP. 

 

5.1.3 Results 

5.1.3.1 Flow cytometric binding assay for the rat Y4 receptor 

The fluorescent ligand cy5-[K4]-hPP (10) showed high specific binding to CHO-rY4 

cells. As becomes obvious from Fig. 74a, the bound fluorescence of the gated cell 

population increased with higher concentrations of 10. Binding of the ligand could be 

reduced in the presence of 1 µM hPP. The calculation of the geometric means 

allowed a saturation analysis, and a Kd value of 1.4 ± 0.3 nM was determined.  

 

 

 

 

 

 

 

 

Fig. 74: Flow cytometric binding assay with CHO-rY4 cells using cy5-[K4]-hPP. a: Fluorescence 
intensities of the gated cell population in channel 4 with increasing concentrations of cy5-[K4]-hPP. 
b: Saturation analysis with cy5-[K4]-hPP. Unspecific binding was determined in presence of 1 µM 
hPP (mean values ± SEM, n=3). 
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5.1.3.2 Binding affinity of cy5-[K4]-hPP (10) to other NPY receptor subtypes 

In order to determine the selectivity of the labeled ligand comparative binding 

experiments to rY4, hY1 and hY2 receptors, were performed with HEL (hY1) and CHO-

hY2-K9-qi5-K9-mtAEQ-A7 cells (see 4.2.3.1). No specific binding of 10 to HEL cells 

was observed up to a concentration of 30 nM (Fig. 75a). Binding of 10 and 11 to hY2-

expressing CHO cells (Fig. 75b) up to a concentration of 100 nM could not be 

abolished by 1 µM of the Y2 selective antagonist 2 indicating that there is no specific 

binding to the hY2 receptor. 

 
 
 
 
 
 

 

 

 

 

Binding of 10 to the hY5 receptor was determined using stably transfected HEC-1-B-

hY5 cells described by Moser (Moser, 1999). Binding was not saturated over the 

concentration range tested but it was similar compared to the binding of 2. In order to 

save labeled peptides, the exact determination of Kd values was abandoned. 
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Fig. 76: Flow cytometric binding experiment with HEC-1-B-hY5 cells. a: specific binding of 10. b: 
specific binding of 2. Unspecific binding was determined in presence of 2 µM pNPY (n=1). 
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Fig. 75: Flow cytometric binding experiment with hY1- and hY2-expressing cells. a: Binding of 10
to hY1-expressing HEL cells. Unspecific binding was determined in presence of 1 µM pNPY 
(n=1). b: Binding of 10 and 11 to CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells. Unspecific binding was 
determined in presence of 1 µM of 2. 
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The labeled peptide cy5-[K4]-hPP appeared to be selective for rY4 towards hY1 and 

hY2 and showed a considerably lower affinity to the hY5 receptor. Therefore, it was 

used for competition binding assays with known peptide ligands of the rY4 receptor. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The peptides rPP (Ki = 18.0 ± 3.3 pM) and hPP (Ki = 33.8 ± 8.6 pM) bound with high 

affinity to the rat Y4 receptor which is in good agreement with radioligand binding 

assays described in the literature. Gehlert reported on a Ki = 18 pM for rPP and a Ki 

= 14 pM for hPP (Gehlert et al., 1997) whereas Parker determined Ki values of 13.5 

pM and 21 pM for rPP and hPP, respectively (Parker et al., 2002a). The Ki value 

determined for GW1229 (1.23 ± 0.20 nM) is approximately 6-fold higher compared to 

the data published by Parker using [125I]-pPYY in a radioligand binding assay (Parker 

et al., 1998). Nevertheless, despite this deviation in case of GW1229, binding of the 

peptide ligands reflects the typical Y4 receptor pharmacology indicating that the 

labeled peptide 10 is a useful tool for flow cytometric binding assays with CHO-rY4 

cells.  

5.1.3.3 Screening of cell lines for binding of cy5-[K4]-hPP (10) 

Northern hybridization experiments revealed that human Y4 mRNA is mainly 

expressed in the colon, small intestine, and prostate. Low levels of expression were 

found in various CNS regions (Lundell et al., 1995). Rat Y4 mRNA was found mainly 

in testis and lung, and to a smaller extent in colon (Lundell et al., 1996). Furthermore, 

PP-preferring receptors were described based on binding studies using dog intestinal 

mucosa (Gilbert et al., 1988), rat PC12 phaeochromocytoma cells (Schwartz et al., 

1987), rat brain area postrema (Whitcomb et al., 1990), rat adrenal cortex and 

medulla (Whitcomb et al., 1992). Functional assays using the rat vas deferens 
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(Jorgensen et al., 1990) or human Col-24 colon adenocarcinoma cells (Cox et al., 

2001) describe also Y4 receptor pharmacology. Therefore, various human colon, 

prostate, pancreas carcinoma cell lines and rat PC-12 cells were screened for 

specific binding of 10. The cells were incubated with 10 and 20 nM of cy5-[K4]-hPP 

and bound fluorescence (total) of the gated cell populations was determined with flow 

cytometry. Unspecific binding was determined in the presence of 1 µM unlabeled 

hPP and subtracted from total binding for the calculation of specific binding.  

Neither CAPAN-1, COLO-320, DU-145, LNCAP, HT-29, PANC-1, PC-3 and SW-403 

cells nor the HEC-1-B-Y4 (clone 1 and 3) showed any distinct specific binding of the 

fluorescent ligand. As shown exemplarily for HT-29 cells in Fig. 78, the cell bound 

fluorescence could not be displaced by high concentrations of hPP. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PC-12 cells were very heterogeneous as shown in the density plot of Fig. 79a. The 

cell population in gate 4 consists of at least two subpopulations binding the 

fluorescent ligand to different extends indicated by the two maxima in the histogram 

(Fig. 79b). In presence of 1 µM hPP the bound fluorescence was reduced by 22 % 

indicating low specific binding of 10. But because of the large fraction of 

unspecifically bound ligand the cell line is not suited for a flow cytometric binding 

assay. It might be possible to select certain subpopulations which show high specific 

binding by cell sorting of PC-12 cells incubated with cy5-[K4]-hPP as described in 

section 5.2.3.2 for transduced P388 cells. 

 

 

fluorescence FL-4
1 10 100 1000

ev
en

ts

0

50

100

150

200

250

300
autofluorescence
total
unspecific

Fig. 78: Binding of 20 nM of 10 to 
HT-29 cells. Bound fluorescent 
ligand was not displaced in the
presence of 1 µM hPP (green). 
Geometric means calculated with 
WinMDI were 6 (autofluorescence), 
112 (total) and 110 (unspecific). 
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Fig. 79: a: Scattergram (density plot) of HT-29 cells. b: Bound fluorescence of gated (gate 4) cell 
population in absence (black) or presence (red, green) of 20 nM of 10. Unspecific binding (green) 
was determined in presence of 1 µM hPP. Geometric means calculated with WinMDI were 12 
(autofluorescence), 436 (total) and 340 (unspecific). 

gate 4 

fluorescence FL-4
1 10 100 1000 10000

E
ve

nt
s

0

20

40

60

80
autofluorescence
total
unspecific

a b



124 Chapter 5.2  

5.2 Development of a flow cytometric binding assay for 
the human NPY Y4 receptor 

5.2.1 Introduction 

The human Y4 receptor gene was first cloned from a human placenta genomic library 

by Bard and co-workers (Bard et al., 1995) and in the same year by Lundell and co-

workers from a human lymphocytes genomic library (Lundell et al., 1995). The cDNA 

sequences (Genbank Accession Number U35232 and Z66526) differed in 5 

conservative mutations and encoded for a receptor protein consisting of 375 amino 

acids. One year later, Yan and co-workers published a hY4 sequence (Genbank 

Accession Number U42387) cloned from a human fetal brain cDNA library (Yan et al., 

1996). The coding sequence was identical with the one published by Lundell et al. 

except one base resulting in one differing amino acid (serine instead of alanine in 

position 99). The fourth entry for the hY4 gene in the Genbank by Kopatz 

(unpublished data, submitted 2003) is identical to the coding sequence published by 

Lundell et al. 

5.2.1.1 Retroviral transduction 

The use of retroviruses for gene transfer and expression has become a powerful tool 

for the stable introduction of genetic material into the genome of any dividing cell type 

(Miller, 1993). Retroviral vectors have several advantages compared to other non-

viral transfection techniques because of their ability to transduce a variety of cell 

types, to integrate efficiently into the genome of the host cells and to express the 

transduced gene at high levels. The genome of a retrovirus is organized in four 

genes: gag, pro, pol and env. The gag gene encodes for the structural proteins 

forming matrix, capsid and nucleocapsid, while the envelope glycoprotein subunits 

are encoded by the env gene. The pro sequence encodes for a protease and the pol 

gene encodes the enzymes reverse transcriptase and integrase. In addition, the 

retroviral genome contains the regulatory sequences designated as long terminal 

repeats (LTRs) required to drive gene expression, reverse transcription and 

integration. The psi (Ψ) sequence (also called packaging signal) mediates the 

specific packaging of the RNA into the newly formed virions. Infection of a host cell is 

initiated by binding of the viral envelope glycoprotein to a specific receptor complex 
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on the cell surface (adsorption). The membranes of virus and cell fuse, and the virus 

core is released into the cytoplasm. During partially degradation of the virus core, the 

viral RNA is reversely transcribed into a double stranded proviral DNA which enters 

the nucleus and becomes integrated into the host genome. Transcription of the 

proviral DNA leads to expression of virus proteins, and only the packaging signal (Ψ) 

containing viral RNA becomes encapsidated to form a new virus particle by budding 

from the cell surface. The pCL vector system was developed by Naviaux and co-

workers (Naviaux et al., 1996). The principle of the production of recombinant, 

replication-incompetent retrovirus is shown in Fig. 80. 

