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Introduction 

Parenteral therapies  

In recent decades medicine and pharmacy have had to face many new challenges. Not only 

the need to treat cancer [1,2] encouraged innovation, but also the need to develop therapies for 

widespread diseases, such as diabetes mellitus [3] or numerous cardiac diseases [4] have 

called for enormous progresses. To give an impression of the extent of the issue, the 

incidences of selected solid tumors in the US, estimated for the year 2000 and 2004 by the 

American Cancer Society, are depicted representatively in Table 1. 

Table 1: Incidences of selected solid tumors in the US in the years 2000 and 2004 (source: American cancer 
society). 

Number of new cases Number of deaths 
Type of cancer 

2000 2004 2000 2004 

Breast 182,800 217,440 41,200 40,580 

Prostate 180,400 230,110 31,900 29,900 

Lung 164,100 173,770 156,900 160,440 

Colon 93,800 106,370 47,700 56,730 

Rectum 36,400 40,570 8,600 N/A 

Pancreas 28,300 31,860 28,200 31,270 

Ovary 23,100 25,580 14,000 16,090 

Brain & other nervous 
system 

N/A 18,400 N/A 12,690 

 

These data show the tremendous increase in the newly occurring cases of cancer and the 

limited chances for healing lung and brain cancer. But Table 1 also shows that the number of 

cancer deaths increased less rapidly or in some cases even decreased from the year 2000 until 

present. In the field of pharmaceutical science, therapies can be approved by the development 

of new drugs and by increasing the efficacy of treatments with existing drugs. But 

consequently, with increasing possibilities in the design of new drugs, the requirements for 

their application have increased tremendously, too. In recent years many sensitive substances, 

above all proteins and peptides, have gained much importance [5,6]. The investigated 

triglyceride matrices can contribute to the treatment of various cancer forms such as for 

example brain cancer [7] and they are one possibility to overcome limitations for the 
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administration of proteins and peptides [8]. Because although the oral application of a protein 

like insulin would be desirable, due to advantages such as easy administration and good 

compliance, this mode of administration would lead to a bioavailability of less than 1-2% 

[5,9]. This is only one example among a plethora of proteins and peptides, which are rapidly 

degraded when administered via the oral route. Likewise, many efforts have been undertaken 

in the field of cancer treatment with various proteins, such as cytokines [10,11], which also 

undergo rapid degradation and can additionally cause severe side effects when administered 

orally. Therefore, the parenteral routes of application have been of increasing interest for 

cancer therapy. 

Parenteral, from para enteron (Greek), meaning “to avoid the intestines”, is generally 

limited to the direct application of drugs into tissues, tissue spaces, vessels or body 

compartments [12], for example by injection, infusion or also implantation, whereby the most 

commonly used routes for the administration of drugs are intravenously (i.v.), intramuscularly 

(i.m.) or subcutaneously (s.c.), depending on the disease to be treated and the desired effects. 

Nevertheless, the definition also includes also several other important ways to apply drugs, 

such as ocularly, nasally and transdermally [12], which represents the exact interpretation of 

the term, meaning all administration principles for drugs, which do not utilize the alimentary 

canal for the delivery of a drug to body tissues. The parenteral application of drugs offers 

several advantages compared to non-parenteral routes. These are, for example, more 

predictable pharmacokinetics and pharmacology and the possibility to quickly interdict a 

rapidly progressing lethal process or disease [12]. Generally, we can distinguish between two 

forms of the treatment. On the one hand, there is the parenteral administration of a drug, for 

example to fight a cardiac arrest by the injection of adrenalin, and on the other hand a long-

term treatment with the goal to treat a disease over an extended period of time. Since the first 

is more often applied in cases of emergency, the long-term therapy becomes much more 

interesting and challenging for pharmaceutical and medical scientists. 

Progress in the parenteral administration of such long-term treatments has already 

contributed to positive developments, for example in the abovementioned successes in cancer 

treatment (Table 1). The triglyceride matrices investigated in this thesis are another possible 

alternative for the long-term administration of medications.  
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Necessity of controlled release 

Parenteral therapies carried out over an extended time period rapidly lose patient 

compliance when drugs have to be administered by direct infusion or injection.  Subsequently, 

the cost of these treatments rises tremendously, due to the need of more highly supervised 

medical care. Therefore, the parenteral controlled release of therapeutic substances over 

longer time periods ranging from a few weeks up to several years is desirable for the 

treatment of many diseases, such as several types of cancer [13-15], diabetes [16], cardiac 

diseases [4], Parkinson’s disease or Alzheimer’s disease [17]. Concomitantly sustained drug 

delivery devices can be used for the treatment of glaucoma [18] or other vitreoretinal diseases 

[19] and for hormonal contraception [20] or hormone substitution [21]. Recent investigations 

also deal with the use of controlled release forms in the field of gene delivery [22-25] for the 

treatment of neurodegenerative diseases. 

Controlled release delivery systems have several advantages, compared to the intermittent 

i.v. or oral drug administrations [6,16,26], such as the maintenance of therapeutic levels of a 

drug and the reduction of negative side effects due to a lower required amount of drug when 

administered locally. Additionally, the number of dosages can be decreased and the delivery 

of drugs with short in vivo half-lives can be facilitated. With regard to the limited ability of 

many drugs, especially proteins, to cross physiological barriers, such as the blood-brain 

barrier (BBB) [6,17] or the inner and outer blood-retinal barriers [19], another important 

advantage for the use of local parenteral drug delivery systems, such as the triglyceride 

matrices investigated for this thesis, becomes obvious. 

 

Drug delivery devices 

In recent decades, tremendous efforts have been undertaken in the field of controlled 

release devices and a plethora of systems have been developed and investigated for their use 

in parenteral drug delivery. Thus, it would be impossible to give a complete overview of drug 

delivery devices; therefore only a brief description of the classes of systems used for 

controlled release and drug delivery follows. 

Generally particulate systems, such as nanoparticles [27-30] (including liposomes [31,32]) 

and microparticles [6,33-35] can be distinguished from macroscopic implantable devices 

[2,7,36,37] in the field as the most important candidates for the design of controlled release 
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systems. In addition, a plethora of new strategies for the controlled parenteral delivery of 

drugs have been investigated, such as in situ gelling systems [38], microchip devices [2,4,39] 

or stents which are able to control the release of drugs [4,40]. 

Nanoparticles and liposomes are already used in several areas of drug delivery and 

cosmetics. They offer the advantage of facilitated specific targeting [41], due to their size, 

which leads to an uptake into cells via phagocytosis [42,43]. Nanoparticles usually are smaller 

than 100nm and thus are not excluded from cells. Small molecules, peptides, proteins and 

nucleic acids can be loaded into nanoparticles that are not recognized by the immune system 

and that can be targeted to particular tissue types. Nonspecific attachment or uptake can be 

reduced by the use of poly(ethylene glycol) (PEG) [44]. Hitherto nanoparticles and liposomes 

have been investigated for their use in cancer therapy [45] or gene delivery [27] and recently 

research involving the nuclear targeting of these small devices has also been carried out [46]. 

Microparticles are also a widely investigated device for drug delivery, due to improved 

abilities for sustained release compared to nanoparticles. Their size can range from one to 

several hundred micrometers, which allows for a larger drug reservoir and thus facilitates a 

more prolonged drug release. One major advantage of microparticles is the possibility to 

suspend and inject them. Microparticles can be administrated to provide localized release of 

therapeutic agents as controlled release devices in several ways. Drug delivery via 

subcutaneous as well as intracranial injection for example has been widely investigated [47-

49]. An appealing aspect of a microparticle-based delivery system is that stereotactic injection 

to a specific region of the brain passes the BBB, thereby enabling prolonged delivery directly 

to the CNS. Efforts have also been undertaken in the fields of inhalative aerosol delivery of 

drugs into deep lung tissue [50,51] and oral insulin delivery [52] by the use of microparticles. 

But despite several advantages such as injectability, facilitated preparation procedure and 

longer drug release periods compared to nanoparticles, the capability of microparticular 

devices for drug incorporation and thus for controlled prolonged release is still limited. 

The third system for parenteral drug delivery, which should be described, is macroscopic 

implants. They have been investigated for many purposes. In 1999, Evans et al. described 

their fabrication into structural supports, which can be used to promote nerve regeneration 

[53], which is also described in other references [54,55]. Their use in the treatment of various 

cancers has been widely investigated [7,13] and a plethora of scientific papers describe their 

use as cell carriers in tissue engineering or cell transplantation [56-60]. A disadvantage of 

three-dimensional macroscopic implants, which can be on the millimeter to centimeter scale, 



Chapter 1  Introduction and Goals of the Thesis 

 -12-  

compared to particulate devices, which can be suspended and injected, is the need for surgery 

to administer the device. But due to their size, implants can provide a larger depot of the 

administered drug compared to particulate systems. Their macroscopic size also facilitate the 

incorporation of larger proteins, which is limited for example in case of nanoparticular 

systems. Additionally, implantable devices are easier to prepare and allow for a variation in 

their geometries like size, shape and porosity, which can be tailored to the application. 

Thus, implants can be considered to be one of the most important candidates for controlled 

release drug delivery over an extended period of time like several months. 

 

Non-degradable and bioerodable drug delivery systems 

Many materials have been investigated for applications in drug delivery devices. The first 

controlled release systems were based on non-degradable synthetic polymeric materials, 

principally silicone elastomers. In 1964, Folkman et al. noticed the penetration of certain dye 

molecules through the wall of silicone tubing [61,62]. This observation lead to the 

development of so called reservoir drug delivery systems, which are hollow tubes filled with a 

drug suspension or compact drug cores surrounded by permeable non-degradable membrane. 

The device properties, such as thickness and permeability of the tubing or membrane, 

respectively, control the release rate of the drug [2]. This principle is used for example in the 

Norplant® contraceptive delivery system and was tested for carmustine delivery from silicone-

encased drug reservoirs in cancer treatment [16,63]. Two advantages of such systems are the 

variability of membrane materials, which allows for exact adjustment of the desired release 

profile and the possibility to achieve zero order drug release kinetics comparable to i.v. 

injection. The major disadvantage of the reservoir principle is the danger of the so-called dose 

dumping when a mechanical defect in the membrane of the system occurs and the whole drug 

is released rather abruptly. This may cause severe or even lethal side effects. 

The second type of non-degradable implantable controlled release device is represented by 

the matrix system, within which the drug is homogenously dispersed. Thus, these devices are 

simpler and potentially safer compared to the reservoir type systems. Controlled release from 

matrix devices occurs by diffusion of the substances throughout the matrix. An example for 

this kind of release system is the Cypher coronary stent®.  

 Figure 1 depicts the mechanisms of drug release from reservoir and matrix type of non-

degradable drug delivery systems. 
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a

b
microparticles implants

drug reservoir drug reservoir

release-controlling membrane release-controlling membrane

drug dispersed in matrix drug dispersed in matrix  

Figure 1:  Mechanisms of drug release from non-degradable drug delivery systems  
a) diffusion controlled reservoir systems, a core is surrounded by a non-degradable membrane 
b) matrix system, drug is embedded homogenously into the matrix material, release can be 
controlled by diffusion, erosion or both. 

Both reservoir and matrix systems require minor surgery to implant as well as to remove 

the devices. This disadvantage of invasive procedures when administering non-degradable 

drug delivery systems is less pronounced in veterinary medicine, where the removal of 

subdural implants is not necessary. Thus implants for the controlled release delivery of 

estradiol to improve the growth rate and feed uptake in cattle were developed by Lilly 

research laboratories [64,65]. 

Another example for non-degradable drug delivery system, which was used in the 1990ies 

for the treatment of osteomyelitis, is a device containing gentamycin embedded into a matrix 

of poly(methylmethacrylate) (PMMA, also called “bone cement”) [66-70]. Investigations 

carried out by Wahling et al. using gentamycin-loaded PMMA beads revealed much higher 

local antibiotic concentrations than can be safely achieved with the usual parenteral 

administration techniques [71,72]. Also in 1992 Dash and Suryanarayanan investigated this 

means of treatment for bone infection by using tobramycin embedded in 

poly(dimethylsiloxane) (PDMS) [73]. The major advantage of this device is the locally 

targeted therapy directly at the site of infection. However, the underlying disadvantage of this 

delivery system is the necessity for surgical removal of the implant after the therapy is 

completed and thus therapy of the exemplified indication has changed in the recent years. 
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Degradable macroscopic drug delivery systems 

The fact that all non-degradable drug delivery systems have to be removed surgically is 

obviously the most important limitation these devices. This both reduces patient compliance 

and also makes therapy more difficult. Thus, in recent decades, biodegradable systems have 

gained much popularity over non-degradable delivery devices [74,75]. Biodegradability of an 

administered material means the capability to be degraded and eliminated by the body within 

a certain time period. The major advantage of biodegradable drug delivery systems is that the 

inert materials used for the fabrication of the devices are eventually absorbed or excreted by 

the body. This alleviates the need for surgical removal of the implanted system after the 

completion of the therapy, thereby increasing patient acceptance and compliance [76]. 

Biodegradable materials can be used for the preparation nearly every drug delivery system, 

including for example nanoparticles, liposomes, microparticles, micelles and macroscopic 

implants. Biodegradable drug delivery devices which are already commercially available are 

for example Lupron Depot® [77], Decapeptyl® [78] and Zoladex® [79] all used for the 

treatment of prostate cancer and Nutropin Depot® which is employed in the growth failure 

therapy [6]. All these devices are based on poly((D,L-lactic-co-glycolic acid) (PLGA) in 

contrast to Gliadel® [80], which is based on poly(bis(p-carboxyphenoxy)propane) - sebacic 

acid (pCPP-SA), representing a further biodegradable material for the preparation of 

parenteral drug delivery devices. However, the design of a biodegradable drug delivery 

system is not easy, due to many factors, which can influence the degradation rate and thus 

play important roles for the resulting release profile, especially when using polymeric 

materials. Alterations in pH of body compartments or body temperature as well as changes in 

the surface area or shape of the device have to be considered in the design of a biodegradable 

drug delivery system [81]. Another problem that occurs with bioerodable controlled release 

devices is the slow diffusion of the drug from the matrix [76] which becomes a major 

challenge to overcome when developing biodegradable systems whose use is intended for 

extended release applications or situations in which the drug has a narrow therapeutic index 

[16]. One of the key factors in the design of a biodegradable controlled release drug delivery 

system seems to be the chosen matrix material. 
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Materials 

Hitherto most investigations on drug delivery have been carried out on polymers and all 

commercially available controlled release devices for parenteral administration utilize 

polymers to obtain a sustained liberation of the drugs [2,6,16,20]. Table 2 gives a partial 

overview of the commercially available sustained release devices and the used materials 

[6,13,82-84], which are all synthetic polymers and whose biocompatibility is widely accepted. 

Table 2: Partial overview of commercially available drug delivery systems and the used materials. 

Product name Material Drug released Application 

Cypher coronary 
stent® 

Ethylvinylacetate 
copolymer 

EVAc + PBMA 
sirolimus 

coronary artery 
disease 

Decapeptyl® 
poly(D,L-lactic-co-

glycolic acid) 
PLGA 

(D-Trp6)LH-RH prostate cancer 

Gliadel® pCPP-SA carmustine glioblastoma 
multiforme 

Lupron Depot® poly(D,L-lactic acid) 
PLA 

leuprorelin acetate prostate cancer, 
endometriosis 

Jadelle® dimethylsiloxane/ 
methylvinylsiloxane 

levonorgestrol contraception 

Norplant® silastic rubber levonorgestrol contraception 

Nutropin Depot® 
poly(D,L-lactic-co-

glycolic acid) 
PLGA 

human growth hormone growth failure 

Septopal® poly(methylmethacrylate) 
PMMA 

gentamycin sulfate osteomyelitis 

Taxus coronary 
stent® 

translutea paclitaxel coronary artery 
disease 

Trelstar Depot® 
poly(D,L-lactic-co-

glycolic acid) 
PLGA 

triptorelin pamoate prostate cancer 

Zoladex® 
poly(D,L-lactic-co-

glycolic acid) 
PLGA 

goserelin acetate prostate cancer, 
endometriosis 

aA Boston Scientific proprietary non-degradable polymer 
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Since the number of materials investigated for the manufacture of controlled release drug 

delivery devices is tremendous, only a partial overview of materials is depicted in Table 3. 

The materials are devided into synthetic and natural polymers, natural hydrogels and lipid 

materials. 

Table 3: Materials investigated for their use in the design of biodegradable controlled release drug delivery 
systems. 

synthetic polymers natural polymers hydrogels lipid materials 

ABA triblock copolymers 
[135] 

albumin [106-110] alginates 
[120,121] 

cholesterol [35,127] 

Ethylvinylacetate 
copolymer (EVAc) [136] 

cellulose [83] collagen[6] 
dipalmitoyl-

phosphatidyl-choline 
[126] 

hydroxyapatite [137] chitosan / chitin 
[113] 

fibrin [118,119] fatty acid anhydrides 
[142] 

poly(ortho esters) [17] chondroitin sulfate 
[116,117] 

gelatin [82,111] fatty acids [128,142] 

polyamides [138] hyaluronic acid 
[114] 

 Gelucire®, 1 [143] 

polyanhydrides [6,38,138] starch [102-105]  hydrogenated castor 
oil [144] 

poly(ε-caprolactone) [139]   lecithin [145] 

polycarbamates [138]   monoglycerides 
[146] 

polycarbonates [138]   triglycerides 
[34,35,131] 

poly(glycolic acid) (PGA) 
[141] 

  waxes [129] 

poly(D,L-lactic-co-
glycolic acid) (PLGA) 

[140] 
   

poly(lactid acid) (PLA) 
[63] 

   

polyphosphazene [138]    

polyurethanes [138]    

silicone [6]    

1 Gelucire® is a mixture of glycerides and fatty acid esters. 
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In addition to polymers used in the commercially available drug delivery systems a 

plethora of polymeric materials and structures are available and numerous groups are 

currently carrying out experiments on cancer treatments using these materials for the design 

of controlled release devices. The delivery of hormones [122-124], cytokines [104], and non-

protein anticancer drugs, such as 5-Fluorouridine [95], Cisplatin [125,126] or Doxorubicin 

[127-130] from polymeric systems has been investigated for cancer therapy. Concomitantly, 

polymeric materials are investigated for their use in the treatment of neurodegenerative 

diseases, such as Parkinson’s and Alzheimer’s disease [17] and for future therapy of diabetes 

mellitus [3] and various cardiovascular diseases [131-134]. 

For their suitability as material for the preparation of parenteral controlled release drug 

delivery systems, synthetic polymers display some advantages, such as variable release 

properties, well-defined degradation pathways [135] and acceptable in vivo biocompatibility 

[136-138]. However polymeric materials also show several disadvantages, especially as the 

delivery of proteins proves to be a more challenging task for pharmaceutical scientists. High 

shear forces, heating, exposure to organic solvents [139], interface formation [140], as well as 

the chemical microenvironment inside eroding polymers with acidic pH [141], increased 

osmotic pressure [135] and acylating degradation products [142] often result in irreversible 

changes in protein structure and activity [139]. Therefore, alternative materials to 

biodegradable synthetic polymers that avoid these stress factors may become increasingly 

important for the delivery of protein and peptide drugs in the near future. 

For this purpose, several natural materials were investigated. Early examples with natural 

polymers are controlled release experiments of Mitomycin C, 5-Fluorouracil and 5-

Fluorouridine from starch microspheres [110-113] carried out in the eighties and nineties by a 

few groups. Also albumin [86-90] and gelatine [104,105] microspheres were investigated in 

the field of controlled release for cancer treatment. Further studies were carried out on 

chitosan [98,143], hyaluronic acid [108], cellulose [95], ethylcellulose [144] and chondroitin 

sulfate [102,103], all representing natural biodegradable polymeric materials for the 

controlled release of drugs. By the use of natural polymers for controlled release, most of the 

abovementioned disadvantages of the synthetic polymers, especially the stress factors to 

which the incorporated drugs are exposed, can be alleviated and their biocompatibility is also 

widely accepted. However, there might be difficulties in the design of the desired release 

profile or degradation time, due to structural limitations. 
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A second group of alternative materials to the synthetic polymers for the preparation of 

parenteral delivery systems, generally also being natural polymers, are natural hydrogel-

forming agents. Potential candidates, which are currently investigated are fibrin [99,100], 

alginates [91,92], carboxymethylcellulose [145-147], gelatine [104,105] or collagen [6,148]. 

Natural hydrogels have the advantage that they can protect proteins and peptides from 

degradation [6], which makes them promising candidates for the use as carrier materials in the 

field of controlled release. 

As a third group, lipid materials might be a promising alternative to synthetic polymers for 

the design of controlled release drug delivery devices, whereby several substances were 

investigated for their potential in this field. Among these physiologically existing materials, 

which also include cholesterol [37], phospholipids [96], lecithin [93], fatty acids 106] and 

waxes [120], all forms of glycerides with fatty acids of variable chain lengths are of great 

importance [29,36,37,149,150]. Lipid materials show high variability of available structures, 

and thus allow for the design of many desired release profiles. Concomitantly, the mentioned 

negative stress factors for polymeric materials can be avoided and, as physiologically 

occurring substances, these materials should prove to be biocompatible. This makes lipid 

materials a promising candidate as an alternative material to the synthetic polymers for the 

design of controlled release parenteral drug delivery systems. 

Triglycerides as one representative for the lipid materials showed promising controlled 

release properties [36,37] and their use for the preparation of microspheres [118] and solid 

lipid nanoparticles (SLN) [151,152] have shown good results for the incorporation of 

proteins. Thus with regard to a long-term administration of proteins, developing triglyceride 

implants that allow for a more prolonged release period [36,37] and higher drug dosages, due 

to their macroscopic size, may be of great interest for researchers in this field. 
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Goals of the thesis 

Compared to synthetic polymers, the use of triglycerides avoids the abovementioned stress 

factors for the incorporated drug, such as the microenvironment within eroding polymeric 

implants with increased pH and osmotic pressure, acylating degradation products, which often 

irreversibly changes the structure and activity of incorporated proteins or peptides. In 

addition, triglycerides show structural variability, which facilitates the design of a controlled 

release system with a desired release profile. As physiologically occurring material, the 

biocompatibility of triglycerides is likely.  

The general goal of this thesis was the investigation of triglycerides as materials for the 

preparation of parenteral controlled release matrices. The main intentions were to characterise 

the material to facilitate the design and preparation of controlled release matrices and to 

ensured the in vivo safety of the material. 

Due to their promising properties, triglycerides are currently being investigated for their 

use as carrier material for proteins and peptides [36,37,153,154]. To facilitate investigations 

on the stability of proteins and peptides within the matrix, an extraction method for the 

recovery of the incorporated drugs was the first aim of this thesis (chapter 3). Insulin and 

somatostatin served as model drugs for the development, optimization and evaluation of the 

procedure. 

Many basic factors concerning the preparation procedure for triglyceride matrices and their 

release properties as well as the biocompatibility and in vivo erosion of the triglyceride 

matrices are of great importance for the design of cylindrical triglyceride matrices, 

necessitating the mechanistic studies that were carried out and described in this thesis. 

The investigations presented in chapter 4 served to evaluate the preparation of the 

cylindrical triglyceride matrices, to identify crucial parameters during the manufacturing 

procedure and to quantify their influence on the resulting release profiles. Concomitantly, 

basic release properties of the triglycerides were characterized and release mechanisms from 

the material identified. To this end, fluorescence dyes were used as model drugs. 

After the preparation procedure for cylindrical triglyceride matrices was evaluated and 

basic release properties of the material were investigated, in chapter 5 the in vivo 

biocompatibility of triglycerides, which is the most essential prerequisite for a biomaterial to 

prove suitability for the preparation of drug delivery systems for the parenteral administration, 

was examined. Additionally, in vivo erosion and stability of lipid matrices was of special 
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interest in this part of the thesis, representing another important requirement for controlled 

release of drugs in vivo. 

Subsequent to the determination of long term in vivo stability of triglyceride matrices in 

chapter 5, possibilities to accelerate triglyceride erosion is described in chapters 6 and 7. 

First, the use of several excipients as modifiers in the erosion of triglyceride matrices was 

examined in vitro in chapter 6. The goal of this study was to decrease the matrix stability and 

thus accelerate the erosion but to maintain the prolonged release properties of the triglyceride 

material. The influence of the excipients on the release from triglyceride matrices was 

characterized and their suitability for prolonged in vitro release over several weeks was 

investigated. Consequently, the hypothesis for the use of hydrophilic erosion modifiers and 

the dependence of the in vivo erosion on the triglyceride particle size was then investigated in 

chapter 7. 

As one possible application for lipid implants as controlled release drug delivery systems, 

programmable implants containing a drug-loaded triglyceride core embedded into a drug-free 

bulk-eroding polymer mantle were also investigated (chapter 8). These devices were first 

described by Vogelhuber et al. [39], but only allowed for pulsatile release, because of a 

polyanhydride core. It was thus important to demonstrate the viability of prolonged drug 

liberation from programmable implants having a triglyceride core. Last, but not least, 

convolution theory was investigated for its suitability to predict release profiles from 

programmable implants showing the controlled release of the drug from the core material. 

 

 

 

 

 



Chapter 2  Materials and Methods 

 -21-  

Chapter 2 

Materials and Methods 
 

 



Chapter 2  Materials and Methods 

 -22-  

1 Materials 

1.1 Matrix materials  

The triglycerides for matrix preparation were purchased from Sasol GmbH, Witten, 

Germany. Materials included glyceroltrilaurate (Dynasan® 112), glyceroltrimyristate 

(Dynasan® 114), glyceroltripalmitate (Dynasan® 116) and glyceroltristearate (Dynasan® 118). 

Cholesterol and gelatin, which served as further matrix materials were obtained from Sigma-

Aldrich (Deisenhofen, Germany). Polymeric matrices were made from polylactic-glycolic 

acid (PLGA) and polylactic acid (PLA) of varying molecular weights. The PLGAs Resomer® 

RG502H (50/50, Mw = 10,500, PLGA10) and Resomer® RG502 (50/50, Mw = 17,000, 

PLGA17) as well as the PLA Resomer® R503 (Mw = 30,000, PLA30) were kindly provided by 

Boehringer Ingelheim (Ingelheim, Germany). 

 

1.2 Excipients for the matrix manufacture 

Experiments on the biocompatibility and erosion behavior of the lipid materials were 

carried out using the phospholipids dimyristyl-phosphatidyl-choline (DMPC), dipalmitoyl-

phosphatidyl-choline (DPPC) and distearoyl-phosphatidyl-choline (DSPC). All phospholipids 

were kindly provided by Lipoid GmbH (Friedrichshafen, Germany). Sucrose (Südzucker, 

Regensburg, Germany) and agarose (Fluka/Sigma-Aldrich, Deisenhofen, Germany) were used 

as further excipients for the matrix preparation. 

