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Tunneling anisotropic magnetoresistance in Fe/GaAs/Au junctions: orbital effects

M. Wimmer,1 M. Lobenhofer,2 J. Moser,2 A. Matos-Abiague,1

D. Schuh,2 W. Wegscheider,2 J. Fabian,1 K. Richter,1 and D. Weiss2

1Institut für Theoretische Physik, Universität Regensburg, 93040 Regensburg, Germany
2Institut für Experimentelle und Angewandte Physik,

Universität Regensburg, 93040 Regensburg, Germany

(Dated: December 16, 2013)

We report experiments on epitaxially grown Fe/GaAs/Au tunnel junctions demonstrating that
the tunneling anisotropic magnetoresistance (TAMR) effect can be controlled by a magnetic field.
Theoretical modelling shows that the interplay of the orbital effects of a magnetic field and the
Dresselhaus spin-orbit coupling in the GaAs barrier leads to an independent contribution to the
TAMR effect with uniaxial symmetry, whereas the Bychkov-Rashba spin-orbit coupling does not
play a role. The effect is intrinsic to barriers with bulk inversion asymmetry.

PACS numbers: 72.25.Dc,75.47.-m

Magnetic tunnel junctions (MTJs) are prominent ex-
amples of spintronic devices [1, 2] and have reached al-
ready technological importance [3]. Typically, the resis-
tance of a MTJ depends on the relative orientation of two
ferromagnetic layers [1, 2]. Hence it came as a surprise
when experiments on MTJs with only one ferromagnetic
GaMnAs layer showed a sizeable spin valve effect [4].
Since then, this tunneling anisotropic magnetoresistance
(TAMR) effect has been observed in tunnel junctions in-
volving various materials [5, 6, 7, 8, 9] as well as nanocon-
strictions and break junctions [9, 10, 11]. Amongst these
experiments, the TAMR effect in Fe/GaAs/Au MTJs
[7] stands out due to its qualitatively different origin:
Whereas the TAMR effect usually originates from prop-
erties of the magnetic layer, namely a spin-orbit induced
anisotropic density of states [4, 5, 6, 8, 10] in the fer-
romagnet or surface states [12, 13, 14], the TAMR in
the Fe/GaAs/Au MTJ was attributed to an interference
of Bychkov-Rashba spin-orbit coupling (SOC) at the bar-
rier interface and the Dresselhaus SOC inside the barrier,
i.e. to properties of the tunneling process itself. More-
over, the size and sign of the effect in this MTJ can be
tuned by the bias voltage.

In this Letter, we show experimentally that the TAMR
in Fe/GaAs/Au MTJs can also be controlled by a mag-

netic field. Our theoretical calculations ascribe this effect
to an interplay of the orbital effects of the magnetic field
and the Dresselhaus SOC in the GaAs barrier. This in-
terplay leads to an independent TAMR contribution with
uniaxial symmetry and is intrinsic to semiconductor bar-
riers with bulk inversion asymmetry. Whereas spin-orbit
effects are usually controlled through the electric field de-
pendence of the Bychkov-Rashba SOC [1, 2] (bias voltage
in the case of the TAMR [7]), the magnetic field depen-
dence of the TAMR is only linked to the Dresselhaus
SOC; interestingly the Bychkov-Rashba SOC does not
play a role here. As we show below, this is due to the
different symmetries of the SOCs. Furthermore, in our
analysis we find it important to include the orbital effects

a) b)

FIG. 1: (Color online) (a) Sketch of the Fe/GaAs/Au MTJ.
(b) Schematic of the conduction band profile. The grey back-
ground is a transmission electron micrograph of an epitaxial
Fe/GaAs interface displaying the 8 nm thick GaAs barrier.

of the magnetic field in both the kinetic and SOC terms
of the Hamiltonian, as both terms give rise to large com-
peting contributions, resulting in a net TAMR effect in
good agreement with experiment.

