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1. SUMMARY

Duchenne muscular dystrophy (DMD) is an x-linked recessive disorder, primarily

characterized by progressive muscle weakness and wasting.  Although the disease is caused

by mutations in the dystrophin gene, the precise molecular mechanisms leading to muscle

pathology are poorly understood.  Dystrophin is thought to play a structural role by providing

a link between the intracellular actin cytoskeleton and the extracellular matrix via its

interaction with a complex of peripheral and integral membrane proteins called “the

dystrophin-glycoprotein complex” (DGC).  Disruption of this linkage results in membrane

instability and renders dystrophic muscle fibers highly susceptible to contraction-induced

injury. Several members of the DGC play a role in cell signaling rather than contributing to

mechanical stability.  Altered cell signaling is thought to increase the susceptibility of muscle

fibers to secondary triggers of damage, such as functional ischemia and oxidative stress.

Understanding the connection between signaling and mechanical dysfunction is important to

further understand the function of dystrophin and the DGC and for finding improved therapies

for DMD.

Recent studies have identified ARC (apoptosis repressor with caspase recruitment

domain) as an abundant protein in human muscle that can inhibit both hypoxia and caspase-8

induced apoptosis as well as protect cells from oxidative stress.  To explore a potential role

for ARC in protecting muscle fibers from dystrophic breakdown, we have cloned and

characterized murine ARC and studied its expression in normal and dystrophic mouse mdx

muscles.  Similarly to ARC mRNA expression in human and rat tissues, mouse ARC mRNA

was found to be highly expressed in skeletal muscle and heart, and at a lower level in brain

and testis. We further examined ARC protein expression in striated muscles and found that

ARC displayed fiber-type restricted expression patterns and co-localized with the

mitochondrial marker cytochrome oxidase (COX). These studies further explored ARC

expression and localization in a dystrophic background.  ARC was expressed at essentially the

same levels in normal and dystrophic mdx muscles and appeared to be predominantly

cytoplasmic in localization.  However, we were able to demonstrate differences in the

intracellular localization pattern of ARC between normal and dystrophic mdx muscle.  ARC

expression in normal muscle showed a distinct regular pattern of ARC positive and negative
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fibers, while ARC expression in dystrophic mdx muscle appeared as a less distinct, irregular

pattern.  These differences could be a consequence of altered mitochondrial protein

expression, which is a characteristic feature of dystrophic muscle.  However, it remains

unclear if apoptosis is a primary or secondary effect of muscle fiber breakdown.  We found

activated caspases in degenerating muscle fibers, suggesting that apoptosis is a secondary

consequence resulting from the loss of membrane integrity. Our observations suggest a

sequence of molecular events in which an initial membrane-damaging event is subsequently

followed by up-regulation of caspase-3 and loss of ARC expression.  To gain further insights

in the role of ARC in dystrophic mdx muscle, we generated transgenic mdx mice that over-

expressed ARC under a tissue-specific promoter.  These mice demonstrated high expression

levels of transgenic ARC in all, oxidative and glycolytic, muscle fibers.  Despite the over-

expression of ARC in mdx skeletal muscle, these mice developed a dystrophic phenotype.

We evaluated muscle morphology in ARC transgenic/mdx in comparison with mdx animals

and did not observe an amelioration of the dystrophic pathology in ARC transgenic/mdx mice

in various muscles at different ages.  In summary, these studies suggested that the apoptotic

pathways regulated by ARC do not significantly contribute to myofiber death in muscular

dystrophy.

In a complementary approach we have cloned cDNAs for two murine muscle-specific

Insulin-like growth factor-I (Igf-I) isoforms (Igf-I Ea and Igf-I Eb) and characterized their

expression in normal and dystrophic mdx muscles.  Although Igf-I is primarily synthesized by

the liver in response to growth hormone secretion, this growth factor is also produced locally

in tissues where it exerts autocrine and paracrine effects.  We have developed assays to

quantitate expression of both Igf-I mRNA isoforms in normal and dystrophic mdx muscles.

Quantitative analysis of Igf-I mRNA expression showed that both Igf-I isoforms were

expressed in normal and mdx muscles and revealed no significant differences in their relative

expression levels between normal and mdx muscles of nine month-old male mice.  These

analyses further showed that the more abundant Igf-I isoform, Igf-I Ea, was expressed at

approximately seven times higher levels than the other isoform, Igf-I Eb at our tested age

group.  To determine if the cloned muscle-specific Igf-I cDNAs encoded functional proteins,

we generated recombinant adenoviral vectors that expressed either Igf-I Ea or Igf-I Eb.  We

utilized an in vitro myoblast differentiation assay to show that both Igf-I cDNAs were
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functional and enhanced L6 myoblast differentiation, similarly to that observed following

treatment of the cultures with recombinant Igf-I protein.

In contrast to ARC, the effects of Igf-I have been widely studied in various cell types

and tissues.  In particular, during mammalian growth and development Igf-I has been shown

to play an important role in regulating tissue growth and differentiation. Overexpression of

Igf-I in transgenic mdx muscles has been shown to protect the animals from the loss of muscle

mass and function and to enhance muscle repair mechanisms.  To determine if the beneficial

effects of Igf-I are synergistic with the protective effects of dystrophin in ameliorating

muscular dystrophy, we compared the effects of delivering Igf-I alone versus co-delivering

both Igf-1 and dystrophin to adult, dystrophic mdx mouse muscles.  For this purpose, we

generated recombinant adeno-associated viral (AAV) vectors expressing Igf-I (AAV-Igf-I) or

a functional micro-dystrophin (AAV-µdys) from a muscle-specific promoter.  Tibialis

anterior muscles of adult mdx mice were injected with AAV-Igf-I, AAV-µdys or a

combination of both.  Four months post injection, immunohistochemical analysis

demonstrated persistent expression of dystrophin that reached an average of 40% of the total

muscle cross sectional area.  mRNA analysis further revealed Igf-I overexpression with levels

ranging from 50-100 fold in AAV-Igf-I treated and up to 400 fold in AAV-Igf-I and AAV-

µdys co-treated muscles.  By analyzing muscle histology as well as functional properties four

months post-injection, we were able to show that these treatments were beneficial in reversing

the dystrophic pathology.  Histological analysis of AAV-Igf-I, AAV-µdys and co-treated

animals revealed that each treatment provided protection from at least some aspects of muscle

degeneration.  Measurement of mechanical properties in the injected muscles demonstrated

that AAV-Igf-I treated muscles displayed an increase in muscle mass, but were not

significantly protected from contraction-induced injuries. In contrast, AAV-µdys treated

animals demonstrated increased protection from contraction-induced injury after two

lengthening contractions but did not display increases in mass or force generation.  However,

the combined treatment of both AAV-Igf-I and AAV-µdys showed an increase in muscle

strength in conjunction with a protection from contraction-induced injury, suggesting that Igf-

I and dystrophin acted synergistically and that co-treatment was more beneficial for

dystrophic muscle than treatment with either protein alone.
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In summary, characterization of proteins that inhibit apoptosis and/or enhance muscle strength

and repair in dystrophic muscle has provided further insights into the complexity of the

dystrophic pathology and the potential for gene replacement therapy in conjunction with

treatment of secondary pathological features of the disease.
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2. ZUSAMMENFASSUNG

Muskeldystrophie Duchenne ist eine rezessive Erbkrankheit, die durch fortschreitende

Muskelschwäche und Muskelschwund gekennzeichnet ist.  Mit einer Inzidenz von einer unter

3500 Knabengeburten ist sie die häufigste vererbbare Myopathie.  Die ersten Symptome

treten typischerweise um das dritte Lebensjahr auf, in der frühen Jugend kommt es im

allgemeinen zum Verlust der Gehfähigkeit und die Lebenserwartung liegt selten über 25

Jahren.  Die Krankheit wird durch Mutationen im Dystrophingen verursacht, wobei die

genauen molekularen Zusammenhänge zwischen Gendefekt und Krankheitsverlauf bisher nur

sehr unzureichend erklärt werden konnten.  Dystrophin besitzt vermutlich eine wichtige

Strukturfunktion im Muskel, indem es eine Quervernetzung zwischen dem intrazellulären

Aktin-Zytoskelett und der extrazellulären Matrix herstellt.  Dystrophin interagiert mit einer

Vielzahl von peripheren und integralen Membranproteinen, die den Dystrophin-Glykoprotein

Komplex (DGC) bilden.  Die Zerstörung dieser Querverknüpfung führt zum Verlust des DGC

und zur Instabilität von Muskelmembranen, die somit leicht durch Muskelkontraktionen

beschädigt werden können.  Es wurde gezeigt, dass einige DGC Proteine wesentlich zur

Stabilität der Muskelmembran beitragen, während andere DGC Proteine eine Rolle bei der

Signaltransduktion spielen.  Die Abwesenheit des DGC könnte daher wesentliche

Mechanismen der Signaltransduktion beeinträchtigen und die Sensitivität von Muskelzellen

gegenüber sekundären Reizen wie Ischämie und oxidativem Stress erhöhen.  Um verbesserte

Therapieansätze für DMD zu entwickeln, ist es daher notwendig, eine genaues Verständnis

für die Struktur- und Signalfunktion von Dystrophin und des DGC zu gewinnen.

Neue Studien haben gezeigt, dass das Protein ARC (apoptosis repressor interacting

with caspase recruitment domain) in hohen Mengen im humanen Skelett- und Herzmuskel

vorkommt, und dass die Überexpression von ARC in Herzmuskelzellen vor Hypoxie und

Caspase-8 induzierter Apoptose schützen kann.  In der vorliegenden Arbeit wurde untersucht,

ob ARC eine Rolle in der Pathologie der Dystrophie spielt und ob es vor Zerstörung von

Muskelfasern schützen kann.  Daher wurde murines ARC kloniert und seine Expression im

gesunden und dystrophischen mdx Muskel charakterisiert.  Murines ARC zeigte hohe mRNA

Expression im Skelett- und Herzmuskel und niedrige Expression im Gehirn- und

Hodengewebe.  Immunohistologische Untersuchungen ergaben, dass ARC faserspezifisch im
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quergestreiften Muskel exprimiert ist, wo es hauptsächlich in oxidativen Muskelfasern

vorkommt und mit dem mitochondrien-spezifischen Marker Cytochromoxidase (COX)

kolokalisiert.  Endogenes ARC zeigte eine vergleichbare Expressionsstärke im gesunden und

dystrophischen mdx Gewebe, jedoch war die intrazelluläre Lokalisation von ARC in diesen

Geweben unterschiedlich.  So zeigte ARC im gesunden Gewebe ein regelmäßiges

Expressionsmuster von ARC positiven und negativen Muskelfasern, während dieses Muster

im dystrophischen mdx Gewebe stark unregelmäßig und weniger deutlich ausgeprägt war.

Diese Unterschiede könnten die Folge einer veränderter Expression von mitochondrialen

Proteinen sein, die im allgemeinen symptomatisch für dystrophisches Gewebe ist.  Es bleibt

jedoch unklar, ob Apoptose die Ursache oder die Folge der Zerstörung von Muskelfasern ist.

In dieser Studie wurde eine erhöhte Caspaseaktivität in degenerierten Muskelfasern gemessen,

die eine direkte Folge des Verlusts der Membranintegrität sein könnte.  Initiale Schäden an

der Membran könnten eine Abfolge von molekularen Ereignissen auslösen, die zu einer

erhöhten Expression von Caspase-3 und einem einhergehenden Verlust von ARC führen.  Um

weitere Einsichten über die Rolle von ARC im dystrophischen Muskel zu gewinnen, wurden

transgene mdx Mäuse generiert, die ARC unter einem gewebespezifischen Promoter

überexprimieren.  Diese Mäuse wiesen eine hohe Expression von transgenem ARC in

oxidativen und glykolytischen Muskelfasern auf, und entwickelten trotz ARC Überexpression

einen dystrophischen Krankheitsverlauf.  Die Morphologie unterschiedlicher Muskeln von

ARC transgenen mdx Mäusen aus verschiedenen Altersstufen wurde anschließend untersucht

und mit der mdx Muskelmorphologie verglichen, zeigte jedoch keine Verbesserung des

dystrophischen Pathologiebildes.  Es wurde daraus geschlossen, dass apoptotische

Regulationsmechanismen, die durch ARC kontrolliert werden, nicht signifikant zur

Muskelpathologie in dystrophischem Gewebe beitragen.

In einem komplementären Ansatz wurden die cDNAs für zwei muskelspezifische

Isoformen des insulin-ähnlichen Wachstumsfaktor I (Insulin-like growth factor-I, Igf-I)

kloniert und die Expression in normalem und dystrophischem mdx  Muskelgewebe

charakterisiert.  Igf-I wird hauptsächlich von der Leber gebildet und in die Blutbahn

abgegeben, kann aber auch lokal in extrahepatischem Gewebe erzeugt werden und einen

direkten Effekt auf das jeweilige Gewebe ausüben, und dadurch eine essentielle Rolle in der

Regulation von Zellwachstum und –differenzierung übernehmen.  In der vorliegenden Arbeit
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wurden Tests für die Quantifizierung der Igf-I mRNA entwickelt, die zwischen beiden

Isoformen unterscheiden können.  Mit Hilfe dieser Tests wurden die Stärke der Expression

von beiden Igf-I Isoformen in normalen und dystrophischen Muskeln gemessen.  Die

quantitative PCR-Analyse zeigte, dass es keinen signifikanten Unterschied in den relativen

Igf-I Expressionsstärken zwischen normalen und dystrophischen Muskeln bei Mäusen im

Alter von neun Monaten gibt.  Diese Analyse zeigte auch, dass die Igf-I Ea Isoform in den

untersuchten Mäusen ungefähr sieben Mal höher exprimiert ist als die Igf-I Eb Isoform.

Weiter wurde untersucht, ob beide Igf-I Isoformen für funktionelle Proteine kodieren.  Dazu

wurden rekombinante adenovirale Vektoren generiert, die entweder Igf-I Ea oder Igf-I Eb

exprimieren.  In einem Myoblastendifferenzierungsassay wurde daraufhin gezeigt, dass beide

Proteine funktionsfähig sind und die Myoblastendifferenzierung von L6 Zellen

beschleunigen.

Im Gegensatz zu ARC ist die Rolle von Igf-I in verschiedenen Zell- und Gewebetypen

in früheren Studien ausgiebig charakterisiert worden.  Die Überexpression von Igf-I im mdx

Skelettmuskel mildert den dystrophischen Phänotyp, indem es die Muskelmasse vergrößert

und Reparaturmechanismen des Muskels fördert.  In der vorliegenden Arbeit wurden adulte

mdx Muskeln gentherapeutisch mit Igf-I alleine und in Kombination mit Dystrophin

behandelt, um zu untersuchen, ob Igf-I synergistisch mit Dystrophin wirkt und das

Krankheitsbild von Muskeldystrophie verbessern kann.  Dafür wurden rekombinante adeno-

assoziierte virale (AAV) Vektoren generiert, die unter einem muskelspezifischen Promotor

entweder Igf-I (AAV-Igf-I) oder eine funktionelle Mikroversion von Dystrophin (AAV-µdys)

exprimierten.  Diese rekombinanten Vektoren wurden einzeln oder in Kombination in den

Musulus tibialis anterior von neun Monate alten mdx Mäusen gespritzt.  Die behandelten

Muskeln und Kontrollmuskeln wurden vier Monaten später auf Expression von Dystrophin

und Igf-I getestet und anschließend auf Muskelhistologie und Muskelfunktion untersucht.

Die Expression von Dystrophin wurde mit Hilfe von Immunfluoreszenz visualisiert und

anhand von digitaler Bildverarbeitung quantifiziert.  Auf diese Weise konnte festgestellt

werden, dass 40% der Muskelzellen eines Muskelschnittes Dystrophin exprimierten.  Die

Expression von Igf-I wurde mit Hilfe der quantitativen RNA Analyse gemessen, wobei

gezeigt werden konnte, dass Igf-I in der Kombinationsbehandlung bis zu 400-fach, und in der

Einzelbehandlung etwa 50-100-fach, überexprimiert wurde.  Sowohl histologische als auch
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funktionelle Analysen demonstrierten, dass jeder behandelte Muskel im Vergleich zu

unbehandelten mdx Muskeln den dystrophischen Krankheitsverlauf verbesserte.  Die

Behandlung mit AAV-Igf-I, AAV-µdys und die Kombinationsbehandlung schützte vor

Muskeldegeneration, wodurch beispielsweise eine verminderten Anzahl von regenerierenden

Muskelfasern auftrat.  Funktionelle Studien zeigten weiter, dass die mit AAV-µdys

behandelten Muskeln vor Verletzungen durch Muskelkontraktionen geschützt waren, jedoch

keine größere Muskelmasse und Muskelkraft aufwiesen.  AAV-Igf-I behandelte Muskeln

hingegen waren nicht vor Verletzungen durch Muskelkontraktionen geschützt, wiesen aber

eine größere Muskelmasse auf.  Im Gegensatz dazu zeigte die Kombinationsbehandlung

sowohl einen Schutz vor Verletzungen durch Muskelkontraktionen, als auch eine erhöhte

Muskelmasse und Muskelkraft.  Aus diesem Ergebnis konnte geschlußfolgert werden, dass

Dystrophin und Igf-I synergistisch wirkten und die Kombinationsbehandlung den

Krankheitsverlauf stärker abschwächte als die jeweiligen Einzelbehandlungen.

Zusammenfassend läßt sich sagen, dass die Charakterisierung von

Apoptoseinhibitoren bzw. Proteinen, die Reparaturmechanismen des Muskels fördern weitere

Aufschlüsse über die Komplexität des dystrophischen Krankheitsbildes geben konnten.

Weiter konnte gezeigt werden, dass die kombinierte Gentherapie, bei der Dystrophin im

dystrophischen Muskel ersetzt wird und zusätzlich sekundäre pathologische Symptome

behandelt werden, einen neuen vielversprechenden Ansatz für die Behandlung von

Muskeldystrophie darstellt.
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3. INTRODUCTION

3.1. Duchenne Muscular Dystrophy (DMD)

Duchenne muscular dystrophy (DMD) and the allelic Becker muscular dystrophy (BMD) are

X-linked recessive disorders, caused by mutations in the dystrophin gene (Koenig et al.,

1987).  DMD/BMD are among the most common human genetic diseases with a worldwide

incidence of approximately 1 in 3500 male births, one-third of which arise from de novo

mutations (Emery, 1993; Moser, 1984).  While DMD results from the absence of dystrophin,

most BMD patients express a partially functional dystrophin protein (Baumbach et al., 1989;

Hoffman et al., 1987).

DMD patients are clinically healthy at birth.  The first symptoms are characterized by

a delayed ability to walk, excessive clumsiness and difficulty running.  By the age of four to

six, patients develop muscle pseudohypertrophy, proximal muscle weakness and have

increasing difficulty rising to a standing position from a seated position on the floor.  To assist

in standing, DMD patients invariably stand up by using their hands to push up along the legs,

known as a Gower’s sign (Emery, 1993). With time, a progressive muscular weakness takes

place, which results in a wheelchair dependency by the age of 8-11 years.  In addition to

skeletal muscle degeneration, most of the patients develop cardiomyopathy and one third

display cognitive defects characterized by variable degrees of mental retardation (Bresolin et

al., 1994).  The majority of DMD patients die in their early to late twenties from respiratory or

cardiac failure (Emery, 1993).  BMD patients, on the other hand, display similar clinical

symptoms, however the onset and the progression of the disease are delayed (Baumbach et al.,

1989; Monaco et al., 1988).  These patients usually begin using a wheelchair beyond age 16

and survive beyond age 30.  An extremely mild case of BMB has been reported where a

patient was still walking in his late seventieth (England et al., 1990).

Histological analysis of muscle biopsies from DMD/BMD patients display an

extensive muscle degeneration/regeneration process, characterized by centrally located nuclei,

a wide variation in myofiber size and immune cell infiltration.  With age, muscle fibers

progressively fail to regenerate and are gradually replaced by adipose and connective tissue
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(fibrosis).  As a consequence of muscle degeneration, patients display high levels of muscle

enzymes in their circulatory system.  Elevated levels of muscle creatine kinase can be used for

early DMD diagnosis.  Approximately 50% of newborn males that display elevated creatine

kinase levels develop DMD.

Two-thirds of DMD and BMD cases result from various deletions in the dystrophin

gene.  Partial gene duplications make up 5-10% of the cases and the remaining cases are due

to point mutations or translocations (Amalfitano et al., 1997). The vast majority of patients are

boys, while only a low number of females are affected due to X-autosomal translocations

(Ray et al., 1985). Carrier females generally do not display any symptoms, however some

have been reported to show abnormalities in cardiac function after exercise (Mathews and

Moore, 2003; Nolan et al., 2003).  Deletions in DMD/BMD boys and carrier females can be

screened by multiplex PCR, which is the most widely used DNA diagnostic test for

DMD/BMD (Chamberlain et al., 1992; Chamberlain et al., 1988a).

3.2. Animal models for DMD

Several animal models (mouse, dog, cat, chicken) for DMD have been identified (Nonaka,

1998).  The best characterized is the mdx (X-chromosome-linked muscular dystrophy) mouse

model, which has a point mutation in exon 23, resulting in a premature STOP codon (Sicinski

et al., 1989).  The N-terminus of dystrophin upstream of the mutation is synthesized, but it

does not localize to the sarcolemma and is rapidly degraded.  Only a very small percentage of

revertant, dystrophin expressing fibers can be detected in mdx muscle, which are the result of

exon skipping and alternative splicing patterns (Crawford et al., 2001; Lu et al., 2000).

Additional mutations in mice have been described, which differentially affect expression of

dystrophin isoforms in various tissues (Chapman et al., 1989; Cox et al., 1993b; Im et al.,

1996).

Mdx mice develop a milder form of muscular dystrophy than DMD patients, but their

muscles are highly susceptible to contraction-induced injury and display morphological

changes similar to the human disease (Brooks, 1998; DelloRusso et al., 2001).  The clinical

onset of muscle pathology occurs at about two to three weeks of age and reaches its peak at
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five to six weeks (Torres and Duchen, 1987).  Affected mice, mdx/Y males and mdx/mdx

females show a variety of histological changes, including extensive degeneration and

regeneration of muscle fibers, increased proportion of myofibers with centrally located nuclei,

large variations in myofiber size, fibrosis, immune cell infiltration and elevated serum levels

of muscle enzymes such as creatine kinase.  In contrast to DMD patients, mdx mice

demonstrate a successful regeneration process and do not show overt signs of muscular

weakness until two years of age (Lynch et al., 2001b; Torres and Duchen, 1987).  The

exception is the diaphragm muscle, which shows a significant weakness, fibrosis and adipose

tissue accumulation in young animals and therefore more closely resembles the human

disease (Cox et al., 1993b; Stedman et al., 1991).

