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Chapter 1

Introduction

Since during the last years computer power has reached a level where lattice simu-
lations in quantum chromodynamics (QCD) are becoming more and more enhanced,
lattice QCD has developed into a popular subject in QCD. Before the advent of lattice
QCD most predictions were limited to the perturbative regime. Perturbative meth-
ods in QCD can be applied only to the high energy regime in QCD, which is probed
in modern accelerators like RHIC (relativistic heavy ion collider) at the Brookhaven
National Lab in New York or the LHC (large hadron collider) at CERN. The some-
how surprising point is that QCD at high energies behaves almost like a free theory.
This means that the quarks at high energies interact only weakly through the gluon
field. So, the coupling constant in the high energy regime is small which allows a
systematic expansion of the theory in terms of the coupling constant and perturba-
tive methods are applicable. The observation that the constituents of hadrons, the
quarks, behave like free particles goes under the name of asymptotic freedom and was
a major achievement in investigating the strong force.

However, many interesting phenomena in QCD appear at low energies. For ex-
ample, the temperature of the hadronic matter which we are made of is, fortunately,
very low, i.e. the typical energy of the system is low. It turns out that the coupling
constant in QCD depends on the energy at which we are looking at our system. As
already mentioned above, for high energies the coupling is small. But for low ener-
gies the coupling constant increases more and more. So, the coupling constant is not
constant at all but it is ”running”, which is the reason why it is sometimes called
”running coupling”. The fact that the coupling is large at large distances is supposed
to be intimately related to the non-abelian structure of QCD. The consequence of
this property is that the colored gluons, which mediate the interactions between the
quarks, are self-interacting. Furthermore, one believes that the self-coupling of the
gluons is connected to the confining property of QCD. Each quark comes in three
colors. Nevertheless, no one has yet observed colored quarks. We only find color
neutral objects in nature like mesons or baryons, which consist of two or three con-
fined quarks (or anti–quarks), respectively, or Glueballs, which consist of pure gluons.
(Note that those glueballs have not yet been observed.) Since confinement appears
at low energies, only a non-perturbative approach, like lattice QCD, can confirm that
QCD accounts for confinement.
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A second very interesting property of QCD is the spontaneous breaking of chiral
symmetry. Quarks can not only be distinguished by their color, but they are also
differently ”flavored”. There are six different quarks which we label by a flavor index.
In the limit where the quark masses of the different flavors are zero, the QCD La-
grangian is invariant under a global symmetry, the chiral symmetry. Chiral symmetry
is reflected in the mass spectrum and can, in principle, be observed. The lightest two
(or three) quarks have relatively small masses compared to the typical energy scale
of QCD, which is about 1 GeV. Therefore, the QCD Lagrangian is approximately
chirally symmetric for these light quarks which should also show up in the mass spec-
trum. However, it turns out that chiral symmetry is not manifest in nature, but
spontaneously broken. We can detect the (almost) massless Goldstone bosons, the
pions, which appear because of the spontaneous breaking of the symmetry. The spon-
taneous breaking of chiral symmetry is, like confinement, a non-perturbative effect
and has to be investigated on the lattice or by other non-perturbative methods. One
very successful, analytic, and non-perturbative approach is the concept of instantons.
Instantons describe tunneling processes in gauge theory. They are of particular in-
terest in QCD because the mechanism of chiral symmetry breaking can be explained
by the presence of instantons. Note that chiral symmetry can be investigated also
on the lattice. Of course, it is interesting to compare the results of the two different
approaches.

A completely different non-perturbative approach to certain aspects of QCD has
been found in the framework of random matrix theory (RMT). In RMT one is not
interested in the detailed dynamics of the system, but in universal quantities. Uni-
versal quantities are quantities which are not specific to one certain system, but to
a whole class of systems which all possess the same symmetry properties. The basic
idea of RMT is to replace a quantity by an ensemble average over random Hamilto-
nian matrices. We will calculate observables by averaging over an ensemble of random
matrices which follow a certain probability distribution determined by the symmetries
of the Hamiltonian. Because of the great progress which was made in RMT in the
last decade we can find analytic expressions for many interesting quantities. However,
RMT can be used only in a certain regime of the full theory. For example, RMT does
not predict where the energy levels exactly lie, but it describes the fluctuations of the
levels.

In this thesis we will touch all these non-perturbative topics, lattice QCD, con-
finement, chiral symmetry, instantons, and random matrix theory. We will point out
the connections of the different issues with each other, investigate related unsolved
problems, and hope to fertilize the understanding of them.

In Chapter 2 we begin with an introduction to lattice QCD. In order to calculate
the important correlation functions numerically we first develop QCD in the Euclidean
path integral formalism, see 2.1.1. In the common Minkowski description we cannot
calculate the path integrals on the lattice, because the integrand of the path integral
is heavily oscillating. In the Euclidean formalism the oscillations are completely gone.
In Sec. 2.1.2 and 2.1.3 we show how to put the fermion and gluon fields on the lattice
and we also discuss the problems connected to this procedure. The crucial problem on
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the lattice is that the number of fermions doubles for each dimension of space-time. So
we end up with 16 (interacting) fermions which does not describe QCD correctly. In
order to reduce the number of doublers, chiral symmetry has to be broken explicitly.
However, if chiral symmetry is explicitly broken, it is hard to study spontaneous chiral
symmetry breaking, which we like to investigate. Anyway, there are possibilities to
analyze chiral symmetry breaking on the lattice, see Sec. 2.1.2 and 2.1.3. In the latter
part of this thesis we will study the spontaneous breaking of chiral symmetry and
the confinement phase transition at finite temperature. Therefore, in Sec. 2.2 we will
derive the formalism of QCD at finite temperature on the lattice. Furthermore, we
will present order parameters for both the confinement and the chiral phase transition,
see Sec. 2.3 and 2.4.

Chapter 3 is devoted to the relation of the chiral and confinement phase transition.
From lattice studies we know that both phase transitions approximately appear at
the same temperature which suggests that chiral symmetry and confinement should
be connected somehow. Although intense work already has been invested in solving
this puzzle, the relation of these two properties of QCD remains unknown. We will
investigate the critical temperature of the chiral phase transition depending on a
certain gluonic sector of the theory. In the literature it was claimed that there is
indeed a dependence on that specific sector which should be a hint to the missing
link. The discussion of these findings was very controversial. This motivated us to
reinvestigate this problem again, but with fermions which have much better chiral
properties.

Above we mentioned that the non-perturbative concept of instantons can describe
the mechanism of chiral symmetry breaking. In the low temperature phase, where chi-
ral symmetry is broken, the instantons only interact weakly with the anti–instantons,
while in the high temperature phase strongly interacting instantons form a kind of
”molecules” with the anti–instantons, which leads to the restoration of chiral symme-
try. This is the so-called instanton picture of chiral symmetry breaking. In Chapter 4
we will search for instantons on the lattice at finite temperature, the so-called calorons,
and we like to prove or disprove the correctness of this instanton picture. We will
apply a new approach for which we can circumvent the usual problems which occur
when identifying the instantons on the lattice. This approach makes use of the lo-
calization properties of a quark in an instanton background field and could provide
evidence for calorons on the lattice.

Before we conclude in Chapter 6 we switch to a different, non-perturbative subject
in Chapter 5, namely random matrix theory. In the beginning of the section we will
apply RMT to QCD and present the chiral random matrix model. This model allows
us to make RMT predictions for QCD in the chiral limit. Since there is no analytical
proof that QCD is in the universality class of this model one employs lattice QCD
to gather evidence for this assumption. In particular, we develop the formalism of
the normal modes, see Sec. 5.1, Sec. 5.2, and Sec. 5.4, which allows us to describe
the fluctuations of the eigenvalues in an easy way. These normal modes are then
calculated also on the lattice and we compare the results of lattice QCD and RMT,
see Sec. 5.6. This comparison of our results for the normal modes we will lead to a
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new method to determine the Thouless energy, the engery scale below which RMT is
applicable.



Chapter 2

Lattice QCD in Short Words

In this chapter we will develop the basic formalism which is necessary to perform
lattice simulations in QCD [1, 2]. In Sec. 2.1 we first develop the path integral
formulation in the Euclidean space. We have to do so because in Minkowski space
the path integrals cannot be calculated in practice. In the following we will discretize
the fermion and gauge field and also discuss fermion doubling which turns out to be
a problem if we like to have chiral symmetry established on the lattice. In Sec. 2.3
and 2.4 we derive order parameters for the confinement and chiral phase transition.
We will develop useful tools which allows us to study the chiral and confinement
properties of QCD, see Chapters 3 and 4.

2.1 How to discretize QCD

A main task of every theory is to calculate the correlation functions of the system. In
the path integral formalism of QCD these correlation functions are given by

〈
Ω
∣∣T
(
Ψ1(x1) · · · Ψ̄1(x1) · · ·

)∣∣Ω
〉
=

∫
D[ψ̄] D[ψ] ψ1(x1) · · · ψ̄1(x1) · · · eiS[ψ̄,ψ]∫

D[ψ̄] D[ψ] eiS[ψ̄,ψ]
,

(2.1)

where T (Ψ1(x1) · · · Ψ̄1(x1) · · · ) is the time-ordered product of the field operators Ψ(x)
and Ψ̄(x) and ψ̄(x), ψ(x) are the corresponding Grassmann-valued fields. D[ψ] denotes
the product

∏
i dψi. In the following we will found out how to calculate the correlation

functions in lattice QCD.

2.1.1 QCD in the Euclidean Path Integral Formulation

The QCD Dirac operator in Minkowski space is given by

i /D = iDµγ
µ = i(∂µ + ig

λa

2
Aaµ)γ

µ (2.2)
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with the coupling constant g and the 8 generators λa of the su(3) lie algebra. These
generators satisfy the commutation relation

[λa, λb] = 2ifabcλc, (2.3)

with the structure constants f abc. The matrices obey the normalization condition

Tr(λaλb) = 2 δab. (2.4)

We abbreviate the gauge fields by

Aµ(x) ≡
8∑

a=1

Aaµ(x)
λa

2
, (2.5)

whereAaµ ∈ R. The γ-matrices obey the common anti–commutation relation {γµ, γν} =
2gµν . In connection with the γ-matrices we often use the Feynmann slash notation,
e.g. /∂ = γµ∂µ.

The QCD action with Nf flavors then is given by

SQCD =

∫
d4x ψ̄(x)(i /D −M)ψ(x)− 1

2
Tr

∫
d4xFµν(x)F

µν(x). (2.6)

ψ̄ = ψ†γ0 and ψ are the fermion fields which are vectors in flavor space, ψ̄, ψ ≡ ψ̄f , ψf .
M is the (diagonal) mass matrix which acts on the flavor index, and

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] ≡
8∑

a=1

F a
µν

λa

2
(2.7)

is the field strength tensor. Now we can write down the QCD partition function for
Nf flavors,

ZQCD =

∫
D[A] D[ψ̄] D[ψ] eiSQCD =

∫
D[A] eiSg

Nf∏

f=1

det(i /D −mf ), (2.8)

where we have integrated out the fermionic part in the second term. The mi are the
entries of the diagonal mass matrix M . Note that the integral over the fields in the
partition function in (2.8) is mathematically not well defined. Only in some special
theories the partition function is mathematically meaningful and can be calculated at
all. On the lattice the situation is different. There the partition function is well defined
and can, in principle, be calculated. But due to the imaginary exponent in (2.8) the
partition function is heavily oscillating which makes practical calculations impossible.
Anyway, we can work around this problem and cure it by introducing the concept
of the Euclidean description. We are replacing x0 by −ix4 introducing imaginary
times. We find immediately x2 = xµxνgµν = −((x1)2 + (x2)2 + (x3)2 + (x4)2) which
shows the Euclidean nature. For the differential operator ∂µ it follows that we have to
make the replacement ∂0 → i∂4. Further we have to change the γ-matrices. Because
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in Euclidean space the Lorentz group is replaced by the ordinary four-dimensional
rotation group we introduce the Euclidean γ-matrices, γE4 = γ0, γEi = −iγi, which
obey the anti–commutation relation

{γEµ , γEν } = 2δµν . (2.9)

Therefore we have to replace /∂ → i/∂E = i∂Eµ γ
E
µ and with the definition above γ5 =

iγ0γ1γ2γ3 becomes γE5 = γ1γ2γ3γ4. Finally, we find for the fermionic part of the
Euclidean action

SEq =

∫
d4x ψ̄(x)(/∂E +M)ψ(x). (2.10)

Note that ψ̄ in Euclidean space corresponds to ψ̄ = ψ† because the associated bilinear
ψ̄ψ is just ψ†ψ. To obtain the gauge part of the Euclidean action we have to look
at the transformation property of Aµ. From Dµ = ∂µ + igAµ we find that Aµ has to
transform like ∂µ. So we have to make the same replacement as before, A0 → iA4,
which means that F a

µνF
µνa → F a

µνF
a
µν . Finally, we find for the QCD Euclidean action

SEQCD =

∫
d4xψ̄( /DE +M)ψ +

1

4

∫
d4xF a

µνF
a
µν . (2.11)

(Since from now on we will work only in Euclidean space we will drop the label
”E”.) Now the exponent in the QCD partition function is real and the integral is well
defined,

ZQCD =

∫
D[A] D[ψ̄] D[ψ] e−SQCD =

∫
D[A] e−Sg

Nf∏

f=1

det( /D +mf ). (2.12)

This is the starting point for many lattice calculations. By the way, another often used
approach for lattice calculations is the Hamiltonian formulation of QCD. The main
disadvantage hereby is the explicitly broken Lorentz invariance. Different from the
Lagrangian approach, the broken Lorentz invariance is also manifest in the continuum.

2.1.2 The Fermionic Action

We are now prepared to derive a lattice formulation of QCD. We begin with the pure
fermionic part of the Euclidean action, in (2.11)

Sq =

∫
d4x ψ̄(x)(/∂ +m)ψ(x). (2.13)

In order to discretize Sq in (2.13) we are making the following substitutions

ψ(x), ψ̄(x)→ ψx, ψ̄x (2.14)

∂µψx →
1

2a
(ψx+µ̂ − ψx−µ̂) (2.15)

∫
d4x→ a4

∑

x

(2.16)

D[ψ̄] D[ψ]→
∏

α,x

dψ̄αx
∏

β,y

dψβy, (2.17)
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where ψαx is the field at lattice site x = (x1, x2, x3, x4) with xµ = 1, 2, . . . , Lµ. The
Dirac index is labeled by α = 1, 2, 3, 4. The neighboring site of x in µ-direction is
denoted by x + µ̂ with µ = 1, 2, 3, 4. Lµ is the number of lattice sites in µ-direction
and a denotes the lattice spacing. For the fermion action we then obtain

Sq =
∑

x

a4

(
mψ̄xψx +

1

2a

4∑

µ=1

(
ψ̄xγµψx+µ̂ − ψ̄x+µ̂γµψx

)
)

(2.18)

=
∑

x,y

a4ψ̄xKxyψy (2.19)

with

Kxy =
4∑

µ=1

1

2a
γµ(δy,x+µ̂ − δy,x−µ̂) +mδxy. (2.20)

Wilson Fermions

The fermions which correspond to this naive discretization are sometimes called naive
fermions. To illustrate the properties of these fermions we will calculate the corre-
sponding propagator

〈
ψxψ̄y

〉
=

∫
D[ψ̄] D[ψ] ψxψ̄y e

−S[ψ̄,ψ]
∫
D[ψ̄] D[ψ] e−S[ψ̄,ψ]

. (2.21)

Integrating out the Grassmann integrals we obtain

〈
ψxψ̄y

〉
= K−1

xy . (2.22)

In order to perform the continuum limit we like to Fourier transform the propagator.
Therefore we first Fourier transform Kxy,

Kxy =
1

a

∫ π
a

−π
a

a4d4k

(2π)4

(
i
∑

µ

γµ sin(akµ) + am

)
eiak(x−y), (2.23)

and afterwards we invert the obtained expression

K−1
xy = a

∫ π
a

−π
a

a4d4k

(2π)4
−i∑µ γµ sin(akµ) + am
∑

µ sin
2(akµ) + (am)2

eiak(x−y). (2.24)

The propagator in the continuum limit is then given by

〈
ψ(x)ψ̄(y)

〉
= K−1(x, y) = lim

a→0
K−1
xy

= lim
a→0

∫ π
a

−π
a

a4d4k

(2π)4
− i
a

∑
µ γµ sin(akµ) +m

1
a2

∑
µ sin

2(akµ) +m2
eiak(x−y). (2.25)
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In order to carry out the continuum limit we expand the sine

1

a
sin(akµ) ≈ kµ +O(a). (2.26)

Inserting this expression into (2.25) and performing the ”naive” continuum limit we
find for the propagator

〈
ψ(x)ψ̄(y)

〉
=

∫ ∞

−∞

d4k

(2π)4
−i/k +m

k2 +m2
eik(x−y) (2.27)

which is the correct continuum propagator. However, we did not carry out the con-
tinuum limit correctly. The argument of the sine takes values from −π to π. The
sine in that interval has two zeros at −π and π which means that the propagator in
the continuum limit has two poles in each direction of kµ. For all four directions of
kµ we end up with 16 poles sitting at the edges of the Brillouin zone. We see that
the number of fermions has doubled for every space-time dimension. This problem is
known as the fermion doubling problem and it becomes crucial if we consider inter-
acting theories (which we usually do). Then, the doublers also interact with the other
fermions. But we can circumvent this problem. As we know, on the lattice there
are infinitely many versions of the action. So, we can modify the discretized action
such that we are adding terms which vanish as a → 0. One easy way to remove the
doublers is to introduce a mass which depends on kµ and diverges at the edges of the
Brillouin zone. This mass, of course, has to coincide with the original mass in the
continuum limit. This type of fermions are called Wilson fermions. See Refs. [1, 2]
for details.

The main disadvantage of the Wilson fermions is that they explicitly break chiral
symmetry. If all the masses in the QCD Lagrangian are equal, QCD is invariant under
the global flavor transformations

ψ → eiφ
a λ

a

2 ψ,

ψ̄ → ψ̄ e−iφ
a λ

a

2 , (2.28)

where the λa’s are the generators of the flavor group SU(Nf ) and ψ is a short term
for ψ ≡ ψa with a = 1, 2, . . . , Nf . In the massless case there is a further symmetry

ψ → eiϕ
aγ5

λa

2 ψ,

ψ̄ → ψ̄ e−iϕ
aγ5

λa

2 . (2.29)

So in the massless we have a SU(Nf ) × SU(Nf ) symmetry which is called chiral
symmetry. We can decompose the quark fields into left-handed and right-handed
components

ψL(x) =
1− γ5

2
ψ(x), (2.30)

ψR(x) =
1 + γ5

2
ψ(x), (2.31)

ψ(x) = ψL(x) + ψR(x) (2.32)
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and chiral transformations leaves left- and right-handed fields invariant separately.
The important feature of chiral symmetry is that it is spontaneously broken which
also shows up in the particle spectrum. We will come back to this topic in Sec. 2.4.

However, Wilson fermions are not suitable to study chiral symmetry on the lattice
because they have an explicit mass term in their action and, therefore, violate chiral
symmetry explicitly [3]. It turns out that chiral symmetry is a deep problem on the
lattice and it is hard work to circumvent this problem. We refer the interested reader
to Ref. [4]. In the following we will presented another approach to avoid fermion
doubling, but in this case it turns out that we have improved chiral properties.

Staggered Fermions

Another possibility to remove the doublers is to double the effective lattice extent.
Then, we do not have zeros in the sine of the propagator at the edges of the Brillouin
zone. We can achieve this by placing the 4 spinor components of 4 different fermions
at the 16 edges of the four-dimensional hypercube. The different fermions may be
distinguished by flavor. At every lattice site we now have a one-component field
instead of a four-component field. In the continuum limit we then obtain a theory
with 4 quark flavor.

Let us derive the action for staggered fermions. We start with the lattice ac-
tion in (2.18). In order to obtain a one-component quark field we perform a ”spin-
diagonalization” which can be achieved by a local transformation of the fields

ψx = Axχx,

ψ̄x = χ̄xA
†
x, (2.33)

where Ax is a unitary 4 × 4-matrix which diagonalizes the γ-matrices. The matrix
Ax, thereby, fulfills the relation

A†xγµAx+µ̂ ≡ ∆µ(x) ∈ U(1)×4, (2.34)

where ∆µ(x) is a diagonal 4 × 4 matrix belonging to a representation of the group
U(1)×4. Each diagonal entity of the matrix belongs to one U(1) group. One possible
representation of Ax fulfilling the relation from above is given by

Ax = A0
x ≡ (γ1)

x1(γ2)
x2(γ3)

x3(γ4)
x4 , (2.35)

where the (x1, x2, x3, x4) are the components of the vector x. We obtain for ∆µ(x),

∆µ(x) = ∆0
µ(x) ≡ αxµ l1 , (2.36)

with αxµ = (−1)x1+···+xµ−1 (µ = 1, 2, 3, 4).

Now we can easily express the lattice action in terms of the new fields χx and χ̄x

Sq =
∑

x

a4

{
m(χ̄xχx) +

1

2a

4∑

µ=1

[
(χ̄x∆µ(x)χx+µ̂)− (χ̄x+µ̂∆

†
µ(x)χx)

]
}
. (2.37)
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Note that χx ≡ χαx and χ̄x ≡ χ̄αx still have 4 components in Dirac space denoted by
α. But because we got rid of the Dirac matrix γµ and the phase αxµ is also diagonal
in Dirac space we have 4 identical fermions on the lattice. We now can in principle
sum over any arbitrary integer k, where α = 1, 2, . . . , k. We will choose k = 1 and
suppress the label α. We will see, that in the continuum limit we will obtain a quark
field with 4 flavors. For k = Nk we would obtain 4Nk flavors. Note that we have
reduced the components for the Dirac space but we still have three components in
color space. So, if we speak of the one-component χ fields we refer to the component
in Dirac space.

Let us now investigate the lattice action we just obtained in the continuum limit.
First, we split our lattice into 24 hypercubes which we label by yµ with 0 ≤ yµ ≤ L′µ−1.
The number of lattice sites in µ-direction is denoted by Lµ. So we have L′µ = 1

2
Lµ

hypercubes in µ-direction. Note that we have to use lattices with an even number of
sites. The lattice coordinate xµ (with 0 ≤ xµ ≤ Lµ − 1) can now be written in terms
of yµ,

xµ = 2yµ + ηµ, ηµ = 0, 1. (2.38)

So, the sum in the lattice action over all lattice sites can be expressed as a sum over
all hypercubes and a sum over all sites in the hypercubes

∑

x

=
∑′

y

∑

η

. (2.39)

Note that the ”staggered phase” αxµ in (2.36) does not depend on y but only on η,
so αηµ ≡ αxµ. From the 16 components of the one-component χ field sitting on the
edges of a hypercube we can obtain a 4 flavored quark field with 4 Dirac components
by taking appropriate linear combinations,

qαay ≡
1

8

∑

η

Γαaη χ2y+η, q̄aαy ≡
1

8

∑

η

χ̄2y+η Γ
† aα
η , (2.40)

where α denotes the Dirac index and a the flavor index, α, a = 1, . . . , 4. The matrices
Γη are defined by

Γη ≡ (γ1)
η1(γ2)

η2(γ3)
η3(γ4)

η4 (2.41)

and fulfill the relations

1

4
Tr
(
Γ†ηΓη′

)
= δηη′ ,

1

4

∑

η

Γ† bβη Γαaη = δbaδβα. (2.42)

From this relations we easily can show

χ2y+η = 2Tr
(
Γ†ηqy

)
, χ̄2y+η = 2Tr (q̄yΓη) . (2.43)

We see that the new quark fields q and q̄ now have the space-time index y which is
twice as large a x. So the propagator is not zero at the edges of the Brillouin zone
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anymore because we effectively have doubled the lattice extent. This means that there
are no doublers in this description.

Now, we can write the staggered action in (2.37) in terms of the new quark fields.
For the mass term we easily obtain

∑

x

(χ̄xχx) = 16
∑

y

′
(q̄y l1× l1 qy). (2.44)

The notation γ × t denotes the direct product of the Dirac matrix γ with the flavor
matrix t. For the kinetic term in the action we need the following relations

γµΓµ = δ0ηµαηµΓη+µ̂ + δ1ηµαηµΓη−µ̂,

γ5Γµγ5 = (−1)η1+η2+η3+η4Γµ. (2.45)

Further we define the lattice derivatives

∆µfy ≡
1

4
(fy+µ̂ − fy−µ̂)→ a∂µfy,

δµfy ≡
1

4
(fy+µ̂ + fy−µ̂ − 2fy)→ a2∂2µfy. (2.46)

Finally, we obtain for the staggered action in terms of the new fields

Sq = 16a4
∑

y

′
{
m (q̄y l1× l1 qy) +

1

a

4∑

µ=1

(q̄y [γµ × l1∆µ − γ5 × t5tµδµ] qy)
}
.

(2.47)

The flavor matrices tµ are defined by

tµ ≡ γTµ = t+µ (µ = 1, 2, . . . , 5). (2.48)

We find that the mass term and the first kinetic term are diagonal in flavor space. The
second kinetic term is of order O(a) and vanishes in the continuum limit. Therefore,
in the continuum limit we obtain the correct fermion action with 4 flavors.

