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1. Summary  

Phototaxis and photophobic responses of green algae are mediated by rhodopsin-based 

photoreceptors that use microbial-type chromophores (all-trans retinal). Light absorption 

of algal rhodopsin triggers photoreceptor currents that have been studied intensively with a 

suction pipette technique. Analysis of stimuli-response curves of the C. reinhardtii 

photoreceptor current led to the suggestion that they are based on two photosystems, one of 

which is more active at low flash intensities, whereas the other dominates at high flash 

energies.  

Thus, this research work was intended to identify the opsin-based photoreceptor 

responsible for photobehavioural responses of C. reinhardtii. Two cDNA sequences were 

identified in the EST database of the C.reinhardtii that encoded microbial-type opsins, 

which were named Chlamyopsin-3 and 4 (Cop-3 and Cop-4) respectively, based on their 

homology to the known microbial-type opsins. The seven-transmembrane helices at the N-

terminus of these opsins showed homology to the light-activated proton pump, 

bacteriorhodopsin (BR). However, after functional expression in the oocytes of X. laevis 

these opsins were renamed as Channelopsin-1 and 2 (Chop-1 and Chop-2) based on their 

ion channel activity.  

The amino acids that form the H+-conducting network in BR are conserved in Chop-1 and 

Chop-2, whereas the rest of their sequences are different. The predicted secondary 

structure (7TMH) and hypothetical retinal-binding site (conserved lysine residue) of the 

Channelopsins led to the suggestion that these proteins are members of the archaeal-type 

family. Furthermore, bioinformatic analysis suggested that new rhodopsins might be 

functioning as ion transporters in active or passive mode upon functional expression. 

Heterologoulsy expressed Channelopsins (Chop-1 and 2) in E.coli formed inclusion 

bodies, and thus recombinant proteins were not functional. Moreover, the expression of 

Channelopsins (Chop-1 and 2) was toxic for the E.coli. Expression of Chop-1 in P. 

pastoris led to the production of non-functional protein, since it did not bind all-trans 

retinal. 

Functional expression of Chop-1 mRNA in the oocytes of X. laevis (Chop-1 + all-trans 

retinal =ChR1) showed a light-gated ion channel conductance, which was studied in detail 

using a two-electrode voltage clamp technique (Nagel et al., 2002). The observed transport 
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activity was purely passive and directly dependent on the membrane potential and the 

proton concentration gradient in bath solution. Outward photocurrents could be observed at 

high exracellular pH or low intracellular pH. The conductance was highly selective for 

protons, and other monovalent or divalent ions were not found to be permeating. The 

amplitude of the current was graded with the light intensity, and the currents only saturated 

when all rhodopsin was activated (> 1020 photons.m-2.S-2). The action spectra obtained 

was rhodopsin shaped, with a maximum in the green at 500 nm. It was also observed by 

mutational analysis that the H173 residue of Chop-1 does not function as a proton donor of a 

deprotonated Schiff base. Therefore, it was suggested that in ChR1 the retinal Schiff base 

is not de-protonated during the photocycle. These experiments left no doubt that the 

oocytes had expressed an ion channel with an intrinsic sensor. It is likely that such light 

sensitive ion channels are widely distributed in other phototactic microalgae, as well as in 

gametes and zoospores of the macroalgae. This claim is corroborated by the observation 

that Volvoxopsin-2 (Vop-2) a partial opsin like sequence was identified in the V. carteri 

genome project, which showed 75% identical amino acid residues to Channelopsins in the 

helices 5-7 of the opsin domain. 

Heterologous expression of Chop-2 was also carried out in E.coli to produce functional 

recombinant protein. It was observed that the expression characteristic of Chop-2 were 

similar to that of Chop-1. Therefore, Chop-2 was directly expressed in Xenopus oocytes, in 

the presence of all-trans retinal to produce functional Channelrhodopsin-2 (ChR2) (Nagel 

et al., 2003).  Photocurrents were recorded from these oocytes using two-electrode voltage 

clamp method. However, the cells not only became conductive for protons but also, most 

surprisingly, for monvalent and divalent cations like Na+ K+ and Ca++.  It was demonstrated 

by using the giant patch-clamped method, (i.e., under cell free condition) that the channel 

activity of ChR-2 was independent of any soluble factor or endogenous protein of the 

oocytes. It was concluded that ChR-2 functions as a cation-selective channel. Surprisingly, 

and in contrast to ChR1, the light-gated conductance of ChR-2 inactivates in continuous 

light to a smaller steady-state level. Both channelrhodopsins are most active at low pH and 

high negative membrane potential. Western blotting analysis with membrane fractions of 

C. reinhardtii using anti-Chop1 and Chop2 antibodies revealed that both proteins were 

abundant, when cells were grown in low light conditions, both are degraded under high 

light conditions and that ChR2 was degraded more rapidly than ChR1. In conclusion, it is 

likely that both channelrhodopsins control photophobic responses and only indirectly 

influence phototaxis. 
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Very recently, three more protein sequences were found in C. reinhardtii genome database, 

which showed homology to the sensory opsin.  Most amino acids that interact with retinal 

were conserved in the newly identified opsin like protein sequences. Surprisingly, all three 

sequences were coupled to a transducer like protein (HtrI and II). We have provisionally 

named these sequences Cop5, Cop6 and Cop7. Isolation, sequencing and bioinformatic 

analysis of Cop-5 protein sequence revealed that it is a unique putative opsin, which has 

four modular domains (Opsin, HK, RR and CYCc) in one protein. The functional 

expression of Cop-5 in heterologous expression systems (E.coli and HEK-293 cells) could 

still not be achieved. The assumption that one of these new rhodopsins could be 

responsible for phototaxis movement in C. reinhardtii seems to be justified. Nevertheless, 

other functions like control of retinal biosynthesis or developmental processes should also 

be taken into account. 
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2. Introduction 
Sunlight is the primary source of energy for all living beings (except for autolithotrophic 

and a few deep vent organisms). Plants and microorganisms use light to orient themselves 

spatially and to guide their movements and/or growth. Photosynthetic organisms are the 

most important component of food chain. Only photoautotrophic organisms are capable of 

fixing light energy into chemical energy. This fixed chemical energy (food) is available to 

all consumers (herbivores and carnivorous) in the food chain. Higher animals utilize light 

for visual signal transduction and in this manner image their surroundings. Rhodopsin is 

the primary photoreceptor in the visual system of all animals, both invertebrates and 

vertebrates. The first step in the transduction of light signal to a neural signal is the light-

induced isomerization of a chromophore, specifically a vitamin A derivative (retinal). This 

chromophore is bound to a membrane protein called an opsin, retinal bound opsin is 

known as rhodopsin. Almost all animals (including human beings) and plants also use light 

to set their internal clocks (circadian rhythm). This circadian rhythm is accomplished by 

the flavin and/ or rhodopsin based sensory photoreceptors.  

2.1. Retinylidene Protein 

Retinylidenes are photochemically reactive proteins that use retinal as their chromophore. 

Retinylidenes have been found in both prokaryotic and eukaryotic domains of life. 

Rhodopsins are members of the seven transmembrane receptor family, which are able to 

sense light and propagate a signal transduction cascade (Ruiz-Gonzalez and Marin, 2004). 

The seven transmembrane helices of rhodopsin are involved in forming an internal pocket, 

which binds with retinal via a Schiff-base linkage (Lanyi, 2004)). The primary sequence 

alignment classifies retinylidene proteins into two families. First family, archaeal-type 

(Type-1) rhodopsin, was found in the archaeon H. salinarium, halophilic prokaryotes and 

was also recently reported to be found in eukaryotes (Spudich et al., 2000). The archaeal 

(Type-1) rhodopsins functions as light driven ion pump (bacteriorhodopsin and 

halorhodopsin), phototaxis receptors (sensory rhodopsin I and II) and the function of the 

fungal opsin (Nop-1) is elusive. The second family, animal (Type-2) rhodopsins, consists 

of  photosensitive receptor proteins of animal eyes, including human rod and cone visual 

pigments, receptor proteins in the pineal gland, hypothalamus, and other tissues of lower 
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vertebrates (Spudich et al., 2000). The best characterized Type-2 rhodopsins are the animal 

visual rhodopsins (Yokoyama, 2000). The presence of rhodopsin is independent of the 

structural and functional complexity of the optical apparatus and neural network of a 

particular animal (Hegemann et al., 2001).  

2.2. Rhodopsins in Vertebrates and Phototransduction 

Vision is one of the most important senses for vertebrates; light triggers an enzymatic 

cascade, called the phototransduction cascade, which leads to the hyperpolarization of 

photoreceptor cells (Hisatomi and Tokunaga, 2002). Visual signal transduction begins with 

absorption of the photon by rhodopsin. Rhodopsins are localized in the outer segment of 

the rod and cone cells. It is connected to the inner segment of the rod/cone cells that bears 

synaptic terminal contacting bipolar and horizontal cells (Baylor, 1996). Rod cells are able 

to detect even single photons. This ultimate sensitivity is achieved because of the high 

probability of absorption and efficient photochemical reactions. Rhodopsins are members 

of the G protein-coupled receptor family that also includes many hormone receptors, 

odorant receptors, and metabotropic synaptic receptors. Rhodopsin is an unusual case 

among the G protein-coupled receptors, in that it is bound in darkness to a chromophore 

(Burns and Baylor, 2001). The 11-cis-retinal is covalently bound via a Schiff base linkage 

to the terminal (ε) amino group of a lysine residue, and this Schiff base is in the protonated 

state (Rao and Oprian, 1996). The absorption of a photon by the 11-cis-retinal 

chromophore leads to its photoisomerization to all-trans-retinal (Fain et al., 2001), 

resulting in a subtle change in the conformation of rhodopsin, converting it into an active 

rhodopsin (metarhodopsin). This metarhodopsin activates a G protein (transducin) and a 

subsequent phosphodiesterase (PDE), resulting in the hydrolysis of cGMP and closure of 

the cGMP-regulated cation channels. The Na+/Ca2+ influx into the photoreceptor cell (rods 

or cones) is abolished, which leads to the hyper-polarization of the plasma membrane 

(Burns and Baylor, 2001). This membrane potential will be sensed by a particular neural 

network and processed to complete transduction of the vision signal. 
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2.2.1. Rhodopsins in Invertebrates and Phototransduction  

The invertebrate phototransduction process also utilizes rhodopsin as the primary 

photoreceptor to receive light signals. A detailed structure of invertebrate rhodopsins has 

recently been performed by Gärtner (Gärtner, 2000). The current knowledge of 

invertebrate rhodopsin was primarily determined from studies of rhodopsin-related events 

during the phototransduction cascade in Drosophila (Zuker, 1996). Invertebrate rhodopsins 

are also members of the rhodopsin super family of proteins within the phylogenetically 

related hyperfamily of G-protein coupled receptors (Sakmar, 1998). Photoreceptor cells of 

Drosophila express a variety of rhodopsin isoforms (Rh1-6). The secondary structure of 

invertebrate rhodopsin is remarkably similar (possess seven trans-membrane helices) to 

rhodopsins from other domains of life. In particular, there is a positional conservation of a 

lysine residue of the seventh transmembrane helix in the retinal binding motif of Rh1 of 

Drosophila (Montell, 1999). This binding site of Drosophila rhodopsin is characterized by 

a protonated Schiff base chromophore stabilized via a single negatively charged counterion 

(Vought et al., 2000). Absorption of a photon leads to the isomerization of retinal from 11-

cis to the all-trans configuration and activation of rhodopsin (metarhodopsin). These 

metarhodopsins can activate G proteins, which induces activation of phospholipase-C. 

Phospholipase-C releases diacylglycerol, which in turn activates the TRP/TRPL (Transient 

Receptor Potential/Transient Receptor Potential Like) channels (Hardie and Raghu, 2001). 

The opening of these channels can enhance Na+/Ca2+ influx and in this manner plasma 

membrane depolarization is achieved (Hardie, 2001). The depolarized receptor potential 

can be sensed by photoreceptor neurons for completion of the visual signal transduction in 

Drosophila. In addition to excitation, photoreceptor neurons have evolved sophisticated 

mechanisms to control termination of the light response (deactivation) and light and dark 

adaptation (Baylor, 1996). 

2.3. Archaeal-Type Rhodopsins in H.salinarium 

Certain archaea like (H. salinarium) have four classes of archaeal type rhodopsins. Two of 

them are transporter rhodopsins called bacteriorhodopsin (BR), which functions as a 

proton-extruding pump (Luecke et al., 1998), and halorhodopsin (HR), which functions as 

a chloride uptake pump (Kolbe et al., 2000). The other two are the sensory rhodopsins SRI 

and SRII, which mediate the phototaxis response by coupling to specific transducer 
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proteins (halobacterial transducers HtrI and HtrII; Valentin et al., 2002). As in E. coli 

chemotaxis, analogous transducers (Histidine Kinase) activate a response regulator (RR) 

that in turn switches rotation of the flagella motor (target response). This type of non-

electrical signal transmission between sensor and effector organ is known as a two-

component system (Oprian, 2003). 

The BR, HR and SRII display close similarity at the secondary structure level within the 

transmembrane helices 3-7 (Landau et al., 2003). This structural conservation also leads to 

their functional similarity. Upon light absorption, all four microbial rhodopsins undergo a 

cyclic reaction (Photocycle). During the photocycle of these opsins, the physiological 

response, either vectorial ion transport or initiation of the signal transduction chain is 

achieved (Spudich et al., 2000). The reversible molecular events associated with the 

photocycle includes the isomerization of the retinal chromophore from all-trans to 13-cis 

(Feng Gai et al., 1998), the deprotonation of the Schiff base (HR is an exception), and 

conformational changes of the protein backbone. All of these light-triggered thermal 

reactions have to be reversible because once a cycle is completed the protein has to regain 

its dark state (Schafer et al., 1999). 

 The photocycle of BR has been studied in detail compared to the other three rhodopsins. 

The general picture that has emerged from these investigations can be summarized as 

follows: the intermediates of the BR photocycle are named in alphabetical order, starting 

with J for onset of the reaction product. The J intermediate is followed by five other 

intermediates, K, L, M, N, and O. These letters were chosen by analogy to the photocycle 

reaction sequence observed in visual pigments, with Lumi and Meta, identified as 

physiologically important states (Stoeckenius and Lozier, 1974).  

2.4. Two-Component System and Phototaxis in H. salinarium 

A typical two-component system comprises a histidine kinase (HK) protein that receives 

stimuli and transmits it to a partner response regulator (RR) protein. The two-component 

signal transduction cascade has been investigated in detail for the chemosensory system of 

E.coli and some enteric bacteria (Stock et al., 1990). The signal is transmitted between the 

HK and the RR via a phosphorelay system. In the recent years, a similar signaling system 

has been reported in H. salinarium to elucidate the mechanism of phototaxis. It has been 

found that the histidine kinase (CheA) is required for phototaxis and chemotaxis in H. 

salinarium (Oprian, 2003; Rudolph and Oesterhelt, 1995). Genome analysis of 
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H. salinarium species NRC-1 revealed the presence of the complete set of B. subtilis che 

gene homologues, with the exception of CheZ  indicating that chemotaxis signal 

transduction of H. salinarium is similar to that of enteric bacteria (Ng et al., 2000).  

2.5. Distribution of Archaeal Rhodopsins in Nature 

In recent years, evidence has emerged that the archaeal type rhodopsins have spread 

beyond the borders of archaea taxa in nature (Gartner and Losi, 2003; Spudich et al., 

2000). Following their discovery in archaea, genes with clear sequence similarities to 

archaeal rhodopsins were characterized in other lineages. The first one was found in the 

fungus Neurospora (Bieszke et al., 1999). However, despite being very similar in 

sequence, some other opsin-like fungal proteins were unable to act as photosensors, 

because they lack a critical lysine motif, which is involved in retinal binding. These type of 

proteins are called opsin-related proteins (Spudich et al., 2000). Typical archaeal type 

rhodopsin genes were later found in some non-cultivated proteobacteria that encoded a 

protein called proteorhodopsin, a transport rhodopsin that functions as a light-driven proton 

pump (Beja et al., 2000). 

Recently, archaeal-type rhodopsins (Chlamyopsin-3 and 4; Cop-3 and 4) have been found 

in the green alga C. reinhardtii (Hegemann et al., 2001), which is described in greater 

detail in this research work. We have found that Cop-3 and 4 function as light-gated proton 

and non-selective cation channel respectively, when heterologously expressed in Xenopus 

laevis Oocytes (Nagel et al., 2002; Nagel et al., 2003). The detailed characterization of 

Cop-3 and 4 is summarized in this thesis work. Type-I rhodopsin was also found in the 

cyanobacteria (Nostoc), where it possess features of a typical sensory rhodopsin (Jung, 

2003). 

2.6. The Eyespot of C. reinhardtii 

C. reinhardtii has been used as the most prominent model system for research to answer 

many fundamental questions of photobiology, cell and molecular biology. The alga is only 

8 to 10 µm in size, possesses a cell wall, chloroplast, an eyespot (stigma) that perceives 

light, and two anterior flagella (Fig.1). The eyespot takes up approximately one percent of 

the cell surface and is about 1µm in diameter. The eyespot allows the cell to perform 
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phototaxis, in order to locate optimal light for growth and to avoid photodamage 

(Dieckmann, 2003). In C. reinhardtii  the eyespot is located in equatorial position of the 

cell body, with slight variation during the cell cycle (Hegemann, 1997). An electron 

microscopic study revealed that the eyespot is a multilayered membrane sandwich, in 

which the plasma membrane is closely apposed to the chloroplast envelope membrane 

(Melkonian and Robenek, 1980). The eyespot of C. reinhardtii may have up to eight layers 

of membranous structure. These peculiar structures enable the organism to perceive 

maximum incident light when the eyespot is facing towards the light source. The plasma 

membrane of the eyespot has been described as an ideal location of the photoreceptor. 

Such location of the photoreceptor provides a credible means for communication with the 

flagella, since the plasma membrane is in continuum with the flagellar membrane. 

Therefore, pigmented eyespot functions as an optical device (quarter wave stack) in 

conjunction with the photoreceptors (Foster and Smyth, 1980).  

 

                        
 
Figure 1. A Chlamydomonas cell. The cell is about 5µm in size, has two anterior flagella, a large 

chloroplast (green) and an eyespot (yellow/orange). The flagella beat with a frequency of 2Hz. This 

figure has been taken from a published paper (Kateriya et. al., 2004). 
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The function of these eyes is based on certain physical principles such as reflection, 

interference and polarization (Hegemann and Harz, 1998). It should be noted that absolute 

light sensitivity of the visual system is achieved by the number of photoreceptor molecules, 

whereas the spatial resolution is solely depended on its optics.  

2.6.1. Rhodopsin Based Photoreceptors for Photobehavior in C. 

reinhardtii 

C. reinhardtii cells are capable of responding to light stimuli by changes in their behavior, 

which leads to their accumulation under optimal light conditions (Phototaxis). Cells are 

able to adjust their movement path according to the direction of incident light in 

phototaxis. The phototaxis action spectra recorded from the vegetative or gamete cells of 

unicellular algae (including C.reinhardtii) were typically rhodopsin shaped. This type of 

action spectra led to the suggestion that most flagellate algae use rhodopsin as the 

photoreceptor for phototaxis (Foster et al., 1984). In a key experiment, Foster et al. 

restored phototaxis in “Blind” C.reinhardtii cells by addition of retinal, thus showing for 

the first time that the photoreceptor is rhodopsin. Later, it has been established by in vivo 

experiments with the isomer and analogue of retinal that photophobic and phototaxis 

responses each require a chromophore with an all-trans conformation, and the ability to 

isomerize only around the retinal C13-C14 double bond (Takahashi et al., 1991; Zacks et 

al., 1993). Finally, all-trans retinal was extracted from wild type cells and analyzed by 

HPLC (Beckmann and Hegemann, 1991). Thus, C. reinhardtii was the first eukaryote that 

showed the presence of an archaeal-type rhodopsin. The photoreceptor current is the 

earliest so far detectable process in the cascade of photobehavioural responses of green 

algae. The first detailed analysis of rhodopsin-mediated photocurrent became possible by 

employing a suction pipette technique. This technique was first used for Haematococcus  

(Litvin et al., 1978) and then on C. reinhardtii cells, which lacked a cell wall (Harz and 

Hegemann, 1991). The flash induced photoreceptor currents in the colonial green alga V. 

carteri showed strong dependence on pH and are mainly carried by H+ (Braun and 

Hegemann, 1999). However, in the single-celled C. reinhardtii, flash induced H+ current is 

hidden by a secondary Ca++-current that rises almost with the same kinetics before it 

rapidly decays after few milliseconds (Braun and Hegemann, 1999). Under physiological 

conditions, only the fast Ca++-carried photoreceptor current is able to trigger voltage-

sensitive channels in the flagellar membrane, which in turn causes massive Ca++ influx into 
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the flagella. This sudden Ca++-influx induces a switch of flagellar motion from breaststroke 

swimming to symmetrical flagellar undulation that is seen under the microscope as a 

photophobic response. Analysis of a stimulus-response curve of the C. reinhardtii 

photoreceptor currents led to the suggestion that they are based on two photosystems, one 

of which is more active at low flash intensities, whereas the other dominates at high flash 

energies (Ehlenbeck et al., 2002). 

At low flash intensities (< 1% rhodopsin bleaching); the photoreceptor current is delayed 

by several milliseconds, suggesting that the low intensity photoreceptor system involves a 

signal amplification system that activates an eyespot channel indirectly. These proteins are 

yet to be characterized (Braun and Hegemann, 1999; Ehlenbeck et al., 2002). It was also 

envisaged from electrophysiological data that algal opsins form a complex with the ion 

channel protein constituting the high light-saturating ion conductance responsible for the 

photophobic responses (Holland et al., 1996). The presence of a light-dependent delay and 

the sensitivity of the current amplitude to the physiological state of the cell indicate the 

likely involvement of biochemical mechanisms in the generation of the late photoreceptor 

current.             

                                    

                           

Figure 2. Dependency of amplitude of IP1 and IP2 on photon exposure, Q of the light flashes. Peak 

amplitudes of IP1and IP2 plotted vs. the flash photon exposure Q. The data grouped for the fit for 

photocurrents at acidic conditions are Q1/2 a =1.52 and Q1/2 b = 136.24 µE m-2. The resulting 

amplitude values are IP1a = 3.03 pA; IP1b = 31.32 pA; IP2a = 0.31 pA; and IP1b = 7.58 pA. This figure 

has been taken from a published paper (Ehlenbeck et al., 2002). 
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At neutral pH, all eyespot restricted photocurrents appearing in C. reinhardtii after a flash 

or upon step-up stimulation are sufficiently explained by two light induced conductances 

(Ehlenbeck et al., 2002). The major photoreceptor current was proposed to result from a 

conductance that is closely coupled to rhodopsin (Harz and Hegemann, 1991). The high 

light saturating component of IP1, IP1b, has been known to be carried by Ca2+ (Holland et 

al., 1997). A large body of evidence has accumulated showing that the IP1b-induced 

depolarization triggers the flagellar currents, that in turn, cause a switch from forward to 

backward swimming (Holland et al., 1997). The other component of IP1, IP1a, saturating at 

low light has not been studied in detail because of its small amplitude. These biophysical 

studies have propounded the presence of at least two rhodopsin photoreceptors in C. 

reinhardtii (Ehlenbeck et al., 2002).  

Supplementation of white retinal-deficient cells with 3H-retinal or exchanging the 

endogenous retinal in purified eyespot membranes against 3H-retinal identifies only one 

retinal binding protein, which has been purified and sequenced (Beckmann and Hegemann, 

1991). Based on its sequence homology to invertebrate opsins (Type 2), it was named 

Chlamyopsin (Cop-1).  It is a mixture of two splice variants of one gene, which translated 

to two almost equal size proteins (Cop-1 and Cop-2) but have different hypothetical retinal 

binding sites (Fuhrmann, 2003). These Chlamyopsins (Cop1 and 2) as well as its homolog 

from V. carteri, volvoxopsin (Ebnet et al., 1999) are highly charged and the overall 

sequences are unlikely to be composed of a 7-transmembrane helices. In addition, these 

sequences were hardly comparable to the Type-1 rhodopsin chromophore, which was 

characterized in vivo (Hegemann et al., 2001). Several enzymes characteristic for visual 

transduction cascades in animals have been detected in isolated eyespot preparations of 

green flagellate algae (Calenberg, 1998), although their possible role in phototaxis 

signaling is yet to be elucidated. Recently, it was shown on the bases of biophysical studies 

on antisense transformants of C.reinhardtii with reduced Cop1 and Cop2 content, that both 

are not the photoreceptors for phototaxis and photophobic responses (Fuhrmann et al., 

2001). Therefore it was important to identify new opsin-based photoreceptor(s) for 

photobehavioural responses of C.reinhardtii. The only alga in which a second retinal 

protein has been identified is D. salina (Hegemann et al., 2001). It was not surprising 

because phototaxis and photophobic responses of D. salina exhibit rhodopsin action 

spectra with different maxima (Wayne et al., 1991). More specifically, labeling of eyespot 

membranes with 3H-retinal identified a 28 kDa retinal-binding protein, probably the 

homologue of Chlamyopsin and Volvoxopsin. In addition, a larger retinal protein of 45kDa 



Introduction 20

(Fig.4) was also identified in this alga suggesting that a second class of rhodopsin might 

exist in green algae (Hegemann et al., 2001). 

The aim of this project was to identify new opsin gene(s) using bioinformatics and 

molecular biology tools. Heterologously express and characterize the newly identified 

gene(s) product(s). 
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3. Results 

3.1. Channelopsin-1 

3.1.1. Identification and Bioinformatic Analysis of Channelopsin-1 

3.1.1.1. Identification of Channelopsin-1 

With the completion of the C. reinhardtii genome project, many web resources are 

maintaining a wealth of information like the Expressed Sequence Tag (EST) and Bacterial 

Artificial Chromosome (BAC) clone sequences of C. reinhardtii. C. reinhardtii genome 

database was mined with Basic Local Alignment Search Tool (BLAST) to fetch out 

unidentified opsin homologue sequences. C. reinhardtii EST database search showed the 

existence of overlapping cDNA sequences which encodes 712 amino acids (aa) of an 

opsin-related protein (Gene Bank accession no. AF385748). Initially it was named 

Chlamyopsin-3 (Hegemann et al., 2001); however, based on its function as a light-gated 

ion channel activity in Xenopus oocytes, it was later renamed as Channelopsin-1, described 

below in detail (Nagel et al., 2002). 

