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Ballistic transport through a collection of quantum billiards in undoped graphene is studied analytically
within the conformal mapping technique. The billiards show pseudodiffusive behavior, with the conductance
equal to that of a classical conductor characterized by the conductivity �0=4e2 /�h and the Fano factor F
=1 /3. By shrinking at least one of the billiard openings, we observe a tunneling behavior, where the conduc-
tance shows a power-law decay with the system size, and the shot noise is Poissonian �F=1�. In the crossover
region between tunneling and pseudodiffusive regimes, the conductance G��1−F��se2 /h. The degeneracy
s=8 for the Corbino disk, which preserves the full symmetry of the Dirac equation, s=4 for billiards bounded
with smooth edges which break the symplectic symmetry, and s=2 when abrupt edges lead to strong interval-
ley scattering. An alternative, analytical, or numerical technique is utilized for each of the billiards to confirm
the applicability of the conformal mapping for various boundary conditions.

DOI: 10.1103/PhysRevB.80.125417 PACS number�s�: 73.50.Td, 73.23.Ad, 73.63.�b

I. INTRODUCTION

The isolation of single layers of carbon �graphene� whose
low-energy spectrum is described by the Dirac-Weyl Hamil-
tonian of massless spin-1/2 fermions1 has offered physicists
the unique possibility to test the predictions of relativistic
quantum mechanics in a condensed phase. A particular atten-
tion focuses on ballistic transport,2 as the unusual band struc-
ture of a carbon monolayer3 leads simultaneously to a diver-
gent Fermi wavelength �F→� in the undoped graphene
limit, and to a zero band gap. For these reasons, the
quantum-mechanical wave character of an electron plays an
essential role in transport even through a macroscopic
graphene sample provided that the influence of disorder is
negligible.4 A separate issue concerns the fact that Dirac fer-
mions in graphene occur in two degenerate families, result-
ing from the presence of two different valleys in the band
structure. This valley degree of freedom offers conceptually
new possibilities to control charge carriers: the so-called
“valleytronics.”5

So far, extensive theoretical studies of ballistic transport
based on mode-matching analysis for the Dirac equation6,7

are available for a rectangular graphene sample of width W,
length L, and various types of boundary conditions �bc�. In
the regime of large aspect ratios W /L�1, the conductance
of an undoped sample scales as G=�0W /L, with the univer-
sal conductivity �0=4e2 /�h, regardless of boundary
conditions.8 Moreover, as shown by Tworzydło et al.,7 the
Fano factor in this case coincides with that of a diffusive
wire �F=1 /3�. Also, the transmission eigenvalues of these
two systems display the same distribution. This analogy
coined the term of pseudodiffusive transport, which de-
scribes ballistic graphene properties in the universal conduc-
tivity limit.

Recent experiments report an agreement with the theoret-
ical predictions of Refs. 6 and 7 for either the conductance9

or the Fano factor.10 Furthermore, the temperature depen-
dence of the conductivity11 also shows an approximate

agreement with the ballistic theory generalized to finite
temperatures.12 However, even for low temperatures, the
convergence with W /L→� is much slower than predicted.
In particular, for the largest aspect ratio W /L=24 studied in
Ref. 10, the deviations from the limiting values GL /W=�0
and F=1 /3 are close to 10%, whereas results of Ref. 7 show
the convergence should be already reached for moderate as-
pect ratios W /L�4. A clear explanation of this discrepancy
is missing, but it is usually attributed to the fact that bound-
ary conditions used in theoretical works, which describe ei-
ther an abrupt termination of a perfect honeycomb lattice or
an infinite-mass confinement,13 may not model the real-
sample edges correctly.14

