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The spe
trum of intera
ting metalli
 
arbon nanotubes:Ex
hange e�e
ts and universalityLeonhard Mayrhofer and Milena GrifoniTheoretis
he Physik, Universität Regensburg, 93040 Regensburg, GermanyRe
eived: date / Revised version: dateAbstra
t. The low energy spe
trum of �nite size metalli
 single-walled 
arbon nanotubes (SWNTs) isdetermined. Starting from a tight binding model for the pz ele
trons, we derive the low energy Hamiltonian
ontaining all relevant s
attering pro
esses resulting from the Coulomb intera
tion, in
luding the shortranged 
ontributions be
oming relevant for small diameter tubes. In 
ombination with the substru
tureof the underlying honey
omb latti
e the short ranged pro
esses lead to various ex
hange e�e
ts. Usingbosonization the spe
trum is determined. We �nd that the ground state is formed by a spin 1 triplet,if 4n + 2 ele
trons o

upy the SWNT and the bran
h mismat
h is smaller than the ex
hange splitting.Additionally, we 
al
ulate the ex
itation spe
tra for the di�erent 
harge states and �nd the lifting ofspin-
harge separation as well as the formation of a quasi-
ontinuum at higher ex
itation energies.PACS. 73.63.Fg Nanotubes � 71.10.Pm Fermions in redu
ed dimensions � 71.70.Gm Ex
hange intera
tions1 Introdu
tionSingle walled 
arbon nanotubes (SWNTs) have remark-able me
hani
al and ele
troni
 properties. They represent,at low enough energies, an almost ideal realization of anone-dimensional (1D) ele
troni
 system with an additionalorbital degree of freedom. Due to this 1D 
hara
ter theproper in
lusion of the Coulomb intera
tion between theele
trons in a SWNT is mandatory. For metalli
 SWNTsof in�nite length the theoreti
al works [1,2℄ showed that
orrelations between the ele
trons 
an be des
ribed withinthe Luttinger liquid pi
ture. The a

ompanying o

ur-ren
e of power-laws for various transport properties 
ouldindeed be observed experimentally [3,4℄. The e�e
ts of theforward s
attering part of the ele
tron-ele
tron intera
-tions in �nite-size SWNTs were treated by Kane et al. in[5℄ within the bosonization framework. There the dis
reteenergy spe
trum of the 
olle
tive spin and 
harge ex
ita-tions was derived. The bosonization method has re
entlybeen used also to determine the transport properties of�nite size metalli
 SWNT quantum dots [6℄.So far the e�e
t of non-forward s
attering parts of theCoulomb intera
tion has only been dis
ussed for SWNTsof in�nite length by renormalization group te
hniques [1,2℄. In [1℄ deviations from 
onventional Luttinger Liquidbehaviour have been found only for very small tempera-tures T . 0.1 mK provided that the intera
tion is longranged. The work of Odintsov et al. [2℄ additionally tookinto a

ount the situation at half �lling where the for-mation of a Mott insulating state was predi
ted. In theworks treating ele
tron-ele
tron intera
tions in �nite sizeSWNTs within the bosonization formalism, the e�e
t of

non-forward s
attering parts of the Coulomb intera
tionhas been negle
ted. This approximation, whi
h we will 
all�standard� theory in the following, is valid if moderate tolarge diameter tubes (& 1.5 nm) are 
onsidered as in [5,6℄,or if �nite size e�e
ts 
an be negle
ted sin
e the relevantenergies ex
eed the level spa
ing of the SWNT as in theexperiments [3,4℄. Re
ent experiments [7�9℄ however havefound ex
hange e�e
ts in the ground state spe
tra of smalldiameter tubes whi
h 
an not be explained using the �stan-dard� bosonization theory for intera
ting SWNTs. Oreg etal. [10℄ have presented a mean-�eld Hamiltonian for thelow energy spe
trum of SWNTs in
luding an ex
hangeterm favouring the spin alignment of ele
trons in di�er-ent bands. The values for the ex
hange energies observedin the experiments agree well with the mean-�eld predi
-tions. However, the question of a singlet-triplet groundstate is beyond the mean �eld approa
h. Moreover, in
ontrast to the bosonization pro
edure it 
an not predi
tthe strong energy renormalization of the 
harged 
olle
tiveele
tron ex
itations.In this arti
le we go beyond the mean-�eld approa
h.We derive a low-energy Hamiltonian for �nite size metal-li
 SWNTs, whi
h in
ludes all relevant short-ranged in-tera
tion pro
esses. This allows us to identify the mi
ro-s
opi
 me
hanisms that lead to the various ex
hange ef-fe
ts. Using bosonization we determine the spe
trum andeigenstates of the SWNT Hamiltonian essentially exa
tlyaway from half-�lling. An interesting situation arises nearhalf-�lling sin
e there additional pro
esses be
ome rele-vant whi
h 
an not be 
onsidered as small 
ompared tothe dominating forward s
attering terms. Unfortunately
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arbon nanotubeswe have not found a reliable way of diagonalizing theHamiltonian in that situation so far.Con
erning the ground state properties, we �nd underthe 
ondition of degenerate or almost degenerate bands,a spin 1 triplet as ground state if 4n+ 2 ele
trons o

upythe nanotube. This is insofar remarkable as a fundamen-tal theorem worked out by Lieb and Mattis [11℄ statesfor any single-band Hubbard model in 1D with nearest-neighbour hopping that the ground state 
an only havespin 0 or 1/2. However at the end of their arti
le theyexpli
itly pose the question whether ground states withhigher spin 
ould be realized in 1D systems with orbitaldegenera
y, whi
h in the 
ase of SWNTs is present dueto the substru
ture of the underlying honey
omb latti
e.Our �ndings answer this question with yes, hen
e proo�ngthat the theorem by Lieb and Mattis 
an not be general-ized to multi-band systems. Moreover it is interesting tonoti
e that all of the pro
esses favouring higher spin statesin SWNTs involve non-forward s
attering with respe
t tothe orbital degree of freedom. On the experimental sidean ex
hange splitting in the low energy spe
trum of the
4n+ 2 
harge state has indeed been observed [7�9℄. How-ever, all the experiments demonstrating ex
hange splittingwere 
arried out for SWNTs with a large band mismat
hsu
h that the ground states are supposed to be spin 0 sin-glets. Espe
ially Moriyama et al. have proven that this isthe 
ase in their experiments [9℄ by 
arrying out magneti
�eld measurements. Thus the threefold degenerate spin 1ground state has not been observed yet, sin
e its o

ur-ren
e requires a band mismat
h that is small 
omparedto the ex
hange energy. Additionally to the ground stateproperties of metalli
 SWNTs we have also determinedthe ex
itation spe
tra. We �nd that the huge degenera
iesas obtained by only retaining the forward s
attering pro-
esses are partly lifted and the spe
trum be
omes moreand more 
ontinuous when going to higher energies. Fi-nally this leads to a lifting of the spin 
harge separationpredi
ted by the �standard� theory.The outline of this arti
le is the following. We start inSe
tion 2.1 by brie�y reviewing the low energy physi
s ofnonintera
ting ele
trons in �nite size metalli
 SWNTs. In-
luding the Coulomb intera
tion we derive the e�e
tivelyone-dimensional Hamiltonian for the low energy regimein Se
tion 2.2. The subsequent examination of the e�e
-tive 1D intera
tion potential in Se
tion 2.2.1 allows us tosort out the irrelevant intera
tion pro
esses. The remain-ing pro
esses are either of density-density or non-density-density form. The former ones we diagonalize togetherwith the kineti
 part of the Hamiltonian by bosoniza-tion in 3.1. Using the obtained eigenstates as basis we
al
ulate the 
orresponding matrix elements for the non-density-density part of the intera
tion with the help ofthe bosonization identity of the ele
tron operators, Se
-tion 3.2. In Se
tion 4 we 
al
ulate the ground state andex
itation spe
tra by diagonalizing the Hamiltonian in-
luding the non-density-density pro
esses in a trun
atedbasis and dis
uss the results.For the hurried reader we propose to skip the morete
hni
al se
tions and, after reading Se
tion 2, to go di-

Fig. 1. The graphene latti
e with its sublatti
e stru
ture.re
tly to Se
tions 4.1 and 4.2 where the results of this workare presented for the low energy and low to intermediateenergy regions, respe
tively.2 Low energy Hamiltonian of metalli
 �nitesize SWNTsAs shown in [12℄, 
orrelation e�e
ts in metalli
 SWNTs areuniversal at low energies, i. e. they do not depend on the
hirality of the 
onsidered tube. Therefore we 
an, withoutloss of generality, fo
us on arm
hair nanotubes from nowon. In this se
tion we will give a short summary of the ele
-troni
 stru
ture of nonintera
ting �nite size arm
hair nan-otubes in the low energy regime following our earlier work[6℄. On this basis we are going to in
lude the Coulomb in-tera
tion between the ele
trons, leading to an e�e
tive 1DHamiltonian. The subsequent examination of the e�e
tive1D intera
tion potential will determine all the relevants
attering pro
esses, whi
h are either of density-densityor non-density-density form.2.1 The nonintera
ting SystemBefore 
onsidering the e�e
t of the ele
tron-ele
tron inter-a
tions, let us re
all the most important fa
ts about non-intera
ting ele
trons in �nite size arm
hair SWNTs. Sin
eSWNTs 
an be 
onsidered as graphene sheets rolled up to
ylinders, the bandstru
ture of SWNTs is easily derivedfrom the one of the pz ele
trons in the graphene honey-
omb latti
e, see e.g. [13℄. Two 
arbon atoms p = ± o

upythe unit 
ell of graphene, 
f. Fig. 1, leading to a valen
eand a 
ondu
tion band tou
hing at the two Fermi points
F = ±K0êx. Quantization around the 
ir
umferen
e of aSWNT restri
ts the set of allowed wave ve
tors, leading tothe formation of subbands. For metalli
 SWNTs, only the
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arbon nanotubes 3gapless subbands with linear dispersion, tou
hing at theFermi points, are relevant at low enough energies. Impos-ing open boundary 
onditions along the tube length L, theeigenfun
tions of the nonintera
ting Hamiltonian H0 arestanding waves ϕrκ(r) where the o

urren
e of the bran
hor pseudo spin index r = ± is a 
onsequen
e of the doubleo

upan
y of the graphene unit 
ell. Furthermore κ mea-sures the wave number relative to the Fermi wave number
K0 and is subje
t to the quantization 
ondition