 
 

Expression vector Packaging vector 

LTR gene of interest   purr LTR CMV Ψ CMV gag pro   pol env+

Cotransfection 

Expression of viral proteins (gag, pro, pol, env) 
Transcription of expression vector 

Encapsidation of expression vector RNA containing 
recognition sequence Ψ for packaging proteins 

Release of replication-incompetent virus into the supernatant 

target cell 

reverse transcription

Integration 

no further expression of viral proteins but stable 
expression of gene of interest 

LTR gene of interest        purr LTR CMV Ψ

HEK293T 
cell 

Infection

Fig. 80: Principle of retroviral transduction using the pCL vector system. Transient transfection of 
HEK293T cells with packaging and expression vector leads to production of replication-
incompetent virus, which are used for infection of the target cells. Further explanations in the text. 
CMV: cytomegalovirus promoter, purr: puromycin resistance gene. 
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The packaging vector (e.g. pCL-Eco) and the expression vector (e.g. pQCXIP) 

containing the gene of interest are co-transfected into HEK293T cells. Viral proteins 

encoded by the gag, pro, pol and env genes are expressed and the expression 

vector is transcribed into mRNA. Only the vector RNA containing the psi (Ψ) 

sequence deriving from the expression vector becomes encapsidated. The released 

new viruses are replication-incompetent because they lack the genes gag, pro, pol 

and env. After infection of the target cells, the gene of interest becomes integrated 

into the genome and is stably expressed by the host cell. 
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5.2.2 Materials and Methods 

5.2.2.1 Standard cloning techniques in molecular biology 

Standard media, agar plates, reagents, enzyme and buffers were prepared and used 

as described in 3.1.2. Restriction enzyme digestion, ligation reaction, transformation, 

agarose gel electophoresis and preparation of plasmid DNA were performed as 

described in 3.1.2. 

5.2.2.2 Subcloning of the pcDNA3-hY4 vector 

The hY4 construct was subcloned from the pRc/CMV-Y4 vector (obtained from Dr. H. 

Herzog, Garvan Institute of Medical Research, Sydney, Australia) into the BamHI and 

EcoRI sites of pcDEF3 vector by Moser (Moser, 1999). Sequence analysis revealed 

6 conservative mutations compared to the published sequence U42387 (Yan et al., 

1996). The pcDNA3-hY5 was prepared by Moser (Moser, 1999). The hY5 construct is 

subcloned into the BamHI site of pcDNA3. 

The pcDEF3-hY4 plasmid was digested with BamHI and EcoRI using buffer B (Roche 

Diagnostics, Mannheim, Germany). The DNA fragments were separated via gel 

electrophoresis revealing two expected bands at 6100 bp and 1134 bp (Fig. 81B). 

The pcDNA3-hY5 vector was digested with BamHI and EcoRI (buffer B, Roche 

Diagnostics) leading to the formation of DNA fragments with 5412 bp (linearized 

empty vector), 1400 bp (hY5 construct) and 23 bp (fragment of the MCS, not 

detectable) as shown in Fig. 81C. The hY4 construct (1134 bp) and the linearized 

pcDNA3 vector (5412 bp) were excised from the gel and purified using the QIAEX II 

purification kit. 

Ligation reactions were performed using 2 µl of linearized pcDNA3 vector and 

increasing amounts (0.5 – 6 µl) of isolated hY4 construct in a 20 µl ligation reaction. 

Plasmid DNA of ampicillin resistant transformants was isolated by MiniPrep and 

digested with BamHI and EcoRI using buffer B. Agarose gel electrophoresis revealed 

the two expected bands at 5412 bp and 1134 bp (very weak, distinct band with 800 

ng of digested vector in Fig. 81E,G). The linearized vector was detected after BamHI 

digestion at 6546 bp (Fig. 81D,F). 
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5.2.2.3 Site-directed mutagenesis of pcDNA3-hY4 

Restriction endonuclease DpnI (10 U/µl), recombinant Pfu DNA polymerase (2.5 U/µl) 

and the corresponding 10x PCR buffer containing 200 mM tris-HCl (pH 8.8), 100 mM 

(NH4)2SO4, 100 mM KCl, 1 % Triton-X-100, 1 mg/ml BSA and 20 mM MgSO4 were 

purchased from MBI Fermentas (St. Leon-Rot, Germany). The mutagenic primer pair 

was synthesized by MWG (Ebersberg, Germany). The mutated base (guanine 

instead of thymine) is printed in bold type, the codon encoding for the mutated amino 

acid (alanine instead of serine) is underlined: 

 

Sense: 5’- GCCAGCCGCTGACCGCCGTCTACACCATCATGG -3’  (33 b) 

Antisense: 5’- CCATGATGGTGTAGACGGCGGTCAGCGGCTGGC -3’  (33 b) 

 

The site-directed mutagenesis (SDM) was performed by analogy with the 

QuikChange™ Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA, USA). This 

method allows the rapid introduction of point mutations into sequences of interest 

using a pair of complementary mutagenesis primers to amplify the entire plasmid in a 

single PCR. Treatment of the DNA with restriction enzyme DpnI, which will cut only 

fully or hemimethylated 5’-Gm6ATC-3’ sequences in duplex DNA, leads to the 

Fig. 81: A: pcDEF3-hY4 linearized with Eco RI. B: pcDEF3-hY4 digested with BamHI and Eco 
RI. C: pcDNA3-hY5 digested with BamHI and EcoRI. D: 200 ng pcDNA3-hY4 digested with Bam 
HI. E: 200 ng pcDNA3-hY4 digested with BamHI and EcoRI. F: 800 ng pcDNA3hY4 digested 
with BamHI. G: 800 ng pcDNA3-hY4 digested with BamHI and EcoRI. M: peqGOLD DNA ladder 
mix (Peqlab).  
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selective digestion of the PCR template DNA (Braman et al., 1996; Weiner et al., 

1994). The in vitro synthesized unmethylated nicked vector DNA, including the 

introduced base change, is resistant to DpnI digestion and used for transformation of 

E. coli competent cells. After transformation, the nicks in the mutated plasmid are 

repaired by the bacteria.  

The PCR reactions were prepared in a final volume of 49 µl containing 5 µl 10x PCR 

buffer, 10-50 ng template dsDNA, 15 pmol of each mutated primer, 5 µl 2 mM dNTP 

mix and millipore water. The PCR tube was placed into the thermocycler, heated to 

95 °C and 1 µl of Pfu DNA polymerase was added. Cycling parameters were: 

  1) denaturation:  95 °C, 30 s 

  2) annealing:   55 °C, 1 min 

  3) extension:   68 °C, 13 min 

  4) final extension:  68 °C, 15 min 

  5) hold:   4 °C 

Steps 1) – 3) were repeated 16 times. For the digestion of the nonmutated parental 

DNA template 1 µl of DpnI was added. The reaction mixture was mixed and 

incubated for 1.5 h at 37 °C. The digested DNA was directly used for transformation 

in competent E. coli XL1-Blue. Transformed cells were plated on selective amp-

plates and resistant colonies were used for plasmid preparation with the Qiagen 

Plasmid Purification Kit (Qiagen, Hilden, Germany). Restriction enzyme digestion 

with BamHI and EcoRI revealed the expected bands at 1134 bp and 5412 bp (not 

shown) and sequencing of the construct (Entelechon, Regensburg, Germany) 

confirmed the mutation in position 294 (counted from the start codon). The mutated 

vector was designated as pcDNA3-S99A-hY4. 

 

5.2.2.4 Transfection of CHO-K1 cells 

CHO-K1 cells were seeded in 500 µl of Ham’s F12 plus 10 % FCS on 24-well plates, 

grown to 60 – 70 % confluence and transfected under optimized conditions described 

in section 3.1.3.1 using 300 ng of plasmid DNA per well and a DNA - FuGENE 

transfection reagent ratio of 1:6.  

Transient expression was analyzed two days posttransfection. Selection of resistant 

cells was carried out in selective medium containing 400 µg/ml G418. Single resistant 

cell clones were isolated as described in 3.1.2.12. 
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5.2.2.5 Flow cytometric screening of transfected cells 

Transient transfected cells or selected resistant cell clones were prepared for flow 

cytometric measurements as described in 3.2.2.3. 

5.2.2.6 Subcloning of the pQCXIP-hY4 and the QCXIP-S99A-hY4 vector 

The retroviral expression vector pQCXIP was a gift of Dr. Wulf Schneider, 

Department of Microbiology, University of Regensburg. Compared to the 

commercially available vector pQCXIP (BD Biosciences Clontech, Heidelberg, 

Germany) this vector contains a HpaI site instead of the PacI site and an additional 

XhoI site downstream the EcoRI site in the MCS. 

The vectors pcDNA3-hY4 and pcDNA3-S99A-hY4 were digested with BamHI and 

XhoI using buffer B (Roche Diagnostics) and the DNA fragments were separated via 

gel electrophoresis as shown in Fig. 82. The DNA fragments hY4 and S99A-hY4 

(1167 bp) were isolated from the gel using the QIAEX II purification kit. The pQCXIP 

vector was digested with the same restriction enzymes and the linearized vector was 

separated from the MCS fragment and purified by analogy to the Y4 fragments. 

Ligation reactions were carried out as described in 5.2.2.2. 
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Fig. 82: Subcloning of the hY4- and the S99A-hY4-construct into the pQCXIP vector. BamHI and 
XhoI digestion of pcDNA3-S99A-hY4 (lane A) and pcDNA3- hY4 (lane B). The hY4 and the S99A-
hY4 fragments (1167 bp) were excised from the gel and used for ligation reactions. Restriction 
analysis of the ligated vectors pQCXIP-S99A-hY4 (lane C, D) and pQCXIP-hY4 (lane E, F). 
Linearization with BamHI (C, E) and double digestion with Bam HI and Xho I (D, F). The black 
arrows indicate the weak bands of the released Y4 inserts (1167 bp). 
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The ligation reaction was transformed into competent E. coli, resistant colonies were 

selected and plasmid DNA was prepared by MiniPrep. The correct insertion of the Y4 

constructs into the pQCXIP vector was confirmed by restriction enzyme digestion 

with BamHI and XhoI. Linearization of the full-length vectors (Fig. 82C, E) revealed 

the expected bands with 8296 bp. Double digestion with BamHI and XhoI (Fig. 82D, 

F) released the Y4 inserts (1167 bp, very weak bands indicated by the black arrows) 

and the empty pQCXIP vectors (7162 bp). Sequencing (Entelechon) of the constructs 

further confirmed the correct composition of the retroviral expression vectors. 