In this work, we consider ballistic graphene systems of
geometries for which the boundary effects are absent or sup-
pressed. The paper is organized as follows. In Sec. II we
briefly recall the mode-matching analysis for a graphene
strip and show how to employ the conformal symmetry of
the Dirac equation for undoped graphene15 to obtain analyti-
cally the transmission eigenvalues for other systems. Then,
in Sec. III the method is applied to the Corbino disk. The
results are compared with those obtained by direct mode
matching for angular momentum eigenstates; a relation with
the nonrelativistic electron gas in the disk setup is also dis-
cussed. In Sec. IV we study two basic billiards bounded with
mass confinement: a finite section of the Corbino disk and a
quantum dot with circular edges. The results obtained with
the conformal mapping technique are confirmed by the com-
puter simulation of transport using the tight-binding model
on a honeycomb lattice. Finally, in Sec. V we study numeri-
cally the transport across an infinitely long nanoribbon by
utilizing the four-terminal recursive Green’s function
algorithm,16 as well as across a finite section of a nanoribbon
with an abrupt lattice termination. All the systems show
pseudodiffusive transport behavior in a wide range of geo-
metrical parameters. A further analogy between them appears
when �at least� one of the leads is narrow in comparison to
the characteristic length of the conducting region L. Namely,
the conductance in such a quantum-tunneling regime shows
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a power-law decay G	L−
, where 
 is a nonuniversal �ge-
ometry dependent� exponent. Moreover, it is related to the
shot noise by F�1−Gh / �se2�, so that the Poissonian limit
�F=1� is approached for large L. The symmetry-dependent
factor s=8 in the presence of full spin, valley, and symplectic
degeneracy �the case of the Corbino disk�, or s=4 when the
mass confinement, breaks symplectic symmetry of the Dirac
equation. A final reduction to s=2 may be reached by adding
abrupt �i.e., armchair� edges, which scatter carriers between
the valleys.

The original feature of the geometries studied in this pa-
per is that the influence of sample edges is eliminated �for
the Corbino setup� or irrelevant, as the spatial current distri-
bution is not uniform, but concentrated far away from the
edges. This is why we believe that our theoretical findings
could be confirmed experimentally with better precision than
that for rectangular samples, as the role of boundary condi-
tions is strongly suppressed.

II. TRANSPORT OF DIRAC FERMIONS AND
CONFORMAL MAPPING

The compact derivation of transmission eigenvalues of a
weakly doped �or undoped� graphene sample coupled to
heavily doped graphene leads is known due to Sonin,17 who
pointed out that one can first calculate the reflection and
transmission amplitudes for an interface between weakly
doped and heavily undoped regions and then employ the
double-contact formula.18 Here we show that the derivation
of Ref. 17 can be easily adopted to the Corbino disk, a finite
section of it, and to a quantum dot with circular edges �all
shown in Fig. 1�, as these systems can be obtained from a
strip by appropriate conformal transformations.

A. Mode matching for a graphene strip

Let us first consider an electron crossing from the weakly
doped region �x�0� to the heavily doped one �x�0�, as
depicted in Fig. 2. The Dirac Hamiltonian for graphene has
the well-known form19

H0 = vF� · p , �1�

where vF is the Fermi velocity, �= ��x ,�y� is the vector op-
erator build of Pauli matrices for the sublattice-pseudospin
degree of freedom, and p=−i��x ,�y� is the in-plane momen-
tum operator. Due to translational invariance along the y
axis, the solution of the Dirac equation with energy E
=vFk may be written as ��x ,y�=���x�eikyy,20 with the
transverse momentum ky =Ky �ki and Ki with i=x ,y denote
momentum components in the weakly and heavily doped
regions, respectively�, and the spinor

���x� = ��
1

− e−i� �e−ikxx + r1� 1

ei� �eikxx, x� 0

t1�kx

k
� 1

− 1
�e−iKxx, x� 0,� �2�

where ei�= �kx+ iky� /k, and the limit of an infinite doping
�k�K� in the region x�0 is imposed. The continuity of the

two spinor components on both sides of the interface leads to
expressions for the reflection and transmission amplitudes

r1 =
e−i� − 1

ei� + 1
, t1 =

2�cos �

ei� + 1
. �3�

The amplitudes r1 and t1 depend solely on the angle of inci-
dence � �see Fig. 2�, illustrating the generic feature of ballis-
tic transport in graphene that is insensitive to the lead
details.21 The reflection and transmission amplitudes for an
electron crossing from the undoped region to the second
heavily doped lead are r2=r1

� and t2= t1
� �up to a phase fac-

tor�, as the angle of incidence �→−� in this case. Thus,
employing the double-contact formula of Ref. 18, the total
transmission probability for phase-coherent transport through
the system of Fig. 2 is
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FIG. 1. Quantum billiards in undoped graphene studied analyti-
cally �schematic�. �a� The Corbino disk with inner radius R1 and
outer radius R2. �b� Generic section of the disk characterized by the
spanning angle �. �c� Quantum dot with circular edges. A voltage
source shown on panel �a� only drives the current through each of
the devices. Shadow areas on all panels mark heavily doped �so
highly conducting� graphene leads; white dots are the poles of con-
formal transformation mapping a given system onto a strip of Fig.
2. Thick lines on panels �b� and �c� indicate infinite-mass
confinement.
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FIG. 2. Scattering on interfaces �1� and �2� between weakly
doped �white area� and heavily doped �shaded area� regions in
graphene. Horizontal dashed-dot lines mark symbolically generic
boundary conditions applied to a strip.
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T =
	t1t2	2