κ =
π

L
(nκ +∆), nκ ∈ Z, |∆| ≤ 1/2. (1)The parameter∆ has to be introdu
ed if there is no integer

n with K0 = πn/L, where L is the tube length, and isresponsible for a possible energy mismat
h ε∆ betweenthe r = + and r = − ele
trons. In general ∆ dependsalso on the type of the 
onsidered SWNT [14℄. Expli
itly,
ϕrκ(r) 
an be de
omposed into 
ontributions from the twosublatti
es p = ±,

ϕrκ(r) =
1√
2

∑

p=±

fpr

(

eiκxϕpK0(r) − e−iκxϕp−K0(r)
)

.(2)The 
oe�
ients fpr are given by
fpr =

{

1/
√

2, p = +
−r/

√
2, p = − , (3)and the fun
tions ϕpF des
ribe fast os
illating Blo
h waveson sublatti
e p at the Fermipoint F ,

ϕpF (r) =
1√
NL

∑

R

eiFRxχ(r − R − τ p), (4)where NL is the total number of latti
e sites and χ(r −
R − τ p) is the pz orbital lo
alized on site R of sublatti
e
p, see Fig. 1.In Fig. 2 we show the linear dispersion relation for thestanding waves ϕrκ. The slopes of the two bran
hes aregiven by r~vF , with the Fermi velo
ity vF ≈ 8.1 · 105m/s.In
luding the spin degree of freedom, the Hamiltonian ofthe nonintera
ting system H0 therefore reads

H0 = ~vF

∑

rσ

r
∑

κ

κc†rσκcrσκ, (5)where crσκ annihilates an ele
tron in the state|ϕrκ〉 |σ〉.Thus the level spa
ing of the nonintera
ting system isgiven by
ε0 = ~vF

π

L
. (6)In the next se
tion we are going to express the intera
-tion part of the Hamiltonian in terms of the 3D ele
tronoperators, whi
h expressed in terms of the wave fun
tions

ϕrκ(r) read
Ψ(r) =

∑

σ

∑

rκ

ϕrκ(r)crσκ =:
∑

σ

Ψσ(r).

Fig. 2. The energy spe
trum of a nonintera
ting metalli
SWNT with the two bran
hes r = ±. The level spa
ing isdenoted ε0 and ε∆ is the energy mismat
h between r = + and
r = −.By de�ning the slowly varying 1D ele
tron operators,

ψrFσ(x) :=
1√
2L

∑

κ

eisgn(F )κxcrσκ,we obtain with (2),
Ψσ(r) =

√
L

∑

rF

sgn(F )ψrFσ(x)
∑

p

fprϕpF (r). (7)2.2 The intera
tion HamiltonianIn this se
tion we examine the intera
tion part of theHamiltonian. After introdu
ing an e�e
tive 1D intera
tionpotential, we dis
uss whi
h of the s
attering pro
esses areof importan
e. We start with the general expression forthe Coulomb intera
tion,
V =

1

2

∑

σσ′

∫

d3r

∫

d3r′Ψ †
σ(r)Ψ †

σ′(r
′)U(r−r

′)Ψσ′ (r′)Ψσ(r),where U(r − r
′) is the Coulomb potential. For the a
tual
al
ulations we model U(r − r

′) by the so 
alled Ohnopotential whi
h interpolates between U0, the intera
tionenergy between two pz ele
trons in the same orbital for
r = r

′ and e2

4πǫ0ǫ|r−r ′| for large values of |r − r
′| . Mea-suring distan
es in units of Å and energy in eV, it is givenby [15℄

U(r − r
′) = U0/

√

1 + (U0ǫ |r − r ′| /14.397)
2
eV. (8)A reasonable 
hoi
e is U0 = 15 eV [16℄. The diele
tri

onstant is given by ǫ ≈ 1.4 − 2.4 [1℄. Reexpressing the3D ele
tron operators Ψσ(r) in terms of the 1D operators

ψrFσ(x), 
f. equation (7), and integrating over the 
oor-dinates perpendi
ular to the tube axis, we obtain,
V =

1

2

∑

σσ′

∑

{[r],[F ]}

sgn(F1F2F3F4)

∫

dx

∫

dx′U[r][F ](x, x
′)

× ψ†
r1F1σ(x)ψ†

r2F2σ′(x
′)ψr3F3σ′ (x′)ψr4F4σ(x), (9)
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arbon nanotubeswhere ∑

{[r],[F ]} denotes the sum over all quadruples [r] =

(r1, r2, r3, r4) and [F ] = (F1, F2, F3, F4). Under the as-sumption, justi�ed by the lo
alized 
hara
ter of the pzorbitals, that the sublatti
e wave fun
tions ϕpF (r) and
ϕ−pF (r) do not overlap, i.e., ϕpF (r)ϕ−pF (r) ≡ 0, the ef-fe
tive 1D Coulomb potential U[r][F ](x, x

′) is given by,
U[r][F ](x, x

′) = L2

∫

d2r⊥

∫

d2r′⊥
∑

p,p′

fpr1fp′r2fp′r3fpr4

× ϕ∗
pF1

(r)ϕ∗
p′F2

(r′)ϕp′F3(r
′)ϕpF4(r)U(r − r

′). (10)Using relation (3) for the 
oe�
ients fpr and performingthe sum over p, p′, we 
an separate U[r][F ] into a part de-s
ribing the intera
tion between ele
trons living on thesame (intra) and on di�erent (inter) sublatti
es,
U[r][F ](x, x

′) =
1

4

[

U intra
[F ] (x, x′)(1 + r1r2r3r4)

+ U inter
[F ] (x, x′)(r2r3 + r1r4)

]

, (11)where
U

intra/inter
[F ] (x, x′) = L2

∫ ∫

d2r⊥d
2r′⊥

× ϕ∗
pF1

(r)ϕ∗
±pF2

(r′)ϕ±pF3 (r
′)ϕpF4(r)U(r − r

′). (12)Note that the 3D extention of the 
onsidered SWNT entersthe e�e
tive 1D intera
tion potential via equation (12). InAppendix A we show how we a
tually determine the valuesfor the potentials U intra/inter
[F ] (x, x′).2.2.1 The relevant s
attering pro
essesNot all of the terms in (9) 
ontribute to the intera
tionbe
ause the 
orresponding potential U[r][F ] vanishes or hasa very small amplitude. In order to pi
k out the relevantterms, it is 
onvenient to introdu
e the notion of forward(f)-, ba
k (b)- and Umklapp (u)- s
attering with respe
tto an arbitrary index quadruple [I] asso
iated to the ele
-tron operators in (9). Denoting the s
attering type by

SI we write [I]SI=f± for [I,±I,±I, I]. Furthermore weuse [I]SI=b for [I,−I, I,−I] and [I]SI=u is equivalent to
[I, I,−I,−I], 
f. Fig. 3. Keeping only the relevant terms,the intera
tion part of the Hamiltonian a
quires the form,

V =
∑

Sr=f,b,u

∑

SF =r,b

∑

Sσ=f

VSrSF Sσ , (13)where
VSrSF Sσ :=

1

2

∑

{[r]Sr ,[F ]SF
,[σ]Sσ}

∫ ∫

dx dx′U[r][F ](x, x
′)

× ψ†
r1F1σ(x)ψ†

r2F2σ′(x
′)ψr3F3σ′ (x′)ψr4F4σ(x), (14)as we are going to demonstrate in the following.

Fig. 3. The relevant s
attering pro
esses. For-ward/ba
k/Umklapp s
attering are denoted by f±/b/u.The index I represents one of the three degrees of freedom
r, F, σ (bran
h, Fermi point and spin, respe
tively).S
attering of r We start with the possible s
atteringevents related to the pseudo spin r. From (11) we 
animmediately read o� that the intera
tion potential U[r][F ]does not vanish only if r2r3 = r1r4. Thus we �nd thefollowing 
ases for the relevant s
attering types,

i) r1 = r4, r2 = r3 and ii) r1 = −r4, r2 = −r3.Relation i) summarizes all the forward s
attering pro-
esses with respe
t to r and the asso
iated intera
tionpotential is,
U[r]f [F ](x, x

′) =
1

2

[

U intra
[F ] (x, x′) + U inter

[F ] (x, x′)
]

=: U+
[F ](x, x

′). (15)Case ii) in
ludes all Sr = b and Sr = u pro
esses and herethe intera
tion potential is proportional to the di�eren
ebetween U intra and U inter ,
U[r]b/u[F ](x, x

′) =
1

2

[

U intra
[F ] (x, x′) − U inter

[F ] (x, x′)
]

=: U∆
[F ](x, x

′). (16)S
attering of F The determination of the essential s
at-tering pro
esses with respe
t to F 
an be a
hieved by ex-ploiting the approximate 
onservation of quasi momen-tum. Looking at expression (4) for the wave fun
tions
ϕpF (r), we �nd that the intera
tion potential U[r][F ], 
f.(10), 
ontains phase fa
tors of the form e−i(F1−F4)Rx×
e−i(F2−F3)R

′
x . Although we are 
onsidering a �nite sys-tem, therefore not having perfe
t translational symmetry,after the integration along the tube axis in (9), only termswithout fast os
illations survive 1. The 
orresponding 
on-dition is given by