As we mentioned above, the one-component fields χ̄ and χ have improved chiral
properties. So, in the massless case staggered fermions are symmetric under the global
transformations

χx → Uo(e)χx

χ̄x → χ̄xU
+
e(o)

}
with even (odd) lattice site x, (2.49)

and Uo(e) ∈ U(1). We see, that the staggered fields transform independently on even
and odd lattice sites. In the continuum limit this Uo(1) × Ue(1) symmetry becomes
SU(4)× SU(4)×U(1)A×U(1)V with 4 flavors. But for finite a it is explicitly broken
by the second kinetic term in the staggered action in (2.47). We see, that the chiral
properties for staggered fermions are indeed improved. Therefore, they are more
suitable investigating the chiral phase transition.
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2.1.3 The Gluonic Action

We will now construct the gauge theory on the lattice. We know how to do that in
the continuum. We start with the pure fermionic action in (2.13) and require that
the action should be invariant under local gauge transformations,

ψ(x)→ G(x)ψ,

ψ̄(x)→ ψ̄(x)G−1(x), (2.50)

where G(x) = eiθ(x)
a λ

a

2 is a SU(3) matrix. This leads us to the covariant derivative
Dµ = ∂µ + igAµ (in Euclidean space). Let us apply this procedure to the lattice.

The Wilson Action

By looking at (2.37) we find that the staggered fermion action is not invariant under
local gauge transformations of (2.50). This is because of the nonlocal terms χ̄xχx+µ̂
and χ̄x+µ̂χx. In order to make these terms gauge-invariant we introduce the path
integral

U(x, y) = P eig
∫ y
x
dzµAµ(z) ∈ SU(3), (2.51)

where P denotes path ordering. From the gauge transformation law of the gauge field
Aµ it follows that the transformation law of this object is given by

U(x, y)→ G(x)U(x, y)G−1(y) (2.52)

which (in the continuum) makes the nonlocal expression χ̄(x)U(x, y)χ(y) gauge-
invariant. Consider now the lattice version of U(x, y),

Uxµ ≡ U(x+µ̂),x = eigaAxµ , (2.53)

where we assumed that y is next to x. With the help of this expression we can write
the staggered action in a gauge-invariant way

Sq[U, χ, χ̄] =
∑

x

{
am(χ̄xχx) +

1

2

4∑

µ=1

αxµ
[
(χ̄xU

†
xµχx+µ̂)− (χ̄x+µ̂Uxµχx)

]
}
.

(2.54)

By expanding Uxµ in terms of the gauge field Axµ,

Uxµ = e−igaAxµ = 1− igaAxµ −
g2a2

2
A2
xµ + . . . , (2.55)

we can see by looking at the first two terms how the covariant derivative Dµ enters the
game in the continuum limit. Note that the Uxµ’s do not live on the lattice sites but
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Figure 2.1: The link variables U live on the links, the fermion fields Ψ on the lattice sites.
We plotted an elementary plaquette.

on the links between two sites. Therefore, we denote the Uxµ’s also as link variables.
The negative link variables are defined by

Ux(−µ) ≡ U †(x−µ̂)µ, (2.56)

where x− µ̂ denotes the neighboring site of x in (negative) −µ-direction. The index
µ can take the values µ = ±1,±2,±3,±4.

Let us now come to the kinetic term of the gauge field. We consider the gauge-
invariant expression

Up ≡ Ux;µν ≡ U(x+ν̂)(−ν)U(x+µ̂+ν̂)(−µ)U(x+µ̂)νUxµ

= U †xνU
†
(x+ν̂)µU(x+µ̂)νUxµ. (2.57)

This expression is a product of the link variables along the elementary lattice cell in
the µ-ν-plane, which we is called plaquette, see Fig. 2.1. One possible (Euclidean)
gauge action on the lattice can be defined entirely in terms of such plaquette terms

Sg[U ] = β
∑

p

{
1− 1

6

(
Tr Up + Tr U−1p

)}

= β
∑

p

(
1− 1

3
Re Tr Up

)
, (2.58)

where

β =
6

g2
. (2.59)

The summation over p denotes the sum over all possible plaquettes in (say) counter-
clockwise direction

∑

p

≡
∑

x

∑

1≤µ<ν≤4
. (2.60)
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This lattice action is called Wilson gauge action. We still have to show that in the
continuum limit we will obtain the correct action. With the expansion in (2.55), the
help of

A(x+µ̂)ν = Axν + a∆f
µAxν , (2.61)

where ∆f
µ denotes the lattice derivative in forward direction, and the Campbell-Baker-

Hausdorff formula

exey = ex+y+
1
2
[x,y]+..., (2.62)

we find

Ux;µν = e−iga
2Gx;µν , (2.63)

where

Gx;µν = Fx;µν +O(a)
Fx;µν = ∆f

µAxν −∆f
νAxµ + [Axµ, Axν ]. (2.64)

Because Tr Gxµν = 0 we find

Tr (Up + U−1p ) = 6 + g2a4Tr (Fx;µν)
2 +O(a5), (2.65)

Using the relation

∑

p

Tr (Fx;µν)
2 =

1

2

∑

x;µ,ν

Tr (Fx;µν)
2 (2.66)

we finally obtain for the Wilson action

S = −1

2

∑

x

a4Tr Fx;µνFx;µν +O(a5) (2.67)

which gives the correct action in the continuum limit. So, the full QCD action on the
lattice with staggered fermions and Wilson gauge action is given by

S[U, χ, χ̄] = Sg[U ] + Sq[U, χ, χ̄]. (2.68)

Let us come back to the starting point of this section, the calculation of the
correlation functions. Consider the expectation value of the correlation function F

〈F 〉 =
∫
D[U ] D[χ̄] D[χ] e−Sg−Sq F [χ, χ̄]∫

D[U ] D[χ̄] D[χ] e−Sg−Sq
, (2.69)

where F has the bilinear form

F [χ, χ̄] = χy1χ̄x1χy2χ̄x2 . . . χynχ̄xn . (2.70)



20 Chapter 2. Lattice QCD in Short Words

We have to get rid of the (Grassmann-valued) fermionic variables in order to perform
lattice calculations. It can be shown that for observables which are only bilinear in
the fermion fields we can integrate out the fermionic fields. For example, for the
fermionic part in the denominator we obtain

∫
D[χ̄] D[χ] e−Sq = det [ /D +m], (2.71)

where for the staggered action /D +m is given by

Sq[U, χ, χ̄] ≡
∑

xy

χ̄y( /D +m)yxχx (2.72)

with

( /D +m)xy =
1

2

4∑

µ=1

[
αxµU

†
xµ · δ(x+µ̂),y − α(x−µ̂)µU(x−µ̂)µ · δ(x−µ̂),y

]
+ amδxy.

(2.73)

If we also integrate out the fermion fields in the numerator we obtain for the correlation
function

〈F 〉 = 〈χy1χ̄x1χy2χ̄x2 . . . χynχ̄xn〉 =
∫
D[U ] e−Sg [U ]+log det [ /D+m] F [U ]
∫
D[U ]e−Sg [U ]+log det [ /D+m]

, (2.74)

where F [U ] has some complicated dependencies on the gauge field U , see [2]. We have
written the correlation function entirely in terms of bosonic variables which allows us
to calculate it on the lattice.

In order to reduce computation time in our lattice simulations to reasonable times
we made use of the so-called ”quenched approximation” in all our calculations,

det [ /D +m] = const. (2.75)

This is a common simplification which is often used in QCD lattice simulations because
the calculation of the determinant is extremely expensive. With this simplification
Eq. (2.74) becomes

〈F 〉 =
∫
D[U ] e−Sg [U ] F [U ]∫

D[U ]e−Sg [U ]
. (2.76)

It turns out that in this approximation we neglect closed quark loops, see Ref. [2].
However, the notation ”approximation” is not really justified because this is not an
approximation in the sense of an expansion in a small parameter. This means we
cannot approximate how large the error is we make. Anyway, lattice calculations
have shown that the quenched approximation yields good results which is the other
reason why it is widely used.
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Now we can start to generate gauge field configurations using the usual quantum
Monte Carlo algorithm with importance sampling. Setting a = 1 we generate gauge
configurations according to the probability given by the gauge action with a fixed
value of β. For each configuration we can calculate different observables and finally
compute the expectation value of the observables by simply taking the average over
the ensemble. In the same way we obtain ensembles for different values of β.

Of particular interest are the eigenvalues of the Dirac operator. For each gauge
configuration we can calculate the eigenvalues and eigenvectors from which we can
calculate fermionic observables by averaging over the ensemble. In our studies we
employed the implicit restarted Arnoldi method [5] using the ARPACK library [6, 7].

Chiral Improvements

In order to study chiral properties on the lattice we naturally want to have fermions
with best chiral properties. As we have seen above, if we remove the fermion doublers
we cannot implement chiral symmetry exactly on the lattice. It turns out, that the
best we can achieve are fermions which fulfill the Ginsparg-Wilson relation [8]

γ5D +Dγ5 = aDγ5D, (2.77)

where D denotes the Dirac operator. In the continuum limit D anti–commutes with
γ5 indicating that chiral symmetry is respected. Currently, there is only one kind
of lattice fermions which obey this relation exactly, namely the overlap operator [9],
and a few operators which fulfill the relation approximately like domain wall fermions
or chirally improved fermions. The lattice simulations for exact Ginsparg-Wilson
fermions are very expensive in computer time. Therefore, it is reasonable to look at
approximate solutions of the Ginsparg-Wilson relation.

Chirally improved fermions are based on a systematic expansion of the most gen-
eral Dirac operator [10, 11, 12]. This expansion is plugged into the Ginsparg-Wilson
equation from which we obtain a set coupled equations. The expansion of D can be
truncated at some level. Solving the corresponding set of equations leads to a Dirac
operator which approximately fulfills the Ginsparg-Wilson relations. In practice the
expansion is truncated at a level which leads to paths of the Dirac operator which
are not longer than 4 links. Note that the longest path for Wilson fermions is one
link. The chirally improved fermions have much better chiral properties, e.g. they
have numerically exact zero modes.

Because the path length of the Dirac operator is now larger we should also use
an improved gauge action with larger path length. In numerical studies the Lüscher-
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Weisz gauge action [13, 14] is used

Sg[U ] =β1
∑

pl

1

3
Re Tr [1− Upl] +

+β2
∑

rt

1

3
Re Tr [1− Urt] +

+β3
∑

pg

1

3
Re Tr [1− Upg]. (2.78)

The first term corresponds to the ordinary sum over the plaquettes. The sum in the
second and third term is over all 2× 1 rectangles and all parallelograms, respectively.
Note that β2 and β3 can be computed from β1 [15, 16, 17, 18]. We will present
numerical results with chirally improved fermions in Chapter 3.

2.2 Finite Temperature QCD

In order to study phenomena like the chiral and the confinement phase transition
in the vicinity of the critical temperature we have to find out how to incorporate
finite temperature in our lattice description. We start with quantum mechanics in
the path integral formalism with imaginary time. We can immediately write down
the corresponding thermodynamical partition function,

Z = Tr e−βH , (2.79)

where H is the Hamiltonian and β = 1/T , with T the temperature. (We set kB = 1.)
Consider a system with n degrees of freedom. We denote the coordinate operator by
Qi which has eigenvalues qi. Then Eq. (2.79) can be written as

Z =

∫ n∏

α=1

dqα
〈
q
∣∣e−βH

∣∣q
〉

(2.80)

with
∣∣q
〉
=
∣∣q1, q2, . . . , qn

〉
. Note that the coordinates at ”times” τ = 0 and τ = β are

identified. For Hamiltonians of the form

H =
1

2

n∑

α=1

P 2
α + V (Q) (2.81)

we can write for Eq. (2.80)

Z =

∫

periodic

[dq] e−
∫ β
0
dτL(q,q̇), (2.82)

where LE is the (Euclidean) Lagrangian and the label ”periodic” refers to the periodic
boundary conditions in time direction. We see that by restricting Euclidean time to
the interval [0, β] and imposing periodic boundary conditions in coordinate space
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we obtain the thermodynamical partition function from the path integral formalism,
which appears to be somehow miraculous.

We can apply this procedure immediately to quantum field theory. The thermo-
dynamic partition function then is given by

Z =

∫

periodic

D[φ] e−
∫ β
0
dτ

∫
dxL(φ,φ̇) (2.83)

with the (Euclidean) Lagrangian density L(φ, φ̇) and periodic boundary conditions
on the fields. For our QCD lattice calculations, this means that we have to impose
periodic boundary conditions and we have to remember that the temperature is given
by the inverse of the lattice extent. In practice we mimic large temperatures by using
lattices where the temporal extent of the lattice is much smaller than the spatial
extent, and low temperatures by using lattices where the temporal extent of the lattice
is equal to the spatial extent. Note that it turns out that for fermion fields, which
have Grassmann-valued fields in the path integral, we have to impose anti-periodic
boundary conditions, see [2]. So, the QCD thermodynamic partition function can be
written as

Z =

∫

periodic

D[Aµ]

∫

anti−periodic
D[ψ̄] D[ψ] e−

∫ β
0
dτ

∫
dxLQCD . (2.84)

Now we are prepared for numerical studies. In our numerical calculations we used
lattices with Ls > Lt. We fix Lt and change the temperature T = 1/(aLt) by
changing β = 6/g and hence a. Finally, we also have a finite extent of the lattice in
the spatial directions. Therefore, we also have to impose spatial boundary conditions.
A convenient choice are periodic boundary conditions, but we are free to choose other
boundary conditions in this case. We have to consider the limit Vs → ∞ anyway
(where Vs is the spatial volume), and in this limit the spatial boundary conditions
play no role.

2.3 The Polyakov Loop

In this section we derive an order parameter for the confinement phase transition.
Unfortunately, it is not easy to define such an order parameter in (full) QCD, which
is related to the presence of dynamical fermions. But we will come back to this later.
Confinement means that all physical states are color singlets. Consider the easiest
case of an quark and an anti–quark. Let the quark have a certain color and the anti–
quark the corresponding anti–color, then we can construct a color singlet quark state.
Those color singlet quark states are the only quark states which can be observed in
nature. There are no colored quark states being observed so far. So, we expect every
theory describing the strong force to exhibit confinement.

Let us give a qualitative picture how confinement should work. If we try to
separate a color singlet quark–anti-quark pair the potential of the two quarks begins
to increase. Illustratively, we think of a tube of flux lines connecting both fermions.
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The energy density of the gauge field is supposed to be constant and, therefore, the
total field energy is linearly proportional to the distance. So, the potential (at large
distances) is linearly rising with separation1,

E(r)→ Kr, (2.85)

where r denotes the separation between the two quarks and the constant K is the
so-called string tension. When the potential reaches the energy which is necessary to
create a new quark anti–quark pair it becomes energetically favorable to break the
string and produce an new quark–anti-quark pair. Now, we have two quark–anti-
quark pairs which will also break into new pairs if we try again to separate the quarks
from the anti–quarks, and so on. At the end the original string is broken down into
several strings which all have about the same length (∼ 1 fm). We see that due to
this string breaking effects the potential between the original quark and anti-quark
will be modified, which is known as the screening. Because of the screening it is very
difficult to determine a proper order parameter for the confinement phase transition.

-0.1 0 0.1

Re P

-0.1

0

0.1

Im
 P

β1 = 8.10
β1 = 8.45

real sector

complex sector

complex sector

θP = 0
θP = -2π/3

θP = +2π/3

Figure 2.2: The Polyakov loop in the complex plane. Every data point corresponds
to a single gauge field configuration of a 203 × 6 lattice. We plotted ensembles with two
different values of β using the Lüscher-Weisz gauge action. The data points of the ensemble
with β = 8.10 cluster around zero which means that we are in the confinement phase
while for β = 8.45 the data points cluster around the phases of the Z3 group which signals
deconfinement.

But there is one exception. If we forbid the creation of new quark–anti-quark
pairs we will have a linearly increasing potential for long distances which improves the
situation much. Forbidding pair creation corresponds to the quenched approximation

1Note that we are interested in the low energy regime, which means the length scale is large.
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we use in our lattice calculations. In Sec. 2.1.3 we noted that this approximation
reduces the computer time for lattice calculations enormously. As we will see soon,
quenching has the further advantage that we can find a well defined order parameter
for the confinement phase transition. The property of an order parameter is to divide
the parameter space (of the order parameter) into two regions where each region
correspond to one of the two phases. What we want to have is a relation between
the order parameter and the temperature of the system. We, then, can determine the
critical temperature Tc where the phase transition occurs.

Let us become more quantitatively and present an order parameter for confine-
ment, namely the Polyakov loop,

P (x) =
1

3
TrP exp

{
ig

∫ 1/T

0

dtA4(x, t)

}
, (2.86)

where P denotes path ordering and 1/T is the extent in time direction. We are
using the Euclidean time description so A4(x, t) denotes the time component of the
gauge field. Remember, because we like to have QCD at finite temperature we use
a lattice with finite extent in time direction and periodic boundary conditions. The
temperature T is related to the extent Lt in time direction by T = 1/Lt. The lattice
version of the Polyakov loop is quite simple. For a given spatial point x we just have
to multiply all link variables U(x,x4),4 in time direction and take the trace,

Px ≡ Tr

(
Lt∏

x4=1

U(x,x4),4

)
. (2.87)

It is no problem to calculate the Polyakov loop from lattice data. But let us return
to the Polyakov loop and its role as an order parameter of the confinement phase
transition. In Ref. [2] it is shown that one can relate the free energy which is necessary
to bring in a static color triplet test charge into the gauge field to the Polyakov loop,

e−
∆E
T ∼ |〈P 〉| ≡

∣∣∣∣∣

〈
1

L3
s

∑

x

Px,

〉∣∣∣∣∣ . (2.88)

We denote the change of the free energy by ∆E and 〈P 〉 is the expectation value of the
Polyakov loop. The lattice extent in the spatial directions is denoted by Ls. Let us see
how we have to interpret this equation. Assume that we are in the deconfined phase.
That means a color triplet charge can be easily put into the gauge field. This costs
no energy, so ∆E is zero. For the expectation value of the Polyakov loop this means
it has to be finite. Let us try the other way round. If we are in the confined phase we
cannot bring in a single color triplet. We only can bring in color singlets. The amount
of energy which is necessary to bring in a color triplet is infinite. The exponential
in Eq. (2.88), therefore, vanishes and also the expectation value of the Polyakov loop
does. We illustrate the behavior of the Polyakov loop in Fig. 2.2 where we plotted two
lattice ensembles with different values of β. The ensemble with β = 8.10 corresponds
to a temperature below the critical temperature Tc of the phase transition while for
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β = 8.45 the temperature is above Tc. We nicely see that the Polyakov loop for T < Tc
clusters around zero which signals that we are in the confined phase. For T > Tc the
Polyakov loop clusters around the elements of the Z3 group. This means we are in
the deconfined phase.

Let us focus on the group Z3, the center group of SU(3). In general the center of
a group contains all group elements which commute with all group elements. In the
case of QCD we have a SU(3) group and the corresponding center of this groups is
Z3 = {exp(i2πk/3); k = 0, 1, 2}. The gluonic action in QCD has a global Z3 symmetry.
This means the gluonic action is invariant under the following transformation

U(x,x4),4 → z U(x,x4),4 (x4 fixed), z ∈ Z3, (2.89)

where all transformations occur on a given temporal hyperplane, i.e. for a fixed x4.
From this transformation law it is clear that the gluonic action is invariant under
such transformations. It is also clear that any closed loop which crosses that temporal
hyperplane (x4 = const.) the same number of times in positive as in negative direction
will be left invariant as well. This may not be the case if we consider a product of
link variables along a closed loop which goes around the torus, as it is the case for
the Polyakov loop. Accordingly, the Polyakov loop transforms like

Px → z Px. (2.90)

Consider now the case that the ground state is invariant under Z3 transformations.
Then, configurations related by Z3 transformations show up with the same probability.
Hence, we have

∑
k exp(i2πk/3) = 0 the expectation value of the Polyakov loop has to

vanish. On the other hand, a nonzero expectation value means that the Z3 symmetry
is broken. We see, in the deconfinement phase the Z3 symmetry is broken while in
the confined phase the symmetry is restored [19].

Since the transformation defined in Eq. (2.89) leaves the action invariant the three
different Z3 sectors are equivalent. This is not the case for the spectrum of the Dirac
operator. Notice that the boundary conditions of the fermions are changed by an Z3

transformation [20]. The usual anti-periodic boundary conditions, see Sec. 2.2,

ψ(x, 1/T ) = −ψ(x, 0), (2.91)

are twisted into,

ψ(x, 1/T ) = −z ψ(x, 0). (2.92)

Further, the change in the boundary conditions affects the Matsubara frequencies.
Instead of

ωk = (2k + 1)πT (2.93)

we have

ωk = ((2k + 1)π − argP )T. (2.94)



2.4. The Banks-Casher Relation 27

In the free-field case the smallest eigenvalue of the Dirac operator has the value of
the lowest Matsubara frequency. So for the real sector (z = exp(i2π0/3) = 1) the
smallest eigenvalue is πT but for the complex sectors (z = exp(±i2π/3)) it is πT/3.
We see, that in the free-field case the lowest eigenvalue of the Dirac operator in the
real sector of the Polyakov loop is three times larger than in the complex sectors. We
will come back to this result later on.

2.4 The Banks-Casher Relation

In the limit where the quark masses tend to zero (chiral limit) the QCD Lagrangian
has an additional global symmetry. This so-called chiral symmetry is crucial for
the mass spectrum of the light hadrons. Indeed, we expect QCD to be chirally
symmetric for the lightest quarks since the masses of the lightest two (or three)
quarks are small compared to the typical energy scale of QCD. The typical energy
scale of QCD is ∼ 1 GeV. So, compared to the quark masses of mu,d ∼ 5 MeV,
ms ∼ 100 MeV, mc ∼ 1.3 GeV, ... this symmetry is approximately respected for
the lightest two (or three) quarks. Nevertheless, chiral symmetry is not manifest
in the mass spectrum. This is because the symmetry is spontaneously broken, so
the ground state of QCD is not chirally symmetric. Because of this spontaneous
symmetry breaking, massless Goldstone bosons show up in the mass spectrum [21].
These Goldstone bosons in fact had been verified experimentally. However, since chiral
symmetry is only approximately respected the experimentally found Goldstone bosons
acquire a small mass. Let us consider the case Nf = 3. The group SU(3) × SU(3)
of chiral symmetry is broken down to SU(3). Therefore, according to the Goldstone
theorem, we obtain 8 massless Goldstone bosons for the 8 broken generators of the
SU(3) group and, in principle, another one for the breakdown of U(1)×U(1)→ U(1).
Note that for the latter Goldstone boson one has found a particle with the correct
quantum numbers but the mass of this particle is too heavy. This riddle goes under
the name of the UA(1) puzzle but is beyond the scope of this thesis.

Let us see what impact chiral symmetry has on our theory. First of all we focus on
the Dirac operator. We introduce the projection operators PR/L = ( l1± γ5)/2 acting
on the quark fields. The eigenstates of PR/L define the chiral basis {ϕR, ϕL}. The
(flavor) group which corresponds to chiral symmetry is SUR(Nf ) × SUL(Nf ). So in
the chiral limit where the QCD Lagrangian respects this symmetry the right- and
left-handed components, ϕR and ϕL, can be rotated independently in flavor space.
Because /D anti–commutes with γ5, { /D, γ5} = 0, the Dirac operator has a block
diagonal structure in the chiral basis,

/D =

(
0 iT
iT † 0

)
. (2.95)

The determinant in Eq. (2.12) then has the form

det( /D +mf ) = det(TT † +m2
f ). (2.96)
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We see that the Dirac operator only couples left-handed to right-handed components
while a mass term couples components of the same handedness. Note that the (Eu-
clidean) Dirac operator is anti–hermitian, /D† = − /D, and, therefore, the nonzero
eigenvalues of i /D come in pairs ±λi (with λi real). The corresponding eigenvectors
fulfill the relation γ5ψλ = ψ−λ. Note that the Dirac operator also can have zero modes.
These zero modes have definite chirality which means that they are eigenvector of γ5,
γ5ψ0 = ±ψ0.

We noted in the beginning of this section that we expect chiral symmetry to
be spontaneously broken. The order parameter for this phase transition is the chiral
condensate 〈q̄q〉. In the following we will relate the chiral condensate to the eigenvalue
density ρ(λ) of the Dirac operator. This relation turns out to be a useful tool in lattice
QCD which will help us to determine the critical point of the chiral phase transition.
The chiral condensate for a given gauge field configuration is given by

〈q̄q〉 = i

∫
d4xTrS(x, x) = −i

∫
d4x

∑

λ

Trψ†λ(x)ψλ(x)

λ+ im
= −

∑

λ>0

2m

λ2 +m2
,

(2.97)

where S(x, y) = −
〈
x
∣∣i /D−1

∣∣y
〉
is the quark propagator and ψλ(x) are normalized

eigenfunctions of /D with corresponding eigenvalues λ. In the last expression we
excluded the zero modes in the summation because they do not contribute to the
quark condensate. This is because it is believed that the number of zero modes scales
as V 1/2. So the density of zero modes scales like 1/V 1/2 and, therefore, vanishes
in the thermodynamic limit. This means that zero modes do not contribute to the
eigenvalue density and chiral condensate, respectively, while the number of nonzero
eigenvalues scales as V and, thus, the density of nonzero modes does not necessarily
vanish.