3.1.1.2. Homology between Channelopsin-1 and Other Archaeal Type Opsins 

The deduced protein sequence of Chop-1 was compared to the known archaeal type opsins 

(Fig.3). Chop-1 protein shows <21% homology to sensory rhodopsins from the archaea 

and <14 % to the opsin protein from Neurospora (Nop-1). The retinal binding K in Type-1 

rhodopsin is embedded in a conserved retinal binding region LDXXXKXXF/W299, 

suggesting that K296 of Chop-1 is a retinal-binding amino acid (Nagel et al., 2002). In 

archaeal type opsins, twenty-two amino acids are in direct contact with the retinal binding 

pocket. In Chop-1, nine of these amino acids are identical and four additional underwent 

conservative exchange (Fig.3).  
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 Figure 3. Multiple sequence alignment of microbial type opsins.  Amino acids that are known from 

the bacterio-opsin (Bop) and Sensory Opsin (SopII) structure to interact directly with the retinal 

(Kimura et al., 1997; Luecke et al., 1998; Luecke et al., 2001) are indicated by *. Amino acids that 

are identical in all opsins are labeled in green, those that are functionally homologous in all 

sequences are labeled in yellow and those that are identical in Chop1 and only some of the other 

opsins are labeled in blue. Amino acids that contribute to the H+-conducting network in 

bacteriorhodopsin, BR (Kimura et al., 1997; Luecke et al., 1998) and identities in the other opsins 

are shown in red. Residues that are part of the transmembrane H+-network are printed in bold. The 

key replacements, D85 and D96 in BR to E162 and H173 in Chop1 are labeled in red background. 

Underlined amino acids indicate the seven transmembrane helices region of opsins. This figure has 

been taken from a published paper (Nagel et al., 2002). 
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This homology study also suggests relative position of 7TMH in the N-terminus region 

(Fig.3), in which the residues surrounding the chromophore in haloarchaeal opsins are 

conserved. It could be concluded that Chop-1 is a member of the classical archaeal 

rhodopsin (Type-1 rhodopsins) type of protein. Moreover, these studies also showed that 

Chop-1 is closer to BR than to SRI and II. Therefore, it could be speculated that Chop-1 

might be functioning as a light activated transporter in an active/ or passive mode. 

3.1.1.3. Prediction of Secondary Structure and Modular Domain of Channelopsin-1 

Hydropathy plot analysis has predicted 8TMH in Chop-1 protein sequence 

(Appendix.A1.1); seven of them from the N-terminus (76-309 aa) showed 21% homology 

to archaeal type opsins and only one 1THM have been predicted at the C-terminus.  

 

             
Figure 4. (a) The CDART analysis has demonstrated the presence of a bacteriorhodopsin domain 

in Chop-1 protein sequence. (b) 3D-backbone model of the hypothetical Type-1 rhodopsin C. 

reinhardtii encoded by the cDNA: AccNo AF 385748. The deduced amino acid sequence was 

aligned and modeled to the BR-structure 1FBB (Subramaniam and Henderson, 2000) from PDB 

(Berman et al., 2000), as a template using SWISS-MODEL and Swiss PDB-viewer 3.7b2 available 

from http://www.expasy.ch/swissmod/SWISS-MODEL.html with default parameters (Hegemann, 

2001). Note that the loop structure, the end of helix 4, and the extended N and C termini are not 

completely represented. (c) A section through a space filling model of the same protein showing 

the retinal in yellow and amino acids identical to the reference bacteriorhodopsin from H. salinarium 

in cyan (Hegemann et al., 2001).  
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It is interesting to note that Sineshchekov et al have reported two TMH in the C-terminus 

of Chop-1 (Sineshchekov et al., 2002). The presence of second TMH at the C-terminus of 

Chop-1 seems to be controversial, which need further validation and prediction. 

The Chop-1 protein sequence was then analyzed using the Conserved Domain Architecture 

Retrieval Tool. The CDART performs similarity searches of the NCBI Entrez Protein 

Database based on domain architecture, defined as the sequential order of conserved 

domains in proteins. The algorithm finds protein similarities across significant 

evolutionary distances using sensitive protein domain profiles rather than by direct 

sequence similarity. The analysis of Chop-1 protein sequence with CDART identified a 

bacteriorhodopsin like domain in the protein sequence (Fig. 4a). This analysis also found 

more than 100 opsin related sequences from different organisms, which are homologous to 

Chop-1. These results strongly suggest that Chop-1 of C. reinhardtii might be the first 

microbial-type opsin identified in plants. 

3.1.1.4. Prediction of Signal Peptide in Chop-1 protein Sequence 

Signal peptides control the entry of virtually all proteins to the secretory pathway, both in 
eukaryotes and prokaryotes (Gierasch, 1989). They comprise the N-terminal part of the 
amino acid chain and are cleaved off while the protein is translocated through the 
membrane. The common structure of signal peptides from various proteins is commonly 
described as a positively charged n-region, followed by a hydrophobic h-region and a 
neutral but polar c-region. Chop-1 protein contains a soluble N-terminus with 77 aa, of 
which the 22 amino acid leader peptide is likely to be cleaved off during posttranslational 
modification (Appendix; A1.2). 

3.1.1.5. Homology Based 3D Modeling of Channelopsin-1 

The 3-D structure of a protein can be experimentally determined by X-ray crystallography 

or by Nuclear Magnetic Resonance (NMR) spectroscopy. When no experimental structure 

is available, homology modeling provides a starting point for the biologist involved in 

structure and function relationship study. Comparative molecular modeling of putative 

opsin domain of Chop-1 was performed using the web resource SWISS-MODEL program. 

Predicted 3-D structure was visualized with a web free resource 

(http://www.umass.edu/microbio/rasmol/) Rasmol program. Predicted 3D model of the 

opsin domain of Chop-1 shows the presence of 7TMH topology (Fig.4b) and hypothetical 

retinal binding site (Fig.4b and c).  
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3.1.1.6. Homology Based Prediction of Proton Pathway of Channelopsin-1 

The conserved amino acids of opsin domain in Chop-1 are located in helices 3, 4, 6 and 7 

and found near the polar Schiff base side (Fig.3). More specifically, the 9-methyl and 13-

methyl groups in BR are 3.6 to 3.7Å from the closest heavy atom of W182 and L93, 

respectively, which is consistent with the evidences that these residues are essential for 

thermal re-isomerization from 13-cis to all-trans at the end of the photocycle (Lanyi, 

2004). These residues are W262 and I170 in Chop-1. During the BR photocycle, the proton is 

released to D85, which is E162 in Chop-1. In BR, the H+ is released to the surface via E204 

and E194, the equivalent of which in Chop-1 are E244 and S154.  

    

 

                                             
                                       
Figure 5. Scheme of the proposed H+- transport pathway in Chop-1. The scheme includes those 

amino acids of Chop-1 (black) that are at positions that are most critical for the proton transporting 

hydrogen bonding network in BR (light blue) . The all-trans retinal is shown in red, nitrogen atoms 

are in green and oxygen atom in dark blue. Black arrow represents the proposed proton pathway. 

This figure has been taken from a published paper (Fuhrmann et al., 2003). 

 

The release of proton in BR from D85 is accompanied by a new bond between D85 and R82. 

The equivalent bonding is expected to occur in Chop-1 between E162 and R159 after proton 
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release from E162. This results in the proposed extracellular H+-transport pathway for 

Chop-1 depicted in Figure.5. The cytoplasmic region of BR with D96 as the proton donor 

of the unprotonated Schiff base is flanked by F42 and F219. In archaeal sensory rhodopsins, 

this D is replaced by Y and the reprotonation process is slowed down. In Chop-1, it is H173, 

which can be reversibly protonated and deprotonated at acidic pH and is expected to be in 

contact with Y109 and W269 (Fuhrmann et al., 2003).  

3.1.2. Heterologous Expression of chop-1 Gene in E.coli  

The bacterium E. coli remains the most versatile host for the production of heterologous 

proteins (Baneyx, 1999). Recent progress in the field of heterologous expression of 

functional archaeal rhodopsin protein in E. coli has provided the basis for heterologous 

production of Chop-1 (Hohenfeld et al., 1999; Schmies et al., 2000; Shimono et al., 1997). 

The heterologous expression of functional opsins in E. coli was known (Chen and Gouaux, 

1996; Shimono et al., 1997). An attempt to increase expression of the synthetic opsin gene  

by introducing codons that were preferred in E. coli,  have been shown to improve BR 

expression (Nassal et al., 1987). A striking increase in expression of the bop gene in E. coli 

occurred when the codons for several of the N-terminal amino acids were changed to 

increase the A=T content (Karnik et al., 1987). High-yield production of bacteriorhodopsin 

via expression of a synthetic gene in E. coli has also been achieved by Pompejus and 

colleagues (Pompejus et al., 1993). The yield was in the range of 30-50 mg pure 

protein/liter culture medium, depending on the individual preparations. This material could 

be used for reconstitution of fully functional bacteriorhodopsin. These findings were taken 

into account to obtain functional expression of chop-1 gene in E. coli.  

3.1.2.1. Expression of chop-1 Native Gene in E. coli  

 The pMAL-c2 uses the strong `tac´ promoter and the malE translation initiation signal to 

give high-level expression of the cloned gene (Amann, 1985). Therefore, pMALc2 

expression vector was used for the expression of Channelopsin-1 in E. coli.   
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Table-1. Expression optimization for Chop-1 native gene in E. coli 
 

E.coli strains Growth Temperature and 

Induction Period  

Amount 

of Inducer 

Outcome 

BL21 (DE3 λ) 37ºC (2.5hrs), 30ºC (3hrs) and 

18ºC (16hrs) 

1.0 mM Expression not 

observed 

BL21 (DE3 λ) 37ºC (2.5hrs), 30ºC (3hrs) and 

18ºC (16hrs) 

0.6 mM  Expression not 

observed 

BL21 (DE3 λ) 37ºC (2.5hrs), 30ºC (3hrs) and 

18ºC (16hrs) 

0.3 mM Expression not 

observed 

BL21CodonPlus-RIL 37ºC (2.5hrs), 30ºC (3hrs) and 

18ºC (16hrs) 

1.0 mM  Expression not 

observed 

BL21CodonPlus-RP 37ºC (2.5hrs), 30ºC (3hrs) and 

18ºC (16hrs) 

1.0 mM  Expression not 

observed 

 

Chop-1 native gene was tried to be expressed in E. coli by using chop-1-pMALc2 

construct under various experimental conditions as described in Table-1. Nonetheless, 

expression could not be observed under any of the experimental conditions.  

3.1.2.2. Expression of Chop-1S and Chop-1-SS in E. coli  

It is known that synonymous codon usage differs among genome (Xia, 1996), among 

different genes within the same genome (Sharp et al., 1988) and even different segments of 

the same gene (Akashi, 1994). Earlier studies have suggested that clusters of AAG/AGA, 

CUA, AUA, CGA or CCC codons can reduce both quality and quantity of the synthesized 

protein. In addition, it is likely that an excess of any of these codons, even without cluster, 

could create translational problem (Kane, 1995) because, optimization of the translational 

machinery in cells requires the mutual adaptation of codon usage and tRNA concentration, 

and the adaptation of tRNA concentration to amino acid usage (Xia, 1998).  

Since codon usage influences expression of foreign gene in E. coli, Chop-1 DNA sequence 

was analyzed for codon bias in E. coli. It was observed that Chop-1 DNA sequence 

contained ~21% codons that are rarely used by E. coli (very little tRNA is made for rare 

codons). Therefore, the codons of chop-1 gene were changed and optimized for E. coli by 

using a free web resource program from www.entelechon.de/eng/backtranslation.html, and 

this codon -adapted gene sequence was sent for synthesis to Entelechon, Germany. It must 
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be noted that only 1-317aa encoding portion of the chop-1 gene, which shows homology to 

the opsin domain of the archaeal type opsin was synthesized. It must also be noted that this 

region of the protein was shown to be sufficient for the functionality of the protein in all 

other archaeal type opsins. Channelopsin-1-Synthetic gene (Chop-1-S; 951bp) was cloned 

under the control of ´tac´ promoter in pMALc2 plasmid. BamH1 and HindIII restriction 

sites were introduced upstream and downstream of the chop-1-S gene by PCR and the 

BamH1 and HindIII containing gene fragment was cloned into the pMALc2 vector, which 

allows addition of a histidine tag at the N-terminus (Fig.6a). The pMALc2-Chop-1S 

construct was transformed into various E. coli expression strains (Table1) for the 

production of recombinant Chop1 protein (for details refer Materials and Methods section). 

Expression was induced using various experimental parameters as mentioned in Table1. 

However, few other conditions were also used as described below to obtained better 

expression and solubility of the expressed protein. 

The expression of a foreign gene in E. coli sometimes diminishes the growth of the cells. 

Therefore, evaluation of the toxicity of Chop-1S expression in E. coli was performed. 

pMALc2-Chop-1S construct was transformed into expression strains (BL21-DE3pLys and 

BL-21 λ DE3) and plated on to two set of LB-Amp plates, one with 0.6mM IPTG and 

another without the inducer. Very few colonies were observed on the IPTG containing 

plate compared to the one without IPTG. Moreover, size of the clones was smaller in the 

presence of IPTG, and the colonies took 24 hrs to appear at 37°C (BL21-DE3pLys was 

less affected by the expression of Chop-1). Further experiments were carried out to 

confirm the toxicity of Chop-1S expression in E.coli. Chop-1S transformant culture was 

grown at 37°C and OD578 nm of the culture was measured before and after induction with 

1.0mM IPTG. It was observed that the cell density of the culture decreases drastically after 

induction (Table-2).  

 
 Table-2. Toxicity of Chop-1 Expression in E.coli 
 

Expression Construct OD578 nm before induction OD578 nm after 2hrs of 

induction 

Control (pMALc2 plasmid) 0.53 1.1 

pMALc2-Chop-1S 0.55 0.275 
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Figure 6. Channelopsin-1 Synthetic (Chop-1S) and Channelopsin-1-Semi-Synthetic (Chop-1-SS) 

genes were cloned in pMALc2 vector for expression in E.coli.  (a) Chop-1-S gene was cloned in the 

BamH1 and HindIII restriction sites under the control of ´tac´ promoter to produce an MBP-Chop-

1S fusion protein with an extended His-tag at the N-terminus. (b) Native part of chop-1 gene (318-

388 aa) was PCR amplified from the cDNA clone and cloned in the HindIII restriction site of 

pMALc2-Chop-1S construct. 

 

It was also observed that BL-21DE3pLys was less affected by the toxicity of Chop-1 

expression (BL-21DE3pLys has tight control over the leaky expression of protein). 

Therefore, all further experiments were carried out with this strain. A temperature 

downshift from 37 to 30°C for the tac promoter containing expression vector in E.coli 

produces better yields of β-glactosidase enzyme (Vasina and Baneyx, 1997). Therefore, the 

expression of Chop-1S was checked at 37°C and 30°C with various concentrations of 

IPTG. It was observed that a better yield was obtained when induction was carried out with 

0.3mM IPTG at 30°C for 3hrs (Fig.7a). All retinal binding studies with expressed Chop-

1S-MBP fusion were performed as described by Chen and colleagues (Chen and Gouaux, 

1996). Despite getting the expression of Chop-1S, retinal binding could not still be 

achieved. However, retinal binding could be obtained with expressed Proteorhodopsin 

(PR) under similar experimental condition (Data not shown). In an effort to get functional 

expression of the Chop-1S with pMALc2 in E. coli, it was observed that the yield of the 

protein was very low, which ruled out the possibility of doing refolding studies of the 

expressed protein.  
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Figure 7. Expression of synthetic and semi-synthetic Channelopsin-1 (Chop-1-S; Chop-1SS) in      

E. coli.  (a) pMALc2-Chop-1S transformant culture was induced with different concentrations of 

IPTG and incubated at different temperatures for 2.5 hrs. 25µg of total cell lysate was resolved on 

12% SDS-PAGE, electro blotted to nitrocellulose membrane and immunoblotting was carried out 

using anti-His-tag antibody. (b) pMALc2-Chop-1SS transformant culture was induced with 0.3mM 

IPTG and incubated at 18°C for 16 hrs and immunoblotting was carried out as described in (a). The 

expressed protein bands are indicated by arrowheads. 

 

Since the Chop-1S gene that was constructed encoded only 317 aa (7TMH), whereas the 

full-length gene had an extended C-terminus end with a stretch of hydrophilic aminoacids, 

it was speculated that this hydrophilic region of the protein might have role in the 

functionality of the recombinant protein. Therefore, a Semi-synthetic-Channelopsin-1 

(Chop-1SS) construct was made for expression in E. coli. A region of the gene, 

downstream of the above mentioned 317aa coding gene was PCR amplified using an EST 

clone (AV396596) as a template. HindIII restriction sites were introduced upstream and 

downstream of the PCR product. The PCR product was digested and cloned into Chop-1S-

pMALc2 vector at the HindIII site (Fig. 6b). Induction of Chop-1SS was carried out in 

BL21-DE3pLys cells with 0.3mM IPTG at 30ºC for 3hrs. Western blot analysis with an 

anti His-tag antibody revealed the presence of His-tagged Chop-1SS in the total cell lysate 

of induced transformant culture of E.coli (Fig.7b; lane 2). However, all-trans retinal 

binding could not be observed with expressed Chop-1SS protein.  

As functional expression of Chop-1 could not be achieved in E. coli, an alternative 

expression system P.pastoris was employed to obtain functional expression of Chop-1 

protein heterologously. 
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3.1.3. Heterologous Expression of Chop-1-SS in P. pastoris 

3.1.3.1. The P. pastoris Expression System 

In the past decades, the methylotrophic yeast P. pastoris has been developed as a host for 

the heterologous production of proteins (Reilander and Weiss, 1998). Compared to other 

expression systems, P. pastoris offers many advantages, since the produced proteins are 

correctly folded and secreted into the medium. Thus, fermentation of genetically 

engineered P. pastoris provides an excellent alternative to the E. coli expression systems. 

Moreover, since P. pastoris has been used for the functional expression of Nop-1 gene 

(Brown et al., 2001), Chop-1SS was tried to be expressed in P. pastoris.  

3.1.3.2. Expression of Chop-1SS in P. pastoris 

The pPIC9K expression vector uses AOX promoter, which is able to drive over-expression 

of the foreign gene in P. pastoris. Chop-1SS was cloned into pPIC9K vector under ´AOX´ 

promoter. EcoR1 and AvrII restriction sites were introduced upstream and downstream of 

the chop-1-SS gene by PCR and the EcoR1 and AvrII containing gene fragment was cloned 

into the respective sites of the pPIC9K vector (Fig.8a). Expression of Chop-1SS was 

induced with the addition of methanol (0.5% V/V) every 24 hrs and incubated for 48 hrs at 

30ºC, and 10 µM all trans-retinal was added at the time of induction for regeneration of 

opsin (Brown et al., 2001). Induction of protein was not visible on SDS-PAGE; therefore, 

expression profile was checked by western blotting using protein specific anti-Chop-1 

antibody. It was observed that Chop-1SS protein expression appeared after 24hrs of 

induction (Fig.8b). Even though expression of Chop-1SS protein was obtained in P. 

pastoris, retinal binding could still not be observed. It was therefore clear that E.coli and P. 

pastoris expression systems were not suitable for functional expression of Chop-1. 

Therefore, focused was shifted on yet other expression system, oocytes of X. laevis for 

functional expression and characterization of Chop-1. 
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Figure 8. Chop-SS expression construct and its expression in P.pastoris.   (a) Semi-synthetic 

Chop-1 gene was cloned into pPIC9K vector in EcoR1 and AvrII restriction sites in the multiple 

cloning site (MCS), for expression of Chop-1. (b) pPIC9K-Chop-1SS transformant culture was 

induced with methanol (0.5% V/V) at 30ºC for 24hrs. 25µg of total cell lysate of uninduced (lane 1) 

and induced (lane 2) cultures were resolved on 12% SDS-PAGE, electro blotted to nitrocellulose 

membrane and immunoblotting was carried out using anti-Chop-1 antibody. The expressed protein 

band is shown by arrowhead. 

3.1.4. Expression and Characterization of Chop-1 in X. laevis Oocytes  

3.1.4.1. The Expression System 

Xenopus oocyte as a heterologous expression system has gained tremendous popularity in 

recent years. It is a reliable expression system for membrane-bound proteins, in particular 

for ion channel and transport system. The large size of Xenopus oocytes (Ø=1.2 mm), 

allows easy injection of nucleic acids, chemicals and even the insertion of pipettes 

containing a patch, which is a clear advantage of using this as an expression system. Since, 

the first demonstration by Miledi that ion channel and neural receptors can be functionally 

expressed in Xenopus oocytes (Miledi, 1982) this system has become a standard for 

demonstrating that a specific cloned cDNA encodes a functional channel or receptor. Many 

different ion channel and receptors have been expressed in oocytes for functional analysis 

(Snutch, 1988), and oocytes have been used for functional cloning of receptors/channels. 

RNA for injection into oocytes can be isolated from the appropriate tissue sample or cell 

line or it can be synthesized in vitro from a cDNA clone.  
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3.1.4.2. Vector for Expression in X. laevis Oocytes 

The only essential element of a vector for RNA transcription and expression in oocytes is a 

promoter for a DNA-dependent RNA polymerase, such as one of the polymerase isolated 

from phage T7, T3 or SP6. However, it is important to obtain high level expression of a 

particular channel, such as for the detection by immunofluroscence, immunoprecipitation 

and the measurement of gating current in many cases. The X. laevis β-globin gene is one of 

the most stably expressed mRNA transcripts. It has also been shown that adding the 5´ and 

3´ untranslated region from the β-globin gene greatly increases the expression of 

exogenous protein in oocytes. The pGEM-HE vector (Liman and Buck, 1994; Liman et al., 

1992) was used for expression of Channelopsins, which was able to fulfill all above 

described criteria for high level of expression of foreign gene in Xenopus oocytes as 

previously shown by expression of bacteriorhodopsin in oocytes (Nagel et al., 1995). This 

vector contains a T7 promoter followed by the 5´UTR of β-globin gene, a multiple cloning 

site (MCS) region for subcloning of exogenous DNA, the 3´ UTR of β-globin gene and a 

poly (A) tail. There is a polylinker following the poly (A) tail so that the construct can be 

linerized before transcribing RNA. Additional manipulations can be performed to increase 

the level of expression, such as altering the 5´ UTR of the cDNA insert. 

3.1.4.3. Expression of Chop-1 in X. laevis Oocytes 

The expression of bacterial retinal proteins and insertion into the plasma membrane of 

Xenopus oocytes has opened the opportunity to study the transport activity of the sensory 

rhodopsins and the interaction of these proteins with their corresponding transducers using 

two electrode voltage clamp (TEVC) methods (Nagel et al., 1998; Nagel et al., 1995; 

Schmies et al., 2001). It has been shown that the two photoreceptors SRI and pSRII as well 

as the functional signaling complexes with their corresponding transducers HtrI and pHtrII 

can also be expressed into the plasma membrane of Xenopus oocytes (Nagel et al., 1998; 

Schmies et al., 2001). The electrophysiological studies with C.reinhardtii have shown that 

it might uses a proton conducting channel for photobehavioural responses (Ehlenbeck et 

al., 2002). It was speculated from the homology of Chop-1 to other known microbial type 

opsins that it might function as a transporter in active/passive mode upon functional 

expression followed by illumination with green/blue light. Chop-1 cDNA variants were 

cloned in pGEM-HE vector to check the proposed activity of the protein upon functional 

expression. These constructs were prepared and expressed in X. laevis oocytes by Georg 
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Nagel and co-workers to measure the proposed function of the protein. It must be noted 

that all electrophysiological experiments of Chop-1in oocytes were done by G. Nagel. 

 

 
 

Figure 9. Light and voltage dependence of photocurrents at pH = 7.5.  (a) Photocurrents recorded 

during illumination of oocytes with green or red light (500 ± 25 nm or 700 ± 25 nm, respectively; 

1022 photons m 2 s 1). Membrane potential (V) = -100 mV; the light pulse is indicated by a bar. 

Bath solution: 96 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM MOPS (pH = 7.5). Trace 

A: A noninjected oocyte, green light. Trace B: A Chop1 oocyte, green light. Trace C: The same 

Chop1 oocyte as in trace B, irradiated with red light. (b) Current responses of a Chop1 oocyte to 

voltage steps from -100 mV to +40 mV (in 20-mV steps; holding potential Vh = -40 mV), followed by 

green light pulses of 200-ms duration. Bath solution: 96 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM 

MgCl2, 5 mM MOPS (pH = 7.5). This figure has been taken from a published paper (Nagel et al., 

2002). 

 

Expression of all three chop-1 gene constructs in oocytes led to light-gated H+-

conductance. Illumination of Chop-1-cRNA injected oocytes using green light, but not red 

light, induced inward currents in Chop1 RNA-injected oocytes at a membrane potential of -

100 mV (Fig. 9a). Similar results were obtained with truncated Chop1 RNAs encoding 

only amino acids 1 to 346 or 1 to 517. At an external pH (pHo) of 7.5, the inward current 

induced by green light reversed at a voltage near -15 mV (Fig. 9b) with clearly visible 

outward photocurrents at positive membrane potentials. Reversal potential of -15 mV is 

close to the Nernst potential for Cl- (-20 mV). It was deduced by expressing CFTR (cystic 
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fibrosis transmembrane conductance regulator) Cl- channels in oocytes (Nagel et al., 2001) 

or H+ [-12 mV, at an intracellular pH (pHi) of 7.3, as measured with microelectrodes by 

Nagel and others (Stewart et al., 2001)], but far from Nernst potentials for Na+, K+, or Ca2+.  