	1 − r1r2e2i�12	2
=

1

1 + �tan � sin �12�2 , �4�

where �12
�1
2kxdx is the phase shift earned by an electron

when passing from the first interface to the second one. The
above expression holds true for either propagating modes
�for which kx=�k2−ky

2� or, as an analytic continuation, for
evanescent modes �kx= iqx, with qx=�ky

2−k2�. For a confined
geometry, the quantization of transverse momenta is deter-
mined by bc.6,7 Namely, ky =ky

l �with l integer� may be writ-
ten in a compact form,

ky
l =

g��l + ��
W

, �5�

where g=1,2 for the closed and �generalized� periodic bc,
respectively. �= 1

2 for either mass confinement or antiperi-
odic bc studied in this paper. �For a nanotubelike geometry
as considered in Ref. 6, �=0 corresponds to periodic bc.�

B. Transmission via evanescent modes

Here we limit ourselves to the case of undoped graphene
�k→0�, in which the charge transport is carried fully by
evanescent modes. An analytic continuation yields tan �→ i
and �12→ ig�jL /W in Eq. �4�, where we use the quantiza-
tion �5� and define the half-integer j
 l+ 1

2 . As pointed out by
Katsnelson and Guinea,15 the zero-energy solution of the
Dirac equation may be obtained via conformal transforma-
tion that links the considered geometry to a simple one, for
which the wave function is known.22 In particular, if the
conformal transformation z�w� turns the system under con-
sideration into a rectangle of width W and length L �Fig. 2�,
the transmission probability for the jth evanescent mode may
be written as

Tj =
1

cosh2�gj ln �z�w���
=

4

��gj + �−gj�2 , �6�

where j=� 1
2 ,� 3

2 , . . . �with the degeneracy Tj =T−j�. Notice
that the amplitudes �Eq. �3�� remain unchanged after apply-
ing an arbitrary conformal transformation to the coordinate
system of Fig. 2, so the only term in Eq. �4� affected by the
transformation z�w� is the phase shift �12→ igj ln �. The
real functional �z�w�� is defined by

ln �z�w�� 
 �L/W . �7�

The explicit form of �z�w�� depends on the geometry and is
given below for the examples of conformal transformation
z�w� having one and two poles in a complex plane, which
allows us to obtain expressions for transmission probabilities
through a finite section of the Corbino disk and through a
quantum dot with circular edges, respectively.

But first, we discuss the two basic physical regimes of
quantum transport in graphene, which are described by op-
posite limits of Eq. �6�. The conductance of undoped
graphene6,7 is given by the Landauer formula

G =
se2

h
�

j=1/2,3/2,. . .
Tj = s��0�

j

��gj + �−gj�−2, �8�

with the degeneracy s=4 �spin and valley� for smooth mass
confinement, and s=8 for antiperiodic bc due to an addi-
tional �symplectic� symmetry.23 The universal conductivity is
�0
4e2 /�h. The Fano factor also follows from summing
over the modes

F =

�
j=1/2,3/2,. . .

Tj�1 − Tj�

�
j=1/2,3/2,. . .

Tj

�9�

but is affected by the symmetry-dependent factors �g ,s� only
via Tj −s �Eq. �6��.

For the limit ln ��1, we can replace summation in Eq.
�8� by integration and get

G � Gdiff =
��0

ln �z�w��
, �10�

where we use the relation s=4g, valid for the two classes of
bc studied here. In the ln ��1 limit, the relevant informa-
tion about transmission probabilities is given by their statis-
tical distribution,

��T� =
2

T�1 − T

Gdiff

��0
. �11�

As the distribution ��T� coincides with the known
distribution24 for diffusion modes in a disordered metal,
ln ��1 constitutes a pseudodiffusive regime of transport
through graphene billiards. Notice that the generic conformal
transformation z�w� affects ��T� only via the prefactor Gdiff.
In particular, the Fano factor

F = 1 −
�T2�
�T�

�
1

3
, �12�

regardless of the particular form of z�w�. This observation
may also help to understand why experimental results10 gen-
erally show better agreement with theory for the Fano factor
rather than for the conductance. For instance, various geo-
metrical defects �such as a corrugation of the lead-graphene
interface� may affect Gdiff strongly but not affect F at all.