5.2.2.7 Transduction of P388-D1 cells 

HEK293T cells and the pCL-Eco retrovirus packaging vector (Imgenex, San Diego, 

CA, USA) were obtained from Dr. Wulf Schneider, Department of Microbiology, 

University of Regensburg. The vector contains an ampicillin resistant gene for 

selection in E. coli. Retroviruses obtained by cotransfection with pCL-Eco vector and 

retroviral expression vector will infect mouse and rat cells, but not human cells. 

Therefore, retroviral production and transduction work can be performed in a 

Biosafety Level 1 (BL1) facility. HEK293T cells were maintained in DMEM plus 10 % 

FCS and passaged by 1:10 splitting twice a week. P388-D1 cells were maintained in 

RPMI plus 5 % FCS and diluted 1:20 every week. 

2x HEPES-buffered saline solution (HeBS) contained 50 mM HEPES (Sigma), 280 

mM NaCl (Merck) and 1.5 mM Na2HPO4 (Merck) in millipore water (pH 7.05). 

CaCl2-solution contained 2.5 M CaCl2 in millipore water. Both solutions were sterile 

filtered and stored as aliquots at -20 °C. Sterile polybrene (hexadimethrine bromide) 

stock solution (8 mg/ml) and the pQCXIP-eYFP control vector were obtained from Dr. 

Schneider. 

Two days prior the transfection 1.5 · 106 HEK293T cells were seeded in 10 ml DMEM 

plus 10 % FCS on a 10 cm tissue culture dish (Falcon) and cells were grown to 60 -

70 % confluence. One hour before the transfection the medium was replaced by 

fresh one in order to achieve optimal pH conditions at the time of transfection. 10 µg 

of retroviral expression vector (pQCXIP-hY4, pQCXIP-S99A-hY4 or pQCXIP-eYFP) 

and 10 µg of pCL-Eco in 450 µl millipore water were added to 50 µl of CaCl2-solution. 

While vortexing, this solution was added dropwise to 500 µl of 2x HeBS in order to 

co-precipitate Ca3(PO4)2 and plasmid DNA. Subsequently, the suspension was 

added dropwise to the HEK293T cells. 5 h after the transfection the medium was 

sucked off and 10 ml of fresh medium was added. One day before the infection 105 
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P388-D1 cells were seeded in 4 ml RPMI plus 5 % FCS on a 6-well plate. Two days 

after the transfection of the HEK293T cells, eYFP expression (> 70 %) of the control 

cells was determined with fluorescence microscopy. The virus-containing 

supernatant was sucked off and 10 µl of polybrene solution was added to 10 ml of 

supernatant. The virus suspension was filter sterilized (Pall® Acrodisc 25 mm Syringe 

Filter w/0.45 µm with HAT Tuffryn® membrane, Pall, New York, USA) and directly 

used for infection or stored on ice until the second infection. For the infection, P388-

D1 cells were centrifuged at 300 g for 4 min and resuspended in a mixture of 2 ml of 

virus suspension and 2 ml of fresh medium. Cells were incubated for 6 h and infected 

again. Fresh medium was added to the cells 24 h after the first infection. Selection of 

transduced cells was carried out with selective medium containing 3 µg/ml puromycin 

(Sigma, München, Germany). 

5.2.2.8 Cell sorting 

P388-D1 cells transduced with the pQCXIP-S99A-hY4 receptor were centrifuged at 

300 g for 5 min and resuspended at 2 · 106 cells/ml in sterile binding buffer (see 

3.2.2.3). 10 nM of 10 were added and the cells were incubated for 1 h at room 

temperature under slight shaking. The whole fluid system of the flow cytometer was 

disinfected by flushing with 70 % ethanol for 30 min and subsequently washed with 

sterile PBS for additional 30 min. The collection tubes were prepared by incubation 

with sterile PBS containing 4 % BSA overnight. The solution was discarded and the 

collection tubes were filled with 5 ml RPMI plus 20 % FCS and then installed into the 

sorting unit of the flow cytometer. The small subpopulation with high cell-bound 

fluorescence were gated (FL-4 > 400) and sorted using the single cell sorting mode. 

30 – 40 ml of diluted sorted cells were centrifuged for 10 min at 300 g and 

resuspended in 500 µl RPMI plus 20 % FCS on a 24-well plate. The sorted cells were 

further expanded and maintained in RPMI plus 5 % FCS supplemented with 3 µg/ml 

puromycin. 

 

5.2.2.9 Isolation of cell clones 

Transduced and sorted P388 cells were seeded in selective medium at very low 

density on a 15 cm tissue culture dish. Although P388 cells are suspension cells, 

they grow slightly adherent and form loose cell aggregates after cell division. These 



 Flow Cytometric Binding Assay for the human Y4 Receptor 133 

cell aggregates were picked with a sterile pipette, expanded and tested for specific 

binding of 10 as described in 3.2.2.3. 

5.2.2.10 Flow cytometric binding assay 

Transfected CHO cells were prepared for flow cytometric measurements as 

described in section 3.2.2.3. Transduced P388 cells were centrifuged at 300 g for 5 

min at room temperature and resuspended at 106 cells/ml in binding buffer (see 

3.2.2.3).  

485 µl of the cell suspension were incubated with 10 µl of fluorescent ligand and 5 µl 

of test compound. Unspecific binding was determined in presence of 1 µM hPP or 

GW1229. The cells were incubated for 90-120 min at room temperature under slight 

shaking to prevent cell aggregation and were subsequently analyzed without further 

processing. Instrument settings were the same as described in 3.2.2.3 for transfected 

CHO cells and FSC: E-1, SSC: 300 V, FL-4: 800 V for transduced P388 cells. 

5.2.3 Results and discussion 

5.2.3.1 Transfection of CHO-K1 cells 

 
The CHO-K1 cells were transiently transfected with the pcDNA3-hY4 and the 

pcDNA3-S99A-hY4 vector. Two days after the transfection, the cells were tested for 

specific binding of 5 nM cy5-[K4]-hPP. As shown in Fig. 83, the bound fluorescence of 

the gated cells was not displaced by an excess (1 µM) of unlabelled hPP. 

Fig. 83: Measurement of total (red) and unspecific (blue) binding of 5 nM cy5-[K4]-hPP. a: CHO-
K1 cells transient transfected with the pcDNA3-hY4 vector. b: CHO-K1 cells transient transfected 
with the pcDNA-S99A-hY4 vector. Unspecific binding was determined in presence of 1 µM hPP. 
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Nevertheless, the transfected cells were selected by maintaining them in selective 

medium containing 400 µg/ml G418 for 3 weeks and several single cell clones were 

isolated.   

None of the cell clones stably transfected with the pcDNA-hY4 vector showed distinct 

specific binding of 10 (data not shown). Some of the isolated cell clones stably 

transfected with the pcDNA3-S99A-hY4 showed a considerable binding of 10 which 

could be displaced to some extend by hPP. But as shown exemplarily for clone CHO-

pcDNA3-S99A-hY4-K1A in Fig. 84, the fraction of unspecific binding was higher 

compared to the specific binding with each concentration tested. 
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This could be explained either by low affinity of 10 to the human Y4 receptor or by low 

functional receptor expression of the selected cell clones. To allow for the latter 

explanation, the retroviral expression system was used. 

 

Fig. 84: CHO-pcDNA3-S99A-
hY4-K1A clone binding increas-
ing concentrations of 10. Un-
specific binding was determined 
in the presence of 1 µM hPP. 



 Flow Cytometric Binding Assay for the human Y4 Receptor 135 

5.2.3.2 Retroviral transduction of P388-D1 cells 

 
P388-D1 cells were transduced with the pQCXIP-hY4 and the pQCXIP-S99A-hY4 

vector. Binding of 10 to the transduced cells was measured by flow cytometry. Only 

the P388-D1 cells transduced with the pQCXIP-S99A-hY4 vector consisted of a small 

cell population (1 % of the transduced cells) which bound the fluorescent ligand 

specifically.  
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Fig. 85: Binding of 5 nM of 10 to P388-D1 cells transduced with the pQCXIP-S99A-hY4 vector. About 
99 % of the transduced cells (c,d) show no distinct specific binding of 10 as it is the case with wild-type 
cells (a,b). Low scaling range presentation reveals a small population of the transduced cells 
(indicated by arrow) binding 10 which was displaced by hPP (d). Autofluorescence (black), total (red) 
and unspecific (green) binding determined in presence of 1 µM hPP. 

 

Cells with specifically bound fluorescence were sorted using the sorting unit of the 

flow cytometer. As shown in Fig. 86, due to the cell sorting procedure the fraction of 

the cell population specifically binding the fluorescence labeled ligand could be 

increased up to > 70 % of the gated cells. But after some cell passages, the fraction 

decreased again because of faster growing puromycin-resistant cells with low 

receptor expression. 
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A cell clone (P388-S99A-hY4-K23) stably expressing the S99A-hY4 receptor was 

isolated after picking of cell aggregates (Fig. 86c). This cell clone was used for flow 

cytometric binding experiments. The dissociation constant Kd = 36.6 ± 3.8 nM of 10 

was determined in a saturation binding assay. This affinity is much lower compared 

to the Ki value determined with rat Y4 expressing CHO cells (see 5.1.3.1). 