3.3. The molecular basis of DMD

The dystrophin gene is the largest known gene, spanning at least 2.4 Mb of X chromosome

(Hoffman et al., 1987; Koenig et al., 1987; Koenig et al., 1988).  The DMD gene was the first

to be identifed by positional cloning methods, whereby cytogenetically detectable

abnormalities in a male DMD patient (“BB”) with a large deletion localized the gene to the

band Xp21 (Francke et al., 1985).  Consequently, multiple X-linked probes were identified by

subtractive hybridization between 49XXXXY DNA and patient BB-DNA to select potential

clones that might map to the deletion (Kunkel et al., 1985).  One of seven isolated deletion-

specific clones (DXS164) was found to be deleted in ~10 % of all DMD and BMB patients,

suggesting its linkage to the DMD gene (Kunkel, 1986).  This clone was used for

chromosome walking, leading to the isolation of 220 kb of genomic DNA from a cosmid

library.  Conserved sequences were identified and used to screen a muscle cDNA library

(Monaco et al., 1986).  Finally, after isolation of several partial cDNAs, the full-length, 14 kb

DMD cDNA was cloned (Koenig et al., 1987).  The gene contains 79 exons, which have been

well conserved throughout vertebrate evolution (Roberts et al., 1993).

Seven promoters driving expression of different dystrophin transcripts have been

identified (figure 1).  Three promoters give rise to full-length transcripts, primarily in skeletal

muscle (M), cerebal cortex (C) and cerebellar Purkinje cells (P) (Chamberlain et al., 1988b;
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Nudel et al., 1989).  These full-length dystrophin transcripts contain unique first exons, but

share the second and proceeding exons.  Additional internal promoters allow the generation of

shorter dystrophin transcripts in retina (R): 10 kb, brain (B3): 7.5 kb, Schwann cells (S): 5.5

kb and in many non-muscle tissue (G): 4.8 kb (Byers et al., 1993; Cox et al., 1993b; D'Souza

et al., 1995; Lederfein et al., 1992; Lidov et al., 1995).  The transcription of these smaller

mRNAs is initiated from unique first exons, which splice into exon 30, 45, 56 or 63.  The 14

kb dystrophin mRNA encodes a protein of 427 kDa.  The internal promoters lead to

production of proteins with molecular weights of 260 kDa, 140 kDa, 116 kDa and 71 kDa

(figure 1).

Figure 1.  Dystrophin gene and dystrophin isoforms. The gene has 79 exons linked to seven promoters.  Three

upstream promoters are active in muscle (M), cortical neurons (C) and Purkinje cells (P).  Internal promoters are

expressed in retina (R), glial cells and kidney (B3), Schwann cells (S), and in non-muscle or general (G) regions.

These seven promoters generate five sizes of the protein (Dpxxx).  'Dp' indicates isoform size in kDa.  The five

forms of dystrophin are aligned by shared domains.  Indicated are the two actin binding domains (NT & ABD),

the central rod (ovals) domain, the WW and cysteine-rich (Cys) domain and the C-terminal (CT) domain.  Five

strains of mdx mice express different subsets of these isoforms.  Red vertical lines indicate the sites of the five

mdx mouse mutations.
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The muscle isoform of dystrophin is primarily expressed in skeletal, cardiac and smooth

muscle tissue (Hoffman et al., 1988).  The dystrophin protein is localized at the muscle

sarcolemma and is enriched at neuromuscular junctions (Shimizu et al., 1989; Zubrzycka-

Gaarn et al., 1988).  The structure of the protein can be divided into four distinct domains

(figure 1).  (1) a N-terminal domain (encoded by exons 1-8), which shows high homology

with a family of actin binding proteins including β-spectrin and α-actinin (Levine et al.,

1990); (2) a long central rod-domain (encoded by exons 9-61),  consisting of 24 homologous

spectrin-like repeats interrupted by four hinge or spacer domains (Koenig and Kunkel, 1990;

Koenig et al., 1988); (3) a WW domain and cysteine-rich region (encoded by exons 62-67),

that contains two EF-hand like Ca2+-binding motifs (Bork and Sudol, 1994) and (4) the

extreme C-terminal region (encoded by exons 68-79), which consists of an alternatively-

spliced domain and two leucine zipper motifs.

3.4. Dystrophin and the DGC complex

Dystrophin binds via its N-terminal and portions of the rod domain (ABD2) to the

cytoskeletal component F (filamentous)-actin and interacts via its C-terminus, composed of

the cysteine-rich and the extreme C-terminal domain, with a large complex of integral and

peripheral membrane proteins called the dystrophin-glycoprotein complex (DGC) (Henry and

Campbell, 1996) (figure 2).  The DGC consists of four core components (the dystroglycans,

sarcoglycans, syntrophins and dystrobrevins) and several accessory proteins (neuronal nitric

oxide synthase (nNOS), serine/threonine kinases, calmodulin, caveolin-3, Grb2, aquaporin-4,

voltage-gated sodium channel), which display direct or indirect interactions with dystrophin

(Ahn and Kunkel, 1993; Amalfitano et al., 1997).  A homologue of dystrophin, called

utrophin, is enriched at neuromuscular junctions (NMJ) and is found along the sarcolemma in

dystrophic and regenerating fibers (Khurana et al., 1990; Tinsley et al., 1992).  Utrophin also

binds actin and interacts with a similar complex to that of dystrophin, known as the utrophin-

glycoprotein complex (UGC).
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Figure 2.  Model for dystrophin and the DGC.  Dystrophin, binds actin filaments in the subsarcolemmal

cytoskeleton via the N-terminal actin binding domain and via a portion of the central rod domain (most of which

is not shown //). The C-terminal portions of dystrophin bind to β-dystroglycan, which binds α-dystroglycan,

which binds laminin in the extracellular matrix.  The dystroglycan subunits are attached to the four sarcoglycans

(SG) and to sarcospan (SPN) (Crawford et al., 2000).

The extreme C-terminal portion of dystrophin binds the peripheral DGC members syntrophin

and dystrobrevin.  Syntrophin also binds neuronal nitric oxide synthase (nNOS).

Dystroglycan forms the core of the DGC/UGC complex and is post-translationally

cleaved into α and β subunits (Deyst et al., 1995; Ervasti et al., 1990).  α-DG is located at the

extracellular membrane and binds to α1-laminin and agrin in the extracellular matrix (Sunada

and Campbell, 1995).  β-dystroglycan is an integral membrane protein that binds α-DG and

interacts intracellularly with the WW domain and cysteine-rich regions of dystrophin (Jung et

al., 1995).  Mutations in the dystroglycan gene lead to an early embryonic death, as a result of

insufficient formation of basement membranes (Williamson et al., 1997).  However,

functional studies have been performed on chimeric knock-out mice that expressed almost no

dystroglycan in muscle tissue (Côté et al., 1999).  These mice did not retain dystrophin at the

sarcolemma and developed a severe muscular dystrophy (Côté et al., 1999).  In addition,
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dystroglycan chimeric knock-out mice demonstrated that dystroglycan is important for the

formation of neuromuscular junctions (NMJ), but it is not crucial for the expression of

extracellular matrix proteins.  Thus, these data suggest that dystroglycan plays an essential

role in maintaining the link to dystrophin and in protecting fibers from mechanical injury,

although dystroglycan is not required for the formation of basement membranes in muscle

tissue.  Further studies on conditional dystroglycan knock-out mice that did not express

dystroglycan in mature muscle fibers, but in satellite cells, revealed a role for dystroglycan in

muscle regeneration.  These conditional dystroglycan knock-out mice displayed a mild

dystrophic phenotype that was linked to the constant activation of satellite cells and a

subsequent efficient muscle regeneration (Cohn et al., 2002).

The sarcoglycans (α, β, γ , δ , ε) and sarcospan are integral membrane proteins that

associate with dystroglycan and are thought to play a role in stabilizing the interaction

between the α - and β-dystroglycan subunits (Araishi et al., 1999; Crosbie et al., 2000;

Noguchi et al., 1995).  Mutations of individual sarcoglycans demonstrated a decrease or

absence of the other sarcoglycan complex members and some mutations resulted in a

secondary loss of dystrophin, dystroglycan, syntrophin or dystrobrevin expression (Hack et

al., 2000).  Likewise, mutations that directly or indirectly affect the expression of

dystroglycan resulted in the loss of the entire sarcoglycan complex (Rafael et al., 1996). In

addition to their structural role, the sarcoglycans were implicated in cell signaling processes

(Hack et al., 1999; Hack et al., 1998; Yoshida et al., 2000).  Disruption of the sarcoglycan

complex resulted in a secondary reduction of nNOS, despite the presence of normal

dystrophin and syntrophin expression levels and localization (Crosbie et al., 2002a).

Mutations in any of the sarcoglycan genes α, β, γ and δ cause at least four different types of

autosomal recessive limb-girdle muscular dystrophy (LGMD) (Lim and Campbell, 1998).

The syntrophins (α-1, β-1, β-2, γ-1,γ-2) are a family of peripheral membrane proteins

that interact with dystrophin, utrophin and dystrobrevin.  α-1, the major isoform in adult

skeletal muscle, is localized at the sarcolemma and is primarily associated with dystrophin,

whereas β-2 syntrophin is only found at the NMJ and binds to utrophin (Peters et al., 1994).

β-1 syntrophin is predominantly expressed in fast, glycolytic muscle fibers and binds to

dystrophin and utrophin (Ahn et al., 1996; Peters et al., 1997).  γ-1 and γ-2 syntrophins are

expressed in neuronal cells (Piluso et al., 2000).  All isoforms contain a PDZ domain, which
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enables binding of a variety of signaling proteins, including nNOS, voltage gated sodium

channels, aquaporin-4, calmodulin, Grb2 and serine/threonine kinases (Adams et al., 2001;

Brenman et al., 1996; Gee et al., 1998; Lumeng et al., 1999).  Interestingly, neither α-1

syntrophin nor nNOS knock-out mice developed a dystrophic phenotype, however mice

displayed abnormal NMJs (Adams et al., 2000; Kameya et al., 1999).  In addition, mice with

mutant α-1 syntrophin genes demonstrated highly reduced expression of utrophin (Adams et

al., 2000) and displayed a mild defect in regeneration (Hosaka et al., 2002).  The syntrophins

may therefore function as modular adaptors providing a crucial link between the DGC and

signaling networks.

The dystrobrevins (α, β) are another family of peripheral membrane proteins that

interact with dystrophin, although only α-dystrobrevin is expressed in skeletal muscle.

Alternative splicing of the dystrobrevin gene generates three major isoforms of α-

dystrobrevin, which differ by the length of their C-terminus (Blake et al., 1996; Peters et al.,

1998).  The C-terminus of α-dystrobrevin shares sequence homology with dystrophin and

binds to dystrophin through a conserved coiled-coil domain (Sadoulet-Puccio et al., 1997).

Dystrobrevin also interacts with syntrophin and with the filamentous proteins syncoilin and

desmuslin (Mizuno et al., 2001; Newey et al., 2001).  In addition, previous studies suggested

that dystrobrevin interacts with the sarcoglycan complex (Crawford et al., 2000; Yoshida et

al., 2000).  Interestingly, α-dystrobrevin knock-out mice developed a mild myopathy, that is

not due to mechanical failure of the sarcolemma (Grady et al., 1999). These mice displayed

impaired nNOS signaling and abnormal maturation of postsynaptic membranes, suggesting a

signaling role for dystrobrevin (Grady et al., 1999; Grady et al., 2000).  No patient mutations

have been found in the coding regions of syntrophin or dystrobrevin, however patients were

characterized with a deficiency in these proteins and a severe congenital muscular dystrophy

(CMD) (Jones et al., 2003).

Taken together, the absence or altered expression of dystrophin and/or various DGC

members results in a number of different forms of muscular dystrophy, which vividly

illustrates the importance of the complex for maintaining normal muscle stability and

function.
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3.5. The function of dystrophin and the DGC

The complete function of dystrophin is not yet fully understood.  Dystrophin is thought to

play a structural role in providing a link between the intracellular cytoskeleton and the

extracellular matrix via its interaction with actin and the DGC (Ervasti and Campbell, 1993).

This link dissipates the contractile force produced in the intracellular cytoskeleton to the

extracellular connective tissue and protects muscle fibers from mechanical injury (Brooks and

Faulkner, 1988; Cox et al., 1993b; Petrof et al., 1993).  The absence of dystrophin leads to a

disruption of this linkage and very low levels of the DGC, resulting in membrane instability

and high susceptibility of the sarcolemma to mechanical injury.  Dystrophin shows high

similarity to the structural proteins α-actinin and spectrin, further supporting the idea of its

structural role in muscle fibers.

In addition to a structural role, several members of the DGC have been implicated in

cell signaling.  However, the contribution of cell signaling to muscle function remains

unclear.  Cell signaling may play an important function in adapting DGC members to

mechanical and metabolic changes in muscle.  Several core components of the DGC, such as

sarcoglycan, syntrophin and dystrobrevin have a number of characteristics suggestive of a

signaling role in muscle and may connect the DGC to important signaling pathways (Adams

et al., 2000; Grady et al., 1999; Hack et al., 1998; Yoshida et al., 2000).  In addition, a variety

of proteins loosely associated with the complex, such as Grb2, calmodulin, nNOS, caveolin-3,

the voltage gated sodium channels, serine/threonine kinases are known cell signaling

molecules, although their function in relation to specific roles of the DGC is not clear

(Crosbie et al., 1998b; Gee et al., 1998; Hasegawa et al., 1999; Lumeng et al., 1999; Schultz

et al., 1998; Song et al., 1996; Thomas et al., 1998; Yang et al., 1995a).

Studies of patients with dystrophin gene deletions have indicated that small in-frame

deletions in almost all parts of the gene, except the WW and cystein-rich domain, lead to the

milder BMD phenotype.  Remarkably, large in-frame deletions of the central rod domain,

removing up to two thirds of the dystrophin coding region, can result in a mild course of the

disease (England et al., 1990).  In contrast, deletions of the WW or cysteine-rich domain or

frame-shifting deletions that prevent expression of C-terminal portions of dystrophin

generally lead to unstable proteins and result in a severe DMD phenotype.  A variety of
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transgenic animal studies have provided a better understanding of the functional domains of

dystrophin, necessary for the assembly of the DGC and maintenance of normal muscle

physiology and stability (Cox et al., 1994; Crawford et al., 2000; Greenberg et al., 1994;

Phelps et al., 1995; Rafael et al., 1996; Warner et al., 2002).  Transgenic mdx mice have been

generated that expressed a variety of truncated forms of dystrophin that either lack DGC

member binding sites, actin binding sites or portions of the central rod domain (figure 3).

These animals have provided an excellent in vivo model to study the localization, assembly

and function of the DGC complex.

3.5.1. Structure/function analysis of dystrophin domains

Transgenic mdx animals that expressed a truncated dystrophin molecule (∆CR, figure 3)

lacking the dystroglycan binding site (cysteine-rich domain encoded by exons 68-70),

displayed a severe dystrophic phenotype (Rafael et al., 1996).  Analysis of DGC complex

members showed less dystroglycan and sarcoglycan expression in ∆CR muscles than in mdx

muscles.  While utrophin partially compensates for the absence of dystrophin in mdx muscle

by maintaining low levels of dystroglycan and sarcoglycan at the sarcolemma, the ∆CR

truncated dystrophin protein displaces utrophin, resulting in a complete loss of dystroglycan

and sarcoglycan from the sarcolemma and a slightly worse mdx phenotype.  Similar results

were observed in transgenic mdx mice that expressed dystrophin deleted for two other regions

of the cysteine-rich domain (encoded by exons 64-67, and exons 65-66) (Rafael et al., 1996).

Thus, the cysteine-rich domain of dystrophin is responsible for the interaction with β-

dystroglycan and is indispensable for normal muscle function.

In contrast, transgenic mdx animals that expressed a truncated dystrophin molecule

deleted for either the syntrophin binding site (alternatively-spliced domain encoded by exons

71-74), the dystrobrevin binding site, (coiled-coil domain encoded by exon 75-78) or both,

(exon 71-78, ∆CT, figure 3) displayed no signs of dystrophic pathology (Crawford et al.,

2000; Rafael et al., 1996).  The only exceptions were older animals that demonstrated a

slightly higher level of regeneration and altered ratios of the syntrophin and dystrobrevin
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isoforms.  In vitro studies suggested that syntrophin and dystrobrevin bind each other, so that

the deletion of the binding site for either protein would have no effect on expression and

localization of both proteins (Rafael et al., 1996; Yang et al., 1995b).  Surprisingly, the

deletion of both binding sites (∆CT) also retained normal syntrophin and dystrobrevin

expression levels and localization (Crawford et al., 2000).  Thus, syntrophin and dystrobrevin

localization to the sarcolemma is not solely dependent on the interaction with dystrophin,

suggesting an alternative interaction within the DGC complex.  A potential candidate is the

SG complex, which has been shown to interact with dystrobrevin using in vitro binding assays

(Yoshida et al., 2000). In summary, these transgenic ∆CT mdx mice, lacking the syntrophin

and dystrobrevin binding sites on dystrophin, demonstrated that the extreme C-terminus is not

crucial for dystrophin function.

Transgenic mdx mice that expressed the Dp71 dystrophin isoform (figure 3) developed

a severe dystrophic phenotype (Cox et al., 1994; Greenberg et al., 1994).  Dp71 is the major

dystrophin isoform in non-muscle tissues and lacks the N-terminal and rod domain.  Although

transgenic Dp71 localized to the sarcolemma and assembled the entire DGC complex, the

muscles displayed extensive sarcolemmal damage, which is comparable or worse than in mdx

muscles.  Thus, full dystrophin function requires not only an ability to restore expression of

the DGC, but also an ability to establish a link to the intracellular cytoskeleton.  Several actin-

binding sites in dystrophin have been identified using in vitro binding assays (Jarrett and

Foster, 1995).  These actin-binding sites have been located to the N-terminus and the rod-

domain of the dystrophin molecule.  In  vivo studies indicated that the N-terminal actin-

binding domain (ABD) is the most important.  Transgenic mice that expressed a dystrophin

molecule lacking (1) the N-terminal ABD (∆ABD1, figure 3) or (2) the N-terminal ABD and

a significant portion of the rod domain (Dp260, figure 3), but both retaining the internal ABD,

displayed a mild dystrophic phenotype (Corrado et al., 1994; Corrado et al., 1996; Warner et

al., 2002).  Both deletions have no impact on DGC expression and showed a partial protection

from contraction-induced injury.  In addition, Dp260 muscles displayed an elevated level of

muscle fiber degeneration and regeneration. In contrast, deletion of the internal ABD

(∆ABD2) does not affect the function of dystrophin in transgenic mice or in humans (see

below; England et al., 1990; Harper et al., 2002b; Phelps et al., 1995).  In summary, the N-
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terminal ABD is indispensable for muscle stability and function, however the internal ABD

domains are partially able to compensate and maintain the interaction with actin.

Figure 3.  Domain structure of full-length and truncated dystrophins.  Full-length dystrophin consists of the

N-terminal domain (ABD), the 24 spectrin-like repeats (R) that are interrupted by four ‘hinge’ regions (H), the

cystein-rich domain (CR), and the C-terminal domain (CT).  Also shown are the Dp260 and the Dp71 isoforms

and various truncated versions of dystrophin that have been tested in animal models for DMD.

The central rod domain spans more than half of the dystrophin molecule and consists of 24

‘spectrin-like’ repeats interrupted by a few proline-rich spacer regions. The rod domain folds

into a coiled-coil, composed of triple-helical repeats with alternating long and short sections

(Kahana and Gratzer, 1995; Kahana et al., 1994; Koenig and Kunkel, 1990).  Each repeat

covers approximately 109 amino acids in length and spans about two exons.  Transgenic mdx

mice lacking the entire rod domain (∆R1-R24, figure 3) displayed a dystrophic phenotype
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(Harper et al., 2002b).  However, a BMD patient with a deletion of 16 spectrin-like repeats

(exons 17-48) was found to be mildly affected.  Despite lacking 2/3 of the rod domain and

46% of the dystrophin protein, this patient was still walking in his late seventieth (England et

al., 1990).  Based on that observation, a variety of truncated dystrophin molecules (figure 3)

were tested in transgenic mice and confirmed that large portions of the dystrophin rod domain

could be deleted without any major impact on the phenotype.  Muscles from transgenic mdx

animals that expressed the same deletion as observed in the patient with a deletion of exons

17-48, displayed correct expression and localization of the DGC and generated 95% of the

specific force as did control muscles (Phelps et al., 1995).  Additional slight modifications to

this deletion, which not only preserved the reading frame of the mRNA, but also the phasing

of the repeat units, resulted in a mini-dystrophin protein with full function (∆H2-R19) (Harper

et al., 2002b).  In order to identify the minimal portion of the rod domain needed to maintain

muscle function, additional deletion constructs with either four, five, or six spectrin-like

repeats were tested in mdx animals (Harper et al., 2002b; Sakamoto et al., 2002; Wang et al.,

2000).  Remarkably, these micro-dystrophin constructs resulted in highly functional proteins,

although individual constructs differed in their effectiveness.  The most functional micro-

dystrophin construct (∆R4-23) displayed normal morphology and showed full protection from

contraction-induced injury, however muscles were slightly weaker and produced less force

(Harper et al., 2002b; Sakamoto et al., 2002).  Overall, constructs that maintained the natural

phasing of the repeats and hinges were more functional than constructs that had an odd

number of repeats or which had repeats and hinges joined in ways that differed significantly

from the natural pattern of these units in dystrophin (Harper et al., 2002b).  Furthermore,

some studies suggested that the rod domain interacts with signaling molecules such as

aquaporin-4 and nNOS, which may explain the fact that some repeats are more important than

others (Crosbie et al., 2002b; Wells et al., 2003).  Taken together, large in frame deletion of

the dystrophin rod domain are well tolerated and do not disrupt normal muscle stability and

function.  Nevertheless, the rod domain cannot be fully deleted or interchanged with

homologous domains from other proteins (Harper et al., 2002a).  These data support the idea

that the rod domain confers an essential function to dystrophin, perhaps acting as a shock

absorber and/or force and/or signal transducer.