In the opposite limit �ln ��1�, we find from Eq. �6� that
T1/2�T3/2� . . ., leading to

G � s��0�
−g, F � 1 − G

h

se2 . �13�

These expressions constitute a quantum-tunneling regime for
ballistic graphene, in which the transport is governed by a
single electronic mode with the fourfold �spin and valley�
degeneracy. Below, we provide examples illustrating how the
power-law dependence of G on � may be followed by a
power-law decay of G with the characteristic length scale of
the system.
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III. APPLICATION TO THE CORBINO DISK

The Corbino setup, in which the graphene sample formed
as an annulus is attached to coaxial leads, as shown sche-
matically in Fig. 1�a�, seems to be the simplest way to elimi-
nate boundary effects, which are claimed to strongly affect
experimental results for rectangular samples with small and
moderate aspect ratios.9,10 In this section, we first utilize the
conformal mapping technique to find transmission eigenval-
ues for an undoped disk and then compare the results with
that obtained by a direct wave-function matching, possible
also for a doped disk.

A. Conformal mapping for an undoped disk

The conformal transformation that changes the Corbino
disk with the inner radius R1 and the outer radius R2 shown
in Fig. 1�a� into a rectangle of the width W and the length L
�see Fig. 2� is given by25

z =
W
2�

log
w

R1
. �14�

�Hereinafter, we use the symbol log to denote the natural
logarithm in a complex domain.� For the complex variable
z=x+ iy, with 0�x�L, and 0�y�W, transformation �14�
leads to R1� 	w	�R2 and 0�arg w�2� provided the con-
dition R2 /R1=e2�L/W is satisfied. Using Eq. �7�, such a con-
dition implies the functional �z�w�� to have the form

� = ��R1,R2� = �R2

R1
�1/2

. �15�

As the conformal mapping is known, the only part to be
explained now is the boundary conditions applied to a strip
of Fig. 2. To define them, one needs to notice that after a
rotation by 2� in the coordinate system of Fig. 1�a�, the
spinor part of the wave function acquires the Berry phase26,27

ei��z =−1. Within the mapping �14�, a rotation by 2� turns
into a shift along the y axis in Fig. 2 by a strip width W. This
is why the spinor-rotational invariance of the original wave
function implies antiperiodic boundary conditions ��x ,y
+W�=−��x ,y� for a strip. Such boundary conditions, to-
gether with the functional �z�w�� given by Eq. �15�, lead
the formula �6� for transmission probabilities to a form

Tj =
1

cosh2�j ln�R1/R2��
, j =

1

2
,
3

2
,
5

2
, . . . . �16�

A generalization for the setup with circular but not coaxial
contacts is presented in Appendix A.

The dependence of the conductance �8� and the Fano fac-
tor �9� on the radii ratio R1 /R2 is plotted in Fig. 3 �solid
lines�. The limiting behavior for R1 /R2�1, corresponding
ln ��1 �Eq. �15�� is characterized by G�Gdiff �Eq. �10��,
with

Gdiff =
2��0

ln�R2/R1�
, F �

1

3
. �17�

The formula for Gdiff coincides with the well-known classical
conductance of the Corbino disk.28 The asymptotic values

�Eq. �17�� are depicted with dashed red lines on Figs. 3�a�
and 3�b�. In the opposite limit �R1�R2�, Eq. �13� takes the
form

G � 8��0
R1

R2
, F � 1 − G

h

8e2 . �18�

The second formula from above is shown in Fig. 3�c� with a
dashed black line.