 

40 nM of 10 were used for competition binding assays. hPP and GW1229 bound with 

high affinity (calculated Ki values are Ki (hPP) = 427 ± 42 pM and Ki (GW1229) = 277 

± 24 pM) to the S99A-hY4 receptor. The Ki value for rPP was 776 ± 139 pM. The Ki 

Fig. 86: Fluorescence activated cell sorting of P388-D1 cells transduced with the pQCIPX-S99A-
hY4 vector. The fraction of cells which specifically bound the fluorescent ligand 10 (5 nM) could be 
increased to 20 % after one sorting (panel a) and to > 70 % after two sorting procedures (panel b). 
A uniform cell population with highly specific binding of 10 was isolated after picking of cell 
aggregates (panel c). Autofluorescence (black), unspecific (green, determined in presence of 1 µM 
hPP) and specific (red) binding of 10. 

Fig. 87: Flow cytometric binding assay with P388-S99A-hY4-K23 cells. a: Saturation analysis 
with cy5-[K4]-hPP (Kd = 36.6 ± 3.8 nM). b: Competition binding of hPP (IC50 = 893 ± 74 pM), 
GW1229 (IC50 = 581 ± 40 pM) and rPP (IC50 = 1.623 ± 0.278 nM) with 40 nM cy5-[K4]-hPP. 
Unspecific binding was determined in presence of 1 µM hPP (mean values ± SEM, n=3). 
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values published in the literature are determined in radioligand binding assays using 

the radioligands [125I]-hPP (Parker et al., 2002a; Voisin et al., 2000), [125I]-PYY (Bard 

et al., 1995; Dautzenberg et al., 2005; Lundell et al., 1995) and [125I]-GW1229 

(Dumont and Quirion, 2000; Schober et al., 2000). The published affinity data vary 

considerably; for hPP binding to the hY4 receptor, Ki values range from 13.8 pM 

(Lundell et al., 1995) to 0.7 nM (Voisin et al., 2000). The pharmacological binding 

profile determined with the flow cytometric assay is in agreement with the literature 

(hPP ≥ GW1229 > rPP).  

Unfortunately, the HEK293T cells used for the production of retroviruses were 

contaminated with mycoplasma and, consequently, the transduced P388-S99A-hY4-

K23 cells were also infected by the bacteria. As mycoplasma can interfere with 

cellular biological assays and influence the signal transduction (Drexler and Uphoff, 

2002) decontamination was required. After treatment of the cells with Plasmocin™ 

(Invivogen, San Diego, USA) according to the manufacturer’s instructions the affinity 

of the fluorescence labeled [K4]-hPP was determined in a saturation assay. The 

determined Kd values were 8.75 ± 1.52 nM for cy5-[K4]-hPP and 10.22 ± 0.84 nM for 

S0586-[K4]-hPP.  

 
 

Fig. 88: Saturation analysis of Plasmocin™-treated P388-S99A-hY4-K23 cells. a: Binding of cy5-
[K4]-hPP. b: Binding of S0586-[K4]-hPP. Unspecific binding was determined in presence of 1 µM 
hPP (mean values ± SEM, n=3). 
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5.3 Development of functional assays for the hY4 
receptor 

5.3.1 Introduction 

For the determination of functional data of NPY Y4 receptor ligands, functional assays 

are required. As the Y4 receptor is coupled to the Gi pathway, stimulation of the 

receptor leads to an inhibition of adenyl cyclase resulting in a decreased formation of 

cAMP. Because the cAMP formation of unstimulated cells is usually very low, the 

potency of Y4 receptor agonists is commonly determined by the measurement of 

inhibition of forskolin-stimulated cAMP formation. During the assay, the cAMP is 

quantitated using a radioimmunoassay kit. cAMP assays have been described for the 

hY4 receptor expressed by HEK293 , LMTK-  and CHO  cells. Functional assays 

based on the inhibition of adenylyl cyclase are also described for the rat and the 

guinea pig  Y4 receptor. A different assay measures the short circuit current of human 

colonic adenocarcinoma cell lines pretreated with vasoactive intestinal polypeptide . 

A bioassay described for the Y4 receptor determines the contractile responses of 

segments of the rat colon (Pheng et al., 1999) in order to quantify the potency of Y4 

receptor agonists. Although the increase of intracellular free [Ca2+] was described for 

LMTK- cells stably expressing the hY4 receptor (Bard et al., 1995), no complete 

concentration response curves or EC50 values were determined. Recently, a calcium 

mobilization assay in the FLIPR format was described for the hY4 receptor using 

HEK293 cells co-expressing the hY4 receptor with the chimeric G proteins Gqo5, Gqi5 

or Gqi9 (Dautzenberg et al., 2005). Comparing radioligand binding data with functional 

assays, Dautzenberg et al. found a high congruence only with binding and cAMP 

assays, but a rightward shift of the dose-response curves in GTPγS binding and 

FLIPR assays. Another method measures the agonist-induced β-arrestin 2 interaction 

with the neuropeptide Y receptor (Berglund et al., 2003c). A bioluminescence 

resonance energy transfer (BRET) occurs when the activated receptor tagged with 

Renilla luciferase comes to close vicinity to β-arrestin 2, fused to a GFP variant.  
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5.3.2 Materials and Methods 

5.3.2.1 Y4 receptor ligands 

The peptides hPP, rPP, pNPY and BW1911U90 (Parker et al., 1998) were 

synthesized by Dr. Chiara Cabrele, University of Regensburg, Germany. [L31,P34]-

pNPY, [K4]-hPP and [hPP19-23,P34]-pNPY were synthesized by Prof. Beck-Sickinger, 

University of Leipzig, Germany. The compounds PG 55B and PG 15 were 

synthesized by Dr. Prasanta Gohrai, the compounds AK 49, AK 59 and AK 1 were 

prepared by Anja Kraus and the compound MF 1 (Fig. 106) was synthesized by 

Matthias Freund (all from University of Regensburg, Germany).  

Table 8: Compounds tested at the Y4 receptor. 
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5.3.2.2 Introduction of a stop-codon and subcloning of the pcDNA3-hY4 
receptor 

The hY4-eYFP-QCkorr vector was obtained by Dr. Karin Mörl, University of Leipzig, 

Germany. The hY4 sequence is identical with the sequence published by Bard et al., 

1995 except one silent mutation in position 66 (guanine instead of adenine). An 

optimized Kozak consensus sequence was introduced to increase protein translation. 

The eYFP gene is fused to the receptor DNA without linking amino acids; the 
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termination signal of the hY4 and the ATG codon of the eYFP gene are deleted.  Prior 

to subcloning of the hY4 receptor DNA into the pcDNA3 vector, a new termination 

signal followed by a new XhoI restriction enzyme site at the 3’ end were introduced 

via PCR. The following primers were used (termination signal in bold, XhoI site 

underlined): 

 

Sense: 5’- GGC GTG TAC GGT GGG AGG TC -3’ 

Antisense: 5’- GGC CTC GAG TTA AAT GGG ATT GGA CCT GCC -3’ 

 
The PCR was performed in analogy to the PCR described in 5.2.2.3 using the 

following cycling parameters: 

  1) denaturation:  95 °C, 30 s 

  2) annealing:   60 °C, 1 min 

  3) extension:   72 °C, 2.5 min 

  4) final extension:  72 °C, 5 min 

  5) hold:   4 °C 

 

Steps 1) – 3) were repeated 20 times. The PCR products (Fig. 89A) were purified 

with the PCR purification kit (Qiagen) and digested with BamHI and XhoI using buffer 

B (Roche Diagnostics). The pcDNA3-hY5 was also digested with BamHI and XhoI. 

The hY4 construct and the linearized vector pcDNA3 were isolated by agarose gel 

electrophoresis and purified using the QIAEX II purification kit.  

Ligation reactions were performed using 2 µl of linearized pcDNA3 vector and 

increasing amounts (0.5 – 6 µl) of isolated hY4 construct in a 20 µl ligation reaction. 

Plasmid DNA of ampicillin resistant transformants was isolated by MiniPrep and 

digested with BamHI and XhoI using buffer B (Roche Diagnostics). Agarose gel 

electrophoresis revealed the two expected bands at 5382 bp and 1144 bp (Fig. 89B). 

The linearized vector was detected after BamHI digestion at 6526 bp. 
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5.3.2.3 Transfection of CHO-K1 cells with the pcDNA3-hY4 vector 

CHO-K1 cells were seeded in 500 µl Ham’s F12 plus 10 % FCS on a 24-well plate. 

On the day of transfection, the optical confluence reached 60 – 70 %. The 

transfection was carried out using the FuGENE™ (Roche Diagnostics) transfection 

reagent according to the manufacturer’s instructions. 300 ng of vector DNA and 1.8 

µl of transfection reagent were applied per well. Resistant cells were selected two 

days after the transfection by maintaining the cells in selective medium containing 

400 µg/ml G418. Single cell clones were picked with a sterile pipette as described in 

section 3.1.2.12 and tested in a flow cytometric binding assay. 

5.3.2.4 Screening of transfected cell clones for binding of cy5-[K4]-hPP 

Cell clones were expanded in selective medium and prepared for the flow cytometric 

binding assay as described in section 3.2.2.3.   

5.3.2.5 Transfection of CHO-hY4-K13b cells with pcDNA3.1/hygro-qi5 

The pcDNA3.1/hygro-qi5 vector was linearized with Eam11051 prior to the 

transfection procedure (see 4.1.2.3). The transfection was carried out as described in 

5.3.2.3 using 300 ng of linearized vector and 1.8 µl FuGENE™ per well. The selective 

medium contained 400 µg/ml G418 and 400 µg/ml hygromycin. Single resistant cell 

clones were isolated (see section 3.1.2.12) and tested in a flow cytometric calcium 

assay.  

Fig. 89: Subcloning of the pcDNA3-hY4 vector. A: PCR product after introduction of a stop codon 
and a XhoI restriction site at the 3’ end of hY4. B: Restriction analysis of pcDNA3-hY4 (BamHI 
and XhoI digestion). C: BamHI linearized pcDNA3-hY4 vector. 
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5.3.2.6 Screening of transfected cell clones for calcium response upon 
stimulation with hPP  

Cell clones were expanded in selective medium and prepared for the flow cytometric 

calcium assay as described in section 4.1.2.4. The signal was elicited with 20 nM 

hPP. 

