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Abstract

We introduce the idea of common serial correlation features among non-stationary, cointegrated

variables. That is, the time series do not only trend together in the long run, but adjustment

restores equilibrium immediately in the period following a deviation. Allowing for delayed re-

equilibration, we extend the framework to codependence. The restrictions derived for VECMs

exhibiting the common feature are checked by LR and GMM-type tests. Alongside, we provide

corrected maximum codependence orders and discuss identification. The concept is applied to

US and European interest rate data, examining the capability of the Fed and ECB to control

overnight money market rates.

Keywords: VAR, serial correlation common features, codependence, cointegration

JEL classification: C32, E52

∗We are grateful to Kyusang Yu and participants of the Research Seminar at the Central Bank Norway for very

helpful comments. Of course, all remaining errors are our own.
†University of Mannheim, L7, 3-5, D-68131 Mannheim, Germany, trenkler@uni-mannheim.de, phone: +49

(0)621 181-1852, fax: +49 (0)621 181-1931
‡University of Regensburg, D-93040 Regensburg, Germany, enzo.weber@wiwi.uni-regensburg.de, phone: +49

(0)941 943-1952, fax: +49 (0)941 943-2735



1 Introduction

In this paper we discuss common serial dependence of non-stationary variables. In particular,

we analyze the imposition of serial correlation common features (SCCFs) and codependence

restrictions on the levels of cointegrated variables. As a special case of a common feature,

Engle & Kozicki (1993) introduced the concept of SCCF. A SCCF exists if a linear combination

of serially correlated variables cannot be predicted by the history of the variables. Hence, the

variables contain a common factor such that the linear combination does not exhibit any serial

correlation. As a consequence, the impulse responses of the variables are collinear. Based on

Gourieroux & Peaucelle (1988, 1992), Vahid & Engle (1997) generalize SCCF to the concept

of codependence. Codependence of order q is present if the (nonzero) impulse responses of

the variables are collinear after the first q periods. Thus, the linear combination has a moving

average representation of order q, which is lower than the order of the individual variables.

Obviously, SCCF implies q = 0 and is, therefore, a special case of codependence.

In relation to variables that are integrated of order one, I(1), the existing literature has im-

posed SCCF and codependence only on the first differences. Vahid & Engle (1993) show that

if the first differences of I(1) variables exhibit a SCCF, then the corresponding linear combi-

nation of the levels completely eliminates the cyclical parts of the variables in the multivariate

Beveridge-Nelson decomposition. In other words, the variables have a common cycle. This

property is analogous to a common trend, which is eliminated by the cointegration vector. Not

surprisingly, Vahid & Engle (1997) demonstrate that codependence of order q in the first dif-

ferences of I(1) variables implies codependence of order q − 1 in their cycles. Therefore, they

speak of codependent cycles. Based on the work of Vahid & Engle (1993, 1997), Schleicher

(2007) discusses in detail SCCF and codependence in relation to cointegrated variables within

the vector error correction model (VECM) framework.

In contrast to the previous papers, we allow the levels of I(1) variables to be codependent,

including the special case of SCCF. Since codependence implies that a linear combination of the

variables has a (stationary) finite-order MA representation, the variables must be cointegrated;

thereby, the weights of the relevant linear combination are given by the cointegration vector.

Hence, a cointegration vector does not only eliminate the common trend but also the common

cyclical movements after q lags. This possibility has not been discussed in the literature so

far. To be precise, it has been ignored that a codependence structure in first differences can be

restricted in such a way that codependence is also present in the levels of cointegrated variables.

Even if formally, this represents only a special case, economic interpretations and applications

differ considerably. We will show one example in Section 3.

Because of the implied serial correlation structure in the cointegration error, codependence
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has direct implications for the dynamics of the adjustment toward the cointegration equilibrium.

If cointegrated variables are codependent, then a deviation from the cointegration relation due

to a shock is completely eliminated after q + 1 periods. Thus, the codependence framework for

cointegrated variables is well suited to analyze empirical setups for which a very fast, or even

immediate, adjustment to an equilibrium is expected. Important examples refer to market-driven

arbitrage processes or policy-driven control of certain variables using specific instruments. The

adjustment property links the concept of codependent cointegrated variables to the framework

of Pesaran & Shin (1996). They introduced so-called persistence profiles of the cointegrating

relations. These profiles can be interpreted as the square of impulse-responses of the cointegra-

tion relation to a system-wide shock and thereby allow to analyze how quickly the convergence

to the cointegration equilibrium occurs. Codependence of order q implies that all persistence

profiles are zero after horizon q.

Our analysis will be based on the VECM framework since all relevant testing procedures

suggested in the literature are either directly or indirectly linked to this framework. Moreover,

it allows to impose codependence restrictions while using the VECM for forecasts or structural

analysis. In fact, the results of Vahid & Issler (2002) indicate that imposing such constraints

may lead to higher accuracy of forecasts and of estimates of impulse-response functions.

We will make two contributions. First, we characterize the concept of codependence for

cointegrated variables based on VEC models, relate our framework to the ones existing in the

literature, and discuss three testing approaches.

We provide corrected upper bounds on the codependence order within a VECM and argue

that codependent VECMs are not generally identified, a fact that has been overseen in the liter-

ature. The identification problems are not specific to the case of I(1) variables but also apply

to stationary model setups. To test for codependence in identified setups, we employ the likeli-

hood ratio (LR) test principle based on a nonlinear maximum likelihood (ML) estimation of the

underlying VECM. This full information testing can provide clear efficiency gains compared

to other approaches, compare e.g. Schleicher (2007). Nevertheless, we also consider a test for

a cut-off in the serial correlation of the cointegration error. This test is motivated by a GMM

estimation approach that has been proposed by Vahid & Engle (1997). The main advantage

of the GMM-type test is that it can be applied if a codependent VECM cannot be identified.

Moreover, we relate the GMM test to a Wald test for nonlinear restrictions in terms of the VEC

model parameters and discuss the scope of both methods.

Second, using the codependence framework for cointegrated variables we analyze whether

central banks can control overnight interest rates. In particular, monetary authorities like the

Federal Reserve Bank (Fed) or the European Central Bank (ECB) try to control short-term in-

terest rates in the sense of keeping them close to the announced target values. Hence, if central
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banks can sufficiently control overnight rates, then overnight and target rates should be coin-

tegrated and deviations of the overnight rate from the target should be relatively short-lived.

In other words, the deviations may ideally be white noise or have a low-order MA(q) repre-

sentation such that they are completely eliminated after few periods. Evidently, this implies

codependence between the levels of the interest rates. We will argue that the Fed was much

more successful in controlling overnight rates than the ECB in the recent decade.

The plan for the rest of paper is as follows. In the next section we present the methodology

by first describing the model framework and characterizing the codependence restrictions. Then

we relate our framework to the ones existing in the literature and explain the testing procedures.

Using the codependence approach we explore in Section 3 whether the Fed and the ECB could

control overnight rates. Finally, the last section concludes. A proof is deferred to the appendix.