F1 − F4 + F2 − F3 = 0, (17)1 For a perfe
tly translational invariant 1D system it holds
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arbon nanotubes 5that means only the SF = f and SF = b terms survive.We have expli
itly 
he
ked that due to the dis
rete na-ture of the SWNT latti
e also the SF = u pro
esses havevery small amplitudes and 
an be negle
ted. Note that
ondition (17) leads to sgn(F1F2F3F4) = 1 in (9).S
attering of σ It is 
lear that only Sσ = f pro
essesare allowed, sin
e the Coulomb intera
tion is spin inde-pendent.Altogether this proofs equation (13).Pro
esses 
onserving or not 
onserving the fermioni

on�guration From the dis
ussion in Se
tion 2.1 we al-ready know that we have to distinguish between ele
tronswith di�erent spin σ and pseudo spin r. In the follow-ing we will denote the number of ele
trons of a 
ertainspe
ies by Nrσ and we will refer to the quantity N =
(N+↑, N+↓, N−↑, N−↓) as fermioni
 
on�guration. Not allof the s
attering pro
esses in (13) 
onserve N . In more de-tail, for terms with (Sr, Sσ) = (u, f+), (Sr, Sσ) = (b, f−)and (Sr, Sσ) = (u, f−) N is not a good quantum num-ber as 
an be easily veri�ed by using equation (14). Ingeneral, only pro
esses des
ribed by the N 
onservingterms are sensitive to the total number of ele
trons in thedot. As example we mention the 
harging energy 
ontri-bution proportional to N2

c , Nc :=
∑

rσ Nrσ arising fromthe (Sr, SF , Sσ) = (f, f, f) pro
esses appearing later on.On the other hand for the N non 
onserving terms, onlythe vi
inity of the Fermi surfa
e is of relevan
e.Pro
esses only relevant near half-�lling Away from half-�lling we �nd that terms with
r1F1 + r2F2 − r3F3 − r4F4 6= 0, (18)i.e., the Umklapp s
attering terms with respe
t to theprodu
t rF 2 
an be negle
ted in (9). For the N non 
on-serving terms ful�lling (18) this is a 
onsequen
e of the ap-proximate 
onservation of quasi momentum, arising fromthe slow os
illations of the 1D ele
tron operators in (14)whi
h near the Fermi surfa
e are given by the exponential

e−i[(r1F1Nr1σ1−r4F4Nr4σ4)x+(r2F2Nr2σ2−r3F3Nr3σ3)x′]. After
Z L

0

dx′

Z L

0

dx U(x − x′)eikxeik′x′

=

Z L

0

dx′

Z L−x′

−x′

dy U(y)eikyei(k+k′)x′

= Ũk

Z L

0

dx′ei(k+k′)x′

,where Ũk =
R L−x′

−x′ dyU(y)eiky does not depend on x′ be
ausewe have assumed translational invarian
e. So it is 
lear thatthe double integral vanishes unless k + k′ ≈ 0.2 There are simple rules for determining the s
attering type
SrF if Sr and SF are known. De�ning a produ
t by SrF =
SrSF = SF Sr it holds, Sf+ = S; S2 = f+; f−u = b; f−b = uand ub = f−.

u+d
ε0

u∆
f d

ε0

u∆
b d

ε0

ǫ = 1.4 0.22Å 0.14Å 0.22Å
ǫ = 2.4 0.28Å 0.22Å 0.28ÅTable 1. The dependen
e of the 
oupling 
onstants u+, u∆

fand u∆
b on the tube diameter d and on the diele
tri
 
onstant

ǫ.performing the integrations in (14) this leads approxi-mately to (18). The N 
onserving terms obeying (18),
Vf−bf and Vbf−f+ , whi
h des
ribe not only pro
esses nearthe Fermi level, add a term proportional to the number ofele
trons above half-�lling to the Hamiltonian, thereforejust giving rise to a shift of the 
hemi
al potential.2.2.2 Long ranged vs. short ranged intera
tionsEx
ept of U[r]f [F ]f = U+

[F ]f
, all relevant intera
tion po-tentials U[r][F ] 
an e�e
tively be treated as lo
al inter-a
tions: In the 
ase of U+

[F ]b
this is due to the appear-an
e of phase fa
tors ei2F (Rx−R′

x) in (12), arising fromthe Blo
h waves ϕpF (r), 
f. equation (4), os
illating mu
hfaster than the ele
tron operators ψrσF (x). The potentials
U∆

[F ], being proportional to the di�eren
e of the inter- andintra-latti
e intera
tion potentials, are in general shortranged, sin
e U intra
[F ] (x, x′) and U inter

[F ] (x, x′) only have 
on-siderably di�ering values for |x− x′| . a0 with the nextneighbour distan
e a0 = 0.142 nm of the 
arbon atomsin the SWNT latti
e [1℄. Summarizing, only the pro
esseswith (Sr, SF ) = (f, f) are long ranged. All other terms
an e�e
tively be written as lo
al intera
tions. I.e. for
(Sr, SF ) 6= (f, f) we 
an use the approximation

1

2
U[r]Sr [F ]SF

(x, x′) ≈ LuSr SF δ(x− x′), (19)where we have introdu
ed the 
oupling parameters
uSr SF := 1/(2L2)

∫ ∫

dx dx′U[r]Sr [F ]SF
(x, x′). (20)Using the approximation (19) we obtain from (14) in the
ase (Sr, SF ) 6= (f, f) the following expression for the nonforward s
attering intera
tion terms,

VSrSF Sσ ≈ LuSr SF

∑

{[r]Sr ,[F ]SF
,[σ]f}

×
∫ L

0

dxψ†
r1F1σ(x)ψ†

r2F2σ′(x)ψr3F3σ′(x)ψr4F4σ(x). (21)In the following we use the abbreviations u+ := uf b and
u∆

SF
:= ub SF = uu SF . For details about the 
al
ulation,see Appendix A. We �nd that in general the 
oupling 
on-stants u+ and u∆

SF
s
ale inversely with the total number of
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e sites, i.e., like 1/Ld, where d is the tube diameter.From a physi
al point of view this is due to an in
reas-ing attenuation of the wave fun
tions for a growing systemsize. Therefore the probability of pro
esses mediated by lo-
al intera
tions is proportional to 1/Ld. Be
ause the levelspa
ing of the nonintera
ting system ε0 s
ales like 1/L,
f. (6), the produ
ts u+d/ε0 and u∆
SF
d/ε0 are 
onstants.The 
orresponding numeri
al values for di�erent diele
tri

onstants ǫ, 
f. equation (8), are given in table 1.2.2.3 Density-density vs. non-density-density pro
essesThe intera
tion pro
esses 
an be divided into density-density terms, easily diagonalizable by bosonization [17℄,and non-density-density terms respe
tively. It is 
lear thatthe forward s
attering intera
tion Vf f f is of density-densityform,

Vf f f =
1

2

∑

rr′

∑

FF ′

∑

σσ′

∫ ∫

dx dx′U+
[F ]f

(x, x′)

× ρrFσ(x)ρr′F ′σ′(x′), (22)where the densities ρrFσ(x) are given by
ρrFσ(x) = ψ†

rFσ(x)ψrFσ(x).But sin
e we treat the short ranged intera
tions as lo
al,also Vf+ b f+ ,
Vf+ b f+ =

Lu+
∑

rσF

∫ L

0

dxψ†
rFσ(x)ψ†

r−Fσ(x)ψrFσ(x)ψr−Fσ(x)

= −Lu+
∑

rσF

∫ L

0

dxρrFσ(x)ρr−Fσ(x), (23)and similarly Vb f+/b f+ ,

Vb f+/b f+ =

− Lu∆
f+/b

∑

rσF

∫ L

0

dxρrFσ(x)ρ−r±Fσ(x), (24)are density-density intera
tions. In total the density-densitypart of the intera
tion is given by
Vρρ = Vf f f + Vf+ b f+ + Vb f+ f+ + Vb b f+ . (25)The remaining terms are not of density-density form andare 
olle
ted in the operator Vnρρ. In
luding only the 
on-tributions relevant away from half-�lling, we obtain,

Vnρρ = Vf+ b f− +Vb f+ f− +Vb b f− +Vu f− f +Vu b f . (26)Near half-�lling additionally the pro
esses
Vf− b f , Vb f− f and Vu f+ f− , (27)satisfying 
ondition (18), 
ontribute to Vnρρ. Overall, theSWNT Hamiltonian a
quires the form,
H = H0 + Vρρ + Vnρρ.

3 Expressing the SWNT Hamiltonian in theeigenbasis of H0 + VρρAway from half-�lling, the intera
tion is dominated by
Vf f f . Together with H0 it yields the �standard� theory forintera
ting ele
trons in SWNTs [1,2,5℄. Using bosoniza-tion we will in the next step diagonalize H0 + Vρρ. Sub-sequently we will examine the e�e
t of Vnρρ by 
al
ulat-ing the matrix elements of Vnρρ between the eigenstatesof H0 + Vρρ. The diagonalization of Vnρρ in a trun
atedeigenbasis of H0 + Vρρ, dis
ussed in Se
tion 4 then yieldsto a good approximation the 
orre
t eigenstates and thespe
trum of the total Hamiltonian H .3.1 Diagonalizing H0 + VρρBy introdu
ing operators 
reating/annihilating bosoni
 ex-
itations we 
an easily diagonalize H0 + Vρρ as we showin this se
tion. It turns out that the Fourier 
oe�
ientsof the density operators ρrσF (x) are essentially of bosoni
nature. In detail, we get by Fourier expansion,

ρrFσ(x) =
1

2L

∑

q

eisgn(F )qxρrσq, (28)where q = π
Lnq, nq ∈ Z. Then the operators bσqr de�nedby,

bσqr :=
1

√
nq
ρrσqr , qr := r · q, q > 0 (29)ful�ll the 
anoni
al 
ommutation relations [bσq, b

†
σ′q′ ] =

δσ′σδqq′ as shown e.g. in [17℄. For 
ompleteness we givethe expli
it expression for bσqr , r = ±,
bσqr =

1
√
nq

∑

κ

c†rσκcrσκ+qr , q > 0.The bosonized expression for H0 is well known [6℄,
H0 =

∑

rσ

[

ε0
∑

q>0

|nq| b†σqr
bσqr +

ε0
2
N 2

rσ + r
ε∆

2
Nrσ

]

,(30)Here the �rst term des
ribes 
olle
tive parti
le-hole ex
i-tations, whereas the se
ond term is due to Pauli's prin-
iple and represents the energy 
ost for the shell �lling.The third term a

ounts for a possible energy mismat
hbetween the bands r = ±, given by
ε∆ = sgn(∆)ε0 min(2 |∆| , |2 |∆| − 1|).The operators Nrσ 
ount the number of ele
trons Nrσin bran
h (rσ). Bosonization of Vρρ 
an be a
hieved byinserting the Fourier expansion (28) into expressions (22),(23) and (24), thereby making use of de�nition (29). We
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Vρρ = Vf f f + Vf+ b f+ + Vb f+/b f+ =

1

2

∑

q>0

nq







Wq

[

∑

rσ

(

bσr·q + b†σr·q

)

]2

− u+
∑

rσ

(bσr·qbσr·q + h.c.)