Introduction22

Structure-function analysis of the different dystrophin domains showed that dystrophin

maintains a crucial function in providing a link between the intracellular cytoskeleton and the

extracellular matrix via its interaction with actin and dystroglycan.  A mild dystrophic

phenotype may result from partially maintaining this linkage and/or from altered signaling

pathways associated with sub-portions of the DGC.  The next section of this chapter

summarizes in greater detail the evidence that dystrophin and the DGC may play a role in cell

signaling.

3.5.2. Signaling roles of dystrophin and the DGC

Several DGC core components and various accessory proteins that loosely interact with the

complex have been implicated in cell signaling.  Core components of the DGC, such as the

sarcoglycans, syntrophins and dystrobrevin have properties suggestive of a signaling function

and they may link important signaling pathways throughout the sarcolemma.  Accessory

proteins, such as nNOS, serine/threonine kinases, calmodulin, caveolin-3, Grb2, aquaporin-4

and voltage gated sodium channels are known cell signaling molecules and may transduce

important signals to other DGC members.  Several DGC members, including dystrophin, are

phosphorylated in vivo, however the reason of such phosphorylation remains unknown

(Campbell, 1995; Cox et al., 1994; Hasegawa et al., 1999; James et al., 2000; Madhavan and

Jarrett, 1994; Ozawa et al., 1995).  Phosphorylation by other DGC-associated signal

transducers may modulate the conformation of dystrophin and the DGC in response to

exercise, or stress, or may help to adapt muscle fibers to altered mechanical or metabolic

changes.

Mutational analysis of single members of the sarcoglycan complex revealed that the

absence of either α, β and δ-sarcoglycan leads to the secondary loss of the full sarcoglycan

complex and mechanical injury of the sarcolemma (Bönnemann et al., 1995; Duclos et al.,

1998; Nigro et al., 1996).  In contrast, the absence of γ-sarcoglycan leads to an incomplete

loss of α , β  or δ -sarcoglycan and does not affect dystrophin, dystroglycan or laminin

expression (Hack et al., 1999; Hack et al., 1998).  Despite maintaining the mechanical link
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between intracellular actin and the extracellular matrix, γ-sarcoglycan deficiency causes a

dystrophic phenotype (Hack et al., 1999; Hack et al., 1998).  Thus, it is thought that this form

of LGMD may result from alterations in signaling rather than a structural or mechanical

failure of the sarcolemma (Hack et al., 1999; Hack et al., 1998).  Nonetheless, the types of

signaling pathways that might be perturbed in the absence of γ-sarcoglycan remain obscure.

Mutations in the α-dystrobrevin gene resulted in a mild dystrophic phenotype, which

was not associated with contraction-induced injury and was proposed to be the result of

altered signaling possibly by disrupting the normal expression and localization of nNOS.

These mice displayed physiological abnormalities, such as a reduced vasodilation during

muscle exercise, resulting into hypoxic muscles (see below; Grady et al., 1999).  Mutations in

the α1-syntrophin gene did not lead to muscle weakness, however mutant mouse muscles

failed to express utophin and displayed abnormal NMJ, suggestive of a possible linkage to

signaling pathways affecting utrophin transcription or post-translational processing (Adams et

al., 2000).  Further evidence for a signaling role of syntrophin and dystrobrevin was given by

transgenic ∆CT mdx mouse studies (Crawford et al., 2000).  While α-dystrobrevin and α1-

syntrophin were dislocated from the sarcolemma in the absence of dystrophin, they were

retained at the sarcolemma in the presence of a truncated dystrophin ∆CT that lacked their

binding sites (Crawford et al., 2000).  These ∆CT transgenic mice displayed normal muscle

structure and function despite the lack of a direct association between dystrophin and either

syntrophin or dystrobrevin.  These data strongly suggest that the latter two proteins are not

likely to participate in a mechanical role with dystrophin, since they can function fully

without binding to dystrophin.  Nonetheless, since syntrophin and dystrobrevin are not

required for normal muscle function, these data suggest a more subtle signaling role

(Crawford et al., 2000).  In addition, it has been shown that α-dystrobrevin interacts with the

sarcoglycan complex, providing a connection between core DGC members implicated in cell

signaling (Yoshida et al., 2000).

Several proteins have been described that are loosely associated with the DGC and

which have been implicated in cell signaling:  (1) nNOS, a signaling component of the DGC,

binds to syntrophin via the syntrophin PDZ domain (Adams et al., 2001).  Primary mutations

in various DGC members, such as the sarcoglycans, α-syntrophin, α-dystrobrevin and

dystrophin have shown to lead to the seconday loss of nNOS from the sarcolemma (Brenman
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et al., 1995; Crosbie et al., 1998a; Grady et al., 1999; Kameya et al., 1999).  Altered nNOS

signaling may provide a major contribution to muscle pathology in different types of muscular

dystrophy (Chao et al., 1998; Crosbie et al., 1998a).  For example, dystrophin-deficient

muscles in mice and humans were shown to generate insufficient amounts of NO, resulting in

impaired metabolic modulation of α-adrenergic vasoconstriction and functional ischemia

(Sander et al., 2000; Thomas et al., 1998).  These data suggest that NOS plays an important

role in modulating blood flow to exercising muscles by regulating vascular blood flow. (2)

SAPK3 is a member of the mitogen-activated protein kinase (MAPK) family and binds to the

PDZ domain of α-syntrophin (Hasegawa et al., 1999).  SAPK3 phosphorylates α-syntrophin,

whereby this phosphorylation has been shown to be dependent on SAPK3-binding to the PDZ

domain.  SAPKs are activated by cellular stress and are connected to the SAPK/JNK pathway

(Hasegawa et al., 1999).  These data suggest that SAPK and perhaps other protein kinases

may directly phosphorylate components of the DGC to modulate the function of this complex

in response to exercise, mechanical stress and metabolic alterations.  (3) Ca2+-calmodulin

binds to the C-terminus of dystrophin and to syntrophin and activates calcium-dependant

protein kinases (Anderson et al., 1996; Madhavan et al., 1992).  Ca2+-signaling may play an

important role in modulating DGC function by regulating DGC interaction (4) Caveolin-3 is

predominantly expressed in muscle tissue and is an important regulatory component of the

sarcolemma.  Oligomeres of calveolin bind cholesterol and form calveolae pockets, which

provide a scaffold to concentrate a variety of signaling proteins.   Caveolin-3 is localized to

the sarcolemma and in vitro studies suggested its association with dystrophin (Crosbie et al.,

1998b; Okamoto et al., 1998; Song et al., 1996). Mutations in the caveolin-3 gene causes

LGMD with mild clinical symptoms (Hagiwara et al., 2000; Minetti et al., 1998)  (5) Grb2 is

an accessory protein of the DGC that interacts with β-dystroglycan and syntrophin (Oak et al.,

2001; Yang et al., 1995a).  Grb2 contains a SH2/SH3 domain, which is a common motif

shared by a number of signaling proteins.  The SH2/SH3 domain links tyrosine kinases to

small GTP-binding proteins in a variety of signal transduction pathways.  Dystroglycan

contains phosphotyrosine and P-rich regions, which could interact with Grb2 and function to

transduce extracellular signals into the cell (Yang et al., 1995a).  Recently, in vitro studies

suggested that signaling via dystroglycan, syntrophin and Grb2 provides a connection from

laminin in the extracellular matrix to the intracellular JNK signaling pathway (Oak et al.,
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2003) (6) Aquaporin-4 is a member of the water channel protein family and binds to the PDZ

domain of α-syntrophin (Adams et al., 2001; Neely et al., 2001).  In addition, it was suggested

that Aquaporin-4 interacts with the rod domain (Crosbie et al., 2002b).  Aquaporins play a

role in regulating water membrane permeability and may be essential in adapting muscle

tissue to volume changes during contraction.  The absence of α-syntrophin leads to the

absence of aquaporin-4 from the sarcolemma (Adams et al., 2001; Crosbie et al., 2002b;

Neely et al., 2001).

Analysis of dystrophin/utrophin double knock-out (dko) mice also supported the idea

that dystrophin and the DGC play a role in cell signaling.   These mice displayed a much more

severe dystrophic pathology than mdx mice, because neither dystrophin nor utrophin are able

to partially compensate for the absence of each other’s function.  However, transgenic dko

mice expressing the ∆CR truncated dystrophin construct, showed an amelioration of post-

synaptic membrane abnormalities and fiber-type abnormalities despite not having an effect on

the primary dystrophic pathology (Rafael et al., 2000).  Since ∆CR is not able to rescue

mechanical function, the amelioration of the post-synaptic membrane and fiber-type

abnormalities is likely the result of restoring signaling networks, whose identity is not clear

(Rafael et al., 1996; Rafael et al., 2000).

In summary, there is growing evidence that dystrophin and the DGC are implicated in

signal transduction pathways.  Developing a better understanding of the connection between

these signaling centers and their role in regulating the DGC and muscle function will be

important to further understand the complete role of dystrophin and the DGC.

3.6. Pathophysiology of muscular dystrophy

The relationship between the absence of dystrophin and the pathological mechanisms of

dystrophy are poorly understood.  Multiple functions of dystrophin and the DGC make it

difficult to determine if the initiating event that leads to cell death is a consequence of

mechanical or signaling failure or both.  Dystrophic muscle displays a variety of pathological

features such as loss of membrane integrity, elevated Ca2+ levels, increased susceptibility to

oxidative stress, functional ischemia, altered mitochondrial function and extensive infiltration
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of immune cells (Arahata and Engel, 1988; Chen et al., 2000; Franco and Lansman, 1990;

Rando et al., 1998; Spencer et al., 2001; Thomas et al., 1998).

Mechanical failure may cause an accumulation of tears in the sarcolemma and a

gradual loss of membrane integrity, followed by an increased calcium influx (Carpenter and

Karpati, 1979).  Then, elevated intracellular Ca2+ levels may activate calcium dependant

proteases (calpains), which are capable of widespread proteolysis of intracellular proteins, and

of initiating cell death (Turner et al., 1993).  In contrast, signaling failure may increase the

susceptibility of muscle fibers to secondary triggers, such as functional ischemia and

oxidative stress (Disatnik et al., 2000; Disatnik et al., 1998; Rando et al., 1998; Sander et al.,

2000; Thomas et al., 1998).  Dystrophic muscles show an impaired metabolic modulation of

α-adrenergic vasoconstriction and functional ischemia.  Furthermore, mdx muscles

demonstrate an increased susceptibility to oxidative stress compared to normal muscles

(Disatnik et al., 1998; Rando et al., 1998).

The progressive nature of the disease reinforces the idea that muscle cell death is a

dynamic process and may reflect the increased susceptibility of myofibers to damage leading

to active, apoptotic and/or passive, necrotic cell death.  However, it remains unclear if muscle

fiber breakdown occurs primarily through apoptotic or necrotic processes.  Recent studies

suggested that cell death in dystrophic muscle may be initiated by apoptosis and followed by

necrotic processes (Tidball et al., 1995).  Tissue sections of dystrophic muscle demonstrated

apoptotic myonuclei and activated caspases in degenerating muscle fibers (Abmayr et al.,

2004; Matsuda et al., 1995; Sandri et al., 1998; Sandri et al., 1997; Tews and Goebel, 1997a).

Although apoptosis and necrosis represent different mechanism of cell death, both may be

intertwined.  The ultimate fate of a cell may depend on the nature of the trigger and the energy

status of the cell.  The intensity of the signal, such as intracellular ATP levels, Ca2+-levels,

hypoxia and/or reactive oxygen species may dictate whether a cell dies by a primarily

necrotic, or an apoptotic, pathway (Bonfoco et al., 1995; Eguchi et al., 1997; Higuchi et al.,

1998).

It remains unclear whether infiltrating immune cells actively contribute to muscle cell

death as a primary cause of the disease, or whether their activity is a secondary consequence

of myofiber breakdown.  Previous studies demonstrated that depletion of CD4+ and CD8+ T-

lymphocytes reduces dystrophic pathology.  In addition it was shown that T-lymphocytes
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were able to stimulate apoptotic cell death through perforin-mediated cytotoxicity.  Overall

these data suggested that immune cells actively contribute to dystrophic pathology (Spencer et

al., 2001; Spencer et al., 1997).

An additional aspect that may play a major part in the progression of dystrophic

pathology is the gradual exhaustion of satellite cells.  Satellite cells are the primary

contribution to muscle regeneration.  Following myofiber injury, satellite cells are activated,

begin proliferating and fuse into damaged, or new myofibers to initiate repair of the injury

(Bischoff, 1975).  Dystrophic muscle progressively looses its self-renewal potential, leading

to severe fibrosis, adipose tissue replacement and abnormal muscle architecture.  Thus, an

impaired repair mechanism may provide a major contribution to muscle pathogenesis.  This

hypothesis is supported by a previous study showing that conditional knock-out mice with a

disruption of dystroglycan, exclusively in mature muscle fibers, demonstrated a mild

phenotype (Cohn et al., 2002).  This observation stands in surprising contrast to the severe

phenotype reported in chimeric dystroglycan knock-out mice (Côté et al., 1999).  Since the

conditional knock-out mice expressed dystroglycan in satellite cells, it is thought that the mild

phenotype is due to the constant activation of satellite cells and subsequent muscle

regeneration.  In contrast, satellite cells in chimeric dystroglycan null mice as well as in mdx

mice displayed abnormal expression of DGC members that may be responsible for impaired

satellite cell function in conjunction with a loss of muscle self-renewal potential.

In summary, dystrophic pathology may be an accumulation of malfunctions, which

together contribute to muscle degeneration.  The balance of muscle fiber degeneration and

renewal may be maintained in young patients by cellular repair mechanism and continious

activation of satellite cells.  However, insufficient survival stimuli and an impaired

regenerative potential may lead to a gradual replacement of muscle fibers by fibrotic and

adipose tissue, resulting in a loss of muscle mass and the devastating course of the disease.
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3.7. Therapy of DMD

3.7.1. Gene replacement

No cure for muscular dystrophy exists at this time.  However, progress over the last years in

understanding muscle function and dystrophic pathology have encouraged the development of

various therapeutic approaches.  Since DMD is recessively inherited and arises from a single

gene mutation, gene replacement appears as a promising treatment (Chamberlain, 2002).  It

was demonstrated that expression of dystrophin in transgenic mdx mice at levels that reached

>20% of wild-type dystrophin levels prevented dystrophic pathology (Cox et al., 1993a;

Phelps et al., 1995).  In addition, viral gene delivery of full-length or truncated dystrophin

molecules (figure 4) showed that gene replacement can almost fully prevent and partially

reverse muscular dystrophy (Chen et al., 1997; DelloRusso et al., 2002; Gilbert et al., 2001;

Harper et al., 2002b; Sakamoto et al., 2002; Wang et al., 2000).  Current research focuses on

testing different vector systems for their ability to transduce and persist in muscle and whether

they trigger immunological reactions that may be harmful and cause more damage than

benefit.

3.7.2. Vectors for muscle gene therapy

Various vectors, including adenovirus (Ad), adeno-associated virus (AAV), retroviruses and

plasmids are promising candidates to deliver dystrophin to muscle.  Research has been

focused on evaluating each vector in terms of packaging size, vector production efficiency,

immunogenicity and transfer efficiency for DMD gene therapy.

Ad vectors have been widely studied for DMD gene therapy as they can be grown to

very high titers and have a relatively large cloning capacity (Graham and Prevec, 1991).

These vectors further enable transfer of highly functional mini-dystrophin constructs.  Animal

studies demonstrated that Ad vectors transduce muscle extremely well and prevent dystrophic

pathology in expressing fibers (Deconinck et al., 1996; Ragot et al., 1993; Vincent et al.,

1993; Yang et al., 1998).  However, most studies have been performed in immune-
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compromised animals since conventional, first generation adenoviruses elicit a substantial

immune response (Yang et al., 1994).  Despite the fact that first generation adenoviruses are

deleted for the E1 and E3 genes that regulate viral replication and gene expression, the

remaining viral genes may also be highly immunogenic.  Also, a number of transgenes

expressed by adenoviral vectors can be highly immunogenic, especially if they encode

proteins not normally produced by host animals (Tripathy et al., 1996).  In addition to muscle

tissue, Ad vectors also transduce macrophages and dendritic cells that trigger a substantial

immune response.  Several approaches taken to reduce the immune response worked

remarkably well.  First, tissue-specific promoters were shown to be very effective in shutting

down gene expression in macrophages and dendritic cells (Hartigan-O'Connor et al., 2001;

Pastore et al., 1999).  Second, “gutted” adenoviral vectors lacking all viral genes further

reduced the immune response significantly.  These vectors are dependant on a helper

adenovirus for growth and production, however after purification they are 99% helper-free

(Barjot et al., 2002; Parks et al., 1996).  Since “gutted” vectors are deleted of all viral genes,

they have a higher cloning capacity, allowing transfer of full-length dystrophin expression

cassettes.  Animal studies using “gutted” adenoviral vectors as a vehicle to express full-length

dystrophin displayed efficient transduction, partial reversal of dystrophic pathology and

persistent gene expression for at least six months (Chen et al., 1997; DelloRusso et al., 2002;

Gilbert et al., 2001; Schiedner et al., 1998) (figure 4).  Since Ad vectors are non-integrating

vectors, they may not persist long-term and may have to be re-administered.  Therefore,

current research focuses on developing hybrid vectors between Ad and retroviruses or AAV

that could enable integration and consequently higher persistence over a longer time period

(Roberts et al., 2002; Shayakhmetov et al., 2002).

Retroviral vectors also have a relatively high cloning capacity (7-11 kb), which

enables them to transfer highly functional mini-or micro-dystrophin constructs (Dunckley et

al., 1993).  However, retroviruses are very difficult to grow to high titers and they cannot be

applied in the quantities that may be needed to efficiently transduce muscle.  No

immunological side effects have yet been reported, but again, low titers do not allow the same

studies to be performed as with Ad or AAV vectors.  In vitro studies demonstrated that

lentiviruses transduce muscle stem cells very well, supporting the potential use of lentiviruses

as a promising tool for ex vivo gene therapy (Li and Chamberlain, manuscript in preparation).
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In addition, lentiviruses integrate into the host genome and enable persistent expression

(Naldini et al., 1996).  Current research focuses on identifying ways to control integration of

the virus into the host genome for safety reasons.

Currently, AAV viruses are the most promising vectors for DMD gene therapy.  These

vectors can be grown to high titers, transduce muscle tissue very well and can persist for

several years (Fisher et al., 1997; Xiao et al., 1996).  A variety of different AAV serotypes are

available that demonstrate different tissue tropism.  In particular, serotype 1, 5 and 6 proved

to be remarkably efficient in transducing muscle tissue (Chao et al., 2000; Hildinger et al.,

2001; Scott et al., 2002) (figure 4).  Despite the fact that AAV vectors have a limited cloning

capacity (<5 kb), they can be used as a vehicle to express highly functional micro-dystrophin

constructs (Harper et al., 2002b; Sakamoto et al., 2002; Wang et al., 2000).  Studies in the

mdx mouse model demonstrated high, persistent expression of micro-dystrophin and a partial

reversal of dystrophic pathology (Harper et al., 2002b).  AAV vectors integrate into the host

genome with very low efficiency, however long-term persistence may be achieved by the

formation of high-molecular weight concatemeres tightly associated with the host genomic

DNA (Vincent-Lacaze et al., 1999).  AAV vectors lack all viral coding sequences, which

prevents a potential immune response against viral gene expression.  In addition, AAV

vectors transduce dendritic cells and macrophages very poorly (Zhang et al., 2000).  As a

result, these vectors efficiently evade the cellular immune response caused by direct antigen

presentation of foreign transgenes by dentritic cells.  Nevertheless, several cases have been

reported where a cellular immune response cannot be completely avoided (Cordier et al.,

2001; Yuasa et al., 2002).  First, intracellular localization of the transgene appeared to have an

effect on the immune response, since transmembrane proteins were more immunogenic than

cytoplasmic proteins in the context of AAV-mediated gene delivery (Sarukhan et al., 2001b).

Second, AAV-mediated delivery is far more likely to trigger a cellular immune response

against the transgene in dystrophic than in healthy muscle (Cordier et al., 2001; Yuasa et al.,

2002).  The latter observation may be explained by the fact that dystrophic muscle displays a

loss of membrane integrity, accompanied by muscle cell necrosis and massive infiltration of

immune cells (Hartigan-O'Connor et al., 2001).  The cellular immune response in dystrophic

muscle may therefore be triggered by antigen cross presentation from necrotic fibers to

dentritic cells (Sarukhan et al., 2001a; Yuasa et al., 2002; Zhang et al., 2000).  Unlike the case
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with Ad vectors, the cellular immune response could not always be blocked by using tissue-

specific promoters.  However, the expression of therapeutic genes rescues muscle fibers from

degeneration, and therefore blocks the release of immune stimulating antigen in conjunction

with cross presentation to dendritic cells.

Figure 4.  Transduction of mdx  muscles by dystrophin expression vectors. The figure shows

immunofluorescent staining of tibialis anterior muscle cross sections for dystrophin.  A) mdx B) wild-type C)

gutted Ad vectors expressing full-length human dystrophin and D) AAV vectors expressing human micro-

dystrophin.  Muscles of one year old mice were injected and analyzed one month post-injection.  Scale bar: 100

µm.

Plasmid DNA vectors have a very large cloning capacity and can be produced inexpensively

at very high quantities.  These vectors have the advantage of being free of viral genes and

proteins.  Naked DNA may elicit an immune response against foreign transgenes, however the

immune response can be widely blocked by using tissue specific promoters (Wells et al.,

1997).  The delivery of plasmid DNA to skeletal muscle showed persistent expression and can

be safely re-administered, but the transduction efficiency is very low (Acsadi et al., 1991;

Wolff et al., 1990).  Current research focuses on improving the efficiency by using high-

pressure injection methods in combination with DNA carriers such as liposomes, lipids,

A

B

C
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polymers and synthetic peptides (Aihara and Miyazaki, 1998; Lu et al., 2003a; Lu et al.,

2003b).