The type of tunneling device studied here is sketched
in Fig. 1. We explored 8 different samples all showing
the same orbital effects discussed below. We hence focus
here on one sample which consists of a 13 nm thick Fe
layer, grown epitaxially on a 8 nm thick GaAs-tunneling
barrier, and a Au top electrode [7]. The GaAs barrier was
grown by molecular beam epitaxy on sacrificial AlGaAs
layers and capped with As to prevent oxidation during
transport to a UHV magnetron sputtering system. There
the As cap was removed at T = 250◦C and Fe was grown
at room temperature. Epitaxial growth of the Fe film
was monitored by in-situ RHEED. The Fe-layer is finally
covered with 50 nm Co, and 150 nm Au and serves as
back contact. To prepare the top Au-contact on the other
side of the GaAs tunnel barrier, the wafer is glued upside
down to another substrate and the original substrate is
etched away. By employing optical lithography, selective
etching and UHV-magnetron sputtering a circular, 13 µm
wide and 100 nm thick Au contact is fabricated.

The measurements were carried out at a temperature
of 4.2 K inside a variable temperature insert of a 4He-
cryostat. The device was placed in a rotatable sample
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holder allowing a 360◦ in-plane rotation in the magnetic
field B of a superconducting solenoid. The direction of
B with respect to the hard-axis of the Fe layer in [110]-
direction (nomenclature with respect to GaAs crystallo-
graphic directions) is given by the angle φ (Fig. 1). The
resistance drop across the tunnel barrier was measured in
four-point-configuration using a HP 4155A semiconduc-
tor parameter analyzer with the Au-contact grounded.

To measure the TAMR we rotated the sample by 180◦

in a constant external magnetic field. The magnetic field
strength was always high enough to align the magneti-
zation M along B. Fig. 2(a) shows the results of such
φ-scans for various values of the magnetic field between
0.5 T and 5 T and the two bias voltages, +90 mV (upper
left panel) and −90 mV (lower left panel). The TAMR
R(φ)/R[110] shows the distinct uniaxial anisotropy char-
acteristic for this system [7]. As demonstrated recently,
the TAMR strongly depends on the applied bias voltage
and is connected to a bias dependent sign and strength
of the Bychkov-Rashba parameter [7]. For M ‖ [110]
we always get a resistance maximum for +90 mV, but a
minimum for −90 mV. This behavior is in accord with
the one observed by Moser et al. [7] and occurs for all
samples investigated. In the simplest model the TAMR
R(φ)/R[110] − 1 ∼ αγ(cos(2φ) − 1) where α and γ are
Bychkov-Rashba and Dresselhaus parameters. While γ
is a material parameter, α is obtained by fitting the an-
gular dependence R(φ)/R[110] (see below).

With increasing magnetic field strength both the traces
for positive and negative bias voltages are bent towards
lower resistance values. If we define the TAMR ratio as

TAMR =
R[1̄10] − R[110]

R[110]
, (1)

in which R[1̄10] is the resistance for φ = +90◦, the magni-
tude of the TAMR ratio decreases for positive bias volt-
ages but increases for negative ones. This TAMR value
measured as function of B is displayed in the left panel
of Fig. 2(b) for magnetic field strengths up to 5 T. Note
that the TAMR vanishes for a bias voltage of +50 mV at
about 4.5 T but reappears again upon further increasing
B. The magnetic field dependence of the TAMR ratio is
in all cases linear. The slope ∆TAMR/∆B of the best-
fit line is nearly the same for all bias voltages indicating
that the B-dependence of the TAMR is independent of
the applied voltage. The experimental data in Fig. 2 are
compared to model calculations discussed below.