5.3.2.7 Transfection of CHO-hY4-K13b-qi5-K8 cells with pcDNA3.1/zeo-mtAEQ 

The pcDNA3.1/zeo-mtAEQ vector was linearized with Eam11051 prior to the 

transfection. The transfection was carried out as described in 5.3.2.3. Resistant cells 

were selected with Ham’s F12 plus 10 % FCS containing 400 µg/ml G418, 400 µg/ml 

hygromycin and 250 µg/ml zeocin.  

5.3.2.8 Screening of transfected CHO-hY4-K13b-qi5-K8 cell clones for 
aequorin luminescence signal upon stimulation with hPP 

After two weeks of selection in selective medium, 96 cell clones were picked with a 

sterile pipette and grown to 50 – 80 % confluence on a white, flat bottomed 96-well 

plate with transparent bottom. For the reconstitution of active aequorin, the medium 

was removed and 25 µl 2 µM coelenterazine h in DMEM (without phenol red) 

supplemented with 1 % FCS was added per well. The cells were incubated for 2 h at 

room temperature. The 96-well plate was loaded into the Tecan Genios Pro plate 

reader and 175 µl of loading buffer (see 4.1.2.4) containing hPP with a final 

concentration of 50 nM were injected per well. Luminescence was recorded in 200 

ms integrations for 40 s. After the luminescence assay 20 µl DAPI (0.2 mg/ml) was 

added to each well and the cells were incubated for 15 min at room temperature. The 

whole medium was removed and the cells were washed with 200 µl PBS before 

adding 200 µl fresh PBS. The 96-well plate was loaded again into the plate reader 

and fluorescence was measured using the following instrument settings: λex = 340 

nm, λem = 485 nm, gain: 70, number of flashes: 3, integration time: 40 µs, mirror 

selection: bottom, multiple reads per well: 2x2, time between move and flash: 100 ms. 

Luminescence signal was plotted against time for each clone and the area under the 

curve was calculated using the SigmaPlot™ software. Total luminescence was 

divided by the fluorescence signal of the DAPI staining.  
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5.3.2.9 Aequorin assay 

5.3.2.9.1 Agonist assay 

Transfected CHO cells were prepared for the aequorin assay as described in 

4.2.2.2.3. Unless otherwise stated, the cells were postincubated for 3 h at 5 x 105 

cells/ml in loading buffer. 10-fold concentrated peptide dilutions were prepared in 

loading buffer and 20 µl were provided per well. A blank sample containing solvent 

and a 100 %-sample containing 0.1 % triton-X-100 (final assay concentration) were 

included per row. 180 µl of the stirred cell suspension were injected to each well and 

luminescence was recorded over 40 s as a series of 200 ms integrations. Total 

luminescence was calculated with SigmaPlot™ software (see 4.2.2.2.3). The blank 

value was subtracted from each value and the percentage of maximal luminescence 

was calculated using the triton-X-100 (100% value) sample.  

5.3.2.9.2 Antagonist assay 

For the determination of antagonist activity, the cells were postincubated for 2 h. 2 µl 

of 100-fold concentrated dilutions of the compounds were added to 175 µl of cell 

suspension per well and incubated for 1 h. A 100 % sample containing 2 µl of solvent 

was included per row. 23 µl of a 1.739 µM rPP solution were injected per well and 

luminescence was recorded as described before. The percentage of the maximal 

luminescence signal was calculated using the 100 % sample.  

Screening of compounds was performed at 10 µM (final assay concentration). 

5.3.2.9.3 Measurement with 2 injectors 

CHO cells were prepared as described in 5.3.2.9.1. After 3 h postincubation, 162 µl 

of cell suspension were injected to 18 µl of peptide solution and luminescence was 

recorded for 43 s (peak 1) before injection of 20 µl of 1 % triton-X-100 solution. 

Luminescence was recorded for further 22 s (peak 2) and the area under the two 

peaks was calculated with SigmaPlot™ software. Fractional luminescence was 

calculated by dividing the area of the agonist peak by the sum of the areas of peaks 

1 and 2. 
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5.3.2.10 Flow cytometric binding assay 

The flow cytometric binding assay was performed as described in section 3.2.2.3. 

Instrument settings were FSC: E-1, SSC: 280 V, FL-4: 800 V (700 V for CHO-hY4-

K13b-qi5-K8-mtAEQ-E11-K11 cells), flow rate: high.  

5.3.2.11 Spectrofluorimetric calcium assay 

The spectrofluorimetric fura-2 calcium assay was performed as described in section 

4.1.2.5. The maximum signal (100 %) was elicited with 1 µM rPP. 

5.3.2.12 Luminescence detection with CCD camera 

The luminescence measurements were performed by analogy with the procedure 

described in section 4.3.2.2 using the CHO-hY4-K13b-qi5-K8-mtAEQ-E11 cells and 

dilutions of hPP to elicit the signal.  

5.3.2.13 Confocal microscopy 

CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells were seeded in 200 µl Ham’s F12 plus 

10 % FCS on a Lab-Tek® II, 8 chamber coverglass system (Nalge Nunc) two days 

before the experiment and were grown to 50 – 70 % confluence. 500 nM Syto13 

(Invitrogen) were added and the cells were incubated for 45 min. According to the 

manufacturer’s specifications, the dye shows cytoplasmic or mitochondrial staining 

as well as nuclear staining in eukaryotic cells. After the incubation with the dye, the 

cells were washed with Ham’s F12 and 200 µl of binding buffer (see 3.2.2.3) 

containing 10 nM cy5-[K4]-hPP alone (total binding) or in combination with 1 µM 

GW1229 (unspecific binding) were added. Confocal scanning microscopy was 

performed after 20 min using the same instrumentation described in section 3.2.2.4. 

The laser power was set to 51 % for the red diode laser (λ = 633 nm) and 3 % for the 

argon laser (λ = 488 nm). Scanning mode was multi track. 

For the measurement of the increase of intracellular calcium concentration, the cells 

were loaded with fluo-4-AM and installed into the laser scanning microscope using 

the same instrumentation as described in section 4.3.2.1. The power of the argon 

laser (λ = 488 nm) was set to 5 % and the 505 nm longpass filter was used. A 

scanning region was defined for two neighboring cells and a time series was adjusted 

with a scan speed which allows the scanning of one frame in 1.6 s. The 

measurement was started and 30 µl of hPP solution (1 µM in loading buffer) were 

added to the cell chamber containing 300 µl of Leibowitz L15 medium. 
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5.3.3 Results and discussion 

5.3.3.1 Establishment of a stable cell clone co-expressing the hY4 receptor, 
the chimeric G protein qi5 and mitochondrial targeted apoaequorin 

 
CHO-K1 cells were transfected with the pcDNA3-hY4 vector. Isolated cell clones 

resistant to 400 µg/ml G418 were tested for binding of cy5-[K4]-hPP. The cell clone 

CHO-hY4-K13b was found to bind the fluorescent ligand in a concentration 

dependent manner (Fig. 90). 

 

 
The bound ligand was displaced by 1 µM hPP as shown in Fig. 90b. However, the 

cells did not equally express the receptor, which became obvious after incubation 

with 10 and 20 nM of 10 (Fig. 90a). The CHO-hY4-K13b cells consisted of at least 

two subpopulations binding the fluorescent ligand to different extents. 

Nevertheless, the cells were further transfected with the pcDNA3.1/hygro-qi5 vector. 

Selected cell clones were tested for an increase in intracellular calcium upon 

stimulation with hPP. Injection of 20 nM of hPP led to a weak but distinct increase in 

fluorescence of fluo-4 loaded CHO-hY4-K13b-qi5-K8 cells (Fig. 91).  

  

 

 

  

 

 

 

Fig. 90: Binding of 10 to CHO-hY4-K13b cells. a: Total binding. b: Unspecific binding in presence of 
1 µM hPP. 
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Fig. 91: Calcium response of CHO-hY4-
K13b-qi5-K8 cells after stimulation with 20 
nM hPP. Raw data were smoothed with 
WinMDI and SigmaPlot software. 
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The cells were further transfected with the pcDNA3.1/zeo-mtAEQ vector. After 

selection with G418, hygromycin and zeocin, cell clones were isolated and screened 

for a luminescence signal following receptor activation with 50 nM hPP. The total 

luminescence light emitted was divided by the intensity of DAPI fluorescence 

representing the different cell numbers. The result is shown in Fig. 92.  
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Fig. 92: Screening of CHO-hY4-K13b-qi5-K8-mtAEQ cell clones.  

 

The cell clone E11 showed the strongest luminescence signal in relation to the cell 

number. CHO-hY4-K13b-qi5-K8-mtAEQ-E11 cells were further analyzed for their 

response to peptide agonists in the aequorin assay. As shown in Fig. 93, the courses 

of the luminescence signals were different from the luminescence signals measured 

with the CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells (see Fig. 56a). Injection of the cells to 

the full agonist hPP led to an initial increase of luminescence which was followed by 

a delayed rise of luminescence (Fig. 93a, red).  

 

 

 

Fig. 93: Aequorin assay with CHO-hY4-K13b-qi5-K8-mtAEQ-E11 cells. a: Luminescence signal of 
hPP (red) and GW1229 (green). b: Dose-response curves of peptide agonists (mean values ± 
SEM, n=3). 

time [s]
0 10 20 30 40

lu
m

in
es

ce
nc

e 
[R

LU
]

0

1e+5

2e+5

3e+5

4e+5
30   nM hPP
300 nM hPP
30   nM GW1229
300 nM GW1229

c (peptide) [nM]
0,1 1 10 100 1000 10000

%
 o

f m
ax

. l
um

in
es

ce
nc

e

0

5

10

15

20

25
hPP
GW1229
rPP
[K4]hPP

a 

b



 Functional Assays for the human Y4 Receptor 147 

This effect was less pronounced with the partial agonist GW1229 (Fig. 93a, green). 