The chiral condensate 〈q̄q〉 in Eq. (2.97) still has to be averaged over the gauge
ensemble and the chiral and thermodynamic limits (m → 0 and V → ∞) have to
be taken. To account for the ensemble average we introduce the spectral density
ρ(ν) =

∑
λ δ(ν − λ) and obtain

〈q̄q〉 = −
∫ ∞

0

dλ ρ(λ)
2m

λ2 +m2
. (2.98)

Now we have to be careful in which order to take the limits. In a finite system the
eigenvalue density always vanishes around zero, so there is no spontaneous symmetry
breaking. Only in the thermodynamic limit we can have a finite density of eigenvalues
close to zero. The situation is similar to that of a system of spins without an external
field. In the system has finite extensions it is tunneling between the two ground
states which means that the magnetization is zero. Only in the thermodynamic limit
spontaneous symmetry breaking can occur and the system can choose a preferred
direction for its magnetization.

So, if we take the thermodynamic limit first ρ can be finite near zero and, therefore,
the λ integration is infrared divergent as m→ 0. Finally, we can have a finite quark
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condensate,

〈qq̄〉 = − lim
m→0

∫ ∞

0

dλ ρ(λ)
2m

λ2 +m2
= −πρ(λ = 0). (2.99)

This relation Banks and Casher derived first in 1980 [22] and it is known as the
Banks–Casher relation. The absolute value of the chiral condensate is denoted by Σ.
Note that if the condition

mV ΣÀ 1 (2.100)

is satisfied the Banks–Casher relation still applies [23]. We will come back to this in
Sec. 3.2. Remember, if there is a non–vanishing density of eigenvalues of the Dirac
operator around zero then the chiral condensate is nonzero and chiral symmetry is
broken while in the other case chiral symmetry is restored.

2.5 Instantons and Chiral Symmetry Breaking

In the last section we have discussed the Banks–Casher relation and its importance
for chiral symmetry breaking. Now, that we have presented an order parameter for
the chiral phase transition we would like to get some insight into the mechanism
of chiral symmetry breaking. This topic is intimately connected to the subject of
instantons [24]. Before we will go into more details let us first get familiar with the
concept of instantons.

2.5.1 Classical Vacua

Instantons describe the tunneling between the classical vacua of a theory. Before we
will study tunneling let us start with the classical vacua of SU(N) gauge theory. The
Yang-Mills Hamiltonian is given by

H =
1

2

∫
d3x(Ea ·Ea +Ba ·Ba) (2.101)

where the electric and magnetic fields Ea
i and Ba

i are defined by

Ea
i = F a

i0, Ba
i = εijkF

a
jk, i, j, k = 1, 2, 3 a = 1, 2, . . . , Nc. (2.102)

Fµν is the field strength tensor defined in (2.7). It is convenient to use the temporal
gauge A0 = 0. Note that we use the abbreviation Ai ≡ Aai λ

a/2 of (2.5). In that gauge
the conjugate momentum is just the electric field Ei = ∂0Ai. Note that the classical
vacuum corresponds to configurations with field strength zero. In the Abelian case,
i.e. in electrodynamics, these are just configurations with constant potential. In the
non-Abelian case this is no longer true. All fields which are ”pure gauge”,

Ai = iU(x) ∂iU
†(x), (2.103)
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have field strength zero. The gauge transformations U(x) can be classified by their
global topological properties. Let us restrict ourselves to fields satisfying

lim
|x|→∞

U(x) = l1 . (2.104)

Such fields can be classified by their winding number which is defined by

nW =
1

24π2

∫
d3x εijk Tr[(U †∂iU)(U

†∂jU)(U
†∂kU)]. (2.105)

To illustrate the meaning of this integer let us consider the gauge group SU(2) [25].
We can parameterize this group as follows

U(x) = u0 l1 + iu · σ. (2.106)

The components of σ = (σx, σy, σz) are the Pauli matrices and the components of
u = (u0,u) are real and normalized by u20 + u2 = 1. From this parameterization
we easily can see that the SU(2) group is homeomorphic to the S3 sphere which is
defined by u20 + u21 + u22 + u23 = 1. But S3 is also homeomorphic to R3 ∪ {∞}. That
means that the gauge transformation U(x) for the gauge group SU(2) maps S3 to S3.
These mappings can be classified by equivalence classes characterized by an integer.
The integer counts how many times the group manifold is covered. Note that in the
general case of the gauge group SU(Nc) the results we obtained above are the same.
Note that we also can express the winding number in terms of the gauge fields which
is then called Chern-Simons characteristic

nCS =
1

16π2

∫
d3x εijk

(
Aai ∂jA

a
k +

1

3
fabcA

a
iA

b
jA

c
k

)
. (2.107)

We see that there exist infinitely many classical vacua which are topologically
different. Because of the topological difference we can not go from one vacuum to
another by means of a continuous gauge transformation. This means that there is no
connecting path of two topologically different vacua where the energy is zero all the
time. Classically, we cannot go from one vacuum to another but quantum mechani-
cally there is the possibility of tunneling. Instantons in gauge theory correspond to
the tunneling amplitude between two topologically different vacua.

2.5.2 Tunneling

Let us look for a tunneling path in Yang-Mills theory which connects two different
vacua. It is clear what we have to do. As in quantum mechanics, the tunneling
amplitude is given by the classical solution of the (Euclidean) equations of motion.
To find such solutions let us rewrite the gauge part of the action in (2.11)

Sg =
1

4g2

∫
d4xF a

µνF
a
µν =

1

4g2

∫
d4x

[
±F a

µνF̃
a
µν +

1

2

(
F a
µν ∓ F̃ a

µν

)2]
, (2.108)
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where the dual field strength tensor F̃ a
µν is defined by

F̃ a
µν =

1

2
εµνρσF

a
µν (2.109)

and we made the convenient rescaling of the fields Aµ → 1
g
Aµ. As we will see below

the first term of the last equation in (2.108) is topologically invariant. From this and
from the observation that the last term is always positive we can see that the action
is minimal if the field is self-dual or anti self-dual

F a
µν = ±F̃ a

µν . (2.110)

Note that self-dual fields automatically fulfill the equation of motion DµFµν = 0 where
Dµ is the covariant derivative.

Let us return to the first term in Eq. (2.108) and its topological invariance. We
define the topological charge by

Q =
1

32π2

∫
d4xF a

µνF̃
a
µν . (2.111)

The corresponding action is then given by

Sg =
8π2

g2
|Q|. (2.112)

We now will show that for field configurations with finite action Q is an integer. For
this propose we will use the fact that the integrand in (2.111) can be written as a
total derivative.

Q =

∫
d4x∂µKµ, (2.113)

with Kµ =
1

16π2
εµαβγ

(
Aaα∂βA

a
γ +

1

3
fabcA

a
αA

b
βA

c
γ

)
. (2.114)

We know that for configurations with finite action the gauge field has to be pure
gauge at infinity, that means as |x| → ∞ we have Aµ → iU∂µU

†. Making a similar
analysis to that we made above shows that the mappings of the sphere S3 (|x| → ∞)
into the gauge group can also be classified by an integer winding number n. If we
insert Aµ = iU∂µU

† into Eq. (2.113), we find that Q = n. Note that if the gauge field
falls off rapidly at spatial infinity we find

Q =

∫ ∞

−∞
dt

d

dt

∫
d3xK0 = nCS(t =∞)− nCS(t = −∞). (2.115)

From this we see that field configurations with Q 6= 0 connect topologically different
vacua.

Let us now construct an explicit solution for Q = 1. We will start from the
simplest winding number n = 1. We begin with Aµ = iU∂µU

† with U = i x̂µσ
+
µ ,

where σ±µ = (σ,∓i) and x̂µ is normalized to one. It follows that

Aaµ = 2 ηaµν
xν
x2
, (2.116)
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where we have used the ’t Hooft symbols ηaµν and η̄aµν ,

ηaµν = εaµν + δaµδν4 − δaνδµ4, (2.117)

η̄aµν = εaµν − δaµδν4 + δaνδµ4. (2.118)

We make the ansatz Aa
µ = 2 ηaµν xν

f(x2)
x2

where f has to satisfy the boundary
condition f → 1 as x2 →∞. Putting this into the self-duality equation in (2.110) we
find

f(1− f)− x2f ′ = 0. (2.119)

The solution of this equation is f = x2

x2+ρ2
where the integration constant ρ represents

the size of the instanton. For the gauge field we obtain

Aaµ(x) =
2 ηaµν xν
x2 + ρ2

. (2.120)

which is known as the Belavin-Polyakov-Schwartz-Tyupkin instanton solution [26].
To obtain a solution for Q = −1 we have to replace ηaµν by η̄aµν . Finally, the
corresponding field strength is

(F a
µν)

2 =
192ρ4

(x2 + ρ2)4
. (2.121)

We see that the instanton solution is well localized and F a
µν falls off for x as 1/x4.

Because the instanton is also localized in time it was named like a quasi-particle.
The instanton has several degrees of freedom. In the case of SU(2) we have the

instanton size ρ, the position zµ of the instanton, and three further parameters which
determine the color orientation. The color orientation in group space can be deter-
mined by some SU(2) matrix U which acts on the field, Aµ → UAµU

†, or by the
rotation matrix Rab = 1

2
Tr(UσaU †σb) with Aa

µ → RabAbµ. Note that the instanton
is rotationally invariant and therefore ordinary rotations do not generate different
solutions. For SU(3) we can embed the SU(2) instanton solution. We note that for
|Q| = 1 there are no new SU(3) solutions. Only the number of the degrees of freedom
increases as for the color orientation we obtain 7 free parameters (not 8 because one
generator of the SU(3) leaves the instanton invariant).

Let us return to the subject of tunneling. The transition amplitude for a tunneling
process of two topologically different vacua is given by

WT =
〈
j
∣∣e−Hτ

∣∣i
〉
=

∫
D[A] e−Sg . (2.122)

Let us expand the field around the classical solution, Aµ = Akl
µ + δAµ, and express

Eq. (2.122) in terms of this decomposition,

WT = e−Sg(A
kl)

∫
D[δA] e

− 1
2
δA δ2

δx2
Sg

∣∣∣
Akl

δA+ ···
. (2.123)
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We see that the linear term vanishes. This is simply because Akl
µ fulfills the equation

of motion. We put the constant term of the expansion in front of the integral. Note
that Sg(A

kl) is given by Sg = 8π2 |Q|
g2
. Therefore, we obtain for the tunneling amplitude

for our instanton solution we just constructed (Q = 1),

WT ∼ e
− 8π2

g2 . (2.124)

We now can take into account the fluctuations around the classical solution. We
therefore have to evaluate the following path integral

∫
D[δA] e

− 1
2
δA δ2

δx2
Sg

∣∣∣
Akl

δA
. (2.125)

The calculation of this path integral is rather tedious, so we refer the interested reader
to Ref. [27].

2.5.3 Zero Modes

The most important feature of an instanton for our purposes is that it possesses a
fermionic zero mode satisfying i /Dψ0 = 0. Before we will discuss the importance of this
fermionic zero mode and its relation to chiral symmetry breaking we like to sketch
how to calculate the wave function of the zero mode. We restrict ourselves to the
case of SU(2). Let us start with the squared Dirac operator which can be written as
follows

(i /D)2 =

(
−D2 +

1

2
σµνFµν

)
, (2.126)

where σµν =
i
2
[γµ, γν ]. Let us use the relation σµνF

±
µν = ∓γ5σµνF±µν for (anti) self-dual

fields F±µν . Then, for a self-dual field we obtain with the help of the Dirac equation
i /Dψ = 0 and the decomposition into left-handed and right-handed fermion fields
ψ = χL + χR the following equations

(
−D2 +

1

2
σµνF

+
µν

)
χL = 0, −D2χR = 0. (2.127)

The same equation holds for anti-self-dual fields if we exchange (+ ↔ −, L ↔ R).
We see that χR has to vanish since −D2 is a positive operator. We see that the zero
mode is left-handed in the background field of an instanton and left-handed in an
anti-instanton background. If we solve the equation above, we obtain for the wave
function of the fermionic zero mode [28, 29]

ψ0(x) =
ρ

π

1

(x2 + ρ2)
3
2

γ · x√
x2

1 + γ5
2

φ, (2.128)

where φαm = 1√
2
εαm is a constant spinor in which the SU(2) color index α is coupled

to the spin index m = 1, 2. Again, the SU(3) solution can be obtained by embedding.
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2.5.4 Instantons and Chiral Symmetry Breaking

Because of the presence of fermions single instantons cannot exist in the chiral limit.
This can be seen as follows. The tunneling amplitude in (2.122) is modified by the
fermions,

WT =
〈
j
∣∣e−Hτ

∣∣i
〉
=

∫
D[A] D[ψ̄] D[ψ] e−Sg−Sq , (2.129)

where the Euclidean action Sq for Nf fermions is given by

Sq =

Nf∑

f=1

∫
d4x ψ̄f (x)( /D +mf )ψf (x). (2.130)

Integrating out the quark fields we obtain

WT =

∫
D[A] e−Sg

∏

f

det[ /D +mf ]. (2.131)

The determinant now can be written in terms of the eigenmodes of the Dirac operator,
i /Dψλ = λψλ. Using the fact that the eigenvalues λ come in pairs of ±λ we obtain

det[ /D +m] = mν
∏

λ>0

(λ2 +m2), (2.132)

where ν is the number of zero modes. We see that in the chiral limit (mf → 0) the tun-
neling amplitude vanishes. However, we know that chiral symmetry is spontaneously
broken which means that we can have a nonzero tunneling amplitude anyway.

Let us consider chiral symmetry breaking in more detail, see also Refs. [30, 31].
In Sec. 2.4 we presented an order parameter for the chiral phase transition, the chiral
condensate

〈q̄q〉 = i

∫
d4xTr[S(x, x)], (2.133)

which is the probability amplitude for a quark to flip its chirality. In the chiral
limit, only the zero modes do contribute to the quark condensate. Since the quark
propagator for the zero mode is given by

S(x, y) = −ψ0(x)ψ
†
0(y)

im
(2.134)

the contribution of a single instanton is just −1/m. The contribution of an ensemble
of (isolated) instantons to the chiral condensate then is given by

〈q̄q〉 = −N
V

1

m
, (2.135)
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where N/V is the density of instantons. Because the density of the instantons behaves
like

N

V
∼ mNf (2.136)

we can see that for Nf > 1 the chiral condensate vanishes. So at a first look we
may think that instantons cannot be used for the description of chiral symmetry
breaking. But this is wrong as we shall see in the following. Let us consider an
ensemble of instantons. If the instantons are well separated we can treat them as
single instantons which do not interact with each other. In this case, as we just have
seen, the instantons lead to a vanishing chiral condensate. On the other hand, if the
instantons are not so well separated they begin to interact, not only through their
gauge fields but also through fermionic exchanges. Without going into details we
will present an illustrative picture how an ensemble of interacting instantons describe
chiral symmetry breaking. We make use of an analogy where instantons correspond
to atoms and light quarks correspond to valence electrons.

We can think of instantons as atoms which have an unsaturated bond. In princi-
ple massive quarks can saturate the bonds but because of chiral symmetry we have
only massless quarks. So the simplest object which is neutral in this sense is an
instanton-anti–instanton (IA) molecule. If the interaction between instantons and
anti–instantons is strong the formation of IA molecules is favored. The zero modes
of the Dirac operator in the background of the instanton and anti–instanton which
form a molecule are strongly mixing which means that the eigenvalue density near
zero vanishes. From our discussion in Sec. 2.4 we know that this means that chiral
symmetry is restored. For low instanton densities this phase can be characterized as
a gas phase consisting of IA molecules. Indeed, lattice simulations confirm that the
instanton density is decreasing for large temperatures, i.e. in the chirally symmetric
phase [32, 33]. For the localization properties of the eigenmodes of the Dirac operator
this means that the quarks, which are bound to the IA molecules, are localized. On
the other hand, for weakly interacting instantons the corresponding zero modes are
mixing weakly. Therefore, the eigenvalue density near zero is nonzero and chiral sym-
metry is broken. The instanton density is supposed to be constant which leads us to
the picture of an instanton liquid. The zero modes of the instantons become collective
in this liquid and therefore the quarks are delocalized. In terms of our analogy we
can say that the conductivity is nonzero.

Let us summarize this picture of chiral symmetry breaking. Chiral symmetry
breaking can be described by means of an ensemble of interacting instantons and
anti–instantons. In the high temperature phase where chiral symmetry is restored the
instantons are supposed to interact strongly forming IA molecules. The zero modes
are mixing strongly resulting in a vanishing eigenvalue density near zero. According
to the Banks-Casher relation chiral symmetry is therefore restored. The density of
the instantons is low and one speaks of an instanton gas consisting of IA molecules.
In the low temperature phase chiral symmetry is spontaneously broken. We expect
that the instantons are weakly interacting building an instanton liquid. The zero
modes are only mixing weakly which tells us that chiral symmetry is broken. Because
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of the collective zero modes in this phase the eigenmodes of the Dirac operator are
delocalized while for the chirally symmetric phase the quarks are localized. So, we
expect as the instanton interaction gets stronger the system undergoes a phase tran-
sition from the instanton liquid to the instanton gas. This explains the mechanism of
chiral symmetry breaking. Note that the localization properties can act as a signature
for this picture and may help us to validate it. We will come back to this topic in
Chapter 4.



Chapter 3

Chiral Symmetry and Confinement

Two main properties of QCD are the chiral and the confinement phase transition.
For many years intense work has been invested and much progress has been achieved
already. Nevertheless, there are still open questions which are subject of recent inves-
tigations. In this chapter we will aim at one specific question which we are going to
formulate in the following.

3.1 The Connection between Chiral Symmetry and

Confinement

Other than for example electrons, quarks are color charged. But this color charge we
do not observe. In nature we only observe colorless states built from two or three
quarks, but there exist no colored states. This property of QCD goes under the name
of confinement. However, it is believed that QCD undergoes a phase transition. At
high temperatures we expect QCD to exhibit a phase which allows colored charges to
propagate freely. This phase is called deconfinement phase and is probed currently
by heavy ion collisions. In lattice simulations we already observe this deconfinement
phase. Anyway, the mechanism of the confinement phase transition remains unknown
and is a major subject of current investigations in QCD.

On the other hand, the chiral phase transition is well understood. We have the very
successful instanton picture of chiral symmetry breaking, see Sec. 2.5, in which the
fermionic zero modes of the instantons play a crucial role. According to the Banks-
Casher relation in Eq. (2.99) a non vanishing density of eigenvalues of the Dirac
operator near to zero signals that chiral symmetry is broken while if the eigenvalue
density is zero, chiral symmetry is restored. The zero modes of an ensemble of weakly
interacting instantons and anti–instantons are mixing weakly and generate a finite
eigenvalue density near zero indicating that chiral symmetry is broken. For larger
temperature the instantons strongly interact with the anti–instantons. The result is
that the eigenvalues are mixing strongly and the eigenvalue density near the origin
disappears. Chiral symmetry is restored.

The interesting point about the confinement phase transition and the chiral phase
transition is that we expect them to be related. From lattice studies [34] we know
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that the critical point of both phase transitions should be at the same temperature.
If the phase transitions are not related somehow this would be a very big accident
which is hard to understand. The first guess, of course, leads to the instantons as they
describe the chiral phase transition so well. Unfortunately, instantons cannot describe
confinement. The reason is that the field of an instanton falls off too rapidly. It looks
like a dipole field and falls off like 1/r4. (Although in three dimensions the instanton
field looks like a monopole leading to confinement.) But we need a long range field
to describe the heavy quark potential. Other promising objects are monopoles which
are subject of recent investigations but this topic is beyond the scope of this thesis.
We like to focus on a different, though related question which we will post in the
following.

In Sec. 2.3 we found that the pure gauge action is Z3 invariant which enabled us to
define an order parameter of the confinement phase transition, namely the Polyakov
loop. We have seen that in the deconfinement phase the Polyakov loop clusters around
the elements of the Z3 center group. We divided the complex plane of the Polyakov
loop into the real sector where the real element of the center group lies, and the
complex sector which contains the remaining two complex elements, see Fig. 2.2. As
we already mentioned above the critical point of the chiral and of the confinement
phase transition is at the same temperature. We now can raise the question whether
the critical point for chiral phase transition depends on the Z3 sector. What does this
mean? For every temperature above Tc we can divide our ensemble of gauge fields into
two classes, gauge fields which have real or complex Polyakov loop. We can do this
also below the critical temperature and let gauge field configurations with −π/3 <
argP < +π/3 correspond to the real sector while the other configurations correspond
to the complex sector. This split-up is, of course, arbitrary because the Z3 symmetry
is restored and configurations of different sectors are physically not distinguishable.
We just introduce it for convenience. We want to study the question whether the
critical point of the chiral phase transition calculated only from configurations of the
real sector differs from Tc calculated only from configurations of the complex sector.
From a first look it seems that this cannot be the case because above we said that
the critical point of the two phase transitions coincide. So, how should Tc depend on
the Z3 sector? But, as we will see, this is in principle possible.

In ”full” QCD (with dynamical fermions) the three sectors of the Polyakov loop
are no longer equivalent. If we take a look at the Euclidean QCD partition function
in Eq. (2.12) we see that the partition function can be written as an integral over the
gauge fields weighted by the fermion determinant. So we can, in principle, determine
the ”full” QCD partition function from the quenched ensemble by re-weighting each
configuration with its fermion determinant. Unfortunately, the fermion determinant
is heavily fluctuating which means that in practice this approach is useless since the
statistics currently are to small. Anyway, in principle we can perform this re-weighting
procedure and we will find that configurations in the real sector of the Polyakov loop
are favored (above Tc). This can be seen as follows. As we mentioned at the end of
Sec. 2.3 the low-lying eigenvalues are about three times larger for configurations in
the real sector than for configurations in the complex sector. Looking at the partition
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function in (2.12) we see that, therefore, the determinant for configurations in the
real sector of the Polyakov loop is larger which means that the weight in the partition
function is larger for those configurations. Hence, the real sector of the Polyakov loop
is favored.

But how does this affect the dependence of the critical point on the Polyakov loop
sectors? The argument is the following: Because the real sector of the Polyakov loop
is favored in ”full” QCD the critical points of the confinement and chiral phase tran-
sitions should coincide for configurations in the real sector. But configurations in the
complex sector, then, contribute only less to the partition function and, hence, it is
possible that the critical points of the confinement and chiral phase transition differ.
We see, although far from obvious, the critical points of the two phase transitions
may actually depend on the Z3 sector. If this really is the case, this observation could
provide a crucial hint as to which microscopical field configurations are responsible for
confinement and chiral symmetry breaking. We should expect that the mechanism
which is responsible for the dependence of the critical point on the Z3 sector is inti-
mately connected to the coincidence of the critical point of the two phase transitions.

Indeed, Christ and Chandrasekharan in Ref. [35] found some evidence for differ-
ent critical temperatures depending on the Polyakov loop sectors. Several possible
mechanism were discussed [36, 37, 38]. They investigated the chiral condensate for
staggered fermions. But staggered fermions have bad chiral properties. They only
possess a residual chiral symmetry. We like to do a similar analysis but we will use chi-
rally improved fermions. These fermions have much better chiral properties because
the corresponding Dirac operator fulfills the Ginsparg-Wilson equation approximately.
In particular they have numerically exact zero modes. These zero modes are also to
a good approximation eigenvalues of γ5. Neither is true for staggered fermions re-
flecting the bad chiral properties. Obviously, the topic is so interesting that it should
be reinvestigated with chiral fermions. We will follow a different approach than the
authors of Ref. [35] but we will perform our analysis also for staggered fermions to
have a cross check.

3.2 The Low-Lying Eigenvalues of the Dirac Op-

erator

In this section we will focus on the low-lying eigenvalues of the Dirac operator and
their connection to the chiral phase transition. We know from Sec. 2.4 that the
eigenvalue density of the Dirac operator near zero is an order parameter. If there is a
finite eigenvalue density then chiral symmetry is broken. Else if the density vanishes
chiral symmetry is restored. Let us have a deeper look at the eigenvalues for chirally
improved fermions.

Chirally improved fermions approximately fulfill the Ginsparg-Wilson relation

γ5D +Dγ5 = aDγ5D, (3.1)

where D is the Dirac operator and a is the lattice spacing. We see that as a→ 0 the
Dirac operator anti–commutes with γ5 reflecting chiral symmetry in the continuum.
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Fermions on the lattice which respect the Ginsparg-Wilson equation are invariant
under a lattice version of chiral transformations [32]. The eigenvalues of the Dirac
operator of those fermions lie on a circle in the complex plane. The radius of the circle
is of order 1/a and in the limit a → 0 all eigenvalues lie on the imaginary axis. For
illustration look at Fig. 3.1. We plotted the lowest eigenvalues for three different gauge
field configurations with the Lüscher-Weisz gauge action. We see the eigenvalues lie
in a good approximation on the so-called Ginsparg-Wilson circle. Note that for the
chirally improved fermions only the low-lying eigenvalues lie on the Ginsparg-Wilson
circle approximately. The larger the eigenvalues are the larger are the deviations
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Figure 3.1: Smallest eigenvalues of the Dirac operator for 3 different gauge field configu-
rations. The eigenvalues are plotted in the complex plane and lie on the Ginsparg-Wilson
circle (red line). The plot on the left hand side corresponds to a configuration in the con-
fined phase. We find a vanishing spectral gap. The center plot and the plot on the left hand
show data for complex and real Polyakov loop, respectively. Both configurations belong to
ensembles with the same temperature being above the critical temperature of the chiral and
confinement phase transition. We see, the spectral gap is larger for the plot on the right
hand side (real Polyakov loop).

from the circle. This is because chirally improved fermions fulfill only approximately
the Ginsparg-Wilson relation. Note that it is also possible to have chirally improved
fermions for which the large eigenvalues (large in the sense that they lie at the other
side of the circle) lie on the Ginsparg-Wilson circle and the low-lying eigenvalues differ
from the circle. If fermions fulfill the Ginsparg-Wilson equation exactly all eigenvalues
of the Dirac operator lie exactly on the Ginsparg-Wilson circle.