To investigate the ionic specificity of the light-induced permeability of Chop-1, Nagel et al 

have systematically changed the composition of the bath solution (Nagel et al., 2002).  

     

 
 
Figure 10. Dependence of photocurrent (IP) on ionic condition and pHo. (a) Results from one (out of 

five) characteristic Chop1 oocyte, plotted in the order of measurement (~150-s interval); V = -100 

mV, green light as in Fig. 11a. Solutions were buffered with 5 mM MOPS (pH = 7.5), MES (pH = 6), 

or citrate (pH = 5 and 4). Concentration (mM): bar 1: 100 NaCl, 2 CaCl2 (pH = 7.5);  bar 2: 

100 NaCl, 2 CaCl2 (pH = 6.0) (reference condition); bar 3: 100 Na-aspartate, 2 CaCl2 (pH = 6.0); 

bar 4: 100 NMG-Cl, 2 CaCl2 (pH = 6.0); bar 5: same as bar 2; bar 6: 100 NaCl, 2 EGTA, 2 MgCl2 

(pH = 6.0); bar 7: 200 sorbitol, 5 EGTA (pH = 5.0); bar 8: 200 sorbitol, 5 EGTA (pH = 4.0). (b) 

Voltage dependence of photocurrents (Ip) from (a) concentrations as in (a). Figure has been taken 

from a published paper (Nagel et al., 2002). 

 

Lowering the pHo to 6.0 increased inward photocurrents and shifted the reversal potential 

to > + 40 mV (Fig. 12a and b). Replacing Cl- by aspartate (pHo = 6) had no discernible 

effect on the photocurrent amplitude or its current-voltage (I-V) relation (Fig. 10a and b), 

thus excluding Cl- as the conducted ion. Similarly, Na+ and Ca2+ were excluded: 

Photocurrents were not changed by replacing Na+ by N-methyl-D-glucamine (NMG) or by 

replacing Ca2+ with Mg2+ (Fig. 10a and b). 
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3.2. Channelopsin-2 

3.2.1. Identification and Bioinformatic Analysis of Channelopsin-2 

C. reinhardtii genome database was mined using BLAST program to search for 

homologues of Chop-1. This search revealed the existence of few more overlapping EST 

clones. One such EST clone (AV643095) showed the presence of an ORF, which encoded 

a different protein sequence than that of Chop-1. This particular EST clone (AV643095) 

was obtained, complete sequencing of the clone was done, and the corresponding protein 

sequence was deduced. The protein sequence thus obtained was named Chop-2 based on 

its homology to Chop-1. This sequence information was submitted to NCBI, AccNo: 

AF461397. 

3.2.1.1. Homology between Channelopsin-2 and Other Archaeal Type Opsins 

Chop-2 protein sequence was aligned with the other known Type-1 opsins (Including 

Chop1; Fig.11). The seven transmembrane helices region (1-310 aa from N-terminus) of 

Chop-2 protein shows <22% homology to sensory rhodopsins from the archaea and <14% 

to the opsin protein from Neurospora (Nop-1). The retinal binding residue K in Type-1 

opsin is present in a conserved retinal binding motif LDXXXKXXF/W259, suggesting that 

K257 of  Chop-2 is the retinal-binding amino acid (Nagel et al., 2003). Chop-2 full-length 

protein showed very high homology ~75% to the known Chop-1 protein. It could therefore 

be concluded that Chop-2 is a member of the classical archaeal rhodopsin (Type I 

rhodopsins) superfamily. 

3.2.1.2. Secondary Structure Prediction of Channelopsin-2 

The hydropathy plot analysis has predicted 11-transmembrane helices in Chop-2 protein 

sequence (AppendixA2.1), seven of them from N-terminus showed homology to the known 

archaeal type opsins (Including Chop-1; Fig.11). It must be noted that Sineshchekov et al 

claimed from hydropathy plot analysis of the C-terminus of Chop-2 protein that it have no 

sign for the presence of TMH. However, they have also observed that the 400-residue of 

C-terminal domains of both Chop-1 and Chop-2 were membrane associated when 

expressed in E.coli (Sineshchekov et al., 2002). Therefore, it seems that our predictions for 

TMH of Channelopsins are matching with experiments.  
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It was observed using SignalP program that Chop-2 showed the presence of a leader 

peptide sequence (Appendix.A2.2) at the N-terminus, which cleaves off during 

posttranslational modification.  

            
 

Figure 11. Comparison of amino acid sequences of Channelopsin-1 (Chop1; AF385748), 

Channelopisn-2 (Chop2; AF461397) and Bacteriorhodopsin from H. halobium. Amino acids that 

are known from the bacteriorhodopsin structure to interact directly with retinal are indicated with an 

asterisk (*). Amino acids that are conserved in most microbial opsins are highlighted in green; 

those that are functionally homologous in microbial opsin sequences are in yellow, other identities 

are shown in blue. Amino acids that contribute to the H+- conducting network in BR are shown in 

red. Residues that are part of the transmembrane H+-network are in bold type. The key 

substitutions, D85, D96 and E204 in BR to E162, H173 and S284 in Chop1 and E123, H134, S245 in Chop2 

are seen as white letters on red background. Underlined regions indicate identified or hypothetical 

transmembrane regions. Amino acid sequences indicated in bold were used for expression in E. 

coli and antibody preparation. This figure has been taken from a published paper (Nagel et al. 

2003). 
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Bioinformatic analysis of Chop-2 using Conserved Domain Architecture Retrieval Tool 

(CDART) identified a bacteriorhodopsin like domain in the protein sequence 

(Appendix.A2.3). The CDART analysis has also recognized more than 110 opsin related 

sequences from different organisms, which were homologous to Chop-2. These results 

strongly suggest that Chop-2 could be the second microbial-type opsin of C. reinhardtii. In 

general, in silico predictions of Chop-2 were similar to the ones for Chop-1. Therefore, it 

was suggested that Chop-2 might be functionally similar to Chop-1 protein. Chop-2 protein 

sequence was also analyzed for presence of putative phosphorylation sites in protein 

sequence. It was observed that C-terminus region of Chop-2 protein contains several serine 

residues(S), which are predicted to be potential phosphorylation sites (Appendix A2.4). 

This predicted phosphorylation patter of the protein might have significant physiological 

implications in-vivo.  

3.2.1.3. Phylogenetic Analysis of Channelopsin-2 

A dendogram of archaeal type opsins was constructed based on homology among different 

opsins (Fig.12). It was observed that Channelopsins (Chop-1 and 2) were closer to 

haloarchaeal and eubacterial opsins than to fungal opsins, which had previously been 

known as the only archaeal-type opsin subfamily in eukaryotes.  

 
 

Figure 12. Phylogenetic relationship of opsin domain (helices 3-7) of a variety of archaeal type 

opsins is represented as a dendogram. Abbreviations mentioned above are as follows: Cop-5 

(Putative Chlamyopsin-5), Vop-3 (Putative Volvox Opsin-3), Aso (Anabena Sensory Opsin), Chop-

1 (Channelopsin-1), Chop-2 (Channelopsin-2), Vop-2 (Putative Volvox Opsin-2), Hop ( Halo-opsin) 

Cop-7 (Putative Chlamyopsin-7), Bop (Bacterio-opsin), Sop-I (Sensory Opsin-1), Sop-II  (Sensory 

Opsin-II), Aop (Putative Acetabularia Opsin), Nop-1 (Neurospora opsin) PR (Proteorhodopsin). 

Putative sequences were fetched from the genome database of the particular organisms, 

respectively.  
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Interestingly, putative Volvoxopsins (Vop-2 and Vop-3) were found to be closer to 

Channelopsins and Chlamyopsin-5 respectively, suggesting a possible functional 

similarity. 

3.2.2. Expression and Characterization of Channelopsin-2 

Previous results have shown that expression of Chop1 in oocytes of X. laevis produces a 

light-gated conductance that is highly selective for protons, and Nagel et al have suggested 

that Channelrhodopsin-1 (ChR1 = Chop1 + all-trans retinal) is the photoreceptor system 

that mediates the H+-carried photoreceptor current (Nagel et al., 2002). Sineshchekov and 

colleagues have generated transformants in which the ratio of Chop1 and its homolog 

Chop2 was changed by an antisense approach (Sineshchekov et al., 2002). In an electrical 

cell population assay that monitors the differential response of cells facing the light versus 

cells facing away from the light, the authors demonstrated that both ChR1 and ChR2 

contribute to the photoreceptor currents (Sineshchekov et al., 2002). It was observed that in 

ChR1-deprived cells, photocurrents at high flash intensities were reduced, whereas in 

ChR2-deprived cells photocurrents at low flash energies were reduced. The authors have 

concluded that ChR1 mediates the high-intensity response, whereas ChR2 is responsible 

for low-intensity photocurrents (Sineshchekov et al., 2002). The mechanism for how ChR1 

and ChR2 contribute to the photocurrents and to what extent to photophobic responses and 

phototaxis could not be resolved. Takahashi and colleagues (Suzuki et al., 2003) generated 

antibodies against Chop1 and Chop2. They were not able to localize the Channelrhodopsin 

proteins within the total membrane fraction but detected Chop1 as a 66-kDa protein in 

enriched eyespot membranes. Untill now, heterologous expression of Chop-2 has not been 

reported, and its primary mode of action remains obscure. Therefore, our aim was to 

express the chop-2 gene heterologously and carry out further characterizations. 

3.2.2.1. Heterologous Expression of the chop-2 Gene in E. coli 

Since E. coli is the first choice for heterologous expression of any foreign gene, 

heterologous expression of chop-2 was tried in E. coli to produce protein for 

characterization. A truncated chop-2 (981bp) gene was cloned into the pET21a+ 

expression vector under ´T7´ promoter control. EcoR1 and HindIII restriction sites were 

introduced upstream and downstream of the chop-2 gene by PCR, respectively. The EcoR1 

and HindIII containing gene fragment was cloned into the respective enzyme sites in 
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pET21a+ vector, which allows addition of a five-histidine amino acid tag at the C-terminus 

(Fig.13a) of chop-2 gene.  

It was observed that BL-21DE3pLys expression strain could overcome the toxicity of 

Chop-2 expression (BL-21DE3pLys had tight control over the leaky expression of protein). 

Therefore, this strain was taken for all further experiments. As it was previously observed 

that a temperature downshift from 37 to 30 °C had positive influence on expression of 

Chop-1, the expression of Chop-2 was checked only at 30°C with various concentrations 

of IPTG. Chop-2 expression was obtained when induction was carried out with 0.6 mM 

IPTG at 30°C for 3hrs (Fig.13b).  

 

 

                                                    
                                                             

                                                             
Figure 13. Cloning and expression of truncated Channelopsin-2 (Chop-2) in E. coli.  (a) Chop-2 

gene fragment (1-327aa) was cloned into pET21a+ expression vector in EcoR1 and HindIII 

restriction sites. (b) pET21a+-Chop-2 transformant culture was induced with 0.6 mM IPTG at 30ºC 

for 3 hrs. 25µg of total cell lysate of uninduced (lane 1) and induced (lane 2) cultures were resolved 

on 12% SDS-PAGE, electro blotted to nitrocellulose membrane and immunoblotting was carried 

out using anti-His-tag antibody. The expressed protein band is shown by arrowhead. 

 

All retinal binding studies with expressed Chop-2 protein were performed as described by 

Chen and colleagues (Chen and Gouaux, 1996). Better expression of Chop-2 was obtained 

when cultures were grown in terrific broth medium (TB) and induction was carried out 
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with 0.6 mM IPTG. Even though, Chop-2 could be heterologously expressed in E. coli 

retinal binding could not be achieved. Since, it was observed that expression characteristic 

of Chop-2 in E. coli was very similar to that of Chop-1, and that functional expression of 

Chop-1 could be obtained only in X. laevis oocytes it was speculated that Chop-2 might be 

functionally expressed in the Xenopus oocytes. Therefore, focus was directly shifted to 

Xenopus oocytes expression system. 

3.2.3. Expression and Characterization of Chop-2 in X. laevis Oocytes 

A full length and C-terminally truncated Chop-2 gene fragment were generated from a full-

length cDNA clone (AV643095) by PCR and cloned into pGEM-HE vector. It must be 

noted that all electrophysiological recording with ChR2 expressing oocytes were done by 

George Nagel. Chop2-mRNA was expressed in oocytes of X. laevis, in the presence of all-

trans retinal, to test whether a functional rhodopsin (with covalently linked retinal: ChR2) 

could be obtained. Oocytes were examined by using two electrode voltage-clamp 

techniques (Nagel et al., 1998; Nagel et al., 1995). A full-length ChR2 or a ChR2 gene 

fragment comprising only amino acids 1–315 were tested (Fig. 14a).  

Large light-activated currents were observed with both constructs, in standard oocyte 

Ringer's solution (Fig. 16b). These photocurrents were completely absent in non-injected 

oocytes, as reported in previous studies on other rhodopsins, expressed in oocytes under 

similar conditions (Nagel et al., 1998; Nagel et al., 1995; Schmies et al., 2001). In 

continuous light, the photocurrent decays to a steady-state level, i.e., desensitizes (Fig. 

14b). The amplitude and direction of the photocurrent varied with the membrane potential, 

indicating that light triggers a passive ion conductance of ChR2. The cation conductance of 

ChR2 is confined to the hypothetical 7-TM helices, as identical photocurrents and very 

similar current–voltage relationships were obtained with ChR2–737 or ChR2–315, 

allowing the conclusion that those amino acids (316–737aa) do not contribute to the ion 

conductance.  

In contrast to the proton-selective ion channel ChR1, ChR2 photocurrents greatly varied in 

solutions containing different cations (Fig.14c), suggesting that several cations may 

permeate ChR2, that anions were not contributing to photocurrents was proved by 

replacing extracellular chloride for aspartate, which changed neither the magnitude nor the 

reversal potential of photocurrents (data not shown). The dependence of photocurrents on 

different salt solutions shows a strong inverse relationship with the atomic radius of the 
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cation (Fig.14c). The small inward photocurrent in presence of the large monovalent cation 

N-methyl-D-glucamine (NMG+) at pH 7.6 might indicate that ChR2 is permeable for 

NMG+. However, since the inward photocurrent completely vanishes at pH 9 in NMG-Cl, 

whereas it remains for LiCl at pH 9, we conclude that the inward photocurrent in the 

presence of NMG-Cl is a proton flux, which becomes highly obvious at pH 5 (Fig.14d). 

   

 
 

Figure 14. Ion dependence of light-activated conductance mediated by ChR2–315: Photocurrents 

of full-length ChR2–737 were indistinguishable. (a) Scheme of full-length ChR2-1–737 aa and 

truncated part of the protein ChR2-1–315. (b) Two-electrode voltage-clamp records from oocytes, 

expressing ChR2–315, in Ringer's solution (110 mM NaCl, 5 mM KCl, 2 mM CaCl2, 1 mM MgCl2, 

pH 7.6). Illumination with blue (450 ± 25 nm) light is indicated by the gray bar. Currents are typical 

of those in (Nagel et al. 2002) other experiments. (c) Normalized inward photocurrents at –100 mV, 

pH 7.6, for 115 mM salt solutions of: LiCl, NaCl, KCl, RbCl, CsCl, and NMG-Cl, measured in the 

same oocyte.    (d) Photocurrents at –100 m, from the same oocyte, in 115 mM NMG-Cl, at pH 9, 

pH 7.6, or pH 5, this figure has been taken from a published paper  (Nagel et al., 2003).  
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3.2.4. Specificity Test of Chop-1 and Chop-2 Antibodies 

The polyclonal antibodies (Chop-1 and Chop-2) used in this were kindly provided by Peter 
Berthold. These antibodies were generated against the C- terminal part of Chop-1 (310-547 
aa) and Chop-2 (617-723 aa). Since, MBP-Channelopsin (MBP-Chop-1 and 2) fusion 
proteins were used as antigen to generate these antibodies, it was required that the 
specificity of the antibodies for Channelopsins (Chop-1 and 2) be checked.  

3.2.4.1. Expression of the C-terminus of Chop-1 and Chop-2 in E.coli 

The C- terminus of Chop-1 (310-712 aa) and Chop-2 (273-723 aa) were cloned in 

pMALc2 and pET 21a+ vectors in order to express C-terminal domain of Channelopsins 

with and without MBP fusion, respectively.  

 

    
         
Figure 15. Cloning of C-terminus regions of Chop-1-C and Chop-2-C. (a-d) Chop-1(310-712 aa) 

and Chop-2 (272-723 aa) gene fragments were cloned in to the EcoRI and HindIII restriction sites 

of pMALc2 and pET21a vectors respectively. 
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The C- terminus of Chop-1 and Chop-2 were cloned in to the EcoRI and HindIII restriction 

sites of pMALc2 and pET21a vectors under ‘tac’ and T7 promoters, respectively (Fig.15 a-

d). It was observed from western blotting experiments that the anti-Chop-1 and anti-Chop-

2  antibodies could recognize expressed Chop-1-C and Chop-2-C proteins with and without 

the MBP- fusion (Fig.16 a-b) respectively.  

 

       

                                                          
 
Figure 16. Immunoblotting of Chop-1-C and Chop-2-C expressed in E.coli. (a) Westen blotting of 

Chop-1-C and Chop-1-C-MBP was performed using anti Chop-1-antibody (1:1000 dilution).              

(b) Western blotting of Chop-2-C and Chop-2-C-MBP was performed using anti-Chop-2-antibody 

(1:1000 dilution). The corresponding protein bands are shown by arrowheads. 

3.2.5. Light Dependent Expression of ChR1 and ChR2 in C. reinhardtii 

The mining of C. reinhardtii EST sequence database (C. reinhardtii Genetic Centre) using 

BLAST search revealed that Chop-1 was present in a cDNA library of light grown cells 

whereas Chop-2 was present in a cDNA library of dark grown cells. Therefore, the 

expression profile of Chop-1 and Chop-2 were checked under different light conditions 

using Chop-1 and Chop-2 specific antibodies. C. reinhardtii cells (806 strain) were grown 

under different light conditions (high light, low light and darkness) and western blot 
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analysis was performed with the membrane fractions prepared from these cell cultures. It 

was observed that ChR2 appeared as a 70-kDa protein band, whereas ChR1 was seen as a 

triplet with molecular masses between 60 and 66 kDa. These molecular masses were 

smaller than the calculated molecular weight (from the predicted protein sequence) of 76 

kDa for Chop-1 and 77 kDa for Chop-2. This could probably be due to post-translational 

modifications (i.e. phosphorylation) or a net negative charge at neutral pH. It was also 

observed that both proteins were most abundant, when the cells were grown under low-

light conditions or in darkness. Both the proteins were degraded under high light conditions 

(Fig. 17a and b) and almost completely disappeared when the cell culture approached the 

stationary phase. The degradation of ChR2 was noted to be more rapid. 

    

 
 
Figure 17. Expression profile of  Chop-1 and 2 in C. reinhardtii membrane fractions under different 

light conditions.(D) cells grown in darkness, (LL) low light conditions (0.5W.m-2 ), (HL) high light 

conditions (10 W.m-2 ). (a) Membrane fractions were collected at different light conditions and 

immunoblotting was performed using anti-Chop-1310- 547 antibody (1:1000 dilution). (b) Membrane 

fractions were collected at different light conditions and immunoblotting was performed using anti-

Chop-2617- 723 antibody (1:1000 dilution). Lanes 4, 5, 9 and 10 contains Chop-1 and Chop-2 

fragments expressed in E.coli for specificity comparison. The anti-Chop-1 antibody recognized both 

Chop-1 and Chop-2 whereas; anti-Chop-2 antibody was specific to Chop-2. 

3.2.5.1. Expression Profile of ChR1 and ChR2 during Life Cycle of C. reinhardtii  

The expression profile of Channelopsin proteins studied under different light conditions 

revealed that the expression of Channelopsins in 806 cell strain is regulated in a light 

dependent manner (Fig.17). It was therefore, interesting to study the light dependent 

temporal expression of these proteins in C. reinhardtii. In order to check the expression 

profile of ChR1 and ChR2 during the life cycle of C. reinhardtii, cell strains CC-124+ and 
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125- were grown under different light conditions. Samples were collected at intermittent 

intervals, the vegetative cells, gametes and zygotes were separated to observe expression of 

ChR1 and ChR2 during different phases of the C. reinhardtii life cycle under low light 

conditions (0.5W.m-2). Expression pattern of ChR1 and ChR2 were checked by western 

blot using protein specific antibody (anti-Chop-1). In consistence with the previous results 

(Fig.17), cell strain CC-124+ showed light dependent expression of ChR1 and ChR-2 (Fig. 

18; lane 1-3). It was observed that gametes of the strain CC-124+ expressed very low level 

of Chop-1, no Chop-2 (Fig.18; lane 4). The expression of Chop-1 was dominant in the pre-

gamete and log phase grown vegetative cells of CC-124+ strain (Fig.18; lane 5 and 10). 

Similar expression pattern was found when the cell strain CC-125- was used (Fig. 18; lane 

8 and 9). Expression of Chop-1 was very low in the zygotic cells and Chop-2 expression 

was not observed in (Fig.18; lane 6 and 7).  Cells in the mid log phase of growth showed 

equal expression of both proteins (Fig.18; lane 10 and 11). These experiments led to the 

conclusion that both channelopsin proteins were predominantly expressed in the pre-

gamete stage and their expression was diminished in the subsequent growth phases.     

                  

                                     
 
Figure 18. Expression profile of Channelrhodopsins during the life cycle of C. reinhardtii. Membrane 

fractions from cells at different stages of the life cycle were isolated and western blotting was 

performed using anti-Chop-1 antibody (1:1000 dilution). Blue arrowhead represents ChR1 protein 

and orange arrowhead represents ChR2 protein. 
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3.3. Opsin Coupled Two-Component System 

Even though evidence strongly suggests that ChR1 and ChR2 are both responsible for 

photophobic responses, several mysteries remains to be solved. Firstly, since it has been 

shown that in C. reinhardtii the fast photoreceptor current is a Ca2+
 current, which is quite 

insensitive to the extra-cellular pH (Ehlenbeck et al., 2002), it is obvious that it must be 

carried by a secondary conductance and not by ChR1 or ChR2. The protein responsible for 

this secondary conductance awaits molecular identification. Secondly, if ChR1 and ChR2 

are responsible for photophobic responses with different spectral sensitivity, then the 

question, which arises is, which rhodopsin might be triggering phototaxis? In a recent 

publication, (Sineshchekov et al., 2002) the authors argued that ChR2 as the phototaxis 

receptor might couple to a transducer protein like the archaeal Halobacterium transducers 

(HTRs), which are activated by their sensory rhodopsins, SRI or SRII. Even if the 

conductance of ChR1/2 measured in Xenopus oocytes does not depend on the large 

COOH-terminal extension (Nagel et al., 2002; Nagel et al., 2003), this C-terminal 

extension of channelopsin might serve as a hinge to a secondary protein which awaits 

identification. Therefore, in order to identify this transducer like protein, the genome 

database of C. reinhardtii was mined using HtrI and II sequences as query sequence. 

3.3.1. Opsin-Related Proteins in C. reinhardtii 

The C. reinhardtii genome database was searched to identify transducer sequences from 

EST and BAC clone sequences. H. salinarium transducer protein (HtrI and II) and sensory 

opsin protein sequences were used as query sequences to identify its homologue in the                   

C. reinhardtii genome database. Blast searches revealed the existence of three sequences 

that showed homology to prokaryotic transducer proteins. Furthermore, these sequences 

were found to be coupled to rhodopsin like sequences. Moreover, these three novel opsin 

sequences showed higher homology to the SRI and SRII from halobacteria than to ChR1 

and ChR2. We provisionally named these sequences Cop5, Cop6, and Cop7 (Fig.19). 
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Figure 19.The diversity of opsin like proteins of C. reinhardtii. (a) Opsin related protein (Cop1) 

(S60158) and Cop2 (AAG02503). (b) The channelrhodopsins Cop3/Chop1 (channelopsin 1, 

AF385748) and Cop4/Chop2 (channelopsin 2, AF461397). (c) The hypothetical signal transducing 

rhodopsins Cop5 (AY272055), Cop6, and Cop7. Abbreviations: htr, transducer; RR, response 

regulator; AC/GC, adenylate or guanylate Cyclase. This figure has been taken from a published 

paper (Kateriya et al., 2004). 

3.3.2. Isolation of chlamyopsin-5 Gene 

After having identified novel opsin like sequences from C. reinhardtii with the help of 

bioinformatics tools, the next objective was to isolate the corresponding gene and cDNAs. 

Initially, the BLAST search had revealed only a partial protein sequence of 121 amino 

acids, which showed homology to the third helix of the sensory rhodopsin. Therefore, an in 

silico cloning strategy was carried out to isolate full-length opsin encoding gene sequence 

from the database. The partial protein sequence obtained was used as a query sequence to 

locate the upstream and downstream overlapping gene sequences of new the opsin from 

the genome database. In silico, gene sequence walking was performed until the 5´ and 3´ 

UTR sequences were obtained for the new opsin sequences. The full-length sequence 

obtained was used for the prediction of gene structure and conceptual translation for 

obtaining the protein sequence. The C. reinhardtii Expressed Sequence Tag 
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(http://www.kazusa.or.jp/en/plant/chlamy/EST/) database was searched to obtain EST 

clones of cop5. BLAST search revealed the existence of only one cDNA clone 

(AV394119) in the database. The cDNA clone was obtained and sequenced. However, 

complete sequencing of the EST clone revealed that it was a partial cDNA clone 

containing region encoding exon 8 to exon 13. 

Therefore, in order to isolate the full length gene three different strategies were adopted: 

1. Isolation of full length cop-5 cDNA by screening C. reinhardtii cDNA libraries  

2. Screening of bacterial artificial chromosomes (BAC library)  

3. PCR based methods (Genomic and/or RT-PCR). 

3.3.2.1. Screening of cDNA library for Isolation of cop-5 Gene 
Four different λ ZAPII C. reinhardtii cDNA libraries generated under different growth 

conditions were obtained from Chlamydomonas genome project, USA. These cDNA 

libraries were screened by PCR with a cop-5 gene fragment specific primers. However, 

cop-5 cDNA could not be isolated from this cDNA library. 