− u∆
f

∑

rσ

(bσr·qbσ−r·q + h.c.)

−u∆
b

∑

rσ

(

bσr·qb
†
σ−r·q + h.c.

)

}

+
1

2

[

EcN 2
c − J

2

∑

rσ

NrσN−rσ − u+
∑

rσ

N 2
rσ

]

, (31)where the 
oe�
ientsWq determine the intera
tion strengthof Vf f f and are given by
Wq =

1

L2

∫

dx

∫

dx′U+
[F ]f

(x, x′) cos(qx) cos(qx′).The last line of (31) des
ribes the 
ontribution of Vρρ tothe system energy depending on the number of ele
tronsin the single bran
hes (rσ). Here Ec = W0 is the SWNT
harging energy, Nc =
∑

rσ Nrσ 
ounts the total num-ber of ele
trons. Spin alignment of ele
trons with di�erentbran
h index r is favoured by the term proportional to
J/2 := u∆

f +u∆
b . Finally the term 
oupling with u+ 
oun-tera
ts the energy 
ost for the shell �lling in equation (30).Sin
e the bosoni
 operators appear quadrati
ally in(30) and (31) we 
an diagonalize H0 +Vρρ by introdu
ingnew bosoni
 operators ajδq and a†jδq via the Bogoliubovtransformation [18℄ given below by equation (33). We ob-tain

H0 + Vρρ =
∑

jδ

∑

q>0

εjδqa
†
jδqajδq +

1

2
EcN 2

c

+
1

2

∑

rσ

Nrσ

[

−J
2
N−rσ +

(

ε0 − u+
)

Nrσ + rε∆

]

. (32)The �rst term des
ribes the bosoni
 ex
itations of the sys-tem, 
reated/annihilated by the operators a†jδq / ajδq . Thefour 
hannels jδ = c+, c−, s+, s− are asso
iated to total
(+) and relative (−) (with respe
t to the index r) spin
(s) and 
harge (c) ex
itations. The de
oupling of the fourmodes jδ, the so 
alled spin-
harge separation, will bepartly broken by Vnρρ. The ex
itation energies εjδq andthe relation between the new bosoni
 operators ajδq andthe old operators bσqr are determined by the Bogoliubovtransformation. In detail, we �nd with ε0q := ε0nq,

εc+q = ε0q

√

1 + 8Wq/ε0,

εs/c−q = ε0q(1 − u∆
b /ε0)

and
εs+q = ε0q(1 + u∆

b /ε0).The energies of the c+ 
hannel are largely enhan
ed 
om-pared to the other ex
itations be
ause of the dominating
Vf f f 
ontribution. For small q the ratio gq := ε0q/εc+qis approximately 0.2, whereas for large q it tends to 1 [6℄.Small 
orre
tions due to the 
oupling 
onstants u∆

f and
u+ have been negle
ted. For the transformation from theold bosoni
 operators bσqr to the new ones ajδq we �nd

bσqr =
∑

jδ

Λjδ
rσ

(

Bjδqajδq +Djδqa
†
jδq

)

, q > 0 (33)where
Λjδ

rσ =
1

2







1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1






,

jδ = c+, c−, s+, s−
rσ = + ↑,+ ↓,− ↑,− ↓ .(34)The transformation 
oe�
ients Bjδq and Djδq in the 
aseof the three modes jδ = c−, s+, s− are given by

Bjδq = 1 and Djδq = 0 (35)and for jδ = c+ we obtain
Bjδq =

1

2

(

√
gq +

1
√
gq

)

, Djδq =
1

2

(

√
gq −

1
√
gq

)

,(36)with gq =
ε0q

εc+q
. Small 
orre
tions to (35) and (36) re-sulting from the terms Vf+ b f+ and Vb f+/b f+ have beennegle
ted.The physi
al meaning of the fermioni
 
ontributions in(32), depending on the number 
ounting operators, havealready been dis
ussed subsequently to equations (30) and(31) respe
tively.An eigenbasis of H0 + Vρρ is formed by the states

|N ,m〉 :=
∏

jδq

(

a†jδq

)mjδq

√

mjδq!
|N , 0〉 , (37)where |N , 0〉 has no bosoni
 ex
itation. Remember thatthe fermioni
 
on�guration N = (N−↑, N−↓, N+↑, N+↓)de�nes the number of ele
trons in ea
h of the bran
hes

(rσ). In the following we will use the states from (37) asbasis to examine the e�e
t of Vnρρ. For this purpose weevaluate in the next se
tion the 
orresponding matrix ele-ments using the bosonization identity for the 1D ele
tronoperators.3.2 The matrix elements 〈Nm |Vnρρ|N ′
m

′〉Generally, due to Vnρρ, the quantities N and m are not
onserved. Espe
ially, the terms with Sr = b, u in (26)mix states with di�erent N . However, denoting
Ns :=

∑

rσ

sgn(σ)Nrσ,
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N−

c :=
∑

rσ

sgn(r)Nrσand
N−

s :=
∑

rσ

sgn(rσ)Nrσwe �nd that (Nc, Ns, N
−
c mod 4 , N−

s mod 4) is 
onserved,i.e., states di�ering in those quantities do not mix, su
hthat the 
orresponding matrix elements of Vnρρ are zero.Note that in 
ontrast to the real spin Sz = 1
2Ns, thepseudo spin S̃z = 1

2N
−
c is not 
onserved in general.We already know that all the pro
esses VSrSF Sσ 
on-tained in Vnρρ are e�e
tively lo
al intera
tions, i.e., of theform (21). Hen
e, in order to 
al
ulate the 
orrespondingmatrix elements 〈Nm |VSrSF Sσ |N ′

m
′〉 we �rst derive anexpression for

M[r][F ][σ](N ,m,N ′,m′, x) :=
〈

Nm

∣

∣

∣ψ
†
r1σF1

(x)ψ†
r2σ′F2

(x)ψr3σ′F3(x)ψr4σF4(x)
∣

∣

∣ N
′
m

′
〉

.(38)For this purpose we express the operatorsψrσF (x) in termsof the bosoni
 operators bσr·q and b†σr·q, q > 0, using thebosonization identity [17℄,
ψrσF (x) = ηrσKrσF (x)eiφ†

rσF (x)eiφrσF (x). (39)The operator ηrσ is the so 
alled Klein fa
tor, whi
h an-nihilates an ele
tron in the (rσ) bran
h and thereby takes
are of the right sign as required from the fermioni
 anti-
ommutation relations, in detail,
ηrσ |N ,m〉 = (−1)

P(rσ)−1
l=1 Nl |N − êrσ,m〉 , (40)where we use the 
onvention l = + ↑,+ ↓,− ↑,− ↓=

1, 2, 3, 4. KrσF (x) yields a phase fa
tor depending on thenumber of ele
trons in (rσ),

KrσF (x) =
1√
2L
ei π

L sgn(F )(r·Nrσ+∆)x. (41)Finally, we have the boson �elds iφrσF (x),
iφrσF (x) =

∑

q>0

1
√
nq
eisgn(rF )qxbσr·q. (42)In Appendix B we are going to demonstrate with the helpof the bosonization identity (39), that the matrix elementsfrom equation (38) fa
torize into a fermioni
 and a bosoni
part,

M[r][F ][σ](N ,m,N ′,m′, x) =

M[r][F ][σ](N ,N ′, x)M[r][F ][σ](m,m′, x),where the fermioni
 part is given by
M[l](N ,N ′, x) =

〈N |K†
l1

(x)η†l1K
†
l2

(x)η†l2Kl3(x)ηl3Kl4(x)ηl4 |N ′〉 (43)

and the bosoni
 part reads
M[l](m,m′, x) = 〈m| e−iφ†

l1
(x)e−iφl1

(x)e−iφ†
l2

(x)e−iφl2
(x)

eiφ†
l3

(x)eiφl3
(x)eiφ†

l4
(x)eiφl4

(x) |m′〉 . (44)In order to improve readability we have repla
ed the in-di
es rFσ by a single index l. As we demonstrate in Ap-pendix B, the expli
it evaluation yields
M[r][F ][σ](N ,N ′, x) =

1

(2L)2
δN ,N ′+E[r][σ]

TNN ′[r][σ]QNN ′[r][F ](x), (45)where E[r][σ] := er1σ + er2σ′ − er3σ′ − er4σ. The Kleinfa
tors in (39) lead to the sign fa
tor TNN ′[r][σ] whi
h iseither +1 or −1 and QNN ′[r][F ](x) yields a phase depend-ing on N . Expli
it expressions 
an be found in AppendixB, equations (65) to (68).For the bosoni
 part ofM[r][F ][σ](N ,m,N ′,m′, x) the
al
ulation in Appendix B leads to
M[r][F ][σ](m,m′, x) = C[r][F ][σ](x)

×ASrF (x)
∏

jδq

F (λ̃jδq
[r][F ][σ](x),mjδq ,m

′
jδq). (46)Here the fun
tion F (λ,m,m′) stems from the evaluationof matrix elements of the form 〈

m
∣

∣

∣e−λ∗a†

eλa
∣

∣

∣m′
〉, wherethe bosoni
 ex
itations |m〉 are 
reated by the operators

a†, i.e., |m〉 =
(

a†
)m

/
√
m! |0〉 . For the expli
it form of

F (λ,m,m′), and the 
oe�
ients λ̃jδq
[r][F ][σ](x), see AppendixB. The fun
tion C[r][F ][σ](x) is 
onveniently 
onsidered in
ombination with QNN ′[r][F ](x), namely the produ
t

K̃N [r][F ][σ](x) := QNN ′[r][F ](x)C[r][F ][σ](x)
an be reexpressed as
K̃N [r][F ][σ](x) = Q̃N [r][F ](x)C̃SrSF Sσ(x), (47)where

Q̃N [r][F ](x) =

exp



−i π
L





˜∑4

j=1
sgn(rjFj)Nrjσj +

4
∑

j=3

sgn(rjFj)



 x



Here ˜∑4

l=1al denotes the sum a1 + a2 − a3 − a4. For
C̃SrSF Sσ (x) we obtain
C̃f+bf−(x) = −C̃f−bf (x) = −C̃bf−f+(x) =