The results presented in Fig. 3 show that the pseudodiffu-
sive formulas �Eq. �17�� for G and F match the exact expres-
sions �8� and �9� with Tj given by Eq. �16� in a relatively
wide range of ratios R1 /R2. Namely, the agreement becomes
better than 1% if R1�0.29R2 for the conductance and if R1
�0.43R2 for the Fano factor. For smaller R1 /R2, one can
identify the crossover from the pseudodiffusive to quantum-
tunneling behavior. In particular, the exact values of G are
closer to the tunneling formula �18� than to the pseudodiffu-
sive formula �17� below R1 /R2=0.11. The same is observed
for F below R1 /R2=0.16. The most characteristic feature of
the tunneling regime is the relation G��1−F��8e2 /h, fol-
lowing from Eq. �18�. It is satisfied with an accuracy better
than 10% for G�4e2 /h �or F�0.5�, corresponding to
R1 /R2�0.2. In this range, we also find that the conductance
decays �at fixed R1� as G	1 /L, where L
R2−R1�R2 is the
characteristic length of the sample area.

A similar power-law decay of the conductance with the
sample length is predicted for geometries with noncoaxial
leads considered in Appendix A. In the two limiting situa-
tions, the Möbius transformation �A1� maps an infinite plane
�hemiplane� with two �one� narrow circular openings onto
the Corbino disk. Physically, these two situations correspond
to the setup consisting of two circular leads probing a large
graphene sample �see Fig. 4�a�� and of one circular lead and
a long straight interface between the undoped and the heavily
doped region playing the role of a second lead �see Fig.
4�b��. In the first case, the mapping �A1� leads to �� l /r
and, subsequently, to the quadratic decay of the conductance

G
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FIG. 3. �Color online� Conductance and Fano factor for the
undoped Corbino disk in graphene, as a function of the radii ratio
��a� and �b�� and the shot noise vs �c� conductance diagram. The
curves calculated from Eqs. �8� and �9� are plotted with solid lines
on all panels. Dashed lines show the pseudodiffusive limit �17� on
panels �a� and �b� and the tunneling limit �18� on panel �c�.
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G � 8��0� r

l
�2

for r� l �19�

�with the radius of each lead r and the distance between leads
l�. In the second case, the functional ���2l� /r�1/2 and the
conductance

G � 4��0
r

l�
�20�

shows reciprocal decay with the sample area length, simi-
larly as observed for the Corbino disk. The approximate
relation between the conductance and the Fano factor
G��1−F��8e2 /h holds true for both situations of Fig. 4,
showing the tunneling-transport regime in graphene appears
generically for a setup consisting of �at least� one narrow
circular lead.

B. Electron transport at finite doping

We complement the study of the Corbino disk in graphene
with its transport properties at finite doping characterized by
the chemical potential �0
�vFk �where �0�0 and �0
�0 refers to electron and hole doping, respectively�. The
analysis is closely related to that for the electronic levels of
graphene rings.29 The single valley Hamiltonian for the
doped disk reads as

H = H0 + U�r��0, �21�

where H0 is given by Eq. �1�, the electrostatic potential
U�r�=U0 if R1�r�R2, and U�r�=U� otherwise. The chemi-
cal potential �0=E−U0 in the disk or ��=E−U� in the
leads. The rotational invariance of the problem allows us to
perform the mode matching for each eigenstate of the total
angular momentum Jz= lz+�z /2 �with lz
−i�� the orbital
angular momentum� separately. The eigenstate of the Hamil-
tonian �21� corresponding to the jth eigenvalue of Jz can be
written as

� j�r,�� = ei�j−1/2��� � j,A�r�
� j,B�r�ei� � = ei�j−�z/2��� j�r� , �22�

where j is a half-odd integer j=� 1
2 ,� 3

2 , . . .. For the electron
doping �E−U�r��0�, the radial components �
��A ,�B�T

for the incoming and outgoing waves are given �up to the
normalization� by

� j
in = �Hj−1/2

�2� ���
iHj+1/2

�2� ���
�, � j

out = �Hj−1/2
�1� ���

iHj+1/2
�1� ���

� , �23�

where H�
�1,2���� is the Hankel function of the �first and sec-

ond� kind, and the dimensionless radial coordinate is �= 	E
−U�r�	r / �vF� �so �=kr in the disk and �=Kr in the leads,
with K
	��	 / �vF��. The radial current density is jr
=evF�� j

in�out�	�r	� j
in�out��=�4evF / ����, where the upper

�lower� sign is for � j
in�� j

out�, �r=�x cos �+�y sin �, and we
use the identity Im�H�

�1����H�+1
�2� ����=2 / ����. For the hole

doping �E−U�r��0�, the wave functions are �̃ j
in�out�

= �� j
in�out���, where we use the relation H�

�2�= �H�
�1���. The

transmission and reflection amplitudes are obtained by the
wave-function matching at r=R1 and r=R2. �Note that the �
dependence of the spinor �22� plays no role for the mode-
matching analysis.�

Details of the calculations are given in Appendix B. For
	��	→� �the heavily doped leads limit�, the transmission
probability for the jth mode Tj =Tj��0� reads as

Tj =
16

�2k2R1R2

1

�D j
+�2 + �D j

−�2 , �24�

with

D j
� = Im�Hj−1/2

�1� �kR1�Hj�1/2
�2� �kR2�� Hj+1/2

�1� �kR1�Hj�1/2
�2� �kR2�� .

�25�

Equations �8� and �9� for G and F remain unchanged since
we again observe the symmetry T−j =Tj. In addition, the
particle-hole symmetry Tj�−�0�=Tj��0� allows us to limit
the discussion to �0�0.

Numerical values for the conductance and Fano factor of
the doped disk are presented in Fig. 5. Following the idea of
Kirczenow,30 we compare �in Fig. 5�a�� the exact quantum
conductance given by Eqs. �8� and �24� with the semiclassi-
cal approximation for large angular momenta

Gs-cl =
8e2

h
� j1 +

1

2
� , �26�

where j1=int�kR1− 1
2 �+ 1

2 is the maximal value of j such that
j�kR1. Surprisingly, the quantization steps of Gs-cl �dotted
black line� are missing in the actual data even for an ex-
tremely small radii ratio �solid blue and dashed red line for
R1 /R2=0.1 and 0.5, respectively�. Instead, weak modulation
with a period ��vF / �R2−R1� is observed when varying �0.
Earlier, conductance quantization �with the steps of 4e2 /h�
was predicted to appear for a graphene strip with a moderate
aspect ratio W /L�1.5,8 The quantization with the steps of
8e2 /h was found theoretically for a bipolar junction in
graphene, which shows the Goos-Hänchen effect.31 The lack
of conductance quantization observed here for the Corbino
disk shows that the role of evanescent modes, showing a
slow �power-law� decay with distance, is also crucial far
away from the Dirac point, illustrating a striking conse-
quence of angular momentum conservation.

Similar to the strip geometry,7 the conductance minimum
at �0=0 corresponds to the maximum of the Fano factor �see
Figs. 5�b��. The peak width shrinks approximately as

l′

2r 2r

l(a) (b)

FIG. 4. Large graphene flake probed by two circular leads of
radius r separated by the distance �a� l and by a lead placed in the
distance l� from a straight interface between undoped and heavily
doped regions �b�.
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�vF / �R2−R1� �for more data sets, plotted as a function of
�0�R2−R1� /vF=k�R2−R1�, see Fig. 5�c��. From an analyti-
cal treatment of the limit �0→0 for angular momentum
eigenstates �see Appendix B�, we find that Eq. �16� for Tj
obtained within the conformal mapping technique is repro-
duced.

C. Comparison with the Schrödinger system

As the Corbino disk containing Dirac fermions described
by the Hamiltonian �21� has not been studied in the literature
yet, a comparison with the corresponding Schrödinger sys-
tem is desirable for the sake of completeness. The existing
theoretical works,30 however, focus on the model with a spe-
cial angular momentum-dependent effective potential, which
simplifies the analysis, but makes a relation to the Dirac
system studied here unclear. For this reason, we now present
a mode-matching analysis for two-dimensional nonrelativis-
tic electron gas �2DEG� arranged in a Corbino setup with the
same potential profile as applied to Dirac fermions earlier in
this paper.

The Schrödinger equation for the Corbino disk in a 2DEG
reads as

�−
2

2m�

�2 + U�r��� = E� , �27�

where m� is the effective mass, and the electrostatic potential
U�r� is chosen identically as in the Hamiltonian �21�. The
solutions are written in the form of orbital-momentum lz
eigenstates

�l�r,�� = eil� l�r� , �28�

with l integer, and the radial wave function  l�r� a complex
scalar. The propagating modes in the leads exist only for
���0 and have the form  l

in�r�=Hl
�2��Kr� and  l

out�r�
=Hl

�1��Kr�, where K
�2m��� /2, and we assume scattering
from the outer lead. For the disk area, two linearly indepen-
dent solutions are given by Hl