2 Methodology

2.1 Model Framework

The starting point is the following model for the n-dimensional time series yt = (y1t, . . . , ynt)
′,

t = 1, . . . , T ,

yt = µ0 + µ1t+ xt, t = 1, 2, . . . ,

where µ0 and µ1 are (n× 1) parameter vectors. To simplify the exposition in the following we

set µi = 0, i = 0, 1, without loss of generality such that yt = xt. The stochastic component xt
follows a vector autoregression of order p, VAR(p),

xt = A1xt−1 + · · ·+ Apxt−p + εt, t = 1, 2, . . . , (2.1)

where Aj are (n × n) coefficient matrices and the initial values x0, . . . , x−p+1 are taken as

given. The error terms εt are i.i.d.(0,Ω) with positive definite covariance matrix Ω and finite

fourth moments. Defining Π = −(In − A1 − · · · − Ap) and Γj = −(Aj+1 + · · · + Ap),

j = 1, . . . , p− 1, we can re-write (2.1) in the vector error correction form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + εt, t = 1, 2, . . . .

The relationship of the VAR and VECM representations can be compactly described by

A(L) = In − A1L − · · · − ApL
p = In∆ − ΠL − Γ1∆L − · · · − Γp−1∆Lp−1 = Π(L) with

∆ = 1− L and L being the lag operator.

To assure the applicability of the Granger’s representation theorem, we make the following

assumption, compare e.g. Hansen (2005).
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Assumption 1.

(a) If det Π(z) = 0, then |z| > 1 or z = 1.

(b) The matrix Π has reduced rank r < n, i.e. the matrix Π can be written as Π = αβ′, where

α and β are n× r matrices with rk(α) = rk(β) = r.

(c) The number of unit roots, z = 1, in det Π(z) = 0 is exactly n− r.

Hence, the cointegrating rank is equal to r. It follows from Granger’s representation theorem

that the vector of cointegration errors β′xt and ∆xt are zero mean I(0) processes (compare

Hansen 2005, Corollary 1). In particular, the theorem implies that the cointegration error β′xt
can be interpreted as a set of r linear transformations of a well-defined vector MA(∞) process

with an absolutely summable sequence of coefficient matrices even though xt does not possess

such a stationary MA representation.

Hansen (2005) provides a closed-form expression for β′xt in terms of the VECM parame-

ters. For our purpose it is useful to work with

β′xt =
∞∑
i=0

β′Θiεt−i = β′Θ(L)εt, (2.2)

compare Remark 1 in Hansen (2005). The coefficients of Θ(L) are given by the recursion

∆Θi = ΠΘi−1 +

p−1∑
j=1

Γj∆Θi−j, i = 1, 2, . . . , (2.3)

or equivalently by

∆Θi = Θi−1Π +

p−1∑
j=1

∆Θi−jΓj, i = 1, 2, . . . , (2.4)

with Θ0 = In and Θi = 0 for i < 0. Three remarks are in order. First, Θ(L) is not an

absolutely summable polynomial. However, we have Θi = C + Ci, i = 1, 2, . . ., with C =

β⊥(α′⊥Γβ⊥)−1α′⊥ and Γ = In −
∑p−1

i=1 Γi. Morever, C(L) = In + C1L + C2L
2 + · · · is

absolutely summable. Hence, β′Θ(L) = β′C(L) such that we can regard β′Θ(L) as a set of r

linear combinations of an absolutely summable lag polynomial.

Second, the equivalence of the recursions (2.3) and (2.4) can be shown as follows. The pa-

rameter matrices Θi, i = 1, 2, . . . , in (2.3) and (2.4) satisfy Π(L)Θ(L) = In and Θ(L)Π(L) =

In, respectively. The inverse of Π(L) exists since Π0 = In is nonsingular. Hence, we obtain

from both relationships Θ(L) = Π(L)−1. Third, the recursions can also be written in terms of

the VAR parameters yielding Θi = Θi−1A1 + Θi−2A2 + · · ·+ Θi−pAp = A1Θi−1 + A2Θi−2 +

· · · + ApΘi−p, i = 1, 2, . . ., with Θ0 = In and Θi = 0 for i < 0. These recursions have been

already applied in the literature.1

1The former recursion is the usual one for MA coefficient matrices obtained from the VAR coefficient matrices
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2.2 Codependence Restrictions

We can now characterize the parameter restrictions that are implied when the components of

xt are codependent. In the following, we focus on the case of a single cointegration vector and

comment on setups with several cointegration relations later on. Moreover, we assume that the

first element of the cointegration vector is normalized to 1.

Codependence of order q is present in the levels if β′xt has a finite-order MA(q) representa-

tion. This requires β′Θi = 0 for all i > q and β′Θq 6= 0. The latter restriction means that β′xt
can be regarded as a linear combination of a multivariate MA(q). Hence, β′xt has a univari-

ate MA(q) representation according to Lütkepohl (2005, Proposition 11.1).2 The cointegration

vector, thus, is also a codependence vector in this setup.3 To distinguish codependence in lev-

els from codependence in first differences of I(1) variables, we introduce the terminology of

level codependence of order q, abbreviated as LCO(q). Accordingly, if q = 0, a level serial

correlation common feature (LSCCF) is present.

In light of recursion (2.4), it is clear that the restrictions β′Θi = 0 for i = q+1, q+2, . . . , q+

p and β′Θq 6= 0 are sufficient to assure that β′xt has a MA(q) representation. In case of LSCCF,

one can easily deduce from the recursion (2.3) that this implies β′Π = −β′, i.e. β′α = −1,

and β′Γi = 0 for i = 1, . . . , p − 1. In general, however, it is more convenient to use a state-

space representation based on the companion form of the VECM to describe the restrictions on

the corresponding model parameters, compare Schleicher (2007). It is useful to work with the

following state-space form that is due to Hansen (2005):

∆xt = J∆Xt

Xt = FXt−1 + Ut,
(2.5)

in a stationary framework. Lütkepohl (2005, Ch. 6) uses this recursion to determine impulse responses for I(1)

VAR processes. The representation (2.2) for β′xt in conjunction with the latter recursion has also been derived by

Pesaran & Shin (1996).
2Given the assumptions on εt, the error term of the univariate MA representation is an innovation. Then, future

values of β′xt are not predictable from xt−q, xt−q−1, . . . , although the components in xt are. The latter is the case

because the variables are I(1) such that they have individual infinite-order MA representations. Hence, the formal

definition of codependence as a common feature applies, compare Engle & Kozicki (1993) and Vahid & Engle

(1997).
3The label ’codependence vector’ has been introduced by Gourieroux & Peaucelle (1988, 1992) within the

stationary framework.
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where

J∆ = [0n×1 In 0n×n(p−2)], (2.6)

Xt = [x′tβ,∆x
′
t,∆x

′
t−1, . . . ,∆x

′
t−p+2]′, Ut = [ε′tβ, ε

′
t, 0n(p−2)×1]′, (2.7)

and (2.8)

F =



(1 + β′α) β′Γ1 β′Γ2 · · · β′Γp−2 β′Γp−1

α Γ1 Γ2 · · · Γp−2 Γp−1

0 In 0 · · · 0 0

0 0 In · · · 0 0
...

...
... · · · ...

...

0 0 0 · · · In 0


(2.9)

is a (n(p−1) + 1)× (n(p−1) + 1) companion matrix of which all eigenvalues are smaller than

1, see Hansen (2005, Lemma A.2). For the presentation, we regard the cointegration vector β

as given. This is a common assumption in the literature on codependence related to VECMs,

compare e.g. Schleicher (2007). In Subsection 2.4 we comment on testing strategies in which

the assumption of a given β can be skipped.