1/4 sin2
(π

L
x
)

, (48)
C̃ubf+(x) = −C̃uf−f+(x) = 4 sin2

(π

L
x
) (49)and C̃SrSF Sσ(x) ≡ 1 for the remaining pro
esses of Vnρρ.
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Fig. 4. ASrF =u(x) as a fun
tion of x for a (6,6)-SWNT. Notethe large magnitude of ASrF =u(x) 
ompared to ASrF 6=u(x) ≡ 1for the pro
esses only relevant away from half-�lling!The fun
tion ASrF (x) is di�ering from 1 only for termswith SrF = u, i.e., for the terms ful�lling 
ondition (18)and whi
h hen
e are relevant only near half-�lling. Thereason for this is that only for the SrF = u terms the 
o-e�
ients λ̃c+q
[r][F ][σ](x) related to the 
harged c+mode arenot vanishing. Hen
e Au(x) depends strongly on the en-ergy dispersion of the c+ mode and therefore on the for-ward s
attering part of the intera
tion, in detail

Au(x) = exp

[

2
∑

q>0

1

nq

(

1 − ε0q

εc+q

)

sin2(qx)

]

.Sin
e for the repulsive Coulomb intera
tion ε0q/εc+q < 1holds, we �nd ASrF =u(x) ≥ 1. In Fig. 4 we showASrF =u(x)for a (6,6) SWNT. It is the large magnitude of Au(x),that poses problems for properly treating the situation athalf-�lling. Moreover we 
an expe
t that even for largediameter tubes, intera
tion pro
esses with SrF = u 
annot be negle
ted near half-�lling. Altogether, we get withequations (21), (45) and (46) for the single 
ontributionsto Vnρρ,
〈Nm |VSrSF Sσ |N ′

m
′〉 =

× 1

4L
uSr SF

∑

{[r]Sr ,[F ]SF
,[σ]Sσ}

δN ,N ′+E[r]σσ′TNSrSσ

×
∫

dx K̃N [r][F ](x)ASrF (x)
∏

jδq

F (λ̃jδq
[r][F ][σ](x),mjδq ,m

′
jδq).(50)The evaluation of (50) 
auses no problems ex
ept for the

N 
onserving pro
esses with (Sr, SF , Sσ) = (f+, b, f−),

(f−, b, f), (b, f−, f+), sin
e then we �nd K̃N [r][F ][σ] ∼
1/4 sin2( π

Lx), 
f. equations (47) and (48), 
ausing the in-tegral in (50) to diverge for ∑

jδq

∣

∣

∣mjδq −m′
jδq

∣

∣

∣ ≤ 1, su
hthat the evaluation of the 
orresponding matrix elementsneeds spe
ial 
are in this 
ase. The origin of this divergen
elies in the fa
t, that if no bosoni
 ex
itations are present,the N 
onserving pro
esses depend on the total number ofele
trons in the single bran
hes (
ompare to the fermioni

ontributions to H0 + Vρρ in (32)). Sin
e the bosoniza-tion approa
h requires the assumption of an in�nitely deepFermi sea [17℄ this leads, without the 
orre
t regulariza-tion, ne
essarily to divergen
ies. In Appendix C we show

Fig. 5. The lowest lying eigenstates of H0 + Vρρ withoutbosoni
 ex
itations for the 
harge states Nc = 4n, Nc = 4n+1and Nc = 4n+3. On the right side the fermioni
 
on�gurationsare given. We use the 
onvention N = (N+↑, N+↓, N−↑, N−↓).exemplarily the proper 
al
ulation for 〈

Nm
∣

∣Vf+ b f−

∣

∣ Nm
′
〉.We here give the regularized result for m = m

′, sin
e itis of spe
ial importan
e for the dis
ussion of the groundstate spe
tra away from half-�lling,
〈

Nm
∣

∣Vf+ b f−

∣

∣ Nm
〉

= u+
∑

r

min(Nr↑, Nr↓)

+
1

4L
u+

∑

{[r]f+ ,[F ]b,[σ]f−}

∫

dxK̃N [r][F ](x)

×





∏

jδq

F (λjδq
[r][F ][σ](x),mjδq ,mjδq) − 1



 . (51)4 The SWNT spe
trumIn Se
tion 3.1 we wave diagonalized H0 + Vρρ and in Se
-tion 3.2 we have determined the matrix elements of Vnρρin the eigenbasis of H0 + Vρρ. Away from half-�lling themagnitude of Vnρρ is only small 
ompared to H0 + Vρρand therefore we 
an easily analyze the e�e
t of the non-density-density intera
tion Vnρρ on the SWNT spe
trumby representing the total Hamiltonian H0 + Vρρ + Vnρρ ina trun
ated eigenbasis of H0 + Vρρ.4.1 The low energy spe
trum away from half-�llingWe start with the examination of the ground and low en-ergy states. As basis we use the lowest lying eigenstates of
H0 +Vρρ without bosoni
 ex
itations with a given numberof ele
trons Nc.4.1.1 Nc = 4n, Nc = 4n+ 1, Nc = 4n+ 3First we 
onsider the 
harge states Nc = 4n, Nc = 4n+ 1and Nc = 4n + 3. In that 
ase the lowest lying eigen-states of H0 + Vρρ, shown in Fig. 5, whi
h are of the form
|N , 0〉 and therefore uniquely 
hara
terized by N , do notmix via Vnρρ. That means that the only 
orre
tion from
Vnρρ to H0 + Vρρ stems from the N 
onserving pro
ess
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Vf+ b f− . For states without bosoni
 ex
itations, equation(51) yields, be
ause of F (λ, 0, 0) = 1,

〈N , 0 |Vnρρ|N , 0〉 =
〈

N , 0
∣

∣Vf+ b f−

∣

∣ N , 0
〉

=

u+
∑

r

min(Nr↑, Nr↓). (52)Hen
e here Vnρρ yields an energy penalty for o

upyingthe same bran
h r. This e�e
t has already been found inthe mean�eld theory of Oreg et al. [10℄. The parameter
δU there 
orresponds to our 
onstant u+. The energiesof the lowest lying states for Nc = 4n, Nc = 4n + 1 and
Nc = 4n + 3 only depend on N . In detail we �nd with(32) and (52),
EN =

1

2
EcN 2

c + u+
∑

r

min(Nr↑, Nr↓)

+
1

2

∑

rσ

Nrσ

[

−J
2
N−rσ +

(

ε0 − u+
)

Nrσ + rε∆

]

. (53)From (53) it follows that for the states depi
ted in Fig.5 the intera
tion dependent part of EN is the same forall fermioni
 
on�gurations N 
orresponding to a given
harge state Nc. Hen
e the intera
tion leads merely to a
ommon shift of the lowest lying energy levels for �xed
Nc.4.1.2 Nc = 4n+ 2Of spe
ial interest is the ground state stru
ture of the
Nc = 4n + 2 
harge state, sin
e here the lowest lying sixeigenstates of H0 + Vρρ without bosoni
 ex
itations, de-noted |N , 0〉 with N = (n+1, n+1, n, n)+permutations,mix via Vnρρ, leading to a S = 1 triplet state and to threenondegenerate states with spin 0. For ε∆ ≈ 0 (the mean-ing of ≈ 0 will be
ome 
lear in the following) the tripletis the ground state. In the following we are going to denote
|(n+ 1, n+ 1, n, n), 0〉 by |↑↓,−〉, |(n+ 1, n, n, n+ 1), 0〉 by
|↑, ↓〉 and analogously for the remaining four states. Ignor-ing intera
tions, the six 
onsidered states are degeneratefor ε∆ = 0. As we 
an 
on
lude from (32) the degenera
yof the six 
onsidered states is already lifted if in
ludingonly the density-density intera
tion Vρρ, sin
e then theenergy of the spin 1 states |↑, ↑〉 and |↓, ↓〉 is lowered by

J/2 := u∆
f + u∆

b (54)relatively to the other ground states. Let us now 
on-sider the e�e
ts of Vnρρ. The diagonal matrix elements
〈N , 0 |Vnρρ|N , 0〉 are again determined by equation (52),leading to a relative energy penalty for the states |↑↓,−〉and |−, ↑↓〉. Mixing o

urs between the states |↑, ↓〉 and
|↓, ↑〉 via Vb f+ f−and Vb b f− and between |↑↓,−〉 and |−, ↑↓〉via Vu f− f− and Vu b f− . With equation (50) we �nd

〈↑, ↓ |Vnρρ| ↓, ↑〉 = −J
2

= −〈↑↓,− |Vnρρ| −, ↑↓〉 .

In total, the SWNT Hamiltonian H = H0 + Vρρ + Vnρρrestri
ted to the basis spanned by the six states |↑, ↑〉,
|↓, ↓〉, |↑, ↓〉, |↓, ↑〉, |↑↓,−〉 and |−, ↑↓〉 is represented bythe matrix,
H = E0,4n+2+

















−J
2 0

−J
2

0 −J
2

−J
2 0

u+ − ε∆
J
2

0 J
2 u+ + ε∆

















, (55)whereE0,4n+2 = 1
2EcN

2
c +(2n2+2n+1) (ε0 − u+)−J(n2+

n) + 2u+n. Diagonalizing the matrix in (55), we �nd thatits eigenstates are given by the spin 1 triplet
|↑, ↑〉 , |↑, ↑〉 , 1/

√
2 (|↑, ↓〉 + |↓, ↑〉) ,the spin 0 singlet

1/
√

2 (|↑, ↓〉 − |↓, ↑〉)and the two states
1

√

c21/2 + 1

(

c1/2 |↑↓,−〉± |−, ↑↓〉
)

,where the 
oe�
ients c1/2 are given by
c1/2 =

√

ε2∆ + (J/2)2 ∓ ε∆

J/2
.Relatively to E0,4n+2, the 
orresponding eigenenergies are

−J/2 for the triplet states, J/2 for the singlet state and
u+ ±

√

ε2∆ + (J/2)2 for the remaining two states. Thusunder the 
ondition
J/2 >

√

ε2∆ + (J/2)2 − u+,i.e., for a small band mismat
h ε∆ . J/2 the ground stateis degenerate and formed by the spin 1 triplet, otherwiseby 1√
c2
2+1