The importance of orbital effects for charge tunnel-
ing has been pointed out already in the literature [16].
Here, we focus on orbital effects on spin-dependent tun-
neling. In order to explain the experimental findings,
we employ the spin-orbit based model for the TAMR
effect of Refs. [2, 7, 15] and include the orbital effects
of the magnetic field. We choose the coordinate sys-
tem such that the x, y, and z-directions are along the
[110], [1̄00], and [001] crystallographic directions, and
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FIG. 2: (Color online) Comparison of experimental results
(left panels) and numerical simulations (right panels) for the
TAMR. (a) Angular dependence of R(φ) at various magnetic
fields for an applied bias voltage of Vb = 90 mV (upper panels)
and Vb = −90mV (lower panels). (b) B-dependence of the
TAMR ratio (1) for different bias voltages. Lines in the left
panel are a linear fit to the experimental data, shown as dots.

consider an in-plane magnetic field B = Bn, where
n = (cosφ, sin φ, 0) is a unit vector forming an angle φ
with the x-axis (see Fig. 1(a)). The Hamiltonian is given
as H = H0 + HBR + HD, where

H0 = +
1

2
π

1

m∗(z)
π + V (z) +

∆(z)

2
n · σ . (2)

Here, π = −i~∇ + eA, where A is the magnetic vec-
tor potential and −e the electron charge. m∗(z) is a
position-dependent effective mass with m∗(z) = 0.067me

in the GaAs barrier and m∗(z) = me in the Fe and Au
layer, where me denotes the bare electron mass. V (z) is
the conduction band profile in growth direction z. The
GaAs Schottky barrier height is given by VS = 0.75 eV.
The ferromagnetism in the Fe layer is described in terms
of a Stoner model [17] with spin splitting ∆(z). ∆(z) and
V (z) are chosen such that the Fermi wavevector in Fe is

k↑
F,Fe = 1.05×10−10m−1 and k↓

F,Fe = 0.44×10−10m−1 for
majority and minority electrons [18], respectively, and in
Au kF,Au = 1.2 × 10−10m−1 [19]. The Zeeman splitting
in GaAs and Au is much smaller than any relevant en-
ergy scale in the system and can be neglected, as is also
confirmed by numerical simulations.
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The SOC due to the structural inversion asymmetry
(SIA) at the Fe/GaAs-interface can be written as [20]

HBR =
α

~
(σxπy − σyπx)δ(z − zl) , (3)

where zl denotes the position of the Fe/GaAs-interface.
As in Refs. [2, 7, 15] we use the Bychkov-Rashba pa-
rameter α as a fitting parameter to reproduce the bias
dependence of the TAMR effect; α = α(Vb) [21].

Finally, the SOC due to the bulk inversion asymmetry
(BIA) of the zinc-blende GaAs barrier takes the form [22]

HD = −
1

~
(σxπy + σyπx)

∂

∂z
γ(z)

∂

∂z
, (4)

where the bulk Dresselhaus parameter γ = 24 eVÅ3 in
the GaAs barrier and γ = 0 elsewhere. Note that the
orbital effects of B are also included in the SOC terms.

With the gauge A(z) = (B sin(φ)z,−B cos(φ)z, 0) the
Hamiltonian H is translationally invariant in x and y-
direction, and the in-plane wave vector k|| = (kx, ky, 0)
is a good quantum number. The conductance in the
Landauer-Büttiker formalism [23] is then given as G =

e2S
h(2π)2

∫

dk||T (k||), where S is the cross-sectional area of

the junction, and T (k||) is the total transmission proba-
bility (including different spin species) for the transverse
wave vector k|| at the Fermi energy EF. We calculate
T (k||) from the scattering wave functions [24]; those are
obtained numerically from a tight-binding approximation
to H , using the method of finite differences on a one-
dimensional grid with lattice spacing a = 0.01 nm [25]
and the recursive Greens function technique [26].

In Fig. 2 we compare the results of the numerical sim-
ulations on the B-dependence of the TAMR with the
corresponding experimental data. For this, we fit the pa-
rameter α at B = 0.5 T for every value of the bias voltage
Vb to the experimental data. The dependence on B can
then be calculated without fitting any further parameter.