Let us return to Fig. 3.1. On the plot on the left hand side we see the lowest
eigenvalues of the Dirac operator for a typical gauge field configuration belonging to



3.2. The Low-Lying Eigenvalues of the Dirac Operator 41

an ensemble with temperature below the critical temperature Tc of the confinement
phase transition. The Polyakov loops for this ensemble cluster around zero which we
denoted by P = 0. In the following we will refer to the critical temperature of the
confinement phase transition as Tc while the critical temperatures of the chiral phase
transition we denote by T realc and T complexc for the real and complex Polyakov loop
sector, respectively. Before we will focus on the lowest eigenvalues (the eigenvalues
closest to zero) we note that the eigenvalues on the upper and lower half of the
Ginsparg-Wilson circle are not independent but related by symmetry. (This is because
in the continuum the eigenvalues of the Dirac operator come in purely imaginary
pairs of ±iλi.) Our first observation for the plot on the left hand side is that the
lowest eigenvalues lie very close to zero. Because this is a typical configuration we
have a finite density of eigenvalues near zero and, thus, we know from the Banks-
Casher relation (2.99) that chiral symmetry is broken. We have seen what we already
mentioned above, below Tc we are in the confined phase and chiral symmetry is broken.

On the center plot and the plot on the right hand side of Fig. 3.1 we show two
configurations of an ensemble with T > Tc. The center plot corresponds to a configu-
ration which has the Polyakov loop in the complex sector while the plot on the right
hand side shows a configuration with the Polyakov loop in the real sector. In both
plots we clearly see that there is a gap between the lowest eigenvalue and zero. We
call this gap the spectral gap, or sometimes simply the gap. Both configurations also
represent the typical behavior of the ensemble, so we will find a vanishing density of
the eigenvalues near zero. That means we are in the chirally symmetric phase for
both configurations.

Note that chirally improved fermions also can have numerically exact zero modes.
We already removed the zero modes from Fig. 3.1 because zero modes are not relevant
for our considerations of the chiral phase transition, see Sec. 2.4. Therefore, we will
omit the zero modes in all calculations below. We like to emphasize that the removal
of the zero modes is important for the correct calculation of the chiral condensate. We
will come back to this topic in more detail later on. Note, that for staggered fermions
we cannot remove the zero modes from our calculations since staggered fermions have
no exact zero modes. This may have some impact on the calculations Christ and
Chandrasekharan have done.

Note that there is still a ”microscopic” gap for the configuration in the plot on
the left hand side in Fig. 3.1. By microscopic gap we mean that if we perform
the ensemble average the eigenvalue density (microscopically) close to zero vanishes
although on a scale of several level spacings the eigenvalue density is finite near to zero,
see Eq. (2.100). The appearance of such a microscopic gap does not really mean that
we are in the chirally symmetric phase. The reason for this gap is because we are on a
finite lattice and, hence, chiral symmetry cannot be spontaneously broken at all. Only
in the thermodynamic limit the microscopic gap will vanish and chiral symmetry can
be spontaneously broken. However, by looking at Fig. 3.1 and Eq. (2.100) we detect
that we have a criterion for the chiral phase transition anyway. If (on a scale of several
level spacings) we find a finite density of eigenvalues of the Dirac operator we claim
we are in the chirally broken phase while for a vanishing density we remain in the
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chirally restored phase. We can find a critical temperature for this ”phase transition”.
This critical temperature, then, will give the true critical temperature of the chiral
phase transition in the thermodynamic limit. So from the scaling behavior of this
critical temperature in the thermodynamic limit we should be able to extract the real
critical temperature of the chiral phase transition at the end.

Finally, note that the spectral gap for configurations of ensembles with equal tem-
perature is somewhat larger for configurations in the real Polyakov loop sector than
for configurations in the complex Polyakov loop sector. If we consider the spectral
gap as a function of the temperature we can say that the spectral gap opens up faster
in the real Polyakov loop sector than in the complex Polyakov loop sector. We also do
have an explanation for this behavior. At the end of Sec. 2.3 we found that the lowest
eigenvalue of the Dirac operator in the free theory depends on the Polyakov loop sec-
tor. The lowest eigenvalue of a corresponding configuration with a real Polyakov loop
is 3 times larger than for configurations with complex Polyakov loop sector. So, we
expect to find a similar behavior also for the interacting theory. This claim is indeed
correct as we see by comparing the plots in the center and on the right hand side in
Fig. 3.1.

After this analysis of the low-lying eigenvalues of the Dirac operator we like to
introduce a new order parameter for the chiral phase transition. From our discussion
above it is clear that the spectral gap is an order parameter of the chiral phase
transition. The spectral gap is correlated to the eigenvalue density of the Dirac
operator near zero and, hence, to the chiral condensate. However, it is not clear how
the relation between the two order parameters is in detail, but we can say for sure
that if the spectral gap (averaged over the ensemble) vanishes, we must have a finite
density of eigenvalues near zero and chiral symmetry is broken. On the other hand,
if the (averaged) spectral gap is not zero then we must have a vanishing eigenvalue
density near zero and chiral symmetry is restored. We will investigate the properties
of the spectral gap as an order parameter in the following section.

3.3 The Distribution of the Spectral Gap

In this section we will explore the properties of the spectral gap and, finally, we will
show how to use the spectral gap as an order parameter of the chiral phase transition.
As noted in Sec. 3.2 a vanishing spectral gap indicates the spontaneous breaking of
chiral symmetry, a finite gap signals that chiral symmetry is restored. Before we will
go into details let us give a precise definition of the spectral gap. We see in Fig. 3.1
that the low-lying eigenvalues of the chirally improved fermions approximately lie on
the Ginsparg-Wilson circle. We define the spectral gap gλ as the (positive) imaginary
part of the smallest nonzero eigenvalue.

A good way to extract more information from the spectral gap might be to look
how the values for the spectral gap are distributed. We, therefore, plotted a histogram
of the spectral gap for three different ensembles with temperatures above, below, and
approximately at the critical temperature. We did this both for the real and complex
sector of the Polyakov loop, see Fig. 3.2. Let us concentrate on the upper plots in
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Fig. 3.2. From left to right we see histograms of the spectral gap for T < Tc, T ∼ Tc,
and T > Tc, respectively. Let us start with the plot on the left hand side. We see that
the spectral gap is peaked very close to zero. Note that the histogram of the spectral
gap vanishes close to zero which means that the probability to find a configuration
with a (very) small spectral gap tends to zero. The reason for this behavior is that
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Figure 3.2: Histogram of the smallest (nonzero) eigenvalue. The upper plots correspond
to configurations with complex Polyakov loop, the lower plots to those with real Polyakov
loop. On the plots on the left (right) hand side we see that chiral symmetry is broken
(restored). The center plots show that near the critical temperature both phases coexist.

we are on a finite lattice and, as we have discussed in Sec. 3.2, on a finite lattice there
exists a microscopic gap. We conclude that the probability to find a configuration
below the typical value of the microscopic gap has to vanish. We can estimate the
typical value of the microscopic gap by the shift of the peak of the distribution away
from zero. However, we can see that (beside the microscopic gap) the spectral gap
also vanishes and, therefore, we are in the chirally broken phase. This is the expected
behavior since we are well below Tc, the critical temperature of the confinement phase
transition, and we know that chiral symmetry has to be broken there. Remember our
discussion in Sec. 3.1.

Let us now discuss the upper plot on the right hand side. We are above Tc in the
confinement phase and the Polyakov loop sector of the corresponding configurations
is still complex. Again we can find that the histogram of the spectral gap is strongly
peaked about some value. But now the peak is largely shifted away from zero. We
see that the spectral gap is finite for almost all configurations. This clearly indicates
that we are in the chirally restored phase. Again, this is as expected, since we are
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well above Tc. The interesting regime is where T ∼ Tc. The center plot in the upper
row shows the histogram of the spectral gap for that temperature regime with the
Polyakov loop in the complex sector. We see that the histogram is double-peaked
which means that we have a mixing of the two phases. The peak on the right and left
hand side of the histogram correspond to the chirally symmetric phase and chirally
restored phase, respectively. In the region near the critical point both phases coexist.
This tells us that the chiral phase transition is of first order. For a second order phase
transition we have no regime where both phases coexist. In this case we would find
that the spectral gap is zero below the critical point of the phase transition and, as the
temperature of the system crosses the critical temperature, the spectral gap acquires
a finite value instantly, at least in the thermodynamic limit.

Let us now come to the plot in the lower row of Fig. 3.2 which correspond to
configurations with real Polyakov loop sector. Because the statistics for the real
Polyakov loop sector is always half of the complex one we doubled the bins for the
plots with real Polyakov loop sector for T ∼ Tc and T > Tc. We can see that for the
real sector of the Polyakov loop the scenario is similar to the complex Polyakov loop
sector. Of course, for T < Tc we find the same peak as for the complex case since
below Tc the center symmetry is restored. Above Tc the shift of the peak from zero
is larger than in the complex case. Further, the width of the histogram is also larger
for the real Polyakov loop sector. The reason for the difference in the two sectors is
obvious. As we have seen in Fig. 3.1 the spectral gap for the real sector is simply
larger than for the complex sector of the Polyakov loop.

β1 8.10, 8.20, 8.25, 8.30, 8.45, 8.60
Ls × Lt 163 × 6, 203 × 6

# configs. 800, 400

Table 3.1: Overview of the different lattices. We have used chirally improved fermions
with Lüscher-Weisz gauge action.

Let us summarize. Below the critical point of the confinement phase transition
the histogram of the spectral gap is peaked near zero indicating that chiral symmetry
is broken. Above Tc the peak is strongly shifted away from zero, which means that
we are in the chirally symmetric phase. In between the histogram is double-peaked
and both phases coexist indicating a first order phase transition [39]. Our findings
are qualitatively the same for both the complex and real sector of the Polyakov loop.
Now, that we have seen that the spectral gap is well suited as an order parameter of
the chiral phase transition, our next task is to extract the critical temperature from
lattice data. It is clear what we have to do: We have to study the averaged spectral
gap with respect to the temperature of the system.
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3.4 The Averaged Spectral Gap I

To analyze the dependence of the averaged spectral gap 〈gλ〉 we generated lattice QCD
data for different temperatures and two lattice sizes. See Table 3.1 for the details. In
Fig. 3.3 we plotted the results of our numerical calculations.
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Figure 3.3: 〈gλ〉 vs. β1. We plotted the averaged spectral gap for the volumes V = 163×6
and V = 203×6. The upper (lower) plot shows the data for the two volumes for the complex
(real) Polyakov loop sector. For the low(est) temperatures (below Tc) the averaged spectral
gap is constant while for high temperatures (above Tc) we have a linear behavior. Near Tc
the system changes its phase. This causes the averaged spectral gap to change its behavior
from constant to linear. The symbols correspond to the data while the curves are fits to the
corresponding data.

On the upper plot we see the data for the configurations in the complex Polyakov
loop sector while on the lower plot the Polyakov loop sector is real. On both plots we
present lattice data for the two different volumes, V = 163 × 6 and V = 203 × 6. Let
us start to discuss the curves for the lowest temperatures, i.e. for T < Tc. Note that
low temperature means low β. For the lowest temperature we find that the averaged
spectral gap also acquires its lowest value. We note that for the larger volume the
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averaged spectral gap is smaller. This is what we expect since we know from the
discussion in the last section that the value of the averaged spectral gap below Tc
should be of the order of the microscopic gap. Therefore, below Tc the averaged
spectral gap should vanish in the thermodynamic limit which is suggested by the
data.

At high temperatures, i.e. above Tc, we see, that the averaged spectral gap in-
creases. Approximately, the averaged spectral gap shows a linear behavior for both
volumes and both sectors of the Polyakov loop. For the smaller volume we find that
the averaged spectral gap is always larger in the temperature range we investigated.
In the interesting regime where the temperature is near the critical point we see that
the averaged spectral gap changes its behavior dramatically. As we reach the critical
point from the high temperature regime the linear behavior stops and the averaged
spectral gap falls of rapidly to acquire a somehow constant value of the microscopic
gap. Again, this behavior is qualitatively the same for all four curves but note that for
the larger volume the averaged spectral gap falls of more rapidly than for the smaller
volume. The reason for this behavior is easy to understand. For temperatures in
the chirally broken phase the averaged spectral gap has a constant behavior. For
temperatures in the chirally restored phase we see a linear behavior. On finite lat-
tices there is a smooth crossover of the two phases. In the thermodynamic limit this
smooth crossover turns into a discontinuity. At the critical temperature the system
”jumps” from the one phase into the other. Below Tc the averaged spectral gap is
constant and at Tc it instantly changes its behavior, following the linear behavior of
the chirally symmetric phase. However, on the finite lattice we do not have such a
sharp transition but it is clear that, as we increase the volume, the smooth change of
the averaged spectral gap becomes sharper. This volume dependence is exactly what
we observe in our data in Fig. 3.3.

Finally, we have to extract the critical temperature from our data. It is clear that
the critical temperature has to be somewhere near to the regime where the averaged
spectral gap falls off. A natural approach for extracting the critical temperature would
be to take the value of T where the averaged spectral gap becomes steepest and study
its behavior in the thermodynamic limit. We will follow a somehow different approach
in the next sections.

3.4.1 Results for the Polyakov Loop

Before we will determine the critical temperature for the chiral phase transition, we
first like to investigate the confinement phase transition and develop a procedure to
extract the critical temperature which we will use afterwards to the case of the chiral
phase transition. Let us take a look to Fig. 3.4. We plotted the expectation value of
the modulus of the Polyakov loop. We know that this quantity is (nearly) zero in the
confining phase and finite in the deconfined phase as a look at Fig. 2.2 suggests. From
Fig. 3.4 we find that 〈|P |〉 for high temperatures, i.e. in the deconfinement phase, rises
linearly with the temperature. Note that the linear behavior in the high temperature
phase does not depend on the volume. In the confinement phase the absolute value of
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Figure 3.4: We plotted the expectation value 〈|P |〉 of the modulus of the Polyakov loop
as a function of β. The numerical results are shown by the symbols while the full curve is
a fit to Formula (3.2). We display results for 163 × 6 and 203 × 6 lattices.

the Polyakov loop is expected to be constant and should scale like L−3/2 [40], where
L is the spatial extent of the lattice. Furthermore, note the similar behavior of 〈|P |〉
and the averaged spectral gap. Both rise linearly in the high temperature regime and
scale with some power of L in the low temperature regime.

Following the ideas of Refs. [41, 42] we now can make the following ansatz for
〈|P |〉 for a first order phase transition on a finite lattice,

〈|P |〉 = cL−3/2 e−∆fL
3(β−βc) + 3[d+ k(β − βc)]

e−∆fL3(β−βc) + 3
. (3.2)

We will fit this formula to the lattice QCD data and extract βc, the critical value of β,
from which we can determine the critical temperature. Let us make some comments on
this expression. The second term in the numerator of (3.2) reflects the linear behavior
of the deconfinement phase. The constants d and k parameterize the high temperature
regime. Note that they are not depended on the volume. The factor of the first term in
the numerator comes from the constant behavior in the low temperature regime where
we know that the modulus of the Polyakov loop behaves like cL−3/2. The difference of
the free energy of the two phases is denoted by ∆f . Note that we have introduced a
factor of 3 which we did because of the 3 different sectors to which the Polyakov loop
can belong (although only two of them are physically different). Before we will present
numerical data, let us ensure that Eq. (3.2) has the desired asymptotic behavior. In
the high temperature regime, where β →∞, the exponentials tend to zero and 〈|P |〉
shows the linear behavior parameterized by d and k. On the other hand, in the low
temperature regime (β → 0) the exponents of expression (3.2) become positive and
in the thermodynamic limit Eq. (3.2) is dominated by the exponentials. Thus we find
that the averaged modulus of the Polyakov loop, 〈|P |〉, behaves like cL−3/2 and we
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see that 〈|P |〉 shows the desired asymptotic behavior.
Now, all we have to do is to fit the 5 parameters c, d, k, ∆f , and βc to the

lattice data. Note that βc in our ansatz in (3.2) does not depend on the volume
because this ansatz was designed for a finite lattice, which means that βc from our
ansatz should already be a good estimation of the critical value in the thermodynamic
limit. Therefore, we have performed a common fit to both volumes using a Jackknife
analysis. The curves in Fig. 3.4 show the fit to the data of the two volumes. We see
that our ansatz reproduces the data very well. We obtain a value of βc = 8.24(1) for
the critical point of the confinement phase transition with the corresponding statistical
error. The small dependence on the volume of βc is the big advantage of our approach.
This means, that already for the relatively small lattices we used (compared to the
thermodynamic limit) we can achieve a good estimate of the critical value in the
thermodynamic limit. Finally, we remark that the critical temperature of the chiral
phase transition we obtained is T = 296(3) MeV which could be determined with the
help of Ref. [43]. This value (for the Lüscher-Weisz action) is slightly larger than the
corresponding value for the Wilson action.

3.4.2 Results for the Dirac Eigenvalues

Let us repeat the same analysis for the averaged spectral gap in order to determine
the critical point of the chiral phase transition. We know that the averaged spectral
gap for high temperature behaves linearly, i.e. we have

〈gλ〉 ∼ kr,c(Ls)(β − βc). (3.3)

However, there is a difference between 〈|P |〉 and 〈gλ〉 in the high temperature regime.
While for 〈|P |〉 we found no dependence of the slope on the (spatial) volume this is
not the case for the averaged spectral gap. Therefore, the parameters d and k will
depend on the spatial lattice Ls which we denote by dr,c(Ls) and kr,c(Ls), respectively.
Furthermore, the averaged spectral gap behaves differently in the two sectors of the
Polyakov loop. We account for this by introducing the indices r and c.

For the low temperature regime there is a further difference which we have to
account for. The volume dependence of the averaged spectral gap appears to be like
L−3s [44]. So for the low temperature regime we make the following ansatz for the
averaged spectral gap

〈gλ〉 ∼ c′L−3s . (3.4)

Taking into account Eqs. (3.3) and (3.4) we find that the ansatz for the fitting function
of 〈|P |〉 in (3.2) translates into

〈gλ〉r,c =
c′L−3s e−∆fL

3
s(β−βc) + 3[dr,c(Ls) + kr,c(Ls)(β − βc)]

e−∆fL3s(β−βc) + 3
(3.5)

for the averaged spectral gap on a finite lattice. Again, we use a Jackknife analysis to
fit the above expression to both volumes of the lattice data. In Fig. 3.3 we show the
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fitting results which are represented by the curves. We see that the curves describe
the data very well. The values for the critical points of the chiral phase transition for
the real and complex sectors of the Polyakov loop obtained from our fits are listed in
Table 3.2. We find that the critical values of β are approximately the same for the real
and complex sector of the Polyakov loop and also coincide with the critical value of
the confinement phase transition. This is really an interesting result because in [35] it
was claimed that the critical point of the chiral phase transition should depend on the
sector of the Polyakov loop. Of course, we like to know why we found a different result,

Measurement 〈|P |〉 〈gλ〉complex 〈gλ〉real
βc 8.24(1) 8.29(2) 8.27(2)
Tc [MeV] 296(3) 308(5) 303(5)

Table 3.2: Results for the fits to the lattice data. We listed the critical values of β and
the corresponding temperatures for the chiral and confinement phase transition.

so let us recapitulate what we have done so far. We determined the critical point of
the chiral phase transition for the different sectors of the Polyakov loop. We used the
averaged spectral gap as an order parameter of the phase transition. Furthermore,
we used chirally improved fermions with the Lüscher-Weisz gauge action, while the
authors in Ref. [35] used staggered fermions and their order parameter was the chiral
condensate. For the sake of clarity we like to perform the same analysis from above
again, but this time we will use staggered fermions with Wilson gauge action. Then
we will know if the use of the staggered fermions is responsible for the different results.

3.5 The Averaged Spectral Gap II

In this section we will repeat our analysis of the averaged spectral gap of Sec. 3.4.2
but now we will use staggered fermions with Wilson gauge action. As before we start
with an analysis of the lowest eigenvalues. We calculated the lowest eigenvalues of
the Dirac operator for different values of β. An overview of the lattices sizes and
statistics we used can be found in Table 3.3. In Fig. 3.5 we plotted a histogram of the
lowest two eigenvalues, similar to Fig.3.2. We have used the lowest two eigenvalues
for staggered fermions because in the continuum the eigenvalues become fourfold
degenerate (two positive and two negative eigenvalues reassemble to one fourfold
degenerate eigenvalue). Let us start with the high temperature regime, i.e. with
T > Tc. The lower plot on the right hand side corresponds to an ensemble of gauge
field configurations in the high temperature regime with the corresponding Polyakov
loop in the real sector. We have used about 500 configurations which means that we
have about 1000 eigenvalues of the Dirac operator. We see a similar behavior like in
the case of chirally improved fermions. The histogram is peaked at a value which is
strongly shifted away from zero. This means that the eigenvalue density near zero
must vanish and, therefore, chiral symmetry is restored. This is also true for the
complex sector of the Polyakov loop, see the upper plot on the right hand side. Note
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the different scale of λ for the lower plot. Again, we see that the eigenvalues in the
real sector of the Polyakov loop are about three times larger than in the complex
sector. Furthermore, note that, in contrast to our results for the chirally improved
fermions, there are some eigenvalues near zero which are far away from the peak,
see the lower plot on the right hand side. The reason why there are such small
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Figure 3.5: Histogram of two smallest (nonzero) eigenvalue for staggered fermions. The
upper (lower) plots correspond to configurations with complex (real) Polyakov loop, from
left to right the temperature T is below, near, and above the critical temperature Tc. For
all histograms we find a similar behavior as for chirally improved fermions, see Fig. 3.2,
although the quasi-zero modes modify the shape of the histograms for intermediate and low
temperatures.

eigenvalues in the case of staggered fermions is that staggered fermions have bad
chiral properties, i.e. they do not have exact zero modes, just quasi-zero modes. This
means that the zero modes are mixing with the eigenvalues of the bulk spectrum.
Only in the continuum limit we obtain exact zero modes. Note that in the case of
chirally improved fermions we have removed the zero modes from our calculations of
the averaged spectral gap. We did so because the zero modes do not contribute in the
thermodynamic limit. In the case of staggered fermions we are not able to remove
the (quasi) zero modes (at least in a controlled way). We should expect, that this
has some impact on the averaged spectral gap and, hence, on the critical point of the
chiral phase transition. However, the small eigenvalues in the lower plot on the right
hand side correspond to the quasi-zero modes. These quasi-zero modes do not only
appear at high temperatures1 but also in the low temperature regime we find that

1Note that in the high temperature regime the quasi-zero modes disappear, because from lattice
calculations we know that the instanton density vanishes for large T [32, 33]. Therefore, we find only
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they modify the histogram of the lowest eigenvalues. In the lower plot on the left hand
side we plotted the histogram of the spectral gap for the real Polyakov loop below
Tc. Again, for both the real and complex sector, the peak is very close to zero which
indicates that chiral symmetry is broken. Compared to the chirally improved fermions
of Fig. 3.2 there are much more very small eigenvalues for staggered fermions resulting
in a higher value of the histogram near zero. The quasi-zero modes are responsible
for this difference.

For temperatures near Tc we find a similar scenario although the two phase signal
does not show up as clear as for chirally improved fermions. We suppose that the
quasi-zero modes smear the signal. We see that the fact that we cannot remove the
quasi-zero modes has impact on the spectral gap. We assume that this remains also
true for the averaged spectral gap which we will investigate next.