(c2 |↑↓,−〉+ |−, ↑↓〉). The ground state spe
trafor the two 
ases ε∆ = 0 and ε∆ ≫ J/2 are shown inFig. 6 for a (6,6) arm
hair SWNT (
orresponding to adiameter of 0.8 nm). Assuming a diele
tri
 
onstant of
ε = 1.4 [1℄, the 
al
ulation of the 
oupling parametersa

ording to Appendix A yields values of J = 2(u∆

f +

u∆
b ) = 0.09ε0 and u+ ≈ 0.03ε0 whi
h agree well with theexperiments [7,9℄, where nanotubes with ε∆ ≫ J/2 were
onsidered. To our knowledge, experiments in the regime
ε∆ . J/2 demonstrating ex
hange e�e
ts have not been
arried out so far, su
h that a validation of our predi
tionsfor this 
ase, namely the existen
e of the ground state spin
1 triplet and the mixing of the states |↑↓,−〉 and |−, ↑↓〉 isstill missing. The latter e�e
t 
ould be of relevan
e for theunderstanding of the so 
alled singlet-triplet Kondo e�e
t[19℄ in SWNTs.
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Fig. 6. Low energy spe
trum of a (6, 6) SWNT for the 
hargestate Nc = 4n + 2. (a) In the 
ase ε∆ = 0 the ground state isformed by the spin 1 triplet (→ ⊕) and the states |↑↓,−〉 and
|−, ↑↓〉 mix (→© states). (b) For ε∆ ≫ J/2 the ground stateis given by the spin 0 state |↑↓,−〉.The spin 0 singlet state 1/

√
2 (|↑, ↓〉 − |↓, ↑〉) is indi
ated by ⊗.The 
oupling parameters are J = 0.09ε0 and u+ ≈ 0.03ε0.It should be stressed that all ex
hange e�e
ts, lead-ing amongst others to the spin 1 triplet as ground state,result from Sr 6= f intera
tion pro
esses. In the work ofMattis and Lieb [11℄ however, there is no su
h additionalpseudo spin degree of freedom. Hen
e we suspe
t that thisis the reason why their theorem 
an not be applied in oursituation.4.2 Ex
itation spe
tra away from half-�llingUntil now our dis
ussion of the energy spe
tra was basedon states |N , 0〉 without bosoni
 ex
itations and so farthe e�e
t of Vnρρ on the spe
trum 
ould have even beentreated without using bosonization. But for the determi-nation of the ex
itation spe
trum of H we do need thegeneral expression for the matrix elements of Vnρρ betweenthe eigenstates of H0 + Vρρ as given by (50). For the a
-tual 
al
ulation we trun
ate the eigenbasis of H0 + Vρρfor a �xed 
harge state Nc at a 
ertain ex
itation energyand represent H in this shortened basis. After the diag-onalization we �nd to a good approximation the 
orre
teigenstates and eigenenergies of H. For the results shownin Figs. 7 to 10 we have 
he
ked that 
onvergen
e has beenrea
hed, i.e., the extention of the 
onsidered basis statesdoes not lead to a signi�
ant 
hange of the spe
trum.Exemplarily we present the results for the 
harge state

N = 4n. Similar ex
itation spe
tra are found for the other
harge states. In Fig. 7 we show for 
omparison and in or-der to demonstrate the e�e
t of the non forward s
atteringpro
esses the �ndings for the �standard� theory, i.e., the
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fffFig. 7. The ex
itation spe
trum for a (6,6) SWNT o

upied by
Nc = 4n ele
trons. In grey we show the spe
trum as obtainedby diagonalizing the Hamiltonian of the standard theory Hst =
H0+Vf f f and in bla
k for the full Hamiltonian H = H0+Vρρ+
Vnρρ. A band mismat
h ε∆ = 0 is assumed. The energy of thelowest c+ ex
itation is 4.3ε0. All other intera
tion parametersare as in Fig. 6. Arrows indi
ate eigenenergies of the �standard�Hamiltonian Hst = H0 + Vf f f involving ex
itations of the c+mode.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1

2

3

4

5

6

7

8

Number of Eigenvalue

E
xc

ita
tio

n 
en

er
gy

 in
 ε

0

 

 

H
0
+V

ρ ρ
+V

n ρ ρFig. 8. The ex
itation spe
trum for a (6,6) SWNT obtainedby diagonalizing the full Hamiltonian H = H0 +Vρρ +Vnρρ for
Nc = 4m and ε∆ = 0.3ε0. The spe
trum be
omes quasi
ontin-uous at relatively small energies. Shown are the lowest 10000eigenenergies.spe
trum of Hst = H0 + Vf f f as well as the spe
trum ofthe full Hamiltonian H = H0 +Vρρ +Vnρρ for a (6, 6) arm-
hair nanotube. Thereby a nonvanishing band mismat
h
ε∆ = 0 is assumed. Striking is the partial breaking ofthe huge degenera
ies of the �standard� spe
trum. Notealso the lifting of the spin-
harge separation when in
lud-ing the non forward s
attering pro
esses. To illustrate thispoint we have indi
ated eigenenergies of Hst in
luding c+ex
itations by arrows in Fig. 7.At higher energies a quasi 
ontinuum forms in the 
aseof the full Hamiltonian H , a feature be
oming espe
iallyapparent for a �nite band mismat
h. In Fig. 8 the spe
traof the full Hamiltonian H is shown for ε∆ = 0.3ε0.As we have already dis
ussed, the importan
e of nonforward s
attering terms should de
rease with in
reasingtube diameter. And indeed the ex
itation spe
trum of thefull Hamiltonian for a (20, 20) SWNT resembles mu
hmore the result of the �standard� theory than it is the
ase for a (6, 6) SWNT as it 
an be seen from Fig. 9.
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ts of the non forward s
attering pro
esses are by far lesspronoun
ed in the latter 
ase. Nc = 4m and ε∆ = 0.
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itation spe
trum for a (6,6) SWNT obtainedby diagonalizing the Hamiltonian of the nonintera
ting system
H0 (grey) and the full Hamiltonian H = H0 + Vρρ + Vnρρ(bla
k).It is also interesting to regard the e�e
t of the totalintera
tion Vρρ +Vnρρ on the nanotube spe
trum. For thispurpose, in Fig. 10 the spe
trum of H0 des
ribing thenonintera
ting system is 
ompared to the spe
trum of thefull Hamiltonian H, again for a (6, 6) SWNT with vanish-ing band mismat
h. Of spe
ial signi�
an
e is the strongredu
tion of the number of eigenstates below a 
ertain en-ergy if the intera
tion is �swit
hed on�. This 
an be mainlytra
ed ba
k to Vfff whi
h leads to the formation of thebosoni
 c+ ex
itations with 
onsiderably enlarged ener-gies. Con
erning the transport properties of SWNTs theredu
tion of relevant states plays an important role for theo

urren
e of the power law dependen
e of various trans-port quantities in the 
ase of in�nitely long tubes but alsofor the appearan
e of negative di�erential 
ondu
tan
e inhighly asymmetri
 SWNT quantum dots as des
ribed in[6℄.4.3 Comparison to the mean �eld resultsWe shortly want to 
ompare the results of the mean�eldtheory by Oreg et al. [10℄ and our approa
h. Con
ern-ing the groundstate stru
ture, di�eren
es between the twoworks arise for the Nc = 4m + 2 
harge state. In this

situation the mean�eld Hamiltonian 
an essentially bere
overed by setting all o�-diagonal elements in (55) tozero. Therefore in [10℄ the degenerate triplet state 
an notbe predi
ted but twofold degenera
ies of the states |↑, ↑〉,
|↓, ↓〉 and of |↑, ↓〉, |↓, ↑〉 respe
tively are found. Moreover
ontrary to our theory in [10℄ no mixing of the states
|↑↓,−〉 and |−, ↑↓〉 
an o

ur for ε∆ . J/2, an importantpoint regarding the singlet-triplet Kondo e�e
t [19℄.Moreover also the ex
itation spe
trum shows 
onsid-erable di�eren
es in both approa
hes, sin
e the mean�eldapproa
h misses the formation of the 
olle
tive ele
troni
ex
itations as the c+ mode, with its dispersion relationstrongly renormalized by the forward s
attering part ofthe Coulomb intera
tion.4.4 Near half-�llingAs we have already seen in Se
tion 3.2, at half-�llingnon-density-density intera
tion pro
esses be
ome relevantwhi
h yield tremendously large matrix elements in theeigenbasis of H0 + Vρρ, as a 
onsequen
e of the fun
tion
Au(x) shown in Fig. 4. Therefore our trun
ation s
hemefor diagonalizing the total Hamiltonian Vnρρ does not givereliable results at half-�lling. Investigation of the half-�lling 
ase is beyond the s
ope of this work.5 Con
lusionsIn summary, we have derived the low energy Hamilto-nian for metalli
 �nite size SWNTs in
luding all relevantintera
tion terms, espe
ially the short ranged pro
esseswhose 
oupling strength s
ales inversely proportional tothe SWNT size. The Hamiltonian of the nonintera
tingsystem, H0, together with the density-density part of theintera
tion, Vρρ, 
ould be diagonalized by bosonizationand Bogoliubov transformation. Considering only the sit-uation away from half-�lling, we obtained the spe
trumof the total SWNT Hamiltonian by exploiting the smallmagnitude of the non-density-density 
ontribution Vnρρ tothe intera
tion: we have 
al
ulated the matrix elements of
Vnρρ in a trun
ated eigenbasis of H0 + Vρρ and diagonal-ized the resulting matrix to obtain the SWNT spe
trumand the 
orresponding eigenstates.Of spe
ial interest, 
on
erning the ground state spe
-tra, is the formation of a spin 1 triplet for the 
harge state
Nc = 4m+ 2, whose existen
e has 
learly been proven inthe experiments of Moriyama et al. [9℄. In the 
ase of aband mismat
h ε∆ that is small 
ompared to the ex
hangeenergy J, the spin 1 triplet is the ground state of the sys-tem. This �nding is interesting sin
e a

ording to a theo-rem by Lieb and Mattis [11℄, only ground states with spin
0 or 1/2 are allowed for a 1D Hubbard model with next-neighbour hopping and no orbital degenera
ies. Sin
e ourSWNT Hamiltonian in
ludes an orbital degree of freedomwe 
on
lude that s
attering pro
esses with respe
t to thisdegree of freedom are the reason for the �nding of a spin
1 ground state. Additionally we predi
t for ε∆ . J/2, the
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om-panying energy splitting. The degree of mixing between
|↑↓,−〉 and |−, ↑↓〉 is of importan
e for the singlet-tripletKondo e�e
t, as dis
ussed in [19℄. An experimental 
on�r-mation of our �ndings in the 
ase ε∆ . J/2 is still missing,but well within rea
h.With regard to the ex
itation spe
trum, the di�erentbosoni
 modes are mixed by the non-density-density in-tera
tion pro
esses Vnρρ. Therefore the spin-
harge sep-aration is lifted. Moreover we �nd that the huge degen-era
ies whi
h are obtained by the �standard� theory thatretains only forward s
attering pro
esses are partially bro-ken. This leads to a more and more 
ontinuous energyspe
trum for higher energies.A Modelling the intera
tion potentialIn this Appendix we show how we determine the values ofthe e�e
tive 1D potentials U intra/inter