By iterative substitution we obtain

Xt = FXt−1 + Ut

= F 2Xt−2 + Ut + FUt−1

...

= F q+1Xt−q−1 +

q∑
j=0

F jUt−j. (2.10)

Hence, LCO(q) is given if

γ′0F
q 6= 0 and (2.11)

γ′0F
q+1 = 0, (2.12)

where γ0 = (1 01×n(p−1))
′. Clearly, (2.12) implies that γ′0F

i = 0 for all i > q+1. Hence, further

restrictions on F i for i > q+1 are not necessary. Defining γ′k = γ′0F
k and following Schleicher

(2007), we can write the restrictions (2.11)-(2.12) as a set of linear restrictions regarding F

γ′jF = γ′j+1, 0 ≤ j < q − 1

γ′qF = 0.
(2.13)
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Note that the vectors γj , j = 0, 1, . . . , q, are linearly independent (see Schleicher 2007, Lemma

1). Thus, (2.13) translates the nonlinear LCO(q) constraints on the VECM parameters into a set

of linear restrictions regarding the companion form parameters in F .

We now address two important issues in turn. First, we derive an upper bound for q, say

qmax. Second, we discuss under what conditions a unique so-called pseudo-structural form for

the VECM can be obtained.

The result on the upper bound qmax is summarized in the following theorem, of which the

proof is given in the Appendix.

Theorem 1. Let F be a companion matrix as defined in (2.5) and let γ0 = (1 01×(n−1)p)
′ for

which the restrictions γ′0F
q 6= 0 and γ′0F

q+1 = 0 hold. Then, it must be that q ≤ qmax, where

qmax = (n− 1)(p− 1).

Some remarks are in order. An upper bound for q is due to the recursive relationship between

the VECM and MA parameter matrices given in (2.4). The crucial point is that β′Θq has to be

nonzero to identify the MA(q) process. For a sufficiently large q, the restriction β′Θq 6= 0 rules

out that β′Θi = 0 for i > q, given that β′Θj 6= 0 also has to hold for at least some j < q.

Theorem 1 provides a correction of Lemma 1 in Schleicher (2007) which implied an upper

bound of q∗max = n − 1 for our setup. The difference between q∗max and qmax is due to the

fact that the codependence and the companion restrictions do not need to be jointly indepen-

dent as assumed by Schleicher (2007). Joint independence is not automatically given, although

each codependence restriction, i.e. each γi, i = 0, 1, . . . , q, is independent of the companion

restrictions which are described below. Examples with linear dependence can be easily con-

structed.4 Thus, once the independence assumption is dropped, a rather large upper bound for

the codependence order is obtained.

The proof in the Appendix shows that the result of Theorem 1 is eventually based on the

structure of VAR-type companion restrictions. This means, on the one hand, that we cannot

cover general restrictions as addressed in Schleicher (2007, Lemma 1). On the other hand,

the upper bound of the order is also higher than the one implied by Schleicher (2007, Lemma

1) for codependence among stationary variables or with respect to the first differences of I(1)

variables. The corresponding results are summarized in Lemma 1 in the Appendix.

To set up a pseudo-structural form representation, we first summarize the restrictions in

4The problem in Schleicher (2007, Lemma 1) is the following. Let Γ be a (n× q) matrix and R be a (n×m)

matrix with full column rank. Then, a full column rank of Γ together with linear independence of one of the

columns in Γ of R does not imply that the matrix M = [Γ : R] has full column rank m + q. In other words, the

columns are not necessarily jointly independent.
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(2.13) by B′F = C ′ with B = [γ0, γ1, · · · , γq] and C = [γ1, γ2, · · · , 0(n(p−1)+1)×1] being

(n(p− 1) + 1)× (q+ 1)-dimensional matrices. Moreover, F has to satisfy the companion form

restrictions R′F = Q′ with R = [0n(p−2)×(n+1) : In(p−2)]
′ and Q = [0n(p−2)×1 : In(p−2) :

0n(p−2)×n]′ and B′βF = γ′1 + γ′0 with Bβ = J ′∆β. Although Bβ and γ0 are linearly independent,

they both generate γ1 which is used to define the sequence of restrictions in (2.13). Clearly, it

is more convenient to use γ0 from a conceptual point of view and to regard B′βF = γ′1 + γ′0 as

a part of the companion restrictions.

Schleicher (2007) has suggested to add, if necessary, equations representing free parameters

in F to B, Bβ , and R. Thereby, a system like ΨF = Γ can be obtained so that the reduced

form parameters in F can be recovered from the structural form parameters in Ψ and Γ if Ψ is

invertible. A unique and invertible Ψ, i.e. identification, is always guaranteed if the companion

and codependence restrictions are jointly independent as was assumed by Schleicher (2007).

However, as pointed out above, the columns of M = [B : Bβ : R] do not need to be linearly

independent although each column of B is independent from MR = [Bβ : R]. Hence, the

vectors γj , j = 0, . . . , q, in B together with a subset of the companion restrictions may generate

some of the remaining companion restrictions. This result is not specific to our companion

structure but holds in general. A consequence is that the pseudo-structural representation is not

generally unique. Both, the specific structure and the number of involved restrictions could be

unknown.

However, if q < n, the columns in M can be independent. In that case, the free parameters

can be represented by R′PF = P ′, where RP = [01×(n−q−1) : I(n−q−1) : 0(n(p−2)+q+1)×(n−q−1)]
′

and P is a (n(p− 1) + 1)× (n− q − 1) matrix that contains the free parameters. Then, we are

able to define Ψ = [B : RP : MR]′ and Γ = [C : P : QR]′, where QR = [γ0 + γ1 : Q]. This

gives the pseudo-structural form representation for the state-space system (2.5)

xt = J∆Xt

ΨXt = ΓXt−1 + ΨUt.

The reduced form parameters are then obtained via F = Ψ−1Γ from the structural form

parameters in Ψ and Γ since Ψ has full rank if the columns in M are linearly independent. We

also see that there are n(p− 1) + 1 restrictions underlying the pseudo-structural model because

we have n(n(p− 1) + 1) reduced form parameters in F but only [q+ (n− q− 1)](n(p− 1) + 1)

structural form parameters inB, C, and P . Note that the number of parameters does not include

the parameters in β, since we regard the cointegration vector as given. If we treat β as unknown,

the number of restrictions would not change since β enters both the structural and reduced form

representations. Compared to Schleicher (2007), the reduction in degrees of freedom is larger
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by n − 1. The reason is that the potential codependence vector, the cointegration vector, is

already included in the model. Therefore, no new vector has to be determined. Hence, the

structural form needs n − 1 parameters less to capture the codependence restrictions given the

normalization of β.

The columns in M are always linearly independent if q = 0 or q = 1. Linear independence

is easy to verify for LSCCF (q = 0) since B = γ0 = (1 01×(n−1)p)
′ in this case. Moreover, the

LSCCF restrictions imposed on α,Γ1, . . . ,Γp−1 by the cointegration vector are linear. In case of

LCO(1) we have B = [γ0 : γ1]′, so that dependency between B and MR would only be present

if β′Γ1 = cβ′ for some c ∈ R. Note that γ1 = [(1 + β′α) : β′Γ1 : · · · : β′Γp−1]′ and γ′1F = 0.