�1��kr� and Hl
�2��kr� �with k


�2m�	�0	 /2� for �0�0. Otherwise, the solutions are
given by modified Bessel functions Il�kr� and Kl�kr�. The
mode-matching analysis is carried out separately for each
value of l,32 leading to the transmission probabilities

Tl =
1

	Ml	2
� 64

�2K2R1R2
�2

, �29�

where

Ml = Fl
�1,1��K,k,R2�Fl

�2,2��K,k,R1�

− Fl
�1,2��K,k,R2�Fl

�2,1��K,k,R1� , �30�

Fl
�i,j��K,k,r� = �Hl−1

�i� �Kr� − Hl+1
�i� �Kr��Cl

�j��kr�

− �k/K�Hl
�i��Kr��Cl−1

�j� �kr�� Cl+1
�j� �kr�� , �31�

with i , j=1,2, and the upper �lower� sign corresponding to
�0�0 ��0�0�. We further define

Cl
�1� =!��0�Hl

�1� +!�− �0�Il,

Cl
�2� =!��0�Hl

�2� +
4

�
�− �l!�− �0�Kl, �32�

with the step function !�x�=1 for x�0 or !�x�=0 other-
wise.

Numerical values of the conductance and the Fano factor
following from Eq. �29� are presented in Fig. 6 �Ref. 33� for
a large but finite value of the doping in the leads, adjusted
such that �2m��U0−U��R1 /=7. Both G and F are plotted
as functions of k�R2−R1�=�2m��0�R2−R1� / for fixed val-
ues of the radii ratio R1 /R2=0.1, 0.2, and 0.5 �solid, dashed,
and dash-dot lines, respectively�; G is additionally rescaled
by a factor �R2−R1� /R1 to illustrate its asymptotic behavior
for kR1�1, which is insensitive to the ratio R1 /R2.34 We also
limit the discussion to �0�0, as the probabilities Tl given by
Eq. �29� decay rapidly for �0�0, due to the lack of propa-
gating modes in the sample area.

Although the values of G shown in Fig. 6�a� are close to
the semiclassical result,34 the quantization steps are absent in
the data. Instead, we observe Fabry-Pérot oscillations with
the amplitude increasing with R2 /R1, for either G or F. We

µ0(R2−R1)/�vF
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FIG. 5. �Color online� Chemical-potential dependence of the
conductance �a� and Fano factor ��b� and �c�� at a fixed radii ratio
R1 /R2. Solid and dashed lines on panels �a� and �b� correspond to
R1 /R2=0.1 and 0.5, respectively. The dotted line on panel �a� is the
semiclassical approximation for the conductance. Panel �c� shows
the Fano factor as a function of the chemical potential in the units
of vF / �R2−R1�, with R1 /R2 specified for each curve on the plot.
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attribute the conductance quantization reported in earlier
works30 to the particular choice of the effective radial poten-
tial �note that the existing experiments for the Corbino disk
in a 2DEG35 found no conductance quantization�. The main
difference in transport through the Corbino disk geometry
between massless fermions in graphene and massive fermi-
ons in a 2DEG is the reduced backscattering at the contacts
and the absence of details of the leads �i.e., the doping� in the
former case.36 This is a direct consequence of the energy-
independent velocity in graphene, which is also responsible
for the Klein-tunneling phenomena.37 Moreover, we note a
suppression of the Fabry-Pérot oscillations for the relativistic
system.

IV. QUANTUM BILLIARDS BOUNDED WITH
SMOOTH EDGES

A. Section of the disk and circular quantum dot

A simple generalization of the formula �14� leads to the
conformal transformation that changes a finite section of the
Corbino disk with the inner radius R1, the outer radius R2,
and the spanning angle � �shown in Fig. 1�b�� into a rect-
angle of the width W and the length L, which is given by

z =
W
�

log
w

R1
. �33�

For z=x+ iy, where 0�x�L and 0�y�W, we get R1
� 	w	�R2 and 0�arg w�� �with 0���2��, under the
condition that R2 /R1=e�L/W. Using Eq. �7�, such a condition
leads to the functional �z�w�� in the form

� = ��R1,R2,�� = �R2

R1
��/�

. �34�

Thus, substituting Eq. �34� into Eq. �8� leads to the exact
expression for the conductance of a section of the Corbino
disk. Notice that the transmission probabilities Tj for the full
disk �16� are not reproduced for �=2�, as the mass confine-
ment is now present in the system. Instead, they are equal for