Nevertheless, concentration-response curves for various peptide agonists were 

constructed with the expected pharmacological rank order concerning the full 

agonists hPP, rPP and [K4]-hPP. The partial agonist GW1229 reached 57 % of the 

maximal signal elicited by full agonists. The EC50 was with 9.4 nM about 4-fold lower 

compared to hPP (37.3 nM).  

 
Because the course of the aequorin assay indicated the existence of at least two cell 

populations with different kinetic responses upon agonist stimulation, the hY4 

receptors were labeled by binding to 10 and the receptor distribution was analyzed 

by flow cytometry.  

 
 
 
 

In fact, as shown in Fig. 94a, the CHO-hY4-K13b-qi5-K8-mtAEQ-E11 cells bound the 

fluorescent ligand inhomogeneously indicated by the two maxima in the histogram 

presentation (Fig. 94a). Both maxima were shifted to the right with increasing 

concentrations of 10, indicating the existence of two cell populations with different 

receptor expression. Therefore, new subclones were isolated and tested for their 

binding of 10. The cell clone CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 exhibited high 

and homogeneous binding of the fluorescent ligand (Fig. 94b). The labeled ligands 

cy5-[K4]-hPP and S0586-[K4]-hPP could be displaced by 1 µM hPP and Kd values 

were determined after saturation analysis.  

 

 

 

Fig. 94: Binding of cy5-[K4]-hPP to CHO-hY4-K13b-qi5-K8-mtAEQ-E11 (panel a) and CHO-
hY4-K13b-qi5-K8-mtAEQ-E11-K11 (panel b) cells.
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The determined Kd values of 5.62 ± 1.08 nM for 10 and 9.24 ± 1.34 nM for 11 are in 

good agreement with the Kd values determined with the transduced P388 cells (see 

section 5.2.3.2). The ligand 10 (10 nM) was used in flow cytometric competition 

assays and Ki values of peptide ligands were determined. According to the literature, 

hPP (Ki = 239 ± 36 pM) and GW1229 (Ki = 217 ± 44 pM) showed the highest affinity 

to the hY4 receptor. Rat PP bound with slightly lower affinity but still in the picomolar 

range (Ki = 443 ± 85 pM). The peptides [L31,P34]-pNPY (Ki = 7.08 ± 1.49 nM), 

BW1911U90 (Ki = 10.77 ± 1.84 nM) and [hPP19-23,P34]-pNPY (Ki = 20.07 ± 3.03 nM) 

bound in the nanomolar range and pNPY showed only low affinity with a Ki value of 

365 ± 79 nM. 
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Fig. 95: Saturation assay with CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells and cy5-[K4]-hPP 
(left panel; mean values ± SEM, n=3) and S0586-[K4]-hPP (right panel; mean values ± SEM, n=2).

Fig. 96: Flow cytometric 
binding assay with CHO-
hY4-K13b-qi5-K8-mtAEQ-
E11-K11 cells. Displace-
ment of 10 nM cy5-[K4]-
hPP by various peptide 
ligands (mean values ±
SEM,n=3-4). 



 Functional Assays for the human Y4 Receptor 149 

The same isolated cell clone CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 was used in an 

aequorin assay. In order to prevent adsorption of the peptides to the well-plate 

material, 1 % BSA and 0.1 mg/ml bacitracin were added to the peptide solutions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.3.3.2 Aequorin assay with two injectors 

After the upgrading of the Tecan Genios Pro™ plate reader with a second injector an 

additional injection of a triton-X-100 solution was included into the assay design by 

analogy with the assay described for the hY2 receptor (see 4.2.3.5). The course of 

the measurement is shown in Fig. 98. The aequorin signal was elicited with 

increasing concentrations of agonist (hPP) at time point ‘a’. The peak followed by the 

injection of triton-X-100 (time point ‘b’) decreased with increasing concentrations of 

hPP as more active aequorin was discharged by the previous aequorin signal.  
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Fig. 97: Aequorin assay with CHO-
hY4-K13b-qi5-K8-mtAEQ-E11-K11 
cells. EC50 values are 15.5 ± 3.1 nM 
(hPP), 60.4 ± 12.7 nM (rPP), 29.4 ± 
5.3 nM (GW1229), 857.1 ± 104.5 nM 
([L31,P34]-pNPY), 157.6 ± 22.2 nM 
([K4]-hPP) and 1395.7 ± 204.5 nM 
([hPP19-23,P34]-pNPY) (mean values ± 
SEM, n=3). 

Fig. 98: Aequorin assay with CHO-hY4-K13b-
qi5-K8-mtAEQ-E11-K11 cells using 2 injectors. 
The cell suspension is injected to the agonist 
(hPP) solution at time point ‘a’ and the aequorin 
signal is recorded for 43 s. Injection of 0.1 % 
triton-X-100 at time point ‘b’ leads to cell lysis 
and causes consumption of residual active 
aequorin.  
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The influence of the postincubation step was analyzed in the next experiment. The 

cells were loaded with coelenterazine h for 2 h and postincubated for various times 

before injection to the full agonist hPP or to the partial agonist GW1229. 

As shown in Fig. 100, the signals varied broadly when the postincubation step was 

omitted. The fractional luminescence elicited by the agonists increased during the 

measurement tempering the concentration-response curves.  Although the EC50 

values were constant during the whole experiment (EC50 (hPP) = 6.6 – 8.5 nM and 

EC50 (GW1229) = 7.3 – 9.0 nM), the maxima of the concentration-response curves 

increased within the first 3 h after the loading procedure for hPP and GW1229. In 

agreement with the aequorin assay using CHO-hY2-K9-qi5-K9-mtAEQ-A7 cells (see 

section 4.2.3.5), reproducible concentration-response curves were obtained after 3 h 

of postincubation allowing a discrimination between full and partial agonists. 
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The determined EC50 values (EC50 (hPP) = 9.33 ± 1.29 nM and EC50 (GW1229) = 

8.19 ± 0.56 nM) were slightly lower compared to the ones obtained from the aequorin 
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Fig. 100: Dose-response curves of hPP (a) and GW1229 (b) after various postincubation times. 
CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells were incubated with 2 µM coelenterazine h for 2 h 
at room temperature, diluted to 5 x 105 cells/ml in loading buffer and postincubated for various 
periods before injection to the ligands (mean values ± SEM, n=3).  

Fig. 99: Concentration-response curves of 
hPP and GW1229. Cells were postincubated 
for 3-6 h (mean values ± SEM, n=9-13 in 3 
independent experiments). 
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assay performed with one injector and the triton-X-100 sample as external standard. 

The maximal signal elicited with GW1229 is 62 % of the maximal signal induced by 

the full agonist hPP. 

 

5.3.3.3 Spectrofluorimetric fura-2 calcium assay 

The CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells were also used in a fura-2 calcium 

assay (Fig. 101). The determined EC50 value of hPP (3.67 ± 1.76 nM) was in the 

same range compared to the EC50 value determined in the aequorin assay (Fig. 99). 

Rat PP (EC50 = 14.75 ± 2.77 nM) was four times less active compared to hPP. This 

was also observed in the aequorin assay performed with one injector (Fig. 97). 
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The maximum effect elicited by GW1229 was 68 % of the maximum effect released 

by the full agonists hPP and rPP which was also observed in the aequorin assay (62 

%). The EC50 value (4.55 ± 1.30 nM) was in the same range compared to one 

determined in the aequorin assay (8.19 ± 0.56 nM). The value is also in good 

agreement with the literature reporting EC50 values of 7.16 nM (Schober et al., 1998) 

and 2.51 nM (Parker et al., 1998). In contrast, these reports refer to GW1229 as a full 

agonist determined in cAMP assays using CHO cells expressing the hY4 receptor. 

On the other hand, a partial agonism of GW1229 was proposed based on the 

measurement of the reduction of VIP-induced short circuit current in Col-24 cells 

(Cox et al., 2001) and for the rhY4 receptor by measurement of the receptor-β-

arrestin interactions (Berglund et al., 2003c). In the latter study, the peptide could 

also provoke only 70 % of the response elicited with hPP. However, the same group 

reported on full agonism of GW1229 in HEK293 cells expressing GFP- and RLUC-

tagged rhY4 receptors (Berglund et al., 2003b). Further functional assays in the 

Fig. 101: Spectrofluorimetric fura-2 
calcium assay with CHO-hY4-K13b-
qi5-K8-mtAEQ-E11-K11 cells. The 
maximum signal was determined 
with 1 µM rPP (mean values ± SEM, 
n= 3-4).
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absence of the chimeric G-protein should be done to elucidate whether the observed 

partial agonism of GW1229 is an artefact due to the co-transfection of receptor and 

chimeric G-protein. 

The fluorescent ligands cy5-[K4]-hPP and S0586-[K4]-hPP were also tested in the 

fura-2 assay (only at 3 concentrations in order to save labeled peptides) and the EC50 

values were calculated using the logit transformation (see 4.2.2.2.4). The labeled 

ligands were less active with pEC50 (10) = 6.87 ± 0.73 and pEC50 (11) = 7.12 ± 0.51. 

The decrease in potency after labeling with cy5 has also been observed for NPY at 

the Y1 receptor expressed in HEL cells (Schneider, 2005). 

5.3.3.4 Low throughput screening 

Because there are no nonpeptidic antagonists for the hY4 receptor known so far, a 

small library of known available drugs (∼80) was screened for inhibition of the 

aequorin signal elicited with 200 nM rPP. Compounds which inhibited the 

luminsecence signal by more than 50 % at a concentration of 10 µM were further 

analyzed and additionally tested in a flow cytometric binding assay with P388-S99A-

hY4-K23 cells. The antipsychotic drug chlorprothixene, the antidiabetic agent 

glibenclamide and the H1-antihistamine terfenadine were able to inhibit the 

luminescence signal at concentrations in the micromolar range (see Fig. 102a). But 

in the flow cytometric binding assay, the compounds were not able to displace 10 up 

to a concentration of 100 µM (Fig. 102b) indicating that they do not bind to the same 

binding site as the labeled ligand. Therefore, it is more likely that these compounds 

act via other receptor signaling mechanisms present in the cells. Glibenclamide is 

known to block K+-channels and therefore induces the opening of voltage-gated 

Ca2+-channels in the B-cells of the pancreas. An increase in intracellular calcium in 

the transfected CHO cells would discharge a fraction of active aequorin and therefore 

reduce the luminescence signal elicited by the agonist rPP simulating an antagonism 

in the functional assay.  
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Guanidine-type histamine H2 receptor agonists were the first nonpeptidic NPY Y1 

receptor antagonists described in the literature (Michel and Motulsky, 1990). 