Using β′Γ1 = cβ′, the latter zero constraints can be written as (1 + β′α+ c)β′α+ (1 + β′α) =

(1 + β′α+ c)β′Γ1 + β′Γ2 = (1 + β′α+ c)β′Γ2 + β′Γ3 = · · · = (1 + β′α+ c)β′Γp−1 + β′Γp =

(1 + β′α + c)β′Γp = 0. From here it is easy to see that this leads to a LSCCF setup, what

contradicts the LCO(1) assumption γ′0F 6= 0.

For 1 < q < n, scenarios with both linear dependence and independence of the columns

in M , i.e. of the companion and codependence restrictions, are possible. This induces the

following three comments.

First, there can exist LCO(q) representations with and without dependency. Second, if com-

panion and codependence restrictions are dependent, then blocks of the γj , j = 0, . . . , q, have

to linearly depend on each other because of the structure of the companion restrictions. Each

vector γj can be decomposed into a first element and (p − 1) blocks of size 1 × n. However,

these blocks are nonlinear functions of the VEC model parameters. Thus, it is not possible to

express the blocks as linear combinations of the companion matrix. Therefore, the dependen-

cies between the blocks of the γ-vectors (re-)introduce nonlinear constraints on the companion

matrix. Accordingly, the advantage of the companion form, which lies in translating the nonlin-

ear parameter restrictions implied by LCO(q) into linear restrictions on the companion matrix,

disappears. This, in turn, creates ambiguities regarding the specific type and the number of

restrictions underlying the LCO(q) setup. To be precise, it is in general not possible to deter-

mine which and how many blocks are dependent, how many parameter restrictions are related

to the block dependencies, and which columns in R are redundant. As a consequence, a pseudo-

structural representation cannot be setup in case of dependency in M .

Third, as mentioned above, identification is still given under the maintained assumption

of independence of the columns in M . Hence, in the case of independence a unique pseudo-

structural form also exist for 1 < q < n. Thus, LR testing of a joint hypothesis of independence

and LCO(q) would be possible.

Finally, if q > n, the vectors γj , j = 0, . . . , q, and the columns in R have to be jointly de-

pendent. According to foregoing comments identification of the pseudo-structural form cannot
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be achieved in general.

We now discuss two remaining issues: the case of several cointegration vectors and the

inclusion of deterministic terms.

If several cointegration vectors exist and LCO(q) is tested only with respect to one vector

the foregoing applies accordingly. To be precise, if no restrictions are imposed on the other

cointegration vectors, then the additional parameters in F enter the pseudo-structural form as

free parameters. Hence, the number of restrictions associated with LCO(q) does not change

compared to the case of a single cointegration vector.

If LCO(q) restrictions regarding several cointegration vectors are imposed, then for each

cointegration vector a sequence of γ-vectors expressing the LCO(q) constraints exists. However,

these systems of vectors does not need to be linearly independent as claimed by Schleicher

(2007) for the case of several codependence vectors. Given that the last vector in each of

these systems represents zero constraints, the systems that linearly depend on each other have

to merge. That means, the corresponding last vectors in the sequences have to be equal or

multiples of each other. As a consequence, the upper bound of Theorem 1 is equal to the rank

of the stacked systems rather than to the sum of all vectors involved. Hence, the identification of

certain LCO order combinations has to be evaluated on a case-by-case basis. E.g. identification

is given if all cointegration vectors generate LSCCF.

The inclusion of deterministic terms like a constant and a linear trend is harmless since

their coefficients can be treated as free parameters within the pseudo-structural form. Hence,

the consideration of deterministic terms increases the number of reduced and structural form

parameters in the same way.

2.3 Comparison to Existing Approaches

To relate LSCCF and LCO(q) to existing frameworks in the literature, we first describe the

scalar component model (SCM) introduced by Tiao & Tsay (1989) and the Beveridge-Nelson-

Stock-Watson (BNSW) decomposition used by Vahid & Engle (1993, 1997).

A non-zero linear combination v′0xt of a n-dimensional process xt follows an SCM(p,q)

structure, if one can write

v′0xt +

p∑
j=1

v′jxt−j = v′0εt +

q∑
j=1

w′jεt−j

for a set of n-dimensional vectors {vj}pj=1 and {wj}qj=1 with vp 6= 0 and wq 6= 0, see Schleicher

(2007). Thus, SCCF and codependence of order q with respect to xt are then in line with

SCM(0,0) and SCM(0,q) models, respectively.
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For our purpose it is sufficient to state the final version of the BNSW decomposition used

by Vahid & Engle (1993) for cointegrated variables. Based on a Wold representation for ∆xt

we have

xt = γτt + ct,

where γ is a n × (n − r) parameter matrix, τt is a linear combination of n − r random walks,

the trend part, and ct is a stationary infinite-order MA polynomial, the cyclical part. As pointed

out by Vahid & Engle (1993), a cointegration vector eliminates the trend component and can

therefore be seen as a linear combination of the cyclical part: β′xt = β′ct. Moreover, they

show that a SCCF with respect to ∆xt leads to a common cycle, i.e. a SCCF vector v0 with

v′0∆xt = v′0εt eliminates the cycles such that v′0ct = 0.5 Vahid & Engle (1997) generalize

this result. If ∆xt is codependent of order q with a codependence vector v′0 so that v′0∆xt is a

SCM(0, q), then v′0ct is a SCM(0, q − 1). Thus, there exists a codependent cycle of order q − 1.

In contrast to Vahid & Engle (1993, 1997) we impose a SCCF and codependence on the level

of xt but not on ∆xt directly. Thus, v0 = β is required in our setup. This means first, that a level

SCCF cannot produce a common cycle since a common cycle vector has to be orthogonal to the

cointegration space, see Vahid & Engle (1993). Obviously, if xt satisfies the LCO(q) constraints

such that β′xt is a SCM(0,q), then β′∆xt = β′xt−β′xt−1 follows a SCM(0,q+1). But we know

from Vahid & Engle (1997), that a SCM(0,q + 1) for the first differences of an I(1) variable

implies that β′ct is a SCM(0,q). Hence, the cointegration vector also produces a codependent

cycle of order q. Thus, a codependence vector with respect to the first differences need not only

be related to codependence structures in the cycles but also to codependence structures in the

levels.

Obviously, a cointegration vector that is a codependence vector has to satisfy additional

restrictions compared to the type of codependence vectors analyzed in Vahid & Engle (1997) or

Schleicher (2007). It must produce a specific SCM structure with respect to ∆xt given by

β′∆xt = β′εt + β′(Θ1− In)εt−1 + β′(Θ2−Θ1)εt−2 + · · ·+ β′(Θq −Θq−1)εt−q − β′Θqεt−q−1.