3.3.2.2. Isolation of cop-5 Gene by RT-PCR and Genomic-PCR Method 

RNA was isolated from culture grown under different light conditions (high, low and dark) 

and RT-PCR was carried out using Cop-5-opsin domain specific gene primers. Cop-5-

opsin domain encoding gene could not be isolated by RT-PCR method. 

Genomic PCR was performed for the isolation of Cop-5-opsin domain by using gene 

specific primers. Cop-5-opsin domain encoding fragment was isolated by genomic PCR, 

which was cloned and sequenced. The completion of the sequencing and prediction of gene 

structure confirmed to the sequence of cop-5 gene in genome database. 

3.3.2.3. Mining and Screening of a BAC Library for Isolation of the cop-5 gene  

The BAC clone sequences of C. reinhardtii are available from Clemson University 

Genome Institute (https://www.genome.clemson.edu/orders/). Mining of the BAC clones 

sequence database using BLAST search with 3´and/or 5´untranslated region (UTR) of cop-

5 gene revealed the presence of three BAC clones (026I2, 024P13 and 08F6), which 

showed identical DNA sequence to query sequences. All three BAC clones were purchased 

from the Genome Institute, Clemson University. The screening of BAC clones enabled us 

to isolate cop-5 gene fragment, which contained gene information of the missing N-

terminus fragment until the eighth exon of the cop-5 gene. Moreover, full length genomic 
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DNA of cop-5 gene was also obtained from the 024P13 BAC clone by PCR. The sequence 

of the full length genomic DNA obtained from the BAC clone was identical to that of cop-

5 gene available in the genome database.  

3.3.3. Bioinformatic Characterization of Cop-5 

After obtaining the full length genomic DNA of cop-5 gene, the resultant gene sequence 

was used for further in silico characterizations. The gene structure, protein sequence, 

modular domain arrangement and homology based 3D structure were predicted. 

Bioinformatic characterizations were performed using web free resources and prediction 

programs available online.  

3.3.3.1. Predicted Gene Structure and Primary Sequence of Chlamyopsin-5   

The genomic DNA sequence of the putative opsin (cop-5) was used for the prediction of 

gene structure using web free resource GeneScan http://genes.mit.edu/GENSCAN.html 

program. It was revealed that cop-5 gene consisted of 13 exons in the genomic sequence 

(Data not shown). The corresponding protein sequence was obtained and was predicted to 

encode1425 amino acids. The predicted gene structure and protein sequence information 

was submitted to the NCBI (AY272055.2) genome database, which is available online.  

3.3.3.2. Identification of Modular Domains of Chlamyopsin-5 

Simple Modular Architecture Research Tool (SMART), is a web-based resource used for 

the annotation of protein domains and the analysis of domain architectures, with particular 

emphasis on mobile eukaryotic domains (Letunic et al., 2002). Extensive annotation for 

each domain family is available, providing information related to function, sub-cellular 

localization, phylogenetic distribution and tertiary structure. User interfaces to this 

database allow searches for proteins containing specific combinations of domains in 

defined protein sequence (Schultz et al., 2000). The Chlamyopsin-5 (AY272055) protein 

sequence was analyzed using SMART available at http://smart.embl-heidelberg.de. The 

Cop-5 protein sequence had five modular domains (Fig.20). It also identified the presence 

of seven TMH at the N-terminus of the protein.  
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Figure 20.Putative arrangement of modular domains of Cop-5 within the protein sequence. Opsin 

(7TMH), Histidine Kinase (HisKA), ATPase (HATPase), Response Regulator (Rec) and Cyclase 

(CYCc) domains. These modular domains were identified using web free resource SMART.  

3.3.3.3. Prediction of Leader Peptide Sequence and Secondary Structure 

The in silico analysis further showed that the protein sequence of cop-5 predicted from the 

genome database lacked a leader peptide sequence; this led to the speculation that the 

predicted methionine was not the real start codon. Therefore, the upstream region of the 

cop-5 gene was scanned to find another possible start codon in the same ORF.  This search 

revealed an extended N-terminus of 70 amino acids with another methionine within the 

same ORF. Secondary structure topology of Cop-5 was predicted and it was found that 

Cop-5 protein sequence contains 15 putative TMH (Appendix; A3.1). This protein 

sequence was then analyzed for the presence of leader peptide sequence using SignalP, 

which then identified the presence of a leader peptide sequence at the N-terminus 

(Appendix; A3.2).  

3.3.3.4. Homology Relation of Cop-5 Modular Domains with Known Prototype 

Proteins 

The Chlamyopsin-5 sequence was aligned to sensory rhodopsin-II (SR-II) and putative 

Cop-7. It was observed that the homology between Cop5 and Cop7 is ~30% from helix 3 

to 7, and the homology between Cop5 and the SR-II including Nop-1 from N. pharaonis is 

~25% (Fig.21). Moreover, most amino acids that interact with retinal are conserved 

(Kateriya et al., 2004). These results suggested that Cop-5 might be a member of the 

classical type I opsin proteins. 

 The Cop-6 sequence was excluded in the multiple alignments because full-length gene 

sequence was not available in the genome database. Moreover, available partial sequence 

did not possess the conserved seventh helix that is an important characteristic of opsin 

proteins. Overall conservation of the transducer (HK) is higher, and the catalytically most 

prominent boxes H, X, D, G, and N can be easily identified (Table 3). This was quite 

surprising since such microbial-type transducers have not yet been identified in any plant. 
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Prokaryotic transducers couple to the so-called response regulators (RRs), constituting the 

heart of the two-component signaling system.  

 

 
 
Figure 21. Multiple sequence alignment of transmembrane helix 3-7 of the Chalymopsins-5 and 7 

with known sensory rhodopsin-II (SR-II). Identical and homologous amino acids in all three opsin 

sequences are marked by red letters and blue letters represent identical amino acids in any of the 

two-opsin sequences. A black arrow indicates conserved K residue in the 7th helix of all three 

opsins, which is supposed to bind with retinal via a Schiff base linkage. 

 

Table-3: Homology between Modular Domains of Cop-5 and Prototype Sequences 

 

 

 

 

 

 

 

 

In Cop5, a unique case was observed where all four modular domains: opsin domain, 

transducer, response regulator, and effector (AC/GC), are encoded by one open reading 

frame that is possibly translated into one large protein upon expression. However, there is 

no indication yet under which conditions these rhodopsins with potential linked enzymatic 

Prototype Protein Sequence Chlamyopsin-5 (AY2772055) Conserved Domain  in Cop-5
Sensory Rhodopsin (1H68A) 25%Identical (56-303a.a ) 

 
Helix 3 to 7 are Conserved 

Histidine Kinase (1ID0A) Or  
HiskA 

40%Identical (390-550a.a) H,X,D,G and N Boxes 
 

Response Regulator(1EAYA) 
Or Rec 

35%Identical (705-820a.a) Phosphate Acceptor Motif 
 

Adenylate Cyclase (1FX2A) 
Or Guanylate Cyclase (CYC)  

20%Identical (860-1055a.a) Catalytic Unit 
(Highly Conserved) 
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activity (enzymerhodopsins) are expressed. The only hint of such expression is the 

availability of one partial Cop5 EST clone (AV394119) that appears in the C. reinhardtii 

expressed sequence tag (EST) database.  

3.3.4. Comparative Molecular Modeling of Modular Domains of Cop-5  

3.3.4.1. General Procedure for Comparative Molecular Modeling 

 The web server (Geno3D) that is available from the web link (http://geno3d-pbil.ibcp.fr) 

uses distance geometry, simulated annealing and energy minimization algorithms to build 

3D models of the submitted query. In homology modeling, restrain co-ordinates derived 

from a structural 3D template are used to fold the query sequence in the distance geometry 

step. Comparative molecular modeling of Cop-5 modular domains was performed. Server 

performed the homology modeling of the protein sequence in six successive steps. I: 

identify homologous proteins with known 3D structures by using PSI-BLAST. II: provide 

the user all potential templates through a very convenient user interface for target selection. 

III: perform the alignment of both query and subject sequences. IV: extract geometrical 

restraints (dihedral angles and distances) for corresponding atoms between the query and 

the template. V: perform the 3D construction of the protein by using a distance geometry 

approach. VI: finally send the results by e-mail to the user (Christophe, 2001). The 

resultant PDB format files were visualized for 3-D structure with a web free Rasmol 

program. 

3.3.4.2. The 3D Models of Modular Domains of Cop-5 

The above-mentioned general procedure for molecular modeling was repeated for each 

modular domain of the Chlamyopsins-5, respectively. A homology-based approach was 

used for the prediction of boundaries of the modular domains of Cop-5.  

The query sequence of each modular domain was used to fetch homologous proteins from 

PDB with known 3D structures using Geno 3 program. Possible 3D models of each domain 

were predicted based on the known structure of the prototype protein. The structure thus 

obtained was visualized using Rasmol (Fig.22). Using homology based protein modeling; 

it was demonstrated that all modular domains of Chlamyopsin-5 have conserved secondary 

structure and active site fold like their prototype proteins for each of the domains (Fig.22 a-

d).  
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Figure 22.The predicted 3-D structure of putative modular domains of Cop-5. (a) Opsin domain.            

(b)  Histidine Kinase. (c)  Response Regulator. (d)  Cyclase domain. 

3.3.4.3. Proposed Model for Functional Activity of Cop-5 Protein 

It was proposed based on homology of the Cop-5 domains that Cop-5 might show light 

regulated adenylate/guanylate cyclase activity upon functional expression.  Therefore, a 

model was proposed to explain the possible activity of this novel opsin: Upon expression 

and illumination with light Cop-5 opsin domain might activate the transducer (HK) domain 

via conformational changes, which could lead to the phosphorylation of a conserved 

histidine residue in the H-box of the HK domain. The phosphorylated HK domain can 

switch the activation of the response regulator (RR) by transferring a phosphate group 

from a histidine residue of HK domain and it would then phosphorylate an aspartic amino 

acid residue of the acceptor motif in the RR domain like in two-component signaling, and 

finally regulate the activity of the cyclase domain.  If the proposition holds true, the 

activity of Cop-5 will be able to hydrolyze cAMP/cGMP second messenger of the signal 

transduction pathway. It would then activate cAMP/cGMP gated ion channel in the cell 

and/or cAMP/cGMP could lead to the phosphorylation of cAMP/cGMP dependent protein 

kinases. These steps of the signal transduction could influence phototaxis activity 

directly/indirectly in C. reinhardtii.  

It was therefore decided to express Cop-5 heterologously to characterize its functional 

activity. 
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3.3.5. Heterologous Expression of Cop-5 in E. coli  

In order to study in detail the structure and functional characteristics of any protein it is 

desirable that a sizeable amount of the protein is available. High-level heterologous 

expression of the protein is therefore a useful tool for its characterization. As the first step 

to characterize, Cop-5 full-length gene and its modular domains were separately tried to be 

heterologously expressed in E. coli. 

3.3.5.1. Cloning and Expression of cop-5 Full Length Gene in E. coli 

Chlamyopsin-5 full-length gene was assembled by putting together different regions (exon 

1-5 from the opsin domain of Synthetic Cop-5 gene, exon 6-8 from genomic DNA and 

exon 9-14 from the EST clone AV394119) using the overlapping PCR (OLP) method. The 

gene thus assembled was subsequently cloned into EcoR1 and HindIII restriction sites of 

the E.coli expression vector pET21a+ (Fig.23a). Cop-5-pET21a+ construct was 

transformed into different strains of E.coli namely; Origami, BL-21 λDE3, and Rosetta 

cells. Origami 2 host strains are K-12 derivatives that have mutations in both the 

thioredoxin reductase (trxB) and glutathione reductase (gor) genes, which greatly enhance 

disulfide bond formation in the cytoplasm. Rosetta host strains are BL21 derivatives 

designed to enhance the expression of eukaryotic proteins that contain codons rarely used 

in E. coli. These strains supply tRNA genes for AGG, AGA, AUA, CUA, CCC, and GGA 

on a Col-E1 compatible chloramphenicol resistant plasmid. Thus, the Rosetta strains 

allows for "universal" translation, which is otherwise limited by the codon usage of E. coli. 

Maximum expression of Cop-5 was obtained with Origami cells and no expression was 

observed with BL-21 λDE3 cell (Fig.24a). It was concluded that the size of the protein is 

too large (150 kDa) to be expressed functionally in E.coli; therefore, it was aimed to 

express each domain of the protein separately. 

3.3.5.2. Heterologous Expression of Cop-5 Opsin Domain in E. coli 

It was speculated that the opsin domain (1-303aa from the N-terminus) of Cop-5 protein 

might regulate the functional activity of the novel photoreceptor. Therefore, in order to 

understand the underlying phenomenon it was required that a large amount of functional 

protein be produced for further biochemical and biophysical characterizations. Codon 

compatibility of opsin domain was analyzed for expression in E.coli. A codon-adapted 

cop-5-S (cop-5-synthetic) gene was synthesized commercially by the KFZ department of 
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Biopark, Regensburg, Germany. EcoR1 and HindIII restriction sites were introduced 

upstream and downstream of the chop-5-S gene, respectively by PCR. The EcoR1 and 

HindIII containing gene fragment was ligated into the pET21a+ vector, which allows 

addition of five-histidine amino acids tag at the C-terminus of the Cop-5 protein (Fig.23b).  

 
 
Figure 23. Chlamyopsin-5 (cop-5) gene constructs for heterologously expression in E.coli. Full 

length as well as different modular domains of cop-5 gene was cloned into pET21a+ vector in 

EcoR1 and HindIII restriction sites under ´T7´ promoter to produce proteins with an extended His-

tag at the C-terminus. (a) Full-length cop-5 gene. (b) Opsin domain. (c) Histidine Kinase. (d) 

Response Regulator. (e) Cyclase Domain.  

                                                      

In collaboration with Martin Engelhardt at the Max-Planck Institute, Dortmund, Germany, 

cop-5-S was expressed and solubilization studies were carried out as described in Materials 

and Methods. Solubilization studies showed that the expressed protein in E.coli formed 
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inclusion bodies and it could not be solubilized even upon using Dodocyelmaltose 

(Fig.24b).  

3.3.5.3. Expression of Cop-5 HK, RR and CYCc Domains in E. coli 

Fragments of Cop-5 gene encoding the HK, RR and CYCc domains were cloned into 

EcoR1 and HindIII restriction sites in the multiple cloning site of pET21a+ vector 

(Fig.23c-e).  

                                                                        

  
                                                                                                                                                                         

                                              
Figure 24. Heterologous expression of the full-length of Cop-5 gene and its various domains in 

E.coli. (a) The full-length cop-5 gene was expressed in different cell strains of E.coli (Origami, BL-

21 DE3λ and Rosseta cells). 25µg of total cell lysate of induced and uninduced cultures were 

resolved on an SDS-PAGE and expression was monitered by westernblotting using ant-His-tag 

antibody. (b) opsin domain was expressed in E.coli and solubilization studies were carried out. 

Expression and solubilization of the expressed protein was monitered by westernblotting using anti-

His-tag antibody. (c-e) Expression of Histidine Kinase, Response Regulator and Cyclase domain 

was monitered by western blotting using ant-His tag antibodiy. The expressed protein band is 

shown by arrowhead.  
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Western blotting analysis showed that each domain was expressed in E. coli (Fig. 24 c-e).  

Since E.coli was not suitable for expressing functional Cop-5 protein, another expression 

system, namely HEK-293, was selected which would enable us to monitor functionality of 

the heterologous protein within the cell using calcium imaging and fluorescence 

microscopy. 

3.3.6. Transient Expression of Cop-5 in HEK-293  

Mammalian cells offer several advantages for expression of recombinant proteins. In most 

cases, eukaryotic proteins expressed in mammalian cells are functional because 

transcription, translation and posttranslational modifications are similar among eukaryotes. 

Expression and functional characterization of a rhodopsin protein has already been 

established in mammalian cells like HEK-293 (Shukla and Sullivan, 1999; Sullivan et al., 

2000; Sullivan and Shukla, 1999). Moreover, our previous studies have shown HEK-293 

cells to be suitable for functional expression of Channelopsin-2 (Nagel et al., 2002). It is 

also known that cAMP/cGMP-gated channel of bovine origin, expressed functionally in 

HEK-293 and was characterized by calcium imaging and electrophysiological method. 

Therefore, expression of the cop-5 gene was tried in HEK-293 expression system for 

functional characterization by calcium imaging methods. 

3.3.6.1. Expression Constructs for HEK-293 Cells 

Cop-5 full-length gene (4275 bp) was cloned into the pcDNA3.1 expression vector where 

the cop-5 gene was under the control of the immediate early cytomegalovirus (CMV) 

promoter and enhancer. The vector also contained a selectable marker (Neo) governed by a 

relatively weak promoter. EcoR1 and XhoI restriction sites were introduced at 5´ and 3´ of 

the cop-5 gene by PCR, respectively. The EcoR1 and XhoI containing gene fragment was 

cloned into the pcDNA3.1 vector (Fig. 25a). XhoI restriction site was introduced both 

upstream and downstream of the ecfp gene by PCR. Enhanced cyan fluorescence (ECFP) 

protein encoding reporter gene was then cloned in to the C- terminus of the cop-5 gene in 

Cop-5-pcDNA3.1 construct in order to produce a fusion protein (Fig.25b).  
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Figure 25. Cop-5 gene constructs with pCDNA3.1 for heterologous expression in Flp-TM/TS-HEK-

293 cells. (a) Cop-5 full-length gene was cloned into EcoR1 and XhoI restriction sites of pcDNA 

3.1 vector under ´CMV´ promoter to produce Cop-5 full-length protein. (b) ECFP reporter gene 

was introduced by an XhoI containing linker in to the Cop-5-pcDNA 3.1 construct. (c) ECFP gene 

was cloned into pcDNA3.1 plasmid in EcoR1 and XhoI restriction sites to be used as a positive 

control. 

3.3.6.2. Transfection and Expression of Cop-5 in HEK-293 cells 

The HEK-293-Flp-Tm (cAMP-gated ion channel) and HEK-293-Flp-TS (cGMP-gated ion 

channel) stable cell lines were selected for expression of Cop-5 construct in order to 

evaluate the proposed functional activity of this protein. These stable cell lines were 

expressing cAMP and cGMP gated ion channel, respectively that were able to show gating 

mechanism upon binding with cAMP/cGMP transducing molecule. The above-mentioned 

stable lines were transfected with DNA encoding Chlamyopsin-5 gene (Cop-5-pcDNA3.1 

construct) using lipofectamine mediated transfection method. ECFP-pcDNA3.1 construct 

was used as a positive control (Fig.26c) which enabled us to calculate the transfection 

efficiency using fluorescence microscopic technique. It was observed that 45-50% of the 

cells were transfected and able to express the ECFP protein. However, it was also seen that 

the efficiency with Cop-5-ECFP construct was lower (25-30%) than the positive control.  
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 Figure 26. Expressions of Cop-5 and Cop-5-ECFP in HEK-293 cells. (a) Cop-5 expression in HEK-

293 cells (shows autoflourescence). (b) Cop-5-ECFP transfected cells expressing fusion protein.                    

(c) ECFP expression in HEK-293 cell. Orange arrow denotes the heterologously expressed protein 

in the HEK cells for all experiment. 

  

3.3.6.3. Calcium Imaging of Cop-5 Expressing HEK-293 Cells 

Cyclic nucleotide gated ion channels (CNG channels) selects cations over anions, 

discriminate poorly among monovalent cations, and are permeable to divalent cations. 

Therefore, in physiological ionic solutions, both monovalent and divalent cations permeate 

the channel and each ion species carries only a fraction of the total current. A photometric 

method was used to determine the Ca++ flux by calcium sensitive dye (Fluo-4) in HEK cells 

co-expressing CNG (cAMP/cGMP-gated channel) and Cop-5 protein. It was speculated 

that functional expression of Cop-5 would be able to hydrolyze cAMP/cGMP that will bind 

to the CNG channel and lead to the opening of cation channel that will result in a Ca++ 

influx. Fluo-4 loaded cells would bind calcium and it will be measured by photometric 

method. Cop-5 expressing cells HEK-293 cells were used to monitor the autoflourescence 

of expressed Cop-5 protein as a control (Fig.26a). Expressed Cop-5-ECFP was observed by 

epifluorescence microscopy and it was found that the expressed fusion protein localized 

into the organelles of the HEK-293 cells and not in the plasma membrane (Fig.26b). 

However, fluorescence emission intensity changes were not observed upon application of 

repeated blue light (480nm) pulses for activation of expressed Cop-5 in Flp-TM and TS-

HEK-293 cells to measure Ca++ flux with photomultiplier using photon counting 

instrumentation (Frings et al., 2000). It was speculated that mislocalization of the expressed 

Cop-5 might have hampered its functional activity.  
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4. Discussion 

4.1. Channelopsin-1 is an archaeal type opsin of C. reinhardtii 

functioning as a light- gated ion channel 

In the 1970s and early 1980s, four archaeal-type rhodopsins were discovered in the 

cytoplasmic membrane of the archaeon H. salinarium (Spudich et al., 2000): the light-

driven proton pumps bacteriorhodopsin (BR) and halorhodopsin; and the phototaxis 

receptors sensory rhodopsin I and II (SRI and SRII). Completion of the genome projects of 

a number of organisms has revealed the presence of archaeal rhodopsin homologues in 

other domains of life, namely Eubacteria and Eukaryotes (Gartner and Losi, 2003). 

Organisms containing these homologues inhabit very diverse environments, which include 

a broad range of microbial life, like proteobacteria, cyanobacteria, fungi, and algae.  

The findings of Hegemann et al (Hegemann et al., 2001) provides the first information 

about an archaeal-type rhodopsin in which the seven-helix retinal binding structure is a 

domain of  a much larger protein. Multiple sequence alignments of Chop-1 with 

established archaeal type opsin sequences suggested that the residues surrounding the 

chromophore in archaeal-type opsins are conserved. It was also found that the 

bacteriorhodopsin’s Schiff base proton donor (D96 of BR) was not conserved in Chop-1 

protein sequence.  In Chop-1, the seven transmembrane helices (Appendix; A1.1) are 

present in the N-terminus region. Furthermore, bioinformatic analysis strongly suggested 

that the first hydrophobic segment in the N-terminus of Chop-1 contained the leader 

peptide sequence. In addition, the topology with seven transmembrane segments and the 

presence of a hypothetical retinal-binding site suggests that this protein might be a type-1 

opsin. It is well known that replacement of M145 in BR produces substantial spectral shifts 

and this residue was implicated in spectral tuning of BR. The homologue of this residue in 

Chop-1 protein is G226 (Ihara et al., 1994). It would be interesting to know the importance 

of this particular amino acid for spectral tuning. The  predicted proton pathway of Chop-1 

was depicted based on homology to the BR, protonation and deprotonation state of Chop-1 

was assumed to be dependent on pH since there are many pH-dependent processes 

occurring in BR that are linked to the protonation states (pKa values) of different residues, 

which modulate the function of BR. For example, protonation (pH 2.0) of the counterion 
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D85 in the ground state causes a red shift of the spectrum, called purple to blue transition 

(Lóránd et al., 1999).  

The newly identified Chop-1 from C.reinhardtii provides an example of evolution fusing 

the seven-helix microbial rhodopsin motif with an extended C-terminus, presumably for 

photosignal transduction from the photoreceptor domain (Ridge, 2002). Predictions of 

phosphorylation sites of Chop-1 protein showed the presence of serine and threonine (S 

and T) residues in the C-terminus region. These residues might serve as potential 

phosphorylation targets of cellular kinases (Appendix; A1.3). It is tempting to speculate 

that the modular nature of the transducer regions allow them to function in an analogous 

fashion to that of components involved in visual transduction in animals. Here, light 

stimulated rhodopsin (metarhodopsin) activates the G-protein to initiate a series of 

downstream events that culminate in the closure of membrane bound cGMP channel. 

Termination of the cascade is partly accomplished by phosphorylation of S and T residues 

in rhodopsins´s C-terminus (Lagnado, 2002). However, the function of the extended C-

terminus (311-723 aa) of Chop-1 is not yet clear. 

 The availability of the BR protein crystal structure of H. salinarium has opened new vistas 

for virtual structure prediction of new archaeal- type opsin, by using this BR structure as a 

template for homology modeling. The specific arrangement of the seven TM helices 

stabilized by a series of intra-molecular interactions mediated by several backbone and 

side-chain atoms seems to be conserved among the archaeal- type opsins. The success of 

homology modeling is determined to a high extent by the degree of sequence homology 

between the target and the template structures. In particular, clear structural similarity 

exists for highly homologous proteins with sequence identity >30% (Yang and Honig, 

2000a; Yang and Honig, 2000b) while a lower sequence homology reflects divergence in 

the protein structures (Kalra et al., 1992). Notably, homology between the 7TM helices of 

Chop-1 and BR is only 23%. The homology of Chop-1 to BR and other known microbial 

opsins might appear small, but most amino acids that define the retinal binding pocket and 

the H+-conducting ion channel are conserved. Homology modeling suggests that the 

folding of the N-terminal domains of the polypeptides is similar to that of haloarchaeal 

rhodopsins. Further studies are necessary for elucidating the structure-function relationship 

of this new Chop-1 rhodopsin subfamily with remarkably unique features and relation to 

other light-gated ion channel proteins like Vop-2 and Aop. From the structure and 

sequence comparisons, it was speculated that Chop-1 might function as a proton 

transporter in an active or passive way (Hegemann et al., 2001). Moreover, a large proton 
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current has been recorded from C. reinhardtii eyespot at acidic pH and it is not unlikely 

that Chop1 could be the responsible photoreceptor for photobehavioural responses 

(Ehlenbeck et al., 2002).  