3.7.3. Gene repair

Several efforts have been made to develop strategies to correct dystrophin deficiency at the

DNA or RNA level.  DNA repair is based on chimeric molecules of DNA/RNA

(chimeroplasts) that specifically correct point mutations or change exon splice donor or

acceptor sites in the genomic DNA (Bertoni and Rando, 2002).  RNA repair uses the

technology of antisense oligonucleotides that bind to pre-mRNA to alter exon/intron splicing

and restore a mRNA open reading frame (Mann et al., 2001; van Deutekom et al., 2001).  The

clear advantage of DNA/RNA repair is the fact that nucleotide sequences are expressed by the

patient’s own genes and are therefore not immunogenic. These methods proved to be safe,

cheap and have the potential to be administered systemically, but the efficiency is very low.

However, encouraging data showed that mdx muscle produces functional amounts of

dystrophin by administration of antisense oligonucleotides in combination with a transfection

enhancing reagent, such as the nonionic block copolymer F127.  This polymer is thought to

facilitate dissemination within tissue, penetration through cell membranes, stability and entry

into the nucleus (Lu et al., 2003c).

3.7.4. Upregulation of compensatory proteins

Overexpression of the dystrophin homologue utrophin in mdx mice demonstrated that

utrophin is able to compensate for dystrophin deficiency (Tinsley et al., 1998).  The up-

regulation of utrophin is of general interest for developing a treatment of DMD, since

utrophin is expressed normally in DMD patients and is not expected to trigger an immune

response (Ebihara et al., 2000; Gilbert et al., 1999).  Rather than delivering utrophin directly

to skeletal muscle, several groups are testing various drugs that might enhance endogenous
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utophin gene expression.  In addition, a number of approaches have been taken based on the

idea of up-regulating synaptic proteins that are not affected in DMD.  As a result, these

proteins may up-regulate DGC complex members at the sarcolemma and therefore ameliorate

the dystrophic phenotype.  For example, the over-expression of the synaptic cytotoxic T-cell

GalNAc transferase inhibited muscular dystrophy in mdx mice by up-regulating expression of

utrophin and several DGC members (Nguyen et al., 2002).  This observation may be

explained by the fact that GalNAc modifies the glycosylation pattern of α-dystroglycan which

appears to facilitate utrophin binding.  Since GalNAc transferase is an enzyme, minor changes

in its activity may have a major impact on its function.  Additional synaptic proteins which

have been shown to be beneficial in ameliorating muscular dystrophy include α7β-integrin

and agrin (Burkin et al., 2001).

3.7.5. Systemic delivery of genes to muscle tissue

Progress has been made in optimizing vector systems and creating mini- and micro- versions

of dystrophin; however, it remains a challenging goal to deliver dystrophin to every muscle of

the body.  Since capillaries surround all muscle fibers, intravascular injections are a promising

way to deliver genes systemically.  Efforts have been focused on finding ways to enhance the

permeability of capillary walls to allow penetration of vectors.  It was shown that the

administration of vasodilators, such as histamine and papaverine, as well as injection of

vectors under high pressure, can significantly increase the efficiency of vascular delivery to

muscle (Cho et al., 2000; Greelish et al., 1999).  However, these methods are not safe enough

to be applied in the clinic.  In addition, viral mediated systemic delivery may target not only

the tissue of choice, but also other organs, such as the liver.  Several groups are optimizing

vector systems to change their natural tropism, so that they selectively transduce muscle fibers

(Bouri et al., 1999; Douglas et al., 1996; Wickham, 2000).  AAV6 appeared to have a natural

tropism for muscle tissue, rendering it a promising vector for the systemic delivery of genes

(Scott et al., 2002).



Introduction34

An alternative approach is based on the systemic delivery of cells to rescue dystrophin

expression.  A tremendous amount of work has been put into identifying and characterizing

stem cells and testing them for their potential to migrate out of blood vessels into muscle

tissue.  It was previously shown that stem cells from muscle and bone marrow were able to

migrate into muscle tissue and form myofibers, when delivered by bone marrow

transplantation.  However, the efficiency is very low (Ferrari et al., 1998; Gussoni et al.,

1999).  Although recently, Samaolesi et al. demonstrated the potential of mesoangioblasts,

vessel-associated fetal stem cells, to migrate out of the capillary in the presence of

inflammation (Sampaolesi et al., 2003).  Intra-arterial delivery of wild-type mesoangioblasts

to α-sarcoglycan null mice demonstrated a morphological and functional rescue of the

dystrophic phenotype.  However, further research in basic stem cell biology is required to

evaluate the potential of stem cells for therapy.  The ultimate goal of cell therapy is to isolate

stem cells from a patient, transduce the cells ex vivo with an integrating, dystrophin

expressing virus and return the cells to the patient through intravascular administration.

3.7.6. Treatment of secondary symptoms of DMD

Gene replacement therapy and reassembly of the DGC complex may rescue any remaining

muscle fibers from breakdown; however, it does not seem likely that previous damage, such

as altered muscle architecture, fibrotic changes and fat accumulation, would be reversed.  A

major contribution to dystrophic pathology may be the result of activated immune cells and

altered signaling pathways, which may not be easily turned off once activated.  Consequently,

a combination of treatments that replace the gene and in addition target immunological and

signaling dysfunction may be the therapy of choice.  The application of drugs that treat

secondary symptoms of DMD/BMD are very valuable for their potential to be administered

systemically.

Several immuno-suppressant drugs have been successfully used to reduce

inflammation in DMD patients.  Steroid-based drugs such as prednisone and deflazacort

proved to have a broad anti-inflammatory effect by blocking the production of cytokines,
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prostaglandins and histamines and halting the proliferation of lymphocytes (Bonifati et al.,

2000; Merlini et al., 2003). Prolonged steroid treatment was shown to slow down the

progression of dystrophic pathology by stabilizing muscle strength and preserving respiratory

function.  In addition, it was demonstrated that the depletion of CD4+ and CD8+ T-

lymphocytes reduces dystrophic pathology in mdx mice (Spencer et al., 2001).

Altering or restoring signaling pathways remains a more challenging goal.  Signaling

failure is thought to play a role in dystrophic pathology, however not much is known about

the mechanisms that are responsible for this mis-regulation.  The consequences are described

as an increased susceptibility of muscle fibers to elevated Ca2+ concentrations, oxidative stress

and functional ischemia, resulting in apoptotic and/or necrotic cell death.  nNOS, which is

absent from the sarcolemma in dystrophic muscle, is thought to have an important signaling

function by regulating blood flow to exercising muscle.  The absence of nNOS results in

impaired metabolic modulation of α-adrenergic vasoconstriction and functional ischemia in

dystrophic muscle.  Likewise, it was shown that over-expression of nNOS in mdx muscle

ameliorates the dystrophic phenotype (Nguyen and Tidball, 2003).  An alternative approach

demonstrated that creatine treatment of mdx  myoblasts lowered intracellular Ca2+

concentrations by stimulating sarcoplasmatic reticulum Ca2+-ATPase (Pulido et al., 1998).

Based on that observation, a clinical study supplementing the diet of DMD patients with

creatine was found to slow the progression of joint stiffness, improve strength and increase

resistence to fatigue (Louis et al., 2003).  These approaches clearly show that understanding

signaling pathways in DMD will be helpful in designing treatments to rescue muscle fibers

from cell death and ameliorate the dystrophic phenotype.

Another promising approach centers around the idea of activating satellite cells and

maintaining their regenerative potential in muscular dystrophy.  It was demonstrated in

previous studies that muscle pathology can be ameliorated by the activation of satellite cells

in conjunction with an efficient replacement of degenerating myofibers throughout life (Cohn

et al., 2002).  Furthermore, insulin-like growth factor (Igf-I), which activates satellite cells

and promotes cell growth and differentiation, was shown to ameliorate dystrophic pathology

by maintaining muscle mass and function in old and dystrophic animals (Barton et al., 2002;

Barton-Davis et al., 1998; Gregorevic et al., 2002; Lynch et al., 2001a).  Igf-I treated animals

displayed an increase in muscle mass, fiber size, fiber number and absolute muscle strength
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along with a significant decrease in muscle degeneration.  Similarly, neutralizing antibodies to

myostatin, which is an inhibitor of Igf-I induced pathways, were also able to ameliorate

dystrophic pathology (Bogdanovich et al., 2002).

3.8. Scope of this dissertation

This work focuses on studying the role of proteins that repress apoptosis and/or enhance

muscle regeneration to determine whether they have potential to modulate dystrophic

pathology.  Since several malfunctions such as mechanical, signaling and regeneration may

contribute to muscular dystrophy, we sought to study a number of treatments and their relative

and combined potential for reversing the dystrophic pathology of the mdx mouse.  The first

part of the work centers around the characterization of ARC, apoptosis repressor interacting

with caspase-recruitment domain (CARD), in normal and dystrophic mdx muscle and its

potential to ameliorate muscular dystrophy.  The second part focuses on the delivery of Igf-I

to mdx muscle without and in conjunction with gene replacement therapy to assess if the

beneficial effect of Igf-I is synergistic with the protective effect of dystrophin in restoring

muscle strength and function in muscular dystrophy.

The potential contribution of ischemia, oxidative stress and inducers of apoptosis to

the dystrophic process are of interest in view of the recent identification of ARC.  ARC

expression in humans is restricted primarily to striated muscles, tissues that do not normally

undergo rapid cell turnover or apoptosis.  This high level expression of an apoptosis inhibitor

in long-lived cell types raises the possibility that ARC could help protect muscle fibers from

apoptotic death resulting from mechanical stress or oxidative damage.  ARC was identified in

the GenBank database using a screen for proteins with homology to the CARD of caspase-9, a

key initiator of apoptosis in many cell types (Koseki et al., 1998).  The CARD domain is

conserved in numerous proteins and mediates binding to, and regulation of, various caspases

(Deveraux et al., 1998; Hofmann et al., 1997; Li et al., 1997).  ARC was shown to interact

selectively with caspase-2 and caspase-8 via its CARD and to inhibit caspase-8 induced

apoptosis (Koseki et al., 1998).  ARC has also been shown to inhibit both hypoxia induced

and hydrogen peroxidase mediated cell death in cardiac H9C2 cells (Ekhterae et al., 1999;
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Neuss et al., 2001).  Since myofiber death in dystrophic muscles has been linked to increased

oxidative stress and functional ischemia, we sought to study the expression of ARC in mdx

mice.  We cloned and characterized murine ARC in normal and mdx muscle.  In addition we

generated ARC transgenic mice to assess the potential of forced overexpression to ameliorate

the dystrophic phenotype.

In a complementary approach, we examined the role of Igf-I in muscle tissue to

evaluate its ability to modulate the mdx muscle pathology.  Igf-I has been widely studied in

various cell types and tissues and has been shown to play an important role in regulating

tissue growth and differentiation (Florini et al., 1991; Lund, 1994; Stewart and Rotwein,

1996).  Igf-I, a peptide growth factor that is structurally related to proinsulin, is primarily

synthesized by the liver in response to growth hormone secretion and mediates endocrine

effects on various tissues, in particular during growth and development (Rinderknecht and

Humbel, 1978; Stewart and Rotwein, 1996).  In addition, Igf-I is produced locally in several

tissues, where it exerts autocrine and paracrine effects (D'Ercole et al., 1984; LeRoith and

Roberts, 1991; Sjogren et al., 1999).  Igf-I binds to the Igf-I receptor and mediates its cellular

effects mainly via the phosphatidylinositol 3-kinase (PI3K) and the mitogen activated protein

kinase (MAPK) pathway, respectively (Singleton and Feldman, 1999).  The MAPK pathway

triggers proliferation, whereas PI3K signaling induces differentiation in conjunction with anti-

apoptotic pathways.  In skeletal muscle, overexpression of Igf-I was found to enhance muscle

repair mechanism and to maintain muscle mass and function in old and dystrophic mdx

animals (Barton et al., 2002; Barton-Davis et al., 1998).  We have cloned and characterized

the isoforms of Igf-I that are expressed in normal and dystrophic mouse muscle.  Based on

this information, we have tested virally mediated overexpression of Igf-I in vitro and in vivo

in dystrophic muscle and established quantitative PCR and morphological and functional

assays to assess expression and effects of Igf-I.  Additionally, we have co-treated dystrophic

muscle with Igf-I and dystrophin to determine if the protective effect of Igf-I is synergistic

with the beneficial effects of dystrophin in ameliorating the mdx phenotype.
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4. RESULTS

4.1. Characterization of ARC in normal and dystrophic mdx muscle

4.1.1. Isolation of mouse ARC cDNA

The full-length mouse ARC cDNA was isolated by direct PCR amplification from a muscle

cDNA library (Lumeng et al., 1999) using primers derived from an EST clone (accession

number AA596110) and vector specific primers.  Direct sequencing of PCR products revealed

that the longest open reading frame encoded a protein of 220 amino acids with a predicted

molecular mass of 24.5 kDa (GenBank accession no. AY459322).  The protein sequence

displayed 80% identity to the previously identified human ARC (Koseki et al., 1998) and 91%

identity to the rat ortholog  (figure 5).  Alignment analysis confirmed that mouse ARC

contains a N-terminal CARD and a C-terminal proline/glutamic acid-rich (P/E) domain.  The

CARD domain of ARC has significant amino acid similarity to the CARD domains from

caspase-2, caspase-9, RAIDD and APAF-1 (Koseki et al., 1998) and is structurally related to

the death effector domain (DED) shared by effector caspases (Hofmann et al., 1997).

   

Figure 5.  Alignment of mouse, rat and human ARC protein sequence.  Mouse ARC displays 80% identity

to human ARC and 91% identity to the rat ARC protein sequence.  The identical residues in mouse, rat and

human ARC are indicated as black boxes.  ARC contains a N-terminal CARD domain (1-97 AA) and a C-

terminal P/E rich-domain.
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The human ARC gene has been reported to encode two proteins that differ by alternative

RNA splicing.  The alternative product has been named nucleolar protein Nop30 and has been

shown to interact with the splicing factor SRp30c (Stoss et al., 1999).  Nop30 contains a 10 bp

deletion that leads to a frame shift between amino acids 95 and 96, resulting in a different C-

terminal domain consisting of 124 amino acids (Stoss et al., 1999).  To determine whether the

mouse ARC gene also encoded a Nop30 like protein we amplified ARC from a mouse muscle

cDNA library and subcloned the PCR product.  Ten independent clones were sequenced and

all encoded the normal, full-length ARC.  Furthermore, we digested the PCR product with

PmlI, which cuts within the 10 bp deletion of the potential Nop30 cDNA and would

distinguish between ARC and Nop30. We were able to detect the ARC cDNA, but less than

5% of the product remained undigested (data not shown).  However, analysis of the amino

acid sequence demonstrated that the 10 bp deletion observed in the human alternative

transcript would only yield a 56 amino acid C- terminal domain, compared to the 124 amino

acids in human Nop30.  These data indicate that in mouse skeletal muscle, the ARC gene does

not encode a Nop30-related protein.

4.1.2. Chromosomal localization of mouse ARC

The mouse ARC gene was mapped to chromosome 8 by typing a backcross panel (kindly

provided by the Jackson Laboratories).  The loci was named Nol3, nucleolar protein 3, in

correspondence with the previously mapped human ARC gene product Nop30 (Stoss et al.,

1999).  The mouse loci on chromosome 8 corresponds to human chromosome 16q22.1 and

agrees with the mapping data of human ARC.  ARC cosegregates with Psmb10 and Sntb2

(figure 6).
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Figure 6.  Chromosomal localization of the mouse ARC gene.  Figures from the TJL BSS backcross showing

part of Chromosome 8 with loci linked to Nol3.  The map is depicted with the centromere toward the top.  A 3

cM scale bar is shown to the right of the figure.  Loci mapping to the same position are listed in alphabetical

order.  In the haplotype figure loci are listed in order with the most proximal at the top.  The black boxes

represent the C57BL6/JEi allele and the white boxes the SPRET/Ei allele.  The number of animals with each

haplotype is given at the bottom of each column of boxes.  The percent recombination (R) between adjacent loci

is given to the right of the figure, with the standard error (SE) for each R. Missing typings were inferred from

surrounding data where assignment was unambiguous.  Raw data from the Jackson Laboratory were obtained

from http://www.jax.org/resources/documents/cmdata.
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4.1.3. ARC expression in mice

To examine ARC gene expression in mice we initially probed a multiple tissue northern blot.

Mouse ARC was highly expressed in heart, and at a slightly lower level in skeletal muscle

(figure 7).  Some ARC expression was detected in brain and testis, with very low levels in

kidney and lung. No ARC expression was detected in liver or spleen.  Interestingly, in testis

ARC mRNA was expressed as a longer transcript than in other tissues possibly due to an

alternative polyadenylation site as seen in human tissue (Stoss et al., 1999).  The nature of the

larger transcript in heart is unclear and could be the result of alternative splicing or

polyadenylation site usage.  This expression agrees with the reported ARC mRNA expression

pattern in human and rat tissues (Geertman et al., 1996; Koseki et al., 1998).  As the mdx

mouse represents a good model for myofiber breakdown and turnover, we asked if ARC

displayed a different expression pattern in dystrophic muscle.  We compared ARC protein

levels in wild-type (C57BL/10J) and mdx mouse skeletal muscles at two and six months of

age via western blotting.  ARC was found to be expressed at essentially the same levels in

wild-type and mdx muscles at both ages (figure 8A).

Figure 7.  Northern blot analysis of mouse ARC expression.  mRNAs from various mouse tissues were

hybridized with a cDNA for the full-length coding region of mouse ARC.  The arrow indicates the 1.0 kb

transcript characterized in this study, which is expressed in skeletal muscle and heart, and at a lower level in

brain.  The nature of the larger transcripts observed in heart and testis (asterix) is unclear.
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Figure 8. Expression and localization of endogenous mouse ARC in muscle tissue.  A) Immunoblot staining

of quadriceps muscle extracts from 2 and 6 months old C57Bl/10J and mdx mice using an anti-ARC antibody.

The positive control represents 293T cells transfected with a human ARC FLAG expression cassette.  B)

Immunofluorescent staining of quadriceps muscle sections for endogenous mouse ARC and for the

mitochondrial marker COX (cytochrome oxidase subunit V).  ARC shows a fiber-type specific expression

pattern and co-localizes with COX.  Scale bar: 50 mm.
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4.1.4. Co-localization of ARC with mitochondria

To examine the localization of ARC in muscle fibers, we immuno-stained serial frozen

sections of C57BL/10J and mdx mice for ARC (figure 8B).  ARC staining showed a non-

uniform expression pattern across the muscle section, suggesting that ARC was expressed in a

fiber-type specific manner.  This pattern was observed in diaphragm, quadriceps and tibialis

anterior muscles, while the expression in heart showed a uniform expression pattern (figure

8B, figure 11C and data not shown).  ARC was expressed at similar levels in wild-type and

mdx  animals in these muscle types and appeared to be predominantly cytoplasmic.

Hypercontracted myofibers in mdx muscle demonstrated a shift of ARC to the sarcolemma

(data not shown).  ARC expression in wild-type muscle showed a distinct regular pattern of

ARC positive and negative fibers, while ARC expression in the mdx background appeared as

a less distinct and more irregular pattern.  To determine if ARC expression is fiber type

specific, we co-stained for ARC and for the mitochondrial-specific protein cytochrome

oxidase. Cytochrome oxidase is mainly restricted to oxidative fibers, which display an

oxidative metabolism and contain numerous mitochondria (Schiaffino and Reggiani, 1994).

ARC co-localized with cytochrome oxidase, showing that ARC is expressed mainly in

oxidative fibers and that it is co-localized with mitochondria within the muscle fiber (figure

8B).

4.2. Overexpression of ARC in dystrophic mdx muscle

4.2.1. Transgenic ARC expression and localization

We generated transgenic mice in order to test the hypothesis that forced overexpression of

ARC might maintain myofiber survival and alleviate the dystrophic muscle pathology of mdx

mice (figure 9A).  Transgenic ARC expression was analyzed in wild-type and mdx mice and

expression levels were compared with endogenous ARC levels (figure 9B).

Western analysis showed that the transgene was highly expressed in quadriceps and

diaphragm muscle on both the C57Bl/10J and the mdx background.  Immunohistochemical
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analysis revealed that the transgene was uniformly expressed in quadriceps and diaphragm

muscle and that it localized predominantly to the sarcoplasm in C57BL/10J muscle and

shifted towards the sarcolemma in the mutant mdx  background (figure 10A).

Immunohistochemical analysis of soleus and heart muscle showed a mosaic overexpression

pattern in soleus, while expression in heart muscle was observed only in rare myocytes (figure

11C).  This latter observation is consistent with our previous results showing that the human

α-skeletal actin promoter (HSA) expression cassette used in this study is generally not active

in cardiac muscle (Crawford et al., 2000; Warner et al., 2002).

To examine whether transgenic ARC co-localized with mitochondria, we co-stained

transgenic quadriceps muscle sections for ARC and for the mitochondrial marker cytochrome

oxidase (figure 10B). Transgenic ARC was expressed much more uniformly in all fiber types

from the HSA promoter in both normal and mdx muscle, compared with the endogenous ARC

gene.  However, transgenic ARC co-localized with cytochrome oxidase in oxidative fibers.

      

Figure 9.  Overexpression of human ARC in mouse muscle tissue.  A)  Schematic illustration of the

expression cassette used to generate transgenic mice.  A human ARC cDNA with a FLAG tag epitope was

driven by the human skeletal α-actin promoter.  In addition, the expression cassette included the SV40 VP1

intron and the SV40 polyA adenylation site.  B)  Western analysis of transgenic and endogenous ARC

expression.  Quadriceps and diaphragm muscle extracts from six week old transgenic ARC/mdx, transgenic

ARC/C57BL/10J, mdx and C57BL/10J mice were probed with anti-ARC and anti-FLAG antibodies

HSA promoter VPI ARC & FLAG SV40pAA.

B.
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Figure 10. Overexpression and localization of human ARC in mouse muscle tissue.  A)

Immunofluorescence analysis of ARC and FLAG expression in quadriceps muscle sections from six week-old

transgenic ARC/mdx, transgenic ARC/wild-type and wild-type mice.  Muscle sections demonstrate a uniform

expression pattern of the transgene.  B) Immunofluorescent staining of transgenic ARC/mdx quadriceps muscle

section for ARC and for the mitochondrial marker COX.  Transgenic ARC co-localized with COX in oxidative

fibers.  Scale bar: 50 mm.
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4.2.2. Morphological analysis of transgenic ARC/mdx mice

Morphological studies were performed on tissue sections of different age groups to

examine the effect of ARC overexpression on the histopathology of dystrophic mdx skeletal

muscle fibers.  Hematoxylin and eosin staining of transgenic/mdx mice confirmed the

presence of a clear pattern of dystrophic muscle pathology including mononuclear cell

infiltration, fibrosis, centrally located nuclei and necrotic fibers in quadriceps, diaphragm and

soleus of six week, six month, 18 month and two-year old mice (figure 11 and data not

shown).  To estimate myofiber degeneration and regeneration we counted centrally nucleated

myofibers in quadriceps muscles of six week-old transgenic ARC/mdx, transgenic

ARC/C57BL/10J, C57BL/10J and mdx littermates.  At this age, quadriceps muscles from mdx

mice, as well as transgenic ARC/mdx mice, displayed a high degree of central nucleation,

76% in mdx and 77% in Tg/mdx.  Wild-type and transgenic ARC/wild-type mice both

displayed less than 1% centrally nucleated myofibers (figure 11A).