 

1.3 Model drugs 

Bovine insulin used for extraction analysis was a gift from Hoechst (Frankfurt, Germany) 

and somatostatin was kindly provided by Dr. Wilmar Schwabe Pharmaceuticals (Karlsruhe, 

Germany). For release experiments, the fluorescent dyes pyranine, fluorescein-di-sodium salt 

and nile red (all Sigma-Aldrich, Deisenhofen, Germany) served as model drugs. 
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1.4 Chemicals 

All reagents used were analytical grade or better. Water used for the experiments was 

double-distilled and filtered through a 0.2µm cellulose nitrate filter (Sartorius, Göttingen, 

Germany) prior to use. Tetrahydrofuran (THF), methylene chloride, chloroform and ethanol 

were obtained from Merck (Darmstadt, Germany) and acetonitrile was purchased from 

Mallinckrodt Baker B. V. (Deventer, Netherlands). Trifluoroacetic acid (TFA) was obtained 

from Sigma-Aldrich (Deisenhofen, Germany). Silicon oil was purchased from Carl Roth 

GmbH & Co. (Karlsruhe, Germany). Tissue Tek for cryo-sectioning was obtained from 

Sakura Finetek (Torrane, CA, USA). Sodium azide, which was purchased from Sigma-

Aldrich (Deisenhofen, Germany), was added to release buffers as a preservative. 

 

1.5 Animals 

All in vivo studies were carried out with female immunocompetent NMRI-mice, which 

were purchased from Charles River Deutschland GmbH (Sulzfeld, Germany). 

 

1.6 Instruments 

Used substances were weighed on a Mettler Toledo AT261 analytical scale (Mettler 

Toledo, Giessen, Germany) or an electronic Sartorius 4401 micro-balance (Sartorius, 

Göttingen, Germany). Matrix preparation was carried out using a self-made manual 

compression tool made of hardened steel (machine shop, University of Regensburg, 

Germany) and a hydraulic press (Perkin Elmer, Rodgau-Jügesheim, Germany). For 

thermographic analysis a DSC 2920 differential scanning calorimeter (TA Instruments, 

Alzenau, Germany) was used. 
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2 Methods 

2.1 HPLC-Analysis of Insulin and somatostatin 

HPLC analysis was performed for insulin and somatostatin using a system with a Degasser 

(Knauer, Berlin, Germany), LC-10AT pump, FCV-10ATVP gradient mixer, SIL-10ADVP 

autosampler, CTO-6A column oven, SPD-10AV UV-detector, RF-551 fluorescence detector 

and SCL-10AVP controller (all Shimadzu, Duisburg, Germany). For somatostatin, a linear 

gradient from 26% to 39% acetonitrile in water, with 0.1% trifluoroacetic acid (TFA), as 

mobile phase was applied over 15 minutes at a flow rate of 1.0ml/min. 100µl of the samples 

were separated at a temperature of 40°C using a combination of a C18-reversed phase pre-

column (LC318, 4.6mm x 5.0mm) and an C18-reversed phase analytical column from 

Supelco (Deisenhofen, Germany). Chromatograms were detected at 210nm and 274nm, 

respectively by UV detection and at wavelengths of 274nm / 308nm (excitation/emission) for 

the fluorescence detector. 

The procedure for insulin differed from that for somatostatin only in the duration of the 

linear gradient. Here the concentration of acetonitrile in water (+0.1% TFA) was constantly 

increased from 26% to 39% over a period of 24 minutes. Again 100µl-samples were separated 

at 40°C using the above-mentioned combination of pre-column and analytical column. 

Chromatograms were detected by UV and fluorescence detection as described above. Both 

analytical methods were linear and reproducible in concentration ranges from 4µg/ml to 

150µg/ml. 

 

2.2 Stability test of somatostatin and insulin in release medium 

To investigate whether the release of the model drugs from triglyceride devices could be 

determined directly from the release medium, investigations into the stability of insulin and 

somatostatin were carried out in isotonic phosphate buffer at pH 7.4. To this end, the 

substances were dissolved in 1.0ml HPLC-vials to a concentration of 150µg/ml. Afterwards 

the solutions were incubated at 37°C in a Memmert U40 drying oven (Memmert, Schwabach, 

Germany). Drawn samples were immediately frozen at -80°C and quantitatively analyzed 

together per HPLC after the incubation time of 5 weeks was completed.  
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2.3 LC/MS-Analysis of insulin and somatostatin 

To clarify the degradation pathways of the model drugs during the incubation in release 

medium, insulin and somatostatin samples from the stability experiments underwent LC/MS-

analysis, which was performed to identify the separated substances. The chromatographic 

conditions were transferred to a Hewlett-Packard HPLC-system with series 1100 degasser, 

binary pump, autosampler, column oven and diode array detector (all Hewlett-Packard, 

Waldbronn, Germany), coupled with a TSQ7000 electro-spray-mass spectrometer 

(ThermoQuest, San José, CA, USA) with AP12-source (capillary temperature: 350°C, spray 

voltage: 4.5kV). Substances were detected in total ion chromatograms of the mass 

spectrometer and characterized by analysis of their individual mass spectra.  

 

2.4 Preparation of insulin- and somatostatin-loaded matrices 

For evaluation of the extraction method, which facilitates the recovery of the incorporated 

model drugs from the triglyceride matrix and further investigations on drug stability within 

the matrix, insulin and somatostatin were incorporated into glyceroltripalmitate matrices by 

mixing the two powders. The respective model drug and the triglyceride were both sieved to 

isolate particles 106µm or smaller prior to the mixing step. The mixture was subsequently 

compressed for 10 seconds with a compression force of approximately 250N, using the 

manual compression tool, which is shown in Figure 2, and the described hydraulic press. The 

resulting cylinders had a diameter of two millimeters and a weight of 6.0 ±0.5mg. 

 
5 cm5 cm

   

Figure 2: Left:  Manual press for matrix manufacture  
right: Schematic of the compression molding.  
 



Chapter 2  Materials and Methods 

 -26-  

2.5 Extraction methods for insulin and somatostatin 

An extraction method previously described by Lucke et al. [141] was applied and 

afterwards optimized for insulin and somatostatin. In the original method, the sample was 

weighed into a 1.5ml micro test tube (Eppendorf, Hamburg, Germany) and dissolved in 600µl 

of chloroform. For somatostatin, 600µl of an acetonitrile/water/TFA-mixture 

(67.35/32.65/0.1) were added, whereas in the case of insulin either 600µl of 0.01N HCL or of 

an acetonitrile/water/TFA-mixture (29.85/70.15/0.1) were added. The solvent mixtures in 

both cases corresponded to the mobile phase at the elution time point during HPLC-analysis, 

which assured the best solubility of the respective drug. After mixing at 2,200rpm on a Reax 

Control (Heidolph, Schwabach, Germany), the dispersion was allowed to settle at room 

temperature for 10 minutes before the chloroform-phase was finally separated from the 

mixture by centrifugation at 13,200rpm for 5 minutes (Centrifuge 5415 R, Eppendorf, 

Hamburg, Germany). The upper fraction was then used for further analysis. 

To optimize the extraction of the model drugs from glyceroltripalmitate matrices, 

cyclohexane, tetrahydrofuran (THF), toluene and xylene were tested. First, one rod was 

weighed exactly into a 1.5ml micro test tube. Afterwards, 500µl of the respective solvent 

were added and, when needed, was warmed at 35°C in a water bath until the lipid was 

dissolved. The mixture was then centrifuged at 13,200rpm to achieve sedimentation of the 

respective model drug and 450µl of the upper fraction were withdrawn. Subsequently, two 

washing and centrifugation steps with 450µl THF were performed to dissolve and remove the 

lipid completely. After the third withdrawal of 450µl of the washing solution, the samples 

were dried over night under vacuum using a RV5 two-stage oil pump from Edwards 

(Crawley, Sussex, UK). The remaining drug was then dissolved in 1000µl of the 

aforementioned, acetonitrile/water/TFA-mixture to determine its content via HPLC-analysis.

  

 

2.6 Preparation of pyranine-loaded triglyceride matrices 

For the investigation of preparation parameters that influence the release from the resulting 

pyranine-loaded triglyceride matrices, cylinders containing the hydrophilic fluorescent dye as 

a model drug were prepared under varying conditions. To this end, the respective amount of 

glyceroltripalmitate was dissolved in tetrahydrofuran and mixed with a solution of the needed 
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amount of the dye in water. The ratios of triglyceride and pyranine used varied with the drug 

loading, whereby a total 200.0mg of dye-loaded triglyceride was dissolved. The resulting 

mixture with a THF/water-ratio of 9:1 was frozen in liquid nitrogen and subsequently freeze-

dried, using the two-stage oil pump mentioned above (see section 2.5). Afterwards, the 

obtained powder was ground and mixed in a mortar and then compressed to cylindrical 

matrices of 1mm or 2mm diameter, as described in section 2.4. 

Drug loading was varied from 1% over 10% up to 33% pyranine. These matrices were 

compressed with a force of 250N. Additionally, matrices containing 10% pyranine were 

prepared by applying a compression force of 50N and 500N. Cylindrical matrices with a dye 

content of 10%, diameters of 1mm and 2mm and heights of 2mm, 4mm and 6mm were 

compressed by applying a force of 250N. In addition, glyceroltripalmitate was sieved to 

fractions of particle sizes below 106µm and 106µm-250µm and subsequently mixed with the 

dye to a total pyranine content of 10%. Afterwards, this powder mixture was compressed to 

cylinders of 2mm diameter as described above. 

For experiments on the effects of drug hydrophilicity, fluorescein-di-sodium salt and nile 

red served as model drugs in cylinders of 2mm diameter and a dye loading of 10%. Matrix 

manufacture with fluorescein was performed using the above-described procedure for 

pyranine. For the incorporation of nile red into the matrices, both the dye and the triglyceride 

were dissolved in THF and afterwards this solution also underwent the above-mentioned 

process for manufacture of matrices. 

10% fluorescein-di-sodium salt containing matrices for the investigation of involvement of 

osmosis in release mechanisms from triglyceride cylinders were prepared as described above. 

For the investigation of the water uptake into triglyceride matrices, glyceroltripalmitate 

was sieved to fractions of particle sizes below 106µm and 106µm-250µm and subsequently 

compressed to cylinders of 2mm diameter as described above. 

 

2.7 Solubility of nile red in release medium 

To be able to draw conclusions from release experiments performed with the highly 

lipophilic florescent dye nile red, which was used as model drug for the investigation of the 

influence of drug characteristics on the resulting release profile from a triglyceride matrix, the 

solubility of the dye in the release medium was determined. To this end, 0.2mg nile red were 

weighed into 20ml of phosphate buffer pH 7.4 and subsequently incubated for 2 days at 37°C 
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in the aforementioned heating oven. After centrifugation of the mixture, 5.0ml of the upper 

fraction were taken for the following procedure. Solubility data were obtained by measuring 

fluorescence of the samples after freeze-drying and re-dissolution of the remaining solid 

phase in ethanol. A RF-1501 fluorescence spectrophotometer (Shimadzu, Duisburg, Germany, 

λex/λem: 567nm/629nm) was used for the measurements. 

 

2.8 In vitro release set-ups 

2.8.1 Release of pyranine 

To investigate the influence of preparation parameters on the release from triglyceride 

matrices, experiments were carried out using pyranine as model drug. For investigation of the 

in vitro release of pyranine-loaded matrices, the samples were incubated at 37°C in 50ml 

0.1M phosphate buffer solution (pH 7.4) while subjected to gentle shaking in a GFL 1086 

horizontal shaking water bath (GFL, Burgwedel, Germany). To suppress the growth of 

bacteria and fungi, 0.05% sodium azide were added. The withdrawn volume of the samples 

was replaced by fresh buffer solution and the pyranine content of the samples was measured 

using the aforementioned fluorescence spectrophotometer (λex: 403nm, λem: 503nm). 

 

2.8.2 Release of fluorescein and nile red 

To examine the influence of dye hydrophilicity, fluorescein and nile red were used as 

model drugs. Fluorescein properties were varied by incubation in buffers having pH values of 

2.8, 5.5, and 9.0, respectively. Again a temperature of 37°C was chosen and 0.05% sodium 

azide was added as a preservative. Fluorescein release from the matrices was investigated by 

measuring fluorescence in phosphate buffer with pH 9.0 using excitation/emission 

wavelengths of 491nm/505nm; samples were collected as described in section 2.8.1 for 

pyranine. Concomitantly, matrices containing the highly lipophilic fluorescent dye nile red 

were incubated as mentioned in section 2.8.1 for pyranine. Release data from nile red-loaded 

lipid cylinders were obtained by measuring fluorescence after freeze-drying of the completely 

exchanged release medium at the specific time points and re-dissolution of the remaining 

solid phase in ethanol (λex/λem: 567nm/629nm). 
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2.8.3 Investigation of release mechanisms 

To investigate by an in vitro release experiment whether osmosis is involved in release 

mechanisms from triglyceride matrices, 10% fluorescein-di-sodium salt loaded 

glyceroltripalmitate cylinders were incubated in phosphate buffer solutions (pH 9.0) having 

three different osmotic pressures. Sodium chloride was added to the phosphate buffer to 

achieve osmotic pressures of 293, 7850 and 9500mosmol, respectively. Release data were 

obtained by measuring fluorescence of the dye as described in section 2.8.2. 

 

2.9 In vitro investigation of water uptake into triglyceride matrices 

To further investigate the release mechanisms from triglyceride matrices, their water 

uptake was examined as follows. For the investigation of the water uptake into 

glyceroltripalmitate cylinders, the blank rods were incubated for up to 14 days in phosphate 

buffer containing 30mg/ml fluorescein-di-sodium salt at a pH of 9.0 and a temperature of 

37°C. After the withdrawal of the matrices, they were washed with 3.0ml of double distilled 

water. The dye was subsequently extracted according to the method described by  Lucke et al. 

[141] (see section 2.5) using 1.0ml of chloroform and of the mentioned phosphate buffer as 

solvents. Afterwards the fluorescein content was measured as described above and the relative 

amount of water taken up by the cylinder was calculated. 

 

2.10 Cryo-sectioning of matrices 

After incubation of the blank cylinders in phosphate buffer containing fluorescein-di-

sodium salt, additionally the distribution of the dye solution within the matrices was 

investigated. To this end, a cross-section of the triglyceride cylinders was made using a HM 

550 OMP cryotome from Microm International (Walldorf/Baden, Germany). A chamber 

temperature of -10°C and a sample temperature of 5°C were applied. Afterwards, 

approximately one half of the matrices were cut away in slices of 20µm each. To this end the 

cylinders were embedded on cryo-stubs (Microm International, Walldorf/Baden, Germany) in 

tissue tek within a ring having a diameter of approximately 1.5cm and a height of 

approximately 0.75cm. Tissue tek was removed before microscopic investigation of the 

remaining half of the matrix by using a soft paper tissue. 
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2.11 Confocal Laser Scanning Microscopy 

Subsequent to the cross-sectioning of the matrices, they were investigated by fluorescence 

microscopy using an Axiovert 200M confocal laser-scanning microscope with LSM510 laser 

module (both Carl Zeiss, Jena, Germany). For the detection of fluorescein-di-sodium salt 

(λex/λem: 491nm/505nm) the laser with an excitation wavelength of 488nm was chosen and 

emission was detected at wavelengths above 505nm. No further filters were used. 

 

2.12 Preparation of sterile matrix materials for in vivo studies 

After the in vitro characterization, the triglyceride matrices were tested for their in vivo 

biocompatibility and erosion. To evaluate tissue reactions, sterile materials had to be used in 

order to avoid reactions not related to the material. The phospholipid distearoyl-phosphatidyl-

choline (DSPC) was produced under aseptic conditions by the manufacturer and therefore 

underwent no additional sterilization procedure. 

 

2.12.1 Sterilization of glyceroltripalmitate 

Glyceroltripalmitate was sterilized for 2h at 160°C in a Memmert U40 drying oven 

(Memmert, Schwabach, Germany) and afterwards tempered at 55°C for three days to obtain 

the stable β-modification [8]. 

 

2.12.2 Sterilization of gelatin and poly(D,L-lactic-co-glycolic acid) (PLGA17) 

Gelatin was dissolved in double-distilled water to a concentration of 0.1% and 

subsequently filtered through a PES membrane filter with 0.2µm pore size (Corning, New 

York, USA). Afterwards the solution was freeze-dried using the aforementioned two-stage oil 

pump and subsequent to the drying step the resulting powder was ground in a porcelain 

mortar (Rosenthal, Selb, Germany) under liquid nitrogen. Then the gelatin as well as the 

untreated PLGA17 (Mw: 17,000) was sterilized by UV irradiation for two hours [155]. 
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2.12.3 Sterilization of cholesterol 

Cholesterol used for the matrix preparation for in vivo experiments was first dissolved in 

diethyl ether. Subsequently, the solution was filtered through a PES membrane filter with 

0.2µm pore size (Corning, New York, USA) and then dried under vacuum at room 

temperature in a vacuum desiccator, which was sterilized before for 2h at 160°C in the 

aforementioned heating oven. 

 

2.13 Preparation of sterile matrices for in vivo studies 

For the in vivo studies, cylindrical matrices were compressed from the obtained sterile 

powders. All matrices were manufactured under laminar air flow (UVF 6.12 S, BDK Luft- 

und Reinraumtechnik GmbH, Sonnenbuehl-Gengkingen, Germany) to avoid bacterial 

contamination using the manual press, which is shown in Figure 2 (see section 2.4) and which 

had undergone a heat sterilization process at 160°C for 2 hours. The resulting matrices had a 

diameter of two millimeters and a weight of 6.0 ±0.5mg. A compression force of 

approximately 250N was applied. The sterility of the obtained matrices was tested, according 

to the Ph. Eur., and confirmed in the institute of microbiology at the medical center of the 

University of Regensburg.  

 

2.14 In vivo studies with matrices 

For the investigation of the in vivo biocompatibility and erosion of the lipid materials, two 

in vivo studies were carried out with female NMRI mice (8 weeks old at the beginning of the 

experiment, Charles River Deutschland GmbH (Sulzfeld, Germany)), which were both 

authorized throughout an accepted petition for animal studies. In the first study, two control 

groups of mice received matrices made of gelatin and the aforementioned PLGA17, which are 

accepted to be biocompatible. The two test groups received matrices made of pure 

glyceroltripalmitate and of glyceroltripalmitate containing 1% gelatin (see Table 4). After 

anesthetization with a combination of 100mg/kg ketamine and 4-6mg/kg xylazine, the 

animals underwent subcutaneous implantation of one sterile matrix in each flank (both of the 

same material). Afterwards, the wound was closed with sterile Michel suture surgical clips 

(7.5 mm x 1.75 mm, Fine Science Tools, Heidelberg, Germany). Then the animals were 

returned to the housing facility where they were kept under a 12h/12h light/dark cycle at 20°C 
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and 50% relative humidity and had free access to food (ssniff R/M-H, Lage, Germany) and 

water. 

In the first study, mice were sacrificed 2, 4, 8, 30 and 60 days post-operation (Table 4) by 

cervical dislocation and the matrices were excised. One cylinder served to evaluate tissue 

reactions by histological examination, while the other was used to investigate the swelling and 

microstructure of the matrix. In the second study, the equal procedure for sample collection 

was performed. The study designs with a detailed time schedule are shown in Tables 4 and 5. 

Early time points served for the evaluation of acute reactions, whereas later excision points 

were chosen for the investigation of chronic tissue reactions. 

Table 4: Time schedule for biocompatibility study of glyceroltripalmitate. 

group material n excision 

test group 1 100% Glyceroltripalmitate 4 d2, d4, d8, d30, d60 

test group 2 99% Glyceroltripalmitate 
1% Gelatin 

4 d2, d4, d8, d30, d60 

control group 1 100% Gelatin 4 d2, d4, d8, d30, d60 

control group 2 100% PLGA17 4 d2, d4, d8, d30, d60 

Table 5: Study design of erosion behavior investigations. 

group material n excision 

control group 1 100% Glyceroltripalmitate 4 d10, d20, d35 

test group 1 90% Glyceroltripalmitate 
10% DSPC 

4 d7, d14, d21, d25, d35 

test group 2 50% Glyceroltripalmitate 
50% DSPC 

4 d2, d6, d10, d15, d28 

control group 2 100% Cholesterol 4 d3, d7, d14, d24, d35 

test group 3 50% Glyceroltripalmitate 
50% Cholesterol 

4 d3, d7, d14, d24, d35 

test group 4 10% Glyceroltripalmitate 
90% Cholesterol 

4 d3, d7, d14, d24, d35 

 

One tissue sample from each mouse was fixed in Bouin´s solution, and processed for 

routine paraffin histology. Afterwards 6µm sections were stained according to the method 

detailed by Masson & Goldner and examined with an Olympus BH-2 light microscope 

(Olympus, Hamburg, Germany). The other matrix was detached from the surrounding tissue 

and then weighed on the above-described Mettler Toledo analytical scale to investigate its 
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swelling before being examined by light microscopy as described in section 2.16. After a 

freeze-drying step (see section 2.15), the matrices were weighed again to quantify erosion and 

subsequently re-examined by light microscopy. Swelling and erosion of the matrices were 

determined as relative change in mass compared to values before the implantation. Afterwards 

the freeze-dried matrices were manually broken into two parts and both the surface and cross-

section were imaged using scanning electron microscopy, as described in section 2.16. 

 

2.15 Freeze drying of matrices 

To determine the extent of erosion of the matrix material, the dry-weight after implantation 

was investigated. For the drying procedure of the matrices a Christ Beta 2-16 freeze drier 

(Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) was used. The 

matrices were frozen to –40 °C over 3 hours before starting the main drying step, which was 

carried out for 24 hours at 8 °C and 0.05 mbar. For the final drying step, the samples were 

treated at room temperature and 0.005 mbar for two hours.  

 

2.16 Scanning electron microscopy (SEM) and light microscopy investigations 

Another important part of the in vivo investigations was the optical examination of the 

matrices after explantation. The samples were investigated by light microscopy with a M75 

zoom-stereomicroscope (Wild, Heerbrugg, Switzerland) and the microstructure of the 

matrices was examined by scanning electron microscopy (SEM). Samples were glued to 

aluminium sample holders (machine shop, University of Regensburg, Germany) using a 

conductive adhesive film (Leit Tabs, Ted Pella Inc., Redding, CA, USA) and gold sputtered 

for 4 minutes under argon atmosphere using a Polaron Automatic Sputter Coater E 5200 from 

Polaron Equipment Ltd. (Watford, UK). The coated samples were finally analyzed using a 

DSM 950 Scanning Microscope from Carl Zeiss (Jena, Germany). 
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2.17 Incorporaion of erosion modifiers and in vitro release set-up 

 To be able to modify the in vivo erosion of triglyceride matrices, several excipients were 

first tested in vitro for their influence on the release of pyranine from cylindrical 

glyceroltripalmitate matrices. Agarose was used in ratios of 5%, 10% and 15%, respectively, 

the phospholipids DMPC, DPPC and DSPC were chosen in concentrations from 5% to 50% 

(see Table 6) and sucrose was used in ratios of 5%, 10%, 25% and 50%. Before incorporation, 

the sucrose was sieved to four fractions of 25µm-45µm, 150µm-180µm, 250µm-355µm and 

560µm-710µm using analytical sieves (Retsch, Haan, Germany). 

For these experiments, two preparation methods were developed. The first was an 

emulsion method that has been previously described [37] and was only performed for the 

three phospholipids. Using this method, pyranine was dissolved in 200µl water and dispersed 

in a solution of the lipid and the respective amount of the phospholipid in 5 ml methylene 

chloride under vigorous vortex mixing (speed 8 vortex genie 2, Scientific Industries, 

Bohemia, USA). The resulting mixture was then sonicated for 30 seconds at a frequency of 20 

kHz and an intensity of 120 Watts using a B12 sonicator made by Branson (Sonic Power 

Company, Danbury, Connecticut, USA). Afterwards, water and solvent were removed from 

the resulting W/O emulsion by vacuum drying using the aforementioned two-stage oil pump 

until a final pressure of 0.5 Pa was reached. After drying, the mixture was ground in a mortar 

to obtain a free flowing powder with a particle size of less than 106µm.  

In the second preparation procedure, 135.0mg glyceroltripalmitate were loaded with 

15.0mg pyranine as described in section 2.6 and afterwards the predefined amount of the 

respective excipient was added in a second step. The resulting powder mixture was 

subsequently manually shaken in a 2.0ml micro test tube (Eppendorf, Hamburg, Germany) for 

one hour. Mixing in a mortar was not applied with regard to the defined particle size of the 

sucrose and consequently for the other materials to maintain the comparability of the results. 
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The obtained powders from both procedures were subsequently compressed to matrices as 

described in sections 2.4 and 2.6, respectively, and processed for in vitro release as mentioned 

in section 2.8.1. Table 6 gives an overview of the investigated ratios and applied preparation 

procedures for glyceroltripalmitate cylinders containing the three phospholipids as a 

modifying component. 

Table 6: Investigated ratios and preparation procedures for phospholipid containing glyceroltripalmitate 
matrices. The emulsion method was not performed for DMPC at ratios of 25% and 50%. The two 
step method was not used for DSPC and DMPC in the ratio of 50%. 

preparation method DMPC DPPC DSPC 

emulsion method 5%, 10% 5%, 10%, 25%, 50% 5%, 10%, 25%, 50% 

two step method 5%, 10%, 25% 5%, 10%, 25%, 50% -/- 

 

2.18 Particle size determination of lipid microparticles and powders before in 
vivo study 

After the in vitro experiments on various erosion modifiers, the hypothesis of a dependence 

of the in vivo erosion on the triglyceride particle size was investigated by using 

glyceroltripalmitate microparticles and powders. To perform particle size analysis of the 

triglyceride, the samples were investigated using a Mastersizer 2000 laser diffractometer 

(Malvern Instruments, Worcestershire, UK) as follows: approximately 100µg of the lipid 

sample were directly added to the dispersion unit (Hydro 2000S), which was filled with an 

ethanol / water mixture (68.2% (v/v), density 0.9). The particles were dispersed by stirring at 

3000rpm for 5min, no sonication was applied. The volume-based particle size distribution 

was calculated using the Fraunhofer approximation (Malvern Software V5.1). 

 

2.19 X-Ray diffraction analysis 

To investigate the degree of crystallinity of the glyceroltripalmitate microparticles and 

powders, which might also influence the in vivo erosion of the material, wide-angle X-ray 

scattering (WAXS) was performed for all samples by using a STOE STADIP X-ray 

diffractometer (Darmstadt, Germany) equipped with a copper anode (Cu Kα1 radiation, 

Germanium monochromator). Experiments were conducted at a scan rate of 2 theta = 0.05° in 

a 5° to 56° range and obtained data were analyzed using a Winxpow 1.08 software. 
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2.20 In vivo erosion study 

The third in vivo study investigated a dependence of the in vivo erosion on the triglyceride 

particle size using glyceroltripalmitate microparticles and two glyceroltripalmitate powders, 

one with a high and one with a low degree of crystallinity. Preparation of the microparticles 

by spray congealing was conducted as previously described [153]. The resulting lipid 

microparticles were sterilized by Beta-Gamma-Service (BGS, Saal a.d. Donau, Germany) 

using β-irradiation of 10MeV. The applied dose of radiation was 25kGy. 