This constrained SCM can be rewritten as β′∆xt = β′∆εt + β′Θ1∆εt−1 + · · · + β′Θq∆εt−q,

which is a linear combination of a vector MA(q) model in terms of ∆εt. Such restricted SCM

versions for ∆xt have not been addressed in the literature so far. Admittedly, it is rather difficult
5This implies v′0α = 0 in the VECM. Hence, in typical model setups at least one time series is not adjusting

towards the cointegrating relationship, but deviating from it. Consider e.g. the bivariate case, where the first

element of v0 is normalized to one. Then, the second element is negative if the peaks and troughs of the two

cycles coincide respectively. Logically, both coefficients in α must have the same sign to assure v′0α = 0. Thus,

one time series is not adjusting towards the cointegration equilibrium such that the other one has to compensate

this non-adjusting behaviour. A common cycle with equal weights in both series, i.e. v0 = (1,−1)′, would even

exclude long-run re-equilibration.
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to identify such structures if common feature restrictions are imposed on the first differences of

cointegrated variables. Yet, we want to point out that v′0xt is not necessarily an I(1) variable if

v0 is a codependence vector with respect to ∆xt in contrast to the statement in Schleicher (2007,

Appendix A). This also means that cointegration and codependence vectors (with respect to the

first differences) are not necessarily orthogonal and, thus, the number of codependence vectors

could exceed n− r.
Constraints in terms of levels of I(1) variables have already been discussed in Cubadda

(2007). He considers a weak form SCCF with respect to a VECM which implies δ′(∆xt −
αβ′xt−1) = δ′εt for some nonzero vector δ because δ′Γi = 0, i = 1, . . . , p−1, is assumed. This

results in a polynomial SCCF (PSCCF) of order p = 1 for xt. As pointed out by Schleicher

(2007), a PSCCF can be interpreted as a SCM(p,0) structure which imposes a reduced rank

restriction on the autoregressive lag structure rather than on the moving average structure as in

the case of codependence. However, if δ is set equal to β and β′α = −1 is assumed, we obtain

a LSCCF with respect to xt. Yet, no simple relationship between LCO and higher order PSCCF

in terms of xt exists.

Finally, we comment on the relation of LSCCF, weak form SCCF and codependence of order

1 with respect to ∆xt. The latter implies that the impulse responses of the components of ∆xt

are collinear after lag 1, while weak form SCCF requires that ∆xt and αβ′xt−1 have collinear

impulse response functions, see Hecq, Palm & Urbain (2006). Besides these properties, LSCCF

implies in addition collinearity of the impulse responses of the components of xt. Hence, it is

clearly the most restrictive structure.

As mentioned in the introduction, the adjustment properties implied by level codependence

relate our framework to Pesaran & Shin (1996). They propose the persistence profile approach

to analyze the dynamics of adjustment toward the cointegration equilibrium. Persistence pro-

files represent the effect of systems-wide shocks on the cointegration relations over time. For

the case of a single cointegration relation we can define the persistence profile of zt = β′xt in

our notation as

Hz(j) =
β′ΘjΩΘ′jβ

β′Ωβ
, for j = 0, 1, 2, . . . . (2.14)

Since only a single cointegration vector is assumed, Hz(j) can be interpreted as the square

of the impulse response function of zt to a unit composite shock in the error ut = β′εt. From

(2.14) it is clear that a LCO(q) constraint requires the persistence profiles Hz(j) to be zero

for j > q. Hence, if an identified pseudo-structural form can be found, one can test the joint

hypothesis Hz(j) = 0 for all j > q. Such a test also takes the correlation of the estimators

of Hz(j) into account. By contrast, Pesaran & Shin (1996) have only provided the limiting

distributions of the ML estimators of Hz(j) for each j individually. Hence, significance testing
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could only be done pointwise as it is standard in the impulse response literature.

Similar comments can be made regarding the serial correlations of zt. As shown by Pesaran

& Shin (1996), those are given by

ρz(j) =

∑∞
i=0 β

′ΘjΩΘ′j+sβ∑∞
i=0 β

′ΘjΩΘ′jβ
, for j = 0, 1, 2, . . . .

Trivially, LCO(q) implies that ρz(j) = 0 for all j > q. Hence, a VECM-based test on

LCO(q) allows to jointly check whether all relevant serial correlations are zero.

2.4 Testing Approaches

2.4.1 LR Test

If an identified pseudo-structural form exists we can apply the LR principle to test the null of

LCO(q). That is, we estimate the unrestricted and restricted model by ML and take twice the

log-likelihood difference. The LR test statistic is asymptotically χ2 distributed with n(p−1)+1

degrees of freedom according to the discussion in Section 2.1. Unfortunately, only VEC models

with LSCCF or LCO(1) constraints are uniquely identified. However, the applicability of the

LR test can be extended to LCO(q) setups where 1 < q < n if we are willing to assume that

codependence and companion restrictions are jointly independent. However, this leads to a joint

restriction test in the sense that rejection of the null hypothesis could be both due to a wrong

LCO(q) assumption and due to an inappropriate imposition of independence.

So far we have regarded the cointegration vector as given as it is usual in the existing litera-

ture on SCCF and codependence, see e.g. Schleicher (2007) or Vahid & Engle (1993).6 Such an

assumption is typically justified in cases of strong (economic) priors and statistical evidence for

a particular cointegration vector. This applies e.g. to situations of strong arbitrage that would

imply a cointegration vector β = (1,−1)′ if a bivariate setup is considered. Another example

is the analysis of controllability of overnight interest rates by central banks as discussed in the

next section.

Of course, we may treat the cointegration vector as unknown and estimate it both under the

null and the alternative hypotheses. Since the cointegration vector then enters both the pseudo-

structural and the reduced form, the number of degrees of freedom does not change. Moreover,

we may jointly test for codependence and restrictions on the cointegration vector. Then, the

constrained vector is imposed under the null hypothesis but estimated under the alternative.

However, in this case the number of restrictions increases by n− 1 to np.

6In this case, the LSCCF restrictions regarding the VECM parameters could be also tested by F - or WALD-

tests, which have their usual asymptotic distributions.
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In the next subsection we consider a GMM-type test that is applicable if a codependent

VECM cannot be identified. In particular, the GMM test alleviates the sensitivity to model mis-

specification. Furthermore, it circumvents the potentially demanding numerical optimisation

under the LR null hypothesis, see Schleicher (2007). Nevertheless, we have a preference for

applying the LR test for identified model setups. This is, first, due to problems regarding the

GMM test that can be uncovered by relating it to a Wald test for nonlinear restrictions and,

second, due to the results of the simulation study in Schleicher (2007). The latter indicates an

obvious advantage of the LR over the GMM test in terms of small sample power.

2.4.2 GMM-type and Wald Tests

If xt is level codependent of order q, then zt = β′xt should be uncorrelated with all its lags

beyond q. Assuming that ∆xt follows a VECM with lag length p − 1, it is sufficient to focus

on zero correlations between zt and Xt−q−1 = (zt−q−1,∆x
′
t−q−1,∆x

′
t−q−2, . . . ,∆x

′
t−q−p+1)′

according to the state-space setup (2.5)-(2.9). In their corresponding frameworks, Vahid &

Engle (1997) and Schleicher (2007) have used such zero correlations as moment conditions for

GMM estimation of the codependence vector. Based on the GMM approach, overidentifying

restrictions can then be tested.7

We do not apply the GMM principle to estimate β since it is involved in both zt and Xt−q−1

but use the corresponding test approach. Following Vahid & Engle (1997) and Schleicher

(2007), we test the null hypothesis

H0 : g(β) = E(ztXt−q−1) = 0[(n(p−1)+1)×1] (2.15)

by considering the statistic

ZT = gT (β)′PT (β)gT (β), (2.16)

with gT (β) = 1√
T−p−q

∑T
t=p+q+1 ztXt−q−1 and PT =

(
σ̂2
(

1
T−p−q

∑T
t=p+q+1Xt−q−1X

′
t−q−1

)
+
∑q

i=1 γ̂i

(
1

T−p−q
∑T

t=p+q+i+1(Xt−q−1X
′
t−q−1−i +Xt−q−1−iX

′
t−q−1)

))−1

, which is the weight-

ing matrix with σ̂2 and γ̂i being consistent estimators of the variance and autocovariances of zt.