To evaluate the potential benefit of ARC overexpression in old mdx mice, we analyzed

the morphology of two year-old transgenic ARC/mdx and mdx quadriceps and diaphragm

muscles (figure 11B).  Both mdx and transgenic ARC/mdx muscles demonstrated an advanced

state of muscle degeneration characterized by substantial fat accumulation and fibrotic tissue.

No obvious sign of phenotype amelioration was observed in mdx muscles overexpressing the

ARC protein.
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Figure 11. Morphological analysis of muscle tissue from transgenic mice.  A) Hematoxylin and eosin (H&E)

staining of quadriceps and diaphragm muscle sections of six week old transgenic ARC/mdx, transgenic

ARC/wild-type, mdx and wild-type mice.  Transgenic ARC/mdx and mdx sections display a characteristic mdx

pathology including centrally located nuclei, variation in fiber size, infiltrating immune cells and fibrosis.

Transgenic ARC/wild-type sections were not different from wild-type sections.  B) Morphology of quadriceps

and diaphragm muscle of age-matched two year-old transgenic ARC/mdx and mdx mice demonstrates a

dystrophic pathology despite ARC overexpression (bottom).  C)  Immunofluorescent staining of age-matched 18

months old transgenic ARC/mdx and mdx soleus sections display a mosaic overexpression of ARC in the

transgenic animals.  H&E staining of transgenic ARC/mdx muscle sections show no morphological difference

with mdx muscle sections.  Expression of the transgene in heart was observed only in a few isolated myocytes

(arrow).  Scale bar: 50 mm.
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4.2.3. Caspase-3 activity and membrane permeability in transgenic ARC/mdx mice

ARC has been suggested to act as an inhibitor of apoptotic cell death by preventing activation

of caspase-8 and caspase-2 (Koseki et al., 1998).  To compare the level of apoptosis in wild-

type, mdx and transgenic ARC/mdx muscle we analyzed active caspase-3 expression by

immunofluorescence (figure 12).  Caspase-3 represents the key effector caspase and is

therefore a good indicator for cells undergoing apoptosis.  Previously, TUNEL positive fibers

were detected in mdx mice by several groups, suggesting the presence of a low level of

apoptosis (Matsuda et al., 1995; Sandri et al., 1997; Tidball et al., 1995).  mdx and

transgenic/mdx muscle showed a number of caspase-3 positive fibers, the vast majority of

which appeared necrotic by hematoxylin and eosin staining.  No obvious differences could be

detected between mdx and transgenic/mdx skeletal muscles. No active caspase-3 staining was

observed in wild-type muscles.

Evans blue dye is commonly used as a marker to distinguish degenerating and intact

muscle fibers (Straub et al., 1997).  Consequently, we analyzed Evans blue uptake in mdx and

transgenic ARC/mdx mice.  mdx as well as transgenic ARC/mdx mice displayed a large and

variable number of Evans blue positive myofibers, the majority of which appeared to be

necrotic. We did not observe an obvious difference in Evans blue uptake between mdx and

transgenic ARC/mdx muscle (figure 12).  We compared Evans blue localization with active

caspase-3 localization to address the possibility that caspase-3 activation might be a

consequence of membrane damage.  Interestingly, all active caspase-3 positive fibers were

also positive for Evans blue, but not all Evans blue positive fibers stained positively for

activated caspase-3 (figure 12).  Muscle fibers that showed co-localization of Evans blue and

caspase-3, however, showed different distribution patterns and intensity levels of Evans blue

and caspase-3 immunoreactivity.  Fibers with intense Evans blue stain demonstrated weak

caspase-3 staining and vice versa.  This difference may correspond to the stage of apoptosis

and/or necrosis in each muscle fiber.
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Figure 12.  Evans blue dye uptake and caspase-3 expression in mdx and ARC transgenic/mdx mice.  H&E

staining of quadriceps muscle sections of eight week old exercised mice demonstrate necrotic lesions in mdx and

ARC transgenic/mdx characteristic of the mdx phenotype.  Necrotic fibers take up Evans blue dye and express

active caspase-3.  The merged images show that the intensity levels and distribution of Evans blue dye in muscle

fibers varies relative to the active caspase-3 staining, which may be due to the stage of fiber breakdown.  Scale

bar: 50 mm.
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4.2.4. Localization of caspase-3 and ARC in transgenic ARC/mdx mice

We co-stained serial sections from quadriceps muscle of transgenic ARC/mdx mice for active

caspase-3 and ARC to compare their expression and localization pattern in muscle fibers

(figure 13).  Interestingly, caspase-3 positive fibers displayed faint or no ARC staining,

suggesting that ARC is downregulated or degraded in these fibers.  Downregulation could be

a consequence of altered signaling and apoptosis in mdx muscle, while degradation could be a

consequence of muscle fiber necrosis.

  

Figure 13.  Localization of ARC and active caspase-3 in transgenic ARC/mdx muscle sections.  H&E

staining of quadriceps muscle sections from six week-old transgenic ARC/mdx mice demonstrates typical

morphological characteristics of dystrophy.  Serial sections were stained with ARC and caspase-3 antibodies,

showing that muscle fibers expressing active caspase-3 display diminished ARC expression.  Asterix indicates

orientation.  Scale bar: 200 µm.
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4.3. Cloning and characterization of Igf-I in skeletal muscle

4.3.1. Isolation of two Igf-I muscle specific isoforms

In order to clone the cDNA for the muscle specific Igf-I isoform, we performed direct PCR

amplification from a mouse muscle cDNA library (Lumeng et al., 1999).  Primers were

designed based on the Igf-I exon 3 sequence of NCBI locus MUSIGF-I (accession number

M28139) and vector specific primers.  Direct sequencing of PCR products showed that we

cloned two alternative splice products of Igf-I, Ea and Eb (figure 14).  Igf-I Eb contains exons

1,3,4,5,6 while the other isoform (Igf-I Ea) contains only exons 1,3,4,6 (Bell et al., 1986;

Jansen et al., 1983; Rotwein, 1986; Rotwein et al., 1986; Yang et al., 1996).  Igf-I Eb differs

from Igf-I Ea due to the presence of an additional 52 base pairs in exon 5.  Exons 1 and 2 of

the Igf-I gene encode different leader peptides, Exons 3 and 4 encode the mature Igf-I peptide

as well as the first 16 amino acids of the E domain and exons 5 and 6 encode the alternative

extension peptides, Ea and Eb (Adamo et al., 1991; Jansen et al., 1983; Rotwein et al., 1986).

Figure 14.  Alternative splicing of the mouse Igf-I gene in skeletal muscle.  Schematic illustration of the

mouse Igf-I gene and its two splice variants (Igf-I Ea and Igf-I Eb) that are expressed in skeletal muscle.  Igf-I

Eb contains exons 1,3,4,5,6 while Igf-I Ea contains exons 1,3,4,6. Exon 5 has an insert of 52 base pairs, leading

to different carboxy termini of the peptides.  Exons 1 and 2 define leader peptides, Exon 3 and 4 encode the

mature Igf-I peptide as well as the first 16 amino acids of the E domain, and exons 5 and 6 define the alternative

extension peptides, Ea and Eb (Janson et al., 1991, Adamo et al., 1991).  The mature Igf-I peptide contains the

A, B, C and D domains.

exon 1 2 3 4 5 6

mature Igf-I

B C A D Eb Ea
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The muscle specific isoforms differ from the liver isoforms by using sequences encoded by

exon 1 as a leader peptide in contrast to exon 2 (Adamo et al., 1991; Lowe et al., 1987).  The

mature Igf-I peptide, encoded by exons 3 and 4, contains the A, B, C and D domains,

consisting of 70 amino acids with a molecular mass of 7.65 kDa. The A and B domains are

homologous to the A and B chains of insulin (Rinderknecht and Humbel, 1978).  The protein

sequence displays 50% sequence homology to proinsulin and 70% sequence homology to Igf-

II (Daughaday and Rotwein, 1989; Rinderknecht and Humbel, 1978).

4.3.2. Igf-I mRNA expression levels in normal and dystrophic mdx skeletal muscle

The liver is the primary site of Igf-I production. Liver Igf-I expression is growth hormone

dependent, however Igf-I levels are also influenced by age, sex, nutritional status and other

hormones (Landin-Wilhelmsen et al., 1994; Stewart and Rotwein, 1996). In addition, Igf-I is

produced locally in various tissues, where it can exert autocrine and paracrine effects

(D'Ercole et al., 1984; Daughaday and Rotwein, 1989; LeRoith and Roberts, 1991; Sjogren et

al., 1999).

To characterize Igf-I expression in normal and dystrophin-deficient muscle, we

developed a real-time PCR assay to measure mRNA levels of the Ea and Eb isoforms. Primer

pairs were designed to uniquely detect Igf-I Eb or both Igf-I Ea and Igf-I Eb.  We analyzed

RNA levels in tibialis anterior (TA) muscles of nine month-old mdx and wild-type

(C57BL/10J) mice and detected no significant difference in the Igf-I expression levels

between mdx and wild-type muscles (figure 15).  Wild-type animals showed a trend towards

higher Igf-I mRNA expression levels than mdx animals, however total Igf-I levels varied

significantly between tested animals.  The Igf-I Ea isoform was the most abundant isoform

and showed an average of six to seven fold higher expression than the Igf-I Eb isoform in our

tested age group.  This data is in accordance with previous publications, although these

studies did not detect any Igf-I Eb levels in mdx muscles (McKoy et al., 1999).
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Figure 15.  Quantitation of Igf-I mRNA levels in C57BL/10J and mdx mice.  mRNA expression of Igf-I

isoforms in nine month old animals is shown relative to GAPDH mRNA expression. Two different primer pairs

were used to uniquely detect Igf-I Eb or both isoforms, Igf-I Ea and Igf-I Eb.  Values are presented as the mean

± s.d., n=4 muscles per group.

4.3.3. Overexpression of Igf-I isoforms in vitro

To determine if the Igf-I cDNAs encode functional proteins, we generated replication

defective adenoviral vectors deleted for E1, E3 and the adenovirus (Ad) DNA polymerase

gene (Amalfitano et al., 1996) that expressed the Ea or Eb Igf-I cDNA (Ad-Igf-I) under the

control of the CMV promoter (figure 16A).  We used these Ad-Igf-I vectors to efficiently

infect a myogenic cell line to test the effects of Igf-I in vitro.  Since the muscle-derived L6

cell line does not express Igf-I or significant levels of Igf-II, but it is responsive to exogenous

Igf-I, this cell line is commonly used to study Igf-I overexpression in vitro (Engert et al.,

1996; Rosen et al., 1993).  Low or no serum levels in conjunction with added Igf-I advances

the cells from a proliferation stage into differentiation, where myoblasts differentiate and fuse

into myotubes (Ewton and Florini, 1981; Florini and Ewton, 1990; Florini and Magri, 1989).

L6 myoblasts were grown to 80% confluency in proliferation medium containing 10%

fetal bovine serum (FBS), then switched to serum-free differentiation medium supplemented

with 500 µg/ml bovine serum albumin (BSA) one day prior to Igf-I treatment.  To allow time

for viral infection, Igf-I expression and secretion, we infected L6 myoblasts with the

adenoviral vectors carrying Igf-I Ea or Eb at an multiplicity of infection (MOI) of 1000 eight

hours prior to adding recombinant Igf-I (25 ng/ml) to the control plates.
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One day post infection, total RNA was extracted from Ad-Igf-I treated and control cultures

for Igf-I mRNA expression analysis by using two different primer sets (figure 16B and 3C).

The primer sets were designed to specifically detect virally delivered Igf-I and to distinguish

by size between both Igf-I isoforms (figure 16B) and between mRNA and potential vector

DNA contamination (figure 16C). Our results demonstrate that both virally delivered Igf-I

cDNAs were transcribed into mRNA.

Figure 16.  Overexpression of Igf-I in L6 cultures.  A) Schematic illustration of the Ad-Igf-I constructs.  The

expression cassette includes the CMV promoter driving Igf-I expression and the bovine growth hormone

polyadenylation signal (bGHpA) and Ad inverted terminal repeats (ITR).  B) and C) RNA analysis of Ad-Igf-I

treated and control cultures.  Total RNA was isolated from infected and non-infected L6 cells and transcribed

into cDNA.  Igf-I mRNA expression was then analyzed by PCR using two different primer sets in order to

distinguish between: B) isoforms C) amplification from RNA or DNA. 1) DNA standard 2) no virus control 3)

Ad-LacZ control 4) Ad-Igf-1 (Exon 1,3,4,6) purified virus 5) Ad-Igf-1 (Exon 1,3,4,6) cell lysate 6) Ad-Igf-1

(Exon 1,3,4,5,6) purified virus 7) Igf-1 (Exon 1,3,4,5,6) cell lysate 8) total RNA from skeletal muscle 9) neg.

control 10) pAd-Igf-I plasmid DNA.

Six days post infection, clear differences in cell morphology were observed in the Igf-I treated

cultures.  The cells were stained for myosin-heavy chain (MHC) expression, which is a

marker for myocyte differentiation (Schiaffino and Reggiani, 1994).  We observed the highest

number of MHC expressing cells in the recombinant Igf-I treated plate; however, Ad-Igf-I

    1     2     3      4     5     6      7      8     9     10B.

C.

CMV bGHpAITR ITRIgf-I

Exon 1,3,4,5,6

Exon 1,3,4,6
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treated plates also demonstrated a high number of differentiated cells in comparison to the

untreated control plates (figure 17).  This result clearly shows that the Igf-I cDNAs encode

functional proteins and can be used in in vivo studies.

Figure 17.  Ad-Igf-I enhances myogenic differentiation of L6 cells.  Parallel cultures of L6 myoblasts were

treated with A ) 25 ng/ml recombinant Igf-I B) untreated control C ) Ad-Igf-I (1,3,4,6) and D ) Ad-Igf-I

(1,3,4,5,6).  Cells were differentiated in serum-free medium, supplemented with 500 µg/ml BSA.  After six days,

cells were fixed and stained with an antibody against MHC (BF-45).

Taken together, we have isolated two Igf-I cDNAs and characterized endogenous Igf-I mRNA

expression in normal and dystrophic mdx muscles.  We have further shown that both Igf-I

cDNAs were functional in in vitro studies.  Next, we studied the therapeutic potential of Igf-I

for ameliorating a dystrophic pathology.  For these studies, we chose to test the more

abundant and more extensively studied Igf-I isoform, Ea.

A B

C D
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4.4. Delivery of Igf-I and dystrophin to dystrophic mdx muscles

Gene replacement therapy using truncated versions of dystrophin (µdys) have been shown to

protect dystrophic muscles from contraction-induced injury and partially reverse muscle

pathology (Harper et al., 2002b; Wang et al., 2000).  In addition, Igf-I overexpression in

muscle has been shown to lead to an increase in muscle mass and strength and to counter

muscle decline in old and dystrophic mdx mice (Barton et al., 2002; Barton-Davis et al., 1998;

Musaro et al., 2001).  Thus, we co-delivered dystrophin and Igf-I to mdx muscles to determine

if the beneficial effect of Igf-I is synergistic with the protective effects of dystrophin in

ameliorating the dystrophic phenotype.

For these studies we generated recombinant adeno-associated viral vectors

pseudotyped with the serotype 6 capsid protein (AAV6), since these vectors transduce muscle

tissue very well and can be persistent for several years (Scott et al., 2002).  To assure muscle

specific expression, these vectors carried expression cassettes in which the muscle-specific

creatine kinase promoter/enhancer (CK) drove either the micro-dystrophin (∆R4-R24/∆CT,

AAV-µdys) or the Igf-I cDNA (AAV-Igf-I) (figure 18).  We injected the TA muscle of nine

month old mdx male mice with each vector separately, together or with buffer (sham) as a

control.  Each muscle was treated with a total volume of 30 µl, containing either ~1.8 x 1010

total genomes of AAV-µdys, ~2.0 x 1010 total genomes of AAV-Igf-I, both or none.  Four

months post injection the muscles were analyzed for dystrophin expression, Igf-I mRNA

transcript levels, functional properties and morphological changes.

Figure 18.  Schematic illustration of AAV-µdys and AAV-Igf-I  constructs.  The expression of both genes is

driven by the CK6 promoter.  In addition, AAV-µdys contains the SV40 polyadenylation signal (SV40pA),

while AAV-Igf-I  includes the β-globin intron and the human growth hormone polyadenylation signal (hGHpA).

Both constructs contain AAV-2 ITRs.

CK6 SV40pAITR ITRMicro-dystrophin

CK6 bGHpAITR ITRIgf-Iβ-globin I
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4.4.1. Dystrophin expression in AAV-dystrophin injected tibialis anterior (TA) muscles

TA muscle cross-sections were immunostained for dystrophin to analyze expression levels

and expression distribution throughout the muscle (figure 20).  We used the ImagePro

software to determine the percentage of dystrophin expressing fibers per total cross sectional

area (figure 19).  AAV-µdys treated and AAV-µdys & AAV-Igf-I co-treated TA muscles

displayed a wide distribution of dystrophin positive fibers throughout the muscle that

represented approximately 40% of the total cross sectional area.  In contrast, AAV-Igf-I and

untreated control muscles showed few revertant, dystrophin positive fibers, that represented

less than 5% of the total cross sectional area.  AAV-µdys expressing fibers showed no

evidence of necrosis, while fibers that did not express dystrophin displayed features of

dystrophic pathology, such as loss of membrane integrity and immune infiltration (figure 20

C-F).

Figure 19.  Quantitation of dystrophin positive area.  The percentage of dystrophin positive area per total

cross sectional area was determined by using the ImagePro software. AAV-µdys treated muscles and AAV-µdys

and AAV-Igf-I co-treated muscles demonstrated that ~40% of the total cross sectional area was dystrophin

positive. In contrast, mdx and AAV-Igf-I  injected muscles showed dystrophin expression in only 5% of the total

area.  Values are presented as the mean ± SEM, n=3 muscles per group.
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Figure 20.  Expression of dystrophin in mdx muscle following injection with AAV6 micro-dystrophin.

Shown is a montage image of the entire cross sectional area of TA muscles from 13 months old mice injected

with saline (A) or AAV-µdys (2 x 1010 vg) (B).  The results demonstrated widespread expression of dystrophin

in (B) four months post-injection.  (C-F) show close-ups of two regions from each of the muscles shown in A

and B.  (E) shows a cluster of revertant fibers in mdx control muscles.  Asterix indicate non-dystrophin

expressing, necrotic fibers.  Arrow indicates immune infiltration in mdx control muscles.  Scale bars 1 mm (A,

B) and 100 µm (C-F).
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4.4.2. Igf-I mRNA expression in AAV-Igf-I injected TA muscles

To examine Igf-I expression, we extracted total RNA from TA muscles of AAV-Igf-I treated

and untreated mdx, and wild-type, animals.  Two different primer pairs were designed to

detect: 1) only virally delivered Igf-I to exclude potential DNA contamination; 2) total Igf-I

levels in order to analyze Igf-I overexpression in treated, relative to untreated, muscles.  We

detected virally delivered Igf-I mRNA expression in all AAV-Igf-I injected, and AAV-µdys

& AAV-Igf-I co-injected, animals (Figure 21A).  Relative quantitation of Igf-I mRNA

expression levels demonstrated a clear overexpression of Igf-I in treated, relative to untreated,

animals (Figure 21B).  Muscles co-injected with AAV-µdys & AAV-Igf-I revealed an ~200-

400 fold overexpression of Igf-I mRNA relative to untreated muscles, while muscles that

were only treated with AAV-Igf-I showed an overexpression of no more than 50-100 fold.

The loss of Igf-I expression over time in AAV-Igf-I treated versus AAV-Igf-I & AAV-µdys

co-treated animals suggests that dystrophin expression protects muscle fibers from

degeneration and as a result from loss of viral vector DNA.

Figure 21.  Igf-I mRNA expression in wild-type, mdx and AAV-Igf-I treated animals.  A) Total RNA was

extracted from TA muscles injected with AAV-Igf-I & AAV-µdys (3,4,7,9), AAV-Igf-I (6,11,12,13) and saline

(2,5,8,10) and analyzed for Igf-I mRNA expression.  DNA standard (1), pAAV-Igf-I plasmid DNA (14). The

primer pairs were located on opposite sides of an intron in the vector, so that only virally delivered Igf-I mRNA

would be expected to be amplified, and which would exclude amplification from contaminating vector DNA.  B)

Quantification of Igf-I mRNA relative to GAPDH mRNA expression. The primer pair was designed to detect

virally delivered and endogenous Igf-I.  Values are presented as the mean ± SEM, n=4 per group.
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We also examined vector DNA persistence in AAV-Igf-I treated, and in AAV-µdys & AAV-

Igf-I co-treated, animals (figure 22A).  For this purpose, we designed a primer pair that

amplified over part of the intron sequence, to specifically detect Igf-I vector genomes and

exclude potential amplification from RNA.  Quantitation by real-time PCR detected ~2.5 x

105 genomes/µg total DNA in AAV-µdys & AAV-Igf-I co-injected muscles, and 4-5 fold

less, ~5 x 104 genomes/µg total DNA, in the AAV-Igf-I only injected muscles (figure 22B).

This difference between AAV-Igf-I treated, and AAV-µdys & AAV-Igf-I co-treated, muscles

correlated well with the observed differences in mRNA expression levels.