To obtain the triglyceride powders for the in vivo experiments, two different sterilization 

processes were applied. In the first method, which led to a high degree of crystallinity, 

glyceroltripalmitate was heated for 2h to 160°C and afterwards tempered for 3 days at 55°C in 

the drying oven to obtain the stable β-modification [8]. Subsequently, the triglyceride was 

ground in a mortar and sieved to a particle size of 106µm to 250µm. These steps were 

performed under laminar airflow using a sterilized mortar and sieve, respectively. For the 

second sterilization method, the triglyceride was dissolved in chloroform and afterwards 

filtered through a PTFE sterile filter (Corning, New York, USA). Subsequently, the obtained 

solution was freeze dried in a sterilized desiccator, as mentioned in section 2.12, and the 

resulting powder was sieved as described above for the first sterilization method. 

From the sieved lipid microparticles and powders, 7.5mg portions were prepared in sterile 

micro test tubes (Eppendorf, Hamburg, Germany) for each mouse, to be implanted 

subcutaneously into the left flank with a sterilized pipette tip (Corning, New York, USA). 

Prior to this procedure, the mice were anaesthetized as described in section 2.14. The three 

groups were investigated in vivo for 8 weeks, using female immunocompetent NMRI-mice, 

which underwent subcutaneous implantation of the triglyceride into the left flank. Housing 

conditions were equal to former in vivo studies (see section 2.14). Samples were collected at 

days 7, 17, 28, 42 and 56. At these time points, the mice were sacrificed by cervical 

dislocation. Subsequently, the region of implantation was excised from the mice, samples 

containing the lipid microparticles or powders were fixed in 5% formaldehyde solution, and 

processed for routine paraffin histology as described in section 2.14. 
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2.21 Size determination for glyceroltripalmitate microparticles after in vivo 
study on erosion behavior of lipid microparticles and powders 

To investigate the erosion of the glyceroltripalmitate samples, the particle size and its 

alteration was observed throughout the course of the study. Particle size determination was 

carried out from histological sections using the described camera and software package with 

measurement module. Holes stemming from the microparticles and the triglyceride powder 

were measured by light microscopy using a Leica  DFC 320 camera and the IM1000 software 

package with measurement module (Leica, Heidelberg, Germany). To estimate the real 

diameter of the spherical particles in the respective histological section, two diameters 

(d1=smallest diameter, d2=largest diameter) were measured as shown in Figure 3, from which 

the mean was calculated. 

100µm

d1

d2

   

Figure 3: Light microscopy image of a histological section of lipid microparticles 7 days after implantation 
(HE stained, 100x). Mean diameter was calculated as (d1+d2)/2. 

But as Figure 4 illustrates, a significant statistical error would result if only the mean value 

of all measured diameters of the microparticles is calculated, since the observed diameter 

depends on the distance of the section from the central plane. Thus, in the depicted example 

cutting one particle in three different plane sections would result in three different diameters. 

Consequently, simply taking the mean value of all determined particle sizes within the in vivo 

study would result in diameters that differ from the real value. This is known and described in 

literature [156-158] as the so-called “Wicksell-corpuscle-problem”. 

 

Figure 4: Scheme of the so called “Wicksell-corpuscle- problem”, which occurs, when making plane sections 
of a sphere. 
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Stoyan, Kendall and Mecke described in literature [158] an estimator for the real diameter 

(shown in equation 1), which can be used for the analysis of the particle size of the lipid 

microparticle group. 

  (1) 

 vd̂  estimated mean diameter of all measured particles 
 n number of particles which were measured 
 xi measured diameter of the respective particle. 

But since this estimator is valid only for spherical particles and the two lipid powders were 

irregularly shaped, it was only possible to obtain qualitative results for the lipid microspheres 

in our in vivo experiment. 

 

2.22 Manufacture of programmable implants and in vitro release study  

Since triglycerides were determined to be suitable for controlled prolonged release and the 

programmable implants developed by Vogelhuber et al. [39] were only capable of pulsatile 

release due to the used polyanhydride core matrix, investigations on programmable implants 

were carried out with glyceroltrilaurate, glyceroltrimyristate, glyceroltripalmitate, 

glyceroltristearate and cholesterol as core materials. The polymers described in section 1.1 

(PLGA10, PLGA17 and PLA30) were used as mantle materials. Table 7 gives an overview of 

the core and mantle materials used for the manufacture of programmable implants. 

Table 7: Used materials for the preparation of programmable implants. 

core materials mantle materials 

cholesterol PLGA10 

glyceroltrilaurate (C12) PLGA17 

glyceroltrimyristate (C14) PLA30 

glyceroltripalmitate (C16)  

glyceroltristearate (C18)  
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For the preparation of the matrices, first the respective core material was loaded with 

pyranine, as described in section 2.6. Afterwards, the cylindrical cores of 1mg weight and 

1mm diameter (Figure 5a) were compressed. The different matrix materials all contained 10% 

of the model drug. Schematics of the manual compression tools are shown in Figure 5.  

 

a)           b) c)

Upper punch

Punching tool

Bottom punch

a)           b) c)

Upper punch

Punching tool

Bottom punch

 

Figure 5: a) manual press with 1mm diameter for manufacture of the core  
b) manual press with 2mm diameter and upper punch with plane shape  
c) upper punch with staggered shape. 

The powder was loaded into the appropriate manual compression tools and placed in the 

aforementioned hydraulic press; a compression force of 250N was applied and maintained for 

10 seconds. In the following step, the bottom of the mantle was prepared with 5.0mg of 

polymeric mantle material using the manual compression tool with a diameter of 2mm and the 

upper punch with the staggered shape (Figure 5b, c). Again a compression force of 250N was 

applied for 10 seconds. Afterwards the core was placed in the resulting cavity of the bottom 

part and the implant was compressed with another 1.5mg of the polymer as upper part for 10 

seconds with 250N using the plane upper punch (Figure 5b). The last step of the implant 

manufacture was the closure of the pores in the mantle, which could otherwise lead to a 

preliminary release [39], at a temperature above the glass transition point of the polymer. Two 

different methods to heat up the polymer mantle were tested and the results were compared. 

In the first method, the implants underwent a heat treatment in silicon oil (Rotitherm® H250) 

at 110°C for 3 seconds, whereas in the second method the press was heated in a drying oven 

and the implant was compressed subsequently with approximately 25N for 10 seconds. 

Applied temperatures were 48 °C for PLGA17 and PLGA10 and 50 °C for PLA30. Figure 6 

shows a schematic of the preparation procedure with the second compression step at higher 

temperatures. 
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Figure 6: Schematic of the preparation procedure for programmable implants; closure of pores within the 
mantle occurred through a second compression step at higher temperatures (here 48°C for PLGA10 
and PLGA17). 

Drug release was investigated from programmable implants as well as from the cores 

without mantle as described in section 2.6. Statistical calculations for the investigation of the 

onset of release was carried out by using one-way analysis of variance (ANOVA) in 

conjunction with Tukey´s studentized range test. 

 

2.23 Modelling of release profiles for preprogrammable implants 

In this study, the method of convolution, which has already been described [159-162], was 

utilized to predict release profiles from programmable implants and the results of the 

mathematical modeling were compared to experimentally obtained release profiles. 

Convolution and deconvolution are parts of the so-called system theory. Following the rules 

for this theory, the mantle of the programmable implants was handled as a “black box”, which 

reacts on an input function I(t) (e.g. the release of a model drug from a core matrix) with a 

specific response function R(t) (e.g. the release from embedded core). With the input function 

being a defined kinetic process (e.g. a bolus release from a core matrix), the system can be 

characterized by a system function, F(t) (filter function, impulse response). One impulse 

function is the so-called Dirac´s delta-impulse δ(t), which is a narrow rectangular impulse 

having the breadth T and the amplitude 1/T, which results in the value 1 for the area of the 
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delta-impulse. Mathematically, the relationship between the functions is described by the 

following equation:  

R(t) = F(t) ∗ I(t)  (2). 

The star indicates that the response function results from a convolution operation on filter- 

and input functions. The deconvolution can be expressed as follows: 

I(t) = R(t) // F(t)  (3) 

F(t) = R(t) // I(t)  (4). 

Consequently, an input function being the impulse δ(t), results in the following response 

function: 

δ(t) ∗ F(t) = F(t)  (5). 

With an amplitude having, for example, the value A, which differs from 1/T, the area of the 

impulse results in A·T. Such an impulse can generally be treated in the same manner as a 

Dirac-impulse, whose input- and response functions are described as A⋅Tδ(t) and A⋅T⋅F(t), 

respectively, which results in equation (6). 

A⋅Tδ(t) ∗ F(t) = A⋅T⋅F(t)  (6) 

An integratable function I(t) can be divided into pieces having the form A⋅Tδ(t), whereby 

the amplitude-value A is replaced by the value of the function I(iT) (Figure 7). 

0   T 2T 3T 4T 5T 8T 10T 15T 20T
t

I(t)

I(iT)

0   T 2T 3T 4T 5T 8T 10T 15T 20T
t

I(t)

I(iT)

 

Figure 7: Dissection of the input function I(t) into rectangular impulses (adapted from [162]). 
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Considering the time-related shifting of the respective impulse, each of them becomes 

I(iT) · Tδ(t-iT), which results in equation (7). 

I(iT) · Tδ(t-iT) ∗ F(t) = I(iT) · T⋅F(t-iT)  (7) 

The response function R(t) now results from the overlapping of each single input function. 

Since F(t) is generally not as short as the delta-impulse and can be maintained for longer time 

periods, the previous intervals have to be taken into account. Considering an overlapping of 

all parameters results in: 

∑
=

−=
n

i

iTtFiTITnTR
0

)()()(   (8). 

With the intervals being very small, an integral can be formulated and the discrete time 

values iT can be replaced by the variable τ: 

∫ −=
t

dtFItR
0

)()()( τττ    (9). 

This integral is called convolution integral. A schematic of the relationship between input 

function, filter function and response function is depicted in Figure 8. 

system
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response function

I(t) R(t)
F(t)

a
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I(t) R(t)
F(t)

system
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filter function

response function
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input function
filter function
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I(t) R(t)
F(t)

a

  

F(t)

I(t)

R(t)

b

F(t)

I(t)

R(t)

b

 

Figure 8: a) Schematic for a linear system, on which a convolution operation can be applied. For a known 
filter function, one special response function can be calculated for each known input function. 
(adapted from [162])  
b) Visualization of the transfer of convolution theory to programmable implants. 

Generally, for such systems it is valid that when two of the depicted functions are known, 

the third function can be calculated from the others. For the mathematical modeling in the 

investigations of programmable implants, the numerical solution of the convolution integral 

was applied. Thereby the input function or the filter function is considered to be constant 

within the respective time interval 0 ≤ T ≤ t. Starting with equation (8) for the numerical 

convolution, F(t) becomes the value F(nT) of the function. Thus it can be formulated that: 

I(iT) = Ii, F(nT-iT) = Fn-i, which leads from equation (8) to: 

∑
=

−=
n

i
inin FITR

1

  (10). 
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Thus the numerical algorithm, which is depicted in equations (11-14), can be formulated as 

a solution of the convolution integral. This algorithm replaces the integration by 

multiplication and addition of numbers. 

TFIR ⋅⋅= )( 000       (11) 

TFIFIR ⋅⋅+⋅= )( 01101      (12) 

TFIFIFIR ⋅⋅+⋅+⋅= )( 0211202     (13) 

TFIFIFIFIR nnnnn ⋅⋅+⋅++⋅+⋅= −− )...( 011110   (14) 

Applying this algorithm, constant values for the input function and the filter function 

within the respective time intervals were considered. Thus, the values change at the transition 

to the next time interval (staircase algorithm). When I(t) should be calculated from the 

integral, a numerical solution is yielded from the inversion of the convolution, the so-called 

deconvolution. An algorithm can be formulated from equations (11-14). Thereby first I0 was 

calculated from equation (11), then the value was inserted into equation (12) and I1 was 

calculated. Knowing I1, I2 was obtained from equation (13) etc, leading to equations (15-18). 
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Values for the filter function were then calculated as follows: 
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Transferred to the programmable implants, convolution means the mathematical modeling 

of expected theoretical release profiles (=response function), when a core with known release 

properties (=input function) is embedded into a polymeric mantle (=filter function). Hence the 

effect of the respective polymeric mantle material was calculated by the use of data gained 

from core matrices made of cholesterol and embedded cholesterol cores, which showed 

pulsatile release. For PLA30, the calculation of the filter function was carried out using release 

data elaborated with a fast releasing polyanhydride by Vogelhuber in [39]. Time intervals of 

T = 1 day were chosen for the calculations. 

Since this mathematical method can only be applied for linear systems, the beginning of 

the mathematical modeling was fitted to the onset day of release. During the delay time, 

erosion of the polymeric mantle occurred and thus the filter would not have been linear. 

Changes within the mantle, taking place after the onset of release, were considered to be 

negligible in comparison to that occurring during the delay period. Due to this fact, the first 

value for the input function (I0 in equations 11-14) had to be the summarized release of the 

model drug until the day of the onset of release. Time-invariance, which is a second 

prerequisite, was taken for granted. 
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Introduction 

Lipid materials are widely investigated for their potential as an alternative to polymeric 

carrier materials for proteins and peptides. Their properties for controlled release are 

investigated by several groups [37,150] which obtained their data by simply measuring the 

concentration of the released model drug directly from the release medium, which was 

possible since non proteinic model drugs were used. But since there are several degradation 

pathways, that can affect proteins and peptides in solution during release, their stability in 

release buffer is of great importance to decide whether a long term release could be 

investigated directly from the release medium or if the incorporated drugs have to be 

extracted from the matrices, to determine the residue content for a subsequent calculation of 

the release data. Thus in these investigations firstly a stability study for insulin and 

somatostatin, which served as model drugs, was carried out. 

But in addition to occurring degradation processes in the release medium, the stability of 

proteins and peptides inside triglyceride matrices is of great interest. Since instability of this 

group of drugs was shown when incorporated into polymers [141], the triglycerides might be 

a promising alternative material. Insulin and somatostatin were incorporated as model drugs 

into lipid microparticles and release was investigated [118,153]. Thus an extraction of these 

two model drugs from the triglyceride matrix without the occurrence of degrading processes 

should become possible to enable the investigation of their stability within the triglyceride. 

Therefore, the extraction method developed by Lucke et al. [141] was tested and optimized 

using somatostatin and insulin as model drugs. Additionally a new procedure, to extract 

insulin and somatostatin from the glyceroltripalmitate matrices was developed. This new 

extraction method should protect the proteins and peptides from degradation, which can be 

caused by liquid phase separation during the procedure described in [141]. 
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Results and discussion 

Stability test and LC/MS-Analysis 

To investigate the stability of Insulin and somatostatin, the model drugs were incubated in 

phosphate buffer solution of pH 7.4 at 37°C, as described in section 2.2 Insulin showed good 

stability over two weeks, but after 5 weeks the fraction of unaffected protein decreased to 

approx. 66% (Figure 9). As Figure 10 shows, somatostatin was degraded continuously and 

even faster. Thus, at the final time point of the experiment less than 45% of the peptide had 

maintained its structure. 
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Figure 9: Degradation kinetics of insulin in phosphate buffer solution at 37°C over 35 days, data is shown as 
mean ± standard deviation, n=3. 



Chapter 3  Extraction Methods for Insulin and Somatostatin 

 -48-  

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40

time [d]

in
ta

ct
 s

o
m

at
o

st
at

in

 

Figure 10: Degradation kinetics of somatostatin in phosphate buffer solution at 37°C over 35 days, data is 
shown as mean ± standard deviation, n=3. 

In the case of somatostatin, the degradation product was identified via LC/MS-analysis as a 

deamidation product (Figure 11). The exchange of an amido-group (NH2) into a hydroxyl-

group (OH) led to an increase in the molecular mass of the somatostatin of 1Da, which was 

detected via the LC/MS-analysis. 
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Figure 11: HPLC-chromatogram of somatostatin with retention times and detected mass data from LC/MS 
(mass of somatostatin: 1637.7, mass of the deamidation product: 1638.7), small peaks at earlier 
retention times due to somatostatin and its deamitation product containing iso-aspartate. 

LC/MS-analysis of insulin showed no differences in the mass of insulin and the 

degradation product (data not shown). By carrying out GFC-analysis a second peak with 

earlier retention time, and thus a higher molecular mass was observed (see Figure 12). ESI-

MS, which was used for this analysis has a cut-off of 2000Da and detects masses above this 

cut-off as mass per charge (m/z). Thus, a molecule that is exactly twice as large as the insulin 

would be hidden in the same peak as insulin in ESI-MS. This lead to the conclusion that the 

observed degradation product was the non-covalent dimer of insulin. 
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Figure 12: GFC-chromatogram of insulin samples drawn at days 0 (�), 3 (- -), and 35 (▪▪), respectively. 

These results made visible, that the determination of protein and peptide release from 

triglyceride matrices cannot be performed directly from the release medium, due to stability 

problems. Thus, an extraction method for the two model drugs from the triglyceride, in which 

they should be incorporated, was necessary for the investigation of a long-term release. 

Otherwise the number of errors would increase and thus detection of sensible values for the in 

vitro release would be impossible. 

 

Development of the new extraction method 

For the evaluation of the extraction method, insulin and somatostatin were first 

incorporated into glyceroltripalmitate matrices and afterwards extracted as described in 

section 2.5. First results using the extraction method described by Lucke et al. [141] revealed 

impossibly high extraction yields of above 100%, due to the higher amount of acetonitrile in 

the mixture and a subsequent dissolution of the solvent in the chloroform-phase. This led to a 

smaller volume of the water-phase and thus higher concentrations of the model drugs were 

detected. Therefore, in the case of insulin 0.01N HCl, which is a known good solvent for this 

protein was tested instead of the original solvent mixture. Additionally, a method without 

liquid phase separation was developed for both model drugs, since it has been stated in the 
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literature [140] that proteins and peptides may be degraded or denatured at liquid/liquid (l/l) 

interfaces. 

For insulin both methods produced good extraction yields with acceptable reproducibility. 

Somatostatin was also extracted to a good extent with very small deviations. For both the 

protein and the peptide the optimized solid/liquid extraction method using THF as solvent 

showed best results, compared to the other investigated solvents. Extraction yields of 94.5% 

for somatostatin with a standard deviation of 0.80% could be achieved. For insulin, extraction 

yields of 91.31% +/-5.11% and 96.33% +/-3.03% were achieved with the solid/liquid and the 

liquid/liquid extraction methods, respectively. 

Not only were good extraction yields observed, but also the stability of the model drugs 

during the extraction process was investigated within these experiments. Figures 13 and 14 

show HPLC-results for insulin (Figure 13) and somatostatin (Figure 14) standards in 

comparison with the two model drugs after the extraction from a triglyceride matrix. In both 

cases, no additional peaks were observed and no degradation products could be detected. This 

shows the suitability of the newly developed method for the investigation of the stability of 

these model drugs within a triglyceride matrix, such as lipid microparticles. 
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Figure 13: HPLC-chromatograms of an insulin standard solution (�, 50µm/ml) and insulin after the extraction 
from a glyceroltripalmitate matrix (- -). 
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Figure 14: HPLC-chromatograms of a somatostatin standard solution (�, 50µm/ml) and somatostatin after the 
extraction from a glyceroltripalmitate matrix (- -). 

 

Summary 

This study served to investigate how release profiles of the two model drugs insulin and 

somatostatin from triglyceride matrices can be determined. Due to the instability of insulin 

and somatostatin over 35 days within the release medium, no direct measurement of the 

released amount of the model drugs is possible. Thus, the necessity of their extraction from 

triglyceride matrices for the performance of controlled release studies was proven. A new 

method for the extraction of proteins and peptides from triglyceride matrices with good 

extraction yields was developed. This extraction method can be used for the determination the 

residue content with subsequent calculation of release profiles. Additionally the investigation 

of protein and peptide stability within the triglyceride matrices was facilitated, due to the 

avoidance of liquid phase separations during the extraction. This new extraction method could 

be of great use for the investigation of degradation processes of the drugs within the matrix, 

since the used peptide and protein were shown to be not affected during the extraction 

procedure. 
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Since the investigations carried out with proteins revealed stability problems and the need 

of drug extraction when release experiments are performed, fluorescent dyes, which were 

used successfully by Vogelhuber et al. [37], were chosen for future experiments. They can 

easily be incorporated into the triglyceride matrices. Concomitantly their quantification by 

fluorescence spectroscopy is very simple and sensitive and can additionally be performed 

directly from the release medium. Since the further release investigations served to investigate 

release mechanisms and influence factors, no proteins or peptides were needed as model 

drugs and thus we were able to facilitate investigations by the choice of the fluorescent dyes 

as new model drugs. 
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Introduction 

Information about expected release profiles will aid in the design of an implant for 

controlled release parenteral drug delivery. Thus, the manufacturing procedure, characteristics 

of the incorporated drug, and the release mechanisms from the matrix material were identified 

as central influencing factors in the liberation of drugs from triglyceride matrices. Therefore, 

investigations were carried out to identify crucial parameters during the manufacturing 

procedure, such as the compression force, the drug loading, and the drug distribution within 

the matrix or the implant surface. In the next step, their effects on the resulting release profiles 

were quantified. Concomitantly, the first results on the release mechanisms from 

glyceroltripalmitate were elaborated, whereby a special focus was placed on diffusion and 

osmosis. Additionally, the influence of the hydrophobicity of the model drug on its release 

from triglyceride cylinders was investigated by the use of fluorescein, which shows a pH-

dependent hydrophilicity and the lipophilic fluorescent dye nile red. Thereby it was 

investigated, whether release occurs slower with increasing lipophilic characteristics of the 

model drugs. Finally the uptake of water into the matrices was investigated qualitatively and 

quantitatively over a period of 14 days. 

 

Results and discussion 

Crucial factors for the design of triglyceride matrices for controlled release 

1. Compression force 

For the investigation of the preparation procedure with respect to the influence of several 

parameters on the resulting release profiles, matrices containing pyranine, a highly water 

soluble fluorescent dye as model drug, were manufactured under various conditions. The 

investigated parameters were drug loading, compression force, surface area and drug 

distribution within the matrices. Lipid cylinders, which contained 10% pyranine and which 

were compressed with 250N, released the dye within 17 weeks (Figure 15). While an 

increased compression force of 500N led to similar results, the lower force of 50N accelerated 

the release significantly. In that case, the complete liberation of the dye after one week 

(Figure 15) was observed. This indicated the existence of a threshold for the applied force in 

the compression step during the manufacturing procedure. Below this threshold, a change of 
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the compression force leads to significant changes in the release properties of the 

manufactured matrix, but above 250N the compression force seemed to effect the resulting 

release profile from the glyceroltripalmitate cylinder only negligibly. 
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Figure 15: Release profiles from 10% pyranine containing glyceroltripalmitate matrices prepared with 
compression forces of 50N (- -), 250N (�) and 500N (▪▪), respectively. The diameter and height of 
the matrices were 2mm and 4mm, respectively; dye incorporation occurred via co-lyophilization 
method, values represent mean ± standard deviation (n=5). 

 

2. Drug-loading 

Different dye loadings were shown to have a tremendous effect on the release properties of 

the triglyceride matrices (Figure 16). For this comparison, all of the cylinders were 

compressed with a force of 250N. As mentioned above, the matrices containing 10% pyranine 

released the dye over 17 weeks; however, an increase of drug loading up to 33% led to a 

complete release within the first day. When the dye content within the matrices was decreased 

to 1%, release was not completed and less than 13% of the incorporated pyranine was 

liberated over the investigated period of 19 weeks. Release of the 1% loaded cylinders was 

not finished after this time period, but continued slowly. These results confirmed the fact that 

drug loading is an important factor for lipid matrix manufacture, too. 
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Figure 16: Release profiles from glyceroltripalmitate matrices with a diameter of 2mm and 4mm in height 
containing 1% (▪▪), 10% (�) and 33% (- -) pyranine, prepared by co-lyophilization. A compression 
force of 250N was applied; data is expressed as mean ± SD (n=5). 

It was observed that long-term release can be achieved with drug loadings of up to 10%. 

Referring to percolation theory [163,164], it is likely that there is a threshold for the drug 

loading as well, above which very fast and pulsatile release from the triglyceride matrices 

occurs. The theory generally deals with clusters of randomly occupied sites in a lattice [165]. 

It describes crystal structures as well as, for example, the formation of a network when a 

substance is incorporated into a matrix. Transferred to controlled release devices, the 

percolation theory can be used to describe the influence of drug-loading on its release from a 

matrix system. Requirements for, and characteristics of the formation of a network within 

such matrices [166,167] are discussed as well. 
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3. Drug distribution within the matrices 

Another important parameter for the release of a drug from the glyceroltripalmitate 

matrices could be the distribution of the drug within the cylinder. When mixing a powder with 

a small amount of another powder, the homogeneity of the mixture decreases with the 

increasing particle size of one of the compounds [164]. Thus, this parameter was varied via 

the particle size of the triglyceride. A decrease in the lipid particle size was considered to lead 

to a better distribution of the drug within the matrix and vice versa. In these experiments the 

effect of the dye distribution within the matrices on the release properties was investigated. 

Again a dye load of 10% was used and 250N were applied for the compression step during the 

preparation procedure. Dispersity of the model drug increases with decreasing size of the 

triglyceride. Thus, the distribution of the pyranine was considered to be best for the matrices 

prepared using the co-lyophilization method (see section 2.6), which was usually performed 

for the incorporation of the model drug, compared to that within matrices prepared by mixing 

lipid and dye powders and compressing the mixtures to cylinders. This was confirmed by the 

in vitro release results. Consequently, release accelerated significantly when lipid particle 

sizes increased (Figure 17). Using triglyceride particle sizes from 106µm to 250µm, the whole 

dye content was released after just one week (Figure 17). Reduction in the size of 

glyceroltripalmitate particles for the preparation of the matrices below 106µm led to a much 

slower release. Drug liberation was finished after 4 weeks of incubation (Figure 17). 

Decreasing the particle sizes, which resulted in molecular dispersity of the dye within the 

matrices, the mentioned controlled release over 17 weeks was achieved. This again confirmed 

the tremendous influence of the drug distribution on the release properties of the 

glyceroltripalmitate matrices. These investigations revealed the incorporation by freeze-

drying both the lipid and the model drug in one solution as most successful for prolonged, 

controlled release. 
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Figure 17: Release profiles from 10% pyranine containing glyceroltripalmitate matrices prepared from 
triglyceride of differing particle sizes. A compression force of 250N was applied, the diameter and 
height of the matrices were 2mm and 4mm, respectively; values represent mean ± SD (n=5). 

 

4. Surface/volume ration of the matrices 

To investigate the influence of the surface/volume ratio of the matrix on the resulting 

release profiles, cylinders with varying diameter and height were produced. In the release 

profiles it was seen that the height of matrices had no significant effect on the release 

properties of the triglyceride cylinders (Figure 18). Release profiles showed similar shapes 

comparing cylinders with heights of 2mm, 4mm and 6mm and liberation of the dye from the 

matrices occurred over the same time period of approximately 17 weeks. 
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Figure 18: Release profiles from 10% pyranine containing glyceroltripalmitate matrices of 2mm diameter and 
varying cylinder height. Cylinders were prepared with co-lyophilization method, a compression 
force of 250N was applied; data is shown as mean ± standard deviation (n=5). 