Stimulated by the early discoveries in the Y1 antagonist field, several recently 

synthesized novel H2 agonists were tested for activity at Y4 receptors in the aequorin 

assay. Preincubation with the compounds PG 55B, AK 49 and AK 59 reduced the 

luminescence signal elicited by 200 nM rPP (Fig. 103a). The IC50 values were 10.5 ± 

1.1 µM (PG 55B), 60.7 ± 7.3 µM (AK 49) and 83.9 ± 4.2 µM (AK 59). But in contrast 

to the compounds chlorprothixene, glibenclamide and terfenadine, the H2 agonists 

were also able to displace the fluorescent ligand 10 from its binding sites at P388-

S99A-hY4-K23 cells (Fig. 103b) even though with high Ki values of 28.0 ± 5.6 µM (PG 

a b

Fig. 102: Selected compounds tested in the aequorin assay inhibiting the luminescence signal
elicited with 200 nM rPP using CHO-hY4-K13b-qi5-K8-mtAEQ-E11 cells (panel a; mean values ±
SEM, n=3) and in the flow cytometric binding assay competing with 20 nM cy5-[K4]-hPP using 
P388-S99A-hY4 cells (panel b; mean values ± SEM, n=1). 
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Fig. 103: Selected compounds tested in the aequorin assay inhibiting the luminescence signal 
elicited with 200 nM rPP using CHO-hY4-K13b-qi5-K8-mtAEQ-E11 cells (panel a; mean values ±
SEM, n=3) and in the flow cytometric binding assay competing with 10 nM cy5-[K4]-hPP using 
P388-S99A-hY4 cells (panel b; mean values ± SEM,n=1-3). 
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55B), 28.5 ± 10.2 µM (AK 49) and 64.4 ± 54.4 µM (AK 59). Concentrations above 

300 µM could not be tested because there were too few gated cells indicating a toxic 

effect on the P388 cells. The separate building blocks of the compounds were also 

tested in the flow cytometric binding assay and, surprisingly, even the common 

parent compound of the guanidine-type H2 agonists, imidazoylpropylgunanidine, 

displaced the fluorescent ligand 10 from its binding sites with a calculated Ki value of 

33.0 ± 4.1 µM. By contrast, the free acids representing the variable parts of the 

compounds, PG 15, cyclohexaneproprionic acid and AK 1, did not compete with 10 

for binding at the hY4 receptor (Fig. 103b). 

 

The binding of the compounds was further confirmed in a flow cytometric assay using 

CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells and 3 nM of 10 (Fig. 104). The 

compounds were tested up to a concentration of 300 µM but no complete binding 

curves could be measured because the CHO cells could not be gated after 

incubation with higher concentrations of compounds. No reliable IC50 values could be 

determined for PG 55B and AK 59 but the calculated Ki values for AK 49 (68.2 ± 27.0 

µM) and the imidazoylpropylguanidine (71.7 ± 12.5 µM) were in the same range as 

determined with P388-S99A-hY4-K23 cells. 
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Because of the preincubation of the cells in the presence of the test compounds prior 

to the aequorin assay, a potential luminescence signal elicited immediately after 

addition of the compounds would not be detected whereas active aequorin would be 

consumed. This would result in a decreased luminescence signal when the agonist is 

added pretending an antagonistic effect of the compound. 

Therefore, the compounds AK 49, PG 55B and MF 1 (a Y1 receptor antagonist) were 

tested in the spectrofluorimetric fura-2 calcium assay. 

Fig. 104: Flow cytometric binding assay with 
CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells. 
Competition of selected compounds with 3 nM 
cy5-[K4]-hPP (mean values ± SEM, n=3). 
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As shown in Fig. 105, the addition of the solvent ethanol did not induce an increase 

in intracellular calcium concentration. Subsequent addition of 100 nM rPP elicited the 

calcium signal. Also the addition of 50 µM AK 49 did not release a calcium response, 

but the calcium signal subsequently released by rPP was reduced compared to the 

control experiment, indicating an antagonistic effect of AK 49. Addition of 50 µM PG 

55B or MF 1 elicited a strong calcium signal. After the increase in intracellular 

calcium concentration, the cells were still excitable with the Y4 receptor agonist rPP 

indicating that the hY4 receptors were not desensitized after the first rise in 

intracellular calcium concentration. This behavior suggests that the increase in 

intracellular calcium concentration caused by PG 55B and MF1 is not mediated by 

the hY4 receptor, but is a result of other signaling pathways, e.g. direct G-protein 

activation. 

To confirm this observation, the compounds PG 55B, AK 49 and MF1 were tested for 

their agonistic potency in the aequorin assay. As shown in Fig. 107a, 30 µM of MF 1 

elicited a luminescence signal whereas the compound PG 55B was not able to 

induce a luminescence signal up to the highest concentration tested (100 µM). This is 

in contrast to the results of the fura-2 assay (see Fig. 105) where the addition of 50 

µM of PG 55B led to an increase in intracellular calcium concentration. The 

compound AK 49 was found to be inactive in the aequorin agonist assay up to a 

concentration of 100 µM. Addition of the cells to 300 µM of AK 49 induced a weak 
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Fig. 105: Calcium responses of CHO-hY4-K13b-
qi5-K8-mtAEQ-E11-K11 cells after addition of 50 
µM compound (first arrow) and subsequently 
100 nM rPP (second arrow; in case of PG 55B, 
the addition of rPP was delayed).  
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luminescence signal, which was not inhibited by preincubation of the cells with 20 µM 

of the H2 antagonist ranitidine, indicating that this signal was not mediated by the H2 

receptor.  

 

Taken together, the compound AK 49 did not induce an increase in intracellular 

calcium concentration up to a concentration of 50 µM in the fura-2 assay and did not 

elicit a luminescence signal in the aequorin assay up to a concentration of 100 µM. 

Instead, it reduced the calcium signal elicited with 100 nM rPP in the fura-2 assay 

and suppressed the luminescence signal elicited with 200 nM rPP in the aequorin 

assay with an IC50 value of 60.7 µM. cy5-[K4]-hPP was displaced at the hY4 receptor 

by AK 49 in flow cytometric binding assays using hY4-expressing CHO- and P388 

cells with calculated Ki values of 68.2 µM resp. 28.5 µM. Therefore, AK 49 could be a 

starting point for the search for new nonpeptidic Y4 antagonists. 

  

5.3.3.5 Luminescence detection with the CCD camera 

The luminescence signals could also be detected with a CCD camera as shown in 

Fig. 108. The emitted luminescence light (recorded for 60 s) increased depending on 

the concentration of hPP. 
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Fig. 107: Aequorin agonist assay with CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells. The cells 
were directly injected to the compound solutions (panel a; mean values ± SEM, n=3) or prior 
preincubated with 20 µM of the H2 antagonist ranitidine (panel b; n=1).
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The calculation of an EC50 value failed because of missing data points (below 1 nM 

hPP) necessary for a complete concentration-response curve. Unfortunately, the 

CCD camera was not available for further measurements. Nevertheless, the obtained 

data indicate that the concentration-dependent increase of luminescence can be 

detected with a CCD camera, making the assay suitable for high-throughput 

applications performed with an instrumentation using a CCD camera. 

5.3.3.6 Confocal microscopy 

Specific binding of 10 to CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells was verified 

with confocal microscopy. For counterstaining of cytoplasm, mitochondria and 

nucleus, the dye Syto13 was used to ensure that the scanning plane was within the 

3 1000 1 10 30 100 300 0 hPP 
[nM] 

Fig. 108: Overlay picture of false color 
presentation of light intensities generated 
by CHO-hY4-K13b-qi5-K8-mtAEQ-E11 
cells detected with a CCD camera. 
Luminescence signals were released by 
the addition of the cells to increasing 
concentrations of hPP. 

Fig. 109: Total and unspecific binding of 10 nM cy5-[K4]-hPP to CHO-hY4-K13b-qi5-K8-mtAEQ-
E11-K11 cells measured by confocal microscopy. Total binding (Ia-c) was determined in absence, 
unspecific binding (IIa-c) was determined in presence of 1 µM GW1229. Fluorescence of cy5-[K4]-
hPP is shown in green (a); staining of Syto 13 is shown in red (b). Merged images are shown in 
panels c. 

Ia Ib Ic

IIa IIb IIc
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cells. Because this dye is membrane permeable, fixation and permeabilization of the 

cells is not necessary. The cells were incubated with 10 nM of 10 and for the 

determination of unspecific binding in presence of additional 1 µM GW1229. As 

shown in Fig. 109 I, the fluorescence-labeled ligand binds to the cell membrane of 

the cells. This binding was abolished in presence of the unlabeled ligand GW1229 

(Fig. 109 II). The formation of vesicles during the incubation could be due to agonist-

induced internalization (Parker et al., 2001b) or to toxic effect of the Syto13 dye. 

The increase in intracellular calcium concentration could be visualized with confocal 

microscopy. CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells were loaded with fluo-4 

and the calcium signal was elicited with 91 nM hPP. As shown in Fig. 110, the 

fluorescence increased after the addition of the agonist, reached its maximum after 

22 -25 s and subsequently decreased again. This time course is characteristic for a 

transient calcium response, although the rise in intracellular calcium is delayed 

compared to the kinetics measured with the spectrofluorimetric fura-2, the flow 

cytometric fluo-4 or the aequorin assay. This was also observed for the CHO-hY2-K9-

qi5-K9-mtAEQ-A7 cells (see section 4.3.3.1). The reasons for the differences in the 

observed kinetics have already been discussed in 4.3.3.1. 