Figure 22.  Igf-I vector genome persistence in AAV-Igf-I and AAV-Igf-I  & AAV µdys injected muscles

four months post-injection.  A) Total DNA was extracted from TA muscles injected with AAV-Igf-I & AAV-

µdys (3,6,8,10), or with AAV-Igf-I  (4,12,13,14), or with saline (2,5,7,9,11) and analyzed for AAV-Igf-I vector

genome persistence. One primer was designed to anneal to the intron sequence, to exclusively detect Igf-I vector

genomes.  Standard (1), pAAV-Igf-I plasmid DNA (15).  B) Quantitation of vector genome persistence.  Values

are presented in copy number per µg total DNA as the mean ± SEM, n=4 muscles per group.

 4.4.3. Functional analysis of treated versus untreated TA muscles

Functional properties of TA muscles from AAV-µdys, AAV-Igf-I, AAV-µdys & AAV-Igf-I
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muscle mass, compared to age-matched, 13 month old wild-type mice (figure 23A).  Muscle

mass values were normalized to body mass.  In contrast, values that were not normalized to

body mass did not show a significant difference in muscle mass between wild-type and mdx

muscles.  Functional analysis of contractile properties showed that mdx muscles generated on

average 20% lower maximum isometric force values than wild-type muscles (figure 23B).

Previous studies demonstrated that mdx TA muscles produced ~18% higher force values than

wild-type muscles, however mdx muscles had a ~41% greater mass than wild-type muscles

(DelloRusso et al., 2001).  Differences in muscle masses between the animals in our study and

the previous study could be due to differences in nutrition and housing conditions.

Muscle groups treated with AAV-Igf-I, and co-treated with AAV-Igf-I & AAV-µdys,

showed a significant increase in muscle mass relative to untreated mdx animals (figure 23A).

Values were normalized to whole body weight and showed a mean increase of 17% for AAV-

Igf-I treated, and 19% for AAV-Igf-I & AAV-µdys, co-treated animals.  In correlation with

the increase in muscle mass, AAV-Igf-I & AAV-µdys co-treated animals also demonstrated a

significant 20% increase in maximum isometric force generation (figure 23B).  AAV-Igf-I, on

the other hand, resulted in a mean increase in maximum isometric force generation of only

9% that was not significantly different from AAV-µdys and sham injected muscles.

Muscles from treated and control groups were also subjected to two lengthening

contractions in situ (LC1 and LC2).  Each muscle was analyzed by measuring force

production after the injury-inducing lengthening contractions (figure 23C and D).  All AAV-

µdys treated animals demonstrated a significant protection from contraction-induced injury.

After the first lengthening contraction, AAV-µdys injected, and AAV-µdys & AAV-Igf-I co-

injected, muscles displayed force generating capacity that were ~47% and ~49% of the values

before the contractions, compared to ~24% in mdx and ~86% in wild-type animals.  AAV-Igf-

I treated animals retained a ~35% force generating capacities after the first lengthening

contraction, however these values were not significantly different from mdx animals.  After

the second lengthening contraction, AAV-Igf-I treated muscles were as susceptible to muscle

damage as mdx control muscles and showed a force generating retention of only 3%.  In

contrast, AAV µdys treated, and AAV-µdys & AAV-Igf-I co-treated, animals demonstrated a

statistically significant 10% and 13% retention of force generation, compared to 2% in mdx

and 64% in wild-type animals.
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In summary, AAV-Igf-I treatment increased muscle mass, while AAV-µdys treatment

protected muscles from contraction-induced injury after one and two lengthening-contraction.

In contrast, AAV-µdys & AAV-Igf-I co-treatment resulted in an increased muscle mass and

strength, and protected from muscle damage.  These data suggest, that the beneficial effect of

AAV-Igf-I is synergistic with the protective effect of AAV-µdys in ameliorating the mdx

phenotype.

Figure 23.  Effect of AAV-Igf-I and AAV-µdys treated mdx muscles on functional properties.  TA muscles

injected with AAV-µdys, AAV-Igf-I, AAV-µdys and AAV-Igf-I or saline were analyzed four months post

injection.  TA muscles from age-matched C57BL/10J mice served as controls.  A) Muscle mass.  Values are

presented relative to body mass.  B-D) TA muscles were analyzed in situ by measuring B) maximum force

production and force after one C) or two D) lengthening contractions. The protection from contraction-induced

injury is measured as the percentage of force generating capacities after each lengthening contraction. Significant

differences (P< 0.05) by ANOVA analysis of AAV-Igf-I, AAV-µdys and AAV-Igf-I  & AAV-µdys treated

muscles from mdx muscles are as indicated (asterix).  Values are presented as the mean ±SEM, n=9-12 muscles

per group.
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 4.4.4 Histological analysis of treated versus untreated TA muscles

To examine the effect of Igf-I overexpression on muscle morphology, muscle sections were

stained with hematoxylin and eosin and analyzed for total cross sectional area, centrally

located nuclei and fiber number per area by using the ImagePro software.  AAV-Igf-I treated,

and AAV-µdys & AAV-Igf-I co-treated, animals demonstrated a ~13% increase in total cross

sectional area, compared to untreated mdx animals.  These results are in agreement with our

reported increase in muscle mass (see section 4.4.3) (figure 24).

Figure 24.  Effect of Igf-I expression on TA muscles.  Montage of entire TA cross sectional area of AAV-Igf-I

treated and sham treated animals.  One TA muscle of each animal was injected with AAV-Igf-I and the

contralateral muscle from the same animal served as a buffer-injected control.  C and D show close-ups of two

regions from each of the muscles shown in A and B.  Scale bars 1 mm (A, B) and 100 µm (C, D).
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Morphological analysis showed that wild-type animals were clearly distinguished from mdx

animals by having less than 5% centrally nucleated myofibers, compared to ~50% in mdx

(figure 25A).  The number of myofibers per unit area was ~0.45 fibers/µm2 in wild-type

muscles, a value that was almost doubled in mdx animals (figure 25B).  In addition, all treated

groups revealed significant morphological changes from the mdx animals.  Muscle fiber

number per unit area measurements demonstrated a significant 15-20% reduction of fibers per

area in all treated groups in comparison to mdx animals, probably reflecting a reduction in

myofiber degeneration and thus the presence of fewer small caliber regenerating fibers (figure

25B).  Central nucleation was reduced by 5% in AAV-Igf-I, by 16% in AAV-µdys and

significantly by 25% in AAV-Igf-I and AAV-µdys co-treated animals relative to mdx, also

giving evidence for the presence of fewer cycles of degeneration and regeneration in treated

TA muscles (figure 25A).  High variances between treated groups suggests a need to evaluate

more animals per group in further studies.

In summary, treated TA muscles demonstrated a trend towards less fibers per unit area

and less central nucleation compared to mdx muscles.  These are both indications that AAV-

Igf-I, AAV-µdys and AAV-Igf-I & AAV-µdys co-treatment had a protective effect and

reduced muscle degeneration.

Figure 25.  Morphological analysis of wild-type, mdx, AAV-Igf-I, AAV-µdys and AAV-Igf-I & AAV-µdys

treated TA muscles.  A) Percentage of central nuclei (n=1000 fibers per animal). B) Number of muscle fibers

per area [mm2] (n=4 fields per animal).  ANOVA statistical analysis was performed on all data sets. Statistically

significant difference (P< 0.01) of treated muscles from mdx muscles are as indicated (asterix). Values are

expressed as mean ±SEM.  3-4 animals were analyzed per group.
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5. DISCUSSION

5.1 Characterization of ARC in normal and dystrophic mdx muscle

5.1.1. ARC expression and localization in normal and dystrophic mdx muscle

Several groups have characterized the expression of proteins involved in apoptosis in normal

and diseased skeletal muscle tissue (Sandri and Carraro, 1999; Tews and Goebel, 1997b; Veal

and Jackson, 1996).  Most apoptotic proteins are expressed at a low or non-detectable level in

normal mice and demonstrate elevated expression only in degenerating and regenerating

muscle fibers of mdx mice (Dominov et al., 2001; Tews and Goebel, 1997b).  We cloned the

mouse isoform of the anti-apoptotic protein ARC and characterized its expression pattern in

mice.  ARC is the only anti-apoptotic protein known to be expressed at high levels in skeletal

muscle (Koseki et al., 1998).  Interestingly, ARC is expressed mainly in oxidative fibers and

colocalizes with the mitochondrial-specific marker cytochrome oxidase.  Localization of ARC

to mitochondria is regulated by phosphorylation of threonine 149 and only the

phosphorylated, active form localizes to mitochondria (Li et al., 2002).  Slow oxidative fibers

express type I MHC and display an oxidative metabolism with a great number of

mitochondria.  Fast fiber types IIa and IIx are capable of both oxidative and glycolytic

metabolism and fast fiber type IIb are exclusively glycolytic (Schiaffino and Reggiani, 1994).

Mitochondria play a key role in responding to intracellular apoptotic signals by the release of

cytochrome c followed by the activation of caspase-3 (Li et al., 1997).  ARC inhibits

cytochrome c release from mitochondria and protects mitochondrial function from reactive

oxygen species in H9C2 cells (Ekhterae et al., 1999; Neuss et al., 2001), suggesting its anti-

apoptotic role in responding to intracellular signals.  In addition, ARC was shown to interact

with caspase-2 and caspase-8 and to inhibit apoptosis induced by caspase-8 (Koseki et al.,

1998).  The inactive forms of caspase-2 and caspase-8 are located in mitochondria and are

released into the cytoplasm upon stimulation (Qin et al., 2001; Susin et al., 1999).  Thus, ARC

may play an important role in preserving mitochondrial function and inhibiting apoptosis in

skeletal muscle.
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Interestingly, human ARC was shown to have an alternative splice product, named

Nop30, that interacts with the splicing factor Srp30c (Stoss et al., 1999).  We were not able to

find any evidence that Nop30 is expressed in mouse muscle.  Our data is supported by the

expression profile of Srp30c, which, in contrast to human muscle, is expressed at very low

levels in mouse skeletal muscle (Screaton et al., 1995).  This lack of alternative splicing of the

ARC gene in mouse skeletal muscle demonstrates one example of evolutionary divergence

between humans and mice.

We characterized endogenous ARC expression in normal and mdx mice to explore the

effect of a dystrophic background on ARC expression.  ARC expression levels are similar in

normal and mdx muscle.  However, ARC localization is altered in the mdx background.

Altered mitochondrial protein expression and localization could be responsible for differences

in intracellular ARC localization in the C57BL/10J and mdx background.  It was previously

shown that respiratory chain-linked enzymes were downregulated in mdx muscle and

oxidative phosphorylation was altered compared to normal muscle (Braun et al., 2001; Chen

et al., 2000; Kemp et al., 1992; Kuznetsov et al., 1998).

5.1.2. Overexpression of ARC in dystrophic mdx muscle

To test if elevated levels of the anti-apoptotic and hypoxia-protecting protein ARC might

alleviate any dystrophic phenotypic features, we generated transgenic mice that overexpressed

ARC.  Endogenous ARC was expressed at high levels in skeletal muscle, but mainly in

oxidative fibers.  We explore whether overexpression of ARC in all fiber types might protect

dystrophic myofibers from apoptotic and/or necrotic cell death.  Transgenic ARC was

expressed uniformly in all fiber types and colocalized with mitochondria in oxidative fibers.

To examine muscle fiber breakdown, we analyzed Evans blue uptake and active caspase-3

expression in transgenic ARC/mdx and mdx muscle.  We found Evans blue uptake and active

caspase-3 positive fibers in transgenic ARC/mdx and mdx muscle fibers, the majority of

which appeared to be at various stages of necrosis. We did not observe any clear protection of

myofibers in the ARC transgenic mice from the dystrophic pathology.  One explanation could
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be that endogenous ARC is already functionally saturated in skeletal muscle, thus

overexpression does not show an additional beneficiary effect.

However, the role of ARC in the apoptotic signaling cascade in skeletal muscle is not

well understood.  We detected reduced ARC expression in active caspase-3 positive fibers,

which could be the cause, or the consequence, of fiber breakdown.  Most cells contain a very

complex, tightly regulated network of pro- and anti- apoptotic triggers, the balance of which

can lead to continued cell life, or death.  Altered expression of one apoptosis inhibitor or

effector may be compensated by the upregulation of an antagonist to maintain a balance.  The

overexpression of ARC could have been counterbalanced by the up-regulation of a pro-

apoptotic factor and therefore might have prevented the transgene from protecting muscle

fiber breakdown.  Alternatively, the overexpression of ARC could have effectively inhibited

one apoptotic pathway, while muscle fiber breakdown in muscular dystrophy might occur

through another, ARC-independent pathway.  The elimination of one apoptotic stimuli could

be superceded by other signals in favor of apoptosis or necrosis.

In summary, it remains unclear whether ARC over-expression failed to inhibit

apoptosis in mdx muscles, or whether the apoptotic pathways regulated by ARC do not

contribute to the dystrophic phenotype in mdx mice.  The multiple functions of dystrophin and

the DGC make it difficult to determine the extent that signaling failures contribute to muscle

fiber death in mdx muscles.  However, it was shown that altered signaling leads to impaired

modulation of α-adrenergic vasoconstriction and functional ischemia in dystrophic muscle

(Thomas et al., 1998).  While over-expression of ARC in the heart has been shown to protect

from myocardial ischemia, over-expression of ARC in mdx skeletal muscles clearly did not

alter the dystrophic phenotype (Chatterjee et al., 2003; Gustafsson et al., 2002).  This

observation could be explained by the fact that the dystrophic pathology results from

alterations in multiple molecular pathways that together contribute to muscle fiber death.

While the restoration of one signaling pathway may not be sufficient to ameliorate dystrophic

pathology, a combination of treatments targeting mechanical, immunological and signaling

pathways might be more effective (Chen et al., 2000; DelloRusso et al., 2001; Disatnik et al.,

2000; Grady et al., 1999; Lynch et al., 2001b; Spencer et al., 2001; Thomas et al., 1998).
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5.1.3. Apoptotic and necrotic cell death in muscular dystrophy

Much progress has been made over the last decade in understanding the genetic and

biochemical features of dystrophin and the DGC.  However, little is known about the

pathogenic mechanisms leading to the onset of muscular dystrophy and to progression of the

disease.  Several members of the DGC are associated with signaling molecules that provide a

link to crucial signal transduction pathways (Durbeej et al., 2000; Grady et al., 1999; Hack et

al., 1999; Hack et al., 1998; Yang et al., 1995a).  Disruption of these signaling cascades could

alter metabolic pathways leading to increased susceptibility to oxidative stress, elevated

calcium levels, altered mitochondrial function and eventually to apoptotic or necrotic cell

death (Chen et al., 2000; Disatnik et al., 1998, Tidball, 1995 #2012; Franco and Lansman,

1990; Kuznetsov et al., 1998; Matsuda et al., 1995; Podhorska-Okolow et al., 1998; Rando et

al., 1998).  Dystrophin-deficient mdx muscles demonstrate oxidative injury prior to muscle

pathology, and muscle cells display an increased susceptibility to oxidative stress compared to

normal muscles (Disatnik et al., 1998; Rando et al., 1998).  Reduced NO-mediated cell

protection and increased oxidative damage might therefore contribute significantly to the

pathology of muscular dystrophy.  However, it remains unclear to what extent abnormal

DGC-mediated signaling and/or loss of mechanical stability are responsible for the onset and

the progression of the disease.

Although it has been shown in previous studies that apoptosis plays a role in

dystrophic pathology, it remains unclear if apoptosis causes or is a secondary effect of muscle

fiber breakdown (Matsuda et al., 1995; Spencer et al., 1997).  Recent studies suggest that cell

death in mdx muscle may be initiated by apoptosis and followed by necrotic processes

(Tidball et al., 1995).  Tissue sections of dystrophic muscle demonstrate apoptotic myonuclei

in degenerating muscle fibers (Matsuda et al., 1995; Sandri et al., 1998; Sandri et al., 1997;

Tews and Goebel, 1997b).  We detected active caspase-3 in dystrophic muscle, but the

majority of the fibers appeared to be necrotic and had lost their membrane integrity, which

would argue in favor of apoptosis being a secondary consequence resulting from loss of

muscle fiber integrity.  However, not all Evans blue positive fibers displayed clear staining for

active caspase-3, and the intensity level and staining pattern within individual myofibers was

variable, indicating that muscle fibers were at various stages of degeneration.  These
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observations reinforce the idea that muscle cell death is a dynamic process and may reflect the

increased susceptibility of myofibers to secondary triggers resulting from altered cell

signaling, leading to active cell death. Interestingly, while we were able to detect some

relatively normal appearing Evans blue dye positive myofibers that did not express caspase-3,

all caspase-3 positive fibers were at least weakly positive for Evans blue dye.  These

observations suggest a sequence of molecular events in dystrophic muscle in which an initial

membrane damaging event allows the uptake of large extracellular molecules such as Evans

blue dye, which is subsequently followed by upregulation of caspase-3 and loss of ARC

expression.  Although apoptosis and necrosis represent different mechanism of cell death,

both may be intertwined.  The ultimate fate of a cell may depend on the relative intensity of

the secondary triggers and the energy status of the cell (Bonfoco et al., 1995; Eguchi et al.,

1997; Higuchi et al., 1998).

5.1.4. Conclusions

The aforementioned studies were carried out to characterize the role of the anti-apoptotic

protein ARC and to determine whether ARC could modulate dystrophic pathology.  We were

able to detect ARC expression in normal and dystrophic mdx muscle, and showed that ARC

displays an abnormal intracellular localization pattern in dystrophic muscle.  We further

demonstrated that over-expression of ARC in mdx mice failed to alleviate the dystrophic

process in skeletal muscle.  However, the role of the apoptotic pathway regulated by ARC in

skeletal muscle remains unclear, as does the contribution of this pathway to dystrophic

pathology.  A detailed biochemical analysis will be needed to get further insights into ARC

signaling and whether ARC signaling is linked to or independent of DGC signaling.

It is further necessary to determine if ARC plays a role in long-term cell survival.

ARC is expressed at high levels in skeletal muscle, heart, testis and brain – tissues that consist

of cell types distinguished by a very low cell turnover rate.  The mechanism responsible for

the long half-life of these cells is unknown.  ARC could play an important function in

providing survival stimuli to these cells.  Overexpression of ARC in old animals could
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therefore be beneficial by maintaining cell number and function, a possibility that could be

evaluated in further long-term studies.
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5.2. Characterization of Igf-I in normal and dystrophic mdx muscle

The expression of Igf-I has been widely studied in various cell types and tissues (Lund, 1994;

Stewart and Rotwein, 1996).  Igf-I has been shown to play an important role in regulating

tissue growth and differentiation (Florini et al., 1991; Stewart and Rotwein, 1996).  The gene

encoding Igf-I has been isolated and demonstrated to display high conservation among a

variety of species (Rotwein et al., 1986; Shimatsu and Rotwein, 1987; Sussenbach, 1989).

Igf-I gene expression is regulated by differential promotor usage and alternative RNA

splicing, generating multiple tissue-specific isoforms with variable amino-terminal signal

peptides and carboxy-terminal E-peptides (Adamo et al., 1993; LeRoith and Roberts, 1991;

McKoy et al., 1999).  Previous studies have extensively characterized Igf-I expression in

skeletal muscle; however those studies were restricted to rat, human and rabbit Igf-I muscles.

5.2.1. Cloning of murine muscle-specific Igf-I isoforms

We cloned two muscle isoforms of Igf-I from a mouse muscle cDNA libary.  Both isoforms

were similar to the ones characterized previously in mouse liver.  However, the liver Igf-I

isoforms differed from the muscle Igf-I isoforms by the presence of a different leader peptide

(Adamo et al., 1991; Lowe et al., 1987; Stewart and Rotwein, 1996). This leader peptide is

not part of the mature Igf-I polypeptide, but might play an important role in the regulation of

Igf-I targeting (Adamo et al., 1993).  The levels of the liver Igf-I isoforms are growth

hormone dependent.  Liver Igf-I stimulates growth in various tissues, while extrahepatic Igf-I

is not growth hormone dependant and exerts mainly autocrine and paracrine functions

(D'Ercole et al., 1984; Daughaday and Rotwein, 1989; Lund, 1994; Sjogren et al., 1999).  In

addition to tissue specific Igf-I regulation, free Igf-I is regulated by a family of six Igf-I

binding proteins that control distribution, function and activity of Igf-I in various tissues (Sara

and Hall, 1990).

The two muscle specific Igf-I isoforms differ in their extension peptide, resulting from

alternative mRNA splicing (Bell et al., 1986; Rotwein, 1986; Yang et al., 1996).  The major
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muscle Igf-I isoform (Ea) has been extensively studied in vitro and in vivo and acts either

through the MAPK or PI3K/AKT pathways (Singleton and Feldman, 1999).  Both pathways

cannot be activated simultaneously; however, in vitro studies demonstrated that Igf-I-Ea

induces a biphasic response.  This response initially stimulates cell proliferation followed later

by an enhancement of myogenic differentiation (Engert et al., 1996).  In contrast, the nature

and function of the second muscle Igf-I isoform (Eb), also called mechanical growth factor, is

not well defined.  Igf-I-Eb is expressed at very low levels in normal skeletal muscle, but is up-

regulated in response to muscle stretch and overload (Yang et al., 1996).  This isoform is

therefore thought to play an important role in adapting skeletal muscles to physical challenges

(Adams, 2002; Goldspink et al., 2002).

5.2.2. Expression of muscle-specific Igf-I isoforms in normal and dystrophic mdx muscle

Although it was previously thought that the Eb isoform was not expressed in dystrophic

muscle (Yang et al., 1996), we were able to detect Igf-I-Eb transcripts at approximately equal

amounts in normal and dystrophic mdx muscles in nine month old mice.  At this age, we

detected six to seven times more Igf-I mRNA transcripts of the major Igf-I isoform (Ea) than

of Igf-I-Eb in normal as well as in mdx mice.  Overall, these results suggest that there was no

significant difference in Igf-I-Ea and Igf-I-Eb mRNA expression levels between normal and

dystrophic mdx muscles at our tested age group. However, since Igf-I levels are influenced by

nutritional status, exercise and other hormones, Igf-I mRNA levels varied significantly among

animals (Landin-Wilhelmsen et al., 1994; Stewart and Rotwein, 1996).  Therefore, more

animals need to be tested in order to determine more precise expression levels.