When Chop-1 was heterologously expressed in E.coli, it was observed that a tight control 

to prevent the leaky expression of protein during expansion of the bacterial cultures was 

crucial for the consistency of the protein production.  The codon optimized chop-1 gene 

has been expressed in E.coli while native gene was not expressed under the same 

experimental condition. The binding of retinal to expressed Chop-1-S apoprotein could not 

be observed. The refolding studies were not carried out since protein yield was very low. 

The expression of Chop-1-SS in P. pastoris was achieved as mentioned in literature for 

Nop-1 expression (Brown et al., 2001). In the case of Chop-1 expression, it was observed 

that the expressed protein did not show binding to all-trans retinal whereas for Nop-1 a 

functional expression was shown by Brown et al. Sineshchekov and colleagues have also 

reported expression of non-functional Chop-1 in P. pastoris (Sineshchekov et al., 2002) in 

an independent study.  

Functional expression and light-gated ion channel activity of Chop-1 in Xenopus oocytes 

has included a new paradigm for functional diversity of the archaeal type opsins (Nagel et 

al., 2002). The dependence of photocurrent direction on the applied potential suggests that 

the reconstituted Channelrhodopsin-1 (ChR1) mediates a light-induced passive ion 

conductance. The light-gated ion channel activity showed selectivity and permeability for 

proton (H+) over the other monovalent cations. The observed dependence of Vrev on pHo 

implies that the ChR1 mediated light-activated conductance is passive and highly selective 

for proton. Outward photocurrents could be observed at extracellular pH or low 

intracellular pH. The action spectrum of Chop-1 in oocytes showed a peak at 500nm which 

closely resembles the one observed for the action spectrum of the photoreceptor current, 

phototaxis and photophobic responses in C. reinhardtii (Nagel et al., 2002). The pH 

dependent photocurrent, IP2, recorded from intact (Ehlenbeck et al., 2002) C. reinhardtii 

was found to dominate the stationary current in continuous light at low pHo. It was 

speculated that IP2 might be carried by ChR1. During the BR photocycle, a proton is 

transferred from the Schiff base to D85 (corresponding to E162 in Chop1) and released to the 

surface by way of R82, E194, and E204. The corresponding residues in Chop1 are R161, E274, 

and S284. The key amino acid for the reprotonation of the retinal Schiff base in BR is D96 

(Butt et al., 1989; Henderson et al., 1990). The corresponding amino acid in Chop1 is H173, 

which was exchanged with two different amino acids (D or R).  The substitution H173  D 
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resulted in a complete loss of light-gated conductance, whereas H173R was still functional 

(Nagel et al., 2002). These results indicate that H173 does not function as a proton donor of 

a deprotonated Schiff base. Therefore, it was suggested that in ChR1 the retinal Schiff base 

is not deprotonated during the photocycle (Nagel et al., 2002). It is conceivable that 

isomerization of retinal or a conformational change, tightly coupled to gating the ChR1 

proton channel. ChR1 showed ion channel activity that opens in response to absorption of 

light, i.e., a combined photoreceptor and ion channel. It is not unlikely that such directly 

light-sensitive ion channels are widely distributed in other phototactic microalgae, as well 

as in gametes and zoospores of macro algae, or even in fungi (Bieszke et al., 1999). It is 

worthwhile to mention that a partial gene sequence has been identified in V. carteri 

genome database, which encodes a homologue of Chop-1. It was termed as Volvoxopsins-

2 (Vop-2), which showed very high (75%) homology to the Chop-1 (Appendix; A2.5). It 

was also observed from the sequence alignment between Channelopsins and putative Vop-

2 that Vop-2 showed higher homology to Chop-1 than to Chop-2. Therefore, it is 

interesting to determine the physiological function of this putative vop-2 gene in V. carteri 

(Appendix; A2.5). The ability of ChR1 to mediate a large light-switched H+ conductance in 

Oocytes holds promises for the use of ChR1 as a tool for measuring and/or manipulating 

electrical and proton gradients across the cell membrane, simply by illumination. It is 

known from electrophysiological and biochemical data that photoreceptors for phototaxis 

and photophobic responses must be enriched in the eyespot region of C. reinhardtii. 

Recently, it was shown by the indirect immunofluorescence analysis that Chop-1 is 

localized near the eyespot area of C. reinhardtii (Suzuki et al., 2003). Chop-1 and Chop-2 

were localized in total membrane fractions, and Chop-1 expression dominated in the high 

light grown culture (Nagel et al., 2003). It was also observed that Chop-1 is mainly 

expressed in vegetative and gamete cells. Sineshchekov and colleagues have generated 

transformants in which the ratio of Chop1 and its homolog Chop2 was changed by an 

antisense approach (Sineshchekov et al., 2002). Sineshchekov et al have found that 

photocurrents of ChR1 deprived cells at high flash intensities were reduced, the authors 

concluded that ChR1 mediates the high-intensity response (Sineshchekov et al., 2002). Our 

results for ChR1 from Xenopus oocytes and in vivo expression characteristic (light 

dependent expression) support that both Channelrhodopsins control photophobic responses 

with different spectral sensitivity. However, gene knockout mutant are needed to 

understand clear physiological function of both proteins. 
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4.2. A second archaeal-type opsin, Channelopsin-2, of 

C.reinhardtii also functions as a light-gated cation channel 

The sequence identity between Chop-2 and other archaeal- type opsins is not high, even 

within the 7TM domain; homology of Chop-2 to BR is only 22%. However, most amino 

acids that define the retinal binding site and the H+-conducting ion network of archaeal 

type opsins are conserved in the Chop-2 sequence (Nagel et al., 2003). Multiple sequence 

alignments performed with established archaeal type opsins and Chop-2 suggests the 

positions of the seven transmembrane helices in the N-terminal region of Chop-2 sequence. 

These seven transmembrane segments are involved to form the internal pocket for the 

binding of all-trans retinal in archaeal-type opsin. The sequence alignment analysis 

revealed that opsin domain of Chop-2 is surrounded by more hydrophilic amino acid 

residues than BR; it could probably alter the hydrogen-bonding network in the opsin 

domain and thereby altering the pore size.  

Sequence homology also showed that the first proton transfer in the photocycle from the 

retinal Schiff base to D85 is the most critical in BR, which is E123 residue in the Chop-2.  

This is a significant difference because mutagenic replacement of D85  in BR with T is 

sufficient to convert it into light activated Cl- pump (Sasaki et al., 1995). The breaking of 

the hydrogen bond between D85 and T89, was proposed to increase the pKa of D85 and make 

it the proton acceptor (Royant et al., 2000). According to the rules of coupling, the release 

of the proton at a pH higher than its pKa will raise, in turn, the pKa of D85. This will shift 

the protonation equilibrium toward more complete deprotonation of the Schiff base 

(Zimanyi et al., 1992). The pKa of D85 is expected to rise very strongly upon proton 

release. One could expect similar event between the E123 and T127 for Chop-2 in a pH 

dependent manner within the photocycle. Sequence alignment revealed that the 

carboxylate proton donor specific to the light-activated proton pump (D96 in BR), which is 

a noncarboxylate residue in known archaeal type opsin, is replaced with H134 residue in 

Chop-2. Transfer of proton from D96 to the retinal Schiff base requires that the pKa of D96 

be lowered from above 11 in the nonilluminated state to not higher than the pKa of the 

Schiff base, which is about 8 (Brown and Lanyi, 1996). It is known from the 

characterization of Chop-1 mutant (H173) that this residue is not involved in the 

reprotonation (Nagel et al., 2002). Therefore, it might be speculated that H134 of the Chop-2 
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would not be responsible for the reprotonation of Schiff base during its photocycle. Four 

residues in bacteriorhodopsin are involved in proton release (E194 and E204 near the 

extracellular surface) and in proton uptake (T46 and D96 near the cytoplasmic surface) are 

substituted non-conservatively in sensory rhodopsin (Spudich et al., 2000). Two of the four 

are conserved in Chop-2, except for E194 and D96, which are S284 and H134 residue in Chop-

2 sequence respectively. Sequence alignment and predicted secondary structure of Chop-2 

have suggested that the folding of the N-terminal opsin domains of the Chop-2 

polypeptides is similar to that of haloarchaeal rhodopsins (Appendix; A2.1). The Chop-2 

sequence showed very high homology (75%) to Chop-1 but there is no indication of the 

presence of 2TMH helices at the extended C-terminus of Chop-2. However, the extend C-

terminal of both proteins have not shown significant homology to other known protein 

sequences in NCBI database, and the functional importance of this region remains 

unknown. The C-terminus region of the Chop-2 protein contains several S/T residues, 

which are predicted to be phosphorylation sites (Appendix; A2.4), which might have an 

implication in the physiological function of Chop-2 in C. reinhardtii.  

Overexpression of foreign genes in E coli at low temperature improves the solubility and 

stability of the expressed protein (Qing et al., 2004), as the folding of recombinant proteins 

is favored at low temperature and degradation is less under these conditions (Baneyx, 

1999). Taking these findings into the consideration, expression of Chop-2 was carried out 

at a lowered temperature of 18°C for 12-16hrs. Eventhough the protein was produced it 

was still not functional. The expression characteristics of Chop-2 in E. coli were very 

similar to that of Chop-1. However, X. laevis expression system was successful for 

functional expression of both the channelopsin proteins (Nagel et al., 2002; Nagel et al., 

2003). 

The involvement of ChR2 in the generation of photocurrents in C. reinhardtii was shown in 

a recent study by Sineshchekov et al. (Sineshchekov et al., 2002). They named this 

rhodopsin CSRB (Chlamydomonas Sensory Rhodopsin B), as its molecular function was 

revealed indirectly by suppression of endogenous expression, and postulated, in analogy to 

the archaeal sensory rhodopsins, that it is coupling to a transducer. The expression of 

Chop-2 was tried in X. laevis oocytes in the hope to get functional expression, which 

would then enable the characterization of the protein using two-electrode voltage clamp 

method. This study addressed the question of what the molecular function of the second 

microbial-type retinal protein (rhodopsin), ChR2, from the alga C. reinhardtii might be. 

From the large photocurrents with Chop-2 expressing Xenopus oocytes (Nagel et al., 2003) 
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cells, it can be concluded that ChR2 from C. reinhardtii is functionally expressed in 

Xenopus oocytes. These experiments leave little doubt that Chop2 binds all-trans retinal to 

form ChR2 and that ChR2 is a rhodopsin, which undergoes a photocycle with a cation-

conducting photocycle intermediate or, in other words, an ion channel with an intrinsic 

light sensor. The channel has a low selectivity among cations but it is not a non-specific ion 

channel because it does not conduct anions. From the range of conducted cations it may be 

concluded that the narrowest pore size or selectivity filter of the channel (Hille, 2001) is 

wider than that of a voltage-activated Na+ channel but probably slightly smaller than that of 

the nicotinic acetylcholine receptor, because tetra-ethyl ammonium+, Mg++, and Zn++ were 

not conducted. 

ChR1 and ChR2 form a 7-TM motif, which is well known in other microbial type 

rhodopsins and G protein-coupled receptors, but a new feature for ion channels. Most ion 

channels are formed by polymers of subunits or are large proteins with internal repeats 

(Hille, 2001). A well-known exception is the cystic fibrosis transmembrane conductance 

regulator, where a single 12-transmembrane protein forms a chloride channel (Chen et al., 

2001). However, formation of a cation channel pore by a 7-TM protein was unknown until 

now. The light-gated proton channel activity of Chop1 was studied in the Xenopus oocytes 

(Nagel et al., 2002). It was established for the light-driven ion pump (BR) that the actively 

transported proton moves along a hydrogen-bonded network, which is formed by a 

monomeric of BR. For ChR2 it was proposed that 7-TM helices form a cation channel that 

must be wide (~6 Å in diameter) to be permeable to methylated ammonium cations. In 

analogy to other rhodopsins, it was suggested that the channel is opened by a 

conformational change of the protein, after a light-induced isomerization of all-trans 

retinal. However, there is no indication that ChR1 and/or ChR2 are coupled to any signal 

acceptor protein, like a G protein, or to a transducer like the archaeal sensory rhodopsins 

(SRI and SRII) to their respective transducers. This notion is corroborated by the finding 

that the electrical properties of ChR1 and ChR2 are independent of the large hydrophilic C-

terminus region of the protein. In C. reinhardtii, evidence exists for two separate light-

activated conductances for H+ and Ca++ but the rise times of the Ca++ current and the H+ 

current are indistinguishable (Ehlenbeck et al. 2001). Therefore, it was impossible to 

decide whether both currents are directly light-gated or which of the two currents triggers 

the other. On the basis of the experiments described for expressed ChR1 (Nagel et al., 

2002) and ChR2 (Nagel et al., 2003), it was proposed that the high-light photoreceptor 

current of C. reinhardtii is triggered by ChR1 and/or ChR2. The local depolarization or the 
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H+ influx is then most likely activating a secondary Ca2+ conductance, also confined to the 

eyespot region. This secondary photoreceptor conductance decays faster  than the primary 

current but its molecular origin still has to be identified (Ehlenbeck et al., 2002). ChR2 

may be a sensory photoreceptor that is preferentially used when the cells are exposed to 

dim light for longer times (several hours). From the fact that ChR2 triggers much larger 

photocurrents than ChR1 it is immediately obvious that the observed degradation of ChR2 

at higher light intensities will protect cells from the detrimental effects of continuously 

inward flowing cations, especially protons and calcium.  

             
 

Figure 27. The proposed function of an eyespot in C.reinhardtii under consideration of 

Channelrhodopsin-1 (ChR1), Channelrhodopsin-2 (ChR2) and a voltage or H+-gated Ca++ ion 

channel (VGCC). The voltage change, ∆Ψ, is transmitted along the membrane and sensed by 

VGCCs in the flagellar membrane. This figure has been taken from a published paper (Kateriya et 

al., 2004). 
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This study revealed an important function for a microbial-type rhodopsin, a directly light-

switched cation channel, and demonstrated the likelihood of a mechanism in light signal 

transduction as it may be used in C. reinhardtii.  Function of the ChR1 and 2 has been 

taken in account to propose the function of the eyespot with context of secondary 

photoreceptor (Ca++) conductance of the C. reinhardtii, which is depicted in a diagram 

(Fig.27). 

Immediately after ChR1 was identified as a light-gated ion channel, it was suggested that 

channelrhodopsins might be used for the modulation of membrane potential and 

cytoplasmic pH of other eukaryotic cells than C. reinhardtii (Nagel et al., 2002). Similar 

application becomes more obvious for ChR2 with its large light-gated permeability to 

mono and divalent cations. It was shown that expression of ChR2 in oocytes or mammalian 

cells (Nagel et al., 2003) may be used as a powerful tool to increase cytoplasmic Ca++ 

concentration or to depolarize the cell membrane, simply by illumination.  
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4.3. Opsin coupled two-component system in C. reinhardtii  

It was speculated on the basis of the Chop-1 and Chop-2 activity  in the Xenopus oocytes 

that both proteins might be responsible for photophobic response with different spectral 

sensitivity in C. reinhardtii (Nagel et al., 2002; Nagel et al., 2003). It was then an open 

question which rhodopsin triggers phototaxis in C. reinhardtii. It was also reported that 

retinal synthesis itself is under the control of opsin-based photoreceptor in C. reinhardtii 

(Foster et al., 1988). Therefore, it was interesting to identify and isolate new opsin 

sequence from C. reinhardtii. Recently, three more potential putative opsin sequences have 

been identified from C. reinhardtii genome database (Kateriya et al., 2004). Very 

interestingly, all three newly identified Chlamyopsin (Cop-5, 6 and 7) sequences were 

coupled to a transducer (HK) domain. The opsin domains of the Chlamyopsin sequences 

were more closely related to the sensory rhodopsin from H. salinarium than to BR or 

Channelopsins. The dendogram analysis revealed that Cop-5 and 7 were closer to 

haloarchaeal and eubacterial opsins than to fungal opsins, which was previously known as 

the only archaeal-type opsin protein in eukaryotes.  

One residue of known functional importance in light-activated transporters and sensors is 

the lysine (K) that form a protonated Schiff base linkage with retinal (Spudich et al., 2000). 

This important lysine residue (K274) is conserved in the opsin domain of Cop-5. It is known 

that N105 of pSRII is interacting with the chromophore during photoisomerization process; 

interestingly this residue is replaced with D172 in Cop-5. Sequence alignment revealed that 

an important amino acid for spectral tuning in pSRII (i.e. R72) is also conserved in Cop-5 

(Appendix; A3.3). Y199 and charged residues of pharaonis phoborhodopsin (pSRII) are 

important for the interaction with its transducer (Yuki et al., 2002). It was observed in 

sequence alignment of Cop-5 and pSRII that this Y199 is replaced in Cop-5 with a 

hydrophobic amino acid residue, A268.  It was predicted that positive charges of pSRII 

(K157, R162, and R164), interact with negative charges of the transducer (Royant et al., 2001), 

these residue are R226, V231and R233 in the opsin domain of Cop-5. It is interesting to note 

that the positively charged R162 is replaced with a hydrophobic residue (V155) in Cop-5 

(Appendix; A3.3). This particular amino acid change might also influence on the 

interaction of Cop-5 opsin domain to its transducer (HK).  
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Interestingly, it is known that archaebacterial photoreceptors mediate phototaxis by 

regulating cell motility through two-component signaling cascades (Oprian, 2003). 

Homologs of this sensory pathway occur in all three kingdoms of life, most notably in 

enteric bacteria in which the chemotaxis has been extensively studied. In the 

photoreception of H. Salinarium, the receptors (SRII and I), which belong to the family of 

microbial type rhodopsins, are not directly fused to the transducer domain (Klare et al., 

2004). However, it is bound to cognate transducer molecules (halobacterial transducer of 

rhodopsin, HtrII and I). In Cop-5, a unique arrangement of modular domains (Opsin, HK, 

H-ATPase, RR and CYCc) is seen within a single ORF of gene sequence, where opsin 

domain is coupled to the classical two-component system  and with cyclase domain 

(Kateriya et al., 2004). 

The structure of the NpSRII/NpHtrII complex reveals the transmembrane interaction 

domain between receptor and transducer. The main interactions in the complex are van der 

Waals contacts, predominantly at TM1-helix of the transducer and helix G of opsin 

domain, TM2-helix of transducer and helix F of opsin domain. Notably, only four 

hydrogen bonds are formed Y199 NpSRII to N74NpHtrII in TM-1, T189NpSRII to 

S62NpHtrII in TM-2 and T189 NpSRII to E43NpHtrII in TM-1.  

 

 
 
Figure 28. Sequence alignment of putative transducer domain of Cop-5 and transducer domain of 

NpHtrII: Important amino acid residues for interaction to opsin domain are denoted with green 

asterisks. Identical and homologous amino acid residues are shown in red coloure. Blue and black 

amino acids residues represent the stretches that are not conserved among species. 

 

The importance of Y199 has already been described in the previous section. The amino acid 

residues for the interaction to the transducer in opsin domain of Cop-5 are replaced with 

A268 and D258 in the helices G and F. The putative transducer domain of the Cop-5 shows 



Discussion 72

conservation of N74 of NpHtrII and two other amino acid residues (E43 and S62) are 

replaced by positively charged lysine (K; Fig.28). It is tempting to speculate that in Cop-5 

helices F and G might show interaction with the putative transducer domain with the help 

of van der wall interactions as it was shown for NpSRII:NpHtrII complex (Klare et al., 

2004). 

The H box of the histidine kinase is also conserved in the transducer domain (HK) of Cop-

5, which is not the case with prototype (NpHtrII) protein. Moreover, sequence alignment of 

histidine kinase domain with known PhoQ histidine kinase of E. coli (Marina et al., 2001) 

revealed that the classical N, F, G1, G2, and the recently defined G3 boxes are present 

within Cop-5 protein sequence (Appendix; A3.4). The sequence alignment of the RR 

domain with CheY domain of E.coli also shows presence of a motif (conserved D) for 

accepting phosphate group from HK domain (Appendix; A3.5), which is an example of 

typical two-component signaling system for chemotaxis and phototaxis. Cop-5 is unique 

among all known photoreceptor for phototaxis in different organism because sensor (opsin) 

is coupled with two-component system and with cyclase domain at the extended C-

terminus. However, it is known that the cyclase plays an important role in the context of 

phototaxis (Ng et al., 2003; Noegel, 2004; Ntefidou et al., 2003). Two conserved residues 

(N and R) are thought to be involved in catalysis of cyclase (Appendix; A3.6). These 

cyclases have also important roles in a diverse range of cellular processes. 

Blue light regulated adenylate cyclase activity has been reported in the E. gracilis, where it 

plays an essential role in phototaxis (Ntefidou et al., 2003; Watanabe and Suzuki, 2002).  

The homology based 3D modeling of modular domain suggests that secondary structure 

and folds for catalytic site for each modular domain are conserved in Cop-5 sequence. 

Based on sequence homology, predicted secondary structures and homology based 3D 

models of modular domains, respectively, it is proposed that the opsin domain will be able 

to perceive the light signal and transducer the signal, activate the two-component system 

and finally regulate cyclase activity of the protein. 

Functional expression of both full-length and opsin domain of Cop-5 could not be obtained 

in E.coli as the expressed proteins failed to bind retinal. Flp-TM/TS-HEK-293 cells would 

have been a good system to study the functional activity of the expressed protein, however 

Cop-5 upon expression in these cells was found to be mislocalized to the organelles. Light 

regulated and two-component mediated cyclase activity of Cop-5 could not be observed 

upto now.  
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At present, there is no indication yet under which physiological conditions these 

rhodopsins with linked enzyme activity (Enzymerhodopsins) are expressed. The only hint 

of such a large protein being expressed is the presence of one partial Cop-5 cDNA clone 

that appeared in the C. reinhardtii EST database. If all three genes are expressed either 

simultaneously or under certain physiological conditions, the number of opsin-related 

proteins in C. reinhardtii expands to seven. It is the only model organism yet which posses 

both (Type 1 and 2) opsin proteins. The speculation that one of these new rhodopsins 

might contributes to phototaxis seems to be justified. However, other functions like control 

of retinal biosynthesis or developmental process in C. reinhardtii should also be taken into 

account (Foster et al., 1988). 

The finding that rhodopsin is used for phototaxis in archaea, eubacteria, green algae and 

fungal zoospores might support the speculation that rhodopsin evolved from archaea via 

eukaryotic flagellates up to animal rhodopsins. The fact that microbial type rhodopsins 

(type1), no matter whether they occur in archaea or green algae, have very little homology 

to the animal type rhodopsin (type 2) might point out to an independent evolution. 

Therefore, it is conceivable that animal rhodopsins have developed from other rhodopsin 

related proteins that originally were not sensing light (chemoreceptor and others). 

Chlamyopsin and 2 might fall into this category (Kateriya et al., 2004). 
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5. Future Prospective  
It was quite surprising to note that the newly identified Type-1 opsins of C.reinhardtii 

functions as light-gated ion channels because these opsins show homology to BR, which is 

a light activated proton pump (Nagel et al., 2002; Nagel et al., 2003). It would be an 

interesting and challenging task to decipher the molecular basis of the light-gated proton 

channel activity. What are the responsible amino acids in the protein for ion channel 

activity? Can we convert a light-activated proton pump into a channel using site directed 

mutagenesis? What would be the photocycle of the Channelopsins? These and many other 

questions involving the spectroscopy and photochemistry of the pigments would be 

answered if one had an expression system providing sufficient amount of the functional 

Channelopsins. The findings of the Hegemann et al and Suzuki et al  with the predicted 3D 

models of Chop-1 suggested that opsin domain have very similar structural fold to that of 

prototype BR, with slight outward projection of helix B of Chop-1 (Hegemann et al., 2001; 

Suzuki et al., 2003). However, the activity of Chop-1 is different from that of BR. It is 

tempting to speculate that the experimental 3D structure might be different from BR, at 

least in the region of proton-conducting path/pore. Therefore, it is an urgent need to study 

structure-function relationship of Channelopsins in detail. It would be a fascinating task to 

map out the Chop-2 protein regions for ion selectivity and permeability filters because it 

shows permeability for both monovalent and divalent cations (Nagel et al., 2003). Since 

both proteins seems to be responsible mainly for photophobic responses with different 

spectral sensitivities and might influence phototaxis activity indirectly as shown by 

experiments in X. laevis oocytes (Kateriya et al., 2004; Nagel et al., 2002; Nagel et al., 

2003). It would be interesting to elucidate the physiological functions of these 

channelopsins in C. reinhardtii using the gene knockout mutants. Moreover, it is also 

needed to isolate and characterize the homologues of the Channelopsins from other 

organisms (e.g. V. carteri) where the photoreceptor currents are much slower than in C. 

reinhardtii (Braun and Hegemann, 1999). This putative Vop-2 might have a different 

function/ion selectivity and permeability than the known Channelopsins. Interestingly, I 

have identified a partial gene sequence in the genome of V. carteri (Vop-2), which showed 

high (75%) homology to the opsin domain of the Channelopsins (Appendix; A2.5). The 

characterization of this new Volvoxopsin-2 would be of help to identify the general 

mechanism of the functioning of Channelopsins in different organisms. It is worthwhile to 
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mention that a partial opsin-like sequence has been found in the NCBI database, which 

originated from the Acetabularia. The homology analysis of this partial opsin like 

sequence to the BR and Channelopsins revealed that Acetabulariaopsin (Aop) is closer to 

the BR than that of Chop-1 (Appendix; A1.4). Therefore, it might be functioning, as light-

activated proton pump. It was shown with 3H-retnal labeling experiments that D. salina 

possess the presence of at least two retinal binding proteins, which was not surprising since 

the phototaxis and photophobic responses exhibits rhodopsin action spectra with different 

maxima (Hegemann et al., 2001; Wayne et al., 1991). However, there is no information 

available about their protein sequences. It would be interesting to isolate these genes for 

characterization and comparison with known Channelopsins and other opsins. 