Since these results revealed no significant effect of little variations in the surface areas of 

the matrices on the release profiles from the glyceroltripalmitate cylinders of 2mm diameter, 

smaller matrices with a diameter of 1mm and a height of 2mm were produced to achieve 

larger variations in the surface/volume ratio and to compare the release profiles. Table 8 

shows the variation of the cylinder surface in correlation with the diameter and the 

surface/volume ratio. 

Table 8: Geometry data of matrices with varying height and diameter. 

diameter height surface area surface/volume ratio 

2mm 2mm 18,85mm2 3 [1/mm] 

2mm 4mm 31,42mm2 2,5 [1/mm] 

2mm 6mm 43,98mm2 2,33 [1/mm] 

1mm 2mm 6,91mm2 7,33 [1/mm] 
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Investigation of matrices with higher value for the surface/volume ratio demonstrated, in 

contrast to first release results, an acceleration of the release with increasing surface/volume 

ratio (Figure 19). Release profiles resulting from matrices with 1mm diameter and 2mm 

height showed that the reduction in the diameter led to complete release after 8 weeks, in 

comparison to 17 weeks of release from cylinders with a diameter of 2mm and a height of 

4mm. 
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Figure 19: Release profiles from 10% pyranine containing glyceroltripalmitate matrices of 1mm diameter, 2mm 
height (- -) and 2mm diameter, 4mm height (�).  
Matrices were prepared with co-lyophilization method, a compression force of 250N was applied; 
values are expressed as mean ± SD (n=5). 

These results revealed the diameter of the cylinders, but not the height of matrices as an 

important factor for the design of controlled release devices made of glyceroltripalmitate. 

Thus height of the matrices can be a very useful tool for the adjustment of the drug dose, 

which is desired to be applied, because its variation would not lead to an alteration of the 

resulting release profile. 
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5. Drug characteristics 

These results revealed that the diameter of the cylinders, but not the height of matrices, is 

an important factor for the design of controlled release devices made of glyceroltripalmitate. 

Thus height of the matrices can be a very useful tool for the adjustment of the drug dose to be 

applied, because its variation would not lead to an alteration of the resulting release profile. 

In addition to the investigated parameters concerning the manufacturing procedure and the 

characteristics of the matrix itself, the incorporated drug also affects its release from lipid 

matrices. Thus in the following experiments the hydrophilicity of incorporated model drugs 

was investigated for its influence on the resulting release profiles. 

Fluorescein-di-sodium salt, a highly water-soluble fluorescent dye, which has different 

hydrophilicity at different pH-values, was chosen as model drug. Due to its two acidic groups 

(Figure 20) with pka-values of 4.65 and 6.98, at pH 2.8 fluorescein is neutral, whereas at pH 

5.5 one and at pH 9.0 both acidic groups are deprotonated and thus the mono- and di-anion 

forms occur, respectively. Concomitantly, the release of nile red, a highly lipophilic 

fluorescent dye, was investigated. A solubility of nile red in phosphate buffer (pH 7.4) of 

0.7ng/ml was determined as described in section 2.7. 

HHH H

pH 4.65 pH 6.98

 

Figure 20: Structures and charges of fluorescein and its ionic forms at different pH-values. 

Figure 21 shows distinct correlations between the degree of ionization of fluorescein and 

release profiles. The liberation of the di-anion occurred most quickly, followed by the release 

of the mono-anion, whereby the difference between release results for the two ionic forms of 

fluorescein was only slight. However, liberation of the protonated and thus neutral fluorescein 

molecule from glyceroltripalmitate matrices at a pH value of 2.8 occurred much slower. In 

Figure 21 it can also be seen that release of the two ionic forms of fluorescein is completed 

after 23 days, whereas cylinders incubated at pH 2.8 released only approximately 21% of the 

dye within 80 days. Liberation from these implants was still ongoing at a low level. 

Concerning the release of nile red, the lipophilic model dye, no release was observed during 

the investigated period of 4 weeks (Figure 21). 
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Figure 21: Release profiles from glyceroltripalmitate matrices with a diameter of 2mm containing 10% 
fluorescein-di-sodium salt and 10% nile red. Fluorescein matrices were incubated in phosphate 
buffers of different pH values; data represent mean ± SD (n=5). 

 

Release Mechanisms 

1. Osmotic effects 

While several crucial parameters for the design of lipid implants as controlled release 

devices have been identified and characterized, the release mechanisms from triglyceride 

matrices are not yet clear. Thus further investigations were carried out to gather information 

on processes that occur during the release of drugs from triglyceride matrices [168]. 

Therefore, in one experiment, glyceroltripalmitate cylinders with a diameter of 2mm 

containing 10% fluorescein-di-sodium salt were prepared and incubated in phosphate buffers 

of varying osmotic pressures. Release data obtained from these investigations should 

elucidate whether osmosis is involved in release processes of the model drug from the 

matrices. Release results are shown in Figure 22. Distinct effects on release profiles were 

observed when the osmotic pressure of the release medium was increased from 290mosmol to 

either 7850mosmol or 9500mosmol. 
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Figure 22: Release profiles from 2mm diameter glyceroltripalmitate matrices containing 10% fluorescein-di-
sodium salt, incubated in phosphate buffers of different osmotic pressures (adjusted by NaCl-
addition) at ph 9.0; data is shown as mean ± standard deviation (n=5). 

Comparing osmolarities of 7850mosmol and 9500mosmol, release profiles differed only 

during the first period, whereas after 5 days no major differences were observed. An increase 

in osmotic pressure of the release buffer led to slower release during the first 2 days, resulting 

in release rates of 53%, 36% and 27% for media with osmolarities of 290mosmol, 

7850mosmol and 9500mosmol, respectively. Additionally, the higher osmotic pressure 

resulted in a lower amount of totally released dye (Figure 22). This indicated the occurrence 

of “osmotic pumps” during release, which lost effectiveness with decreasing amounts of dye 

within the matrix.  

Figure 23 shows a schematic of the function of “osmotic pumps”, which can be involved in 

release mechanisms from triglyceride matrices. Osmotic effects can occur when the solvent 

reaches the model drug within the matrix though pores or by diffusion through the matrix 

material and dissolves it. At the interface of the drug particles, their dissolution results in a 

saturated solution and thus in a very high osmotic pressure. Along this osmotic gradient, the 

model drug can be pumped out of the matrix and thus osmosis can be one important factor for 

the release of any drug from triglyceride matrices. Even though sink conditions were 

generated during the release study, a decreased solubility of the model drug within the release 
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pathways of the matrix at higher osmotic pressures may also play a role in the resulting 

release profile. 
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Figure 23: Schematic of an osmotic pump occurring during release from triglyceride matrices. Particles within 
the cylinder represent the model drug, which is dissolved and released along an osmotic gradient 
into the release medium. Uptake of the medium into the matrix was not classified, but may occur by 
diffusion through the matrix material or through pores. 

 

2. Water uptake and pore formation 

In the second experiment for the investigation of release mechanisms from lipid matrices, 

cylinders without any drug loading were manufactured from glyceroltripalmitate of different 

particle sizes, according to the experiments described above. Matrices prepared of lyophilized 

triglyceride, lipid powder with particles below 106µm and 106µm-250µm of size, were 

incubated for 14 days in fluorescein-di-sodium salt containing phosphate buffer. Fluorescence 

within the matrices was examined at specific time points to obtain information on the water 

uptake into the matrices and to investigate the occurrence and extent of pore formation 

processes. The aspect investigated in these experiments into the release mechanisms from 

triglyceride matrices, was the water uptake into cylinders prepared from glyceroltripalmitate, 

which gives information on the occurrence of pore formation processes. In the first step, water 

uptake was quantified, not to obtain exact results on the amount of water within the matrices, 

but to investigate whether differences in pore formation can be observed when using 

triglyceride powders of varying particle sizes. 

In Figure 24 the relative amount of water taken up by the lipid cylinders, and thus the 

variance in the extension of pore network, is shown. Even though water uptake was low and 

thus standard deviations foiled significance, a tendency could be observed. These results 

elucidated a correlation between the porosity of the glyceroltripalmitate matrices and particle 

size of the triglyceride powder. 



Chapter 4  Factors Influencing Drug Release From Triglyceride Matrices 

 -67-  

0,0000%

0,0005%

0,0010%

0,0015%

0,0020%

0,0025%

0,0030%

0,0035%

0 2 4 6 8 10 12 14 16

time [d]

re
la

ti
ve

 w
at

er
 u

p
ta

ke

lyophilized

< 106µm

106 - 250µm

 

Figure 24: Comparison of water uptake into lipid matrices prepared of glyceroltripalmitate of varying particle 
size; values are expressed as mean ± SD (n=5). 

In the second step, blank triglyceride matrices were incubated in phosphate buffer 

containing fluorescein-di-sodium salt at pH 9.0 for 14 days. Afterwards the cylinders were 

freeze dried, cross-sectioned (see section 2.10) and investigated by confocal laser scanning 

microscopy. In this way, the existence of pores was visualized through the imbibed 

fluorescence of the dye. In Figure 25 confocal laser scanning microscopy pictures of matrices 

compressed from lyophilized glyceroltripalmitate and triglyceride powder with particle sizes 

below 106µm, respectively, are shown. Matrices prepared from the ground and sieved powder 

displayed fluorescence in outer regions after 4 hours, which spread regularly over the whole 

matrix during the first day (Figure 25a,b). Cylinders compressed from larger triglyceride 

powder particles showed similar results, whereas in case of matrices compressed from the 

lyophilized triglyceride, fluorescence was only detected at the edges of the cylinders and no 

diffusion into central regions was observed during the investigated period of 14 days (Figure 

25c). 
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Figure 25: Confocal laser scanning microscopy image of cross sections of glyceroltripalmitate matrices after 
incubation in buffer containing fluorescein-di-sodium salt, a) lipid powder <160µm, after 4 hours; 
b) lipid powder <160µm, after 1day; c) lyophilized glyceroltripalmitate, after 14 days. 

These results indicated that a more distinct pore network formed when triglyceride 

matrices are compressed from powders with bigger particle sizes, which agrees with the 

above-described results of the water uptake and with release data obtained from pyranine 

loaded lipid matrices. 

 

Summary  

In these investigations, the crucial parameters for the lipid matrix manufacture were 

identified and their influence on the resulting release profiles was quantified with the intent to 

evaluate the preparation procedure for cylindrical glyceroltripalmitate matrices for controlled 

release drug delivery. Drug loading, as well as compression force, drug distribution and the 

surface/volume ratio of the release system, were identified as crucial parameters for the 

design of triglyceride matrices as controlled release devices and for their preparation 

procedure. Concerning drug loading, the existence of a threshold higher than 10% was shown, 

below which controlled release over several months was achieved. For the compression force, 

a threshold was observed, too. Above 250N the influence of the compression force on the 

resulting release profile was negligible. Concomitantly, these investigations revealed that 

better drug distribution leads to longer release periods and thus should be maximized for 

prolonged release. The surface/volume ratio was revealed as an important and useful tool to 

vary the release profile of the developed matrix. It can easily be adjusted over the diameter of 

the cylindrical matrices and consequently the release period of an incorporated drug can be 

prolonged by increasing the matrix diameter. However the height of the cylinder was 

demonstrated to be a less important factor. This facilitates the variation of the applied dose, 
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which can thus be adjusted by changing the weight of the matrix, whereby the expected and 

desired release profile can be maintained. 

The investigations also pointed out the severe influence of the characteristics of the 

incorporated drug on the release profile. An indirect dependence of the release period on the 

drug hydrophilicity was observed, leading to slower release of more lipophilic substances 

from a triglyceride matrix. In addition to the time within which controlled release occurred, 

the degree of totally released model dye was also shown to be directly dependent on the drug 

hydrophilicity. Thus the highly lipophilic model drug nile red was retained within the 

triglyceride cylinder. 

Considering the release mechanisms from triglyceride matrices, the occurrence of osmotic 

processes during drug release and their involvement in the transport of the incorporated drug 

within the triglyceride cylinder was clearly elucidated. Release of the model drug from the 

matrices was slower at increased osmotic pressures of the release medium. Thus, when 

incorporating any drug into a triglyceride matrix, the osmotic pressure resulting from its 

saturated solution has to be taken into account, due to its influence on the resulting release 

profile. 

Concomitantly, it was shown that pore formation within triglyceride matrices directly 

depended on the lipid particle size used for the preparation of the cylinders. Pore formation 

was more distinct in matrices compressed from ground and sieved lipid powder compared to 

matrices prepared from lyophilized glyceroltripalmitate. The extension of pore formation 

within the triglyceride matrices is of great importance for controlled release, because pores 

allow for faster diffusion within the matrix and thus accelerate drug release. 
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Inroduction 

In the treatment of many diseases, such as brain tumors, acromegaly, or diabetes mellitus, 

the controlled release of a medication over weeks or months is desirable to facilitate therapy 

and increase patient compliance [169,170]. Consequently, a plethora of controlled release 

forms have been investigated, such as nano- and microparticles and implants. Currently, 

commercially available implantable delivery systems are frequently made of biodegradable 

polymers. They possess many positive characteristics, such as good biocompatibility [136-

138], a chemical structure that results in diverse release properties, biodegradability, and well-

defined degradation pathways. However, some of these materials expose drugs to a changing 

microenvironment inside the eroding implants with acidic pH [139], increased osmotic 

pressure [139], or degradation products that can affect the stability of incorporated 

compounds, especially proteins and peptides [141]. Therefore, alternative materials, such as 

hydrogel materials, have been investigated [171,172] and recently much attention has been 

given to lipophilic substances such as cholesterol, phospholipids, mono-, di- and triglycerides 

or mixtures of these materials [173,174]. Cholesterol and triglycerides have been successfully 

used for controlled drug release over several weeks [8,36]. However, their biocompatibility 

has not yet been investigated. Therefore, we decided to examine the tissue reactions of mice 

to subcutaneously implanted lipid matrices. Although microparticles have a small size, round 

shape and smooth surface, and thus reduce mechanical irritation, we decided to use cylindrical 

macroscopic implants for in vivo experiments to facilitate recovery of the implant. We chose 

glyceroltripalmitate for our investigation into triglyceride biocompatibility and compared it to 

PLGA and gelatin, which are considered to be well tolerated. Furthermore, the in vivo erosion 

behavior of the triglyceride and the effects of incorporated erosion-modifying components 

were investigated. Due to their promising release characteristics [36,175], cholesterol and 

distearoyl-phosphatidyl-choline (DSPC), a phospholipid with two stearic acid side chains, 

were chosen to serve as erosion modifiers in this study. 
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In vivo biocompatibility study 

We first investigated the in vivo behavior and tolerance of pure triglyceride implants. Time 

points for the explantation were days 2, 4 and 8 for the investigation of acute reactions and 

day 30 and 60 to detect chronic tissue reactions. Gelatin and PLGA were chosen as controls 

with known good biocompatibility. In a second test group, the triglyceride implants were 

supplemented with 1% gelatin, which can serve as a hydrogel-forming carrier for highly 

potent substances like growth factors [176]. The time schedule for this biocompatibility study 

is given in Table 4 (see section 2.14). Although implants made of pure gelatin were already 

eroded at day 2, the defined outlines of the implants were visible until day 4 and good 

biocompatibility was observed in all histological sections. One cell layer of connective tissue 

formed around the implant, but no increase in inflammatory cells was observed (data not 

shown). Recovery of the PLGA implants was possible up to day 30, whereas after 60 days the 

material was completely eroded and no implant residues could be found in the subcutaneous 

tissue. Histological investigations of the polymer implant also revealed good tolerance, 

evidenced by the minimal encapsulation by connective tissue (1 to 5 cell layers) and no 

adverse reaction, such as an increase in inflammatory cells (data not shown). Because the Tg 

of PLGA17 (Tg = 46 °C) is near the body temperature of the mice (36,5-38°C, [177]), the 

implants underwent deformation and lost their cylindrical shape (Figure 26), which led to less 

mechanical irritation and thus to a reduction of foreign body reaction [178]. 

2 mm2 mm

 

Figure 26: Light microscopy image of a PLGA implant excised at d2. 

The implants of the two test groups remained stable over 60 days and maintained their 

cylindrical shape. Implants prepared with and without gelatin showed similar results 

concerning the tissue reactions; therefore, only histological pictures of pure 

glyceroltripalmitate implants are shown (Figure 27). Encapsulation in connective tissue by 

abundant fibroblasts was observed in both groups and became more apparent with time. A 

histological section of the typical tissue response to a glyceroltripalmitate implant 4 and 30 

days after implantation is shown in Figure 27. At days 30 and 60 the thickness of the capsule 

amounted to 5 to 10 cell layers compared to 1 to 5 layers at the earlier time points. The 
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intensity of the encapsulation into connective tissue was comparable to that of the PLGA 

implants. In a few histological sections at early excision points of the two test groups, isolated 

foreign body giant cells or macrophages were seen, but for the most part no increase of 

inflammatory cells was observed. This rarely occurring mild foreign body reaction, which 

was restricted to the interface and regions very close to the implant surface, may not 

necessarily be related to the material, but rather be induced by mechanical irritation of the 

subcutaneous tissue due to the rough edges of the cylindrical implants [178]. Apart from 

collagenous encapsulation 30 and 60 days after implantation, no further reaction of the 

organism to the implants (e. g. increase in mononuclear cells) was observed in either the 

subcutaneous tissue adjacent to the implants or in other sites in the animals. 

20 µm20 µm

Implant
  

20 µm20 µm

Implant

 

Figure 27: Light microscopy images of a typical tissue response to glyceroltripalmitate implant at day 4 (left) 
and at day 30 (right), Masson & Goldner stained, both 400x, region of the implant marked at the left 
side. 

When the stability of the implants was examined, it was seen that the triglyceride matrices 

showed no significant swelling and only a slight increase in dry weight 2, 4, and 8 days after 

implantation (Figure 28). This may be due to the adhesion of connective tissue that could not 

be completely removed before drying and weighing of the implants. At days 30 and 60, when 

the implants were completely encapsulated by connective tissue, a more distinct rise in the dry 

weight of the matrices was observed (Figure 28), which demonstrates the stability of the 

implants over the entire time period and their suitability for a long-term release. 
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Figure 28: In vivo erosion and swelling of glyceroltripalmitate matrices, normalized to the pre-implantation 
weight, data is shown as mean ± standard deviation, n=4. 

SEM pictures showed that the surface of the pure triglyceride matrices became absolutely 

smooth (Figures 29,30), adhered particles were no longer seen and grooves, caused by the 

steel compression tool, disappeared over the 30-day implantation period. Few remnants of 

connective tissue that could not be removed were seen, due to the encapsulation of the 

implants in the subcutaneous tissue in mice. Cross-sections of implants made of pure 

glyceroltripalmitate (Figures 29,30) showed no alteration in the microstructure. Neither signs 

of degradation, such as pore formation, nor changes in the crystal structure were observed. 

Implants containing 1% gelatin, however, showed slight signs of erosion, due to the 

degradation of the water-soluble compound (Figures 31,32). This was apparent in the 

formation of pores and cavities, which also led to disruptions in the lipid implants. This again 

demonstrated the stability of the implants, but also showed that the erosion of the triglyceride 

implants can be influenced by incorporation of a water-soluble compound into the matrix. 
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Figure 29: Top view (left, 45x) and cross-section (right, 100x) of glyceroltripalmitate matrix before 
implantation. 
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Figure 30: Top view (left, 45x) and cross-section (right, 100x) of glyceroltripalmitate matrix excised at day 30. 
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Figure 31: Top view (left, 45x) and cross-section (right, 100x) of glyceroltripalmitate implant containing 1% 
gelatin before implantation. 
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Figure 32: Top view (left, 45x) and cross-section (right, 100x) of glyceroltripalmitate implant containing 1% 
gelatin excised at d30. 

 

In vivo erosion study 

Even though the observed in vivo stability of glyceroltripalmitate is a positive result, 

because the material is suitable for long-term release applications, the erosion of the material 

would eventually have to be accelerated to generate an applicable biodegradable device and to 

obtain a greater variability. With regard to the in vitro release characteristics [36,175], 

cholesterol and DSPC were chosen to investigate their influence on the erosion behavior of 

glyceroltripalmitate. To examine the in vivo effects of the phospholipid, two different ratios 

of glyceroltripalmitate and DSPC were investigated. Implants were manufactured that 

contained 10% and 50% (w/w) of the phospholipid. As a second non-polymeric material with 

slightly amphiphilic characteristics and known good properties for controlled release [36], 

cholesterol was mixed with glyceroltripalmitate in ratios of 1:1 and 9:1 and the resulting 

mixtures were investigated for their in vivo erosion behavior. The duration of the study was 

up to 35 days and again time points in the early stage were chosen in addition to that at the 

end of the study to obtain data for acute tissue response. A detailed time schedule of the study 

is depicted in Table 5 (see section 2.14). 

In this experiment, the addition of cholesterol did not lead to any change in the erosion of 

glyceroltripalmitate. All implants of the cholesterol groups remained stable, maintained their 

cylindrical shape, and displayed no evidence of significant erosion. SEM photographs showed 

similar behavior in these implants as was described above for the glyceroltripalmitate 

implants. There was no observable change in the microstructure or pore formation (Figure 

33). 
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Figure 33: Cross-section of 100% cholesterol matrix before implantation (left) and excised at day 35 (right), 
both 150x. 

Implants containing DSPC showed distinct swelling and erosion in both ratios, 

demonstrated through both an increase in wet weight and a loss in weight after freeze drying 

of the implants (Figures 34,35). The strong adherence of some connective tissue that could 

not be removed caused a very high standard deviation in the measured implant masses of the 

50% DSPC implants at day 28. 
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Figure 34: In vivo erosion (�) and swelling (- -) of triglyceride matrices containing 10% DSPC, normalized to 
1.0 by pre-implantation mass; values are expressed as mean ± SD (n=4). 
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Figure 35: In vivo erosion (�) and swelling (- -) of triglyceride matrices containing 50% DSPC, normalized to 
1.0 by pre-implantation mass; values are expressed as mean ± SD (n=4). 

The constructs with the higher phospholipid content had already lost their cylindrical shape 

6 days post-implantation and distinct signs of erosion like pore formation were observed by 

SEM throughout the course of the study. Figures 36-39 show the changes in these matrices 

over the course of the study. show the changes in these matrices over the course of the study. 

Two days after implantation, a few pores and slight changes in microstructure of the implants 

were already observed; the implant collapsed at day 6 and distinct cavities were still visible at 

day 28. 
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Figure 36: SEM images of the top view (left, 40x) and cross-section (right, 150x) of 1:1 
glyceroltripalmitate:DSPC matrix before implantation. 
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Figure 37: SEM images of the top view (left, 40x) and cross-section (right, 150x) of 1:1 
glyceroltripalmitate:DSPC implant excised at day 2. 
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Figure 38: SEM images of the top view (left, 25x) and cross-section (right, 150x) of 1:1 glyceroltripalmitate: 
DSPC implant excised at day 6. 
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Figure 39: SEM images of the top view (left, 25x) and cross-section (right, 150x) of 1:1 
glyceroltripalmitate:DSPC implant excised at day 28. 

These observations clearly demonstrated the influence of the DSPC on the accelerated 

erosion of the triglyceride implants. However, a foreign body reaction at the implantation site 

was observed when DSPC was incorporated into the matrices. This mild tissue response was 
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seen in the form of a slight increase in the presence inflammatory cells, such as foreign body 

giant cells, and was not evident in the implants containing only 10% DSPC. At the end of the 

study, only connective tissue producing fibroblasts were observed, which indicates that the 

inflammatory reaction was an acute tissue response (Figure 40). Comparable tissue reactions 

showing a slight foreign body reaction, noticeable through the appearance of a few 

inflammatory cells, primarily foreign body giant cells, have already been reported for 

biodegradable polymers [179-181], whose biocompatibility is accepted to be at least 

satisfactory. Implants containing 50% phospholipid resulted in a more persistent 

inflammatory reaction, in which both foreign body giant cells and granylocytes were visible 

and a chronic tissue response with an increase of inflammatory cells and mononuclear 

infiltrates (Figure 41) was observed. Thus, this inflammatory reaction appears to be dependent 

on the amount of the phospholipid present and the tissue response is not related to the 

triglyceride. It might be caused by the surfactant characteristics of the DSPC or due to the 

increased roughness of the implant surface followed by increased mechanical irritations, 

which might also lead to an increase in foreign body reactions [178]. 

50 µm50 µm

Implant

  

20 µm20 µm
Implant

 

Figure 40: Light microscopy images of histological sections of implants containing 10% phospholipid at day 7 
(left, 200x) and day 35 (right, 400x), Masson & Goldner stained, region of the implant marked. 
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Figure 41: Light microscopy images of histological sections of 50% phospholipid containing implant at day 2 
(left, 200x) and day 28 (right, 400x), both Masson & Goldner stained, arrow marks a local 
connective tissue proliferation, double arrows mark granulocytes. 
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Summary 

Glyceroltripalmitate was shown to be biocompatible in vivo, since neither a significant 

inflammatory response nor a cytotoxic reaction was observed in mice over a period of 2 

months. Furthermore, cholesterol emerged as a well-tolerated material when implanted 

subcutaneously, although the attempt to influence the (very slow) erosion rate of the 

triglyceride by mixing it with cholesterol failed. Distinct signs of implant degradation were 

achieved by using 1:1 mixtures of DSPC with glyceroltripalmitate, but in these concentrations 

a foreign body reaction was observed. As further aspects influencing the degradation time of 

the triglyceride, the size of the implanted material, crystallinity, and surface structure are 

discussed in the following. Additionally, the influence of phospholipids with shorter fatty acid 

chains and other molecules, such as hydrogel-forming substances, which could function as 

erosion modifiers on the in vitro release, was investigated. 

 



Chapter 6  Excipients for the Modification of Triglyceride Erosion 

 -83-  

Chapter 6 

Excipients for the 
Modification of Triglyceride Erosion 

- 
Influence on the 

in vitro Release from Triglyceride Matrices 



Chapter 6  Excipients for the Modification of Triglyceride Erosion 

 -84-  

Introduction 

Since in vivo degradation of macroscopic lipid matrices occurred only slowly, 

investigations were carried out with the goal of accelerating the erosion of the triglyceride. As 

the experiments described in chapter 5 showed, one possibility to overcome the problem of 

slow matrix degradation might be the incorporation of excipients, such as the phospholipid 

DSPC, into the triglyceride matrices. Thereby different strategies can be followed depending 

on the chosen release modifier. 

(i) The use of amphiphilic molecules might accelerate the degradation of the lipid matrices 

by increasing the weakness of the matrix material (e.g. through a decrease in melting point) 

and facilitating the emulsification of the triglyceride. (ii) Hydrogel forming agents, which 

show swelling in contact with water, can serve as disintegrating excipients, which cause 

breaking of the matrices. Since in the literature indications can be found that lipid 

microparticles show faster erosion than matrices in the described investigations [118], (iii) 

incorporation of hydrophilic porogens could be another possibility to accelerate the erosion of 

the cylindrical triglyceride matrices. Such excipients decrease the stability of the matrix, when 

leached out, and thus can lead to the collapse of the cylinder into smaller particles upon 

exposure to mechanical stress, as occurs in vivo. Afterwards these fragments may undergo 

faster in vivo degradation than solid cylinders. 