3.5.1 Results for Staggered Fermions

In this section we will calculate the averaged spectral gap for staggered fermions with
Wilson gauge action and fit our ansatz in Eq. 3.5 to the numerical data. An overview
of the generated lattice QCD data can be found in Table 3.3. In this section we

β 5.8 - 6.3 (11 values)
Ls × Lt 163 × 4, 203 × 6

# configs. 500

Table 3.3: Overview of the different lattices. We have used staggered fermions with
Wilson gauge action.

will investigate only the larger lattice with spatial volume 203 and temporal extent
Lt = 6. In Fig. 3.6 we show the averaged spectral gap and the corresponding fits. On
the plot on the left hand side we show the data for the real sector of the Polyakov loop
while on the right hand side the data for the complex sector are depicted. For high
temperatures, i.e. high values of β, we find a linear behavior while for low temperatures
〈gλ〉 is constant. The same was found for chirally improved fermions, so there is no
difference here and we can be sure that our approach from above will still apply.
However, if we compare the curves for the fits of the averaged spectral gap of the two
different types of fermions we can observe that in the case of staggered fermions the
averaged spectral gap does not show the usual rapid fall-off near the critical point, see
Fig. 3.3 for chirally improved fermions and Fig. 3.6 for staggered fermions. It seems
that for staggered fermions the curves near the critical point are flatter, in contrast to
the case of chirally improved fermions where near βc the curves change their behavior
dramatically. For the complex sector this behavior of the curve is less apparent which
means that the linear behavior of the averaged spectral gap stops at a somewhat
higher value of β. This leads us to the conclusion that the critical point of the chiral
phase transition appears at a somewhat higher temperature for the complex sector

a few quasi-zero modes in the high temperature regime.
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Figure 3.6: 〈gλ〉 vs. β. We plotted the averaged spectral gap for V=203x6 for both
sectors of the Polyakov loop for staggered fermions. The curves correspond to the fits with
the fitting function from ansatz 3.5.

of the Polyakov loop. This is exactly what Christ and Chandrasekharan found in
their investigations. Anyway, we can give a more qualitative argument. Let us simply
compare the critical values βc for both sectors of the Polyakov loop extracted from
our fits. We list them in Table 3.4 and also the value of the critical value βconfc of the
confinement phase transition which has been obtained by lattice QCD studies and can
be found in Ref. [39]. Indeed we see that the critical value for the complex sector lies
above the value for the real sector. This is exactly what we already predicted from
our analysis above although we have to emphasize that the difference of the values is
small. It is just of a few percentage. The same is true for the difference of the critical
values of the chiral phase transition to βc of the confinement phase transition which
leads us to the conclusion that the critical point of the chiral phase transition does
not depend on the sector of the Polyakov loop and coincide with βc of the confinement
phase transition. This is exactly what we found for chirally improved fermions and
contradicts the conclusions of Christ and Chandrasekharan.

Measurement βconfc 〈gλ〉complex 〈gλ〉real
βc (full) 5.89 5.982 5.955

Table 3.4: Results for the critical values of the chiral and confinement phase transition
for staggered fermions with Wilson gauge action.

Thus, even for staggered fermions we cannot verify the claims of Christ and Chan-
drasekharan. Of course, we like to know how this can come about. Therefore, we will
study the influence of the bad chiral properties of the staggered fermions still in more
detail in the following.
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3.5.2 Staggered Fermions and Chiral Symmetry

We know that chiral symmetry on the lattice is always a problem. For Wilson fermions
chiral symmetry is explicitly broken and for staggered fermions we just have a kind of
residual chiral symmetry. But with these fermions calculations can be performed with
relatively low computer power. We can perform calculations with staggered fermions
on commonly available home computers. Ginsparg-Wilson fermions, for which we can
define a lattice version of chiral symmetry, are much more expensive. Thus, many
calculations are still made with staggered or Wilson fermions despite their bad chiral
properties. In the following we will investigate the chiral properties of the low-lying
eigenvalues of the Dirac operator for staggered fermions. This will help us to get a
better understanding of the numerical results obtained in Chapters 3 and 4.

Chiral symmetry is intimately related to the zero modes of the Dirac operator.
This can be easily seen by the following argument. The (massless) Dirac operator /D
obeys the following equation

/D† = γ5 /Dγ5. (3.6)

This equation holds also on the lattice. If /D has no degeneracies, an eigenvector ψ
of the Dirac operator with eigenvalue λ satisfy the equation ψ†γ5ψ 6= 0 if and only
if λ is real. Furthermore, in the continuum the Dirac operator is anti–hermitian and
therefore the eigenvalues lie on the imaginary axis. Thus, the only real eigenvalue of
/D is zero. Note that chirality provides an additional distinction between zero modes
and nonzero modes. While the zero modes have chirality of ψ†γ5ψ = ±1 the nonzero
modes have zero chirality. Because the eigenvalues and their corresponding chirality
depend continuously on the gauge field the zero modes cannot be shifted away from
zero by a continuous deformation of the gauge field.

This argument does not work on the lattice in general, since the Dirac operator
is not necessarily anti-hermitian. This means that the eigenvalues do not have to be
imaginary anymore, but can be distributed arbitrarily in the complex plane. There-
fore, the chiral modes (modes with 〈γ5〉 = ψ†γ5ψ 6= 0) will no longer lie at zero only,
but are distributed on the real axis. However, we can make a continuous transforma-
tion on the gauge fields such that zero modes are shifted away from zero along the real
axis. Since also the chirality depends continuously on the gauge field, the chirality of
the zero mode can vary. Note that there is no smooth transformation on the gauge
field such that we can shift away an eigenvalue from the real axis, because then the
chirality would jump from a finite value to zero. We see that in this sense there are
no exact zero modes on the lattice in general (as long as we do not adjust the gauge
field appropriately). The modes on the real axis correspond to the zero modes in the
continuum.

The connection to chiral symmetry can now be seen as follows. If chiral symmetry
is explicitly manifest then the Dirac operator anti–commutes with γ5, { /D, γ5} =
0. Together with Eq. (3.6) it would follow that /D is anti–hermitian. As we know
chiral symmetry has to be explicitly broken on the lattice to avoid fermion doubling.
Therefore, we do not have exact zero modes with definite chirality on the lattice. Let
us note that Ginsparg-Wilson fermions break chiral symmetry in the mildest possible
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way. For those fermions we can define a lattice version of chiral symmetry which
becomes the continuum chiral symmetry as the lattice spacing goes to zero. The
chiral properties for these fermions are best on the lattice which is the reason why
they are subject of intense investigations.

In this work we have used staggered fermions in most calculations. In order to
get detailed information about the chiral properties of staggered fermions we like
to derive an expression which corresponds to chirality in the continuum limit and
depends on the staggered fields χ̄ and χ. This is useful because the eigenmodes we
obtain in our numerical calculations are expressed in terms of these fields. We start
with the flavor fields q̄ and q of the staggered fermions defined in (2.40). Note that
these fields correspond to four quark flavors in the continuum limit. We will calculate
the chirality 〈q̄γ5Fρq〉 where Fρ is some flavor matrix of the form F T

ρ ≡ Γρ and Γρ is
defined by

Γρ ≡ (γ1)
ρ1(γ2)

ρ2(γ3)
ρ3(γ4)

ρ4 , (3.7)

see Eq. 2.41. Remember, the components ρi of ρ ≡ (ρ1, ρ2, ρ3, ρ4) can be either 1 or
0. In particular we are interested in Γρ = l1 because the staggered action in (2.47)
is diagonal in flavor space in the continuum limit. But also other flavor structures
might be of interest because in the staggered action on a finite lattice there is also a
flavor matrix in the second term, so we will perform our derivation for general flavor
structures in the following.

〈q̄γ5Fρq〉 = 16
∑

y;αα′

aa′

q̄aαy γ
αα′

5 F aa′

ρ qα
′a′

y

=
1

4

∑

y;ηη′

αα′;aa′

χ̄2y+η χ2y+η′ Γ
† aα
η γαα

′

5 F aa′

ρ Γα
′a′

η′

=
1

4

∑

y;ηη′

χ̄2y+η χ2y+η′ Tr
(
Γ†ηγ5Γη′F

T
ρ

)
. (3.8)

Evaluating the trace we arrive at the following structure

〈q̄γ5Fρq〉 =
∑

y;η

χ̄2y+η+ρ χ2y+η z2y+η;ρ

=
∑

x

χ̄x+ρ̄ χx zxρ, (3.9)

where ρ̄ is defined by exchanging all components of ρ which are equal to 1 by 0 and
vice versa. The phase zxρ is given by

zxρ = (−1)x1+x3+ρ1+ρ3+
∑

ν<µ ρνxµ

= (−1)ρ1+ρ3+x1+x2ρ1+x3(1+ρ1+ρ2)+x4(ρ1+ρ2+ρ3). (3.10)

Now we can easily evaluate the chirality for different flavor structures. Some examples
for Fρ with the corresponding phase of zxρ are listed in Table 3.5. Let us investigate
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ρ F T
ρ zxρ

(0, 0, 0, 0) Γ0 = l1 zx;0 = (−1)x1+x3

(1, 1, 0, 0) Γ12 = γ1γ2 = i

(
σ3 0
0 σ3

)
zx;12 = (−1)1+x1+x2+x3

(0, 0, 1, 1) Γ34 = γ3γ4 = i

(
σ3 0
0 −σ3

)
zx;34 = (−1)1+x1+x3+x4

(1, 1, 1, 1) Γ1234= γ1γ2γ3γ4= i

(
−1 0
0 1

)
zx;1234= (−1)x1+x2+x3+x4

with γj = i

(
0 σj
−σj 0

)
(j = 1, 2, 3) and γ4 = i

(
0 1
1 0

)

Table 3.5: Examples for the phase zxρ for different flavor structures F T
ρ . The most

interesting case is Fρ = l1.

expression (3.9) in more detail for the most interesting case of Fρ = l1. This means
we have ρ = (0, 0, 0, 0) and ρ̄ = (1, 1, 1, 1). We obtain from Eq. 3.9

〈q̄γ5q〉 =
∑

x

(−1)x1+x3 χ̄(x+∑4
i=1 x̂i)

χx, (3.11)

where we sum over all lattice sites and (x + x̂i) denotes the next lattice site in i-
direction. Note that

(
x+

∑4
i=1 x̂i

)
is a lattice site which sits on one diagonal of the

hypercube around x.
We see that 〈q̄γ5q〉 is a non-local object which is not gauge-invariant. To maintain

gauge invariance we have to add gauge links between χ̄(x+
∑4

i=1 x̂i)
and χx along the

shortest connection between the two lattice sites (Note, that there are 4! possibilities
for the shortest path.). To maintain invariance of lattice transformations we have to
average over all 24 hyper-diagonals. So, finally, we obtain the following gauge-invariant
expression for the chirality of staggered fermions

〈γ5〉 ≡ 〈q̄γ5q〉 =
1

244!

∑

xµ
µi 6=µj

(−1)x1+x3 χ̄(x+∑4
i=1 µ̂i)

4∏

j=1

U †
(x+

∑j−1
i=1 µ̂i)µj

χx, (3.12)

where U †xµj denotes the link variable on the link based at x in direction µj and µj
can take the values ±1,±2,±3,±4 with j = 1, 2, 3, 4. The next lattice site from x in
µj-direction is denoted by (x + µ̂j). The summation in (3.12) is over all lattice sites
x and all possible shortest paths reaching the hyper-diagonal site

(
x+

∑4
i=1 µ̂i

)
.

Now, we can apply this formula to numerical data. In Fig. 3.7 we give some
examples of the chirality of the lowest 10 eigenvalues for different ensembles. The
column on the left hand shows data for the real sector of the Polyakov loop, the
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Figure 3.7: Chirality 〈γ5〉 vs. Dirac eigenvalue λ. We plotted the chirality for the 10
lowest eigenvalues for three different ensembles with T < Tc, T ∼ Tc, and T > Tc (from
top to bottom). The column on the left (right) hand side shows data for the real (complex)
Polyakov loop sector.
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column on the right hand side corresponds to the complex sector, see Sec. 2.3 for
details on the Polyakov loop. The plots show the chirality of eigenmodes of about
500 configurations with Wilson gauge action which means that we see about 5000
data points. The lattice volume is 203 × 6. The ensembles in the first row have
temperature T below the critical temperature Tc of the confinement phase transition.
We find that the chirality is homogeneously distributed along the lowest eigenvalues
we plotted. The maximum value of the chirality is about 0.05 which is far away
from one but, compared to the data in the plots in the last row, also far away from
zero. Therefore, we conclude that for this temperature regime the (quasi-)zero modes2

strongly mix with the nonzero modes. We see, that although the lattice spacing is
relatively small (compared to lattices used in common calculations) we do not have
good chiral properties. Note that qualitatively there is no difference between the real
and complex sector of the Polyakov loop.

In the second row of Fig. 3.7 the temperature is close to βc. We see that the
maximum value of the chirality is now larger and close to 0.2. There are two regions,
the region below λ ≈ 0.015 (for the complex sector of the Polyakov loop and 0.045
for the real sector) where the chirality acquires large values, and the region above
0.015 (0.045) where the chirality only fluctuates around zero. We conclude that the
quasi-zero modes mix less with the bulk modes [45]. Therefore, the chirality of the
quasi-zero modes is enlarged and these eigenmodes are supposed to become exact zero
modes in the continuum limit.

For even higher temperatures, i.e. T > Tc, we observe that eigenmodes with
large or medium large chirality have almost disappeared. We mostly can find only
nonzero modes which have chirality near zero. This can be explained by the instanton
picture. Every isolated instanton possesses an exact zero modes (in the continuum).
In the high temperature phase instantons and anti–instantons are strongly mixing
and the probability to find isolated instantons vanishes. Hence, we should find fewer
zero modes which agrees with our observations. Note that also the density of the
eigenvalues near λ = 0 vanishes implying that chiral symmetry is restored, see Sec. 2.4.

3.5.3 The Influence of the Quasi-Zero Modes

In Sec. 3.5.1 we found that the critical point of the chiral phase transition does also
not depend on the Z3 sectors of the Polyakov loop for staggered fermions but we have
seen that the critical temperature T complexc for the complex sector is somewhat larger
than T realc and both temperatures are also larger than Tc of the confinement phase
transition. In this section we will study the influence of the bad chiral behavior of
the staggered fermions on these findings.

As already mentioned, staggered fermions do not have exact zero modes so we can
not remove them from our calculation of the spectral gap and, hence, of the critical
temperature. We conjectured that this may have some impact on the results. In

2We denote the eigenmodes which are supposed to become zero modes in the continuum limit
also as quasi-zero modes. Note that the properties of these modes are due to lattice artifacts and
they are of different origin than the modes which are responsible for the chiral phase transition.



58 Chapter 3. Chiral Symmetry and Confinement

5.75 5.85 5.95 6.05 6.15 6.25 6.35
β

0

0.02

0.04

0.06

0.08

0.1

0.12

〈g
λ〉

r

γ5−cutoff = 0.03
no γ5−cutoff

P real

5.75 5.85 5.95 6.05 6.15 6.25 6.35
β

0

0.01

0.02

0.03

0.04

〈g
λ〉

c

γ5−cutoff = 0.03
no γ5−cutoff

P complex

Figure 3.8: 〈gλ〉 vs. β. The blue fit curves and corresponding data are the same as in
Fig. 3.6, the red curves with corresponding data represent the modified data with chirality
cut off. The averaged spectral gap is enhanced for both the real (plot on the left hand side)
and complex (plot on the right hand side) sector of the Polyakov loop.

the following we will give some evidence that indeed the quasi-zero modes play an
important role.

In the center row of Fig. 3.7 we plotted the chirality for staggered fermions for
T ∼ Tc. In Sec. 3.5.2 we concluded that the modes with high chirality, which we nicely
see in this plot, correspond to exact zero modes in the continuum limit. These quasi-
zero modes do not contribute to the spectral gap in the continuum limit but for finite
a they may have some impact on the results. To study the impact of these modes
for finite a we should get rid of them somehow. This can be done by identifying
all modes which have chirality larger than some value as quasi-zero modes and do
not take them into account for the calculations. We do not expect of course that

Measurement βconfc 〈gλ〉complex 〈gλ〉real
βc (γ5-cutoff) 5.89 5.952 5.938
βc (full) 5.89 5.982 5.955

Table 3.6: Results for the critical values of β for the fits of the original and modified data.
The values with the chirality cut off lie closer to βconfc of the confinement phase transition.

this procedure removes the influence of the quasi-zero modes completely because the
quasi-zero modes are mixing with the non zero modes. But we should expect that
our results should improve. Note that for T < Tc the mixing of the zero modes
is stronger and, therefore, the removal of the quasi-zero modes may not result in a
dramatic improvement. But for T ∼ Tc and T > Tc the mixing of the quasi-zero
modes is weaker and we expect our approach to work. As most of our data is for the
intermediate and high temperature regime, there should not be any serious problem.
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Figure 3.9: We plotted the averaged spectral gap 〈gλ〉 for two volumes V = 203 × 6,
V = 163× 4 and different cut-off values for the chirality (1 and 0.03 for V = 203× 6, and 1,
0.02, 0.01, and 0.005 for V = 163×4). The upper triangles correspond to the data which we
have shown already in Fig. 3.8. We observe that the averaged spectral gap is more enhanced
for smaller cut-off.

What we now have to do is to find a suitable cut-off value for the chirality above
which we will ignore the quasi-zero modes. By looking at Fig. 3.7 we can deduce it. In
the last row we have T > Tc and we have nearly no quasi-zero modes. The maximum
value of the chirality in the bulk spectrum is about 0.03. So we expect all eigenmodes
with chirality lower than this value to be nonzero modes in the continuum limit. We
conclude that this is a natural value for cutting off the quasi-zero modes.

Let us now present some numerical data. In Fig. 3.8 the upper triangles correspond
to the same data as in Fig. 3.6. The lower triangles correspond to the modified data
where we simply ignored all eigenvalues with chirality larger than 0.03. This means
that for the calculation of the spectral gap we did not use the lowest (first) eigenvalue
but we used the first eigenvalue which has chirality below 0.03. This may be the
second, third, etc. eigenvalue or the first one. The first observation we make is that
the averaged spectral gap for the modified data is enhanced. This is not surprising
because we have seen in Fig. 3.7 that the lowest eigenvalues also have the largest
chirality. Further we see that the curves now look much more like the averaged
spectral gap for chirally improved fermions, see Fig. 3.3. The flat behavior of the
curves of the raw data has now vanished and near the critical point the curves are
much steeper. Let us see how this affects the fitted values. In Table 3.6 we listed
the critical values of β for both the raw and modified data. We see that the critical
values are closer to the critical value of the confinement phase transition and, thus,
the situation has indeed improved. We have shown that the influence of the quasi-zero
modes and, therefore, the bad chiral behavior of staggered fermions indeed have some
(negative) impact on the critical temperatures of the chiral phase transition in both
sectors of the Polyakov loop.

Before we are going to conclude this chapter we still want to present another inves-
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tigation which is connected to the different findings of Christ and Chandrasekharan.
Christ and Chandrasekharan used lattices with temporal extent of 4 while we used
for our analysis with chirally improved fermions and staggered fermions lattices with
temporal extent 6. To be sure that this difference is not responsible for the different
findings we will apply our approach to staggered fermions on a lattice with Lt = 4
and Ls = 16. In Fig. 3.9 we plotted both volumes V = 203 × 6 and V = 163 × 4
with different cut-off values for the chirality. In Table 3.7 we listed the corresponding
values of the fits. First note that the three values of βc for the two phase transitions
coincide within a few percent. So we find no different behavior for the data with
Lt = 4. Secondly, we see that for very small cut-off values βc is increasing again. This
is because we have started to remove modes which are no quasi-zero modes. This of
course has some uncontrolled impact on our calculations. Therefore, a cut-off value
of about 0.01 seems to be reasonable.

Measurement γ5-cutoff βconfc 〈gλ〉complex 〈gλ〉real
βc 1 (full) 5.69 5.78(5) 5.82(5)

0.1 5.69 5.78(5) 5.82(5)
0.05 5.69 5.77(3) 5.82(4)
0.03 5.69 5.76(2) 5.81(4)
0.01 5.69 5.76(2) 5.79(4)
0.005 5.69 5.76(2) 5.79(4)
0.001 5.69 5.77(3) 5.81(6)

Table 3.7: Results for the critical values βc of the chiral phase transition for V = 163× 4.
The value for βconfc of the confinement phase transition is taken from [39].

Let us conclude this chapter. We started with the question whether the criti-
cal point of the chiral phase transition depends on the two different sectors of the
Polyakov loop. If so, this would be very important for the understanding of confine-
ment and chiral symmetry breaking. Such a result may be a link to the unsolved
problem of how the chiral and confinement phase transition are connected. Christ
and Chandrasekharan claimed that they found a dependence of the critical temper-
ature on the sectors. In their studies they investigated the chiral condensate with
staggered fermions and Wilson action on lattices with Lt = 4. Motivated by this
puzzle we reinvestigated this problem again but now with chirally improved fermions
with Lüscher-Weisz gauge action and a different order parameter for the chiral phase
transition, namely the averaged spectral gap. We observed, in contrast to Christ
and Chandrasekharan, that the critical points of the real and complex sector of the
Polyakov loop coincide. In order to see whether our findings depend on the differ-
ent choice of the fermions, we investigated the problem with staggered fermions and
Wilson action. However, the results for our approach with staggered fermions agree
with those we obtained from chirally improved fermions. Furthermore, we could not
observe a dependence of our results for staggered fermions for a different extent in
the temporal direction. We studied Lt = 6 and Lt = 4. We could show that the
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bad chiral behavior of the staggered fermions has some impact on the results and
could have affected the analysis of [35]. So we could indeed find that by reducing the
quasi-zero modes and improving the chiral properties the critical points for the chiral
phase transition βrealc and βcomplexc are closer to the critical β of the confinement phase
transition, and, further, that βcomplexc is approaching βrealc . Altogether, we did not find
any dependence of the critical point on the Polyakov loop sector. However, this does
not have to be the case for other order parameters like e.g. the chiral condensate.
So our explanation for the different findings compared to the results of Christ and
Chandrasekharan is that the bad chiral behavior of the staggered fermions simply
leads to larger artifacts in the case of the chiral condensate.
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Chapter 4

Searching Calorons on the Lattice

In Chapter 3 we concentrated on the connection between the chiral and confinement
phase transition. Whereas the mechanism of the confinement phase transition is still
not well understood, we have a well established picture of the chiral phase transition,
namely the instanton picture we introduced in Sec. 2.5. In this picture the vacuum
consists of weakly interacting instantons and anti–instantons in the chirally broken
phase, which become strongly interacting in the chirally symmetric phase forming so-
called instanton-anti–instanton (IA) molecules. The crucial property of the instanton
is the fermionic zero mode. In the liquid phase, where instantons are weakly interact-
ing and the density of the instantons is constant with respect to the temperature, the
zero modes of the instantons are perturbed weakly which means that they are slightly
shifted away from zero. The density of eigenvalues near zero is therefore finite and
chiral symmetry is broken. In the high temperature phase IA molecules are formed
and the zero modes mix strongly, i.e. chiral symmetry is restored.

This picture qualitatively describes the mechanism of chiral symmetry breaking.
Of course, we like to validate this picture. Beside analytical analysis the lattice de-
scription of QCD offers an ideal approach probing the vacuum for instantons because
instantons are non-perturbative objects. Unfortunately, it turns out that the basic
methods investigating the topological properties of lattice QCD are less helpful. For
example, if we are calculating a naive lattice version of the topological charge of
(2.111) on the lattice we observe that we do not obtain an integer number as we do in
the continuum. The reason for this is that the gauge field configurations on the lattice
show strong fluctuations compared to the lattice spacing which means that we have
large lattice artifacts for observables which are sensitive on small distances (compared
to the lattice spacing). One possibility to improve the situation is cooling. If we cool
down a gauge configuration we reduce the fluctuations and the gauge field approaches
its classical solution. So, reducing the ultraviolet fluctuations, in principle, would al-
low us to obtain reasonable values for the topological charge, but there is the problem
that objects on the lattice are not topologically save. This means that during the
cooling procedure instantons can ”fall through” the lattice or, the other way round,
new instantons can be created. In the continuum the global topological properties of
gauge field configurations are protected in the sense that continuous transformations
of the gauge field cannot change the topological properties. This is no longer true
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on the lattice since there are no continuous transformations anymore. Now it is also
clear, why strong ultraviolet fluctuations are problematic for the calculation of the
topological charge. For strong ultraviolet fluctuations on the lattice we cannot say
for sure whether a small instanton is an instanton or not. So, in order to obtain
reasonable results for the topological charge subtle methods are used.

Another way to access the topological properties of the gauge field on the lattice
is to look at fermionic properties. This approach measures the topological content of
a gauge field indirectly. For example, we can measure the topological charge Q via
the index theorem (or Atiyah-Singer theorem) [46]

Q = n+ − n−, (4.1)

where n+ and n− denotes the number of left- and right-handed zero modes, respec-
tively. It can be shown that the theorem also holds for fermions on the lattice which
obey the Ginsparg-Wilson equation exactly [47, 48, 49]. Also with fermions which do
not exactly fulfill the Ginsparg-Wilson relation (like chirally improved fermions) the
index theorem can be applied because left-handed and right-handed zero modes can
be identified very well, see Ref. [12] for details. Another way to search for instan-
tons on the lattice is to look at their localization properties. As we have mentioned
already in Sec. 2.5, we expect that the Dirac eigenmodes in the liquid phase, i.e. in
the chirally broken phase, become collective and therefore are delocalized. On the
other hand, in the gas phase, where IA molecules dominate the vacuum, the quarks
are bound to the IA molecules and the Dirac eigenmodes are localized. We see that
the localization properties of the Dirac eigenmodes allow us to validate the instanton
picture of chiral symmetry breaking. Of course, only observing the expected localiza-
tion properties on the lattice does mean that we have shown the correctness of the
instanton picture. But it can provide a piece of evidence which should fit into the
whole, or, say it the other way round, if we do not observe the localization properties
of the fermions, which we expect for chiral symmetry breaking, then the instanton
picture is not correct and we have to think of an other mechanism for chiral symmetry
breaking.