We performed in vitro analysis on both Igf-I isoforms to test their potential in

enhancing myogenic differentiation.  For this study, we generated adenoviral vectors

expressing Igf-I-Ea or Igf-I-Eb under the control of the CMV promoter and transduced L6

myoblasts.  Significantly, both Igf-I-Ea and Igf-I-Eb enhanced L6 myoblast differentiation,

suggesting that both isoforms were functional and acted through the Igf-I receptor.  However,

a previous study demonstrated different roles for Igf-I-Ea and Igf-I-Eb in mediating myoblast
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differentiation and proliferation (Yang and Goldspink, 2002).  That study suggested that Igf-I-

Eb mediates myoblast proliferation via a different signaling pathway.  Further studies are

needed to determine if both isoforms function by signaling through similar or different

pathways.  Since we wanted to evaluate Igf-I overexpression in dystrophic muscle, this study

was performed with the major and more extensively characterized isoform, Igf-I Ea.

5.3. Delivery of Igf-I and dystrophin to dystrophic mdx muscle

Several groups have characterized the beneficial effects of Igf-I on muscle morphology and

function.  In particular, in old and dystrophic mdx muscles, Igf-I has been shown to counter

muscle decline and to increase muscle strength.  In this study, we investigated the potential of

Igf-I in conjunction with gene replacement therapy to ameliorate the pathology of muscular

dystrophy. In order to study the effect of Igf-I and/or dystrophin expression on dystrophic mdx

muscles, we generated recombinant AAV vectors carrying Igf-I (AAV-Igf-I) or micro-

dystrophin (AAV-µdys) under the control of the mouse muscle creatine kinase (CK6) gene

regulatory element.  The Igf-I vector was delivered with and without the dystrophin vector to

mdx TA muscles of nine month old mice.

5.3.1. Overexpression of Igf-I in dystrophic mdx muscle

We observed Igf-I mRNA expression in AAV-Igf-I treated, and in AAV-Igf-I & AAV-µdys

co-treated, muscles four months post-injection.  Values ranged from 50-100 fold over-

expression in AAV-Igf-I treated muscles and up to 200-400 fold over-expression in AAV-Igf-

I & AAV-µdys co-treated muscles, relative to the endogenous mdx Igf-I mRNA levels.  Thus,

injection of AAV-Igf-I alone resulted in a 4-fold decline of Igf-I mRNA levels, relative to the

AAV-Igf-I & AAV-µdys co-treated muscles, in the four months following injection into

dystrophic mdx muscles.  This difference in Igf-I mRNA levels is most likely due to the fact
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that dystrophin expression protects fibers from degeneration and consequently from the loss

of vector genomes (Harper et al., 2002b).

TA muscles that were injected with AAV-Igf-I, or co-injected with AAV-Igf-I & AAV-

µdys, showed a significant increase in muscle mass of 17% and 19%, relative to saline

injected, and AAV-µdys injected, muscles.  Functional analysis of AAV-Igf-I & AAV-µdys

co-treated animals further revealed that the increase of 19% in muscle mass translated into an

increase of 20% in force generating capacity, compared to mdx animals.  Surprisingly, we did

not observe a significant increase in muscle strength in mdx muscles treated with AAV-Igf-I

alone.  The 17% increase in muscle mass of AAV-Igf-I treated muscles translated only into a

9% increase in force generating capacity, relative to mdx muscles.  Although AAV-Igf-I

treated muscles demonstrated a trend towards higher force generating capacity, the increase

was not statistically different from mdx animals.  These result suggest that the presence of

dystrophin might be beneficial in mediating the effects of Igf-I overexpression; however,

more extensive studies are necessary to evaluate the effect of Igf-I alone on muscle force

generating capacities.  Taken together, Igf-I mediated hypertrophy and increased strength

could lead to a major improvement in the functionality of dystrophic muscle, in particular

when co-delivered with dystrophin.  Since muscular dystrophy patients become wheel-chair

dependent between the age of 8-11, a 20% increase in force may extend the period during

which these patients are still able to walk.

AAV-Igf-I & AAV-µdys treated muscles demonstrated an increased protection from

contraction-induced injury, as was also seen with muscles treated with AAV-µdys alone.

After the first lengthening contraction, AAV-Igf-I & AAV-µdys co-treated muscles showed a

49% retention of force generating capacity, whereas mdx control muscles demonstrated a

retention of only 24%.  AAV-Igf-I only treatment, in contrast, resulted in a force retention of

35%, that was not statistically different from mdx control muscles.  Since Igf-I does not

restore dystrophin expression and the DGC in dystrophic muscles, it was expected that Igf-I

overexpression would not protect from contractile damage when exceeding a given threshold.

However, these values were higher than mdx values, which could be explained by the fact that

Igf-I over-expression mediates muscle hypertrophy.  Therefore, a lower percentage of muscle

fibers may be required to generate equivalent force, resulting in potentially reduced muscle

injury and fiber degeneration (Barton et al., 2002).  After the second lengthening contraction,
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AAV-Igf-I only treated muscles were highly susceptible to contraction-induced injury, with

levels similar to those observed in mdx muscles.  In contrast, muscles that were injected with

AAV-µdys, and co-injected with AAV-Igf-I & AAV-µdys, retained force values at an

increased level that was significantly different from mdx muscles.

Histological analysis demonstrated that all AAV-Igf-I injected muscles were protected

from muscle degeneration. Cross-sectional measurements revealed a decrease in the number

of fibers per unit area and the percentage of central nucleation in AAV-Igf-I treated muscles

compared with mdx muscles.

Igf-I promotes cell survival and muscle regeneration and differentiation through the

PI3K/Akt pathway (Singleton and Feldman, 1999).  Although the role of apoptosis in skeletal

muscle remains unclear, we and others have demonstrated the presence of apoptotic

myonuclei and activated caspases in degenerating muscle fibers (Abmayr et al., 2004;

Matsuda et al., 1995).  In addition to promoting cell survival, Igf-I enhances muscle

regeneration by activating satellite cells (Musaro et al., 2001).  Since dystrophic muscles

demonstrate a progressive loss of self-renewal potential with increasing age, an impaired

repair mechanism together with extensive immune infiltration may vastly contribute to the

muscle pathogenesis in muscular dystrophy. Thus, Igf-I mediated activation of cell survival

pathways may protect muscle fibers from degeneration.  In addition, Igf-I mediated efficient

regeneration may further protect muscle fibers from being gradually replaced by fibrotic and

adipose tissue.

Several studies showed activation of the PI3K/Akt pathway in skeletal muscles over-

expressing Igf-I and demonstrated the expression of markers of muscle differentiation and

survival (Barton et al., 2002; Musaro et al., 2001).  However, little is known about the role of

Igf-I in promoting cell proliferation, mediated through the MAPK pathway.  The induction of

cell proliferation may result in an increased number of satellite cells and may play a role in

maintaining the regenerative potential of old skeletal muscle.  The consequences of promoting

cell proliferation have to be evaluated in terms of shifting the balance of cell death and cell

division, potentially leading to uncontrolled cell division and cancer.  Elevated Igf-I levels

were shown to be associated with tumor formation in various tissue (Baserga et al., 2003;

LeRoith and Roberts, 2003; Yakar et al., 2002).  However, Igf-I expression can be restricted

to muscle tissue, where transgenic mouse studies did not reveal any adverse effects (Barton-
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Davis et al., 1998; Musaro et al., 2001).

5.3.2. Muscle specific Igf-I expression

To assure muscle specific Igf-I expression, we used a tissue-specific promoter in conjunction

with AAV6 mediated delivery, since AAV6 shows a high tropism for skeletal muscle tissue.

Igf-I expression was under the control of a truncated version of the mouse muscle creatine

kinase promoter/enhancer regulatory element (CK6), which was shown to drive high

expression of transgenes and to restrict expression to skeletal muscle (Hauser et al., 1995).  In

addition, AAV6 has been demonstrated to transduce muscle tissue with great efficiency (Scott

et al., 2002).  This delivery system displays persistent expression of the transgene for more

than one year and is not known to elicit any major cellular immune responses.  We have not

yet determined the minimum dose needed for the effects we observed, but injection of 1 x

1010 vector genomes was sufficient for dystrophin expression.  In addition, we achieved an up

to 400-fold over-expression of Igf-I mRNA using similar amounts of vector.  It is unknown

how much Igf-I over-expression is needed to exert an effect on muscle morphology and

function.  It is reasonable to assume that smaller amounts would be sufficient, since Igf-I is a

secreted hormone and targets expressing and surrounding non-expressing cells.  Further

studies are needed to determine the minimal dose, that would lead to an amelioration of the

dystrophic phenotype.  Since these studies show that Igf-I treatment is synergistic with the

protective effects of dystrophin replacement, the combination of both treatments may allow

the use of a lower total virus dose. This possibility is particularly important in terms of

delivering dystrophin to large muscles with a potentially lower transduction efficiency.

Previous studies have also shown that muscle-restricted Igf-I overexpression does not

increase Igf-I levels in the serum (Barton-Davis et al., 1998).  This is an important

observation, because elevated Igf-I levels in the blood could exert adverse effects on other

tissues.  The mechanisms by which Igf-I is prevented from accumulating in the circulation are

unknown.  However, Igf-I can target other cell types within muscle tissues, such as fibroblasts

and adiposites.  It was previously shown that fibroblasts are responsive to Igf-I treatment and
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fibrotic tissue infiltrates were detected in heart tissue of transgenic Igf-I mice (Delaughter et

al., 1999; Petley et al., 1999).  This result is of particular concern in the dystrophic muscle,

because dystrophic pathology is characterized by the gradual replacement of muscle fibers

with fibrotic and adipose tissue.  Igf-I treatment may thus synergistically increase that

infiltration.  Nevertheless, it was shown in transgenic Igf-I/mdx mice that Igf-I overexpression

actually decreased fibrosis (Barton et al., 2002).  This observation could be explained by the

fact that Igf-I decreases muscle degeneration and efficiently mediates muscle repair in mdx

animals, creating a healthy environment where no fibrotic tissue replacement is necessary.

5.3.3. Delivery of dystrophin to dystrophic mdx muscle

AAV-mediated delivery of dystrophin to mdx muscles demonstrated persistent expression of

dystrophin four months post-injection. Dystrophin expression was distributed over the entire

cross sectional area and reached an average of 40% of the total area.  It was reported

previously that dystrophin expression of >20% of wild-type dystrophin levels is sufficient to

prevent muscular dystrophy in transgenic mdx mice (Cox et al., 1993a; Phelps et al., 1995).

In our study, we treated animals after the onset of the disease in order to test whether the

dystrophic pathology could be reversed in adult mdx mice.  We used a micro-dystrophin

construct, which lacks 68% of the coding region of dystrophin and could therefore be cloned

into an AAV vector backbone.  Remarkably, truncated versions of dystrophin proved to be

highly functional in transgenic mdx mouse models (Crawford et al., 2000; Harper et al.,

2002b; Rafael et al., 1996).  Transgenic mdx muscles over-expressing micro-dystrophin (∆R4-

R24) displayed normal muscle morphology and were protected from contraction-induced

injury, however those muscles displayed muscle strength intermediate between mdx and wild-

type muscles (Harper et al., 2002b).

In this study we showed that AAV-µdys and AAV-µdys & AAV-Igf-I (∆R4-

R24/∆CT) treated muscles were protected from contraction-induced injury, demonstrating a

significant recovery of force generating capacity of 47% and 49% after one, and 10% and

13% after two lengthening contractions.  In contrast, mdx muscles recovered only up to 24%,
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and 2% of their force after equivalent contractions.  In addition, AAV-Igf-I & AAV-µdys co-

treatment resulted in an increase of muscle mass and force generating capacities, which was

not observed in AAV-µdys only treatment.

Our histological analysis demonstrated that AAV-µdys treatment protected muscle

fibers from muscle degeneration.  Those muscles displayed a significant trend towards less

fibers per area and less centrally nucleated fibers.  Central nucleation was reduced by about

20% as was the number of fibers per area in AAV-µdys treated and AAV-Igf-I & AAV-µdys

co-treated muscles, compared with sham-injected mdx muscles.  It was reported previously

that AAV-mediated dystrophin expression has a more dramatic effect on muscle morphology

(Harper et al., 2002b).  Central nucleation was reduced by about 80% in AAV-µdys treated

mdx muscles in comparison to sham-injected mdx muscles.  However, it is difficult to

compare the two studies, since the test animals were injected at different ages, one month in

the previous study versus nine months in this study.  One month old animals are at the

beginning of the peak phase of degeneration and regeneration, which is accompanied and

followed by extensive myonecrosis and immune infiltration.  In contrast, nine month old mdx

animals are beyond the peak degeneration phase and have reached a steady state of much

slower myofiber turnover, showing a constant number of centrally nucleated myofibers and

fewer necrotic fibers.  Consequently, dystrophin treatment of one month old animals not only

reverses the existing dystrophic pathology, but also prevents further muscle fiber degeneration

and may also counter satellite cell exhaustion.  In addition, the previous study examined

muscle morphology five months post injection in contrast to a four months time point in our

study, which may also account for differences in morphological features.  In summary, both

studies suggest that dystrophin treatment reverses histopathological features of the disease,

but the extent of the effect is age dependent.

We were also able to demonstrate that dystrophin expression decreases muscle

degeneration by comparing Igf-I mRNA expression levels in AAV-Igf-I treated muscles with

AAV µdys & Igf-I co-treated animals, four months post injection.  AAV-Igf-I treated animals

demonstrated a 50-100 fold overexpression of Igf-I mRNA, in contrast to a 200-400 fold

overexpression of Igf-I mRNA in AAV-µdys & AAV-Igf-I co-treated animals.  The 4-5 fold

higher Igf-I mRNA levels in AAV µdys & AAV-Igf-I co-treated animals relative to AAV-Igf-

I treated animals clearly demonstrated that dystrophin expression protects muscle fibers from
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dystrophic pathology and the associated loss of vector from necrotic fibers.

5.3.4. Gene replacement in conjunction with Igf-I treatment

In this study, we investigated a combination of gene therapy treatments for muscular

dystrophy. In addition to correcting the primary defect, we delivered Igf-I to enhance muscle

repair and promote cell survival.  This combination is important in regards to targeting cells

that did not receive, or could not be rescued by, dystrophin treatment. It still remains a

challenging goal to deliver dystrophin to all the muscle cells in an animal and, depending on

the size of the animal, only a subset of fibers may receive gene transfer.  Igf-I is a secreted

polypeptide that targets not only the expressing, but also the surrounding cells, enabling a

broader treatment.  Igf-I co-treatment may also be of advantage in terms of reversing muscle

damage. Gene replacement therapy and reassembly of the DGC complex may rescue

remaining muscle fibers from breakdown, however it does not seem likely that previous

damage will be extensively reversed.  In contrast, Igf-I enhances the regenerative potential of

satellite cells and promotes cell survival, which may help to rescue the remaining muscle

fibers and replace damaged fibers more efficiently.

Functional measurements demonstrated that AAV-µdys injected animals were

partially protected from contraction-induced injury after two lengthening contractions,

whereas animals injected with AAV-Igf-I alone were as susceptible as mdx animals to muscle

damage.  AAV-Igf-I treated animals, in contrast, showed an increase in muscle mass, which

was not seen after AAV-µdys only treatment.  Also, co-injection of AAV-Igf-I and AAV-

µdys resulted in increased muscle mass and muscle strength, and in protection from

contraction-induced injury.

Histological analysis of AAV-µdys, AAV-Igf-I as well as AAV-Igf-I and AAV-µdys

co-treated animals revealed a protection from muscle degeneration. All the treatments

demonstrated a decrease of fiber number per area and a reduction of central nucleation.

However, average values varied significantly between animals and the different treatments.

Thus, it needs to be evaluated in future studies if the co-treatment has an additive protective
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effect on muscle morphology.  Unfortunately, there do not exist reliable methods to directly

visualize Igf-I expression in vivo, since this protein has a short half-life and is expressed at

low levels.  Since we were not able to determine Igf-I expressing fibers directly, we were

limited to analyzing random fields, containing expressing and/or non-expressing fibers.

Consequently, our analysis included both Igf-I transduced and non-transduced myofibers.

Variations in the extend of transduction from one muscle to another could therefore explain

the large variance we observed between the different treated muscles.  Although it remains to

be determined how exactly each treatment influences muscle morphology, our studies suggest

that all treatments protect from muscle degeneration.  Further experiments, using more

animals per group, are in progress to evaluate morphological differences between AAV-Igf-I,

AAV-µdys and AAV-Igf-I & AAV-µdys co-treated animals.

Taken together, AAV-Igf-I treated, as well as AAV-µdys treated, animals showed an

amelioration of the dystrophic phenotype. AAV-Igf-I treatment resulted in increased muscle

mass, while AAV-µdys treatment resulted in increased resistency to muscle damage.  AAV-

Igf-I and AAV-µdys co-treatment clearly demonstrated that the combination of both acted

synergistically and was beneficial for the animal.

5.3.5. Conclusions

The studies in this chapter evaluated the relative and combined potential of gene therapy

treatments for muscular dystrophy that replace dystrophin and also target signaling and

regenerative dysfunction.  We were able to demonstrate that the beneficial effect of Igf-I is

synergistic with the protective effect of dystrophin in restoring muscle strength and function

in adult mdx mice.  Furthermore, we were able to show that each treatment protected from

muscle degeneration. More extensive studies are necessary to evaluate the benefits of AAV-

Igf-I and AAV-µdys co-treatment on muscle morphology.  Additional delivery studies of Igf-I

and dystrophin to various age groups of mdx mice will provide important insights into their

relative and combined potential in ameliorating the dystrophic phenotype at different stages of

the disease.  In particular, old mdx mice display morphological changes more similar to the
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human disease, such as significant weakness and extensive infiltration of fibrotic and adipose

tissue.  Studies on old mdx mice could therefore be valuable to determine if Igf-I and

dystrophin co-delivery act synergistically in reversing dystrophic pathology at a more

advanced stage of the disease such as seen in human patients.
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6. EXPERIMENTAL PROCEDURES

6.1. Material & Methods for chapter 4.1 and 4.2

6.1.1. Isolation of ARC cDNA

The full-length human ARC cDNA sequence was used to screen the expressed-sequence

tag (EST) database of GenBank to find related sequences from mice.  A 480 bp EST clone

was identified.  PCR primers, 5’-CCTTGCCATCAGAGACCATTG and 5’-

CTGAACTGGG TGCTTCTGGC based on this EST sequence, together with vector

primers (Lumeng et al., 1999), were used to amplify the 5’- and 3’- ends of ARC directly

from a mouse muscle cDNA library (Lumeng et al., 1999). The 5’- and 3’- ends of ARC

were sequenced and cloned by recombinant PCR with the primers 5’-

GAGTGGGACTATCCGAACGC and 5’-CACAAATAGGATTGGACAGCTAAGG to

generate a full-length mouse ARC cDNA.

6.1.2. Chromosomal Localization

A 144 bp intron located between bp 475/476 of the mouse cDNA sequence was amplified

from genomic C57BL/6J and M . s p r e t u s DNA with the primers 5’-

CCTTGCCATCAGAGACCATTG and 5’-CACAAATAGGATTGGACAGCTAAGG.

Direct sequence comparison of the PCR products revealed that bp 88 was different

between the C57BL/6J and M.spretus strain, which creates an ApoI restriction fragment

length polymorphism.  The intron was PCR amplified from the Jackson Laboratory

interspecific backcross panel (C57BL/6JEi x SPRET/Ei)F1 x SPRET/Ei, called TJL BSS,

followed by an ApoI digestion, which identified different haplotypes (Rowe et al., 1994).

The backcross haplotype data were analyzed by staff at the Jackson Laboratory.  Raw data

were obtained from http://www.jax.org/resources/documents/cmdata.
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6.1.3. RNA analysis

Full-length mouse ARC cDNA was labeled with radioactive a[32 P]-dCTP by random

priming using a commercial kit (Rediprime kit, Amersham) and hybridized to a mouse

multiple tissue northern blot (Clonetech) according to the manufacturer’s instructions.

6.1.4. Generation of ARC transgenic mice

The human ARC cDNA tagged at the C-terminus with a FLAG epitope (DYKDDDDK)

(Koseki et al., 1998) was cloned into the NotI restriction site of pBSX (Crawford et al.,

2000), which is a modified pBluescript vector (Stratagene) that contains the human a-

skeletal actin promoter, a splice acceptor from the SV40 VP1 intron and tandem SV40

polyadenylation signals (Crawford et al., 2000).  The human ARC expression construct

was injected into SJL/J F2 x SJL/J F2 embryos, and positive F0 mice were identified by

PCR screening using an ARC cDNA specific 5’-GTGCATCCAATGCCTCGTACTC and

a VP1 intron specific 5’-CCGTTAAGGTTCGTAGGTCATGGAC primer for the

expression construct.  Two positive F0 mice were backcrossed onto the C57Bl/10J and

mdx background.  Further studies used primarily the line with the most uniform expression

levels.  For all studies, transgene negative/mdx and transgene negative/C57BL/10J

littermates were used as controls.

6.1.5. Immunohistochemistry

Quadriceps and diaphragm muscle were frozen in liquid nitrogen cooled O.C.T.

embedding medium (Tissue-Tek) and stored at –800C until use.  Frozen sections were cut

to a 5 mm thickness and mounted on silane-coated slides.  For histochemical analysis,

sections were fixed in methanol and stained with Gills #3 hematoxylin and eosin-phloxine

(Fisher Scientific).

For immunostaining, sections were blocked with 1% gelatin in KPBS (20 mM K2HPO4, 4

mM KHPO4, 160 mM NaCl) then incubated for 2 hours with the primary antibody diluted

in KPBS with 0.2% gelatin and 1% donkey or goat serum.  The following antibodies were
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used: anti-FLAG 1:500 (Sigma), anti-ARC 1:200 (Cayman), TRITC labeled anti-

cytochrome oxidase subunit V 1:500 (Molecular Probes), and anti-caspase-3 1:500

(Pharmingen).  After several washes the sections were stained with a FITC- conjugated

goat anti-rabbit (Alexa 488, Molecular Probes) secondary antibody for another hour,

washed and mounted with Vectashield mounting media (Vector).  Sections were

visualized with a Nikon E1000 microscope connected to a Spot-2 CCD camera.

6.1.6. Protein analysis

Quadriceps and diaphragm muscles were frozen in liquid nitrogen and stored at –800C

until use.  Samples were homogenized (OMNI 5000) in lysis buffer (120 mM NaCl, 1mM

EGTA, 1 mM EDTA, 1 mM MgCl2, 1 mM Na3V03, 10 mM Na4P207, 10 mM NaF, 1%

Triton, 10% glycerol, 50 mM Tris HCl pH 8.0) plus protease inhibitor cocktail (Roche).