Hydrogel forming agents and hydrophilic porogens both cause a fragmentation of the 

matrices into smaller particles with eventually accelerated erosion. However, the differences 

in these strategies follow from the mechanisms that cause the collapse of the matrix. Hydrogel 

forming agents show swelling and thus lead to the disintegration of the matrix, whereas the 

leaching of a hydrophilic porogen from a triglyceride matrix only decreases its mechanical 

stability. Collapse of the matrix will then be caused by mechanical stress, such as that 

occurring in vivo after subcutaneous implantation. On the other hand, these two strategies will 

result additionally in different sizes of the remaining matrix fragments. Resulting triglyceride 

particles will be smaller when hydrophilic porogens are used due to the higher amount of the 

excipient necessary to achieve a disintegration of the matrix. 

In order to investigate which of these strategies allows for a prolonged release from 

cylindrical lipid matrices and to get information on the ratios in which the respective excipient 

can be incorporated while still achieving release over several weeks, in vitro release 
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experiments were carried out. Thereby the number of animals needed for the following in 

vivo experiment on the erosion of triglyceride particles could be minimized. 

 

Results and discussion 

In vitro release of phospholipid-containing matrices 

For the in vitro tests the phospholipids DMPC and DPPC, the hydrogel forming agents 

agarose and sucrose were chosen as excipients. Since DSPC showed effects in in vivo 

investigations described above, phospholipids were used to investigate the strategy followed 

up with the amphiphilic molecules. Thus the three phosphatidyl-cholines DMPC, DPPC and 

DSPC were incorporated into glyceroltripalmitate cylindrical matrices by the emulsion 

method described in section 2.17 and [37]. As Figure 42 shows, the incorporation of any ratio 

of DMPC and DPPC (Figure 43) via the emulsion method led to complete release of the 

model drug within a few hours, as did the use of 25% and 50% DSPC (Figure 44). Only 

matrices with ratios of 5% and 10% of the phospholipid with the longest fatty acid chain were 

capable of sustained release over 10 days (Figure 44). 
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Figure 42: Influence of DMPC on the release profiles of pyranine from glyceroltripalmitate matrices prepared 
by using the emulsion method, cylinders contained 5% and 10% of the phospholipid; values 
represent mean ± SD (n=5). 
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Figure 43: Influence of DPPC on the release profiles of pyranine from glyceroltripalmitate matrices prepared 
by using the emulsion method; cylinders contained ratios of 5% to 50% of the phospholipid; values 
represent mean ± SD (n=5). 
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Figure 44: Influence of DSPC on the release profiles of pyranine from glyceroltripalmitate matrices prepared 
by using the emulsion method; cylinders contained ratios of 5% to 50% of the phospholipid; values 
represent mean ± SD (n=5). 
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These results indicate that the goal of prolonged release over several weeks from the 

triglyceride matrices cannot be achieved by using the emulsion method, because the influence 

of the erosion modifier on release properties of the matrices was too severe. Thus, a method 

was developed, which consists of two-steps. First, glyceroltripalmitate was loaded, as 

described in section 2.6, with the model drug. In a second step, the respective excipient was 

mixed with the drug loaded triglyceride powder. Thus, the influence of the excipients on the 

release was minimized, whereas their effect on the erosion of the lipid matrices should be 

maintained. For the drug loading it must be considered that the total drug content is decreased 

by incorporation of the modifying component, but can easily be adjusted by increasing the 

mass of the matrix.  

In the following, firstly DPPC and DMPC, the two phospholipids with shorter fatty acid 

chains of 16 and 14 C-atoms, respectively, were incorporated into glyceroltripalmitate 

matrices to investigate the strategy, followed up with the newly developed two-step method. 

In the case of DPPC, 5%, 10%, 25% and 50% of the phospholipid were investigated, whereas 

the ratio of 50% was not tested with DMPC. 

In Figures 45 and 46, release profiles of pyranine from lipid matrices containing 

phospholipid are shown. Regarding the results with DMPC, a prolongation of drug liberation 

of up to at least three days was observed for all ratios. This means an approximately 35 fold 

longer release period when using the two-step method, compared to matrices prepared with 

the emulsion method. The 5% DMPC containing matrices showed slightly slower release 

properties than the two other groups (Figure 45). For the phospholipid with the longer fatty 

acid chain yet more prolonged release periods were achieved and even with the very high 

ratio of 50% DPPC controlled release was realized (Figure 46). Drug release was completed 

in 10 days and 14 days, respectively, for the 50% and 25% DSPC containing matrices, 

whereas the two lower amounts of the erosion modifier, incorporated via the two-step method, 

led controlled release over a period of 7 weeks. 
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Figure 45: Release profiles of pyranine from glyceroltripalmitate matrices containing DMPC in ratios from 5% 
to 25%; cylinders were prepared by using the two-step method, data shown as a mean ± standard 
deviation (n=5). 
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Figure 46: Release profiles of pyranine from glyceroltripalmitate matrices containing DPPC in ratios from 5% 
to 50%; cylinders were prepared by using the two-step method, data shown as a mean ± standard 
deviation (n=5). 

Since the two-step method emerged as very useful to maintain sustained release properties 

of glyceroltripalmitate, it was used for all following in vitro investigations on possible erosion 

modifying components. 
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In vitro release of agarose-containing matrices 

In the next study, agarose was chosen as a hydrogel-forming and disintegrating agent. It 

was used in concentrations of 5%, 10% and 15%. Results for these experiments are shown in 

Figure 47. Due to high standard deviations of approximately 6.5%, which appeared for the 5% 

agarose containing group in this experiment, no significance in the differentiation of release 

profiles was observed. Nevertheless a tendency towards slower release with decreasing ratios 

of agarose was obvious. When 15% of the excipient was incorporated into the matrices, 

pyranine was liberated over 4 weeks, whereas the release period was prolonged to 6 and 7 

weeks, in case of 5% and 10% agarose containing matrices, respectively. 
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Figure 47: Release profile of pyranine from glyceroltripalmitate matrices containing agarose as an erosion 
modifier in different ratios; values are expressed as mean ± standard deviation (n=5).  

 

In vitro release of sucrose-containing matrices 

In addition to the phospholipids and agarose, sucrose was investigated for its in vitro 

suitability to serve as an erosion modifier for glyceroltripalmitate matrices, which would 

provide for the maintenance of the sustained release properties of the triglyceride. The 

followed strategy thereby was the formation of a network of sucrose crystals within the 

matrix, which should be leached out immediately at the beginning of the incubation or 

application, respectively. The resulting pores should decrease the stability of the matrix, lead 
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to the collapse of the cylinder into smaller fragments and thus accelerate the erosion. A 

schematic of this strategyis depicted in Figure 48. 
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sucrose particles
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Figure 48: Schematic of the strategy followed with the use of sucrose (gray regions) as an erosion modifier for 
drug loaded (orange regions) triglyceride matrices. 

For these investigations, different particle sizes of the porogen were tested. To this end, 

sucrose was sieved into fractions with different crystal sizes and incorporated into the lipid 

implants in ratios of 5%, 10%, 25% and 50%, respectively. In Table 9, the particle sizes of the 

sucrose and the abbreviations, which will be used in the following to succinctly describe the 

obtained fractions, are depicted. The particle sizes of the sucrose crystals incorporated into 

triglyceride matrices were in good agreement with the expected values, as SEM pictures 

showed (Figure 49). 

Table 9: Particle sizes of sucrose incorporated into glyceroltripalmitate matrices as pore-forming agents. 

fraction of sucrose particle size 

S25-45 25µm – 45µm 

S150-180 150µm - 180µm 

S250-355 250µm - 355µm 

S560-710 560µm - 710µm 
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Figure 1: SEM images of glyceroltripalmitate matrices in which 25% (w/w) sucrose from the S25-45-fraction 

was incorporated; the left picture shows the cylinder before and right picture after incubation of 12 

days in phosphate buffer, both 1000x. The sucrose crystals and resulting pores confirm particle sizes 

of the sieved fractions. 

In Figure 50, the effects of sucrose of varying particle size incorporated into 

glyceroltripalmitate matrices in ratios from 5% to 50% are shown. Regarding the ratio of 5% 

sucrose, no major differences in release profiles of pyranine from the lipid matrices of S25-45 

and S150-180 were observed (Figure 50). Regarding the larger sucrose fractions, pyranine 

was released almost similarly from matrices of the groups S250-355 and S560-710 over 

approximately 8 weeks, but after this time, liberation of the dye from cylinders containing 

sucrose of bigger crystal size occurred slower. 

When 10% sucrose was incorporated into the triglyceride matrices (Figure 51), release 

from the matrices modified with the biggest particle sizes showed nearly no alteration in 

comparison to that from 5% containing cylinders of the same group. In contrast, the three 

other sucrose fractions displayed an increase in the initial burst release of the model drug 

within the first day. Furthermore, liberation of the dye from matrices prepared with the S250-

355-fraction of sucrose aligned with that prepared with the two smaller particle sizes, which 

means a faster release compared to the 5% ratio or to the S560-710-group, respectively. 

Concerning the matrices containing 10% sucrose from the fractions S25-45 and S150-180, 

again no major differences in the shape of the resulting release profiles were observed. 
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Figure 50: Comparison of release profiles of pyranine from glyceroltripalmitate matrices containing 5% (w/w) 
sucrose crystals of different particle size as erosion modifier; data show mean ± SD (n=5). 
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Figure 51: Comparison of release profiles of pyranine from glyceroltripalmitate matrices containing 10% (w/w) 
sucrose crystals of different particle size as erosion modifier; data show mean ± SD (n=5). 
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Figure 52: Comparison of release profiles of pyranine from glyceroltripalmitate matrices containing 25% (w/w) 
sucrose crystals of different particle size as erosion modifier; data show mean ± SD (n=5). 
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Figure 53: Comparison of release profiles of pyranine from glyceroltripalmitate matrices containing 50% (w/w) 
sucrose crystals of different particle size as erosion modifier; data show mean ± SD (n=5),  
(please note the time scale of only 60 days). 
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The differences between the crystal size fractions were most obvious when the matrices 

were formulated with 25% sucrose (Figure 52). As expected, cylinders prepared with the 

smallest particle size of the erosion modifier showed fastest release of the dye (within 9 days), 

followed by matrices containing sucrose of the S150-180-fraction, which liberated the model 

drug over 4 weeks. Incorporation of 25% sucrose with particle sizes ranging from 250µm to 

355µm into lipid matrices led to a similar release profile compared to that obtained from the 

cylinders containing 10% of the erosion modifier of this fraction. Concomitantly, it was 

observed, that the ratio of 25% of the largest sucrose crystals led to a faster release than the 

two lower ratios. 

Regarding the release profiles resulting from an incorporation of 50% of sucrose into 

glyceroltripalmitate matrices (Figure 53), much faster liberation of the dye, and, with 

exception of the two smaller particle sizes, much larger standard deviations were observed. 

Matrices of the S25-45-group released the entire model drug within 2 days, whereas the 

release period from cylinders containing the S150-180-fraction of sucrose was three weeks. 

For the matrices prepared with the particle size fraction from 250µm to 355µm, the time of 

release of approximately 2 to 4 weeks could only be estimated with regard to continuously 

increasing mean value and standard deviations until day 56. No conclusions on the release 

period were drawn from results obtained from the S560-710-group, due to the very high 

standard deviations and incomplete release of the dye. Repetition of in vitro experiments on 

the latter two groups showed no alteration in the obtained release profiles. These problems, 

concerning the very high standard deviations, seemed to be due to difficulties during the 

incorporation of the erosion-modifying component, when both a high ratio and a big particle 

size, compared to the diameter of 2mm of the manufactured matrix, should be realized. 

The other results concerning the effects of incorporation of sucrose with varying particle 

size in different ratios into glyceroltripalmitate matrices are in good agreement with 

percolation theory. Since the goal of the incorporation of sucrose crystals into triglyceride 

matrices is the formation of a network, percolation theory can be applied to understand the 

results of the described investigations. Due to the preparation method of the matrices, in 

which the excipient was added to the dye-loaded lipid in a second step (see section 2.17), it 

must be considered, that an increase in the sucrose content did not lead to any change in the 

pyranine loading of the triglyceride. This means that alterations in release profiles from 

triglyceride matrices were caused by changes in the surface area, which was accessible for 

release. Since this surface area directly depended on the network formed by the hydrophilic 
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porogen, both the extension of the pore network as well as the time needed to leach out the 

porogen were of great importance for the resulting release profiles. 

Leuenberger et al. [166,167] described the existence of a so-called percolation threshold of 

a porogen within a matrix, below which no network will be formed. Figure 54 schematically 

shows the effect of an increased amount of sucrose particles incorporated into pyranine-

loaded glyceroltripalmitate matrices. With increasing amount of excipient (Figure 54b), the 

number of porogen particles that are localized on the surface of the matrix increases. Unlike 

porogen particles that are completely surrounded by triglyceride (Figure 54a), the particles on 

the surface are immediately leached out and thus lead to an increased surface area of the dye-

loaded triglyceride. A further increased ratio of the porogen results in the formation of a pore 

network (Figure 54c), thereby increasing the surface area of matrix fragments accessible for 

release and thus accelerating the release of the dye from the triglyceride matrix. 

Increasing amount of porogen
acceleration of pore-network formation
increased surface area accessible for release

a b c

 

Figure 54: Schematic for alteration of pore network formation caused by increasing the amount of sucrose 
crystals incorporated into pyranine-loaded glyceroltripalmitate matrices; a higher ratio of porogen 
also leads to increased number of particles localized on the surface of the matrix. 

Fernández-Herváz et al. examined the direct dependence of the percolation threshold on 

the particle size of the porogen [182]. They found lower percolation thresholds when the 

particle size of the porogen was decreased. This effect is schematically visualized for sucrose 

crystals incorporated into pyranine-loaded glyceroltripalmitate matrices in Figure 55. 

Decreasing the sucrose particle size leads to a higher surface area of the incorporated amount 

of the excipient. Thus again the amount of particles localized at the surface of the pyranine 

loaded matrix increases (Figure 55b) and with further decreasing of the sucrose particle size, a 

porogen network can be formed within the matrix (Figure 55c). 
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Figure 55: Schematic of sucrose particle size changing pore network formation within pyranine-loaded 
glyceroltripalmitate matrices. 

Release profiles of the pyranine from matrices, containing 5% sucrose can be explained by 

the number of particles localized at the surface of the matrices. In the case of the two smaller 

sucrose particle sizes (S25-45 and S150-180), at least a few particles should have had contact 

with the surface of the matrix. The percolation threshold of sucrose was not yet reached and 

thus no difference between these two groups was observed. The bigger sucrose particles 

might have been completely encapsulated into the triglyceride in the ratio of 5%. This would 

explain on the one hand why there was no difference in release profiles between the matrices 

prepared with the S250-355- and the S560-710-fractions of the sucrose, since the surface area 

of the dye-loaded glyceroltripalmitate, which was accessible for release, would have been 

comparable. On the other hand, the slower release of matrices from these groups compared to 

that of matrices prepared using the two smaller sucrose particles also becomes 

understandable. 

Increasing the amount of sucrose to 10% of the matrix lead to no major differences in the 

release profile compared to the matrices containing 5% of the excipientfor the largest sucrose 

particle size. This may again be explained by a complete encapsulation of the excipient, 

which consequently resulted in comparable surface areas for both ratios of sucrose. In the case 

of the S250-355-fraction, the ratio of 10% seemed to be enough that few particles were 

localized at the surface of the matrix, leading to a faster release compared to the lower ratio of 

5%. But since there was no difference observed between any release profiles of matrices 

prepared with 10% of the three smaller sucrose particle sizes, this amount did not seem 

sufficient to reach the percolation threshold. 
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When regarding the release profiles from matrices with ratios of 25% of the porogen, the 

fast release rates for S25-45 - and the S150-180- group show that the percolation threshold is 

reached for these two sucrose particle sizes at this ratio. Since the release profile of matrices 

containing 25% sucrose of the S250-355-fraction is comparable to that from 10% containing 

matrices, the percolation threshold is not yet reached for this particle sizes. The faster release 

of matrices containing 25% sucrose of the biggest particle size can be explained by the 

contact of the excipient to the surface of the matrix. 

Examination of the microstructure of the matrices after release confirmed the existence and 

the interconnectivity of a pore network for the two smaller sucrose particle sizes at the ratio of 

25%. Figure 56 shows the results observed by scanning electron microscopy. 
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Figure 56: SEM images of triglyceride matrices containing 25% of sucrose with varying crystal size after 
incubation; interconnectivity of the pores was observed  
a) 25µm - 45µm particle size of the erosion modifier, 1000x  
b) 150µm - 180µm particle size of the erosion modifier, 1000x.  
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As Figure 57 shows, no pore network, but contact of the sucrose particles to the surface of 

the matrices were observed by SEM for matrices containing 25% sucrose of the two bigger 

particle sizes. 

200µm200µm200µm
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200µm200µm200µm
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Figure 57: SEM images of triglyceride matrices containing 25% of sucrose with varying crystal size after 
incubation 
c) 250µm - 355µm particle size of the erosion modifier, 40x  
d) 560µm - 710µm particle size of the erosion modifier, 40x. 

 

Summary 

These in vitro release experiments were carried out to characterize and quantify the effects 

of excipients on the release profile of triglyceride matrices. Substances should be found that 

allow for both the acceleration of the erosion and the prolonged controlled release from the 

lipid cylindrical matrices.  Therefore, two methods for the incorporation of the excipients 

were tested. With regard to the resulting very fast release from the modified 

glyceroltripalmitate matrices, the emulsion method was demonstrated to be unsuitable for the 

incorporation of any erosion modifier. Thus, a new two-step method was developed and 

established, which resulted in much longer release periods from the triglyceride matrices. 

Applying this method, the phospholipids DMPC and DPPC, the hydrogel-forming agent 

agarose, and the hydrophilic porogen sucrose were investigated for their use as erosion 

modifiers for lipid matrices. Matrices containing the phospholipid DMPC showed a release of 

the model drug within 3 days and this excipient was thus deemed unsuitable for use as an 

erosion modifier. When agarose or DPPC were incorporated in ratios of 5-15% and 5-50%, 

respectively, release periods from 2 to 7 weeks were achieved. Concerning the phospholipid 

DPPC, a dependence between the ratio of the modifying component and release period was 

visible, whereas matrices containing agarose showed no significant correlation between the 
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ratio of the disintegrating agent used and the duration of release. Thus, higher ratios of 

agarose may also be useful. 

To summarize the results obtained from the in vitro release investigations on sucrose, it 

can be said that release from triglyceride matrices containing this excipient depended on both 

the amount of sucrose incorporated into the matrix and the particle size of the excipient used. 

For sucrose, the dependence of release period extension on the used amount of the erosion 

modifier was more distinct using smaller particles sizes. Controlled release was realized for 

all crystal sizes and release periods of 2 to 15 weeks were achieved; only a ratio of 50% of the 

smallest sucrose particles led to a fast release within three days. 

To judge the suitability of a hydrophilic porogen, such as sucrose, as an erosion modifier, 

the percolation threshold is of great importance. This is the lowest concentration of sucrose 

within the matrix at which the formation of a network of the porogen can be observed. 

Sucrose ratios above the percolation threshold avoid encapsulation of the sucrose crystals 

within the dye-loaded triglyceride and thus enable the leaching of the excipient and 

consequently lead to a decrease of the mechanical stability of the matrix, which is the 

requirement for an acceleration of the in vivo erosion when the matrix is implanted and 

exposed to mechanical stress. The percolation threshold was reached for the two smaller 

particle sizes (25-45µm and 150-180µm) at a ratio of 25% of the excipient. 25% sucrose of 

the two bigger particle sizes (250-355µm and 560-710µm) was at least sufficient to avoid a 

complete encapsulation of the excipient. 

With regard to the high deviations, observed for the two biggest particle sizes (250µm-

355µm, 560µm-710µm), the ratios of 50% of these two sucrose fractions was considered not 

to be practicable for the preparation of cylinders with a diameter of only 2mm, but may be of 

good use, when larger implants should be prepared.  

In conclusion, the obtained results demonstrated that the phospholipid DPPC, the 

hydrogel-forming agent agarose and the hydrophilic porogen sucrose are suitable to modify 

the erosion of triglyceride matrices, since these three excipients allow for both a decrease in 

the stability of triglyceride matrices, which should result in faster erosion, and the 

maintenance of prolonged release from these matrices. 
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Introduction 

Since the in vitro experiments, presented in chapter 6, showed promising results 

concerning the possibility of prolonged, controlled release from triglyceride matrices 

containing a considerable amount of an excipient as erosion modifier, the next goal was to 

verify the hypothesis that the in vivo erosion of smaller lipid particles is faster than that of 

solid, macroscopic cylinders. In this in vivo study, glyceroltripalmitate microparticles and two 

groups of glyceroltripalmitate powders were implanted subcutaneously to immunocompetent 

NMRI-mice. In addition to the size effect of the lipid, the influence of triglyceride 

crystallinity was investigated by using two glyceroltripalmitate powder groups, which showed 

a high and low degree of crystallinity. To obtain information into whether small triglyceride 

particles undergo in vivo degradation, changes in the particle size of the samples were 

investigated over a period of 8 weeks. 

 

Microparticle and triglyceride-powder characterization 

This study was carried out for three groups of glyceroltripalmitate. Lipid microparticles 

were chosen, because of their smooth surface and very good reproducibility concerning 

particle size and manufacture. When spray-congealed, the microspheres show the instable β-

modification; therefore in addition lipid powders were investigated to clarify the influence of 

the modification of the triglyceride on its in vivo erosion. Concomitantly, it was considered 

that the crystallinity of a material may influence its in vivo erosion, and thus two groups with 

high and low degrees of crystallinity were investigated. Triglyceride powder, which was 

sterilized in solution by filtration with subsequent freezing in liquid nitrogen and freeze 

drying, showed low crystallinity, whereas lipid, which underwent hot air sterilization and 

afterwards was tempered for three days at 55°C showed high degree of crystallinity, similar to 

that of the bulk material. Results obtained by X-ray diffraction analysis are shown in Figures 

58-60. No major differences were observed between the bulk material (Figure 58) and the 

lipid powder sterilized by hot air and subsequently tempered for 3 days at 55°C (Figure 59). 

The peaks within the obtained graphics are distinct signs for a high degree of crystallinity. For 

the freeze-dried glyceroltripalmitate (Figure 60) peak formation was much less distinct, which 

indicates a lower degree of crystallinity compared to the heat sterilized varient. 
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Figure 58: Wide-angle X-ray diffractogram of glyceroltripalmitate bulk material; clearly visible peaks show 
high degree of crystallinity 
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Figure 59: Wide-angle X-ray diffractogram of glyceroltripalmitate; material underwent sterilization for 2h at 
110°C and tempering (3days at 55°C), peaks show high degree of crystallinity. 
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Figure 60: Wide-angle X-ray diffractogram of glyceroltripalmitate; material was dissolved in THF, filtrated, 
frozen in liquid nitrogen and freeze dried, absence of peaks, respectively less distinctive peaks show 
low degree of crystallinity 

Particle sizes of the investigated lipid samples were determined with laser diffractometry, 

without the application of ultrasonication. Results are shown in Figure 61. For lipid 

microparticles a mean diameter of 176µm was determined, whereas both lipid powders 

showed a multimodal distribution with peaks at particle sizes of 10µm to 20µm and 

approximately 100µm. All observed particle sizes were confirmed by SEM analysis (Figures 

62,63). In the case of the heat-sterilized and freeze-dried triglyceride, the particle size 

distributions indicate the formation of aggregates, which was also confirmed by results 

obtained from SEM analysis 63). 
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Figure 61: Particle size distribution of lipid microparticles (�) and freeze dried (- -) and heat sterilized (▪▪) 
glyceroltripalmitate powders for in vivo erosion study, determined by laser diffractometry. 

 

100µm100µm100µm
 

Figure 62: SEM image of glyceroltripalmitate microparticles prior to in vivo investigation (50x). 
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Figure 63: SEM images of freeze-dried (left) and heat-sterilized and tempered (right) triglyceride powders prior 
to in vivo investigation, both 200x. 

For the investigation of the particle size of the glyceroltripalmitate samples and its 

alteration during the course of the study, histological sections were examined and holes 

stemming from the microparticles and the triglyceride powder were measured by light 

microscopy as described in section 2.21. Since the deformation of the holes, which was 

observed for the microsphere group, was in similar direction in every investigated slice 

(Figures 3,65), it may not have arisen during in vivo study, but could also be an artifact of the 

sectioning process. This would also be confirmed by the absolutely round shape of the 

microparticles prior to the in vivo investigation observed by SEM (Figure 62). 

 

In vivo erosion study 

As Figure 63 shows, the two lipid powders were not of spherical shape. Since the 

described estimator for the real particle diameter (see equation (1) in section 2.21) is only 

valid for spherical particles, quantitative results can only be reported for the lipid 

microspheres in our in vivo experiment. For the lipid powder groups, only qualitative 

conclusions on the degradation were drawn, because of their irregurar shape. 

Concerning the freeze-dried triglyceride powder at day 7, larger and smaller particles were 

seen in histological investigations (Figure 64a), which can be explained by the determined 

particle size distribution (Figure 61) and SEM results for this group (Figure 63). Days 17 

(data not shown) and 28 showed comparable results, which can be distinguished from those 

from day 7 by a decreasing number of the lipid powder particles and fewer particles of bigger 

size (Figures 64b,c). 42 days after implantation, no particles were found in any section of all 4 

mice, whereas at day 56 in one single slide of one animal particles were seen (Figure 64d), 
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which had a decrease in size compared to the other excision time points during the study 

(Figures 64a-c). Since only in one mouse, out of four, particles were found after 8 weeks and 

these particles were very small, it could be considered that the lipid powder seemed to be 

compeletly degraded during the in vivo study. 

   

   

Figure 64: Light microscopy pictures of histological sections of the freeze-dried glyceroltripalmitate powder at 
different time points of the study, single arrows mark lipid powder particles, all pictures HE stained, 
a) histological section of a sample excised at day 7, 100x  
b) histological section of a sample excised at day 28, 100x  
c) histological section of a sample excised at day 28, 400x  
d) picture of the only particle containing histological section in samples excised at day 56, 400x; 
double arrows mark adipocytes at the interface between adipose tissue and other tissue containing 
the lipid powder particles. 

The results for the heat-sterilized and tempered glyceroltripalmitate powder were almost 

identical with these obtained for the freeze-dried lipid powder. Large particles were observed 

after 7 days, but their number decreased with time. After 42 and 56 days, no particles were 

found in any mouse, which indicated the complete degradation of the triglyceride powder. 
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Concerning the group of lipid microparticles, the implanted samples were not completely 

degraded during the investigated period of 8 weeks. At day 56, every examined animal 

displayed a considerable number of microspheres (Figure 65). 

 

Figure 65: Light microscopy image of a histological section of lipid microparticles containing the tissue sample 
excised at day 56, HE stained, 100x. 