Figure 2(a) shows the angular dependence of the
TAMR effect for different values of the bias voltage and
magnetic field. The numerical simulations show the same
trend as the experiment: The magnitude of the TAMR
effect decreases with increasing B, when the effect is pos-
itive, and it increases, when the effect is negative. Fur-
thermore, the numerical calculations reproduce the ex-
perimentally found change with magnetic field within a
factor of 1.5 − 2. This is an especially satisfying agree-
ment, given the fact that the B-dependence is calculated
without any fitting parameter. The numerically calcu-
lated magnetic field dependence of the TAMR ratio is
shown in Fig. 2(b). As the experiment, we find a linear
dependence on B, with a slope that is nearly independent
of α, i.e. the bias voltage. Again, the numerics underes-
timates the slope only by a small factor of 1.5 − 2.

Having established that our model is able to reproduce
both qualitatively and quantitatively the experimental

findings, we now develop a phenomenological model to
highlight the underlying physics. In Refs. [2, 7, 15] it was
shown that in the absence of a magnetic field, T (k||) can
be expanded in powers of the SOC in the form T (k||) =

T (0)(k||) + T (1)(k||)n · w(k||) + T (2)(k||) (n · w(k||))
2 +

. . . , where the T (n)(k||) are expansion coefficients and
w(k||) = ((α̃−γ̃)ky,−(α̃+γ̃)kx, 0) the effective spin-orbit
field obtained by averaging the spin-orbit field BSO(z),
HD + HBR = BSO(z) · σ, over the unperturbed states of
the system. The effective spin-orbit parameters are given
by α̃ = αfα(k||) and γ̃ = γfγ(k||). To second order in
the SOC, the conductance was then found as

G(φ) = G0 + g(2)αγ cos(2φ) , (5)

where G0 is the angular-independent part of the conduc-
tance and g(2) a coefficient that is independent of the
spin orbit parameters (for details see Refs. [2, 15]).

In the presence of a magnetic field, the transmission
can still be expanded in powers of the SOC, albeit with

B-dependent coefficients T
(n)
B (k||) and spin-orbit field

wB(k||). Below, we derive approximate relations for

T
(n)
B (k||) and wB(k||), valid to linear order in B, in terms

of their counterparts at B = 0, T (n)(k||) and w(k||).

First, we consider the orbital effects of B on the kinetic
energy term of the Hamiltonian. The kinetic energy as-
sociated with k|| increases the effective barrier height,
and hence T (k||) is sharply peaked at k|| = 0 in the
absence of a magnetic field. For B 6= 0 however, the
effective barrier height is smallest for an in-plane wave
vector k||,0 with 〈(kx,0+eB/~ sin(φ)z)2〉 = 0 and 〈(ky,0−
eB/~ cos(φ)z)2〉 = 0, where 〈. . . 〉 denotes a quantum
mechanical average. Thus, the maximum of the trans-
mission is shifted to k||,0 = (−b1B sin(φ), b1B cos(φ), 0)
where b1 depends on 〈z〉 and 〈z2〉, and hence we assume

T
(n)
B (k||) ≈ T (n)(

√

(kx − kx,0)2 + (ky − ky,0)2). This
shift can be interpreted as an effect of the Lorentz force.
In addition to the shift of the maximum, the overall
transmission decreases [16]. However, this decrease is
quadratic in B and will consequently be neglected. Apart
from TB(k||), also the effective spin-orbit field is shifted
in momentum space, wB(k||) ≈ w(kx + b2B sin(φ), ky −
b2B cos(φ)), where b2 is a constant that depends on 〈z〉
only, as the SOC terms are linear in momentum. There-
fore we can in general expect b1 6= b2.