Note that we are testing for a cut-off in the serial correlation of the cointegration errors after q

lags by applying the statistic (2.16).

As already pointed out by Schleicher (2007), the choice of the instrument set wt makes

the GMM test depend on the VECM framework. In other words, this approach can only be
7Vahid & Engle (1997) describe in detail the link between the GMM approach and a test based on canonical

correlations that was suggested by Tiao & Tsay (1989). The latter procedure does not depend on the normalization

of the codependence vector and is more convenient when testing for the number of codependence vectors. How-

ever, these issues are not relevant in regard of typical applications of our setup. Therefore, we do not consider the

procedure of Tiao & Tsay (1989).
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interpreted as a test for LCO(q) or, to be more precise, the null hypothesis (2.15) only represents

the LCO(q) constraints if the VECM provides a correct representation of ∆xt. This link has

two important implications. First, the upper bound for the codependence order should also

be applied with respect to the GMM test. Second, the covariances considered in (2.15) are

actually nonlinear functions of the VECM parameters. Therefore, we may express the moment

conditions also in terms of θ = vec(J∆F ) by explicitly writing g(β, θ). Note in this respect

that we have g(β, θ) = E(ztXt−q−1) = (γ′0F
q+1ΓX(0))

′, where ΓX(0) = E(XtX
′
t). Thus, on

the one hand, it is easily seen that the LCO(q) constraints (2.11)-(2.12) imply a zero covariance

between zt and Xt−q−1. On the other hand, if the usual assumption is made that ΓX(0) is

nonsingular, then a zero covariance between zt and Xt−q−1 results in γ′0F
q+1 = 0, which is the

set of zero parameter constraints in (2.12) that underlie LCO(q).

It is of course also possible to directly test r(θ) = (γ′0F
q+1)′ = 0 via a Wald test for

nonlinear restrictions. Let θ̂ be an estimator of θ conditional on β or on a superconsistent

estimator of β with
√
T (θ̂ − θ)

d→ N(0,Σθ). Then the usual Wald statistic is given by

WT = Tr(θ̂)′

(
∂̂r(θ)

∂θ′
Σ̂θ
∂̂r(θ)′

∂θ

)−1

r(θ̂), where ∂̂r(θ)/∂θ′ and Σ̂θ are consistent estimators of

∂r(θ)/∂θ′ and Σθ, respectively. However, the statistic WT has an asymptotic χ2-distribution

only if the restrictions in r(θ) are functionally independent, requiring the Jacobian matrix

∂r(θ)/∂θ′ to be of full row rank, see e.g. Andrews (1987). Obviously, if the Jacobian ma-

trix is not of full row rank, then Σr(θ) =
∂r(θ)

∂θ′
Σθ
∂r(θ)

∂θ
will be singular and the asymptotic

distribution of WT is nonstandard.

A rank deficit regarding ∂r(θ)/∂θ′ can also occur in our setup given the results of Lütkepohl

& Burda (1997). They consider the case of multi-step Granger causality within a VAR. The non-

linear parameter restrictions involved can in fact induce a singularity in the relevant covariance

matrix in part of the parameter space. The restrictions we are testing are of the same kind as the

ones underlying multi-step Granger causality, compare also Dufour & Renault (1998). Thus, it

cannot be ruled out that Σr(θ) is singular.

It logically follows from the foregoing discussion that functional independence of the com-

ponents in g(β, θ) cannot be guaranteed for the whole parameter space. Thus, the GMM test

may be similarly affected by a singularity problem as the Wald test. As a consequence, the

statistic ZT may not have an asymptotic χ2-distribution.

Even though the GMM test is not without drawbacks, its usefulness is emphasized by the

following argumentation. Consider the case that the VECM is regarded only as an approxi-

mation of the process ∆xt. Then, no mapping between the VECM parameters and the con-

sidered covariances exists so that the preceding discussion does not apply. However, the null

hypothesis g(β) = 0[(n(p−1)+1)×1] is only covering a subset of the restrictions implied by a
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LCO(q) setup. Nevertheless, evidence against LCO(q) can still be collected since rejection of

g(β) = 0[(n(p−1)+1)×1] implies also rejection of the LCO(q) constraints. In this respect, the

GMM-type test is a useful procedure, in particular in situations where the LR test cannot be

applied due to nonidentification of the pseudo-structural VECM.

Obviously, the GMM statistic (2.16) has an asymptotic χ2 distribution with n(p − 1) + 1

degrees if no link to the VECM is given and ∆xt is assumed to have a Wold representation

in terms of its innovation vector, compare Vahid & Engle (1997). To compute gT and PT , we

can either use a pre-specified vector for β or a superconsistent estimator β̂. The use of the

latter is justified by its superconsistency and the fact that PT (β̂) is a consistent estimator of

(limT→∞ E(gT (β)gT (β)′/T ))−1, compare also Brüggemann, Lütkepohl & Saikkonen (2006).

Lütkepohl & Burda (1997) have suggested modifications of the Wald test that address the

potential singularity of the relevant covariance matrix Σr(θ). These modifications assure that

the modified statistics have an asymptotic χ2-distribution. They propose e.g. to draw a random

vector from a multivariate normal distribution and add it to the restriction vector r(θ̂). Thereby,

a nonsingular covariance matrix for the modified restriction vector is obtained. The modifica-

tion, however, requires the specification of a scaling parameter with respect to the random noise

vector. Although the simulation study in Lütkepohl & Burda (1997) provides some evidence for

a range of reasonable values for this parameter, no clear guideline for choosing them in applied

work exists. We have applied different values for the scaling parameter, but the resulting p-

values strongly differ in the empirical applications of the next section. That is why we decided

not to present the outcomes of the modified Wald test. Accordingly, we refer to Lütkepohl &

Burda (1997) for further details.

3 Can Central Banks Control Overnight Rates?

Herein, we provide a useful application of the new LSCCF and LCO concept. I.e., we examine

to which extent overnight money market rates are controllable by monetary policy makers. We

look in turn at the world’s most prominent central banks, the Fed and the ECB.

3.1 Federal Reserve Bank

Over decades, the Fed has developed an institutional framework for effectuating its monetary

policy. Since February 1994, the Fed has announced changes in the federal funds target rate

immediately after the decision. Such transparency is likely to contribute to low persistence of

deviations of the federal funds rate from its target, see Nautz & Schmidt (2008). The same pre-

sumably holds true for the forward-looking assessment of inflationary pressure and economic
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slowdown, which complements the FOMC statements since January 2000.

The Fed requires commercial banks to hold a certain average amount of reserves during

each maintenance period of two weeks. Therefore, we argue that a natural frequency for the

empirical analysis is provided by biweekly data. In this, while the maintenance periods end

on the so-called Settlement Wednesdays, we measure the interest rates on the Wednesdays in

between. Doing so has the further advantage to avoid dealing with predictable day-of-the-

week effects or the Settlement Wednesday tightness (see Hamilton 1996), which is rendered

innocuous by sampling at the midpoints of the maintenance periods. The sample is chosen as

06/28/2000-12/03/2008, where the starting point ensures consistency with the European case

discussed below. The end date is determined by the fact that the Fed replaced its target rate by a

target range (initially from 0 to 0.25) on 16 December 2008. In total, we have 221 observations.