The determination of the lipid microparticle diameters and the subsequent application of 

the estimator (see equation (1) in chapter 2) made it possible to visualize changes in particle 

size occurring during the course of the in vivo study. In Figure 66, the particle sizes of the 

microspheres, which were observed for each excision time point, are depicted. 
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Figure 66: Changes in size of glyceroltripalmitate microparticles over 8 weeks in vivo; values calculated from 
the measured diameters by use of the estimator depicted in equation (1) (see section 2.21) 



Chapter 7  In vivo Investigation on the Erosion of Triglyceride Particles 

 -109-  

Although the lipid microparticles were not completely eroded within the duration of the in 

vivo study of 8 weeks, a trend is visible. The decrease in the estimated mean diameter from 

approximately 160µm at day 7 to 100 µm at day 56 suggests that the lipid was not inert in 

vivo, but seemed to be degraded with time. To investigate whether complete erosion of the 

triglyceride microparticles occurs, a long term in vivo study has to be carried out, to confirm 

these early results. 

The faster degradation of the triglyceride powder compared to the microparticles can be 

explained by two factors. Firstly, the microstructure, examined by SEM, indicated a much 

higher apparent density of the microparticles (Figure 67) compared to the two lipid powders 

(Figure 68). Glyceroltripalmitate microparticles appear to be much more compact than the 

lipid powders, as is visible throughout the more loose-packed crystal structure of the 

triglyceride powders. Therefore, samples of the microparticle group might have been more 

stable against in vivo degradation. Consequently, this led to longer erosion times for the 

glyceroltripalmitate microparticles compared to the powder groups and confirmed the in vivo 

findings. 

 

10µm10µm
 

Figure 67: SEM images of lipid microparticles prepared by spray congealing for in vivo erosion study, 1000x, 
dense structure and high crystallinity were seen. 
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Figure 68: SEM images of lipid powders prepared by using variable sterilization methods for in vivo erosion 
study, both 1000x  
a) heat sterilized triglyceride powder, arrangement of glyceroltripalmitate crystals revealed less 
dense compared to the microparticles  
b) freeze-dried triglyceride powder, glyceroltripalmitate crystal formation was not loose-packed. 

Secondly, the lipid microparticles were larger in size (Figure 62) compared to the two 

glyceroltripalmitate powder groups at the beginning of the study. To confirm the hypothesis 

of these in vivo investigations, which was the direct dependence of the in vivo erosion time of 

the triglyceride on its particle size, additional investigations that are long enough to allow for 

the complete erosion of the triglyceride powers will be necessary. However, first positive 

results were obtained from these investigations. 

 

Summary 

This in vivo study was carried out to investigate the hypothesis of a correlation between 

the triglyceride particle size and the in vivo erosion time of the material. Concomitantly, the 

influence of the degree of crystallinity on the in vivo erosion was examined. Therefore 

glyceroltripalmitate microparticles and two groups of glyceroltripalmitate powders with a 

high and low degree of crystallinity, respectively, were investigated in vivo. The results 

showed the degradation of both types of implanted triglyceride powders. No differences in the 

in vivo erosion were observed due to the varying degree of crystallinity of the triglyceride 

powders. Due to the non-spherical shape of the glyceroltripalmitate powder material, no 

quantitative results were obtained, but only qualitative conclusions were drawn. After 56 

days, the glyceroltripalmitate powders disappeared. 
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Although the lipid microparticles were not completely eroded by the end of the 56 day 

study period, the decreasing diameter clearly indicated that degradation processes were 

occurring in vivo. These results gave the first positive hints towards the investigated 

hypothesis of a correlation between the particle size of the triglyceride and the in vivo erosion 

time. 
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Introduction 

In recent years “intelligent” drug delivery systems, such as microchip devices, have been 

developed [183,184]. The advantage of such systems is their ability to release a plethora of 

individual doses of one or even several substances from a multitude of drug reservoirs. Due to 

the pulsatile release of individual doses, any desirable release profile can be ‘generated’ by 

repetitively releasing dose after dose. According to the literature, ‘pulsatile drug delivery’ 

denotes the release of drugs, peptides or proteins with high rates within a narrow time interval 

[185]. Such delivery systems are classified as single- or multiple-pulse systems. They are 

frequently based on polymeric materials that release a drug almost instantly [186-187]. Many 

different delivery systems have been developed, such as microchip based devices [183,189] as 

well as matrices with concentric layers of biodegradable polymer [190,191].  

A disadvantage of these systems, however, is that too many pulses would be needed to 

create a release profile that stretches over extended periods of time, such as several weeks. To 

overcome this limitation, programmable implants consisting of a drug-loaded polyanhydride 

core embedded in a drug-free bulk eroding polymer mantle were developed [39]. This system 

enables a delayed onset of release adjustable by the choice of the mantle material followed by 

a pulsatile release. However, due to the fast eroding polyanhydride core it was not possible to 

release drug over an extended time period from these implants. Therefore, in this study we 

tested different lipophilic core materials with regard to their ability to control drug release 

[39,192]. In Figure 69 a a comparison of the intended release profiles of this new generation 

of programmable implants is shown. 
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Figure 69: Comparison of release profiles resulting from programmable implants with polyanhydride and 
triglyceride cores, respectively. 

This controlled prolonged release from the prepared systems may be of great benefit when 

highly potent substances, for example growth factors [193,194], cytokines [195,196] or anti-

cancer drugs [197] have to be administered. Such drugs would rapidly exceed therapeutic 

concentrations during pulsatile release. Concomitantly, controlled prolonged release may be 
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desirable for an intracranial treatment, since, for example, neurodegenerative diseases or brain 

tumors frequently require long-term therapy [34,198,199]. 

The goal of this study was to design programmable implants with a reproducible onset of 

release and a controlled release once the liberation of the drug has started. Different core and 

mantle materials were tested for this purpose. Finally, a mathematical model based on 

convolution theory [159-162] was developed, which allows for the prediction of release 

profiles, when the release from the core material and the properties of the mantle material are 

known. 
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Results 

In vitro release 

First, the release of pyranine from the lipid core matrices without the polymer mantle was 

investigated (Figure 70). Cholesterol showed the fastest release within 1.5 hours, whereas 

glyceroltrilaurate (C12) and glyceroltristearate (C18) released the incorporated dye over a 

period of 14 days. The triglycerides with the longer fatty acid chains showed continuous 

release of the model compound over approximately 10 weeks for glyceroltripalmitate (C16) 

and 16 weeks for glyceroltrimyristate (C14). 
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Figure 70: In vitro release profiles of pyranine as model drug from variable lipophilic core materials, for 
different triglycerides the number of C-atoms of the fatty acid chains is given, data show mean 
± standard deviation (n=5). 

The first steps to embed the cores into a bulk eroding polymer mantle made of PLGA17 

were carried out using the manufacturing procedure with the heat treatment at 110°C. 

Unfortunately, the resulting implants prematurely released their contents in an unpredictable 

manner, due to incomplete pore closure (data not shown). In addition to this irreproducible 

onset of release, DSC investigations showed that the heating step might additionally cause an 

alteration of the modification of the crystalline lipid core materials (data not shown). 
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A perfectly delayed release with a reproducible onset of all investigated core and mantle 

materials (Figures 71-73) was obtained by applying a second compression step to the finished 

implants at temperatures above the glass transition temperature of the respective mantle 

polymer (see Figure 6 in chapter 2, section 2.22). 
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Figure 71: In vitro release from programmable implants with different core materials and PLGA10 as polymeric 
mantle material, for different triglycerides the number of C-atoms of the fatty acid chains is given, 
values are expressed as mean ± standard deviation (n=4). 



Chapter 8  Programmable Implants – From Pulsatile to Controlled Release 

 -118-  

0%

20%

40%

60%

80%

100%

120%

0 20 40 60 80 100 120 140

time [d]

re
le

as
e

cholesterol
C12

C18
C14

C16

 

Figure 72: In vitro release from programmable implants with different core materials and PLGA17 as polymeric 
mantle material, for different triglycerides the number of C-atoms of the fatty acid chains is given, 
values are expressed as mean ± standard deviation (n=4). 
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Figure 73: In vitro release from programmable implants with different core materials and PLA30 as polymeric 
mantle material, for different triglycerides the number of C-atoms of the fatty acid chains is given, 
values are expressed as mean ± standard deviation (n=3). 
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For all investigated groups, reproducible onset of the release after the degradation of the 

polymer mantle was achieved (Figures 74-76). Delay times were 8 days for PLGA10 (Figure 

74), 21 days for PLGA17 (Figure 75) and 83 days when the PLA30 was used as mantle 

material (Figure 76) Concomitantly, the desired prolonged release from the programmable 

implants over periods from 2 weeks (glyceroltrilaurate (C12) and glyceroltristearate (C18)) up 

to several months (glyceroltrimyristate (C14) glyceroltripalmitate (C16)) was achieved. 
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Figure 74: Delay times for the onset of release observed for programmable implants, prepared with varying 
core materials and with PLGA10 as mantle material, data represent mean ± standard deviation, 
++ indicates statistical significance with p<0.01, + indicates statistical significance with p<0.05 
(n=4). 
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Figure 75: Delay times for the onset of release observed for programmable implants, prepared with varying 
core materials and PLGA17 as mantle material, data represent mean ± standard deviation, 
++ indicates statistical significance with p<0.01, + indicates statistical significance with p<0.05 
(n=4). 
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Figure 76: Delay times for the onset of release observed for programmable implants, prepared with varying 
core materials and with PLA30 as mantle material, data represent mean ± standard deviation, 
++ indicates statistical significance with p<0.01, + indicates statistical significance with p<0.05 
(n=3). 
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Mathematical modeling 

For the design of programmable implants, it would be desirable to be able to predict the 

resulting release profile when a core with known release properties is embedded into a 

polymer mantle. Thus, a convolution model was applied to investigate whether a sensible 

prediction is possible. For the above-described mathematical modeling, the release of 

pyranine from a cholesterol core matrix was used as unit impulse function for the matrix 

materials PLGA10 and PLGA17. For the investigations carried out with PLA30 as polymeric 

mantle material, release data from polyanhydride cores gathered by Vogelhuber et al. [39] 

were used as the unit impulse function. Both core materials showed complete release of the 

incorporated pyranine within one day and can thus be used as unit impulse functions. The 

release profiles are shown in Figure 77. 
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Figure 77: Used unit impulse functions for mathematical modeling, values are expressed as mean ± SD (n=5); 
Release from cholesterol cores was used for PLGA10 and PLGA17;  
Release from polyanhydride cores [39] was used for PLA30. 

In Figures 78-87 results of predicted release curves are compared with the experimental 

release data. When glyceroltrilaurate (C12) core matrices were embedded into a PLGA10 

mantle (Figure 78), a slightly slower release was determined experimentally, compared to the 

theoretical profiles. For glyceroltristearate (C18) cores embedded into this polymeric mantle 
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material, the same effect was observed (Figure 79). Again in vitro release occurred slightly 

slower than predicted by the convolution model. 
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Figure 78: Release profiles from programmable implants, prepared with PLGA10 as mantle material and 
glyceroltrilaurate (C12) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=5),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 
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Figure 79: Release profiles from programmable implants, prepared with PLGA10 as mantle material and 
glyceroltristearate (C18) as core material; , 
(■): values of experimental release data are expressed as mean ± SD (n=4),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 
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Differences between theoretical and experimental release profiles were also observed for 

the programmable implants prepared with glyceroltrimyristate (C14) as core material and 

PLGA10 as polymer mantle (Figure 80 In this case, programmable implants released the 

model drug faster than predicted by the model. Deviations between the profiles were higher in 

the first period of release, but disappeared afterwards. Only minimal differences were 

observed between theoretically predicted and experimentally determined release profiles after 

6-7 weeks and, as could have been expected for the end of the release experiment, good 

agreement was seen from day 70 to day 112. Figure 81 shows similar results for 

glyceroltripalmitate (C16) cores. The again visible but less distinctive differences between 

predicted and in vitro determined release profiles of pyranine from the programmable 

implants were only visible within the first period of release, but not from day 35 to day 77, 

which was here the last time point of the experiment. 
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Figure 80: Release profiles from programmable implants, prepared with PLGA10 as mantle material and 
glyceroltrimyristate (C14) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=5),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 
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Figure 81: Release profiles from programmable implants, prepared with PLGA10 as mantle material and 
glyceroltripalmitate (C16) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=4),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 

Concerning the results observed for programmable implants made with PLGA17 as a 

polymeric mantle material, comparable findings were obtained for the two faster releasing 

core materials glyceroltrilaurate (C12) and glyceroltristearate (C18) as seen for PLGA10. In 

these groups again the mathematically predicted release was slightly faster than 

experimentally determined (Figures 82,83). For the slower releasing core materials, 

glyceroltrimyristate (C14) and glyceroltrilaurate (C12), very good correlations between the 

theoretically predicted release curves and the experimental data were achieved (Figures 

84,85), when these matrix materials were embedded into a mantle of PLGA17. 
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Figure 82: Release profiles from programmable implants, prepared with PLGA17 as mantle material and 
glyceroltrilaurate (C12) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=4),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 
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Figure 83: Release profiles from programmable implants, prepared with PLGA17 as mantle material and 
glyceroltristearate (C18) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=4),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 
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Figure 84: Release profiles from programmable implants, prepared with PLGA17 as mantle material and 
glyceroltrimyristate (C14) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=5),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 
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Figure 85: Release profiles from programmable implants, prepared with PLGA17 as mantle material and 
glyceroltripalmitate (C16) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=5),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from cholesterol cores as unit impulse function. 
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When the slowest eroding mantle material (PLA30) was used for the embedding of 

glyceroltrimyristate (C14) and glyceroltripalmitate (C16), again a faster theoretically 

predicted release was observed compared to the in vitro findings (Figures 86,87). 
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Figure 86: Release profiles from programmable implants, prepared with PLA30 as mantle material and 
glyceroltrimyristate (C14) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=3),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from polyanhydride cores as unit impulse function. 
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Figure 87: Release profiles from programmable implants, prepared with PLA30 as mantle material and 
glyceroltripalmitate (C16) as core material;  
(■): values of experimental release data are expressed as mean ± SD (n=3),  
(–): theoretical release calculated with mathematical model of convolution theory by the use of 
release data from polyanhydride cores as unit impulse function. 

 

Discussion 

In vitro release 

All three of the mantle materials tested produced programmable implants with a 

reproducible onset of release. This confirms the suitability of the preparation method with a 

second compression step at a temperature above the Tg of the respective mantle material to 

completely close pores, which occur within the polymer mantle. Additionally, the goal of the 

controlled release after the onset was achieved. Programmable implants containing 

glyceroltrilaurate (C12) or glyceroltristearate (C18) released the model drug over two weeks, 

whereas programmable implants prepared with glyceroltrimyristate (C14) or 

glyceroltripalmitate (C16) as matrix materials showed release periods extending over months 

(Figures 71-73). This is identical to the results for non-embedded core matrices (Figure 70). 

Vogelhuber et al. reported shorter delay times before the start of release for the three 

polymer materials (see bars of polyanhydride cores in Figures 74-76), which is due to the 
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different core materials used [39]. The degradation of a polyanhydride core, as it was used 

previously [39] most likely led to an acidic microclimate, which worked as a catalyst and thus 

accelerated the degradation of the mantle polymer. This effect did not occur when lipid core 

materials were used and thus the delay time for the onset of the programmable implants 

increased significantly in most cases. Only for the group of glyceroltripalmitate cores 

embedded into PLGA10 as mantle material, significance was not reached due to relatively 

high standard deviations. 

 

Mathematical modeling 

Matrices made by embedding glyceroltrilaurate (C12) and glyceroltristearate (C18) in 

PLGA10 displayed slower release profiles experimentally than was predicted using the 

mathematical modeling (Figures 78,79). This can be explained by the percentage of dye 

released in the experiment from glyceroltrilaurate and glyceroltristearate core matrices into 

the polymer mantle during the delay time of the programmable implants and the fact that the 

onset day of release from programmable implants was chosen as starting point for the 

mathematical modeling, due to the above mentioned reasons. Regarding the algorithm 

depicted in equation (11), the consequence for the theoretical prediction can be briefly 

described as follows: The calculated amount of dye released from the core matrix until the 

onset (=I0 in equation (11)) is treated in the mathematical model as if it was released in the 

experiment at day 1 (=I0 of the unit impulse function). Thus, for example when a core matrix 

would show complete release of the model drug within 7 days or less experimentally, the 

predicted release profile for the programmable implants would always be exactly the same as 

it was obtained for the unit impulse function. But since release from the glyceroltrilaurate 

(C12) and glyceroltristearate (C18) core matrices in fact occurred over a longer period of time 

(Figure 70), less diffusion of the model drug within the polymer mantle occurred during the 

delay time and thus explaining the slower in vitro release from the programmable implants 

compared to the theoretical prediction.  

 Release of the core matrices had reached approximately 87% at day 7 in the case of 

glyceroltrilaurate (C12) and glyceroltristearate (C18) core matrices released 91% of the dye 

within the first 7 days (Figure 70), which was the delay time for PLGA10. Thus, differences 

between the two release profiles were slightly higher in case of the C18 triglyceride compared 

to glyceroltrilaurate (C12). 
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But despite the alignment of the calculation method, the modeling resulted in a rather 

acceptable agreement between predicted and experimentally observed release curves. 

The deviations in the first release period when glyceroltrimyristate (C14) was used as core 

material and PLGA10 served as polymer mantle (Figure 80), may be explained by the 

relatively unsteady onset of release in this group, which was observed by slightly higher 

standard deviations, compared to the other investigated groups (Figures 74-76). Since a 

slightly unsteady onset of release was also observed for glyceroltripalmitate cores (Figure 74), 

the deviations in the early period after the onset (Figure 81) may be explained. Considering 

these results, a rather acceptable agreement between theory and experiment was observed for 

PLGA10 as mantle material. 

 

Programmable implants made with PLGA17 as polymeric mantle material and the two 

faster releasing core materials, glyceroltrilaurate and glyceroltristearate, lead to slower release 

of the implants than predicted (Figures 82,83), due to the above described reasons. 

Nevertheless, when glyceroltrilaurate was used as core material, an acceptable prediction was 

obtained by convolution and in the glyceroltristearate group two release profiles even showed 

rather good agreement. Concerning the slower releasing core materials glyceroltrimyristate 

and glyceroltrilaurate, measured release profiles fitted nearly perfectly into the 

mathematically modeled prediction of release. 

 

Concerning PLA30, release of pyranine from glyceroltrimyristate cores was approximately 

85% at day 83 (Figure 70), which was the onset of the release from programmable implants 

with this mantle material. Glyceroltripalmitate cores show a complete release of 100% of the 

dye within an even shorter time period of 70 days (Figure 70). However, the observed 

deviations between predicted and determined release profiles, which can be explained as 

aforementioned, were only minute and convolution again resulted in acceptable agreement 

between theory and experiment. 

These results showed that it is possible to make sensible predictions for the release from 

programmable implants with one of the three investigated polymeric mantle materials when 

release from the core material is known. Concomitantly, convolution results calculated for 

PLA30 were obtained by using data from a polyanhydride core as unit impulse function. These 

release data for the pulsatile releasing core material were detailed by Vogelhuber 4 years ago 

[39], but, nevertheless, a rather good fitting of the theoretical release curves and the 
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experimental profiles obtained for investigations on triglycerides was observed. This 

additionally demonstrated the suitability of convolution for the modeling of theoretical release 

profiles from programmable implants. The prediction of the expected release profile is of 

great benefit for the design of programmable implants with desired release properties. When 

release from a core matrix is known, convolution alleviates the need for further in vitro 

release experiments with programmable implants, due to the possibility to sensibly predict the 

expected resulting release profile. 

 

Summary 

The investigated programmable implants can be described briefly as a drug loaded core 

matrix embedded into a drug free bulk eroding polymer mantle, which inhibits drug release 

until its erosion is completed. The aim of this study was to develop a new generation of 

programmable implants, which allow for prolonged release, since the devices developed by 

Vogelhuber et al. [39] were limited to pulsatile liberation of incorporated compounds. The 

goal of controlled release after the onset was realized by using triglycerides as core materials 

and release periods from 2 weeks up to several months were achieved. The delay time for the 

release from the programmable implants was varied with the polymeric mantle material from 

8 to 83 days. Concomitantly, it was shown that applying a model based on convolution leads 

to a sensible prediction of the release of a drug from the programmable implants when release 

rate from the core material is known. This facilitates the design of programmable implants 

and offers a powerful tool for the adjustment of the resulting drug release to desired profiles. 



Chapter 8  Programmable Implants – From Pulsatile to Controlled Release 

 -132-  



Chapter 9  Summary and Conclusions 

 -133-  

Chapter 9 

Summary 
and 

Conclusions 



Chapter 9  Summary and Conclusions 

 -134-  

1. Summary 

Implants are one of the most important class of devices for the controlled parenteral release 

of drugs. Therefore, many materials have been investigated for potential use as a matrix 

material for implantable devices (chapter 1). Investigation of crucial parameters during the 

manufacturing procedures of such an implant as well as the identification of mechanisms that 

dominate the release of drugs from the chosen material are essential for the design of a 

controlled release device. Additionally, the in vivo compatibility and erosion behavior of a 

material play a pivotal role in the suitability of a material for parenteral application. This work 

focused on lipid materials, primarily triglycerides, for the design of parenterally applicable 

controlled release implants. 

Since triglycerides and other lipid materials are currently being investigated as alternatives 

to polymeric materials for the delivery of proteins and peptides [118,153,154], the first study 

served to investigate if release profiles of the two model drugs insulin and somatostatin from 

triglyceride matrices can be determined directly from the release medium. Therefore, their 

stability within the release medium, which is essential for a determination of correct 

controlled release profiles, was investigated (chapter 3). Both model drugs underwent distinct 

degradation when incubated in release medium over 5 weeks and the extent of degradation 

was quantified to 35% for insulin and even 65% for somatostatin. The resulting degradation 

products were identified as a deamidation product of somatostatin and the non-covalent dimer 

of insulin. With these experiments, the necessity of extraction of both model drugs from 

glyceroltripalmitate matrices for the characterization of long-term in vitro release was shown. 

Thereby, not only could the residue content be determined, but also the investigation of 

protein and peptide stability within the matrices was facilitated (chapter 3). For the use in 

further investigations [153,154], a liquid/liquid extraction method developed by Lucke et al. 

(see section 2.5 in chapter 3 and [141]) was optimized. Concomitantly, a solid/liquid 

extraction method was newly developed to avoid liquid phase separation and thus protect 

proteins and peptides from degradation during the extraction process [141]. This will be 

useful for stability studies of protein and peptide model drugs within the triglyceride matrix 

material. Extraction yields of 94.5% +/-0.8% and 91.3% +/-5.1% were realized for 

somatostatin and insulin, respectively, using the newly developed method. 

After these experiments on protein and peptide model drugs, the triglyceride material and 

its cylindrical matrices were characterized to facilitate the design of the desired controlled 

release device for parenteral drug delivery. Since the following in vitro investigations on the 
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basic characteristics of triglyceride matrices were mechanistic studies, it was decided that the 

use of proteins and peptides would have some disadvantages, such as the necessity of re-

extraction, lower sensitivity of analytical methods, or possibly occurring degradation 

processes. Thus, in the following experiments fluorescent dyes were used as model drugs. 

The first objective towards the characterization of triglycerides for the design of controlled 

release matrices was the identification of crucial parameters during the manufacturing 

procedure and to investigate the extension of their influence on the resulting release profiles 

(chapter 4). To this end, glyceroltripalmitate was loaded with pyranine, a highly water 

soluble fluorescent dye. Subsequently, cylindrical matrices were manufactured under varying 

conditions. The investigated parameters for the preparation of the implants were the drug 

distribution within the matrices, dye loading, compression force and geometry of the 

cylindrical implants (chapter 4). Improving the distribution of the dye within the cylindrical 

implants led to an increase of the controlled release time period. Varying the pyranine content 

within the matrix revealed drug loading as one of the most important parameters concerning 

the expected release profiles. Release properties varied from nearly burst (33% drug loading) 

to controlled release over 17 weeks (10% drug loading) to a very slow release of only about 

13% of the total loaded drug over the investigated time period of 17 weeks (1% drug loading). 

Compression force was shown as well to have severe influence on release profiles when 

varied at lower values, but was less decisive when higher forces were applied. This indicated 

the existence of a threshold for this parameter, which was reached when compressing the 

implants at 250N. Two parameters were investigated for cylinder geometry. Varying the 

implant height resulted in no significant influence on release profiles, whereas a decrease in 

implant diameter accelerated the liberation of the dye. This allows for the adjustment of the 

dose desired for application without alteration of the release profile.  

 After the preparation procedure of the triglyceride matrices was characterized, concomitant 

investigations on release mechanisms and properties of model drugs influencing the release 

were carried out (chapter 4). Three crucial parameters were identified: (i) An acceleration of 

the release from the matrices was observed when hydrophilicity of the model drug was 

increased. (ii) Water uptake into the matrices was proved by fluorescence microscopy after 

incubation of blank triglyceride cylindrical matrices in a solution of fluorescein-di-sodium 

salt. This indicated clearly the formation of pores and the possibility of diffusion of the 

incorporated drugs to the surface, where release occurs subsequently. Pore formation directly 

depended on the particle size of the glyceroltripalmitate used for the preparation of the lipid 

matrices. (iii) In an in vitro release experiment of fluorescein-di-sodium salt from 
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glyceroltripalmitate matrices, carried out with release media of increased osmotic pressure, 

osmosis was shown as well to be involved in the release process of drugs from triglyceride 

matrices. This indicated that liberation of a drug from glyceroltripalmitate matrices was not 

purely diffusion-controlled. 

Since the in vitro properties of triglyceride matrices were well characterized at this point, 

the in vivo properties of the material were investigated subsequently. Two studies on the in 

vivo biocompatibility of glyceroltripalmitate and cholesterol were carried out (chapter 5). 

Concomitantly, the long term in vivo stability, which is a prerequisite for controlled 

prolonged release, was investigated. In these two experiments both in vivo biocompatibility as 

well as long term in vivo stability of gloceroltripalmitate and cholesterol was shown. Neither 

significant inflammatory response nor cytotoxic reactions were observed for any of the two 

materials. The triglyceride implants were stable and maintained their cylindrical shape over 

two months. Furthermore, the ability to influence the in vivo erosion of glyceroltripalmitate 

by the incorporation of the phospholipid DSPC was shown in these in vivo experiments 

(chapter 5). 

Due to the in vivo stability of the triglyceride, the erosion behavior of the material was 

subsequently investigated. Firstly, in vitro experiments on the suitability of several excipients 

as modifying components for the triglyceride erosion were carried out (chapter 6). The 

strategy taken can briefly be described as a decrease in matrix stability, which would lead to 

the disintegration of the lipid matrix when it is exposed to mechanical stress, as it occurs in 

vivo after subcutaneous implantation. In these experiments, the phospholipids DMPC and 

DPPC, the hydrogel-forming agent agarose, and varying crystal sizes of the hydrophilic 

porogen sucrose were investigated for their ability to maintain the controlled release 

properties of glyceroltripalmitate when incorporated in considerable amounts into the 

triglyceride matrices. For the incorporation of the modifying components, two methods were 

tested. The emulsion method, previously described [37] for drug loading, could not be applied 

for the incorporation of any erosion modifier, due to the resulting very fast release of the 

model drug pyranine from the glyceroltripalmitate matrices within a few hours. Consequently, 

a two-step method was developed for this purpose (chapter 6) with which the suitability of 

sucrose, agarose and DPPC as erosion modifiers for glyceroltripalmitate matrices was proven 

in vitro (chapter 6). When agarose or DPPC were incorporated in ratios of 5-15% and 5-50%, 

respectively, release periods from 2 to 7 weeks were achieved. Release from triglyceride 

matrices containing sucrose depended on both the amount of sucrose incorporated into the 

matrix and the particle size of the excipient used. Controlled release was realized for all 
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crystal sizes and release periods of 2 to 15 weeks were achieved; only a ratio of 50% of the 

smallest sucrose particles led to a fast release within three days. 