In Refs. [51, 52] it was found that the lowest eigenmodes indeed show the correct
localization properties for zero temperature. Being investigated for the first time we
like to analyze the localization properties of the lowest Dirac eigenmodes for finite
temperature. We therefore will discuss the concept of instantons at finite temperature
in Sec. 4.1. Before we will present numerical results in Sec. 4.3 we define a quantity
which allows us to measure the localization of an eigenmode of the Dirac operator,
see Sec. 4.2.

4.1 Calorons

In Sec. 2.5 we have presented an instanton solution for T = 0, see Eq. (2.120). An
instanton solution for finite temperature can also be constructed. This solution is
usually called caloron (for a review see Ref. [53]). From Sec. 2.2 we know how to study
QCD at finite temperature. In the temporal direction we have to impose periodic
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boundary conditions for the gauge fields and anti-periodic boundary conditions for
the fermion fields. Further, we have to remember that the (finite) temporal lattice
extent corresponds to the temperature. For the caloron solution this simply means
that instantons are periodically repeated in time direction. In other words, we have
to line up the zero-temperature instantons in time direction. We can construct such
solutions using the multi-instanton approach first derived by ’t Hooft [54]. An explicit
expression for the gauge field was given first by Harrington and Shepard [55],

Aaµ = η̄aµνΠ(x) ∂νΠ
−1(x), (4.2)

where

Π(x) = 1 +
πρ2

βr

sinh(2πr/β)

cosh(2πr/β)− cos(2πr/β)
. (4.3)

The topological charge of the instanton is one, Q = 1, and the action is S = 8π2/g2.
Note that the action does not depend on the temperature. We can also construct
calorons with Q = −1 by simply replacing η̄aµν → ηaµν .

Let us discuss the caloron in more detail. For low temperatures, i.e. Tρ ¿ 1, we
easily find that the caloron solution looks like an isolated instanton. For high temper-
ature, i.e. TρÀ 1, the situation changes [53]. In the far region, where r > O(ρ2/β),
the caloron looks like a three-dimensional dipole field, Ea

i = Ba
i ∼ O(1/r3), whereas

in the intermediate region, O(β)r < O(ρ2/β), the caloron resembles a (temperature
independent) dyon with unit magnetic and electric charges,

Ea
i = Ba

i =
r̂ar̂i

r2
. (4.4)

Note that the caloron also possesses a fermionic zero mode [56, 57]. An explicit
expression for the zero mode can be found in Ref. [27]. It is clear that the instanton
picture of chiral symmetry breaking qualitatively is still true for calorons. So we
expect that there is also a liquid phase for low temperatures and a gas phase for high
temperatures. However, there are some differences to the zero temperature phase. For
example, for higher temperatures (compared to Tc) the fermionic zero mode becomes
more delocalized in time, though it remains localized in space. Furthermore, we
still have to embed these SU(2) solutions into SU(3). The naive embedding leads to
solutions which correspond to the real sector of the Polyakov loop, i.e. θP = 0. In
Refs. [58, 59] it is described how to obtain embedded solutions for SU(3). It turns
out that the embedded zero mode of the caloron strongly depends on the Polyakov
loop sector. It falls off asymptotically like

|ψ|2 ∼ exp[−2(π − |θP |)rT ]/r2, (4.5)

where r denotes the three-dimensional distance from the caloron axis. Note that for
a single instanton |ψ|2 falls off like a power of r. From (4.5) it follows that for the
complex sectors of the Polyakov loop the radius of the modes is about 3 times larger,
which means that they occupy a larger volume. We see that the localization properties
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of the zero modes show strong differences in the two different Polyakov loop sectors.
This observation can act as a signature for calorons, which means if there are calorons
on the lattice we should observe the different localization properties in the different
sectors. In Sec. 4.3 we will search for such a signature on the lattice. But before we
will introduce an quantity which allows us to measure the localization of a mode.

4.2 The Inverse Participation Ratio

In order to decide whether an eigenmode of the Dirac operator is localized or not
we have to study the density ψ†(x)ψ(x) where ψ(x) is an eigenvector of the Dirac
operator /D, /Dψ = ±iλψ. Of course, it is much more comfortable to have a quantity
which measures the localization of the eigenmode instead of looking at every single
configuration. We introduce the inverse participation ratio (IPR) which is usually
defined by

Icont = V0

∫

V0

d4x

4∑

α=1

N∑

c=1

|ψαc(x)|4, (4.6)

where V0 denotes the space-time volume in the continuum, α and c are the Dirac
and color indices, respectively. N denotes the number of colors which is in our
case equal to three. We assume that the eigenmodes are normalized according to∫
V0
d4r
∑

α

∑3
c=1 |ψαc(x)|2 = 1. On the lattice we obtain for the IPR

Ilat = V a4
∑

xαc

|ψx,αc|4, (4.7)

where V = LtL
3
s refers to the number of lattice sites and a is the lattice spacing

which we set as usual to one. Note that the analog of this definition in condensed
matter physics is widely used. However, in QCD the definition of the IPR in (4.6)
is not gauge-invariant so we have to redefine the IPR for our purposes. A simple
gauge-invariant version of the IPR is given by

I = V
∑

x

pλ(x)
2. (4.8)

where pλ(x) is the (normalized) gauge-invariant probability density

pλ(x) =
∑

αc

|ψx,αc|2. (4.9)

Since in Sec. 4.3 we will perform numerical studies with staggered fermions we will
work with the following expression for the IPR for staggered fermions

I = V
∑

x

(
∑

c

|χxc|2
)2

, (4.10)
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where χxc is the one-component staggered field which is normalized to
∑

xc |χxc|2 = 1.
In order analyze the properties of the IPR we calculate the IPR for a completely
delocalized state, where completely delocalized means that pλ(x) is the same for all
lattice sites, pλ(x) = 1/V . In this case we obtain I = 1. On the other hand, if the
state is completely localized, which means that the state is localized on a single lattice
site, pλ(x) = δxx0 , then we can easily find I = V .

In Sec. 4.3 we also will show results for the averaged inverse participation ratio
〈I〉. In particular we have calculated the lowest eigenvalues. In order to perform the
ensemble average we calculate the IPR for every calculated eigenvalue for all configu-
rations. Then we take the average for (say) the lowest eigenvalue of each configuration,
and then the average for the second lowest eigenvalue and so on. Furthermore, we also
build the average of the lowest eigenvalue, and the second lowest and so. Finally, we
plot the averaged IPR vs. the corresponding averaged eigenvalues. Note that we will
show only plots for positive eigenvalues since the eigenvalues of the Dirac operator
come in pairs of ±λ, so we cannot gather no new information from that.

Finally, we like to compare the IPR from our lattice QCD results with the chiral
random matrix prediction. Note that for staggered fermions we have to use the chiral
Gaussian unitary ensemble (chGUE). In this case we obtain for the averaged IPR for
arbitrary N [58, 60]

〈I2〉 =
(N + 1)V

NV + 2

V→∞−→ 1 +
1

N
for N ≥ 3 . (4.11)

In our case we obtain a value for the averaged IPR of 4/3. So, the eigenmodes of
the Dirac operator are delocalized. This can be motivated because we know that the
Dirac operator in random matrix theory has random entries. Therefore, we expect
that the eigenvectors of the Dirac operator also show a random localization somehow.
This is exactly what we obtain. Note that the result for the chRMT prediction does
not depend on the eigenvalue.

4.3 Calorons on the Lattice: Numerical Results

In this section we will search for calorons on the lattice. In doing so we will not use
properties of the gauge field but of the fermion field only, i.e. we will not use any
cooling methods. (For investigations using cooling, see, e.g., Refs. [61, 62].) By using
only the fermion fields for our analysis we circumvent the problems connected to the
direct investigation of global topological properties of the gauge fields.

In the following we use staggered fermions with Wilson and Lüscher-Weisz gauge
action for our lattice studies. For an overview of the used lattices see Table 4.1.
Note that the ensembles with Lüscher-Weisz gauge action with β = 8.10 and β =
8.45 correspond to temperatures below and above the confinement phase transition,
respectively. The three ensembles with Wilson action with β = 5.8/6.1/6.3 have
temperatures which are below, at, and above Tc.

We begin with the plot in Fig. 4.1 which is similar to those presented in Fig. 3.7.
We plotted the chirality of the lowest 10 eigenvalues for Wilson gauge action for
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Figure 4.1: 〈γ5〉 vs. λ. We plotted the lowest 10 eigenvalues. We used the Wilson gauge
action on a 123 × 6 lattice at β = 6.10 for both sectors, θP = 0 and θP = ±2π/3.

both sectors of the Polyakov loop near the critical temperature Tc of the confinement
phase transition. As already discussed in Sec. 3.5.2, for both sectors we find small
eigenvalues with high chirality while the larger eigenvalues (of the bulk spectrum)
have chirality near zero. The low-lying eigenvalues with a large value of 〈γ5〉 are
supposed to be of topological origin. In the following we will take a deeper look
at three special eigenvalues which we labeled 1 to 3 in Fig. 4.1. These eigenvalues
represent the typical properties of such eigenvalues. This means that other low-lying
eigenvalues with large chirality show similar localization properties like eigenvalues
one and two. The same is true for eigenvalue number three. Note that eigenvalue
number three belongs to the low-lying eigenvalues of the bulk spectrum. It turns
out that the low-lying eigenvalues of the bulk in general show different localization
properties than the large eigenvalues of the bulk.

Eigenvalues number one and two are small eigenvalues with large chirality while
eigenvalue number three has low chirality. Let us investigate the localization of the
eigenmodes with respect to their chirality. In Fig. 4.2 we present a scatter plot of
the localization of the eigenmodes, i.e. the IPR, vs. 〈γ5〉. The same eigenvalues as
in Fig. 4.1 are depicted. First, we notice that the eigenvalues of the real Polyakov
sector are more localized in general than the eigenvalues of the complex sector, which
can be seen by the larger values of the IPR. This is a first sign indicating that there
are indeed calorons on the lattice, since we have learned in Sec. 4.1 that the zero
modes of calorons are more localized in the real sector than in the complex sector.
However, most eigenvalues have low chirality and are less localized. As we can guess
from Fig. 4.1 these eigenvalues are from the bulk of the spectrum and correspond
to the nonzero modes in the continuum. Furthermore, there are several eigenvalues
which are more localized and have a more or less high value of 〈γ5〉. These modes are
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Figure 4.2: A scatter plot of the localization vs. chirality. We show the same eigenvalues
as in Fig. 4.1.

supposed to be calorons. We already mentioned that those modes are more localized
in the real sector which is one fermionic property of the caloron. We will study this
effect later on in more detail. Before we will check another property common to the
zero mode of the caloron let us have a look onto the highly localized eigenvalues with
low chirality. These modes are not expected to be of topological origin because of
the low chirality they have. However, let us be inspired by the instanton picture of
chiral symmetry breaking. Because we are near the critical temperature we expect the
ensemble under investigation to show properties of the instanton liquid phase as well
as of the instanton gas phase. In the gas phase we expect to find IA molecules. The
low-lying modes of these molecules are supposed to be strongly localized and have
zero chirality. Further, the eigenvalues are shifted away from zero. Eigenvalue number
three shows all these properties which suggests that this eigenvalue corresponds to an
IA molecule. We will present more evidence for this claim later on.

In the following we will investigate the localization patterns of the eigenmodes of
our numerical data. We know that the zero mode of a caloron is localized in space
and delocalized in time. This is different to the single instanton solution which is

β1/β 5.8 6.1 6.3 8.10 8.45
SU(3) 123 × 6 500 500 500 1000 1000
SU(3) 163 × 6 – – – 500 500
SU(3) 203 × 6 – – – 350 350

Table 4.1: Overview of the calculated ensembles for the Wilson and Lüscher-Weisz gauge
action. The values with β1 = 8.10 and β1 = 8.45 correspond to the Lüscher-Weisz gauge
action while the other three values of β correspond to the Wilson gauge action.
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localized in space and time. We begin with mode number one of Fig. 4.2, which is
supposed to be a caloron state. In the upper plot on the left hand side of Fig. 4.3
we show the density |ψ(x)|2 of mode 1 for the full four-dimensional space-time. This
way of plotting maybe not clear at once. Therefore we will explain this plot in more
detail. We start at time t = 0. For fixed time we have a three-dimensional spatial
lattice which, in this case, is a cube. We divide this cube into two-dimensional planes
with (say) fixed z. We line up these planes (say) in y-direction (or in j-direction, see
Fig. 4.2). The same can be done for the cube with t = 1. Again, we line up the slices
of this cube next (in x-direction or i-direction) to the line of t = 0, and so on. We
obtain a plane which consists of Nt ×Ns two-dimensional x-y-slices which shows the
full space-time. (If this is not yet clear enough, take a look at the caption in Fig. 4.3.)

Let us analyze the plot now. We start with t = 0 and the first slice in j-direction.
We nicely see that the eigenmode is localized in space. For the j-direction we find that
the modes is localized around j = 100. This corresponds to a value of z of about 8.
By looking at a single x-y-slice we also find that the eigenmode is localized around
x = 11 and y = 1. By looking at the other t-slices in i-direction we observe that the
eigenmode is delocalized in time, although the mode is peaked about t = 4. This is
exactly what we expect for the zero modes of calorons. Another piece of evidence can
be given by looking at the chiral density which we plotted in the lower plot on the
left hand side of Fig. 4.3. The chiral density is just the local chirality which is given
by expression (3.12) without averaging over space-time,

〈γ5〉 (x) =
1

244!

∑

µ
µi 6=µj

(−1)x1+x3 χ̄(x+∑4
i=1 µ̂i)

4∏

j=1

U †
(x+

∑j−1
i=1 µ̂i)µj

χx. (4.12)

In the plot we observe that the chiral density is not arbitrary distributed but follows
the density of the eigenmode. This means that the localized volume of the mode is
of topological origin which is further evidence for our assumption that the eigenmode
under investigation is a caloron. Similar plots of an eigenmode of the Dirac operator
which is supposed to be a zero mode of a caloron are shown in Fig. 4.4 and Fig. 4.5.
On the left hand side of Fig. 4.4 we plotted isosurfaces of the density, on the right
hand side we show the corresponding isosurfaces of the chiral density. In the upper
row we plotted the three-dimensional lattice for a fixed value of z. The full density
in the volume, which is covered by the isosurface has a value which larger than some
parameter value. Illustratively, this means that the quark mostly can be found in the
volume covered by the isosurface. From the plots in the first row it follows that the
mode is delocalized in time and that the chiral density follows the density. In the
plots of the lower row we hold the time fixed and plotted the spatial volume. We
see that the mode is clearly localized in space as it is predicted for a zero mode of
the caloron. Again, the chiral density follows the density of the eigenmode. This we
illustrate in more detail in Fig. 4.5 where we plotted the chiral density and the density
into one plot, each for fixed t and fixed z. We nicely see that the density and the
chiral density are localized at the same region.

Note that mode 2 of Fig. 4.1 shows a similar localization pattern like mode 1, but
the width of mode 2 is larger which is the reason for its lower value of the IPR. This
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Figure 4.3: In the upper plots we show the density of mode 1 (left-hand side) and mode 3
(right-hand side) of Figs. 4.1 and 4.2 on a 123 × 6 lattice for β = 6.1 in the θP = 0 sector.
We have defined the coordinates i = x + 12t and j = y + 12z with the lattice coordinates
x, y, z = 0, 1, . . . , 11 and t = 0, . . . , 5. The corresponding local expectation value of γ5 is
plotted in lower row.
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Figure 4.4: Isosurfaces of a ’caloron’ state which has similar properties like mode 1 or 2
of Figs. 4.1 and 4.2. The columns on the left hand side show the localization while on the
right hand side we plotted the corresponding local chirality. In the upper row we show the
three-dimensional lattice with fixed z coordinate. We see that both quantities are extended
in time. In lower row we hold the time coordinate fixed and plotted the spatial lattices. We
observe that both, the density and the chiral density are localized in space.



4.3. Calorons on the Lattice: Numerical Results 73

Figure 4.5: We plotted the same isosurfaces of the local chirality and the density of
Fig. 4.4 in one plot, each for fixed t and fixed z. We see that the chiral density follows the
density which reflects the topological property of the mode.

suggests that mode 2 corresponds to a zero mode of a calorons which has a larger
size ρ than the corresponding caloron of mode 1. Mode 3 has a completely different
localization pattern, see Fig. 4.3 on the right hand side. Although the chirality of the
mode is small we find that there is a region of positive values of the chiral density right
next to a region with negative values. We interpret this observation as follows: The
region with positive chirality corresponds to a (left-handed) instanton with topological
charge Q = 1 while the region with negative chirality corresponds to (right-handed)
anti–instanton with Q = −1. The instanton sits right next to the anti–instanton.
Furthermore, we find that the mode is strongly localized. All these observations
suggests that mode 3 is a fermionic mode of an IA molecule.

Let us come back to the difference of the localization in the different sectors of the
Polyakov loop. In Fig. 4.6 we plotted the averaged IPR vs. the averaged eigenvalue
for three different ensembles with temperatures below, at, and above Tc. In the low
temperature regime we find, of course, no difference in the different sectors since the Z3

symmetry is restored. As we noted already for Fig. 4.2, for temperatures at (β = 6.1)
and above (β = 6.3) the critical temperature we clearly see the difference in the two
different sectors. We observe that the IPR for the real sector is approximately three
times larger than for the complex sector. Note that the width of the zero modes of the
caloron in the real sector is three times larger than in the complex sector. If a mode
occupies a volume which is three times smaller than that of an other mode, i.e. the
mode is three times more localized than the other, the IPR of the more localized mode
is three times larger. This observation also supports our assumption that there are
indeed calorons on the lattice. Note that the bulk of the spectrum Fig. 4.6 follows
approximately the prediction of random matrix theory.
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Figure 4.6: From top to bottom we plotted the average IPR vs. the averaged eigenvalue
for temperatures below, near, and above the chiral phase transition separately for the Z3

sector with θP = 0 and the Z3 sectors with θP = ±2π/3. We performed the average for the
1st, 2nd, . . . , 20th eigenvalue of each gauge field configuration. The dashed line is the RMT
prediction, 4/3.



4.3. Calorons on the Lattice: Numerical Results 75

Let us summarize this chapter. While for the confinement phase transition the
underlying mechanism remains still unclear, we have the instanton picture for the
breaking of chiral symmetry. We have discussed the problems of observing instantons
or, in general, any topological objects on the lattice. The problems arise because the
lattice is not ”topologically safe”, which means that in lattice simulations instantons
can be arbitrarily created or destroyed. In order to circumvent these problems we used
other, indirect methods to get informations about the instantons on the lattice. In
our studies (at finite temperature) with staggered fermions and Wilson gauge action
we searched for calorons on the lattice through the localization properties of the low-
lying fermionic modes near and above the chiral phase transition. We found that
there are indeed low-lying eigenmodes of the Dirac operator which are supposed to
be of topological origin, i.e. modes with high chirality. Furthermore, it turned out
that these modes show the characteristic difference of the localization in the different
sectors of the Polyakov loop, i.e. the modes are more localized in the real sector than in
the complex. The typical localization pattern of ’caloron’ states also shows up. That
means that the modes under investigation are localized in space but not in time. All in
all we have found all the localization properties we expect for calorons which strongly
supports the instanton picture. Finally, we note that we also found indications for the
existence of IA molecules which is further evidence for the correctness of the instanton
picture.
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Chapter 5

Normal Modes in Random Matrix
Theory and QCD

The history of random matrix theory (RMT) begins about 50 years ago with Wigner
in the field of nuclear physics. He studied the statistical properties of excited en-
ergy levels of complex nuclei. Those systems are characterized by their complicated
dynamics. Wigner, nevertheless, found a way to describe certain properties of such
systems. He had the idea to replace the complicated matrix of the Hamiltonian by
a random matrix with appropriate symmetry properties. Observables are then cal-
culated by averaging over an ensemble of random matrices which follow a certain
probability distribution, usually taken to be Gaussian. This probability distribution
depends on the symmetries of the underlying theory. Without going into all the de-
tails we just want to give examples. If the quantum mechanical Hamiltonian is not
invariant under time reversal transformations the corresponding random matrix has
to be complex Hermitian and the RMT ensemble is called unitary ensemble (UE) or
Gaussian unitary ensemble (GUE) if a Gaussian distribution is used. A system which
is rotationally invariant and also invariant under time reversal is described by a real
symmetric matrix. The corresponding ensemble is the orthogonal ensemble (OE) or
GOE if a Gaussian distribution is used. An nice overview of RMT can be found in
Ref. [63].

Anyway, if we know which RMT ensemble should describe our system under inves-
tigation then the task is to determine quantities which do not depend on the details
of the dynamics of the systems but only on the global symmetries of the problem.
These quantities are called universal quantities. Usually, universal quantities can be
calculated more easily in RMT than in the original theory. But it is easy to guess
that a formal proof of the universality of those quantities is difficult because of the
complex structure of the underlying theory. Anyway, since Wigner’s great idea huge
progress has been made in a variety of different fields including QCD.

In this chapter we will introduce and apply an interesting tool which turns out to
be very useful in RMT, namely the so-called normal modes. Normal modes are the
eigenmodes of a specific correlation matrix. As mentioned above in RMT the random
matrices follow a certain probability distribution P . This probability distribution can
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be represented as a function of the N eigenvalues of the N ×N random matrices, so,
we can treat it as function which takes N arguments. This function has a maximum
somewhere. If we expand around this maximum up to second order, the linear term
vanishes and the quadratic term is given by a correlation matrix. The eigenmodes
of this matrix are the normal modes providing us with a natural basis describing
the correlated fluctuations near the maximum of P . We will derive an analytical
expression for the normal modes for the Gaussian ensembles, the Poisson ensemble,
and the chiral Gaussian ensembles, see Sec. 5.1, 5.2, and 5.4, respectively. The chiral
ensembles (chGUE, chOE, chSE) are expected to describe universal features of chiral
QCD. We will compare the predictions of chiral random matrix theory (chRMT), see
Sec. 5.3, for the normal modes to lattice QCD data hoping to get some deeper inside
into the theory. We won’t let the cat out of the bag yet in the introduction but we
will see that normal modes are connected to the Thouless energy, the energy which
sets the scale for the validity of RMT, see Sec. 5.6.

Beside the comparison of chRMT to lattice QCD, normal modes are related to
another interesting feature. The authors in Ref. [64] showed that the zeros of the QCD
partition function are trapped by the position of the eigenvalues of the maximum of
the probability distribution. The zeros of the partition function, known as the Yang-
Lee zeros [65], are related to the chiral phase transition. Yang and Lee showed that
at the point when the phase transition occurs the zeros of the QCD partition function
hit the real axis. As already mentioned above, the normal modes provide a natural
basis near the maximum of the probability distribution and, hence, can be used as
tool for studying the Yang-Lee zeros. But this topic will not be the subject of the
following work.

We will concentrate on the normal modes and the comparison of chRMT to lattice
QCD, investigated here for the first time. We begin with an illustrative example for
the case of the GUE to get a better understanding of normal modes.

5.1 Normal Modes and the Gaussian Ensembles

We start with the joint probability distribution for the N eigenvalues x1, x2, . . . , xN
for the Gaussian ensembles of N ×N matrices

PNβ(x1, x2, . . . , xN) = CNβ
∏

1≤i<j≤N
|xi − xj|β e−

β
2
N

∑N
i=1 x

2
i . (5.1)

β = 1, 2, 4 corresponds to the Gaussian orthogonal (GOE), unitary (GUE), and sym-
plectic ensembles (GSE), respectively. CNβ is a normalization constant given by

CNβ =
(Nβ)N/2+βN(N−1)/4

(2π)N/2
ΓN(1 + β/2)

∏N
n=1 Γ(1 + βn/2)

. (5.2)

The variance of the Gaussian in Eq. (5.1) is simply given by σ = 1
βN

. Sometimes,

the scaling is different in the literature. Often used variances are 1/β, 2/β, and 2
Nβ

.
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With our choice we find for the spectral density ρ for large N

ρ(x) =
N

π

√
2− x2. (5.3)

So ρ for large N is given by a semicircle which Wigner first derived in 1957. Note
that the spectral density is independent of β which stays true for any other choice
of the variance. This behavior is different for the radius of the semicircle which is
independent of N in our particular choice. For example for σ = 1/β we get ρ(x) =
1
π

√
2N − x2.
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Figure 5.1: The analytical result for the eigenvalue density ρ(x) for large N compared to
the numerical result for the GUE for N = 500. The ensemble contains 2500 configurations.

In the following we will demonstrate how to obtain numerical results out of RMT.
For illustration we compare the analytical result for ρ in Eq. (5.3) to the numerical
one for the GUE. First, we have to generate an ensemble of N ×N random matrices
with complex entries which are normally distributed. We provide hermiticity for the
matrices by hand adding the complex conjugate matrix and dividing by 2, W ′ =
(W +W †)/2. Now, we calculate the N eigenvalues for every matrix and determine
the spectral density by averaging over the entire ensemble. In Fig. 5.1 we give an
example for about 2500 matrices with N = 500. The binning of the histogram is
about 0.032. The smooth curve is the analytical prediction for the spectral density
for large N , Eq. (5.3), which is already in very good agreement with the result for
N = 500. This procedure can be applied in the same way for all numerical calculations
of observables which depend on the eigenvalues and eigenvectors of random matrices.