It is also required to understand the precise mechanism by which the ion fluxes generated 

with Channelopsins by the light signal modulate the flagellar function in C.reinhardtii. Is 

there any intermediate protein molecule, which also takes part in the photobehavioural 

responses of C.reinhardtii? Another intriguing question that has to be answered is if ChR 1 

and 2 are responsible for the photophobic responses, and which opsin is triggering 

phototaxis?  

Recently, the identification of opsin like proteins (Cop-5, 6 and 7) from the C.reinhardtii 

genome database provided a clue to assign photoreceptors for phototaxis. It is important to 

note that Cop-5 opsin domain is coupled to the classical two-component system and with 

cyclase domain. It is proposed that cop-5 might have light regulated cyclase activity upon 

expression and the involvement of cAMP/cGMP-gated ion channel in phototaxis, in this 

aspect it is similar to the E. gracilis (Ntefidou et al., 2003). Furthermore, it has also been 

shown that the cell polarization, F-actin organization, and phototaxis were altered in a 

Dictyostelium with Cyclase-associated protein (CAP) knockout mutant (Noegel, 2004). 

Recently, another report has shown that the positive phototaxis of Synechocystis sp. strain 

PCC6803 was controlled by the red light photoreceptor (TaxD1), while the negative 

phototaxis was mediated by one or more yet unidentified blue light photoreceptors (Ng et 

al., 2003). Therefore, to understand the underlying functions of Cop-5 it is needed to get 

functional expression of the protein in any expression system, which would help to 

elucidate the proposed function of this protein. Moreover, it might include a new paradigm 

for the diversity of the phototaxis receptors in different organisms. It is worthwhile to 

mention that I have also found an opsin like sequence (Vop-3) in V. carteri genome 

database, which showed homology to the Cop-5 (Appendix; A3.7). It is required to 
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characterize function of Cop-5 (and their homologs from different organisms) and compare 

their functional activity in the respective organisms.  

It was proposed that the photopigment for induction of retinal synthesis in C. reinhardtii is 

a rhodopsin. Moreover, the time lag analysis for induction of retinal synthesis and 

preliminary experiments with transcription or translation inhibitors suggested that 

alterations in gene expression could be involved in the induction process (Foster et al., 

1988). It is interesting to note that the three new Chlamyopsin genes (Cop-5, 6 and 7) are 

coupled to the classical two-component system , which is known to regulate the expression 

of various stress response genes in bacteria (Stock et al., 1990) therefore, it would be 

interesting to assign the function of these Chlamyopsins in the context of retinal bio-

synthesis. 

In conclusion, to decipher the possible interaction between these novel opsins, their mutual 

control and regulation and their signaling, which might induce a manifold physiological 

responses, remains the most challenging and fascinating task for a photobiologist. 
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6. Materials and Methods  

6.1. Methods 

6.1.1.1. Culturing of C. reinhardtii in Liquid Medium 

C. reinhardtii was streaked on TAP agar plate and grown for 5-7 days under autotrophic 

condition (0.5W/m2) at 25°C. A single colony was inoculated into 25ml TAP (7.5mM 

NH4Cl, 0.4 mM MgSO4, 0.34 mM CaCl2, 0.54 mM K2HPO4, 0.46 mM KH2PO4, 15 mM 

CH3COONa, 20 mM Tris/Cl, 0.1% trace element, pH 7.0), medium and grown for three 

days at 25°C with shaking at 125 rpm. Large-scale liquid cultures were grown by 

inoculating the media with 1/20th volume of the pre-grown culture. Phototrophic cultures 

were bubbled with CO2 (5% in Air) for maximum growth. 

6.1.1.2. Synchronization of C. reinhardtii cw 806 Culture 

The C. reinhardtii cw806 cells were grown as described above. Synchronization was 

achieved by the alternation of light and dark period during growth (12:12). Cells were 

harvested at different time points and used for protein analysis. 

6.1.1.3. C.reinhardtii Gametogenesis 

For gametogenesis, liquid cultures of vegetative cells were centrifuged at 2,000 g for 

5 minutes and resuspended in nitrogen minimal medium (NMM; 0.81mM MgSO4, 0.1mM 

CaCl2, 6.2mM KH2PO4, 6.8mM KH2PO4) at a density of 1 × 107 cells per ml. These cells 

were either incubated for 16 hrs in the light to generate gametes or in the dark to generate 

pre-gametes (Huang et al., 2003). Gametes were also obtained from pre-gametes by 

exposing them to blue light (460nm; 30 µmol·m 2·s 1).  

6.1.2. E. coli Culture 

E.coli strain DH5α was streaked on LB-agar plate (1% (w/v) Bacto-Tryptone, 0.5% (w/v) 

Yeast Extract, 1% (w/v) NaCl) and grown overnight at 37°C. A single colony was 

inoculated into 25 ml. LB medium and grown overnight at 37°C with shaking at 180 rpm.  
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6.1.2.1. Preparation of E. coli Competent (DH5 α) or (BL-21) Cells 

The pre-culture was inoculated from the Glycerol stock of competent cells into 50 ml of 

SOB (2% (w/v) Bacto-Tryptone, 0.5% (w/v) Yeast Extract, 0.05% (w/v) NaCl, 10 mM 

MgCl2 and 2.5mM KCl) in 250ml flask and incubated at 37°C overnight with shaking at 

180 rpm. A main culture of 200ml SOB was inoculated with 1ml of the pre-culture and 

was grown at 37°C with shaking for 2-3 hrs at 180 rpm. When the culture attained an 

OD567nm= 0.3-0.4; cells were centrifuged at 2400rpm for 7 min at 4°C in falcon tubes, and 

the supernatant was discarded. Cells were resuspended in 15ml TfbI (30 mM CH3COOK 

pH5.8, 50 mM MnCl2, 100 mM KCl, 15% (v/v) Glycerol) solution and incubated on ice for 

10 min (DH5α)/30 min (BL-21). Cells were collected by centrifugation with 2000rpm at 

4°C for 5 minutes. The cell pellet was then resuspended in 2ml in TfbII (10 mM 

MOPS/NaOH, pH 7.0, 75 mM CaCl2, 10 mM KCl, 15% (v/v) Glycerol) solution very 

gently and stored at -80°C in aliquots of 110µl.  

6.1.2.2. Transformation of E. coli competent cells 

Three to five nanogram of plasmid DNA or 3-5 µg quantity of ligation mixture was added 
to 50µl of competent cells, mixed well by gentle tapping and incubated on ice of 25 
minutes. Heat shock was given for 60-90 seconds according to cell strains at 42°C. It was 
then incubated on ice for 2-3 minutes and 450µl SOC medium was added. This 
transformation mix was allowed to recover for 1 hour at 37°C. Cell culture was centrifuged 
at 5000rpm for 1 minute at RT and 400µl of the supernatant was removed. Cells were 
resuspended by gentle tipping and 50µl of resuspended culture was plated on an LB-agar 
plate with appropriate antibiotics. The plates were incubated at 37°C for 12-16 hrs until the 
colonies were apparent. 
 

6.1.2.3. Storage of E. coli cells 

E.coli cells were grown as described above and 800µl of overnight grown culture was 
supplemented with sterile glycerol to a final concentration of 20 (V/V). Cell suspension 
was snap frozen in liquid nitrogen and samples were stored at -80°C. 

6.1.3. P. pastoris Culture 

The stab culture of P. pastoris (GS115) was streaked out on an YPD plate and incubated 
for 5-7 days at 30°C. Once colonies were apparent on the plates, a single colony was 
picked and inoculated in appropriate medium for further experimentations. 
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6.1.3.1. Preparation of P. pastoris competent cells  

Cells were grown in 50ml YPD medium at 30°C overnight. 500µl of overnight grown 
culture was re-inoculated into 500ml fresh YPD medium in 2L flask. It was again grown 
overnight until an OD600 = 1.3 to 1.5 was attained. Cells were harvested by centrifugation 
at 3500rpm for 5 minutes at 4°C. The pellet was resuspended in 500ml of ice-cold and 
sterilized water. Re-suspended cells were again centrifuged at 3500rpm for 5 minutes at 
4°C. Cell pellet was then resuspended into 250ml of ice-cold sterilized water. Cells were 
centrifuged as described before and the resultant cell pellet was resuspended in 20ml of 
ice-cold 1M sorbitol. Cells were washed by centrifugation and resuspended into 1ml of ice-
cold 1M sorbitol. These competent cells were used for transformation of Chop-1SS 
construct using electroporation. 

6.1.3.2. Transformation and expression Chop-1SS in P. pastoris (GS115) 
Chop-1-SS-pPIC9K construct was linerized using PmeI and purified by DNA gel extract 

method. 5-10µg of linearized DNA was mixed with 80µl of electro-competent cells 

(GS115). Cells were mixed and transferred into a 0.2 cm electroporation cuvette. 

Electroporation was performed with an electroporator using parameters 1.5 kV, 25 µF, and 

186 Ώ. 500µl of ice-cold 1M sorbitol was added and cells were incubated at 30°C for 1-2 

hrs. Cells were centrifuged at 1500g for 5 minutes at 4°C. 300µl supernatant was removed 

and rest cells were plated on YPDS-agar plates. Plates were incubated for 2-7 days at 

30°C. 20-30 colonies were picked and re-plated on Zeocine containing plates. Positive 

transformants were screened by colony PCR. Three positive clones were inoculated in 

BMGY medium and induction was carried out using 5% methanol. Expression of 

recombinant protein was monitored by western blotting using anti-Chop-1 antibody (see 

below). 

6.1.3.3. Storage of the P. pastoris cells 

A single colony was inoculated in YPD medium and incubated at 30°C for 2-3 days. This 
culture was re-inoculated into fresh YPD medium and grown overnight at 30°C. Cells were 
harvested by centrifugation; the pellet was resuspended in YPD medium and supplemented 
with 15% of Glycerol (V/V). Cells were snap frozen in liquid nitrogen and stored at -80°C. 
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6.1.4. Isolation and Purification of Nucleic Acids 

6.1.4.1. Isolation of Genomic DNA from C. reinhardtii  

Cells were grown under optimal light conditions 0.5W/m2 at 18oC and harvested by 

centrifugation (3500rpm for 5 min.) at 4°C. The pellet was frozen on mortar with liquid 

nitrogen and ground into powder. This material was used for isolation of genomic DNA 

using the DNeasy kit according to manufacturer’s instruction (DNeasy®Plant; Qiagen). 

6.1.4.2. Isolation of RNA from C. reinhardtii 

Cells were grown under different light conditions (High, Low and Dark Light intensity) at 

18oC and harvested at exponential phase of growth by centrifugation (2500 rpm for 5 min) 

at RT. The cell pellet was then resuspended in 450µl RLT solution (RNeasy®Kit), 4.5µl β-

Mercaptoethanol was added and frozen in liquid nitrogen. Frozen samples were thawed at 

RT and RNA was isolated according manufacturer’s instructions (RNeasy®Kit). 

6.1.4.3. Screening of cDNA Libraries 

Four different in vivo excised and cloned λ ZAP-cDNA libraries were provided by Irina 
Szinova. These libraries were used as a template for screening of the different 
Chlamyopsin genes using gene specific primers. 

6.1.4.4. Screening of BAC clone Libraries 

BAC clones were streaked on to LB plates with appropriate antibiotics (Chloramphinicol) 
and grown at 37ºC overnight. A single colony was picked and resuspended in 5µl of 
sterilized water, it was heat denatured at 95ºC for 5 minutes. 1µl of supernatant was used 
as the template from each BAC clone to perform genomic PCR using chlamyopsin gene 
specific primers, respectively.  

6.1.4.5. Isolation of Plasmid-DNA from E. coli 

A single colony was picked from the plate of transformants and inoculated into 3ml 2YT 

medium (1.6% (w/v) Bacto-Tryptone, 1% (w/v) Yeast Extract, 0.5% (w/v) NaCl) with 

appropriate antibiotic and grown overnight at 37°C with shaking at 180 rpm. Cells were 

harvested by centrifugation at 5000 rpm for 5 minutes at RT. Plasmid DNA was isolated 

using Nucleospin®Plasmid Kit (Macherey Nagel) according to manufacture’s instructions. 

The concentration of DNA was determined by UV spectroscopy at 260nm. A ratio between 

A260 and A280 with a value of 1.8 was used as a criterion for pure preparation of DNA. 
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The quality of the DNA was also ascertained by electrophoresing 0.5-1.0µg of the DNA on 

a 1% agarose gel followed by visualization using UV transilluminator. The plasmid-DNA 

was stored at -20°C. 

6.1.4.6. Agarose gel Electrophoresis of DNA 

Routinely 1-X TAE (40mM Tris –Acetic Acid, 1mM EDTA pH8.0) buffer was used for 

electrophoresis. Ethidium Bromide was added to a final concentration of 0.5µg per ml in 

the gel prior to casting. For most of the purposes 1-1.5%, agarose gels were used. Samples 

were loaded on the gel after mixing with 6-X loading dye (50% Glycerol, 7.5mM EDTA, 

0.4% Xylenxyanol, and 0.4% Bromophenol Blue). Electrophoresis was carried out at a 

constant voltage of 80-120V for 45-130 minutes. 

6.1.4.7. Isolation and Purification of DNA from Agrose gel 

Restriction digested DNA as well as DNA obtained by PCR amplification was analyzed by 

electrophoresis on 1-2% agarose gel. The required DNA fragment was excised from the 

gel. Isolation and purification of PCR products/ DNA fragment from the excised piece was 

performed with Nucleospin® Extract Kit according to manufacture’s instructions 

(Macherey Nagel). 

6.1.4.8. Synthesis of Codon Adapted Opsin Domain of Chop-1 and Cop-5 Genes 

The synthesis of Chop-1 gene was done by Entelechon GmbH, Regensburg, Germany. The 

synthesis of Cop-5 gene was done by M. Fuhrmann at KFZ department, Biopark, 

Regensburg. 

6.1.4.9. Sequencing of DNA  

Automated DNA sequencing was done at the sequencing facility of MWG-Biotech GmbH, 

Germany and Entelechon GmbH, Germany. 

6.1.4.10. Digestion of DNA by Restriction Enzymes 

Restriction digestion was carried out in the appropriate buffer according to manufacturer’s 

instruction. For most purposes, 1-5 µg DNA was digested with 1-20 U of restriction 

enzyme in a volume of 10-50 µl of 1X reaction buffer. The digested DNA was subjected to 

electrophoresis for purification, analysis and interpretation. 
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6.1.4.11. Dephosphorylation of the Vector DNA 

Dephosphorylation was carried out directly following plasmid linearization. Calf Intestine 

Alkaline phosphatase was added to the digestion mixture at a concentration of 1U/pmol 

linearized vector DNA. After 45-60 minutes incubation at 37°C, CIP was heat inactivated 

at 65°C for 10 minutes. 

6.1.4.12. Ligation of DNA-Fragment into Vector DNA 

Routinely, the vector DNA and insert were restriction digested with appropriate enzymes, 

purified and quantified. The insert DNA was employed at a molar excess of 2-5 folds 

relative to the linearized and dephosphorylated vector (100-200ng) DNA. The vector DNA 

and insert mixture was made up to a volume of 10-15µl with 1X ligation reaction buffer 

and 2-5 units of T4 DNA ligase. Ligation reaction was carried out for two hours at room 

temperature/overnight at 16°C. 

6.1.4.13. Polymerase Chain Reaction  

Polymerase Chain Reaction was carried out in 50µl volume with the following ingredient 

(Saiki et al., 1988). 

10x PCR Buffer     5µl 

10x dNTP Mixture (2mM)    5µl 

25µM Sense Primer     1µl 

25µM Anti-sense Primer    1µl 

Template-DNA (10ng)    1µl 

Taq-DNA-Polymerase    1U 

Water       Up to 50µl 

Cycling conditions were as follows: 

1. 95°C for 3-5 minutes    Denaturation 

2. 93°C for 45 seconds    Denaturation 

3. 56-70°C for 30 seconds   Annealing  

4. 72°C for 1min/1kb    Extension 

Step 2-4 30 Cycles 

72°C for 7 minutes     Final extension. 
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6.1.4.14. Colony-PCR for Screening of Positive Clones  

E. coli transformants were picked and resuspended in 5µl of H2O in a PCR tube, heated for 

5 min at 95°C and centrifuged briefly. The PCR reaction was setup and performed as 

mentioned above with 1µl of supernatant as the template. PCR products were analyzed on 

1% agrose gel. 

6.1.5. Protein Chemistry Methods 

6.1.5.1. Heterologous Expression of Proteins in E.coli  

Competent cells were transformed with appropriate expression constructs. Positive clones 

were screened by colony PCR. Single positive colony was picked and inoculated in to 

10ml of LB containing appropriate antibiotic. The culture was grown at 37°C with constant 

shaking at 180 rpm for 12-16 hours. The culture was expanded to a larger culture of one 

liter with one 1/20th volume of pre- culture. Cells were allowed to grow at 37°C with 

shaking at 180 rpm until an OD600= 0.6 was attained. The culture was then chilled at 4°C 

for 30 minutes prior to induction with 0.3mM IPTG. Induction was carried out for 12-16 

hrs at 30°C. Cells were then harvested by centrifugation at 5000 rpm for 15 minutes at 4 

°C. Pellet was resuspended in MOPS-EDTA buffer. The cell suspension was sonicated for 

15 pulses at 0°C to avoid heat denaturation of the protein. It was then centrifuged at 12500 

rpm for 45 minutes at 4 °C.  The supernatant was collected and used for the protein 

estimation using BCA test. Twenty-five microgram of the total protein was resolved on 10-

12% SDS-PAGE gel. Expression of recombinant protein was checked by western blotting 

using anti-His (Novagen)/protein specific antibodies (Chop-1 and Chop-2).  

6.1.5.2. Expression of Cop-5 in E.coli using BL-21 (C41) Expression strain  

The cop-5-S ET21a+ construct were transformed into the BL-21 (C41) cells using 
electroporation (1.5 KV, 800 Ώ and 125µF) method. Transformants were screened by 
colony PCR. One positive clone was inoculated into 10 ml LB medium to grow a pre-
culture for expression of Cop-5-S protein. It was then re-inoculated into fresh medium to 
grow until OD578λ =0.6 attained. Thereafter, the culture was induced with 1.0 mM IPTG at 
37°C for 2.5 hrs, and induced cells were harvested by centrifugation at 4500 rpm for 10 
minutes at 4°C. The pellet was resuspended in buffer (150mM Nacl, 25mM NaiP, and 
2mM EDTA, pH 8.0). It was then sonified for five pulses with an interval for 30 seconds at 
maximum output without fine tip; samples were on the ice for all time. Ultracentrifugation 
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was carried out at 40,000 rpm for 30 minutes at 4ºC for and the obtained pellet was 
homogenized with homogenizer potter in buffer (300mM NaCl, 50mM Na-P buffer, 2% 
Dodecyl Maltose, pH 8.0). Solubilization of expressed Cop-5 was carried out overnight at 
4ºC on slow shaking platform. Solubilized protein samples were centrifuged at 45000 rpm 
for 1hrs at 4ºC.  The supernatant of each sample was collected and samples were used for 
SDS-PAGE following by immunoblotting. 
 

6.1.5.3. Preparation of Membrane Fraction of E. coli 

The total membrane fractions from E.coli were prepared by Lysozyme/EDTA treatment 

followed by osmotic lyses and further centrifugation at 35000 rpm for 90 min at 4 °C 

(Osborn et. al., 1972). The supernatant of each fraction was collected and total protein 

content of this sample was measured using BCA test. 25µg of the total protein was 

resolved on the SDS-gel. The obtained fractions were analyzed for expression of 

recombinant protein by immunoblotting using anti His-tag (Novagen)/ protein specific 

antibodies. 

6.1.6. Gene Constructs for Expression of Chlamyopsins 

All plasmid construct of Chlamyopsin genes were cloned by PCR based sub-cloning 
method. Different variants of Chlamyopsin genes were amplified by PCR and restriction 
sites at the upstream and downstream of the gene were introduced using gene specific 
primers (Table-6), which were containing recognition sequence for respective restriction 
enzyme(s). These gene fragment and vector were digested with appropriate restriction 
enzymes. Restricted digested vector and gene fragment were separated on 1-1.5% agrose 
gel. Gene fragment and vector were purified by using DNA extract kit. Purified gene 
fragment and vector were ligated by using ligation reaction. Ligation mixture was 
transformed into the E.coli DH5α cells and transformants were screened for positive clones 
by colony PCR. Three plasmids were isolated from the positive clones for each construct 
and all construct were checked by automated DNA sequencing. 
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Table 4. 
 

Constructs Template Primers (Table.6) Vector 
Chop-1-S Chop-1 Synthetic Chop-1-S-FW+Rev pMALc2 

Chop-1-SS (E.coli) cDNA Clone Chop-1N-FW+Rev Chop-1S-pMALc2 
Chop-1-SS 

(P.pastoris) 
Chop-1SS-pMALc2 Chop-1SS-FW+Rev pPIC9K 

Chop-2 cDNA Clone Chop-2-Fw+Rev pET21a(+) 
Chop-1-C cDNA Clone Chop-1-C- FW+Rev pET21a(+)&pMALc2 
Chop-2-C cDNA Clone Chop-2-C- FW+Rev pET21a(+)&pMALc2 
Cop-5-S Cop-5 Synthetic Cop-5-S-FW+Rev pET21a(+) 

Cop-5-HK Cop-5-FL Cop-5-HK-Fw+Rev pET21a(+) 
Cop-5-RR Cop-5-FL Cop-5-RR-Fw+Rev pET21a(+) 
Cop-5-Cyc Cop-5-FL Cop-5-Cyc-Fw+Rev pET21a(+) 
Cop-5-FL Cop-5-FL 

Semi-synthetic 

Cop-5-FL-Fw+Rev pET21a(+) 

Cop-5-FL-HEK Cop-5-FL 

Semi-synthetic 

Cop-5-FL-FW and 

Cop-5-FL-Rev-HEK 

pCDNA3.1(+) 

ECFP ECP-Plasmid ECFP-FW+Rev pCDNA3.1(+) 

Cop-5-FL-ECFP ECP-Plasmid ECFP-FW+Rev Cop-5-FL-pCDNA3.1 

(+) 

6.1.6.1. Expression of Chlamyopsins in E.coli 

Table 5. Gene constructs and different experimental conditions for expression 
 

Construct Expression 
strain 

Medium Cold shock Amount of 
IPTG 

Induction 
period /°C 

Chop-1-S BL-21 DE3λ 

pLys 

LB  0.6 mM 16hrs/ 18°C 

Chop-1-SS BL-21 DE3λ 

pLys 

LB  0.6 mM 16hrs/ 18°C 

Chop-2 BL-21DE3 λ TB 0.5hrs/ 0°C 0.6 mM 2.5 hrs/37°C 

Chop-1-C BL-21DE3 λ LB  1.0 mM 2.5 hrs/37°C 

Chop-2-C BL-21DE3 λ LB  1.0 mM 2.5 hrs/37°C 

Cop-5-S C41 LB  1.0 mM 2.5 hrs/37°C 

Cop-5-HK BL-21DE3 λ TB 0.5hrs/ 0°C 0.6 mM 16hrs/ 18°C 

Cop-5-RR BL-21DE3 λ TB 0.5hrs/ 0°C 0.6 mM 16hrs/ 18°C 

Cop-5-Cyc BL-21DE3 λ TB 0.5hrs/ 0°C 0.6 mM 16hrs/ 18°C 

Cop-5-FL Origami/Rosetta TB 0.5hrs/ 0°C 0.6 mM 16hrs/ 18°C 
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6.1.6.2. Protein Estimation by BCA Method 

The protein content of the samples were determined with Bicinchoninic Acid (BCA) 

reagent (Pierce, Rockford, Ill, USA) using Bovine Serum Albumin (BSA) as standard, 

according to manufacture’s instructions. 

6.1.6.3. Precipitation of Proteins by TCA 

An equal volume of 20% TCA (Trichloroacetic Acid) was added to the protein samples.  

The TCA-protein mixture was incubating on ice for 30 minutes and centrifuged for 15 min 

at 4°C. The supernatant was removed carefully and 300 µl of cold acetone was added. The 

sample was then centrifuged for 5 min at 4°C. The supernatant was discarded and the pellet 

was dried and resuspended in SDS-PAGE loading buffer.  

6.1.6.4. Sodium Dodecyl Sulphate-Poly-Acrylamide Gel Electrophoresis (SDS-PAGE) 

Protein separation by SDS-PAGE was used to determine the relative abundance and purity 

of major proteins in a sample and their approximate molecular weights. Protein samples 

were heated in sample buffer containing 10mM 2-β-mercaptoethanol and 10% SDS at 

95°C for 5 minutes or 45°C for 30 min. From each sample, 25µg of the total protein was 

loaded onto each lane and resolved on SDS-PAGE at a constant current of 30 mA. 

6.1.6.5.  Staining of Protein Gel 

The SDS-PAG was immersed in staining solution (0.2% Coomassie Brilliant Blue dye in 

45:45:10 % Methanol: Water: Acetic Acid), sealed in a plastic box and left overnight on a 

shaker with agitation at (RT) or for 2 to 3 hours at 37°C. It was then removed from the 

staining solution and placed in destaining solution (25% Methanol, 65% H2O, and 10% 

Acetic Acid mixture) with agitation for a few hours until the bands on the gel were clearly 

visible.  

6.1.6.6. Western Blotting for Protein Detection 

Protein samples were resolved on the SDS-PAG as described previously. Semi-dry blotting 

system (Bio-Rad) was used for the transfer of proteins onto a nitrocellulose membrane 

(Hybond-Amersham). Protein transfer was performed at 2mA/cm2 for 45 Min. The 

completion of protein transfer on the membrane was confirmed using red ponceau dye or 

pre-stained standard protein marker. The protein bound membrane was washed twice with 

PBS and once using PBS-Tween 0.05% (V/V) buffer to remove un-bound protein from the 
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membrane, and each was carried out with, shaking 50-100 rpm for 10 minutes at RT. 