With regards to these promising in vitro results, the hypothesis for the in vivo use of 

erosion modifiers for triglyceride matrices, which is the correlation between the in vivo 

erosion velocity and the particle size of the triglyceride, was subsequently investigated 

(chapter 7). The glyceroltripalmitate microparticles used did not degrade completely within 

the duration of 8 weeks of the in vivo experiment, but a tendency of decreasing particle size 

was observed. Since the two glyceroltripalmitate powder groups, which were smaller than the 

microparticles, were completely degraded within 42 days, this hypothesis could be 

demonstrated in at least one example. Additionally, the influence of the degree of crystallinity 

of the triglyceride powder on its in vivo erosion was investigated in this study and shown to 

have a negligible effect. 

In further experiments, the application of triglyceride matrices within programmable 

implants to achieve controlled prolonged release was investigated (chapter 8). These devices 

were developed by Vogelhuber et al. [39] and comprise a drug-loaded core embedded into a 

mantle consisting of a bulk eroding polymer, which inhibits release from the system until it 

starts to erode. Afterwards, the drug is released in a pulsatile manner from the devices 

described by Vogelhuber et al. [39], due to the polyanhydride, which is used as the core 

material. With the intent of prolonging the release, glyceroltrilaurate (C12), 

glyceroltrimyristate (C14), glyceroltripalmitate (C16), glyceroltristearate (C18) and 

cholesterol were investigated as core materials. The use of the triglycerides as matrix 

materials for the preparation of the drug-loaded core led to controlled release over several 

months from the newly developed programmable implants. Cholesterol cores resulted in a 

pulsatile release. In these experiments, the manufacturing procedure was adapted to and 

optimized for the triglycerides. By varying the polymeric mantle material, the onset of release 

was varied from 8 to 83 days. Finally, mathematical modeling using convolution was proven 

to yield sensible results for the prediction of release profiles from programmable implants 

when release of the respective drug from the core material itself is known (chapter 8). This 

facilitates the design of programmable implants with any desired release profile. 
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2. Conclusions 

In conclusion, important steps towards the design and understanding of triglyceride 

matrices as controlled release devices were taken and safety of the biomaterial for parenteral 

application was proved. Crucial parameters for the manufacture of triglyceride implants were 

identified and the extension of their influence on the resulting release profiles was cleared up. 

Basic characteristics of triglycerides as biomaterials for controlled release were elaborated 

and release mechanisms were identified using glyceroltripalmitate as representative material. 

Thus, the design of controlled release devices from this material, having desired release 

profiles was facilitated. Furthermore, biocompatibility, one of the most important 

characteristics for the suitability of a material to serve as matrix material for parenteral 

administered devices, was shown for glyceroltripalmitate and cholesterol. Essential 

knowledge on the in vivo erosion of triglycerides and the potential parameters that influence 

the degradation was acquired. 

In additional experiments, protocols for the extraction of insulin and somatostatin from 

glyceroltripalmitate matrices for the determination of the residue content and for further 

experiments on protein and peptide stability within the triglyceride matrix were established. 

High extraction yields and good reproducibility were achieved. 

Finally, release from programmable implants was shifted from pulsatile to controlled 

prolonged release. The preparation procedure was optimized and reproducible times for the 

inhibition of release by the polymeric mantle were achieved. Concomitantly, using 

convolution for mathematical modeling a correlation of the resulting release profiles from 

programmable implants with the release from the core materials themselves was shown. 

 



References   

 -139-  

References 



References   

 -140-  

[1] F.J. Martin, C. Grove,  Microfabricated drug delivery systems: concepts to improve 
clinical benefit,  Biomedical Microdevices  (2001),  3(2):  97-107. 

[2] L.K. Fung, W.M. Saltzman,  Polymeric implants for cancer chemotherapy,  Advanced 
Drug Delivery Reviews (1997), 26(2,3): 209-230. 

[3] G.P. Carino, E. Mathiowitz,  Oral insulin delivery,  Advanced Drug Delivery Reviews 
(1999), 35: 249-257. 

[4] R.J. Levy, V. Labhasetwar, C. Song, E. Lerner, W. Chen, N. Vyavahare, X. Qu, 
Polymeric drug delivery systems for treatment of cardiovascular calcification, 
arrhythmias and restenosis,  Journal of Controlled Release (1995), 36(1-2): 137-47. 

[5] C.H. Niu, Y.Y. Chiu,  FDA perspective on peptide formulation and stability issues,  
Journal of Pharmaceutical Sciences (1998), 87: 1331–1334. 

[6] K.J. Whittlesey, L.D. Shea,  Delivery systems for small molecule drugs, proteins, and 
DNA: the neuroscience/biomaterial interface,  Experimental Neurology (2004), 190: 1-
16. 

[7] W. Vogelhuber, T. Spruß, G. Bernhardt, A. Buschauer, A. Göpferich,  Efficacy of 
BCNU and paclitaxel loaded subcutaneous implants in the interstitial chemotherapy of 
U-87 MG human glioblastoma xenografts,  International Journal of Pharmaceutics 
(2002), 238(1-2): 111-121. 

[8] A. Maschke, A. Lucke, W. Vogelhuber, C. Fischbach, B. Appel, T. Blunk; A. 
Goepferich; Lipids: An alternative material for protein and peptide release; ACS 
Symposium Series 2004, 879 (Carrier-Based Drug Delivery), 176-196. 

[9] G. Pauletti, S. Gangwar, G.T. Knipp, M.M. Nerurkar, F.W. Okuma, K. Tamura, T.J. 
Siahaan, R.T. Borchardt,  Structural requirements for intestinal absorption of peptide 
drugs,  Journal of Controlled Release (1996), 41: 3–17. 

[10] A. Sharma, C.M. Harper, L. Hammer, R.E. Nair, E. Mathiowitz, N.K. Egilmez, 
Characterization of cytokine-encapsulated controlled-release microsphere adjuvants, 
Cancer Biotherapy & Radiopharmaceuticals (2004), 19(6): 764-769. 

[11] Y. Yuyama, M. Tsujimoto, Y. Fujimoto, N. Oku, Potential usage of thermosensitive 
liposomes for site-specific delivery of cytokines, Cancer Letters (Shannon, Ireland) 
(2000), 155(1): 71-77. 

[12] R. J. Duma, M. J. Akers, S. J. Turco,  Parenteral Drug Administration: Routes, 
Precautions, Problems, Complications and Drug Delivery Systems, in Pharmaceutical 
Dosage Forms: Parenteral Medications Volume 1, Second Edition, Revised and 
Expanded, Eds. K.E. Avis, H.A. Lieberman, L. Lachman (1992), Marcel Dekker, Inc. 
pp. 17-58. 

[13] H. Brem, S. Piantadosi, P. C. Burger, M. Walzer, R. Selker, N. A. Vick, K. Black, M. 
Sisti, S. Brem, G. Mohr, P. Muller, R. Morawetz, S. C. Schold, P.-B. T. T. Group,   
Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by 
biodegradable polymers of chemotherapy for recurrent gliomas,  Lancet (1995), 345: 
1008-1012. 



References   

 -141-  

[14] P.M. Black,  Brain tumors (first of two parts),  New England Journal of Medicine 
(1991), 324: 1471–1476. 

[15] N. Kemeny, D. Civalleri, P. Edman, B. Nilsson, K. Gunnarsson, K. Hakansson, T. 
Taguchi, K.R. Aiger,  Liver cancer: a review of current treatment options, in: N. 
Kemeny (Ed.), Anupdate of regional treatment of liver cancer. The role of vascular 
occlusion, Wells Medical: Kent, England, 1992: 7–16. 

[16] A.K. Dash, G.C. Cudworth,  II. Therapeutic applications of implantable drug delivery 
systems,  Journal of Pharmacological and Toxicological Methods (1998), 40(1): 1-12. 

[17] M.F. Haller, W.M. Saltzman,  Localized delivery of proteins in the brain: can transport 
be customized?,  Pharmaceutical Research (1998), 15(3): 377-385. 

[18] R. Langer,  Implantable controlled release systems.  In Methods of Drug Delivery. Ed., 
GM Ihler. (1986) New York: Pergamon Press, pp.121–137. 

[19] T. Yasukawa, Y. Ogura, Y. Tabata, H. Kimura, P. Wiedemann, Y. Honda,  Drug 
delivery systems for vitreoretinal diseases,  Progress in Retinal and Eye Research 
(2004), 23(3): 253-281. 

[20] R. Sitruk-Ware, M. Small, N. Kumar, Y.-Y. Tsong, K. Sundaram, T. Jackanicz,  
Nestorone: clinical applications for contraception and HRT,  Steroids (2003), 68(10-13): 
907-913. 

[21] L.J.  Gooren,  New long-acting androgens,  World Journal of Urology (2003), 21(5): 
306-310. 

[22] V. Baekelandt, B. De Strooper, B. Nuttin, Z. Debyser,  Gene therapeutic strategies for 
neurodegenerative diseases,  Curr. Opin. Mol. Ther. (2000), 2: 540– 554. 

[23] J.C. Glorioso, M. Mata, D.J. Fink,  Therapeutic gene transfer to the nervous system 
using viral vectors,  J. NeuroVirol.(2003), 9: 165– 172. 

[24] J. Segovia,  Gene therapy for Parkinson’s disease: current status and future potential.  
Am. J. Pharmacogenomics (2002), 2: 135–146. 

[25] L. Tenenbaum, A. Chtarto, E. Lehtonen, D. Blum, V. Baekelandt, T. Velu, J. Brotchi, 
M. Levivier,  Neuroprotective gene therapy for Parkinson’s disease,  Curr. Gene Ther. 
(2002), 2: 451– 483. 

[26] R. Langer,  Drug delivery and targeting,  Nature (1998), 392: 5 –10. 

[27] H. Cohen et al.,  Sustained delivery and expression of DNA ancapsulated in polymeric 
nanoparticles,  Gene Therapy (2000), 7: 1896-1905. 

[28] R. Gref et al.,  Biodegradable long-circulating polymer nanoshperes,  Science (1994), 
263: 1600-1603. 

[29] M.R. Gasco,  Non-stealth and stealth solid lipid nanoparticles (SLN) carrying 
doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats,  
Pharmacol. Res. (2000), 42: 337–343. 



References   

 -142-  

[30] T. Ameller, V. Marsaud, P. Legrand, R. Gref, J.-M. Renoir,  In vitro and in vivo 
biologic evaluation of long-circulating biodegradable drug carriers loaded with the pure 
antiestrogen RU 58668,  Int. J. Cancer (2003), 106: 446-454. 

[31] A. S. Ulrich,   Biophysical aspects of using liposomes as delivery vehicles,  Bioscience 
Reports (2002), 22(2): 129-150. 

[32] M. P. Ramprasad, A. Amini, T. Kararli, N. V. Katre,  The sustained granulopoietic 
effect of progenipoietin encapsulated in multivesicular liposomes,  International Journal 
of Pharmaceutics (2003), 261(1-2): 93-103. 

[33] K. Juni, J. Ogata, M. Nakano, T. Ichihara, K. Mori, M. Akagi,  Preparation and 
evaluation in vitro and in vivo of polylactic acid microspheres containing doxorubicin,  
Chem Pharm Bull (1985), 33:313-318. 

[34] J.-P. Benoit, N. Faisant, M.-C. Venier-Julienne, P. Menei,  Development of 
microspheres for neurological disorders: From basics to clinical applications,    Journal 
of Controlled Release  (2000),  65(1-2),  285-296. 

[35] B. Albertini, N. Passerini, M. L. Gonzalez-Rodriguez, B. Perissutti, L. Rodriguez,   
Effect of Aerosil on the properties of lipid controlled release microparticles,  Journal of 
Controlled Release (2004), 100(2): 233-246. 

[36] W. Vogelhuber, E. Magni, M. Mouro, T. Spruss, C. Guse, A. Gazzaniga, A. Gopferich,  
Monolithic triglyceride matrixes: A controlled-release system for proteins,  
Pharmaceutical Development and Technology (2003), 8(1): 71-79. 

[37] W. Vogelhuber, E. Magni, A. Gazzaniga, A. Gopferich,  Monolithic glyceryl 
trimyristate matrices for parenteral drug release applications,  European Journal of 
Pharmaceutics and Biopharmaceutics (2003), 55(1): 133-138. 

[38] C. B. Packhaeuser, J. Schnieders, C. G. Oster, T.Kissel,  In situ forming parenteral drug 
delivery systems: an overview,  European Journal of Pharmaceutics and 
Biopharmaceutics (2004), 58(2): 445-455. 

[39] W. Vogelhuber, P. Rotunno, E. Magni, A. Gazzaniga, T. Spruß, G. Bernhardt, A. 
Buschauer, A. Göpferich,  Programmable biodegradable implants,  Journal of 
Controlled Release (2001), 73 (1): 75-88. 

[40] W. Michaeli, O. Pfannschmidt,  Microporous, resorbable implants produced by the 
CESP process,  Advanced Engineering Materials (1999), 1(3-4): 206-208. 

[41] A. A. LaVan, T. McGuire, R. Langer,  Small-scale delivery systems for in vivo drug 
delivery,  Nature Biotechnology (2003), 21(10): 1184-1191. 

[42] J.H. Eldridge, J.K. Staas, J.A. Meulbroek, J.R. McGhee, T.R. Tice, R.M. Gilley,  
Biodegradable microsphere as a vaccine delivery system,  Mol. Immunol. (1991), 28: 
287–294. 

[43] N. J. Medlicott, I. G. Tucker,  Pulsatile release from subcutaneous implants,  Advanced 
Drug Delivery Reviews (1999), 38(2): 139-149. 



References   

 -143-  

[44] M.E. Akermann, W.C.W. Chan, P. Laakkonen, S.N. Bhatia, E. Ruoslahti, Nanocrystal 
targeting in vivo, Proc. Natl. Acad. Sci. USA 99, 12617-12621 (2002). 

[45] E. Merisko-Liversidge et al.,  Formulation and anti tumor activity evaluation of 
nanocrystalline suspensions of poorly soluble anti cancer drugs,  Pharm. Res. (1996), 
13: 272-278. 

[46] A. G. Tkachenko et al.,  Multifunctional gold nanoparticle –peptide complexes for 
nuclear targeting,  J. Am. Chem. Soc. (2003), 125: 4700-4701. 

[47] S.D. Putney, P.A. Burke,  Improving protein therapeutics with sustained-release 
formulations,  Nat. Biotechnol. 16 (1998) 153–157. 

[48] J.M. Pean, F. Boury, M.C. Venier-Julienne, P. Menei, C. Menei-Montero, J.P. Benoit,  
Biodegradable PLGA microspheres for the intracerebral administration of neurotrophic 
factors,  Proceed. Int’l. Symp. Control. Rel. Bioact. Mater., Boston 26 (1999) 1048–
1049. 

[49] P. Menei, M. Boisdron-Celle, A. Croue, G. Guy, J.P. Benoit,  Effect of stereotactic 
implantation of biodegradable 5-Fluorouracil-loaded microspheres in healthy and C6 
gliomabearing rats,  Neurosurgery 39 (1996) 117–124. 

[50] D. A. Edwards et al.,  Large porous particles for pulmonary drug delivery,  Science 
(1997), 276 : 1868-1871. 

[51] D. A. Edwards, C. Dunbar,  Bioengineering of therapeutic aerosols,  Annu. Rev. 
Biomed. Eng. (2002), 4: 93-107. 

[52] E. Mathiowitz, J.S. Jacob, Y.S. Jong, G.P. Carino, D. Chickering, C. Santos, K. 
Chaturvedi Vijayaraghavan, M. Bassett, S. Montgomery, C. Morrell,  Biologically 
erodable microspheres as potential oral drug delivery systems,  Nature 386 (1997) 410-
414. 

[53] G.R. Evans, K. Brandt, M. S. Widmer, L. Lu, R. K. Meszlenyi, P. K. Gupta, A. G. 
Mikos, J. Hodges, J. Williams, A. Gurlek, A. Nabawi, R. Lohman, C. W. Patrick Jr.,  In 
vivo evaluation of poly(l-lacticacid) porous conduits for peripheral nerve regeneration.  
Biomaterials (1999), 20: 1109–1115. 

[54] T.W. Hudson, G.R. Evans, C.E. Schmidt,  Engineering strategies for peripheral nerve 
repair,  Orthop. Clin. North Am. (2000), 31: 485–498. 

[55] M. Oudega, S.E. Gautier, P. Chapon, M. Fragoso, M.L. Bates, J.M. Parel, M.B. Bunge,  
Axonal regeneration into Schwann cell grafts within resorbable poly(alpha-
hydroxyacid) guidance channels in the adult rat spinal cord,  Biomaterials (2001), 22: 
1125– 1136. 

[56] M. Hacker, J. Tessmar, M. Neubauer, A. Blaimer, T. Blunk, A. Göpferich, M.B. Schulz,  
Towards biomimetic scaffolds: Anhydrous scaffold fabrication from biodegradable 
amine-reactive diblock copolymers,  Biomaterials (2003), 24: 4459-4473. 

[57] L.D. Harris, B.S. Kim, D.J. Mooney,  Open pore biodegradable matrices formed with 
gas foaming,  J. Biomed. Mater. Res. (1998) 42: 396–402. 



References   

 -144-  

[58] W.L. Murphy, D.J. Mooney,  Controlled delivery of inductive proteins, plasmid DNA 
and cells from tissue engineering matrices,  J. Periodontal Res. (1999), 34: 413– 419. 

[59] L.D. Shea, E. Smiley, J. Bonadio, D.J. Mooney,  DNA delivery from polymer matrices 
for tissue engineering,  Nat. Biotechnol. (1999), 17: 551– 554. 

[60] Y.D. Teng, E.B. Lavik, X. Qu, K.I. Park, J. Ourednik, D. Zurakowski, R. Langer, E.Y. 
Snyder,  Functional recovery following traumatic spinal cord injury mediated by a 
unique polymer scaffold seeded with neural stem cells,  Proc. Natl. Acad. Sci. U.S.A. 
(2002), 99, 3024– 3029. 

[61] J. Folkman, D. Long,   The use of silicone rubber as a carrier for prolonged drug 
therapy,  J. Surg. Res. (1964),  4: 139–142. 

[62] J. Folkman, D.M. Long, R. Rosenbaum,  Silicone rubber: a new diffusion property 
useful for general anesthesia,  Science (1966), 154: 148–149. 

[63] N. Ueno, M.F. Rofojo, L.H.S. Liu,  Controlled release rate of a lipophilic drug (BCNU) 
from a refillable silicone rubber device,  J. Biomed. Mater. Res. (1982), 16: 669–677. 

[64] T.H. Ferguson, G.F. Needham, J.F. Wagner,  Compudose: an implant system for growth 
promotion and feed efficiency in cattle,  J. Contr. Rel. (1988), 8: 45–54. 

[65] V. Ranade,  Drug delivery systems 4. Implants in drug delivery,  J. Clin. Pharm. (1990), 
30: 871– 889. 

[66] H.W. Buchholz, H. Engelbrecht,  Depot effect of various antibiotics mixed with Palacos 
resins,  Chirurg (1970), 40: 511–515. 

[67] K. Klemm,  Die Behandlung chronischer Knocker-infektionen mit Gentamycin-PMMA-
Ketten and Kugelen. In Gentamycin-PMMA-Kette,  Gentamycin-PMMA-Kugelin 
Symposium. Ed., H. Conten. Munchen, Erlaner: VLE Verlag (1977), pp. 20–25. 

[68] D.K. Kirkpatric, L.S. Tractenberg, P.D. Mangino,  In vitro characteristics of 
tobramycin-PMMA beads: compressive strength and leaching,  Orthopedics (1985) 8: 
1130 –1134. 

[69] D.H. Robinson, S. Sampath,  Release kinetics of tobramycin sulfate from 
polymethylmethacrylate implants,  Drug. Dev. Ind. Pharm. (1989) 15:2339 –2357. 

[70] F. Greco, L. Palma, N. Specchia, S. Jacobelli, C. Gaggini,  Polymethylmethacrylate-
antiblastic drug compounds: an in vitro study assessing the cytotoxic effect in cancer 
cell lines-a new method for local chemotherapy of bone metastasis,  Orthopedics 
(1992), 15: 189-194. 

[71] H. Wahlig, E. Dingeldein,  Antibiotics and bone cements. Experimental and clinical 
long-term observations,  Act. Ortho. Scand. (1980), 51: 49 –56. 

[72] H. Whalig, Gentamicin PMMA beads, a drug delivery system, basic results. In Local 
Antibiotic Treatment in Osteomyelitis and Soft Tissue Infections. Eds., Th JG van Rens 
and FH Kayser, (1981), Amsterdam: Excerpta, pp. 9–17. 



References   

 -145-  

[73] A.K. Dash, R. Suryanarayanan,  An implantable dosage form for the treatment of bone 
infections,  Pharm. Res. (1992), 9: 993–1002. 

[74] D.A. Wood,  Biodegradable drug delivery systems,  Int J Pharm (1980), 7: 1–18. 

[75] D.H. Lewis,  Controlled release of bioactive agents from lactide/glycolide polymers,  In 
Biodegradable Polymers as Drug Delivery Systems, Ed., M Chasin R Langer, New 
York: Marcel Dekker (1990), pp. 1–41. 

[76] M. Danckwerts, A. Fassihi,  Implantable controlled release drug delivery systems: a 
Review,  Drug. Dev. Ind. Pharm. (1991), 17: 1465–1502. 

[77] H. Okada, Y. Inoue, T. Heya, H. Ueno, T. Ogawa, H. Toguchi, Pharmacokinetics of 
once-a-month injectable microspheres of leuprolide acetate, Pharmaceutical Research 8 
(1991): 787–791. 

[78] T.R. Tice, D.W. Mason, R.M. Gilley, Clinical use and future of parenteral microsphere 
delivery systems, in: L.F. Precott, and Nimmo, W.S. (Eds.), Novel Drug Delivery and 
its Therapeutic Application, Wiley, New York, 1989, p. 223. 

[79] B.J.A. Furr, F.G. Hutchison, A biodegradable delivery system for peptides: preclinical 
experience with the gonadotropin-releasing hormone agonist ZoladexÒ, J. Control. 
Release 21 (1992) 117–128. 

[80] H. Brem, S. Piantadosi, P.C. Burger, M. Walker, R. Selker, N.A. Vick, K. Black, M. 
Sisti, S. Brem, G. Mohr, P. Muller, R. Morawetz, S.C. Schold, Placebo-controlled trial 
of safety and efficacy of intraoperative controlled delivery by biodegradable polymers 
of chemotherapy for recurrent gliomas, Lancet 345 (1995) 1008–1012. 

[81] N.B. Graham,  Polymeric inserts and implants for the controlled release of drugs,  Br. 
Poly. J. (1978), 10: 260 –266. 

[82] H. Okada, Y. Inoue, T. Heya, H. Ueno, T. Ogawa, H. Toguchi,  Pharmacokinetics of 
once-a-month injectable microspheres of leuprolide acetate, Pharmaceutical Research 
(1991), 8: 787–791. 

[83] B.J.A. Furr, F.G. Hutchison,  A biodegradable delivery system for peptides: preclinical 
experience with the gonadotropin-releasing hormone agonist Zoladex®,  J. Control. 
Release (1992), 21: 117–128. 

[84] T.R. Tice, D.W. Mason, R.M. Gilley,  Clinical use and future of parenteral microsphere 
delivery systems, in: L.F. Precott, and Nimmo, W.S. (Eds.), Novel Drug Delivery and 
its Therapeutic Application, Wiley, New York, 1989, p. 223. 

[85] Kissel T, Li Y, Unger F. ABA-triblock copolymers from biodegradable polyester A-
blocks and hydrophilic poly(ethyleneoxide) B-blocks as a candidate for in situ forming 
hydrogel delivery systems for proteins. Adv Drug Delivery Rev (2002), 54(1): 99-134. 

[86] S. Kyotani, Y. Nishioka, M. Okamura, T. Tanaka, M. Miyazaki, S. Ohnishi, Y. 
Yamamoto, K. Ito, T. Ogiiso, S. Tanada, M. Terao,  A study of embolizing materials for 
chemo-embolization therapy of hepatocellular carcinoma: antitumor effect of cis-
diaminedichloroplatinum(II) albumin microspheres, containing chitin and treated with 



References   

 -146-  

chitosan on rabbits with VX2 hepatic tumors,  Chemical & Pharmaceutical Bulletin 
(1992), 40(10): 2814–2816. 

[87] P.K. Gupta, C.T. Hung, F.C. Lam,  Application of regression analysis in the evaluation 
of tumor response following the administration of adriamycin either as a solution or via 
albumin microspheres to the rat, J. Pharm. Sci. (1990), 79(7): 634–637. 

[88] J. Novotny, K. Zinek,  Application of epirubicin containing albumin microspheres in the 
experimental therapy of breast cancer,  Neoplasma (1994), 41: 201–204. 

[89] J.A. Goldberg, N.S. Willmott, J.H. Anderson, G. McCurrach, R.G. Bessent, J.H. 
McKillop, C.S. McArdle,  The biodegradation of albumin microspheres used for 
regional chemotherapy in patients with colorectal liver metastasis,  Nuclear Medicine 
Communications (1991), 12(1): 57–63. 

[90] J.C. Doughty, J.H. Anderson, N. Willmott, C.S. Asardle,  Intra-arterial administration of 
adriamycin-loaded albumin microspheres for locally advanced breast cancer,  Posttissue 
graduate Medical Journal (1994), 71(831): 47–49. 

[91] D. Maysinger, K. Krieglstein, J. Filipovic-Grcic, M. Sendtner, K. Unsicker, P. 
Richardson,  Microencapsulated ciliary neurotrophic factor: physical properties and 
biological activities. Exp. Neurol. (1996), 138: 177–188. 

[92] H.H. Tonnesen, J. Karlsen,  Alginate in drug delivery systems,  Drug Development and 
Industrial Pharmacy (2002), 28(6): 621-630. 

[93] M.Z.I. Khan, I.G. Tucker, J.P. Opdebeeck,  Evaluation of cholesterol-lecithin implants 
for sustained delivery of antigen: release in vivo and single-step immunisation of mice,  
International Journal of Pharmaceutics (1993),90(3);255-262. 

[94] D. Boison, L. Scheurer, J.L. Tseng, P. Aebischer, H. Mohler,  Seizure suppression in 
kindled rats by intraventricular grafting of an adenosine releasing synthetic polymer.  
Exp. Neurol. (1999), 160: 164-174. 