Let us return to the subject of normal modes. The function PNβ depends on N
variables xi. It follows from Eq. (5.1) that PNβ is symmetric in all its arguments.
Therefore, it is sufficient to consider PNβ only for x1 < x2 < · · · < xN if we are
interested in the extrema. Let us denote the maximum value of PNβ for this region
by P 0

Nβ. For the equilibrium positions of the xi one easily obtains the following set of
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equations

∑

i6=j

1

xi − xj
−Nxi = 0. (5.4)

Near the maximum we can approximate the logarithm of PNβ by

lnPNβ = lnP 0
Nβ +

1

2
β
∑

i,j

δxiCij δxj, (5.5)

where the matrix Cij is evaluated at the maximum,

Cij =
1

β

∂2

∂xi∂xj
lnPNβ

∣∣∣∣
maximum

. (5.6)

Cij can be easily calculated and we find

Cii =−
∑

i6=j

1

(xi − xj)2
−N (5.7)

Cij =
1

(xi − xj)2
, i 6= j. (5.8)

Obviously, this matrix is diagonalizable having real eigenvalues. The corresponding
eigenvectors are the so-called normal modes. A normal mode describes a statisti-
cally independent mode of correlated motion of the eigenvalues xi. This can be easily
understood by looking at Eq. (5.5). By diagonalizing Cij we simply change the co-
ordinate system, δxi → δyi. In the new coordinates (also called normal coordinates)
Eq. (5.5) becomes

lnPNβ = lnP 0
Nβ +

1

2
β
∑

i,j

δyiC
′
ij δyj = lnP 0

Nβ +
1

2
β
∑

i

C ′ii (δyi)
2. (5.9)

An analogy can be found in mechanics. Determining the equation of state for a system
of masses coupled via springs leads to a set of coupled differential equations. This
set can be written in the form ”matrix times vector” where the matrix contains the
couplings of masses to each other. The matrix can be diagonalized ending up in a
system in new coordinates and a set of differential equations which are now decoupled.
So for the normal modes this means that they are uncorrelated modes describing a
collective motion of the eigenvalues of the random matrix.

To calculate the eigenvalues and eigenvectors of Cij we first have to determine
the equilibrium positions x0i from Eq. (5.4). With the help of Hermite’s differential
equation,

H ′′
N(x)− 2xH ′

N(x) + 2NHN(x) = 0, (5.10)

which reduces to Eq. (5.4) at the zeros of HN , the x
0
i are given by the zeros of the

Hermite polynomial HN [66]

HN(
√
Nx0i ) = 0. (5.11)
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Now the eigenvalues ω̃Gk and eigenvectors δy
(k)
i of Cij,

N∑

j=1

Cij δy
(k)
j = ω̃Gk δy

(k)
i , (5.12)

can be determined which is shown in Ref. [67]. The N eigenvalues show up to have a
very simple form,

ω̃Gk = −k N. (5.13)

The i-th component of the eigenvectors behave like polynomials of order k− 1 evalu-
ated at x0i . For illustration we show the first 4 normalized eigenvectors

δy
(1)
i =

1√
N

(5.14)

δy
(2)
i =

√
2

N − 1
x0i (5.15)

δy
(3)
i =

√
N − 1

N(N − 2)

(
1− 2N

N − 1
(x0i )

2

)
(5.16)

δy
(4)
i =

√
2(2N − 3)2

(N − 1)(N − 2)(N − 3)

(
x0i −

2N

2N − 3
(x0i )

2

)
. (5.17)

One can show that in the limit of large N the k-th eigenvector is proportional to the
Chebyshev polynomial of the second kind Uk−1(x) evaluated at x = x0i /

√
2,

δy
(k)
i =

√
N Uk−1

(
x0i√
2

)
. (5.18)

This result is not surprising since the orthogonality relation of the eigenvectors,

N∑

i=1

δy
(k)
i δy

(l)
i = δkl, (5.19)

can be approximated for large N by

∫ √
2

−
√
2

dx ρ(x) δy(k)(x) δy(l)(x) = δkl, (5.20)

where ρ(x) is defined by Eq. (5.3). Replacing δy(k)(x) above by its approximation
from Eq. (5.18),

y(k)(x) =
√
N Uk−1

(
x√
2

)
, (5.21)

we find Eq. (5.20) to be the orthogonality relation for Chebyshev polynomials of
second kind.
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5.2 Normal Modes and the Poisson Ensemble

We would like to compare the result for the normal modes for the Gaussian ensembles
to that of the Poisson ensemble. We will see that we can also calculate the normal
eigenvalues and eigenvectors in that case. However, it is convenient to choose a
different approach which is equivalent to the approach above to the extent that the
quadratic approximation of PNβ in Eq. (5.5) is exact.

Instead of calculating the eigenmodes of Cij defined in Eq. (5.6) we calculate the
eigenmodes of the following correlation matrix

Dij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 = 〈xixj〉 − 〈xi〉 〈xj〉 . (5.22)

It turns out that the eigenvectors in both approaches are the same and the eigenvalues
are the negative reciprocals of one another (if the quadratic approximation is exact).
We will denote eigenvalues of D by ω̃ while for eigenvalues of the corresponding C
matrix we will omit the tilde. So, the eigenvalues are related by ω̃ = −1/ω.

Again, we start with the adjoint probability distribution which is given by

PN(x1, x2, . . . , xN) = e−x1 θ(x1)
N−1∏

i=1

e−(xi+1−xi) θ(xi+1 − xi) (5.23)

= e−xN θ(x1)
N−1∏

i=1

θ(xi+1 − xi). (5.24)

This describes a spectrum of N uncorrelated levels with unit mean level density. It
is easy to calculate the expectation values 〈xi〉 and 〈xixj〉

〈xi〉 =
∏

k

∫
dxk xi PN(x1, x2, . . . , xN) = i (5.25)

〈xixj〉 =
∏

k

∫
dxk xi xj PN(x1, x2, . . . , xN) =

{
ij + j, i > j

ij + i, j > i
. (5.26)

The correlation matrix Dij takes the simple form

Dij =

{
j, i > j

i, j > i
= min{i, j}. (5.27)

Now we can determine the eigenvectors and eigenvalues of Dij. With the following
definition

φk ≡
π (2k − 1)

(2N + 1)
(5.28)

one finds for the components of the eigenvectors [68]

ψ
(k)
j =

2√
2N + 2

sin(jφk) (5.29)
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and the corresponding eigenvalues are

ωPk =
1

4
sin−2

(
φk
2

)
. (5.30)

To compare this result to that of the Gaussian ensembles we have to establish identical
scales. This can be done by multiplying ωPk by 1

ρ(0)2
= π2

2N2
. (We have a square in the

first term because Dij is quadratic in xi.) It follows that the eigenvalues for large k
are of the same order. For the Gaussian ensembles we find ω̃GN = −N 2 and for the
Poisson ensemble we have

ω̃PN = −ρ
2(0)

ωPN
− π2

2N2

1

ωPN
= −

(
8

π

)2

N2. (5.31)

For the soft edge of the spectrum, where ”soft” refers to small values of k, we find a
different behavior. In the uncorrelated case the eigenvalues show a quadratic behavior,
−2k2, while for the Gaussian case we have a linear one, −kN . This regime of the
spectrum will be of particular interest for our numerical calculations which we will
present in the next sections.

5.3 The Chiral Random Matrix Model

For the derivation of the chiral random matrix model we begin with the QCD partition
function in Euclidean space which we formulated in Sec. 2.1.1. The goal is to establish
the partition function of QCD in terms of an integral over random matrices. In
particular the chiral nature of the Dirac operator plays an important role. We found
in Eq. (2.95) that /D has block diagonal form. The first step now is to replace the off-
diagonal blocks T in (2.95) by purely random matricesW with appropriate symmetry
properties,

/D →
(

0 iW
iW † 0

)
. (5.32)

The entries of the matrix W are random numbers which are generated according to a
particular probability distribution. In the case of QCD and for gauge groups SU(Nc)
with Nc > 3 the Dirac operator in the fundamental representation has no further
symmetries so the random matrix W has to be chosen arbitrary complex. We will
see below that if the Dirac operator has certain symmetries we have to account for
this. Anyway, the ensemble above is called the chiral unitary ensemble or chUE. If
a Gaussian probability distribution is used for the matrix entries it is called chiral
Gaussian unitary ensembles or chGUE.

ForNc = 2 and fermions in the fundamental representation, see [69], there is indeed
an additional symmetry of /D. The operator Cτ2K commutes with i /D, [Cτ2K, i /D] = 0,
where C is the charge conjugation operator, τi are the Pauli matrices, and K is the
operator of complex conjugation. This symmetry enables us to choose a basis in which
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W is real [69, 70]. This is called the chiral orthogonal ensemble (chOE or chGOE in
case of a Gaussian probability distribution).

Finally, a third ensemble enters the game. Fermions in the adjoint representation
of the gauge group, see [69], also have a particular symmetry. Without going into
details we claim that the Dirac operator commutes with CK and thus can be diago-
nalized by a symplectic transformation [69, 71]. This means that the elements of W
are quaternions. The corresponding ensemble is the chiral symplectic ensemble (chSE
or chGSE).

Note that the random matrix in Eq. (5.32) is still anti–hermitian because of the
block structure. This structure can be spoiled in some random matrix models for
lattice QCD. So, e.g., for Wilson fermions chiral symmetry is explicitly broken which
means that the Dirac operator has no block structure any more. In this case we
preserve hermiticity by choosing a hermitian matrix for the Dirac operator. The
corresponding ensemble is the UE for Nc ≥ 3 and the OE for Nc = 2, respectively. In
our numerical studies we use staggered fermions which are described by the chUE for
Nc ≥ 3 and the chSE for Nc = 2, see Ref. [69].

The eigenvalues of the Dirac operator can be zero or they come in pairs of ±λi.
If the Dirac operator has zero modes then the corresponding gauge field has a non–
vanishing topological charge. We can have zero modes also in our random matrix
model and, therefore, simulate different topological sectors. We choose the matrix W
to be of dimension N×(N+ν) where we assume ν ≥ 0. The matrix in Eq. (5.32) then
has N eigenvalues ±λi (i = 1, . . . , N) and ν zero modes. From lattice studies we know
that gauge field configurations with large topological charge are rare, see Ref. [33, 72],
so we will assume ν ¿ N and we can identify the volume V = 2N + ν ≈ N .

For the second step we have a look at the integration in the partition function.
In Eq. (2.12) we integrated out the fermions fields and only the integration over the
gauge field remains. The integration can be understood as summing up all possible
probabilities

P (A) ∼ e−Sg
Nf∏

f=1

det(TT † +m2
f ). (5.33)

For the calculation of spectral quantities we have to average over the gauge fields
which are distributed according to the probability given above. We simulate this
in chiral RMT by replacing the average over the gauge fields by an average over
random matrices. In doing so we replace the T -blocks of the determinant in Eq. (5.33)
by random matrices W as discussed above, and the gluonic part is replaced by a
convenient distribution of the random matrix W ,

P (W ) ∼ e−NV (W )

Nf∏

f=1

det(WW † +m2
f ). (5.34)

From universality arguments one can argue that all relevant results should not depend
on the specific choice of V (W ), provided that it is well-behaved and invariant under
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similarity transformations. There are several proofs of this universality conjecture,
see [73, 74, 75]. A convenient choice is a Gaussian distribution,

V (W ) =
βΣ2

2
TrWW †, (5.35)

where Σ is the absolute value of the quark condensate, see Eq. (2.99). Note that
compared to Eq. (2.99) we have an additional factor 1/N in our definition of Σ and
write

Σ = lim
λ→0

lim
mf→0

lim
N→∞

πρ(λ)

N
. (5.36)

The label in Eq. (5.35) is the so-called Dyson index. It stands for the orthogonal,
unitary, and symplectic ensemble, respectively, and can take the values β = 1, 2, 4.

Now we achieved what we desired at the beginning of this section. We have written
the probability distribution in Eq. (5.33) entirely in terms of random matrices and,
therefore, the partition function of the chiral random matrix model can be written as
an integral over random matrices,

Z
Nf ,mf ,ν

N,β =

∫
DW

Nf∏

f=1

det(WW † +mf )e
−NβΣ2

2
Tr(W †W ). (5.37)

This is the starting point for our calculation of the normal modes in the chiral random
matrix model which we will perform in the next section.

5.4 Normal Modes and the Chiral Random Matrix

Model

Now we are prepared to derive an analytical expression for the normal modes in the
chiral random matrix model for QCD. Following Ref. [64] we begin with the partition
function in Eq. (5.37). As we noted in the last section the integrand of (5.37) is
invariant under similarity transformations. Therefore, we can perform the following
transformation, W → U †WV . Let the matrix W have dimension N . Then, the
matrix U is of dimension N × N while V is a (N + ν) × (N + ν) matrix. We can
choose the transformation such that we diagonalize W . We have W = U †ΛV where
Λ is a N × (N + ν) matrix with Λii = λi (i = 1, . . . , N) and Λij = 0 otherwise. So,
the λi are the N nonzero modes (Note that there are ν zero modes). With such a
transformation the partition function can be written as

Z
Nf ,mf ,ν

N,β =



Nf∏

f=1

m
|ν|
f



∫ +∞

−∞
· · ·
∫ +∞

−∞

N∏

k=1


dλk

Nf∏

f=1

(λ2k +m2
f )λ

βν+β−1
k e−

Nβ
2
λ2k


 ∣∣∆(λ2)

∣∣β ,

(5.38)
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where we have set Σ = 1. The term (λ2k + m2
f ) corresponds to the determinant in

Eq. (5.37). The exponential comes from the gluonic part and the Jacobian of this
transformation is given by

J =
∣∣∆(λ2)

∣∣β
N∏

k=1

λβν+β−1k , (5.39)

where the so-called Vandermonde determinant ∆ is defined by

∆(λ2) =
∏

k<l

(λ2k − λ2l ). (5.40)

As we already noted in Sec. 5.3 we can write the partition function as an integral over
the probability distribution. So here we obtain

Z
Nf ,mf ,ν

N,β =

∫ +∞

−∞
· · ·
∫ +∞

−∞

N∏

k=1

dλkP
Nf ,mf ,ν

N,β (λ1, . . . , λN) (5.41)

with the joint probability density

P
Nf ,mf ,ν

N,β (λ1, . . . , λN) =


Nf∏

f=1

m
|ν|
f




N∏

k=1



Nf∏

f=1

(λ2k +m2
f )λ

βν+β−1
k e−

Nβ
2
λ2k


 ∣∣∆(λ2)

∣∣β .
(5.42)

We now concentrate on the case β = 2, the chiral unitary ensemble. Remember that
this corresponds to the universality class of QCD with 3 quarks in the fundamental
representation and also to staggered fermions in lattice QCD for which we will present
numerical data later on.

In order to determine the dispersion relation of the normal modes we follow the
derivation of Sec. 5.1. We first like to determine the maximum of the joint probability

distribution. Again we can restrict ourselves to the region of P
Nf ,mf ,ν
N where λ1 <

λ2 < · · · < λN . We introduce new coordinates yi = λ2i . Evaluating the maximum
condition,

∂ lnP
Nf ,mf ,ν
N

∂yi
= 0, (5.43)

we find for Nf = 0 the following set of equations

(
ν +

1

2

)
1

Nyi
− 1 +

1

N

∑

i6=j

2

yi − yj
= 0. (5.44)

We will concentrate on the case Nf = 0 because this corresponds to the quenched
approximation in lattice QCD which we use in our numerical analysis. We denote
the maximum position of the eigenvalues fixed by the equations above by λ0i , and the
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maximum of P
Nf ,mf ,ν
N by P

Nf ,mf ,ν
N ;0 ≡ P

Nf ,mf ,ν
N (λ01, . . . , λ

0
N). Near the maximum the

logarithm of P
Nf ,mf ,ν
N can be approximated by

lnP
Nf ,mf ,ν
N ≈ lnP

Nf ,ν
N ;0 +

1

2
Cijδλiδλj, (5.45)

where δλi is the position of the ith eigenvalue relative to λ0i . Note that the linear
term vanishes. The matrix Cij is defined by

Cij =
∂2

∂λi∂λj
logP

Nf ,mf ,ν
N (5.46)

evaluated at the maximum. After a short calculation we obtain for the diagonal
elements of Cij for Nf = 0

Cii = −2N −
2ν + 1

λ2i
− 4

∑

i6=j

λ2i + λ2j
(λ2i + λ2j)

2
(5.47)

and for the off–diagonal entities one obtains

Cij =
8λiλj

(λ2i + λ2j)
2
. (5.48)

The eigenvectors and eigenvalues of this matrix are the desired normal modes. They
are defined by the eigenvalue equation

N∑

i=1

Cijφ
(k)
j = ωχkφ

(k)
i . (5.49)

The normal modes can be used as a coordinate system which means that we can
express the δλis in terms of the normal modes

δλi =
N∑

k=1

ckφ
(k)
i with

N∑

i=1

φ
(k)
i φ

(k′)
i = δkk′ . (5.50)

Remember the interpretation of the normal modes (see Sec. 5.1). The normal modes
describe statistically uncorrelated fluctuations of the eigenvalues of the random matrix
about their most probable value.

Following the steps in Sec. 5.1 a similar derivation leads to an expression for the
eigenvalues. One finds again a linear dispersion relation which is reasonable because
the chiral ensembles and the Gaussian ensembles of Sec. 5.1 are very similar,

ωχk = −4 k N. (5.51)

The different factor comes from the chiral structure of the random matrix model we
used. Note that ωχk does not depend on the topological sector ν.
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As we have already done in Sec. 5.1 we can approximate the eigenvectors for large
N by Chebyshev polynomials evaluated at the maximum position λ0i /2 (i.e. up to
corrections of order 1/N)

φ
(k)
i =

√
2

N
U2k−1

(
λ0i
2

)
. (5.52)

In this limit the orthogonality relation of Eq. (5.50) corresponds to

∫
dx ρ(x)φ(k)(x)φ(k

′)(x) = δkk′ , (5.53)

where ρ(x) is again the well-known semicircle

ρ(x) =
N

π

√
4− x2. (5.54)

Now that we have an analytical expression for the dispersion relation of the normal
modes we can perform numerical calculations of ”full” QCD, which in our case means
quenched lattice QCD, and compare both. Before we will return to this we will have
to discuss a further subtlety of RMT.

5.5 Unfolding

Random matrix theory can be regarded as an effective theory which describes certain
properties of the underlying theory. So there are quantities for which RMT agrees
with the full theory (at least for a certain regime) and quantities which show different
behavior. RMT is supposed to describe quantities correctly on the smallest scale in
the system. This scale is set by the mean level spacing which means that RMT applies
on a scale of a few level spacings.

For illustration take a look at the global spectral density or mean level density ρ(x)
in Fig. 5.1. Imagine we have a certain physical problem for which we have calculated
the global spectral density. We would like to compare this quantity to the result we
obtained from some random matrix model. Then we would see that the RMT result
cannot reproduce the data. This is simply because the quantity under consideration
reflects only the global properties, not the microscopic ones.

To apply RMT to physical problems we have to eliminate the system specific de-
pendencies. We have to go to an energy scale where the fluctuations of the eigenvalues
become visible and the system specific dependence of the mean level spacing is re-
moved. We can achieve this by a local rescaling of the energy scale. This procedure is
called unfolding and is essential for comparing RMT predictions to physical systems.
Let us therefore introduce new coordinates for the eigenvalues

ξp ≡ ξp(xp) =

∫ xp

−∞
ρ(x′p) dx

′
p. (5.55)
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In these new coordinates the transformed mean level densityX1(ξ1) equals unity which
easily follows by integrating both sides of the transformation equation: ρ(xp) dxp =
X1(ξp) dξp where we set X1(ξp) = 1 to get rid of the system specific dependence of
the mean level density. Of course we have to express all quantities of interest in the
new coordinates. We will demonstrate how to achieve this for the case of the k-point
spectral correlation functions in the limit N → ∞. The k-point spectral correlation
functions are given by

Rk(x1, . . . , xk) =
N !

(N − k)!

∫ +∞

−∞
dxk+1 · · ·

∫ +∞

−∞
dxN P

(E)
N (x1, . . . , xN ). (5.56)

Here P
(E)
N (x1, . . . , xN) denotes the probability density for an arbitrary RMT ensemble.

The spectral correlation functions measure the probability of finding levels at the
positions x1, . . . , xk, while the remaining levels are not observed. Notice that ρ(x1) ≡
R1(x1). Performing the change of coordinates in the large N limit we find for the
spectral correlation function times its differentials the following expression

Xk(ξ1, . . . , ξk) dξ1 · · · dξk = Rk(x1, . . . , xk) dx1 · · · dxk (N →∞) (5.57)

preserving the total probability. Note that we have X1(ξ1) = 1 by construction. Be-
cause the spectrum in the new coordinates, for large N , is supposed to be translational
invariant it is sufficient to perform the unfolding procedure only for a small region of
the spectrum (provided that in the large N limit this region contains many levels).
We choose this region to be around zero and have ξp = xp/D where D = 1/R1(0) is
the mean level spacing. So the unfolded correlation functions are given by

Xk(ξ1, . . . , ξk) = lim
N→∞

DkRk(Dξ1, . . . , Dξk), (5.58)

where the new energy variables are held fixed while taking the limit.

5.6 Normal Modes: Numerical Results

Now we are prepared for comparing the analytical results from above to numerical
studies. Before we do so let us first recapitulate our previous result. In Sec. 5.1
we found that for the Gaussian unitary, orthogonal, and symplectic ensemble the
dispersion relation of the normal modes is given by ωGk = 1

Nk
. We can also express ωGk

in terms of the unfolded coordinates ξp defined by Eq. (5.55) and obtain ω′Gk = N
2
√
2πk

,

see Ref. [68]. Note that the dispersion relation in these coordinates is the same for
different definitions of the probability distribution with respect to σ, see Sec. 5.1.

In Sec. 5.2 we derived the dispersion relation for the Poisson ensemble and found
for the soft edge of the spectrum, ω′Pk ≈ N2

π2k2
. Note that the spectrum of the Pois-

son ensemble is already unfolded since it has mean level spacing equal to one. We
can multiply this result by 1/ρ2(0) (where ρ is the spectral density of the Gaussian
ensembles) to obtain the energy scale of the original Gaussian ensemble. (We denote
the not unfolded ensemble by the ”original” ensemble.) We find ωPk = 1/(2k2).
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Figure 5.2: Numerical data for the GUE forN = 500. The semicircle represents the global
spectral density ρ(x) and the filled circles show the numerically obtained stair-case function.
We see about 300 data points of ρ and 60 data points of the stair-case function. The entire
ensemble contains about 1000 configurations. The fitting function R̃1(x) is mostly covered
by the data points. We magnified the right end of the spectrum to point out the finite size
effects.

Finally, we obtained a result for the eigenvalues of the normal modes for the chiral
random matrix model. We also found a 1/k behavior, ωχk = 1/(4Nk). On the unfolded
scale this expression turns into ω′k =

N
4
√
2πk

. We list these results in Table 5.1.

In the following we will present numerical data for the dispersion relation of the
normal modes. We will show data for the Gaussian unitary ensemble, the chiral QCD
ensemble, and finally we will compare our results to ”real” lattice data from quenched
QCD calculations. Let us begin with the Gaussian unitary ensemble. We already
described in the beginning of Sec. 5.1 how to generate configurations numerically.
So we start with a set of configurations for a given N , that means we have NE

configurations and each configuration contains N eigenvalues of a unitary random
matrix which was generated according to the appropriate probability distribution.

original scale unfolded scale

Gaussian ensembles ωG = 1
Nk

ω′Gk = N
2
√
2πk

Poisson ensemble ωPk = 1
2k2

ω′Pk ≈ N2

π2k2

chQCD ensemble ωχk = 1
4Nk

ω′χk = N
4
√
2πk

Table 5.1: Analytical results for the dispersion relation of the normal modes
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Note that the number of configurations, NE, always should be larger than the number
of the eigenvalues, N , because otherwise the eigenvalues of the normal modes contain
zero modes. Before we will come to the calculation of the normal modes let us see
how to unfold the spectrum. As we saw in Sec. 5.5 we have to express the spectrum
in coordinates ξp. To do so we have to perform an integration over the global spectral
density,

ξp = N(xp), with N(x) =

∫ x

−∞
R1(x

′) dx′. (5.59)

The function N(x) is often referred to as the stair-case function.
In Fig. 5.1 we gave an example for a numerical calculation of ρ(x) for N = 500.

Since we know the exact result for ρ(x) for large N , the Wigner semicircle, we can
fit that exact result to our numerical data. Afterwards we can determine the stair-
case function N(x) analytically simply by integrating over the semicircle and, finally,
end up with the unfolded spectrum. So we made the following ansatz for the fitting
function,

R̃1(x) = A
√

(R2 − x2), (5.60)

where we fixed the center of the semicircle to zero. We fit this function to our numer-
ical data of Fig. 5.1. The result is shown in Fig. 5.2. We see that the fitting function
reproduces the numerical data very accurately. Only at the edges of the spectrum we
find discrepancies from the large N result. This finding is responsible for finite size
effects which we will address in a moment. For further illustration we also plotted
the numerically obtained stair-case function. Another problem which arises is that
there are eigenvalues which are larger than the radius of the semicircle we fitted to the
data points. Therefore, we cannot unfold these eigenvalues. We solved this problem
by fixing these eigenvalues to the edges of the spectrum, so we set eigenvalues at the
right most edge of the spectrum to R and eigenvalues at the left most edge to −R.
This introduces errors of order 1/N which is unproblematic.