Blocking was performed using 7% (W/V) milk powder in PBS-tween for 1 hour at RT or 

overnight at 4°C. Washed membrane was incubated with appropriate concentration of 

primary antibody (1:1000 for anti-His-tag; 1: 2000 for anti-Chop1 and 1:2000 for anti-

Chop-2) in 7% (W/V) milk containing PBS-tween buffer for 1 hour at RT or overnight at 

4°C. The membrane was then washed 3 times with 10ml PBST with gentle shaking at RT. 

This membrane was incubated with appropriate concentration of secondary antibodies in 

7% (W/V) milk containing PBS-tween buffer at RT for 1-2 hrs. The membrane was then 

washed to remove un-bound secondary antibody. It was then immersed in the detection 

buffer, which had appropriate concentration (1:2000 for anti-IgG Mouse and 1:10000 for 

anti-IgG Rabbit) of the BCIP and NTB for colorimetric detection of the immunoblots. The 

detection of His-tagged fusion expressed protein was done by immuno-enzymatic method 

as described in manual. In the case of protein specific antibody, working dilutions were 

determined empirically for 1° and 2° antibodies.  

6.1.7. Detection of Channelopsin Proteins from C. reinhardtii 

C. reinhardtii cell (strain 806) was grown in TAP medium under different light conditions 

(high, low and dark) and harvested after 3 days. Cells were disrupted by sonication; the 

total membrane fraction was collected by using centrifugation at 30,000rpm for 40minutes 

at 4°C. Total protein content of each membrane fraction was quantified using BCA test. 

25µg of total protein sample was mixed with 2X loading dye and heated at 45°C for 30 

minutes. Membrane proteins fractions were resolved on SDS-PAGE, and Chop1 and 

Chop2 were detected by protein blotting using anti-Chop-1 and anti-Chop-2 antibodies at a 

dilution of 1: 2000 and the secondary antibody at a dilution of 1:5000. 

6.1.8. Transient Expression of Cop-5 in HEK-293  

The Cop-5 encoding full-length gene and cop-5-ecfp fusion encoding genes were cloned 

into the vector pcDNA3.1 for expression in Flp-TS/TM-HEK-293 cells. The general 

procedure for transfection and expression into HEK-293 were taken from the supplier’s 

instruction manual (Invitrogen). Regeneration of the expressed recombinant protein with 

retinal was adapted from the Shukla et al (Shukla and Sullivan, 1999). 
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6.1.9. Flow Chart for Bioinformatic Analysis of the Chlamyopsins  
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6.2. Materials  

6.2.1. Cell Strains  

Cells Marker/ Phenotype References/Source 

C. reinhardtii cc-124- strain Wild type Duke University, USA 

C. reinhardtii cc-125+ Wild type Duke University, USA 

C. reinhardtii cw-2 Cell wall deficient Duke University, USA 

C. reinhardtii cw-806  Smyth, Syracuse, USA 

E. coli C41 (DE3λ) and C43  Engelhardt 

E. coli DH10B  (Grodberg and Dunn, 1988) 

E. coli DH5α  (Hanahan, 1983) 

E. coli BL-21(DE3λ)  Novagen 

E. coli BL-21(DE3λ)pLys  Invitrogen 

HEK-293-Flp-TM/TS  Research Centre, Julich 

P. pastoris GS115 (his4,Mut2) Invitrogen 

X. laevis  Nagel 

Origami (DE3)  Novagen 

Rosetta  Novagen 

6.2.2. Vectors 

Vectors Selection Marker Source 
pArg 7.8 amp Fuhrmann 

pBluescript KS- Amp and lacZ Stratagen 
pcDNA3.1 amp Invitrogen 
pET21a (+) amp Novagen 

pET35b kan Novagen 
pECFP kan Kaup (Julich) 
pPIC9K amp Invitrogen 

pGEMHE amp Hedrich 
pGEM-HE-Rg amp Schieries 

pMALc2 amp Schieries 
pUC18 amp Hildebrandt 
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6.2.3. EST and BAC clones 

EST/BAC  Clones Source Identified Gene 
EST AV641459 Kasauza EST Project, Japan Channelopsin-1 
EST AV643095 Kasauza EST Project, Japan Channelopsin-2 
EST AV394119 Kasauza EST Project, Japan Chlamyopsin-5 

BAC-17m1 and17m15 CGUI, USA Chlamyopsin-4 
BAC-24p13 CGUI, USA Chlamyopsin-5 

6.2.4. Computer Programs used for the Analysis of Chlamyopsins 

Program Web Link References
Multalin www.prodes.toulouse.inra.fr/multalin/multalin.html (Corpet, 

1988) 
CDART www.ncbi.nlm.nih.gov (Geer et 

al., 2002) 
Sequence 
Inversion 

www.entelechon.com 
 

 

X3M-3D 
Modeling 

www.cbs.dtu.dk/service/CPHmodels/  

PDB Files 
Viewer 

www.ncbi.nlm.nih.gov  

RasMol www.openrasmol.org  
SMART http://smart.embl-heidelberg.de/ (Schultz et 

al., 2000) 
Codon Usage  http://gcua.schoedl.de/  

GeneScan http://genes.mit.edu/GENSCAN.html (Burge and 
Karlin, 
1998) 

NetPhos http://www.cbs.dtu.dk/services/NetPhos/ (Blom et 
al., 1999) 

SignalP http://www.cbs.dtu.dk/services/SignalP/ 
 

(Bendtsen 
et al., 
2004) 

TM-pred http://www.ch.embnet.org/software/TMPRED_form.html 
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6.2.5. Chemicals, Enzymes and Kits 

6.2.5.1. Chemicals  

Agar    Amresco    

Agarose   BD-USA 

Ampicillin   Sigma 

Bacto-peptone   Difco 

Bacto-Trypton   Difco 

Bacto-Yeast-Extract  Difco 

BCA    Pierce 

Coomassie Blue  Serva 

DEPC    Sigma 

dATP,dTTP,dCTP &dGTP MBI-Fermentas 

Ethidium bromide  Sigma 

Formamide   Sigma 

Glassware   Braun 

IPTG    Roth 

β-Mercaptoethanol  Roth 

NBT    Sigma 

Ni++-NTA-Agarose  Qiagen 

Nitrocellulose   Schleicher & Schuel 

Phenol    Roth 

Ponceau S   Sigma 

Rotiphoreses Gel 40  Roth 

TEMED   Bio-Rad 

Tween20R    Sigma 

X-Gal    Sigma 

X-Phosphate (BCIP)  Sigma 

All other chemicals were purchased from the Merck Company. 
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6.2.5.2. Enzymes and Proteins 
 

BSA    Sigma 

CIP    MBI-Fermentas 

DNA-Polymerase  MBI-Fermentas 

DyNAzymeTM   Finzymes 

Pfu-DNA-Polymerase  Promega 

T4-DNA-Ligase  MBI-Fermentas 

Taq-Polymerase  Schiereis/Self Made 

Vent Polymerase  NEB 

Restriction Enzymes  NEB & MBI-Fermentas 

 

6.2.5.3. Kits 

TOPO-TA-Cloning Kit Invitrogen 

Echo-Expression Kit  Invitrogen 

RT-PCR Kit   Boehringer Mannheim 

RNeasy Kit   Qiagen 

DNA/Plasmid Isolation Kit Macherey&Nagel 

DNeasy® Plant Kit  Qiagen    

6.2.6. Instruments 

Analytic Weighting Machine Mettler 

Autoclave   LSL, H+H Lab Techinque 

Centrifuge   Dupont (Sorvall) Beckmann 

Circulating Water bath New Brunswick Scientific 

Culture Flask   Nalgene 

Drying Chamber  Heraeus 

Flow through Centrifuge Wesfalia Separator 

Fine Balance   Sartorius 

Gel Apparatus   Self-prepared 

Gel Drier   Bio-Rad 

Gel Document  System Infors 
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Gradient Mixture  Self Prepared 

Heating Block   Grant 

Fermentor   Bioengineering 

Magnetic Stirrer  Heidolph 

Membrane Hybond N+ Amersham 

Parr-bomb   Ashcroft 

PCR-Cycler   Stratagene 

pH-Meter   Knick, MTW 

Pipetten   Gilson 

Pure Water   Millipore 

Blotting Apparatus  Bio-Rad 

Spectrophotometer  Beckmann 

Table Centrifuge  Eppendorf  

Ultrasonicator   Branson 

Videoprinter   Mitsubishi 

Vortexor   Heidolph 

Water Bath   Lauda 

6.2.7. Antibodies 

6.2.7.1. Primary Antibody 

Anti-His-tag    Novagen 

6.2.7.2. Secondary Antibodies 

Anti-rabbit IgG HRP-conjugated Chemicon (Working dilution 1: 10,000) 

 

Anti-mous IgG HRP-conjugated Novagen (Working dilution 1: 2000) 
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6.2.8. Solutions and Buffers 

 
2x Lysis Buffer for Chlamydomonas  De-staining Buffer (Immunoblot) 
2% CTAB       100 mM NaCl 
100 mM Tris/Cl, pH 8.0     100 mM Tris/Cl pH 9.5 
1.4 M NaCl 
20 mM EDTA 
0.2% b-Mercaptoethanol 
 
Runing Buffer  
10 mM MOPS/ NaOH pH 6.8 
1mM EDTA 
 
Blocking Buffer (Immunoblots)    Blotting Buffer (Immunoblot) 
150 mM NaCl      2.5 mM Na-Phosphate pH 6.5 
16 mM Na2HPO4      0.1% SDS 
1.8 mM NaH2PO4 
0.05% Tween 20 
7% Milk Powder 
 
PBS (Phosphate Buffered Saline)   10x Probe Buffer for Agarose Gel 
150 mM NaCl      20% Ficoll 400 
16 mM Na2HPO4     0, 1 M EDTA pH 8.0 
1.8 mM NaH2PO4     0.25% Bromphenol Blue 
 
Buffer A (Ni 2+ -Chromatography)    Buffer B (Ni 2+ -Chromatography) 
6M Guanidium Hydrochloride    8M Urea 
0.1 M NaH2PO4     0.1 M NaH2PO4 
10 mM Tris/Cl, pH 8.0     10 mM Tris/Cl, pH 7.2 
 
 
Buffer C (Ni 2+ -Chromatography)    Buffer D (Ni 2+ -Chromatography) 
8 M Urea      8 M Urea 
0.1 M NaH2PO4      0.1M NaH2PO4 
10 mM Tris/Cl, pH 6.3     10 mM Tris/Cl, pH 5.0 
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Following chemicals were dissolved in one liter to prepare trace element solution.  
22g ZnSO4 7H2O 
11.4g H 3 BO 3 
5.06g MnCl 2  4H2O 
4.99g FeSO4 7H2O 
1.61g CoCl 2 6H2O 
1.57g CuSO 4 5H2O 
1.1g (NH 4) 6 Mo 7O242H2O 
50g EDTA 
 
TfbI        TfbII 
30 mM KAc/HAc, pH5.8     10 mM MOPS/NaOH, pH 7.0 
50 mM MnCl2      75 mM CaCl2 
100 mM KCl       10 mM KCl 
15% (v/v) Glycerol     15% (v/v) Glyceriol 
Sterilized by Filter      Sterilized by Filter 
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6.2.9. Oligonucleotides 

Table 6. 
 
Oligonucleotide Sequence 

Chop-1-S-Fw AAAGGATCC ATGTCCCGTC GTCCATGG 

Chop-1-S-Rev TTTAAGCTT A TACAAAAGAA TATGTT 

Chop-1-N-FW TTT AAGCTT GGCGACATCCGCAAGAAG 

Chop-1-N-Rev TTT AAGCTT GGCC TCGGCGTCGC CGTT 

Chop-1-SS-FW TTTGAATTCATGTCCCGTCGTCCATGG 

Chop-1-SS-Rev TTTCCTAGGGCCGCCGGCTGCAGCGTT 

Chop-1-C-Fw AAAGAATTCATGCACGAGCACA TCCTGCTG 

Chop-1-C-Rev TTT AAGCTT CTCGCC CAGCTCGTTC TT 

Chop-2-Fw AAAGAATTC ATGGATTATG GAGGCGCC 

Chop-2-Rev TTT AAGCTT G TCGCGCATGA CCAGGAA 

Chop-2-C-Fw AAAGAATTC CATATCCTCATCCACGGC 

Chop-2-C-Rev TTT AAGCTT ATTCTGCAGCATCTCCGC 

Cop-5-S-Fw AAAGAATTCATGCCAGCCA CTAGTCGT 

Cop-5-S-Rev TTT AAGCTT TCTATTGCC TTCTTCGAC 

Cop-5-HK-Fw AAAGAATTCATGATCAAGACCTCGGGCGCA 

Cop-5-HK-Rev TTTAAGCTTCCAGCATCTTGTCCGTGAACG 

Cop-5-RR-Fw AAAGAATTCATGAAGGGCGCCCTGAAG 

Cop-RR-Rev TTTAAGCTT CAGCACGCGCTCCGGCC 

Cop-5-Cyc-Fw AAA GAA TTCATG ATC GCG GGC GCC ATA 

Cop-5-Cyc-Rev TTTAAGCTTCTT GCT CCA ACG GCT GGT 

Cop-5-FL-Fw AAAGAATTCATGCCAGCCA CTAGTCGT 

Cop-5-FL-Rev TTT AAGCTT CATGAACAGCGCCTG CGC 

ECFP-FW TTTGAATTCCTCGAGATGGTGAGCAAGGGGAG GAG 

ECFP-Rev AAACTCGAGCTTGTACAGCTCGTCCATGCC 

Cop-5-FL-RevHEK TTT CTCGAG CATGAACAGCGCCTG CGC 
 

The introduced restriction sites in the sense and antisense primers are highlighted in blue 

and red respectively. 
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7. Appendix 

7.1. Bioinformatic Analysis of Channelopsin-1 

7.1.1. Prediction of Putative TMH for Chop-1 Protein Sequence 

 

 
A1.1. Prediction of putative TMH of Chop-1 using hydropathy plot analysis. The location of amino 

acid residues of Chop-1 is plotted on the X-axis, whereas Y-axis numbers represent calculated 

score for the predicted TMH region in protein sequence based on hydrophobicity scale of amino 

acid residues. Peaks are denoting the score of predicted TMH (Y-axis), and corresponding amino 

acids location in the query sequence (X-axis). Opsin domain of Chop-1 is marked with a black bar 

at the N-terminus and putative TMH of opsin domain are indicated in numbers. First peak of TMH 

at N-terminus is the PLPS (Putative Leader Peptide Sequence). 
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7.1.2. Prediction of Leader Peptide Sequence in Chop-1 

        
 
A1.2. Prediction of leader peptide sequence for Chop-1. The location of amino acid residues of 

Chop-1 plotted on the X-axis and Y-axis number represent calculated score of the potential 

cleavage site in predicted leader peptide sequence. The C-score is an estimation of the probability 

of the position of amino acids as belonging to the signal peptide or not. S-score is an estimation of 

the probability of the signal peptide in protein sequence. Y-score is the geometric average value of 

the C-score and smoothed derivative of S-score. Calculated score is derived from the stretch of 

hydrophobic amino acid residues at the N-terminus of the protein. SignalP analysis predicted 

potential cleavage site at the 23th amino acid residue at N-terminus of the Chop-1 protein 

sequence. 
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7.1.3. Prediction of Putative Phosphorylation Sites in Chop-1  

   
 
A1.3. Analysis of putative phosphorylation pattern of the Chop-1 protein sequence. The location of 

amino acid residues of Chop-1 is plotted on the X-axis and predicted score of the potential 

phosphorylation of a residue in the protein sequence is plotted on Y-axis. C-terminus of the Chop-1 

protein has a number of putative phosphorylation sites. 

7.1.4. Homology of Acetabularia Opsin (Aop) to Channelopsins 

 
 

A1.4. Sequence alignment of putative Acetabularia opsin (Aop) with Channelopsins (Chop-1 and 

2). Identical and homologous amino acid residues in both proteins are shown in red colure. Retinal 

binding motif showed presence of conserved lysine (K) amino acid residue for Schiff-base linkage 

in the putative helix G of the Aop.  Putative Aop protein sequence is seems to be more homologues 

to the BR than Channelopsins.  
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7.2. Bioinformatic Analysis of Channelopsin-2 

7.2.1. Prediction of Putative TMH for Chop-2 Protein Sequence 

        

                  

A2.1. Prediction of putative TMH of Chop-2 using hydropathy plot analysis. The location of amino 

acid residues of Chop-2 is plotted on the X-axis, whereas Y-axis numbers represent calculated 

score for the predicted TMH region in protein sequence based on hydrophobicity scale of amino 

acid residues. Peaks are denoting the score of predicted TMH (Y-axis), and corresponding amino 

acids location in the query sequence (X-axis). Opsin domain of Chop-2 is marked with a black bar 

at the N-terminus and putative TMH of opsin domain are indicated in numbers. First peak of TMH 

at N-terminus is the PLPS (Putative Leader Peptide Sequence). 
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7.2.2. Prediction of Leader Peptide Sequence in Chop-2  

 

A2.2. Prediction of leader peptide sequence for Chop-2. The location of amino acid residues of 

Chop-2 plotted on the X-axis and Y-axis number represent calculated score of the potential 

cleavage site in predicted leader peptide sequence. The C-score is an estimation of the probability 

of the position of amino acids as belonging to the signal peptide or not. S-score is an estimation of 

the probability of the signal peptide in protein sequence. Y-score is the geometric average value of 

the C-score and smoothed derivative of S-score. Calculated score is derived from the stretch of 

hydrophobic amino acid residues at the N-terminus of the protein. SignalP analysis predicted 

potential cleavage site at the 26th amino acid residue at N-terminus of the Chop-2 protein 

sequence. 
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7.2.3. CDART Analysis of Chop-2 for Identification of Domain  

 

A2.3. Analysis of Chop-2 protein sequence with CDART. Bacteriorhodopsin like domain was found 

at N-terminus (1-300 a.a) of the Chop-2 protein sequence. This analysis has recognized more than 

215 opsin sequences in the NCBI database, which had similar domain architecture (opsin) like one 

within query protein sequence. Chlamyopsin-5 sequence has appeared as a unique sequence. 

Homologues of the C-terminus of Chop-2 were not found in the database. 

7.2.4. Identification of Putative Phosphorylation Sites for Chop-2 

 

             
 

A2.4. Prediction of putative phosphorylation sites in the Chop-2 protein. The location of amino acid 

residues of Chop-2 is plotted on the X-axis and predicted score for the potential phosphorylation of 

a particular residue in the protein sequence is plotted on Y-axis. Chop-2 shows patch of putative 

phosphorylation sites (mainly serine) just after the opsin domain at the C-terminus. 
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7.2.5. Homology between Channelopsins and Putative Vop-2  

 
 
A2.5. Sequence alignment of putative Volvoxopsin (Vop-2) with Channelopsins (Chop-1 and 2). 

Identical and homologous amino acid residues in both proteins are shown in red colure. Retinal 

binding motif showed presence of conserved lysine (K) amino acid residue for Schiff-base linkage 

in the putative helix G of the Vop-2.  Putative Vop-2 protein sequence is seems to be more 

homologues to the Chop-1 than Chop-2 protein.  
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7.3. Bioinformatic Analysis of Chlamyopsin-5  

7.3.1. Prediction of Putative TMH for Cop-5 Protein Sequence 

              
 
A3.1. Prediction of putative TMH of Cop-5 using hydropathy plot analysis. The location of amino 

acid residues of Cop-5 is plotted on the X-axis, whereas Y-axis numbers represent calculated 

score for the predicted TMH region in protein sequence based on hydrophobicity scale of amino 

acid residues. Peaks are denoting the score of predicted TMH (Y-axis), and corresponding amino 

acids location in the query sequence (X-axis). Opsin domain of Cop-5 is marked with a black bar at 

the N-terminus and putative TMH of opsin domain are indicated in numbers. First peak of TMH at 

N-terminus is the PLPS (Putative Leader Peptide Sequence). 
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7.3.2. Prediction of Leader Peptide Sequence in Putative Cop-5 

         
 

A3.2 Prediction of leader peptide sequence for Cop-5. The location of amino acid residues of Cop-

5 plotted on the X-axis and Y-axis number represent calculated score of the potential cleavage site 

in predicted leader peptide sequence. The C-score is an estimation of the probability of the position 

of amino acids as belonging to the signal peptide or not. S-score is an estimation of the probability 

of the signal peptide in protein sequence. Y-score is the geometric average value of the C-score 

and smoothed derivative of S-score. Calculated score is derived from the stretch of hydrophobic 

amino acid residues at the N-terminus of the protein. SignalP analysis predicted potential cleavage 

site at the 23th amino acid residue at N-terminus of the Cop-5 protein sequence. 
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7.3.2.1. Homology between pSRII and Opsin Domain of Cop-5 

               
 
A3.3. Sequence alignment of pSRII and Cop-5. Identical and homologous amino acid residues in 

both proteins are shown in red colure. Retinal binding motif showed presence of conserved lysine 

(K) amino acid residue for Schiff-base linkage in the putative helix G of the Cop-5.  Different amino 

acid in both sequence are seen in black and blue. 
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7.3.2.2. Homology between Cop-5 HK Domain and HK Domain of E.coli  

           

 
 
A3.4. Sequence alignment of HK domain of Cop-5 with HK domain of E.coli.  Identical and 

homologous amino acids in both proteins are marked in red colure. Different amino acid residues 

between the both proteins are denoted in black or blue colour. Catalytically important boxes (N, G1, 

G2 and G3) are denoted by black bars. H box is presented in this sequence alignment. 

7.3.2.3. Homology between Cop-5 RR Domain and E.coli RR Domain 

 
    

A3.5. Sequence alignment of RR domain of Cop-5 and RR domain of E.coli. Conserved aspartic 

(D) amino acid residue of the phosphate acceptor motif is marked with green coloured arrow. 

Identical and homologous amino acid residues are shown in red colour. Blue and black coloured 

amino acids residues represent the stretches that are not conserved among species. 



Appendix 108

7.3.2.4. Homology between Cop-5 Cyclase and Cyclase of T. brucei 

 
 
 A3.5. Multiple sequence alignment of Cyclase domain of Cop-5 with Cyclase domain of T.brucei. 

All Identical and homologous amino acid residue are shown in red colour. Different amino acid 

residues between the both proteins are denoted in black or blue colour. Green colour asterisked 

residues know to be involved in the catalysis of cyclase domain of T.brucei. 

7.3.2.5. Homology between Opsin Domain of Cop-5 and Putative Vop-3 

 
 A3.6. Sequence alignment between opsin domains of Cop-5 (50-180 a.a) and opsin domain of 

Vop-3. All Identical and homologous amino acid residues among the species are shown in red 

colour. Different amino acid residues between the both proteins are denoted in black or blue colour. 

Retinal binding motif showed presence of conserved lysine (K) amino acid residue for Schiff-base 

linkage in the putative helix G of the Vop-3.   



References 109

 

8. References 

Akashi, H. (1994). Synonymous codon usage in Drosophila melanogaster: natural 
selection and translational accuracy. Genetics 136, 927-935. 

Amann, E. (1985). Plasmid vectors for the regulated, high level expression of eukaryotic 
genes in Escherichia coli. Dev Biol Stand 59, 11-22. 

Baneyx, F. (1999). Recombinant protein expression in Escherichia coli. Curr Opin 
Biotechnol 10, 411-421. 

Baylor, D. (1996). How photons start vision. Proc Natl Acad Sci U S A 93, 560-565. 

Beckmann, M., and Hegemann, P. (1991). In vitro identification of rhodopsin in the green 
alga Chlamydomonas. Biochemistry 30, 3692-3697. 

Beja, O., Aravind, L., Koonin, E. V., Suzuki, M. T., Hadd, A., Nguyen, L. P., Jovanovich, 
S. B., Gates, C. M., Feldman, R. A., Spudich, J. L., et al. (2000). Bacterial rhodopsin: 
evidence for a new type of phototrophy in the sea. Science 289, 1902-1906. 

Bendtsen, J. D., Henrik, N., Heijne, G. V., and and Brunak, S. (2004). Improved prediction 
of signal peptides: SignalP 3.0. J Mol Biol 340, 783-795. 

Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., 
Shindyalov, I. N., and Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res 28, 
235-242. 

Bieszke, J. A., Spudich, E. N., Scott, K. L., Borkovich, K. A., and Spudich, J. L. (1999). A 
eukaryotic protein, NOP-1, binds retinal to form an archaeal rhodopsin-like 
photochemically reactive pigment. Biochemistry 38, 14138-14145. 

Blom, N., Gammeltoft, S., and and Brunak, S. (1999). Sequence- and structure-based 
prediction of eukaryotic protein phosphorylation sites.  
Journal of Molecular Biology 294, 1351-1362. 

Braun, F. J., and Hegemann, P. (1999). Two light-activated conductances in the eye of the 
green alga Volvox carteri. Biophys J 76, 1668-1678. 



References 110

Brown, L. S., Dioumaev, A. K., Lanyi, J. K., Spudich, E. N., and Spudich, J. L. (2001). 
Photochemical reaction cycle and proton transfers in Neurospora rhodopsin. J Biol Chem 
276, 32495-32505. 

Brown, L. S., and Lanyi, J. K. (1996). Determinationof the transiently lowered pK of the 
retinal Schiff base during the photocycle of bacteriorhodopsin. Proc Natl Acad 
Sci USA 93, 1731–1734. 

Burge, C. B., and Karlin, S. (1998). Finding the genes in genomic DNA. Curr Opin Struct 
Biol 8, 346-354. 

Burns, M., and Baylor, D. (2001). Activation, deactivation, and adaptation in vertebrate 
photoreceptor cells. Annu Rev Neurosci 24, 779-805. 

Butt, H. J., Fendler, K., Bamberg, E., Tittor, J., and Oesterhelt, D. (1989). Aspartic acids 
96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump. Embo 
J 8, 1657-1663. 

Calenberg, M., Brohnsonn, U., Zedlacher, M., and Kreimer, G. (1998). Light- and Ca2+-
modulated heterotrimeric GTPases in the eyespot apparatus of a flagellate green alga. The  
Plant Cell 10, 91-103. 