Figure 1 shows the federal funds and the target rate as well as the policy spread.
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Figure 1. Federal funds rate, target rate and spread

Evidently, the overnight rate closely follows the target, so that the spread reveals no long-

lasting swings. The correlogram of the spread can be seen in Figure 2. The spread yields mostly

small serial correlations that would be judged insignificant applying the asymptotic standard

error 1/
√
T . However, the first two autocorrelations do not seem to be necessarily negligible.

Therefore, as discussed above, testing within the underlying VECM is preferred in order to

jointly consider all relevant lags.

The VECM for the federal funds rate it and the target rate i∗t is specified with a restricted

constant and four lags in first differences, as suggested by the AIC and HQ criteria. The Jo-

hansen trace test easily confirms cointegration with a test statistic of 35.27 (p-value = 0.02%).

The Portmanteau test for non-autocorrelated residuals, compare Lütkepohl (2005), is clearly

17



Figure 2. Autocorrelations of federal funds spread

insignificant at all lags, so that the model seems to be adequate in the sense of picking up the

complete dynamics from the data. In contrast, reducing the lag length would leave pronounced

autocorrelation in the residuals. Concerning the cointegration vector, we have a strong theoret-

ical prior for β = (1 − 1)′. Empirically, this restriction is not rejected given a LR p-value of

27.6%.8 The estimated VECM takes the following form:

(
∆it
∆i∗t

)
=

−0.766
(0.225)

0.168
(0.140)

(it−1 − i∗t−1 + 0.023
(0.014)

) +

0.042
(0.204)

−0.036
(0.215)

0.025
(0.127)

−0.126
(0.134)

(∆it−1

∆i∗t−1

)
+

 0.047
(0.177)

0.213
(0.189)

−0.070
(0.110)

0.170
(0.118)

(∆it−2

∆i∗t−2

)

+

0.072
(0.148)

0.236
(0.168)

0.021
(0.092)

0.295
(0.105)

(∆it−3

∆i∗t−3

)
+

0.060
(0.108)

0.147
(0.137)

0.113
(0.067)

0.195
(0.085)

(∆it−4

∆i∗t−4

)
+

(
û1t

û2t

)

The difference of the adjustment coefficients, α2 − α1, lies near one. Among the param-

eters in the short-run dynamics, there are pairs that are more and some that are less equal.

Even though most single coefficients are estimated relatively imprecisely, the model has been

carefully specified and is unlikely to provide an incorrect reflection of the true data generating

process (as far as any model can be correct, of course). Rather, the large standard errors are

more a consequence of natural multicollinearity in VARs than signs of true expendability. In

sum, the impression from institutional facts, visual inspection and preliminary statistical anal-

ysis suggests a close controllability of the federal funds rate by the Fed. Indeed, applying the

nine LSCCF restrictions β′α = 0 and β′Γi = 0, i = 1, . . . , 4, to the VECM, the likelihood

does not shrink dramatically. The p-value of the according LR test with nine degrees of free-

dom amounts to 34.1%. Moreover, the corresponding GMM test results in a p-value of 17.9%.

Therefore, we can conclude that on average, deviations of the federal funds rate from the target

8This test was repeated after the LSCCF restrictions had been imposed, with the same result.
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are corrected at least within one maintenance period.

3.2 European Central Bank

We use the European example to provide some discussion of potential problems connected to

our testing procedure. In this, we allude to critical points in the model specification, where

special care is advised.

The ECB provides liquidity to the European banking sector through weekly main refinanc-

ing operations (MROs). The relevant market and target rates are the Euro Overnight Index

Average (Eonia) and the minimum bid rate (MBR). Since June 2000, the date chosen as our

starting point, the MROs are conducted as variable rate tenders, see Hassler & Nautz (2008).

Furthermore, the ECB shortened the MRO maturity from two weeks to one week in March

2004. The considerable rise in spread persistence, as established by Hassler & Nautz (2008),

could then be explained by higher costs and risk of refinancing. Consequently, we split the Eu-

ropean data into two sub-samples in order to accommodate a potential structural break. These

sub-samples have 97 (June 2000 - February 2004) and 124 (March 2004 - December 2008)

observations, respectively. We keep the frequency of the US data. Figure 3 plots the Eonia and

the MBR as well as the European spread.
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Figure 3. Eonia, minimum bid rate and spread

Even though the spreads are still small compared to the level of the interest rates, the devia-

tions do not feature the white-noise character from the US case. Backing the visual impression,

Figure 4 presents the autocorrelations for both sub-samples.

Most serial correlations of the spread are rather negligible. However, lag four in the first
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Panel A: 1st sub-sample: June 2000 - February 2004

Panel B: 2nd sub-sample: March 2000 - December 2008

Figure 4. Autocorrelations of Eonia Spread

and various lags in the second sub-period cast the LSCCF hypothesis into doubt. In the second

period, Hassler & Nautz (2008) have established long-memory for the spread using daily data.

In general, long-memory behaviour should not change when sampling at different frequencies

(e.g. Chambers 1998). Indeed, Panel B of Figure 4 reveals a typical pattern of persistent serial

correlations, even if most of them individually do not reach significance due to the relatively

low number of observations.

For the first sub-period VECM, all information criteria suggest a lag length of zero. One

cointegrating relation is significant with a trace statistic of 74.90, and the β = (1 −1) restriction

passes with a p-value of 25.8%. The resulting model is

(
∆it
∆i∗t

)
=

−1.059
(0.125)

−0.026
(0.070)

(it − i∗t − 0.068
(0.017)

) +

(
û1t

û2t

)
.

One can assert at first sight that the LSCCF restriction α1 − α2 = −1 is empirically ac-
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ceptable. Indeed, the LR and GMM tests produce p-values of 75.6% and 75.2%, respectively.

However, the Portmanteau test is significant from lag nine onwards. That is, despite the unani-

mous decision of all information criteria, the model seems to be misspecified. Presumably, the

VECM(0) has not taken into account the 30% autocorrelation on the fourth lag of the spread

(Figure 4, Panel A).

This last conjecture can be supported when estimating a VECM(3), equivalent to VAR(4),

which yields good Portmanteau results. Now, the seven LSCCF constraints cannot be rejected

with p-values of 19.2% for the LR test and 25.7% for the GMM test. Nevertheless, the bulk of

the coefficients introduced by the higher model order is insignificant and superfluous, as it is but

the fourth VAR lag that matters for the Eonia dynamics. Indeed, the second and third lag can

be excluded from the VAR by conventional Wald tests. This reduces the number of restrictions

coming from LSCCF by four - two for each 2 × 2 matrix. When applying the LR test with

7− 4 = 3 restrictions to the VECM derived from the accordingly restricted VAR(4), we obtain

a p-value of 2.8%.9 This suggests that the fully general VECM(3) had inflated the number of

degrees of freedom, lowering the power of the LR test. In conclusion, it is an advantage to have

a closed modelling framework and a clear-cut test at hand, but correct model specification and

power issues are to be carefully dealt with.