It is easy to calculate the stair-case function N(x) from our fitting function defined
in Eq. (5.60). By integrating we find

Ñ(x) =
A

2

(
x
√
R2 − x2 +R2

(
tan−1

x
√
R2 − x2

R2 − x2 +
π

2

))
. (5.61)

where the tilde should emphasize that the coefficients of the function are determined
by fitting. We now can unfold the spectrum and can calculate the spectral density
in the unfolded coordinates. We know that the result should be constant and equal
to one. This is depicted in Fig. 5.3 where we nicely see the coincidence. Because
the semicircle is normalized to N the unfolded spectrum starts at ξ = 0 and ends
at ξ = N = 500. Note that there are deviations at the edges of the spectrum. This
observation is connected to the observed deviations of the finite N data of the spectral
density which we found above. It is a finite size effect and we will explain how this
comes about in the following.
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Figure 5.3: The unfolded spectral density X1(ξ1) for ρ(x) of Fig. 5.2. The spectrum now
reaches from 0 to N = 500. Note the deviations at the ends of the spectrum.

Figure 5.4: The curve on the right hand side shows the stair-case function resulting from
integrating the fitted Wigner semicircle. The left curve corresponds to the ”real” stair-case
function which one gets from the finite N data. The magnification shows the right edge of
the semicircle of Fig. 5.2. The shift of the two curves should be of the order of the shaded
area.
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Figure 5.5: The dispersion relation of the normal modes for the GUE for N =
100, 500, 1000. On the left hand side we see data on the original scale while on the right
hand side the eigenvalues are unfolded. The lines show the analytical prediction. Note
that in the plot on the left hand side the lowest curve corresponds to the highest matrix
dimension while on the right hand side it is the other way round. Each ensemble contains
NE = 1000 configurations.

The reason for the bad behavior of the unfolded spectral density at the edges of
the spectrum is that we used in a sense the ”wrong” stair-case function. As we can see
in the magnification of the right edge of the spectrum in Fig. 5.2 the numerical data
points lie above the predicted curve for large N . Thus, if we would use the readily
calculated exact stair-case function for finite N , the resulting curve for the ”real”
stair-case function lies a little above our curve for large N . So, approximately, we
would obtain the stair-case function for large N shifted to the left by some constant.
This constant is approximately the area which is given by the deviation of the finite
N result which is easily seen by looking at Eq. (5.59). We illustrate this in Fig. 5.4.

We see that the spectrum on the unfolded scale is shifted to smaller values. Let
us focus on the highlighted data point in Fig. 5.4 which lies on the curve for finite N .
But this data point will be unfolded by the ”wrong”, infinite N stair-case function
and, therefore, be shifted to smaller values on the unfolded scale. So all data points
are shifted towards smaller values. Since the spectrum on the unfolded scale starts at
zero by definition the shifted eigenvalues accumulate near zero. The result is that the
density of the eigenvalues on the unfolded scale, X1(ξ1), is enhanced near zero. The
opposite happens at the end of the spectrum. Here the eigenvalues are shifted away
from the edge and the eigenvalue density is lowered. Note that this is a finite size
effect which vanishes as N goes to infinity. We will encounter the problem of having
a ”wrong” stair-case function later again.

Let us now return to the subject of normal modes. We will calculate them for
the GUE both on the unfolded and original scale. We are following the method
used in Sec. 5.2 and calculate the normal modes by diagonalizing the matrix Dij

defined in Eq. (5.22). In Fig. 5.5 we plotted the eigenvalues ωGk versus the number
of the eigenvalue k. We generated data for N = 100, 500, 1000. Each set contains
NE = 1000 configurations. On the left hand side in Fig. 5.5 we plotted the data for
the eigenvalues on the original scale while on the right hand side we see the dispersion
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Figure 5.6: The curve with the diamonds is the spectral density ρ(x) for the chGUE for
N = 500. The other curve is the corresponding stair-case function.

relation of the normal modes on the unfolded scale. The straight lines represent the
analytical predictions for the various matrix dimensions. As it should be no surprise
we find very good agreement between the analytical prediction and our numerical
data. Similar plots can be found in Ref. [68].

As a second example we will present numerical data for the chGUE. But in this
case we will use a different method to determine the stair-case function. We won’t
make a fit to the spectral density function using the infinite N result but this time we
will determine the stair-case function numerically. The big advantage of this method
is that it can be applied in any case, i.e., we don’t have to know about the infinite
N result. We will use this procedure again when we will calculate the normal modes
for the lattice QCD data. So this is a good test for the correctness of our evaluation
code.
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Figure 5.7: The unfolded spectral density X1(ξ1) which corresponds to Fig. 5.6. We see
deviations from the predicted value of one at the edges of the spectrum. The ensemble
contains 2500 configurations and the matrix dimension is N = 500. The topological sector
is zero, ν = 0, and Nf = 0.
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In Fig. 5.6 we plotted, as in Fig. 5.2, the spectral density and the corresponding
stair-case function. We will concentrate on the case Nf = 0 and trivial topological
sector, ν = 0. Note that the eigenvalues now come in pairs of ±xi so we will plot only
positive eigenvalues. We determined the stair-case function numerically by simply
adding up the spectral density along the y-axis. We use the same binning for the
stair-case function as for ρ(x). For the unfolding procedure we use the numerically
determined stair-case function, like that of Fig. 5.6, and interpolate between the data
points. From this ”smooth” function we can read off the unfolded eigenvalue for a
given value and determine the unfolded spectral density. We plottedX1(ξ1) in Fig. 5.7.
Note that again we encounter deviations from the large N result at the edges of the
spectrum. The reason for this discrepancy is the same as we already mentioned. We
used a ”wrong” stair-case function at the edges of the spectrum although we used a
function which is correct for finite N . The reason for the deviation is that at the edges
of the spectrum we used a (relatively) to large binning which means that we cannot
resolve the fast changing of the ”correct” stair-case function. The result is that the
interpolation of the data points overestimates the stair-case function at the edges. So
the situation is now reversed to the situation for the GUE. The ”correct” stair-case
function runs below the ”wrong” one and, therefore, the eigenvalues are shifted away
from zero. Obviously, this problem can be solved in principle (as long as you have
enough computer power) by increasing the statistics and simultaneously making the
bins more narrow.

Now we can calculate the normal modes for the chGUE. We did this again for
both the unfolded and original scale. The result is plotted in Fig. 5.8. We calculated
ensembles for N = 100, 500, 1000. For each ensemble we have 1000 configurations.
Remember, we have ν = 0 and Nf = 0. On the right (left) hand side we see the
dispersion relation on the (original) unfolded scale. The straight lines represent the
theoretical predictions. Again, we see very good agreement. Note that on the unfolded
scale (right hand side of Fig. 5.8) the lowest curve corresponds to N = 100 while on
the original scale the curve for the same N is the upper one. An interesting point is
the behavior of the different curves at high k. Looking at Fig. 5.8 we can see that
for largest N there are large deviations from the straight line at the hard edge of the
spectrum (large k) while for the smallest N we observe only small deviations. This
”tail” for large N at large k seems to be cut off for lower N . We found that the reason
for this tail lies in the statistics. So if we would increase the statistics for N = 1000
say a few times larger than NE = 1000 we would see that the tail vanishes.

Now we will come to the goal of this chapter. We will compare chRMT predictions
to lattice QCD data. In a sense this can be regarded as comparing a theoretical
prediction (chRMT) to an experiment (lattice QCD). This is because there is no
(strict) proof that chRMT should describe QCD or at least some regime of it. The
only evidence is given by comparing numerical QCD data to chRMT, see e.g. Ref. [76].
We will follow this line and, therefore, provide more evidence for chRMT to be a
correct theory describing QCD.

For studying the correlations of the eigenvalues of the Dirac operator we have
used several gauge field configurations for different lattice sizes and calculated the
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Figure 5.8: The dispersion relation of the normal modes for N = 100, 500, 1000 for the
chGUE. The eigenvalues on the left hand side are on the original scale while on the right
hand side the eigenvalues are unfolded. The straight lines correspond to the theoretical
prediction. The lowest curve on the left hand side represents the data for the highest N
while on the right hand side it is the other way round. Each ensemble contains NE = 1000
configurations.

eigenvalues of the staggered Dirac operator defined in (2.37) for each configuration.
A list of lattice sizes, couplings, and statistics can be found in Table 5.2. The matrix
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Figure 5.9: QCD lattice data. On the left hand side we plotted the original spectral
density (diamonds) and the corresponding stair-case function (circles). On the right hand
side we see the corresponding unfolded spectral density. We set β = 5.6 and V = 84.

dimension of the Dirac operator is Nc V = 3V where V is the four-dimensional
lattice volume. Because of the fact that the eigenvalues of the Dirac operator come
in pairs ±λi we will concentrate on the positive eigenvalues. Note that we have
N = Nc

2
V = 3/2V positive eigenvalues. Let us begin again with spectral density

function. In Fig. 5.9 we plotted ρ(λ) and the corresponding stair-case function for
V = 84 and β = 5.6. When we compare the spectral density of the chRMT model to
our lattice data we see great differences. Of course, we should not worry about that
because the not unfolded spectral density is unphysical. On the right hand side of
Fig. 5.9 we see the unfolded spectral density. Again there are deviations at the edges
at the spectrum which arise by the same mechanism we explained above. Note that
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we used the same unfolding procedure as for the chRMT calculations which means
that we unfolded the eigenvalues numerically.

Lattice volume V N = 3V/2 β Statistics
44 384 5.6 7000
64 1944 5.6 7000
84 6144 5.6 7000

Table 5.2: Overview of the used lattice data

Let us now determine the dispersion relation of the normal modes for our lattice
data. Recall that the eigenvalues of the normal modes are the eigenvalues of the
following matrix

Dij = 〈(λi − 〈λi〉) (λj − 〈λj〉)〉 = 〈λiλj〉 − 〈λi〉 〈λj〉 , (5.62)

where 〈 〉 denotes the average over the entire gauge ensemble. Note that we only
use positive λi’s in this relation. In Fig. 5.10 we present the eigenvalues of Dij for
β = 5.6 and volumes V = 44/64/84. Each ensemble contains 7000 configurations. We
denote the eigenvalues of the normal modes of the lattice QCD data on the original
scale by ωk and on the unfolded scale by ω′k, respectively. The straight lines are the
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Figure 5.10: Lattice QCD data. We show data for V = 44/64/84 and β = 5.6. Each set
contains 7000 configurations. On the left hand side we plotted the dispersion relation of the
normal modes of the lattice data and corresponding chRMT prediction (straight lines) on
the non unfolded scale. The lowest curve corresponds to highest volume V = 84. The plot
on the right hand side shows the corresponding dispersion relation on the unfolded scale.
Here the lowest curve corresponds to the lowest volume V = 44. Note the good agreement
at the intermediate region and the discrepancy for small k.

corresponding predictions of chRMT. The plot on the left hand side shows the original
eigenvalues while on the left hand side the eigenvalues are unfolded. Note that the
eigenvalues on the original scale are physically not relevant. Only the eigenvalues on
the unfolded scale should be compared to the predictions of chRMT. Anyway, for
illustrative purposes we are presenting data on both scales. Let us begin with the
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eigenvalues on the scale (left hand side). For small k we see large deviations from the
straight line. In the intermediate regime we have good agreement between the data
and the predictions although the numerical data lie systematically above the line. We
see that already on the original scale the dispersion relation of the normal modes is
linear. The hard edge of the spectrum shows the usual deviations which we already
saw in the numerical calculations for the chRMT above. On the right hand side of the
plot in Fig. 5.10 we can see that in the intermediate regime we have perfect agreement
between the lattice data and the curve of the chRMT prediction. At the hard edge
of the spectrum we see the typical deviations. The interesting region is the region of
small k. Here we see deviations from the chRMT which we never saw in our numerical
chRMT data (compare to Fig. 5.8). Before we try to explain this observation let us
quantify the discrepancy.
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Figure 5.11: The plot on the left hand side shows the ratio of the numerically obtained
ω′χk to the analytically obtained ω′χk . We observe good agreement beside the finite size
effects at large values of k. The two curves in the plot on the right hand side which deviate
strongly from one for low values of k represent the ratios of ω ′k (lattice QCD data) to the
numerically (filled circles) and analytically (down triangle) obtained eigenvalues ω ′χk of the
chRMT prediction. For the numerical data we used a lattice with V = 44 and β = 5.6.

To measure the deviation of the lattice QCD data from the prediction of chRMT
we divide for each k the eigenvalues ω′k of the normal modes of the lattice data by
the eigenvalues ω′χk of the chRMT result. If, for a certain eigenvalue, this ratio is
equal to one it means that the lattice data coincide with the chRMT prediction (for
this particular eigenvalue). We restrict ourselves to the physical case of unfolded
eigenvalues. Let us first analyze this approach. In Fig. 5.11 we present an example
for V = 44 and β = 5.6. We begin with a quality check of our numerical data of the
chGUE. We generated data for the chGUE similar to the data which we showed in
the plot on the right hand side in Fig. 5.8, but now we use N = 384. On the left
hand side of Fig. 5.11 we plotted the ratio of these eigenvalues of the normal modes
of the chGUE to the eigenvalues of the normal modes of the theoretical expression
in Table 5.1 for N = 384, ω′χk = 384

4
√
2πk

. We see that the ratio is very close to one
which confirms our observation of the good agreement of the numerical and analytical
results for the chGUE. Only at large values of k we see deviations but this is a finite
size effect. In the plot on the right hand side we show the ratio of the eigenvalues ω ′k
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of the normal modes of the lattice QCD data to the eigenvalues ω ′χk of the theoretical
expression in Table 5.1, and the ratio of ω′k to the numerical result for the chGUE. We
observe good agreement between the lattice QCD data and the chRMT predictions in
the intermediate regime, the ratios are close to one. At the hard edge we find again
finite size effects but for small k we observe strong deviations. There is a critical value
of k below which lattice QCD and chRMT do not agree.
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Figure 5.12: The three curves represent the ratios of the eigenvalues ω ′k of the normal
modes of the lattice QCD data to ω′χk , the analytical prediction for the chGUE. For the
lattice QCD data we used V = 44/64/84 and β = 5.6. The leftmost curve corresponds
to the lowest volume. We find that the critical value of k, below which lattice QCD and
chRMT do not coincide, depends on the volume. Note that all eigenvalues in this figure are
unfolded.

On the plot in Fig. 5.12 we plotted the ratio ω′k of the lattice QCD data to ω′χk
of the analytical chRMT prediction for three different lattice sizes at β = 5.6. Notice
the good agreement in the intermediate range of k, the ratios are very close to one.
The hard part of the spectrum shows the common deviations. At the interesting soft
part we see that as the volume increases the critical k (the value of k where ω ′k starts
to deviate) moves to higher k. In the magnification of this plot in Fig 5.13 we marked
the critical values kc. We can read off the critical values and find approximately
kc = 6/13/24 for the volumes 44, 64, and 84, respectively. These values correspond to
the k’s where the ratio ω′k/ω

′χ
k approximately hits the straight line drawn in Fig. 5.12.

The observation that there are deviations of lattice QCD data from the chRMT
prediction is, of course, of great interest. Anyway, this is not a big surprise because
we should not expect that chRMT describe full QCD in all details. Chiral random
matrix theory rather should be valid in a certain regime of QCD. Let us discuss this
topic in more detail.

RMT is supposed to describe the physics of a system below a certain energy scale.
In condensed matter physics this energy scale is known as Thouless energy, see [69].
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In a disordered system it is given by

Ec =
~∆
L2

, (5.63)

where ∆ denotes the diffusion constant and L is the linear extent of the system. Below
Ec the system is in the ergodic regime and RMT is applicable, above the Thouless
energy the system is in the diffusive regime up to another scale beyond which we
speak of the ballistic regime. Let us try to find an expression for the Thouless energy
in the case of chRMT.
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Figure 5.13: Magnification of the plot on the left hand side of Fig. 5.12. The values of
k where the lattice QCD data and the chRMT prediction do not coincide any more are
kc = 6/13/24 for the corresponding volumes V = 44/64/84.

Before we will derive an explicit expression for Ec let us attend to the question of
the validity of chRMT. All investigations done so far indicate that chRMT should be
valid in the following regime

1

Λ
¿ L¿ 1

mπ

, (5.64)

where Λ is a typical hadronic scale such as the rho mass (about 1 GeV). L denotes
the lattice extent. So the lattice volume is V = L4 where we set the lattice spacing
a = 1 as usual. mπ ≈ 140 MeV is the pion mass. Let us comment on the meaning of
the inequalities in the following. The first inequality is connected to the chiral struc-
ture of the QCD. It tells us that the Goldstone modes dominate the QCD partition
function and, therefore, we can use an effective chiral Lagrangian to describe QCD in
this regime [69]. Using this Lagrangian the second inequality ensures that the zero-
momentum modes dominate the partition function. This can be seen as follow. The
Compton wavelength of the pion is given by 1/mπ. So if this length is much larger
than the length L of the box the pion field does not vary much. Then, the derivatives
of the field are small which means that the kinetic terms in the chiral Lagrangian
can be neglected. This is a crucial point since it is absolutely necessary for RMT
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Figure 5.14: We plotted kc vs.N . The values are taken from Fig. 5.13. The corresponding
volumes are 44/64/84 and β = 5.6. The straight line correspond to a fit of the data points
to k̃c(N) with a determined value of A ≈ 0.3.

to apply since RMT cannot reproduce the details of the dynamics of the system it
should describe. To conclude, if our system fulfills the inequalities given in Eq. (5.64)
we expect chRMT to apply.

To give an explicit expression for the Thouless energy we make use of the Gell–
Mann Oakes Renner relation [77] given by

mΣ = f 2πm
2
π, (5.65)

where fπ is the pion decay constant in the normalization such that fπ = 93 MeV in
the real world. We can now make use of the second inequality in Eq. (5.64) and find

m <
f 2π
ΣL2

. (5.66)

If we then identify the Thouless energy with the critical valence quark mass above
which RMT is not valid we find the explicit expression

Ec ∼
f 2π
ΣL2

. (5.67)

To obtain a dimensionless expression for the Thouless energy we divide by D and get

Ec
D
∼ 1

π
f 2πL

2 (5.68)

where D = 1
ρ(0)

= π
V Σ

. Finally, we notice that the matrix dimension N in our chiral

random matrix model is proportional to V = L4. This means for the dimensionless
Thouless energy

Ec
D
∼
√
N. (5.69)
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Let us return to the starting point of this little intermezzo, the observed deviations of
the lattice QCD data from the predictions of chRMT. It is clear now how we have to
interpret the observed discrepancies. The critical values kc below which the deviation
occurs should correspond to the Thouless energy Ec. (Note that the eigenvalues of
the matrices Dij and Cij of Eqs. (5.22), (5.6) are reciprocal.) So we expect that kc
shows the correct scaling in N .
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Figure 5.15: We plotted the same data as in Fig. 5.12 but rescaled the x-axis by 1/
√
N .

We see that the curves coincide which means that kc scales like
√
N .
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In Fig. 5.14 we plotted the critical values of k versus the matrix dimension N on
a logarithmic scale. We clearly see that the data points lie on a straight line which
means that the data follow some power law. We make the following ansatz for a one
parameter fitting function

k̃c(N) = A
√
N. (5.70)

In Fig. 5.14 the straight line corresponds to the fitting function with a determined
value of A ≈ 0.3. We see that the critical k’s behave like ∼

√
N very precisely which

confirms our conjecture that the critical values of k set the scale for the Thouless
energy. Further evidence is provided by Fig. 5.15 where plotted Fig. 5.12 again, but
this time we rescaled the x-axis by 1/

√
N . This means that if the critical value kc

scales like
√
N the ratios ω′k/ω

′χ
k should coincide (at least) near the kc. This is exactly

what we can see in Fig. 5.15.
The observation that kc is connected to the Thouless energy is very interesting

because in principle it should be possible to extract an absolute value for the Thouless
energy. In Refs. [76, 78] the authors determined the Thouless energy quantitatively
by looking at the scaling properties of certain quantities. A similar approach should
be possible in our case.

We have seen that the analysis of the normal modes in lattice QCD should provide
us with a new method to extract the Thouless energy of our system. Of course, it
is of great interest to compare the values of the Thouless energy obtained from a
normal mode analysis to the Thouless energies the authors of Refs. [76, 78] found,
and see whether the results of the different approaches coincide. This will be the task
of future work.
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Chapter 6

Conclusions

In this thesis we were interested in the connection between confinement and chiral
symmetry breaking, we searched for calorons on the lattice, and finally we investi-
gated normal modes in the framework of chRMT. In all these studies we made use
of the lattice QCD approach. With the help of lattice QCD we could explore the
non-perturbative regime of QCD. In partice we worked with staggered and chirally
improved fermions with Wilson gauge action or with Lüscher-Weisz gauge action. We
discussed the problem of chiral symmetry on the lattice and we have seen that both
fermions, which we have used for our calculations, have better chiral properties than
ordinary Wilson fermions. This allowed us to study chiral symmetry on the lattice.

In Chapter 3 we reinvestigated the problem, whether the critical point of the
chiral phase transition depends on the different sectors of the Polyakov loop. It was
claimed by Christ and Chandrasekharan that this is indeed the case which would
have had important consequences on the relation between the chiral and confinement
phase transition. However, they analyzed the problem with staggered fermions and
the order parameter they used was the chiral condensate. In our studies we have
used both, chirally improved fermions, which have much better chiral properties than
staggered fermions, and staggered fermions. The order parameter we used was not
the chiral condensate but the spectral gap. Within our approach we found in contrast
to the results of Christ and Chandrasekharan that the critical temperature for the
chiral phase transition coincides for the real and complex sector of the Polykov loop.
It turned out that this is true for chirally improved as well as for staggered fermions.
We also found no dependence of our results on the temporal extent of the lattice.
For staggered fermions we analyzed two lattices with Lt = 6 (Ls = 20) and Lt = 4
(Ls = 16).

Because we wanted to understand how these different results can come about,
we investigated the influence of the mixing of the zero modes of the Dirac operator,
which occurs for staggered fermions. Because we know that the zero modes do not
contribute to the chiral condensate we have removed them from the calculations in the
case of chirally improved fermions, but this is not possible for staggered fermions. For
staggered fermions, which do not have exact zero modes, we tried to identify the ”zero
modes” by their chirality and removed all modes which have chirality larger than some
value from our calculations. We could indeed show, that by removing these would-be
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zero modes our results for the critical temperature improves, which means that the
critical temperatures for both sectors of the Polykov loop are approaching the critical
temperature of the confinement phase transition. We conclude that the reason for the
different findings compared to the results of Christ and Chandrasekharan is related
to the bad chiral properties of the staggered fermions which lead to larger artifacts
for the chiral condensate.

In Chapter 4 we searched for calorons on the lattice in order to prove or disprove
the correctness of the instanton picture, which we have for spontaneous chiral symme-
try breaking. Because of the problems which arise on the lattice when we investigate
the topological content of gauge fields, we analyzed the gauge fields indirectly with
the help of the localization properties of the fermions. For these studies we have
used staggered fermions with Wilson and Lüscher-Weisz gauge action. We looked at
ensembles near the critical temperature of the chiral phase transition and we found in-
deed modes which all show the correct localization properties. In particular, we found
low-lying modes with high chirality. This signals that those modes are of topologia-
cal origin. We observed that these modes are localized in space and delocalized in
time, and that the local chirality follows the density of the eigenmode. Further, those
states are more localized if they appear in the real sector of the Polyakov loop than
in the complex. Altogether, such modes show all the localization properties of a zero
mode of a caloron which strongly suggest the existence of calorons on the lattice.
Furthermore, we found highly localized modes with low chirality, where a region of
positive chirality is next to a region of negtive chirality, which indicates that those
modes correspond to instanton-anti–instanton molecules. This is further evidence for
the correctness of the instanton picture of spontaneous chiral symmetry breaking.

Finally, we investigated the normal modes in chRMT and lattice QCD. Normal
modes naturally provide a basis for studying the fluctuations of the eigenmodes of
the Dirac operator around their most likely positions. We compared the analytical
results of chRMT to the nummerical results obtained from calculations with staggered
fermions and Wilson gauge action. In a certain regime we found great agreement for
the lattice data and the chRMT prediction, which is further evidence for the claim
that chRMT describes certain aspects of QCD. However, below a certain energy, the
Thouless energy, it is known that RMT is not supposed to be applicable. This is
exactly what we found. Below a critical value of k we observe, that the lattice data
begins to deviate from the chRMT prediction. This observation should, in principle,
enable us to determine the Thouless energy with the help of the normal mode analysis,
which we will investigate in the future.
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[27] T. Schäfer, E. V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70, 322 (1998).

[28] G. ’t Hooft, Phys. Rev. D 14 (1976) 3432 [Erratum-ibid. D 18 (1978) 2199].

[29] R. D. Carlitz, D. B. Creamer, Ann. Phys. (N. Y.) 118, 429 (1979).

[30] E.-M. Ilgenfritz and E. V. Shuryak, Phys. Lett. B325, 263 (1994).
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