Chen, G. Q., and Gouaux, J. E. (1996). Overexpression of bacterio-opsin in Escherichia 
coli as a water-soluble fusion to maltose binding protein: efficient regeneration of the 
fusion protein and selective cleavage with trypsin. Protein Sci 5, 456-467. 

Chen, J. H., Chang, X. B., Aleksandrov, A.A and, and Riordan, J. R. (2001). CFTR is a 
monomer: biochemical and functional evidence. J Membr Biol 188, 55-71. 

Christophe, C., Martin Jambon. , Gilbert Deléage and Christophe Geourjon (2001). 
Geno3D: automatic comparative molecular modelling of protein. Bioinformatics 18, 213-
214. 

Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids 
Res 16, 10881-10890. 

Dieckmann, C. L. (2003). Eyespot placement and assembly in the green alga 
Chlamydomonas. Bioessays 25, 410-416. 

Ebnet, E., Fischer, M., Deininger, W., and Hegemann, P. (1999). Volvoxrhodopsin, a light-
regulated sensory photoreceptor of the spheroidal green alga Volvox carteri. Plant Cell 11, 
1473-1484. 



References 111

Ehlenbeck, S., Gradmann, D., Braun, F. J., and Hegemann, P. (2002). Evidence for a light-
induced H(+) conductance in the eye of the green alga Chlamydomonas reinhardtii. 
Biophys J 82, 740-751. 

Fain, G., Matthews, H., Cornwall, M., and Koutalos, Y. (2001). Adaptation in vertebrate 
photoreceptors. Physiol Rev 81, 117-151. 

Feng Gai, K. C., Hasson, J., Cooper McDonald, and Anfinrud, P. A. (1998). Chemical 
Dynamics in Proteins: The Photoisomerization of Retinal in Bacteriorhodopsin. Science 
279, 1886-1891. 

Foster, K., and Smyth, R. (1980). Light Antennas in phototactic algae. Microbiol Rev 44, 
572-630. 

Foster, K. W., Saranak, J., Patel, N., Zarilli, G., Okabe, M., Kline, T., and Nakanishi, K. 
(1984). A rhodopsin is the functional photoreceptor for phototaxis in the unicellular 
eukaryote Chlamydomonas. Nature 311, 756-759. 

Foster, K. W., Saranak, J., and Zarrilli, G. (1988). Autoregulation of rhodopsin synthesis in 
Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 85, 6379-6383. 

Frings, S., Hackos, D. H., Dzeja, C., Ohyama, T., Hagen, V., Kaupp, U. B., and Korenbrot, 
J. I. (2000). Determination of fractional calcium ion current in cyclic nucleotide-gated 
channels. Methods Enzymol 315, 797-817. 

Fuhrmann, M., Deininger, W., Kateriya, S., and Hegemann, P. (2003). Rhodopsin-related 
proteins, Cop1, Cop2 and Chop1, in Chlamydomonas reinhardtii. (Cambridge, UK, Royal 
Society of Chemistry). 

Fuhrmann, M., Deininger, W., Kateriya, S., and Hegemann, P. (2003). Rhodopsin-related 
proteins, Cop1, Cop2 and Chop1, in Chlamydomonas reinhardtii. (Cambridge, UK, Royal 
Society of Chemistry). 

Fuhrmann, M., Stahlberg, A., Govorunova, E., Rank, S., and Hegemann, P. (2001). The 
abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis 
and photophobic responses. J Cell Sci 114, 3857-3863. 

Gärtner, W. (2000). Invertebrate visual pigments., Vol 3 (Amsterdam, Elsevier). 

Gartner, W., and Losi, A. (2003). Crossing the borders: archaeal rhodopsins go bacterial. 
Trends Microbiol 11, 405-407. 



References 112

Geer, L. Y., Domrachev, M., Lipman, D. J., and Bryant, S. H. (2002). CDART: protein 
homology by domain architecture. Genome Res 12, 1619-1623. 

Gierasch, L. (1989). Signal sequences. Biochemistry 28, 923-930. 

Grodberg, J., and Dunn, J. J. (1988). ompT encodes the Escherichia coli outer membrane 
protease that cleaves T7 RNA polymerase during purification. J Bacteriol 170, 1245-1253. 

Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol 
Biol 166, 557-580. 

Hardie, R. (2001). Phototransduction in Drosophila melanogaster. J Exp Biol 204, 3403-
3409. 

Hardie, R., and Raghu, P. (2001). Visual transduction in Drosophila. Nature 413, 186-193. 

Harz, H., and Hegemann, P. (1991). Rhodopsin-regulated calcium current 
Chlamydomonas. Nature 351, 489. 

Hegemann, P. (1997). Vision in microalgae. Planta 203, 265-274. 

Hegemann, P., Fuhrmann, M., and Kateriya, S. (2001). Algal sensory  photoreceptors. J 
Phycol 37, 668-676. 

Hegemann, P., and Harz, H. (1998). How microalgae see the light, Vol 56 (Cambridge, 
University press). 

Henderson, R., Baldwin, J. M., Ceska, T. A., Zemlin, F., Beckmann, E., and Downing, K. 
H. (1990). Model for the structure of bacteriorhodopsin based on high-resolution electron 
cryo-microscopy. J Mol Biol 213, 899-929. 

Hille, B. (2001). Ion Channels of Excitable Membranes (Sunderland, MA). 

Hisatomi, O., and Tokunaga, F. (2002). Molecular evolution of proteins involved in 
vertebrate phototransduction. Comp Biochem Physiol B Biochem Mol Biol 133, 509-522. 

Hohenfeld, I. P., Wegener, A. A., and Engelhard, M. (1999). Purification of histidine 
tagged bacteriorhodopsin, pharaonis halorhodopsin and pharaonis sensory rhodopsin II 
functionally expressed in Escherichia coli. FEBS Lett 442, 198-202. 

Holland, E. M., Braun, F. J., Nonnengasser, C., Harz, H., and Hegemann, P. (1996). The 
nature of rhodopsin-triggered photocurrents in Chlamydomonas. I. Kinetics and influence 
of divalent ions. Biophys J 70, 924-931. 



References 113

Holland, E. M., Harz, H., Uhl, R., and Hegemann, P. (1997). Control of phobic behavioral 
responses by rhodopsin-induced photocurrents in Chlamydomonas. Biophys J 73, 1395-
1401. 

Ihara, K., Amemiya, T., and Miyashita, Y. a. M., Y. (1994). Met-145 is a 
key residue in the dark adaptation of bacteriorhodopsin homologs,. Biophys J 67, 1187-
1191. 

Ihara, K., Umemura, T., Katagiri, I., Kitajima-Ihara, T., Sugiyama, Y., Kimura, Y., and 
Mukohata, Y. (1999). Evolution of the archaeal rhodopsins: evolution rate changes by gene 
duplication and functional differentiation. J Mol Biol 285, 163-174. 

Jung, K. H., Trivedi, V.D., and Spudich, J.L (2003). Demonstration of a sensory rhodopsin 
in eubacteria. Mol Microbiology 47,, 1513 -1522. 

Kalra, S. P., Fuentes, M., Fournier, A., Parker, S. L., and Crowley, W. R. (1992). 
Involvement of the Y-1 receptor subtype in the regulation of luteinizing hormone secretion 
by neuropeptide Y in rats. Endocrinology 130, 3323-3330. 

Kane, J. F. (1995). Effects of rare codon clusters on high-level expression of heterologous 
proteins in Escherichia coli. Curr Opin Biotechnol 6, 494-500. 

Karnik, S. S., Nassal, M., Doi, T., Jay, E., Sgaramella, V., and Khorana, H. G. (1987). 
Structure-function studies on bacteriorhodopsin. II. Improved expression of the bacterio-
opsin gene in Escherichia coli. J Biol Chem 262, 9255-9263. 

Kateriya, S., Nagel, G., Bamberg, E., and Hegemann, P. (2004). "Vision" in single-celled 
algae. News Physiol Sci 19, 133-137. 

Kimura, Y., Vassylyev, D. G., Miyazawa, A., Kidera, A., Matsushima, M., Mitsuoka, K., 
Murata, K., Hirai, T., and Fujiyoshi, Y. (1997). Surface of bacteriorhodopsin revealed by 
high-resolution electron crystallography. Nature 389, 206-211. 

Klare, J. P., Gordeliy, V. I., Labahn, J., Büldt, G.,  , and Steinhoff, H. J., Engelhard, M. 
(2004). The archaeal sensory rhodopsin II/transducer complex: 
a model for transmembrane signal transfer. 564, 219-224 ( 

Kolbe, M., Besir, H., Essen, L. O., and Oesterhelt, D. (2000). Structure of the light-driven 
chloride pump halorhodopsin at 1.8 A resolution. Science 288, 1390-1396. 

Lagnado, L. (2002). Signal Amplification: Let's Turn Down The Lights. Curr Biol 12, 215-
217. 



References 114

Landau, E. M., Pebay-Peyroula, E., and Neutze, R. (2003). Structural and mechanistic 
insight from high resolution structures of archaeal rhodopsins. FEBS Lett 555, 51-56. 

Lanyi, J. K. (2004). Bacteriorhodopsin. Annu Rev Physiol 66, 665-688. 

Letunic, I., Goodstadt, L., Dickens, N. J., Doerks, T., Schultz, J., Mott, R., Ciccarelli, F., 
Copley, R. R., Ponting, C. P., and Bork, P. (2002). Recent improvements to the SMART 
domain-based sequence annotation resource. Nucleic Acids Res 30, 242-244. 

Liman, E., and Buck, L. (1994). A second subunit of the olfactory cyclic nucleotide-gated 
channel confers high sensitivity to cAMP. Neuron 13, 611-621. 

Liman, E., Tytgat, J., and Hess, P. (1992). Subunit stoichiometry of a mammalian K+ 
channel determined by construction of multimeric cDNAs. Neuron 9, 861-871. 

Litvin, F. F., Sineshchekov, O. A., and Sineshchekov, V. A. (1978). Photoreceptor electric 
potential in the phototaxis of the alga Haematococcus pluvialis. Nature 271, 476-478. 

Lóránd, K., Péter, G., Sándor Száraz, and Ormos, a. P. (1999). Chloride Ion Binding to 
Bacteriorhodopsin at Low pH: An Infrared Spectroscopic Study. Biophys J, 76, 1951-
1958. 

Luecke, H., Richter, H. T., and Lanyi, J. K. (1998). Proton transfer pathways in 
bacteriorhodopsin at 2.3 angstrom resolution. Science 280, 1934-1937. 

Luecke, H., Schobert, B., Lanyi, J. K., Spudich, E. N., and Spudich, J. L. (2001). Crystal 
structure of sensory rhodopsin II at 2.4 angstroms: insights into color tuning and transducer 
interaction. Science 293, 1499-1503. 

Marina, A., Mott, C., Auyzenberg, A., Hendrickson, W. A., and Waldburger, C. D. (2001). 
Structural and mutational analysis of the PhoQ histidine kinase catalytic domain. Insight 
into the reaction mechanism. J Biol Chem 76, 41182-41190. 

Melkonian, M., and Robenek, H. (1980). Eyespot membranes of Chlamydomonas 
reinhardii: a freeze-fracture study. J Ultrastruct Res 72, 90-102. 

Miledi, R. (1982). A calcium-dependent transient outward current in Xenopus laevis 
oocytes. Proc R Soc Lond B Biol Sci 215, 491-497. 

Montell, C. (1999). Visual transduction in Drosophila. Annu Rev Cell Dev Biol 15, 231-
268. 



References 115

Nagel, G., Kelety, B., Mockel, B., Buldt, G., and Bamberg, E. (1998). Voltage dependence 
of proton pumping by bacteriorhodopsin is regulated by the voltage-sensitive ratio of M1 
to M2. Biophys J 74, 403-412. 

Nagel, G., Mockel, B., Buldt, G., and Bamberg, E. (1995). Functional expression of 
bacteriorhodopsin in oocytes allows direct measurement of voltage dependence of light 
induced H+ pumping. FEBS Lett 377, 263-266. 

Nagel, G., Ollig, D., Fuhrmann, M., Kateriya, S., Musti, A. M., Bamberg, E., and 
Hegemann, P. (2002). Channelrhodopsin-1: a light-gated proton channel in green algae. 
Science 296, 2395-2398. 

Nagel, G., Szellas, T., Huhn, W., Kateriya, S., Adeishvili, N., Berthold, P., Ollig, D., 
Hegemann, P., and Bamberg, E. (2003). Channelrhodopsin-2, a directly light-gated cation-
selective membrane channel. Proc Natl Acad Sci U S A 100, 13940-13945. 

Nagel, G., Szellas, T., Riordan, J. R., Friedrich, T., and Hartung, K. (2001). Non-specific 
activation of the epithelial sodium channel by the CFTR chloride channel. EMBO Rep 2, 
249-254. 

Nassal, M., Mogi, T., Karnik, S. S., and Khorana, H. G. (1987). Structure-function studies 
on bacteriorhodopsin. III. Total synthesis of a gene for bacterio-opsin and its expression in 
Escherichia coli. J Biol Chem 262, 9264-9270. 

Ng, W.-O., Grossman, A. R., and and Bhaya, D. (2003). Multiple Light Inputs Control 
Phototaxis in Synechocystis sp. Strain PCC6803. J Bacteriol 185, 1599–1607. 

Ng, W. V., Kennedy, S. P., Mahairas, G. G., Berquist, B., Pan, M., Shukla, H. D., Lasky, 
S. R., Baliga, N. S., Thorsson, V., Sbrogna, J., et al. (2000). Genome sequence of 
Halobacterium species NRC-1. Proc Natl Acad Sci U S A 97, 12176-12181. 

Noegel, A. A. B.-W., R. Sultana, H. Muller, R. Israel, L. Schleicher, M. Patel, H.  and 
Weijer, C.J. (2004). The cyclase-associated protein CAP as regulator of cell polarity and 
cAMP signaling in Dictyostelium. Mol Biol Cell 15(934-945. 

Ntefidou, M., Iseki, M., Watanabe, M., Lebert, M., and Hader, D. P. (2003). 
Photoactivated adenylyl cyclase controls phototaxis in the flagellate Euglena gracilis. 
Plant Physiol 133, 1517-1521. 

Oprian, D. D. (2003). Phototaxis, chemotaxis and the missing link. Trends Biochem Sci 
28, 167-169. 



References 116

Pompejus, M., Friedrich, K., Teufel, M., and Fritz, H. J. (1993). High-yield production of 
bacteriorhodopsin via expression of a synthetic gene in Escherichia coli. Eur J Biochem 
211, 27-35. 

Qing, G., Ma, L. C., Khorchid, A., Swapna, G. V., Mal, T. K., Takayama, M. M., Xia, B., 
Phadtare, S., Ke, H., Acton, T., et al. (2004). Cold-shock induced high-yield protein 
production in Escherichia coli. Nat Biotechnol 22, 877-882. 

Rao, V. R., and Oprian, D. D. (1996). Activating mutations of rhodopsin and other G 
protein-coupled receptors. Annu Rev Biophys Biomol Struct 25, 287-314. 

Reilander, H., and Weiss, H. M. (1998). Production of G-protein-coupled receptors in 
yeast. Curr Opin Biotechnol 9, 510-517. 

Ridge, K. D. (2002). Algal rhodopsins: phototaxis receptors found at last. Curr Biol 12, 
R588-590. 

Royant, A., Edman, K., Ursby, T., Pebay-, Peyroula E., Landau E.M., and and Neutze. R 
(2000). Helix deformation is coupled to vectorial proton transport in the photocycle of 
bacteriorhodopsin. Nature 406, 645–648. 

Royant, A., P. Nollert, K., Edman, R. N., E. M. Landau., E. Pebay-Peyroula., and Navarro., 
a. J. (2001). X-ray structure of sensory rhodopsin II at 2.1-Å resolution. Proc Natl Acad Sci 
USA 98, 10131-10136. 

Rudolph, J., and Oesterhelt, D. (1995). Chemotaxis and phototaxis require a CheA 
histidine kinase in the archaeon Halobacterium salinarium. Embo J 14, 667-673. 

Ruiz-Gonzalez, M. X., and Marin, I. (2004). New insights into the evolutionary history of 
type 1 rhodopsins. J Mol Evol 58, 348-358. 

Saiki, R. K., Gelfand, D. H., Stoffel, S., Scharf, S. J., Higuchi, R., Horn, G. T., Mullis, K. 
B., and Erlich, H. A. (1988). Primer-directed enzymatic amplification of DNA with a 
thermostable DNA polymerase. Science 239, 487-491. 

Sakmar, T. P. (1998). Rhodopsin: a prototypical G protein-coupled receptor. Prog Nucleic 
Acid Res Mol Biol 59, 1-34. 

Sasaki, J., Brown, L., Chon, Y. S., Kandori, H., Maeda, A., Needleman, and R., L., J.K. 
(1995). Conversion of bacteriorhodopsin into a chloride ion pump. Science 269, 73-75. 



References 117

Schafer, G., Engelhard, M., and Muller, V. (1999). Bioenergetics of the Archaea. 
Microbiol Mol Biol Rev 63, 570-620. 

Schmies, G., Chizhov, I., and Engelhard, M. (2000). Functional expression of His-tagged 
sensory rhodopsin I in Escherichia coli. FEBS Lett 466, 67-69. 

Schmies, G., Engelhard, M., Wood, P. G., Nagel, G., and Bamberg, E. (2001). 
Electrophysiological characterization of specific interactions between bacterial sensory 
rhodopsins and their transducers. Proc Natl Acad Sci U S A 98, 1555-1559. 

Schultz, J., Copley, R. R., Doerks, T., Ponting, C. P., and Bork, P. (2000). SMART: a web-
based tool for the study of genetically mobile domains. Nucleic Acids Res 28, 231-234. 

Sharp, P. M., Cowe, E., Higgins, D. G., Shields, D. C., Wolfe, K. H., and Wright, F. 
(1988). Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces 
cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a 
review of the considerable within-species diversity. Nucleic Acids Res 16, 8207-8211. 

Shimono, K., Iwamoto, M., Sumi, M., and Kamo, N. (1997). Functional expression of 
pharaonis phoborhodopsin in Escherichia coli. FEBS Lett 420, 54-56. 

Shukla, P., and Sullivan, J. M. (1999). Normal and mutant rhodopsin activation measured 
with the early receptor current in a unicellular expression system. J Gen Physiol 114, 609-
636. 

Sineshchekov, O. A., Jung, K. H., and Spudich, J. L. (2002). Two rhodopsins mediate 
phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii. Proc Natl Acad 
Sci U S A 99, 8689-8694. 

Snutch, T. P. (1988). The use of Xenopus oocytes to probe synaptic communication. 
Trends Neurosci 11, 250-256. 

Spudich, J. L., Yang, C. S., Jung, K. H., and Spudich, E. N. (2000). Retinylidene proteins: 
structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16, 365-392. 

Stewart, A. K., Chernova, M. N., Kunes, Y. Z., and Alper, S. L. (2001). Regulation of AE2 
anion exchanger by intracellular pH: critical regions of the NH(2)-terminal cytoplasmic 
domain. Am J Physiol Cell Physiol 281, C1344-1354. 

Stock, J. B., Stock, A. M., and Mottonen, J. M. (1990). Signal transduction in bacteria. 
Nature 344, 395-400. 



References 118

Stoeckenius, W., and Lozier, R. H. (1974). Light energy conversion in Halobacterium 
halobium. J Supramol Struct 2, 769-774. 

Subramaniam, S., and Henderson, R. (2000). Molecular mechanism of vectorial proton 
translocation by bacteriorhodopsin. Nature 406, 653-657. 

Sullivan, J. M., Brueggemann, L., and Shukla, P. (2000). Electrical approach to study 
rhodopsin activation in single cells with early receptor current assay. Methods Enzymol 
315, 268-293. 

Sullivan, J. M., and Shukla, P. (1999). Time-resolved rhodopsin activation currents in a 
unicellular expression system. Biophys J 77, 1333-1357. 

Suzuki, T., Yamasaki, K., Fujita, S., Oda, K., Iseki, M., Yoshida, K., Watanabe, M., 
Daiyasu, H., Toh, H., Asamizu, E., et al. (2003). Archaeal-type rhodopsins in 
Chlamydomonas: model structure and intracellular localization. Biochem Biophys Res 
Commun 301, 711-717. 

Takahashi, T., Yoshihara, K., Watanabe, M., Kubota, M., Johnson, R., Derguini, F., and 
Nakanishi, K. (1991). Photoisomerization of retinal at 13-ene is important for phototaxis of 
Chlamydomonas reinhardtii: simultaneous measurements of phototactic and photophobic 
responses. Biochem Biophys Res Commun 178, 1273-1279. 

Vasina, J. A., and Baneyx, F. (1997). Expression of aggregation-prone recombinant 
proteins at low temperatures: a comparative study of the Escherichia coli cspA and tac 
promoter systems. Protein Expr Purif 9, 211-218. 

Vought, B., Salcedo, E., Chadwell, L., Britt, S., Birge, R., and Knox, B. (2000). 
Characterization of the primary photointermediates of Drosophila rhodopsin. Biochemistry 
39, 14128-14137. 

Watanabe, M., and Suzuki, T. (2002). Involvement of reactive oxygen stress in cadmium-
induced cellular damage in Euglena gracilis. Comp Biochem Physiol C Toxicol Pharmacol 
131, 491-500. 

Wayne, R., Kadota, A., Watanabe, M., and Furuya, M. (1991). Photomovement in 
Dunaliella salina: fluence rate-response curves and action spectra. Planta 184, 515-524. 

Xia, X. (1996). Maximizing transcription efficiency causes codon usage bias. Genetics 
144, 1309-1320. 



References 119

Xia, X. (1998). How optimized is the translational machinery in Escherichia coli, 
Salmonella typhimurium and Saccharomyces cerevisiae? Genetics 149, 37-44. 

Yang, A. S., and Honig, B. (2000a). An integrated approach to the analysis and modeling 
of protein sequences and structures. I. Protein structural alignment and a quantitative 
measure for protein structural distance. J Mol Biol 301, 665-678. 

Yang, A. S., and Honig, B. (2000b). An integrated approach to the analysis and modeling 
of protein sequences and structures. II. On the relationship between sequence and structural 
similarity for proteins that are not obviously related in sequence. J Mol Biol 301, 679-689. 

Yokoyama, S. (2000). Phylogenetic analysis and experimental approaches to study color 
vision in vertebrates. Methods Enzymol 315, 312-325. 

Yuki, S., Masayuki, I., Kazumi, S., and, and Naoki, K. (2002). Tyr-199 and Charged 
Residues of pharaonis Phoborhodopsin Are Important for the Interaction with its 
Transducer. Biophys J, 83, 427-432. 

Zacks, D. N., Derguini, F., Nakanishi, K., and Spudich, J. L. (1993). Comparative study of 
phototactic and photophobic receptor chromophore properties in Chlamydomonas 
reinhardtii. Biophys J 65, 508-518. 

Zimanyi, L., V´ar´o G., Chang, M., Ni, B., Needleman, R., and Lanyi, J. K. (1992). 
Pathways 
of proton release in the bacteriorhodopsin 
photocycle. Biochemistry 31. 

Zuker, C. (1996). The biology of vision of Drosophila. Proc Natl Acad Sci U S A 93, 571-
576. 
  
 

 



Bio-Data 120

Bio-Data 
 

Name:    Suneel Kumar Kateriya 

Date of Birth:   30th June 1977 

Birth Place:   Kannauj (U.P) India 

Sex:    Male 

Martial status:   Married 

 

Educational Qualification: 

Bachelor of Science (B. Sc) in Zoology, Botany and Chemistry from University of Kanpur, 

India. 

Master of Science (M. Sc) in Biotechnology from School of Biotechnology at Banaras 

Hindu University, Varanasi, India. 

Project Work for M. Sc Dissertation: The project work has been carried out on 

“Microbial Surfactants” under the supervision of Prof. Ashok Kumar at School of 

Biotechnology, BHU. 

Duration: One year.  

Present Research work: 

Project: Microbial-Type Rhodopsins from Chlamydomonas reinhardtii: Identification, 

expression and characterization. 

Research Experience: 

I have also done two years research work with the project “Enhancement of refolding yield 

and thermal stability of Glucose oxidase by solvent Engineering”. This work was carried 

out under the guidance of Dr. Rajiv Bhat at Centre for Biotechnology, JNU. Duration: 

1998-2000. 

 

Fellowships and National Level Exams: 

Department of Biotechnology (DBT) has provided financial support during my master 

degree in Biotechnology. 

CSIR-JRF: I have cleared CSIR- JRF exam, while I was in the final year of my M. Sc 

degree.  

GATE: I could qualify the GATE exam as well in 1998 with 73 percentile. 



Bio-Data 121

UGC-JNU-JRF: Since I have cleared JNU entrance exam for PhD program. It enabled me 

to get JRF from UGC as well. There I could complete my JRF tenure followed by 

promotion to SRF. 

  ICAR-NET (Plant-Biotechnology): I have appeared for an exam, which was conducted by 

Agricultural Scientists Recruitment Board (ASRB) ICAR, New Delhi. There I could 

qualify ICAR-NET for Plant Biotechnology. 

I have joined an international PhD program at University of Regensburg, Germany in 

2000. I was able to get DFG fellowship for completion of my graduate study. DFG is a 

funding agency for basic research in Germany. 

 

Memberships: 

Life membership for “Indian Biophysical Society” 

 

Workshops/Meeting: 

(I) Sequence Analysis and Molecular Modelling- India. 

(II) Molecular Biology of Stress Response-India.  

(III) 13th International Biophysics Congress-India. 

(IV) Dissecting G-Protein-Coupled Receptors (GPCR): Structure, Function and Ligand 

Interaction, Germany. Jan. 24-26, 2002. 

(V) The 10th International Conference on the Cell and Molecular Biology of 

Chlamydomonas, Vancouver, Canada - June 11-16, 2002. 

(VI) Leeds Ion Channel Workshop 2003. Leeds, U.K, London. 

(VII) 11th International Conference on Retinal Proteins- (11th ICRP). June 20-24, 2004, 

Germany. 

 

 