[95] W. Bechtel, K.C.Wright, S.Wallace, B. Mosier, D. Mosier, S. Mir, S. Kuo,  An 
experimental evaluation of microcapsules for arterial chemoembolization,  Radiology 
(1986), 161: 601–604. 

[96] D. S. Kohane, N. Plesnila, S. S. Thomas, D. Le, R. Langer, M. A. Moskowitz,  Lipid-
sugar particles for intracranial drug delivery: safety and biocompatibility,  Brain 
Research (2002), 946(2): 206-213. 

[97] D.R. Parker, P.K. Bajpai,  Effect of locally delivered testosterone on bone healing.  19th 
Annual Meeting of the Society for Biomaterials April 28–May 2 (1993): p. 276. 

[98] L. Illum, I. Jabbal-Gill, M. Hinchcliffe, A.N. Fisher, S.S. Davis,  Chitosan as a novel 
nasal delivery system for vaccines,  Advanced Drug Delivery Reviews (2001), 
51(1-3):  81-96. 

[99] A.C. Lee, V.M. Yu, J.B. Lowe 3rd, M.J. Brenner, D.A. Hunter, S.E. Mackinnon, S.E. 
Sakiyama-Elbert,  Controlled release of nerve growth factor enhances sciatic nerve 
regeneration,  Exp. Neurol. (2003), 184: 295– 303. 



References   

 -147-  

[100] S.E. Sakiyama-Elbert, A. Panitch, J.A. Hubbell,  Development of growth factor fusion 
proteins for cell-triggered drug delivery. FASEB J. (2001), 15: 1300– 1302. 

[101] P.Y. Wang,  Lipids as excipient in sustained release insulin implants,  International 
Journal of Pharmaceutics (1989), 54(3): 223-230. 

[102] P.T. Golumbek, R. Azhari, E.M. Jaffe, H.I. Levitsky, A. Lazenby, K. Leong, D.M. 
Pardoll,  Controlled release, biodegradable cytokine depots: a new approach in cancer 
vaccine design,  Cancer Res. (1993), 53: 5841–5844. 

[103] Z. Zhao, E.M. Jaffe, M.C. Thomas, D.M. Pardoll, K.W. Leong,  GM-CSF microspheres 
in cancer immunotherapy - a mechanistic study of the vaccine site,  Proceedings of 
International Symsposium on Controlled Release of Bioactive Materials (1996), 23: 91–
92. 

[104] Y. Tabata, K. Uho, S. Muramatsu, Y. Ikada,  In vivo effects of recombinant interferon 
alpha A/D incorporated in gelatin microspheres on murine tumor cell growth, Jpn. J. 
Cancer Res. (1989), 80: 387–393. 

[105] X. Chen,Y.Wu, D. Zhong, L. Li, T. Tan, X. Xie, C.Yan, X. Li,  Hepatic carcinoma 
treated by hepatic arterial embolization using I and chemotherapeutic agent gelatin 
microspheres report of 9 cases,  Journal of West China University of Medical Sciences 
(1992), 23(4): 420–423. 

[106] P.Y. Wang,  Sustained delivery of bioactive polypeptide by compression in lipid 
admixture,  Mat. Res. Soc. Symp. Proc. (1989), 110: 407-412. 

[107] M. Acemoglu,  Chemistry of polymer biodegradation and implications on parenteral 
drug delivery,  International Journal of Pharmaceutics (2004), 277(1-2): 133-139. 

[108] L. Illum, N.F. Farraj, A.N. Fisher, I. Jabbal-Gill, M. Miglietta, L.M. Benedetti,  
Hyaluronic acid ester microspheres as a nasal delivery system for insulin,  J. Control. 
Release (1994), 29: 133–141. 

[109] I. R. Dos Santos, J. Richard, B. Pech, C. Thies and J. P. Benoit,  Microencapsulation of 
protein particles within lipids using a novel supercritical fluid process,  International 
Journal of Pharmaceutics (2002), 242(1-2): 69-78. 

[110] I.S.Wollner, S.C.Walker-Andrews, J.E. Smith, W.D. Ensminger,  Phase II study on 
hepatic arterial degradable starch microspheres and mitomycin,  Cancer Drug Delivery 
(1986), 3(4): 279–284. 

[111] M. Kitamura, K. Arai, K. Miyashita, G. Kosaki,  Arterial infusion chemotherapy in 
patients with gastric cancer in liver metastasis and long-term survival after treatment, 
Japanese Journal of Cancer & Chemotherapy (1989), 16(8 Pt 2): 2936–2939. 

[112] A.K. Thom, E.R. Sigurdson, M. Bitar, J.M. Daly,  Regional hepatic arterial infusion of 
degradable starch microspheres increases fluorodeoxyuridine (FUdR) tumor uptake, 
Surgery (1989), 105(3): 383–392. 

[113] D. Civalleri, J.C. Pector, L. Hakansson, J.P. Arnaud, N. Duez, M. Buyse,  Treatment of 
patients with irresectable liver metastates from colorectal cancer by chemo-occlusion 



References   

 -148-  

with degradable starch microspheres, British Journal of Surgery (1994), 81(9): 1338-
1341. 

[114] T.P. Foster, E.L. Parrott,  Release of highly water-soluble medicinal compounds from 
inert, heterogenous matrices. I: Physical mixture,  Journal of Pharmaceutical Sciences 
(1989), 79(9): 806-810. 

[115] M. S. Espuelas, P. Legrand, J. M. Irache, C. Gamazo, A. M. Orecchioni, J. -Ph. 
Devissaguet and P. Ygartua,  Poly([ε]-caprolacton) nanospheres as an alternative way to 
reduce amphotericin B toxicity, International Journal of Pharmaceutics (1997), 158(1): 
19-27. 

[116] M.Z.I. Khan, I. G. Tucker, J. P. Opdebeeck,  Cholesterol and lecithin implants for 
sustained release of antigen: release and erosion in vitro, and antibody response in mice, 
International Journal of Pharmaceutics (1991), 76(1-2): 161-170. 

[117] S. El-Shanawany,  Sustained release of nitrofurantoin from inert wax matrixes,  Journal 
of Controlled Release (1993), 26(1): 11-19. 

[118] H. Reithmeier, J. Herrmann, Achim Göpferich,  Lipid microparticles as a parenteral 
controlled release device for peptides, Journal of Controlled Release (2001), 73(2-3): 
339-350. 

[119] C. Jollivet, A. Aubert-Pouessel, A. Clavreul, M.C. Venier-Julienne, S. Remy, C.N. 
Montero-Menei, J.P.  Benoit, P. Menei,  Striatal implantation of GDNF releasing 
biodegradable microspheres promotes recovery of motor function in a partial model of 
Parkinson’s disease, Biomaterials (2004), 25: 933–942. 

[120] R. Bodmeier, O. Paeratakul,  Process and formulation variables affecting the drug 
release from chlorpheniramine maleate-loaded beads coated with commercial and self-
prepared aqueous ethyl cellulose pseudolatexes,  International Journal of Pharmaceutics 
(1991), 70(1-2): 59-68. 

[121] V.G. Roullin, L. Lemaire, M.C. Venier-Julienne, N. Faisant, F. Franconi, J.P. Benoit,  
Release kinetics of 5-fluorouracil-loaded microspheres on an experimental rat glioma,  
Anticancer Res. (2003), 23: 21–25. 

[122] H. Okada, T. Heya, Y. Ogawa, T. Shimamoto,  One-month release injectable 
microcapsules of a luteinizing hormone-releasing hormone agonist (leuprolide acetate) 
for treating experimental endometriosis in rats, J. Pharmacol. Exp. Ther. (1988), 244: 
744–750. 

[123] H. Toguchi,  Pharmaceutical manipulation of leuprorelin acetate to improve clinical 
performance,  J. Int. Med. Res. (1990), 18(Suppl. 1): 35–41. 

[124] S. Li, M. Lepage,Y. Merand, A. Belanger, F. Labrie,  Growth inhibition of 7,12-
dimethylbenz(a)anthracene-induced rat biomammary tumors by controlled-release low-
dose medroxyprogesterone acetate, Breast Cancer Res. Treat. (1992), 24: 127–137. 

[125] S. Kyotani, Y. Nishioka, M. Okamura, T. Tanaka, M. Miyazaki, S. Ohnishi, Y. 
Yamamoto, K. Ito, T. Ogiiso, S. Tanada, M. Terao,  A study of embolizing materials for 
chemo-embolization therapy of hepatocellular carcinoma: antitumor effect of cis-
diaminedichloroplatinum(II) albumin microspheres, containing chitin and treated with 



References   

 -149-  

chitosan on rabbits with VX2 hepatic tumors,  Chemical & Pharmaceutical Bulletin 
(1992), 40(10): 2814–2816. 

[126] J. Yang, X.C. Ma, Z.J. Zon, S.L. Wei,  Experimental maxillofacial arterial 
chemoembolization with encased-cisplatin ethylcellulose microspheres, Am. J. 
Neuroradiol. (1995), 16: 1037–1041. 

[127] M.A. Burton, Y. Chen, H. Atkinson, J.P. Codde, S.K. Jones, B.N. Gray,  In vitro and in 
vivo responses of doxorubicin ion exchange microspheres to hyperthermia,  Int. J. 
Hyperthermia (1992), 8: 485–494. 

[128] J.P. Codde, A.J. Lumsden, S. Napoli, M.A. Burton, B.N. Gray,  A comparative study of 
the anticancer efficacy of doxorubicin carrying microspheres and liposomes using a rat 
liver tumour model, Anticancer Res. (1993), 13: 539-543. 

[129] H. Teder, C.J. Johansson,  The effect of different dosages of degradable starch 
microspheres (Spherex) on the distribution of doxorubicin regionally administered to 
the rat,  Anticancer Res. (1993), 13: 2161–2164. 

[130] N. Chiannilkulchai, N. Ammoury, B. Caillou, J.P. Dementvissaguet, P. Couvreur,  
Hepatic tissue distribution of doxomedulloblastomarubicin-loaded nanoparticles after 
i.v. administration in reticulosarcoma M 5076 metastasis-bearing mice, Cancer 
Chemother. Pharmacol. (1991), 26: 122–126. 

[131] A. Sintov, W.A. Scott, R. Siden and R.J. Levy,  Efficacy of epicardial controlled-release 
lidocaine for ventricular tachycardia induced by rapid ventricular pacing in dogs,  J. 
Cardiovasc. Pharmacol. (1990), 16: 812-817. 

[132] R. Siden, A. Kadish, W. Flowers, L. Kutas, B.K. Bieneman, J. DePietro, J.P. Jenkins, 
K.P. Gallagher and R.J. Levy,  Epicardial controlled-release verapamil prevents 
ventricular tachycardia episodes induced by acute ischemia in a canine model,  J. 
Cardiovasc. Pharmacol. (1992), 19: 798-809. 

[133] V. Labhasetwar, T. Underwood M. Gallagher, G. Murphy, J. Langberg and R.J. Levy,  
Sotalol controlled release systems for arrhythmias: In vitro characterization, in vivo 
drug disposition, and electrophysiologic effects,  J Pharm Sci. (1994), 83: 156-164. 

[134] R.J. Levy, G. Golomb, J. Trachy, V. Labhasetwar, D. Muller and E. Topoi,  Strategies 
for treating arterial restenosis using polymeric controlled release implants, in: C.G. 
Gebelein ( Ed. ), Biotechnology and Bioactive Polymers, Lionfire, Edgewater, FL, 
1994, pp. 259-268. 

[135] A. Göpferich, R. Langer, Modeling of polymer erosion in three dimensions: rotationally 
symmetric devices, AIChE J. (1995), 41: 2292–2299. 

[136] J. M. Anderson, M. S. Shive; Biodegradation and biocompatibility of PLA and PLGA 
microspheres; Advanced Drug Delivery Reviews; 1997; 28; 5-24. 

[137] M. A. Royals; S. M. Fujita, G. L. Yewey , J. Rodriguez, P. C. Schultheiss, R. L. Dunn; 
Biocompatibility of a biodegradable in situ forming implant system in rhesus monkeys; 
J. Biomed. Mater. Res.; 1999; 45; 231-239. 



References   

 -150-  

[138] B. Ronneberger, T. Kissel, J. M. Anderson; Biocompatibility of ABA triblock 
copolymer microparticles consisting of poly(L-lactic-co-glycolic-acid) A-blocks 
attached to central poly(oxyethylene) B-blocks in rats after intramuscular injection; 
European Journal of Pharmaceutics and Biopharmaceutics; 1997; 43; 19-28. 

[139] A. Brunner, K. Mäder, A. Göpferich,  The chemical microenvironment inside 
biodegradable microspheres during erosion,  Proc. Int. Symp. Control. Release Bioact. 
Mater. (1998), 25: 154–155. 

[140] M. Morlock, H. Koll, G. Winter, T. Kissel,  Microencapsulation of rh-erythropoietin, 
using biodegradable poly(,-lactide-co-glycolide): protein stability and the effects of 
stabilizing excipients,  European Journal of Pharmaceutics and Biopharmaceutics, 
(1997), 43(1): 29-36. 

[141] A. Lucke, J. Kiermaier, A. Goepferich, Peptide acylation by poly(ahydroxyesters), 
Pharm. Res. (2002), 19: 175–181. 

[142] T. Eldem, P. Speiser, H. Altorfer,  Polymorphic behavior of sprayed lipid micropellets 
and its evaluation by differential scanning calorimetry and scanning electron 
microscopy, Pharm. Res. (1991), 8: 178-184. 

[143] E.E. Hassen, J.M. Gallo,  Targeting anticancer drugs to the brain. I: Enhanced brain 
delivery of oxantrazone following administration in magnetic cationic microspheres,  J. 
Drug Targeting (1993), 1: 7–14. 

[144] J. Yang, X.C. Ma, Z.J. Zon, S.L. Wei,  Experimental maxillofacial arterial 
chemoembolization with encased-cisplatin ethylcellulose microspheres,  Am. J. 
Neuroradiol. (1995), 16: 1037–1041. 

[145] N.A. Barekzi, A.G. Felts, K.A. Poelstra, J.B. Slunt, D.W. Grainger,  Locally delivered 
polyclonal antibodies potentiate intravenous antibiotic efficacy against Gram-negative 
infections,  Pharm. Res. (2002), 19: 1801-1807. 

[146] K.A. Poelstra, N.A. Barekzi, A.M. Rediske, A.G. Felts, J.B. Slunt, D.W. Grainger,  
Prophylactic treatment of Gram-positive and Gram-negative abdominal implant 
infections using locally delivered polyclonal antibodies,  J. Biomed. Mater. Res. (2002), 
60: 206-215. 

[147] I.A. Rojas, J.B. Slunt, D.W. Grainger,  Polyurethane coatings release bioactive 
antibodies to reduce bacterial adhesion,  J. Controlled Release (2000), 63: 175–189. 

[148] A. Berthold, K. Cremer, J. Kreuter,  Collagen microparticles: carriers for 
glucocorticoids,  Eur J Pharm (1998), 45: 23-9. 

[149] C.-M. Chang, R. Bodmeier,  Low viscosity monoglyceride-based drug delivery systems 
transforming into a highly viscous cubic phase,  International Journal of Pharmaceutics 
(1998), 173(1-2): 51-60. 

[150] R.H. Müller, K. Mäder, S. Gohla,  Solid lipid nanoparticles (SLN) for controlled drug 
delivery - a review of the state of the art,  European Journal of Pharmaceutics and 
Biopharmaceutics (2000), 50(1): 161-177. 



References   

 -151-  

[151] S. Morel, M.R. Gasco, R. Cavalli,  Incorporation in lipospheres of [D-Trp-6]LHRH, Int. 
J. Pharm. (1994), 105: R1– R3. 

[152] A.J. Almeida, S. Runge, R.H. Müller,  Peptide-loaded solid lipid nanoparticles (SLN): 
influence of production parameters,  Int. J. Pharm. (1997), 149: 255– 265. 

[153] A. Maschke, T. Blunk, A. Göpferich,  Lipid Microparticles for Sustained Release of 
Peptides and Proteins, Annual meeting of the AAPS, 2003. 

[154] S. Koennings, C. Guse, T. Blunk, A. Goepferich,  Lipid implants for controlled release 
of proteins, Annual meeting of the Controlled Release Society, 2003. 

[155] Desinfektion mit UV Strahlung: Strahlenquellen, technische Hinweise und Anwendung, 
UV-Technik, Speziallampen GmbH, Wümbach, Germany, 1999. 

[156] S.D. Wicksell, The corpuscle problem. A mathematical study of a biometric problem, 
Biometrika 1925, XVII: 84-99. 

[157] S.D. Wicksell, The corpuscle problem. Second memoir. Case of ellipsoidal corpuscles, 
Biometrika 1926, XVIII: 151-172. 

[158] D. Stoyan, W. S.  Kendall, J. Mecke; Stochastic geometry and its applications, p289ff. 

[159] E. Stepanek, Praktische Analyse linearer Systeme durch Faltungsoperationen; 
Akademische Verlagsgesellschaft Geest & Portig K.-G. Leipzig (1976), Issue 23. 

[160] R. Suverkrup, Convolution and deconvolution methods, Drugs and the Pharmaceutical 
Sciences (2000), 106(Oral Drug Absorption): 255-280. 

[161] Z.Z. Karu, Signals and Systems, ZiZi Press Cambridge, 1995, pp. 45ff. 

[162] P. Langguth, G. Fricker, H. Wunderli-Allenspach, Biopharmazie, Wiley-VCH Verlag 
GmbH & CoKGaA Weinheim, 2004, pp 242ff. 

[163] G. Grimmett, Percolation, Sringer Verlag New York, Berlin, Heidelberg, London, Paris, 
Tokyo, 1988. 

[164] D. Stauffer, Introduction to percolation theory, Taylor & Francis, London and 
Philadelphia, 1985. 

[165] D. Stauffer, A. Coniglio, M. Adam; Gelation and critical phenomena; Adv. Polymer 
Sci. 1982; 44: 103-158. 

[166] H. Leuenberger, R. Leu; Formation of a tablet: A site and bond percolation 
phenomenon; Journal of pharmaceutical sciences 1992; 81(10): 976-982. 

[167] H. Leuenberger, B. D. Rohera, C. Haas; Percolation theory – a novel approach to solid 
dosage form design; International Journal of Pharmaceutics 1987; 38: 109-115. 

[168] S. Tonoli, Rilascio da sistemi lipidici impiantabili: influenza della porosità e delle 
interazioni tracciante-matrice, Dissertation submitted for Diploma 2005. 

[169] I. V. Pech, K. Peterson, J. G. Cairncross; Chemotherapy for brain tumors; Oncology; 
1998; 12; 537-553. 



References   

 -152-  

[170] P. U. Freda; How effective are current therapies for acromegaly; Growth Hormone & 
IGF Research, 2003; 13; S141-S151. 

[171] M. Konishi, Y. Tabata, M. Kariya, A. Suzuki, M. Mandai, K. Nanbu, K. Takakura, S. 
Fujii; In vivo anti-tumor effect through the controlled release of cisplatin from 
biodegradable gelatin hydrogel; Journal of Controlled Release; 2003; 92; 301-313. 

[172] S. Brahim, D. Narinesingh, A. Guiseppi-Elie; Bio-smart hydrogels: co-joined molecular 
recognition and signal transduction in biosensor fabrication and drug delivery; 
Biosensors and Bioelectronics; 2002; 17; 973-981. 

[173] C. Tardi, M. Drechsler, K.H. Bauer, M. Brandl; Steam sterilisation of vesicular 
phospholipid gels; International Journal of Pharmaceutics; 2001; 217(1-2); 161-172. 

[174] D. T. Morehead; N. W. Pankhurst; A. J. Ritar; Effect of treatment with LH-RH analog 
on oocyte maturation, plasma sex steroid levels and egg production in female striped 
trumpeter Latris lineata (Latrididae); Aquaculture; 1998; 169(3,4); 315-331. 

[175] C. Guse, S. Schreiner, T. Spruß, T. Blunk, A. Göpferich; Phospholipids as a release 
modifier for triglyceride matrices; DPhG Jahrestagung 2002, Berlin (Germany). 

[176] Y. Tabata, A. Nagano, Y. Ikada; Biodegradation of hydrogel carrier incorporating 
fibroblast growth factor; Tissue engineering 1999; 5(2); 127-38. 

[177] Baumans V., The Laboratory Mouse, in: Poole T. (ed) The UFAW Handbook 
on the Care and Management of Laboratory Animals, Vol. 1 (1999), pp. 
282-312, Blackwell Science, Oxford. 

[178] J. Hilborn; A new evolving paradigm for biocompatibility; Cytotherapy; 2004; 6; 265. 

[179] B. Saad, O. M. Keiser, M. Welti, G. K. Uhlschmid, P. Neueuschwandner, U. W. Suter; 
Multiblock copolyesters as biomaterials: in vitro biocompatibility testing; J. Mater. Sci.: 
Mater. Med.1997; 8: 497-505. 

[180] J. E. Bergsma, R. R. M. Bos, F. R. Rozema, W. de Jong, G. Boering; Biocompatibility 
of intraosseously implanted predegraded poly(lactide): an animal study; J. Mater. Sci.: 
Mater. Med.1996; 7: 1-7. 

[181] R. Van Dijkhuizen-Radersma, S. C. Hesseling, P. E. Kaim, K. de Groot, J. M. Bezemer; 
Biocompatibility and degradation of poly(ether-ester) microspheres: in vitro and in vivo 
evaluation; Biomaterials 2002; 23: 4719-4729. 

[182] M. J. Fernández-Hervás, M. T. Vela, M. J. Arias and A. M. Rabasco, Percolation 
theory: Evaluation and interest of percolation thresholds determination in inert matrix 
tablets, Pharmaceutica Acta Helvetiae1996, 71(4): 259-264. 

[183] J.T. Santini Jr, M.J. Cima; R. Langer, A controlled-release microchip, Nature 1999, 
398(6717): 335-338. 

[184] S. Sershen, J. West, Implantable, polymeric systems for modulated drug delivery, 
Advanced Drug Delivery Reviews, 2002, 54(9): 1225-1235. 



References   

 -153-  

[185] N.A. Peppas, Fundamentals of pH- and temperature-sensitive delivery systems, in: R. 
Gurny, H. Junginger, N. Peppas (eds.), Pulsatile drug delivery, Wissenschaftliche 
Verlagsgesellschaft mbH, Stuttgart, 1992, pp. 41-56. 

[186] T. Bussemer, I. Otto, R. Bodmeier, Pulsatile drug-delivery systems, Critical Reviews in 
Therapeutic Drug Carrier Systems (2001), 18(5): 433-458. 

[187] B.G. Stubbe, S.C. De Smedt, J. Demeester, “Programmed Polymeric Devices" for 
Pulsed Drug Delivery, Pharmaceutical Research (2004), 21(10): 1732-1740. 

[188] A. Kikuchi, T. Okano, Pulsatile drug release control using hydrogels, Advanced Drug 
Delivery Reviews (2002), 54(1): 53-77. 

[189] A.C. Richards Grayson, I.S. Choi, B.M. Tyler, P.P. Wang, H. Brem, M.J. Cima, R. 
Langer, Multi-Pulse drug delivery from a resorbable polymeric microchip device, 
Nature Materials 2003, 2: 767-772. 

[190] A. Göpferich, Bioerodible implants with programmable drug release, J. Control. 
Release 1997, 44(2-3): 271-281. 

[191] A. Göpferich, Implants with phased release of medicaments, US 6086908, July 11, 
2000. 

[192] S. Koennings, A. Goepferich, Lipospheres as delivery systems for peptides and proteins 
Lipospheres in Drug Targets and Delivery, 2005, pp. 67-86. 

[193] L.N. Gillespie, G.M. Clark, P.F. Bartlett, P.L. Marzella, BDNF-induced survival of 
auditory neurons in vivo: cessation of treatment leads to accelerated loss of survival 
effects, Journal of Neuroscience research 2003, 71: 785-790. 

[194] M. Ozeki, Y. Tabata, Promoted growth of murine hair follicles through controlled 
release of vascular endothelial growth factor, Biomaterials (2002), 23(11): 2367-2373. 

[195] A. Sharma, C.M. Harper, L. Hammer, R.E. Nair, E. Mathiowitz, N.K. Egilmez, 
Characterization of cytokine-encapsulated controlled-release microsphere adjuvants, 
Cancer Biotherapy & Radiopharmaceuticals (2004), 19(6): 764-769. 

[196] Y. Yuyama, M. Tsujimoto, Y. Fujimoto, N. Oku, Potential usage of thermosensitive 
liposomes for site-specific delivery of cytokines, Cancer Letters (Shannon, Ireland) 
(2000), 155(1): 71-77. 

[197] P.B. Storm, J.T. Moriarity, B. Tyler, P.C. Burger, H. Brem, J. Weingart, Polymer 
delivery of camptothecin against 9L gliosarcoma: release, distribution, and efficacy.     
Journal of neuro-oncology 2002, 56(3): 209-17. 

[198] A. McRae, A. Dahlstrom, Transmitter-loaded polymeric microspheres induce regrowth 
of dopaminergic nerve terminals in striata of rats with 6-OH-DA induced parkinsonism, 
Neurochem. Int. 1994, 25: 27–33. 

[199] A. Mc Rae, E.A. Ling, S. Hjorth, A. Dahlstrom, D. Mason, T. Tice, Catecholamine-
containing biodegradable microsphere implants as a novel approach in the treatment of 
CNS neurodegenerative disease. A review of experimental studies in DA-lesioned rats, 
Mol. Neurobiol. 1994, 9: 191–205. 



References   

 -154-  

 



Appendices   

 -155-  

Appendices 



Appendices   

 -156-  

List of Abbreviations 

AIDS acquired immunodeficiency syndrome 

ANOVA analysis of variance 

BBB blood-brain barrier 

BGS Beta Gamma Service 

DMPC dimyristoyl-phosphatidyl-choline 

DPPC dipalmitoyl-phosphatidyl-choline 

DSC differential scanning calorimetry 

DSPC distearoyl-phosphatidyl-choline 

Em. emission 

EVAc Ethylvinylacetate copolymer 

Ex. extinction 

GFC gel filtration chromatography 

HCl hydrochloric acid 

HIV human immunodeficiency virus 

HPLC high performance liquid chromatography 

i.m. intramuscularly 

i.v. intravenously 

LC/MS liquid chromatography coupled with mass spectrometry 

Mw weight average molecular weight 

m/z mass-per-charge 

NMRI Naval Medical Research Institute 

pBMA poly(butylmethacrylate) 

pCPP-SA poly(bis(p-carboxyphenoxy)propane) - sebacic acid 

PDMS poly(dimethylsiloxane) 

PEG poly(ethylene glycol) 

PES polyester 
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Ph. Eur. Pharmacopoea Europaea 

PLA poly(D,L-lactic acid) 

PLGA poly(D,L-lactic-co-glycolic acid) 

PMMA poly(methylmethacrylate) 

PTFE polytetrafluor-ethylen 

s.c. subcutaneously 

SD standard deviation 

SEM scanning electron microscopy 

TFA trifluoroacetic acid 

Tg glass transition temperature 

THF tetrahydrofurane 

% (w/w) percent, weight per weight 

WAXD wide angle X-ray diffractometry 

WHO World health organisation 
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