In the second sub-period, both AIC and HQ choose two lags. The Portmanteau tests are quite

favourable until lag 22, but for a few tens of lags from 23 upwards, the p-values do not reach

more than 3% to 4%. The trace statistic of 31.67 is clearly significant, whereas the evidence

against β = (1,−1) is somewhat stronger than before with a p-value of 1.5%. Nonetheless,

we proceed with β2 = −1, because restricting the freely estimated parameter of −0.975 is not

going to affect the LSCCF test outcome. The VECM results as

(
∆it
∆i∗t

)
=

−0.531
(0.227)

0.036
(0.153)

(it− i∗t − 0.029
(0.011)

) +

−0.259
(0.219)

0.598
(0.256)

−0.119
(0.147)

0.166
(0.172)

(∆it−1

∆i∗t−1

)
+

0.275
(0.191)

0.148
(0.280)

0.200
(0.128)

0.029
(0.188)

(∆it−2

∆i∗t−2

)
+

(
û1t

û2t

)
.

As might be suspected in view of the estimates for the adjustment coefficients, both the

LSCCF-LR and LSCCF-GMM tests reject the null hypothesis, implying five degrees of free-

dom, with p-values close to zero. However, Figure 4, Panel B might suggest that this rejection

is primarily triggered by the significant autocorrelations at lag one and two. In other words, the

adjustment process would be finished in the third period. Theoretically, an LCO(2) setup can

exist since the order q = 2 equals the maximum order qmax = (p − 1)(n − 1). However, we

have q = n in this case such that the pseudo-structural form is not identified. Accordingly, an

LR test cannot be applied. Applying a LR test for LCO(1) instead leads to a clear rejection due

9The GMM test cannot be adjusted to the restricted VAR model.
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to a p-value close to zero. The same result is obtained using the GMM-type test. The latter test

can also be used to test for level codependence order of two. Again we have to reject the null

hypothesis due to a p-value of 2.4%.

Hence, the tests seem to pick up the later non-negligible autocorrelations in the EONIA

spread, judging them as evidence against MA(1) or MA(2) processes. Indeed, exactly this

decision was to be expected, recalling the long-memory result of Hassler & Nautz (2008). Thus,

our test succeeds in discriminating between different degrees of interest rate controllability both

through different countries and time periods.

4 Conclusions

While cointegration denotes the commonality of non-stationary components among different

variables, we combine it with the concept of common serial correlation. Time series obeying

the according restrictions move in parallel in the sense that a specific linear combination is free

of any autocorrelation structure. Concerning cointegration adjustment, this implies that any

deviation from the equilibrium is corrected within a single period. In order to accommodate

delayed adjustment, we extend the framework to codependence, which describes constellations

where equilibrium ist restored after a lag of q periods.

For both LSCCF and codependence, we derive the constraints to be fulfilled in VECMs.

Thereby, maximum codependence orders and identification issues are discussed, correcting sev-

eral results from the literature. For statistical inference, we propose ML estimation as well as

LR and GMM testing.

Important applications of the developed framework arise whenever economic reasoning sug-

gests that variables stay in close contact over time. Such development may be generated by

processes of financial arbitrage. In our empirical section, we examine the question of control-

lability of interest rates by central banks. In particular, we examine whether the Fed and the

ECB succeeded in making overnight money market rates closely follow their target rates. Re-

sults for the US are quite favourable in this regard, since LR and GMM tests yield no evidence

against the LSCCF hypothesis. The European case delivers contrary results, even though in the

2000-2004 sub-period, a LSCCF might be present. However, since a change in the operational

monetary policy framework in 2004, neither LSCCF nor the weaker concept of codependence

can be empirically confirmed.

In conclusion, this paper offers both an innovative and a cautious perspective: On the one

hand, common serial correlation in levels provides an intuitive and useful enhancement of the

literatures of common cycles, cointegration and adjustment speed. On the other hand, we criti-

cally evaluate the scope of VECM-based common serial correlation analyses, pointing at con-
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ceptual and empirical problems. Nevertheless, we believe that an appreciable potential of the

underlying methodology could be exploited, if the crucial econometric issues are carefully dealt

with.

Appendix: Proof of Theorem 1

First, consider the structure of the companion matrix F . It consists of a first row containing the

parameters in the equation for β′xt, then a first block of n rows containing the parameters in the

equation for ∆xt, and a set of p − 2 blocks of n rows consisting of identity and zero matrices.

The latter blocks are numbered from 2 to p− 1.

Let us assume that there exists level codependence of order q in xt. Then, we have γ′0F
q+1 =

γ′0F
q+2 = · · · = γ′0F

q+p = 0. Since LCO(q) implies codependence of order q + 1 in ∆xt, it

follows that B′βF
q+2 = B′βF

q+3 = · · · = B′βF
q+p = 0. The structure of identity and zero

matrices in blocks 2 to p−1 assures that the first block of F q+2 is the second block in F q+3, the

third block in F q+4 and so forth so that the first block of F q+2 is the last block in F q+p. Define

for processes with p ≥ 3, γβ,3 = (0 : 01×n : β′ : 01×n(p−3))
′, γβ,4 = (0 : 01×2n : β′ : 01×n(p−4))

′,

. . . , γβ,p = (0 : 01×(p−2)n : β′)′. In line with the foregoing, we obtain γ′β,3F
q+3 = γ′β,3F

q+4 =

· · · = γ′β,3F
q+p = γ′β,4F

q+4 = γ′β,4F
q+5 = · · · = γ′β,4F

q+p = · · · = γ′β,pF
q+p = 0.

Since γ0, Bβ , γβ,3, γβ,4, . . . , γβ,p are linearly independent as a system and rk(F i) ≤ rk(F )

for i ∈ N by Lütkepohl (1996, Section 3.7), rk(F q+i) < rk(F q+i−1) for i = 1, 2, . . . , p. Oth-

erwise, the codependence order would be larger than q. Moreover, note the rule rk(F i) =

rk(F i+1) for some i ∈ N⇒ rk(F i) = rk(F j) for all j ≥ i, compare Lütkepohl (1996, Section

4.3.1). As a consequence, the ranks of increasing powers of F must have fallen throughout

starting from F to F 2. Because of rk(F q+p) ≥ 0, the maximum order q is obtained if q + p is

equal to the dimension of F . Thus, qmax = n(p− 1) + 1− p = (n− 1)(p− 1) is obtained. This

completes the proof. �

It is easy to see that in case of a general cointegration rank r, the maximum order for a

single codependence vector is given by qmax = n(p − 1) + r − p = (n − 1)p − (n − r) =

(n − 1)(p − 1) + (r − 1). Based on the idea of the proof of Theorem 1, that is related to the

structure of VAR-type companion matrices, we can also derive upper bounds for various other

setups. This refers to codependence in stationary VAR processes as well as to codependence

in the first differences of I(1) variables that follow either VECM processes or non-cointegrated

VARs. The results are summarized in the following lemma.

Lemma 1. (1) Let xt be a n-dimensional stationary VAR(p) process. Then, the maximum code-

23



pendence order with respect to xt is given by qlmax = (n− 1)p in case of a single codependence

vector. (2) Let xt be a n-dimensional vector of I(1) variables that follows a VAR(p) with a

cointegrating rank r, where 0 ≤ r ≤ n − 1. Then, the maximum codependence order with

respect to ∆xt is given by qdmax = (n− 1)(p− 1) + r in case of a single codependence vector.
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