[F ] and of the 
oupling
onstants uSr SF . We start with equation (12) from se
tion2.2,
U

intra/inter
[F ] (x, x′) = L2

∫ ∫

d2r⊥d
2r′⊥

× ϕ∗
pF1

(r)ϕ∗
±pF2

(r′)ϕ±pF3 (r
′)ϕpF4(r)U(r − r

′). (56)Using equation (4) in order to reexpress the Blo
h waves
ϕpF (r) in terms of pz orbitals, we obtain,
U

intra/inter
[F ] (x, x′) =

L2

N2
L

∫ ∫

d2r⊥d
2r′⊥

× U(r − r
′)

∑

R,R′

e−i(F1−F4)Rx−i(F2−F3)R′
x

× |χ(r − R − τ p)|2 |χ(r′ − R
′ − τ±p)|2 . (57)Instead of a fourfold sum over the latti
e sites only thedouble sum ∑

R,R′ remains, sin
e the overlap of di�erent
pz orbitals 
an be negle
ted. To pro
eed we use on
e morethat the spatial extention of the pz orbitals is small 
om-pared to all other appearing length s
ales and therefore re-pla
e |χ(r − R − τ p)|2 by the delta fun
tion δ(r−R−τp).In order to take into a

ount the error indu
ed thereby atsmall distan
es x ≈ x′, we repla
e the Coulomb poten-tial by the Ohno potential introdu
ed by equation (8). Itinterpolates between U0, the intera
tion energy betweentwo pz ele
trons in the same orbital and e2

4πǫ0ǫ|r−r ′| for
|r − r

′| ≫ 0. Performing the integration in (57), we ob-tain,
U

intra/inter
[F ] (x, x′) =

L2

N2
L

∑

R,R′

δ(x−Rx)δ(x′ −R′
x)

× e−i(F1−F4)Rx−i(F2−F3)R
′
xU(R − R

′ + τ p − τ±p). (58)Now we 
an easily 
al
ulate the values of the 
oupling
onstants uSr SF for the lo
al intera
tions, given by (20),
uSr SF = 1/(2L2)

∫ ∫

dx dx′U[r]Sr [F ]SF
(x, x′).

Using (58) together with equation (11),
U[r][F ](x, x

′) =
1

4

[

U intra
[F ] (x, x′)(1 + r1r2r3r4)

+ U inter
[F ] (x, x′)(r2r3 + r1r4)

]

, (59)we arrive at
uf b =: u+ =

1

4N2
L

∑

R,R′

e−i2K0(Rx−R′
x)

× [U(R − R
′) + U(R − R

′ + τ p − τ−p)] , (60)
ub/u f =: u∆

f =

1

4N2
L

∑

R,R′

[U(R − R
′) − U(R − R

′ + τ p − τ−p)] (61)and
ub/u f =: u∆

b =
1

4N2
L

∑

R,R′

e−i2K0(Rx−R′
x)

× [U(R − R
′) − U(R − R

′ + τ p − τ−p)] . (62)Sin
e in the summations in (60), (61) and (62) only termswith R ≈ R
′ 
ontribute, the number of relevant sum-mands s
ales like the number of latti
e sites NL. Due tothe prefa
tor 1/N2

L, u+ and u∆
f/b in total s
ale like 1/NL.Numeri
al evaluation of the previous three equations leadsto the values given in table 1.B Cal
ulation of the matrix elements

M[r][F ][σ](N , m, N ′, m′, x)Using the bosonization identity (39),
ψrσF (x) = ηrσKrσF (x)eiφ†

rσF (x)eiφrσF (x),we 
an separateM[r][F ][σ](N ,m,N ′,m′, x) from equation(38) into a bosoni
 and a fermioni
 part,
M[r][F ][σ](N ,m,N ′,m′, x) =

M[r][F ][σ](N ,N ′, x)M[r][F ][σ](m,m′, x),where
M[l](N ,N ′, x) =

〈N |K†
l1

(x)η†l1K
†
l2

(x)η†l2Kl3(x)ηl3Kl4(x)ηl4 |N ′〉 (63)and
M[l](m,m′, x) = 〈m| e−iφ†

l1
(x)e−iφl1

(x)e−iφ†
l2

(x)e−iφl2
(x)

e
iφ†

l3
(x)
eiφl3

(x)e
iφ†

l4
(x)
eiφl4

(x) |m′〉 . (64)Improving readability, we have summarized the indi
es
rFσ by a single index l.
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 part of M[r][F ][σ](N ,m,N ′,m′, x)First we 
onsider the 
ontributionM[l](N ,N ′, x) depend-ing on the fermioni
 
on�gurations N and N
′. Using re-lation (40) for the Klein fa
tors ηrσ and the de�nition ofthe phase fa
tor KrσF (x), equation (41), we obtain

M[r][F ][σ](N ,N ′, x) =

1

(2L)2
δN ,N ′+E[r][σ]

TNN ′[r][σ]QNN ′[r][F ](x),where E[r][σ] := er1σ + er2σ′ − er3σ′ − er4σ. Furthermore
TNN ′[r][σ] is given by
TNN ′[r][σ] = (−1)

P(r4σ4)−1

j4=1 (N ′)j4+
P(r3σ3)−1

j3=1 (N ′−er4σ4)j3

× (−1)
P(r2σ2)−1

j2=1 (N−er1σ1)j2+
P(r1σ1)−1

j1=1 (N)j1 . (65)Here we use the 
onvention j = + ↑,+ ↓,− ↑,− ↓=
1, 2, 3, 4. It turns out that TNN ′[r][σ] only depends on thes
attering types Sr and Sσ. Expli
itly with TN ′SrSσ :=
TNN ′[r]Sr [σ]Sσ

,
TN ′uf− = −(−1)3N ′

R↑+2N ′
R↓+N ′

L↑ , (66)
TN ′bf− = (−1)3N ′

R↑+2N ′
R↓+N ′

L↑ (67)and TN ′SrSσ = 1 for all other (Sr, Sσ). Finally the fun
-tion QNN ′[r][F ](x) yields a phase and is given by
QNN ′[r][F ](x) =

exp
{

i
π

L
[sgn(r4F4)(N

′)l4 + sgn(r3F3)(N
′ − êl4)l3

−sgn(r2F2)(N − êl1)l2 − sgn(r1F1)(N )l1 ]x} . (68)B.2 The bosoni
 part of M[r][F ][σ](N ,m,N ′,m′, x)The 
al
ulation of the bosoni
 part M[r][F ][σ](m,m′, x) isbased on expressing the �elds iφrσF (x) in equation (64) interms of the bosoni
 operators ajδq , a†jδq and subsequentnormal ordering, i.e., 
ommuting all annihilation opera-tors ajδq to the right side and all 
reation operators a†jδqto the left side. In a �rst step we use the relation
eiφl(x)eiφ†

l (x) = eiφ†
l (x)eiφl(x)e[iφl(x),iφ†

l (x)],following from the Baker-Hausdor� formula [17℄,
eAeB = eA+Be

1
2 [A,B], [A,B] ∈ C,to obtain from (64),

M[l](m,m′, x) = C[l](x)

×
〈

m

∣

∣

∣
e−i ˜P4

n=1φ†
ln

(x)e−i ˜P4

n=1φln (x)
∣

∣

∣
m

′
〉

, (69)

where ˜∑4

l=1φln denotes the sum φl1 + φl2 − φl3 − φl4 and
C[l](x) = e

[iφl3
(x),iφ†

l4
(x)]

e
[−iφl2

(x),iφ†
l3

(x)+iφ†
l4

(x)]

× e
[−iφl1

(x),−iφ†
l2

(x)+iφ†
l3

(x)+iφ†
l4

(x)]
.Applying the Baker-Hausdor� formula on
e more, we ob-tain

e−i ˜P4

n=1φ†
ln

(x)e−i ˜P4

n=1φln (x) =

e−i ˜P4

n=1(φln (x)+φ†
ln

(x))e
1
2

h

i ˜P4

n=1φ†
ln

(x),i ˜P4

n′=1φl
n′ (x)

i

.Using the de�nition of the φ-�elds, equation (42), togetherwith the transformation between the operators bσq and
ajδq, equation (33), we get
iφrσF (x) + iφ†rσF (x) =

∑

jδq>0

(

λjδq
rσF (x)ajδq − λ∗jδq

rσF (x)a†jδq

)

.In terms of Λjδ
rσ, Bjδq and Djδq , 
f. equations (34), (35)and (36), the 
oe�
ients λjδq

rσF (x) read
λjδq

rσF (x) =
Λjδ

rσ√
nq

(

eisgn(rF )qxBjδq − e−isgn(rF )qxDjδq

)

.(70)By de�ning
λ̃jδq

[l] (x) := − ˜∑4

n=1
λjδq

ln
(x) (71)and again using the Baker-Hausdor� formula, we arrive at

e−i ˜P4

n=1(φln (x)+φ†
ln

(x)) =

e
−

P

jδq>0 λ̃∗jδq
[l]

(x)a†
jδqe

P

jδq>0 λ̃jδq
[l]

(x)ajδqe
− 1

2

P

jδq>0

˛

˛

˛

λ̃jδq
[l]

(x)
˛

˛

˛

2

,su
h that in total
〈

m

∣

∣

∣e
−i ˜P4

n=1φ†
ln

(x)e−i ˜P4

n=1φln(x)
∣

∣

∣ m
′
〉

=

A[l](x)
∏

jδq

F (λ̃jδq
[l] (x),mjδq ,m

′
jδq), (72)where we have introdu
ed

A[l](x) := e
1
2

h

i ˜P4

n=1φ†
ln

(x),i ˜P4

n′=1φl
n′ (x)

i

× e
− 1

2

P

jδq>0

˛

˛

˛

λ̃jδq
[l]

(x)
˛

˛

˛

2

. (73)The fun
tion F (λ,m,m′) =
〈

m
∣

∣

∣e−λa†

eλa
∣

∣

∣m′
〉 is givenby [6℄

F (λ,m,m′) =
(

Θ(m′ −m)λm′−m +Θ(m−m′) (−λ∗)m−m′
)

×
√

mmin!

mmax!

mmin
∑

i=0

(

− |λ|2
)i

i!(i+mmax −mmin)!

mmax!