The total amount of protein was determined using the Coomassie Plus Protein Assay

Reagent (Pierce).  Proteins were separated on a 15% polyacrylamide gel and

immunoblotted with anti-FLAG 1/5000 (Sigma) and anti-ARC 1/2000 (Cayman)

antibodies.

6.1.7. Evans blue Assay

Evans blue dye (10 mg/ml in PBS) was injected into the tail vein of six week old mdx,

transgenic/mdx and C57BL/10J mice (50 ml/10 g body weight).  After three hours, mice

were euthanized and quadriceps muscles were frozen in liquid nitrogen cooled O.C.T.

embedding media.  Frozen, 5 mm thick sections were analyzed for Evans Blue uptake by

fluorescence microscopy (Straub et al., 1997).
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6.2. Material & Methods for chapter 4.3

6.2.1. Isolation of two Igf-I cDNAs

The 5’- and 3’-ends of the Igf-I cDNA were amplified from a mouse muscle cDNA library

(Lumeng et al., 1999), using the primers 5’-GCTTCCGGAGCTGTGATCT and 5’-

CTTGGGCATGTCAGTGTGG based on the published muscle Igf-I exon 3 sequence,

together with vector primers (Lumeng et al., 1999).  The resulting PCR products,

containing the 5’- and 3’- ends of Igf-I were sequenced and the full-length mouse Igf-I

cDNA was cloned by recombinant PCR (Higuchi, 1990) using primers 5’-

GCGGCCGCATTGCTCTAACATCTCC and 5’-GCGGCCGCAATGTTTACTTGTAT

ATTTC based on sequence data from the 5’- and 3’-amplification products.  Two

alternative Igf-I splice products were isolated and cloned directly into the pGEM-T vector

(Promega) for sequence analysis.

6.2.2. Cloning of recombinant adenoviral (Ad) vectors

To generate Ad-Igf-I vectors, the Igf-I cDNA was cloned into the EcoRI/BamHI site of

the shuttle vector pD2007 (Kirk et al., 2001), containing the cytomegalovirus (CMV)

promoter and the human growth hormone polyadenylation (hGHpA) site.  This shuttle

vector pD2007 was created by modification of an adenoviral backbone plasmid in order to

obtain the leftmost 4.8 kb and rightmost 0.7 kb of the Ad 5 genome, as well as an

ampicillin resistence gene located between the inverted terminal repeats (ITR) (Hartigan-

O'Connor et al., 2002).  The resultant plasmid, containing the CMV Igf-I hGHpA

expression cassette, was linearized and subsequently co-transformed into recombination

competent E. coli BJ5183 cells with an adenoviral backbone plasmid, deleted for the

adenovirus E1, E3 and the polymerase genes (Albayya and Metzger, 2003).  The

recombination occurred between pD2007 and the leftmost 4.8 kb and rightmost 0.7 kb of

the adenoviral backbone and resulted in a complete E1, E3 and replication-deficient (E2b)

adenoviral vector, containing the CMV Igf-I hGHpA expression cassette (Ad-Igf-I).

Recombinants were selected for ampicillin resistance, and recombination confirmed by

restriction endonuclease analyses.  Prior to transfection, viral plasmids were linearized
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with FseI to remove the ampicillin resistence gene between the ITRs and to facilitate

transfection.

6.2.3. Production and purification of recombinant Ad vector stocks

C7 cells are modified human embryonic kidney packaging (HEK293) cells, containing

expression cassettes for the adenoviral proteins E1, DNA polymerase and pre-terminal

protein (Amalfitano and Chamberlain, 1997).  The cells were cultured on 60-mm plates in

Dulbecco’s modified Eagles medium (DMEM) (Gibco/BRL), supplemented with 10%

fetal bovine serum (FBS) and 5 U/ml penicillin and 5 U/ml streptomycin.  At 70-90%

confluency, cells were transfected with 9 mg of FseI-digested viral plasmid by using the

calcium phosphate-DNA precipitation method (Maniatis manual).  In order to increase the

transfection efficiency, the cells were subjected to a 100 mM chloroquine treatment for 4.5

hours and a 40 sec osmotic shock with 15% glycerol.  When complete cytopathic effect

(CPE) appeared, usually after 10-15 days, the cells and medium were harvested together

and frozen in liquid nitrogen.  After three rounds of freeze–thaw cycles, cell lysates

containing infectious virus particles were used in subsequent passages for virus

amplification.  Fresh 150 mm dishes of C7 cells were infected with 2 ml cell lysate and

harvested when cells displayed complete CPE, which typically occurred 2 days after

infection.  The lysate was serially passaged twice to yield a total of 20-30 dishes.  After

the second round of amplification, 0.5% NP-40 was added to the plates to dissolve all cell

membranes.  Cell lysates were then harvested and frozen in a dry ice-ethanol bath.  Cell

membranes were further disrupted by three rounds of freeze/thawing and subsequently

purified according to the method of Gerard and Meidell (Glover and Hames, 1995).

The virus-containing cell lysate was centrifuged at 12,000 x g for 10 min at 4oC to

remove cellular debris.  The supernatant was then transferred and virus particles were

precipitated by adding 0.33% PEG/NaCl solution and incubating for 1 hour on ice,

followed by a centrifugation at 12,000 x g for 20 minutes at 4oC.  The viral pellet was then

resuspended in 3-4 ml 20 mM Tris-HCl pH 8.0, 1 mM MgCl2 and treated with 50 µg/ml

each of DNaseI and RNaseA (Sigma) for 30 minutes at 37ºC to remove any genomic

cellular or unpackaged viral nucleic acids that were co-precipitated with the virus

particles.  The virus was further diluted in CsCl to a final density of 1.1 g/ml and
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additional residual debris was pelleted by centrifugation at 8000 x g for 5 min at 4oC.  The

virus was then purified on a CsCl step gradient, containing 33% 1.4 g/ml CsCl, 33% 1.3

g/ml CsCl and 33% of the 1.1 g/ml CsCl solution with the virus particles.  The gradients

were centrifuged at 53,000 x g for 4-16 h at 4° C in a Beckman SW-28 rotor. The viral

band was pulled from the gradient using a 18-gauge needle.  Virus particles were then

dialysed against 20 mM HEPES pH 7.4 buffer, containing 5% sucrose and 150 mM NaCl.

Viral titers were determined by incubating 5 µl of virus solution in virion lysis buffer (10

mM Tris pH 7.5, 0.1% SDS, 1 mM EDTA) at 56oC for 10 min and subsequent

quantitation by A260 spectrophotometry.  Particle number per ml is equivalent to [(A260 x

21)/0.909] x 1012 P/ml (Hartigan-O'Connor et al., 2002).

6.2.4. RNA analysis

RNA isolation from cells

Cells were washed in ice-cold PBS, then transferred in ice-cold PBS to a 1.5 ml tube and

pelleted at 1,000 rpm for five min.  PBS was aspirated off and cells were stored at –70°C

until use.  Total RNA was extracted by using the RNeasy kit, according to the

manufacturer’s instructions (Qiagen).

RNA isolation from tissue

Tibialis anterior muscles were frozen in liquid nitrogen and stored at –800C until use.

Samples were homogenized (OMNI 5000) in lysis buffer (RNeasy, Qiagen) and then

treated with proteinase K (20 mg/ml) for 10 minutes at 55°C to remove connective tissue

and collagen.  Residual debris was pelleted by centrifugation at 10,000 x g at room

temperature and the clear supernatant was loaded on a RNA purification column and

further extracted according to the manufacturer’s instructions (RNeasy, Qiagen).  Before

washing and eluting the RNA from the columns, an on-column DNase digestion was

performed to ensure complete removal of genomic and residual vector DNA (Qiagen).

500 mg total RNA of each sample was electrophoresed to confirm RNA integrity.
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Reverse transcription

One mg total RNA of each sample was reverse transcribed into cDNA.  Total RNA was

incubated with 5 mM oligo (dT) (Invitrogen), 0.5 mM dNTPs (Promega) at 65°C for 5

minutes before adding 5 x RT buffer (Invitrogen), 5 mM DTT and 20 U RNase inhibitor

(Promega).  Samples were incubated at 42°C for 2 minutes, then supplemented with 200 U

reverse transcriptase Superscript II (Invitrogen) and further incubated at 42°C for another

50 minutes.  The enzyme was then inactivated at 70°C for 15 minutes and samples were

stored at -20°C until use.  The cDNA was amplified in a standard PCR reaction, using

primers specific for endogenous or transgenic Igf-I (Maichele and Chamberlain, 1992).

The primers used are listed in table 1.

Table 1.  Primers used in regular PCR

Igf-I forward exon 3 5’-GCTTCCGGAGCTGTGATCT

hGHpA reverse 5’-AGAATCGCTTGAACCCAGG

CMV forward exon 1 5’-GGGAACGGTGCATTGGAAC

Igf-I reverse exon 3 5’-CTTGGGCATG TCAGTGTGG

Igf-I reverse exon 5 5’-GCTTCGTTTTCTTGTTTGTCG

Quantitative PCR

Igf-I mRNA transcripts were quantified by real-time PCR.  Primers and fluorescence-

labeled probes were chosen with the assistance of the Primer Express program (Perkin-

Elmer Applied Biosystems) and are listed in table 2 under section 6.3.5.  The reaction was

performed in a 25 ml volume containing 0.4 mM of each primer, 0.2 mM probe, cDNA

template and 2x master mix (Perkin-Elmer Applied Biosystems).  cDNA templates were

diluted 1:10, 1:100 and 1:1000 and each reaction was run in duplicate for Igf-I and

GAPDH primer sets (Perkin-Elmer Applied Biosystems), respectively.  GAPDH primer

and probe were used in order to standardize the amount of cDNA added to each reaction.

All samples were amplified and the fluorescence of the reporter dyes was recorded during

every cycle using the Applied Biosystems 7700 sequence detection system.  Results of the

real-time PCR data were represented as Ct values.  Ct was defined as the threshold cycle

at which amplified product was first recorded as statistically significant above

background, which occurred during the exponential phase of amplification (Gibson et al.,

1996).  Expression levels of Igf-I transcripts of injected muscles were determined relative
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to uninjected muscles with the comparative method by using the arithmetric formula: 2-

DDCT.  DCt was the difference in the Ct values derived from Igf-I amplification and

GAPDH amplification of the same sample.  DDCt represented the difference between

samples derived from injected and uninjected muscles, as calculated by the formula DDCt

= DCt of Igf-I (injected muscle) - DCt of Igf-I (uninjected muscle) (Bustin, 2000; Freeman

et al., 1999).  Alternatively, DDCt represented the difference between total Igf-I levels

(Igf-I Ea and Eb) and Igf-I Eb levels only.

6.2.5. In vitro differentiation assay

The L6 myogenic cell line was generously provided by Dr. Steve Hauschka (University of

Washington).  L6 cells were grown and maintained as myoblasts by culturing in

proliferation medium, containing DMEM supplemented with 10% FBS, 5 U/ml penicillin

and 5 U/ml streptomycin, and differentiated at 80% confluency in serum-free DMEM

supplemented with just antibiotics.  Sixteen hours after the cells were transferred to

differentiation conditions, experimental plates were infected with Ad-Igf-I purified virus

at 1 x 104 particles per cell or Ad-Igf-I viral lysates at 1 ml per 4 ml medium.  Eight hours

after viral infection and 24 hours after changing to differentiation conditions, all plates

were fed with fresh differentiation medium supplemented with 500 mg/ml BSA as

described by Florini and Ewton (Florini and Ewton, 1990).  In addition, control plates

were supplemented with 25 ng/ml recombinant Igf-I (Biodesign).  After 6 days without

any medium change, cells were washed and fixed with AFAFIX (60% EtOH, 3%

formaldehyde, 4% glacial acetic acid).

6.2.6. Immunohistochemistry

For sarcomeric myosin immunostaining, cells were fixed with AFAFIX for 2 minutes at

room temperature.  Then, cells were washed twice with TBS and blocked for 15 min in

2% (m/v) nonfat milk powder and 1% horse serum in TBS.  After three washes, cells were

stained with the monoclonal antibody MF-20 (kindly provided by Dr. Steve Hauschka) at
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1:100 in TBS with 1% horse serum for 1 hour at 37ºC or alternatively overnight at 4ºC.

The cells were then washed and stained with a horse anti-mouse biotinylated IgG (H+L)

antibody (Vector) at 1:1000 in TBS with 1% horse serum for 30 minutes at room

temperature and subsequently with HRP-conjugated streptavidine (Zymed) at 1:1000 in

TBS.   Finally, H2O2 activated (0.83 ml/ml) DAB solution (0.6 mg/ml) (Sigma) was added

for 30 minutes at room temperature.  Then, the plates were rinsed with water and air-dried.

6.3. Material & Methods for chapter 4.4

6.3.1. Cloning of recombinant adeno-associated viral (AAV) vectors

The Igf-I cDNAs were cloned into the EcoRI and HindIII digested pMCS-CMV plasmid

(Stratagene).  This step resulted in a construct that carried the Igf-I cDNA under the

control of the CMV promoter and a polyadenylation site derived from bovine growth

hormone (bGHpA).  The CMV promoter of that resulting plasmid was removed with the

restriction enzymes MluI and SacII and replaced by the muscle-specific CK6 promoter

(Hauser et al., 1995).  The complete expression cassette was then excised with NotI and

moved into NotI digested pAAV-LacZ vector backbone (Stratagene).  The final construct,

pAAV-Igf-I, consists of the complete Igf-I expression cassette flanked by vector-encoded

AAV2-inverted terminal repeats (ITRs), which are required for viral DNA replication.

6.3.2. Production and purification of recombinant AAV vector stocks

AAV is a naturally replication-deficient virus that requires co-infection with an unrelated

helper virus, such as adenovirus, to generate AAV virions.  In our system, the required

helper virus genes were provided in trans from the helper plasmid, pADG6 (gift from Dr.

David Russell) containing the adenovirus E2A, E4 and VA RNAs genes.  These genes are

necessary for the induction of the lytic phase of AAV.  In addition, the HEK293 cell line

stably expressed the adenovirus E1A and E1B genes, which are essential for packaging

AAV virions (Graham and Smiley, 1977).  The helper plasmid pADG6 also contains the

AAV cap and rep genes that encode capsid proteins for AAV serotype 6 and DNA
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replication proteins, which are required to synthesize AAV infectious virions.  HEK293

cells were cultured on 100 mm plates in DMEM, supplemented with 10% FBS and

antibiotics.  At 60-70% confluency, cells from 50-100 plates were co-transfected with 20

mg helper plasmid pADG6 and 10 mg recombinant AAV vector by using the calcium

phosphate-DNA precipitation method (Maniatis manual).  24 hours after transfection, the

medium was exchanged for serum-free DMEM plus antibiotics and the plates were

incubated at 37oC for an additional 48 hours.  Transfected cells and medium were then

harvested together and pooled from all 50-100 plates.

The harvested pool was then passed through a microfluidizer (Microfluidics,

model M110S) to disrupt cell membranes and subsequently filtered through a 0.2 mM

filter to generate a clear cell lysate.  Virus particles were purified over a 5 ml HiTrap

Heparin column (Amersham) using an AKTApurifier 10 high pressure liquid

chromatography (HPLC) machine (Amersham).  The virus was eluted with a linear salt

gradient ranging from 200-400 mM NaCl.  Fractions containing the purified virus were

pooled and and dialysed against Ringer’s solution (137 mM NaCl, 2.7 mM KCL

(monobasic), 1.4 mM CaCl2, 0.5 mM MgCl2, 0.7 mM Na2HPO4 (dibasic), 4.8 mM

NaHCO3).  The virus was then aliquoted and stored at -70°C.

6.3.3. Determination of virus genome titer by slot blot analysis

The virus titer was determined by comparing vector genomes from viral aliquots to vector

genomes from plasmids of known concentration.  These standards were prepared by serial

dilution of the expression cassette generated by NotI restriction digest of pAAV-Igf-I and

by MscI restriction digest of pAAV-dys.  Virions were also prepared as serial dilution and

then subjected to a DNase I (Sigma) digestion for 30 minutes at 37°C to remove residual

unpackaged plasmid DNA prior to denaturation.  Standards and virus samples were then

diluted in denaturing buffer (0.5 M NaOH, 12.5 mM EDTA), boiled for 10 minutes in a

water bath and then cooled on ice for another ten minutes.  Samples were further diluted to

500 ml in 0.4 M NaOH and transferred to a nylon membrane by vaccum using a slot blot

apparatus (Amersham).  The membrane was hybridized with a transgene-specific probe

that had been denatured and labeled with an alkaline phosphatase direct labeling kit

(Amersham). Hybridized bands were visualized using a chemoluminescence imager
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(GeneGnome, Syngene Bio Imaging) and quantified with GeneTools software (Syngene

Bio Imaging).

6.3.4. Intramuscular injection into the tibialis anterior

Nine months-old mdx male mice were anesthetized with a combination of Ketamine and

Xylazine (animal weight/100 = #ml anesthetic) and shaved to better access the tibialis

anterior muscle.  The tibialis anterior muscle was further exposed by opening the skin

with a small parallel incision to the muscle. Viral DNA in 30 ml Ringer’s salt solution was

then carefully injected into the muscle by using a 32-gauge needle attached to a Hamilton

syringe.  The needle was introduced at the tip of the muscle and pushed straight to the

other end of the muscle, then slowly drawn back over a 20-30 second interval whereby the

viral solution was injected. After injection, the skin was carefully stretched over the

enlarged muscle and glued (Nexaband).  Controls for all experiments consisted of sham

injections with Ringer’s solution.  Four months after injection the virus injected and

control animals were anesthetized to measure functional properties of the tibialis anterior

muscle as described in section 6.3.6. Tissue was collected as described in section 6.3.5 and

section 6.3.7.

6.3.5. RNA/DNA analysis

RNA and DNA isolation from tissue

Tibialis anterior muscles were frozen in liquid nitrogen and stored at –800C until use.

Total RNA was isolated and transcribed into cDNA as described in section 6.2.4.  DNA

was isolated from an aliquot that was taken after tissue lysis and proteinase K treatment

and prior to RNA purification over the RNeasy columns (Qiagen).  DNA was extracted

with a standard phenol/chloroform extraction protocol (Maniatis manual) and residual

RNA was removed by RNase A treatment (50 mg/ml).
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Quantitative PCR

Igf-I mRNA transcripts and vector genomes were quantified by real-time PCR, using the

Applied Biosystems 7700 sequence detection system.  The primers and fluorescence

labeled probes used are listed in table 2.  cDNA templates were prepared and analyzed as

described in section 6.2.4.  DNA samples were diluted to a final concentration of 100 ng,

10 ng and 1 ng and each reaction was run in duplicate by using DNA specific Igf-I

primers. DNA vector persistence was determined by relative quantitation of samples of

unknown concentration to a DNA standards curve.  DNA standards were prepared by

serial dilutions of the Igf-I expression cassette generated by NotI restriction digest of

pAAV-Igf-I plasmid DNA.  5 ng/ml standard DNA was diluted 1:10, 1:100, 1:1000,

1:10000 and each reaction was run in duplicate as well.

Table 2.  Primers used in quantitative PCR

Igf-I forward exon 3 5’-CAGTTCGTGTGTGGACCGAG

Igf-I reverse exon 4 5’-GCCTGTCTGAGGTGCCCTC

Igf-I probe exon 4 5’-FAM-CCCACAGGCTATGGCTCCAGCATTC-TAMRA

CMV forward exon 1 5’-GGGAACGGTGCATTGGAAC

Igf-I reverse exon 1 5’-CACACAGACCAGCACGTTGC

CMV probe exon 1 5’-FAM-CGGATTCCCCGTGCCAAGAGTGA-TAMRA

CMV intron reverse 5’-GTGGGCCTATAGACTCTATAGGCG

Igf-I reverse exon 5 5’-GCTTCGTTTTCTTGTTTGTCG

6.3.6. Functional properties

Four months post-injection, treated and control mice were anesthetized and the TA

muscles were subjected to an in situ lengthening contraction protocol as described

(DelloRusso et al., 2001).  In brief, the optimal muscle length (Lo) and the maximum

isometric force were determined for each muscle sample.  Muscles were then maximally

stimulated and stretched from Lo through 40% of muscle fiber length (Lf) during two

lengthening contractions (LC1 and LC2).  Maximum isometric force was measured after

each lengthening contraction and reported as a percentage of initial maximum isometric

force.  The forces produced after LC1 and LC2 were indicative of the ability of muscles to

resist injury.  Muscles were then dissected, weighed, and either frozen in liquid nitrogen
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cooled OCT embedding medium for histological analysis, or directly in liquid nitrogen for

RNA analysis.

6.3.7. Immunohistochemistry

Tibialis anterior muscles were frozen in liquid nitrogen cooled O.C.T. embedding

medium (Tissue-Tek) and stored at –800C until use. 5 mm cryosections were cut and

mounted on silane-coated slides.  For immunohistostaining of dystrophin, sections were

blocked with 2% gelatin, 100 mg/ml BSA, 1% Tween 20 in KPBS, then incubated for 1

hour with the N-terminal dystrophin antibody 1/600 (Rafael et al., 1996) diluted in KPBS

with 0.2% gelatin and 2% goat serum.  After several washes the sections were treated with

biotin blocking agent (Molecular probes), before they were stained with 1) the secondary

biotinylated antibody 2) streptavidin and 3) DAB according to the manufacturer’s

instruction (Vector ABC kit).  The sections were then fixed in Methanol and

counterstained in a 0.5% Neutral Red solution for 10 minutes. Sections were mounted

with Paramount mounting media and visualized with a Nikon E1000 microscope

connected to a Spot-2 CCD camera.

6.3.8. Image analysis and quantitative measurements

Montage images were photographed by using MONTAGE EXPLORER software

(Syncroscopy).  IMAGEPRO software (Media Cybernetics) was then used to quantitate

the dystrophin-positive area of muscle cross sections as well as to quantify histological

features of muscle samples.  Total dystrophin-positive area was analyzed by applying the

same brightness and contrast thresholds in IMAGEPRO to every sample to exclude

background and to calculate the area surrounded by dystrophin immunofluoresence.  Total

dystrophin-positive area was then normalized to the total area analyzed.  For histological

analysis, montages of all samples were overlayed with a mask that randomly chose four

400 mm2 microscopic fields per muscle cross section.  These fields were used to determine

the percentage of centrally located myofibers as well as the number of muscle fibers per
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defined area.  Statistical analysis was performed by using STATVIEW software (SAS

Institute).
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