 

 

5.3.3.7 Transfection of CHO-rY4 cells with the qi5 construct 

By analogy with the approach for the hY2 and hY4 receptor, CHO cells stably 

expressing the rat Y4 receptor were transfected with the cDNA encoding the chimeric 

Fig. 110: Time series of CHO-hY4-K13b-qi5-K8-mtAEQ-E11-K11 cells loaded with fluo-4 in 
response to 91 nM hPP measured with confocal microscopy. Displayed images were recorded 
every 3.2 s (scanning time per image was 1.6 s). 
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G-protein Gqi5 in order to redirect the signal transduction pathway towards the 

activation of PLC. The vector pcDNA3.1/hygro-qi5 was linearized with Eam11051 

prior to the transfection using the FuGENE™ transfection reagent, and selection was 

carried out with Ham’s F12 plus 10 % FCS containing 400 µg/ml G418 and 400 µg/ml 

hygromycin. Resistant cells were maintained for 4 weeks in selective medium, before 

single cell clones were picked and analyzed for calcium responses upon agonist 

stimulation with hPP in the flow cytometric fluo-4 assay. The cell clone CHO-rY4-qi5-

K2 showed a distinct, concentration-dependent calcium response as shown in Fig. 

111. 

These data suggest that the principle of co-transfection of receptor and chimeric G- 

protein gene is also transferable to the rat Y4 receptor. Functional assays using fluo-4 

or fura-2 might be established in analogy to the assays presented for the hY2 and hY4 

receptor. Further transfection with the gene encoding for the mitochondrial targeted 

aequorin could enable an aequorin assay performed with the 96-well plate reader.  
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Fig. 111: CHO-rY4-qi5-K2 cells in response to increasing concentrations of hPP. The cells were 
loaded with fluo-4 and the increase in fluorescence was detected in channel FL-1 of the flow 
cytometer (panel a) and used for the construction of a concentration-response curve (panel b, 
EC50 = 0.82 nM; n = 1). 
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5.4 Conclusions 
The fluorescent ligand cy5-[K4]-hPP bound with high affinity to the rat and human Y4 

receptor. Therefore, it could be used for flow cytometric binding assays with cells 

stably expressing the respective receptor. The determined binding constants 

(summarized in Table 9) were in good agreement with the literature. The principle of 

stable co-transfection of the receptor and the qi5 gene is also applicable to the hY4 

(and rY4) receptor. EC50 values obtained from fluorimetric calcium assays were 

comparable with pharmacological constants determined in an aequorin assay after 

stable transfection with the mtAEQ gene. 

Table 9: Binding and functional data of selected peptides. 

Y4 
receptor 
ligand 

CHO-rY4 
(flow cytometry) 

P388-S99A-hY4-
K23 

(flow cytometry) 

CHO-hY4
a 

(flow cytometry) 

CHO-hY4
a 

(fura-2 
assay) 

CHO-hY4
a 

(aequorin assay) 

cy5-[K4]-
hPP 1.44 ± 0.29 nM b 8.75 ± 1.52 nM b 5.62 ± 1.08 nM b 6.87 ± 

0.73 nM f  ND 

S0586- 
[K4]-hPP ND 10.22 ± 0.84 nM b 9.24 ± 1.34 nM b 7.12 ± 

0.51 nM f ND 

hPP 33.8 ± 8.6 pM c 427 ± 42 pM d 239 ± 36 pM e 3.67 ± 
1.76 nM g 

15.5 ± 3.1 nM g 
9.33 ± 1.29 nM g,h

rPP 18.0 ± 3.3 pM c 776 ± 139 pM d 443 ± 85 pM e 14.75 ± 
2.77 nM g 60.4 ± 12.7 nM g 

GW1229 1.23 ± 0.20 nM c 277 ± 24 pM d 217 ± 44 pM e 4.55 ± 
1.30 nM g 

29.4 ± 5.3 nM g 
8.19 ± 0.56 nM g,h

aCHO- hY4- K13b-qi5-K8-mtAEQ-E11-K11 cells; bKd value, determined with saturation analysis; cKi 
value, determined in presence of 2 nM cy5-[K4]-hPP; dKi value, determined in presence of 40 nM cy5-
[K4]-hPP; eKi value, determined in presence of 10 nM cy5-[K4]-hPP; fpEC50 value, determined using 
the logit-transformation; gEC50 value; hdetermined with subsequent recording of residual active 
aequorin; ND: not determined 
 

The binding of the fluorescent ligand and the calcium signal elicited with Y4 agonists 

can be visualized with confocal microscopy. The luminescence signals were 

detectable with a CCD camera, indicating that the assay is suited for the application 

in appropriate HTS instruments. The observed partial agonism of GW1229 is in 

contrast to the predominant results in the literature and further investigations should 

be done to confirm or to disprove the described agonistic nature of the peptide.



161 

 
 
 
 

Chapter 6 
 

6 Summary 



162 Chapter 6  

Summary 
The development of simple, fast and robust binding and functional assays is an 

important step in the course of drug research. As large compound libraries are 

available by combinatorial chemistry and the number of new possible targets is 

increasing due to the sequencing of the human genome, appropriate techniques are 

required not only for HTS but especially for in-depth pharmacological characterization 

of receptor-ligand interactions. 

This thesis was aimed at the development of new binding and functional assays for 

the hY2, hY4 and rY4 receptor. CHO cells were stably transfected with the hY2 

receptor gene and used in a flow cytometric binding assay. Binding of unlabeled 

receptor ligands in competition with cy5-labeled pNPY was determined at equilibrium. 

Binding of the fluorescent ligand could be visualized by confocal microscopy. A 

radioligand binding assay was established and the determined binding constants 

were in good agreement with the ones obtained from the flow cytometric binding 

assay and with data from literature, respectively. The existence of a large fraction of 

spare receptors described in the literature was confirmed. It turned out that the Y2 

receptor antagonist BIIE0246 tends to adsorb to the different (synthetic) materials of 

microplates, cups and other utensils used in the assay, hampering the 

pharmacological characterization of this specific class of compounds. 

As the cells, stably transfected with the hY2 receptor gene, showed only a moderate 

calcium signal upon receptor activation, the cells were further stably transfected with 

the gene encoding the chimeric G-protein Gqi5, allowing the redirection of the signal 

transduction pathway towards the PLCβ, resulting in a large increase in intracellular 

calcium concentration. Binding properties of the transfected cells were not altered 

and the calcium signal was quantitated in a flow cytometric and a spectrofluorimetric 

calcium assay. Functional data of agonists as well as antagonists were determined. 

Additional stable transfection of the cells with the gene encoding for apoaequorin 

targeted to the mitochondrium converted the calcium signal into a luminescence 

signal. Assay parameters were optimized and an aequorin assay was established in 

the 96-well format of a luminescence plate reader. Functional data of selected 

peptides and nonpeptidic compounds were determined and compared with the 

fluorescence-based calcium assays. The compound BIIE0246 behaved as a 

competitive and an insurmountable antagonist depending on the incubation period 

prior to agonist addition, which is in agreement with recently published results.  
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The calcium responses could be visualized by means of confocal microscopy and a 

CCD camera. 

New fluorescent ligands for the Y4 receptor were synthesized by coupling the 

fluorescent dyes cy5 and S0586 to the peptide [K4]-hPP. A flow cytometric binding 

assay was established for the rat Y4 receptor using stably transfected CHO cells.  

As the stable transfection of CHO cells with the hY4 gene failed, a retroviral approach 

was used to transduce the hY4 gene into P388-D1 cells. After enrichment of receptor 

expressing cells by sorting with the flow cytometer a cell clone with high receptor 

expression was isolated. Competition binding of known peptide ligands in the 

presence of the fluorescent ligands was measured by flow cytometry.  

Furthermore, CHO cells were co-transfected with the hY4 (containing a Kozak 

sequence for enhanced protein translation), Gqi5 and mtAEQ gene. Stable cell clones 

were isolated and flow cytometric binding as well as fluorescence- and 

luminescence-based functional assays were established. It turned out that the 

peptide GW1229 behaved as a partial agonist in the spectofluorimetric as well as in 

the aequorin assay. The calcium signal could be detected by confocal microscopy 

and by a CCD camera, indicating that the aequorin assay is applicable to HTS-

instruments equipped with a CCD camera. 

The screening of a small compound library revealed a small molecule with 

micromolar antagonistic activity at the hY4 receptor, which may be a starting point for 

the search for new Y4 receptor antagonists. 

The main advantage of the established aequorin assay is the automation of the 

injection and recording process. Thereby, it is possible to perform more than 400 

single calcium assays per day compared to about 40 assays performed with the 

spectrofluorimetric or flow cytometric calcium assay. After addition of the cofactor 

washing steps are not required, which is in contrast to the case when fluorescence 

dyes are used. Dye leakage is not an issue of the aequorin assay. The injection 

speed, which turned out to be an important parameter, is constant, and because the 

assay volume is very small (200 µl) costs are low and only small amounts of test 

compounds are required. The fact that the aequorin assay measures an event more 

distal in the GPCR signal transduction pathway seems not to affect the determined 

functional data. The major drawback of the assay is the need for transfection of the 

cells and the long postincubation periods, required to obtain constant luminescence 



164 Chapter 6  

signals. Nevertheless, the aequorin assay is a powerful method for the determination 

of functional data amenable to high throughput screening. 

 

Taken together, the established flow cytometric binding assays using fluorescence 

labeled ligands and stably transfected cells are an innovative alternative to 

radioligand binding assays. The principle of stable co-expression of receptor, 

chimeric G-protein and mitochondrially targeted aequorin gene for the development 

of functional fluorescence- and luminescence-based assays has proven to be an 

efficient approach. This methodology is transferable to other GPCRs, and will 

facilitate the search for new GPCR ligands as well as their functional characterization.  
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