(mmin − i)!
,(74)
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arbon nanotubes 15where mmin/max = min /max(m,m′). Combining (69)and (72) we �nally obtain
M[l](m,m′, x) = C[l](x)

×A[l](x)
∏

jδq

F (λ̃jδq
[l] (x),mjδq ,m

′
jδq).Expli
itly, equation (73) yields that A[l](x) only dependson the s
attering type for the produ
t rF . For SrF 6= u we�nd A[l]SrF

=: ASrF ≡ 1 whereas Au is strongly enhan
edleading to an in
reased importan
e of non-density-densityintera
tions at half-�lling. Due to its relevan
e we showthe detailed 
al
ulation of Au in the following.B.2.1 Evaluation of AuAs example we 
al
ulateA[r]Sr [F ]SF
[σ]Sσ

with (Sr, SF , Sσ) =

(b, f−, f+), i.e., for [r] = (r,−r, r,−r), [F ] = (F,−F,−F, F )and [σ] = (σ, σ, σ, σ). It is easily 
he
ked that for this
hoi
e SrF = u holds. Before starting with the a
tual 
al-
ulation we �rst determine the 
oe�
ients λ̃jδq
[r][F ][σ](x) forthe 
onsidered 
ase. With equations (70) and (71) we �nd

λ̃jδq
[r]b[F ]f− [σ]f+

(x) =

− 1
√
nq

˜∑4

n=1
Λjδ

rnσn

(

eisgn(rnFn)qxBjδq − e−isgn(rnFn)qxDjδq

)

.The values for Bjδq , Djδq and Λjδ
rσ are known from theBogoliubov transformation, 
f. equations (34) to (36). Forthe di�erent 
hannels jδ this leads to

λ̃c+q
[r]b[F ]f− [σ]f+

(x) = −2isgn(rF )
√
nq

√

ε0q

εc+q
sin(qx),

λ̃c−q
[r]b[F ]f− [σ]f+

(x) = 0

λ̃s+q
[r]b[F ]f− [σ]f+

(x) = −2isgn(rFσ)
√
nq

sin(qx),

λ̃s−q
[r]b[F ]f− [σ]f+

(x) = 0.Using (73) we get in this 
ase,
A[l](x) := e

1
2

h

iφ†
l1

(x)−iφ†
l3

(x),iφl1
(x)−iφl3

(x)
i

× e
1
2

h

iφ†
l2

(x)−iφ†
l4

(x),iφl2
(x)−iφl4

(x)
i

× e
− 1

2

P

q>0

„

˛

˛

˛

λ̃c+q
[l]

(x)
˛

˛

˛

2
+

˛

˛

˛

λ̃s+q
[l]

(x)
˛

˛

˛

2
«

. (75)Improving readability we have again repla
ed the indi
es
rFσ by a single index l. With (42) we obtain

[

iφ†rFσ(x), iφr±Fσ(x)
]

=

−
∑

q>0

1

nq
e−isgn(rF )q(x∓x)[b†σr·q, bσr·q] =

∑

q>0

1

nq
e−isgn(rF )q(x∓x).

In total this leads to
A[r]b[F ]f− [σ]f+

(x) := e
2

P

q>0
1

nq
(1−cos(2qx))

× e
−2

P

q>0
1

nq

“

ε0q
εc+q

+1
”

sin2(qx)
.Be
ause of sin2(qx) = 1

2 (1 − cos(2qx)) the �nal result is
A[r]b[F ]f− [σ]f+

(x) := e
2

P

q>0
1

nq

“

1−
ε0q

εc+q

”

sin2(qx)
. (76)The same result is also obtained for all other pro
esseswith SrF = u.C Regularization of 〈Nm |Vf+ b f−|Nm〉As already mentioned in the main text, expression (50)for the matrix element 〈Nm |VSrSF Sσ |N ′

m
′〉 diverges if

∑

jδq

∣

∣

∣mjδq −m′
jδq

∣

∣

∣ ≤ 1 and if VSrSF Sσ is N 
onserving.Here we show in detail how the matrix element 
an beproperly regularized for the 
ase m = m
′ and VSrSF Sσ =

Vf+ b f− . We start with equation (50),
〈

Nm
∣

∣Vf+ b f−

∣

∣ Nm
〉

=

1

4L
u+

∑

rFσ

∫

dx
e−2isgn(rF )(Nrσ−Nr−σ) π

L x

4 sin2
(

π
Lx

)

×
∏

jδq

F (λ̃jδq
[r]f+ [F ]b[σ]f−

(x),mjδq ,mjδq). (77)In a �rst step we rewrite the fra
tion e−2isgn(rF )(Nrσ−Nr−σ) π
L

x

4 sin2( π
L x)as e−2isgn(rF )Nrσ

π
L

x

1−ei 2π
L

x

e2isgn(rF )Nr−σ
π
L

x

1−e−i 2π
L

x
and, by using the iden-tity

N
∑

n=−∞

e−inx =
e−iNx

1 − eix
,we transform it into the produ
t of two in�nite sums ex-tending over the whole Fermi sea,

e−2isgn(rF )(Nrσ−Nr−σ) π
L x

4 sin2( π
Lx)

=

Nrσ
∑

n=−∞

e−2isgn(rF )n π
L x

Nr−σ
∑

n′=−∞

e2isgn(rF )n′ π
L x. (78)An important observation is, that the multipli
ation with

e−inqx − einqx = e−inqx
(

1 − e2inqx
) re
asts the in�nitesum ∑N

n=−∞ e−2inx into a �nite sum,
e−inqx

(

1 − e2inqx
)

N
∑

n=−∞

e−2inx =

e−inqx
N

∑

n=N−nq+1

e−2inx. (79)
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ting metalli
 
arbon nanotubesWe now have a 
loser look at the 
oe�
ients λ̃jδq
[r]f+ [F ]b[σ]f−

,whi
h a

ording to (71) are given by
λ̃jδq

[r]f+ [F ]b[σ]f−
(x) =

1
√
nq

[

Λjδ
rσ

(

e−isgn(rF )qx − eisgn(rF )qx
)

+ Λjδ
r−σ

(

eisgn(rF )qx − e−isgn(rF )qx
)]

.Then be
ause of (79), the produ
t
∏

jδq

(

λ̃jδq
[r]f+ [F ]b[σ]f−

(x)
)tjδq

×
Nrσ
∑

n=−∞

e−2isgn(rF )n π
L x

Nr−σ
∑

n′=−∞

e2isgn(rF )n′ π
L x, rjδq ∈ Nis a �nite sum for ∑

jδq tjδq ≥ 2. But from (74) we 
an
on
lude that
∏

jδq

F (λ̃jδq
[r]f+ [F ]b[σ]f−

(x),mjδq ,mjδq) = 1 + O(λ2),whereO(λ2) 
olle
ts all those terms whi
h 
ontain a fa
tor
∏

jδq

(

λ̃jδq
[r]f+ [F ]b[σ]f−

(x)
)tjδq with ∑

jδq tjδq ≥ 2. Thus
∫

dx
e−2isgn(rF )(Nrσ−Nr−σ) π

L x

4 sin2
(

π
Lx

)

×





∏

jδq

F (λ̃jδq
[r]f+ [F ]b[σ]f−

(x),mjδq ,mjδq) − 1



 (80)is a well de�ned integral over a �nite sum and thereforenot diverging. On the other hand we �nd with (78)
∫

dx
e−2isgn(rF )(Nrσ−Nr−σ) π

L x

4 sin2
(

π
Lx

) =

∫

dx

Nrσ
∑

n=−∞

e−2isgn(rF )n π
L x

Nr−σ
∑

n′=−∞

e2isgn(rF )n′ π
L x =

L

Nrσ
∑

n=−∞

Nr−σ
∑

n′=−∞

δn,n′ =

min(Nrσ ,Nr−σ)
∑

n=−∞

L.Regularization of the previous expression now is easilya
hieved by subtra
ting in the previous equation e.g. the
ontribution from below half-�lling, su
h that,
∫

dx
e−2isgn(rF )(Nrσ−Nr−σ) π

L x

4 sin2
(

π
Lx

) = Lmin(Nrσ, Nr−σ).(81)

Combining (80) and (81) we obtain the �nite expression,
〈

Nm
∣

∣Vf+ b f−

∣

∣ Nm
〉

= u+
∑

r

min(Nr↑, Nr↓)

+
1

4L
u+

∑

rFσ

∫

dx
e−2isgn(rF )(Nrσ−Nr−σ) π

L x

4 sin2
(

π
Lx

)

×





∏

jδq

F (λ̃jδq
[r]f+ [F ]b[σ]f−

(x),mjδq ,mjδq) − 1



 ,whi
h is equivalent to equation (51) in the main text. Theregularization for the 
ase ∑

jδq

∣

∣

∣mjδq −m′
jδq

∣

∣

∣ = 1 as wellas for the matrix elements of the N 
onserving pro
esses
Vf−bf and Vbf−f+ whi
h are only relevant near half-�lling
an be a
hieved in a similar way.Referen
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