With these approximations we can now obtain the
magnetic field corrections to the conductance of Eq. (5)
by evaluating

∫

dk||T (k||) in orders of the SOC. The
zeroth order term remains unchanged upon integra-
tion, and the corrections to the second order term are
quadratic in B, thus being neglected. In contrast, the
first order term that vanishes in the absence of a mag-
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FIG. 3: (Color online) (a) Schematic picture of the influence

of B on the TAMR: B and w̄ =
R

dk||T
(1)
B

wB are shown
in relation to the effective Bychkov-Rashba and Dresselhaus
spin-orbit fields. The shift of the transmission maximum is
indicated by a blue circle; the situation for two different an-
gles φ is shown in dark and light color. (b) Slope of the B-
dependence of the TAMR effect, ∆TAMR/∆B, as a function
of the Dresselhaus parameter γ for various values of α. (c)
B-dependence of the TAMR effect when A is only included in
the kinetic term (red dashed line), only in the spin-orbit term
(blue dash-dotted line), or in both terms (black solid line).

netic field [2, 7, 15] gives a contribution linear in B:

e2S

h(2π)2
n ·

∫

dk||T
(1)
B (k||)wB(k||) =

g(1)
α αB − g(1)

γ γB cos(2φ) ,

(6)

where we used the approximations of the previous para-
graph and the fact that terms linear in k|| vanish upon

integration [2, 7, 15]. The coefficients g
(1)
α,γ = e2S

h(2π)2 (b1 −

b2)
∫

dk||T
(1)(k||)fα,γ(k||) do not depend on the spin or-

bit parameters. We find a different angular dependence
for the Bychkov-Rashba and Dresselhaus SOC due to dif-
ferent symmetries of the spin-orbit fields, as shown in
Fig. 3(a): The Bychkov-Rashba field exhibits rotational
symmetry leading to an angular-independent contribu-
tion, whereas the interplay of B and the Dresselhaus field
leads to an angular dependence with uniaxial symmetry.

The total conductance in a magnetic field is then

G(φ, B) = G0+g(1)
α αB+(g(2) αγ−g(1)

γ γB) cos(2φ) (7)

valid up to second order in the SOC. The magnetic field
dependence of the TAMR ratio is then

TAMR ∝ g(2) αγ − g(1)
γ γB , (8)

where we can deduce from the numerical results that the
coefficients g(2), g

(1)
γ > 0. Eq. (8) reproduces all the char-

acteristic features of the TAMR observed in experiment:

A linear B-dependence, with a bias (α)-independent
slope. Note that the interplay of Dresselhaus SOC in
the barrier and the orbital effect of the magnetic field
leads to an independent contribution to the TAMR ef-
fect which turns out to have the same uniaxial symmetry
as the TAMR effect in the absence of B.

Finally, we verify some aspects of the phenomenolog-
ical model by comparing to numerical simulations. In
Fig. 3(b) we show the slope ∆TAMR

∆B
as a function of the

Dresselhaus parameter γ that is predicted to be linear
in γ and independent of α (Eq. (8)). Indeed, we find a
nearly linear dependence on γ and only a weak depen-
dence on α, presumably originating from higher orders in

the SOC expansion. Furthermore, the coefficient g
(1)
γ in

Eq. (8) depends on (b1 − b2), i.e. opposing contributions
from the kinetic and the SOC term. Fig. 3(c) shows the
results of simulations where the magnetic vector poten-
tial is included only in the kinetic term (dashed line),
only in the SOC term (dashed-dotted line), and in both
(solid line). When the magnetic field is included in one
term only, we find large TAMR effects with opposite sign
that nearly cancel in the full Hamiltonian, yielding the
small signal observed in experiment and in the numerics.

In summary, our experiments and theoretical consid-
erations indicate that the interplay of the orbital effects
of a magnetic field and the Dresselhaus SOC in a tunnel
barrier leads to a contribution to the TAMR effect with
uniaxial symmetry. This effect is predicted to an intrin-
sic feature of semiconductor barriers with BIA and not
limited to the studied Fe/GaAs/Au tunnel junction.
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