�=�, causing the conductance of such a half-disk to be
equal to half of the full disk conductance for arbitrary R1 /R2.
The pseudodiffusive limit ln ��1 is realized for R1�R2,
and the conductance �10� is

G � Gdiff =
�0�

ln�R2/R1�
. �35�

The above formula coincides with Eq. �17� for �=2�. The
opposite quantum-tunneling limit �ln ��1� is reached for
R1�R2, where formula �13� gives

G � 4��0�R1

R2
��/�

. �36�

In this case, the conductance decays �at fixed R1� with the
characteristic length L�R2 as G	L−�/�. The reciprocal de-
cay observed in Sec. III for the full disk now appears at �
=�.

As a next example, we consider the conformal transfor-
mation, which changes the quantum dot shown in Fig. 1�c�
into a rectangle of the width W and the length L. The trans-
formation is given by the formula25

z − z0 =
W
��

log
w + r

w − r
, �37�

with the condition �R2−R1+r�2 / �R2−R1−r�2=e��L/W, which
leads to

��R1,R2,�� = � r − R1 + R2

r + R1 − R2
�2�/��

. �38�

The origin of the coordinate system of Fig. 2 is now shifted
to z0
�L+ iW� /2. The poles of the transformation �marked
by white dots in Fig. 1�b�� are placed at w=�r, with r

�R2

2−R1
2. The angle ��=���R1 ,R2 ,��, at which the dot

edges intersect each other, is

�� = 2�!�� − �0� − sgn�� − �0�"��,�0� , �39�

with "��,�0� = 2 arcsin� sin
�

2
sin
�0

2

1 − cos
�

2
cos
�0

2
� , �40�

and �0
2 arccos�R1 /R2�. Again, substituting Eq. �38� into
Eq. �8� provides one with the exact expression for the system
conductance, which reaches the pseudodiffusive limit for
R1�R2, where G�Gdiff �see Eq. �10�� and

Gdiff =
�0��

ln��R2 − R1 + r�2/�R2 − R1 − r�2�
, �41�

whereas for the quantum-tunneling limit R1�R2, the formula
�13� reads as

G � 4��0� r + R1 − R2

r − R1 + R2
�2�/��

. �42�

This leads to an asymptotic form G��R1 /R2�2�/�, as ��
→� and r→R2 for R1 /R2→0, while the Fano factor ap-
proaches the Poissonian value F�1.
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FIG. 6. �Color online� Chemical-potential dependence of the �a�
conductance and the �b� Fano factor for the Corbino disk in a
2DEG. Different lines in each panel correspond to different values
of the radii ratio R1 /R2=0.1 �solid blue lines�, 0.2 �dashed red
lines�, and 0.1 �black dash-dotted lines�. The electrostatic potential
step is fixed at �2m��U0−U��R1 /=7.
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B. Numerical results

We now test the analytical predictions reported earlier in
this section by comparing them with the results of a com-
puter simulation of electron transport in graphene. The dis-
cussion starts from the tight-binding model of graphene, with
Hamiltonian

H = �
i,j
#ij	i��j	 + �

i

Vi	i��i	 . �43�

The hopping matrix element #ij =−# if the orbitals 	i� and 	j�
are nearest neighbors on the honeycomb lattice �with #
=2.7 eV�, otherwise, #ij =0. The single-particle potential Vj
is arranged such that the chemical potential � j 
EF−Vj
=�� in the leads marked by shadow areas in Fig. 7, whereas
between the leads �white area� � j =0, except for the small
regions, where we put � j =�A,B �with �A=−�B, depending
whether the atom belongs to the A or B sublattice� to model
a mass confinement on a honeycomb lattice.13 Such regions
are the outermost edge atoms in the case of the half-Corbino
disk �Fig. 7�a�� and the atoms placed out of the dot edge
�thick lines in Fig. 7�b�� for the case of a quantum dot with
circular edges.

We have calculated the transmission matrix numerically
by adapting the method developed by Ando for a square
lattice38 to the honeycomb lattice. The results of our com-
puter simulation39 depicted by data points in Fig. 8 match
theoretical predictions �solid blue lines� as long as the num-
ber of modes in the narrow lead N1�20. Moreover, the for-
mulas �35� and �41� for the pseudodiffusive conductance
�dashed red lines in Figs. 8�a� and 8�b�� reproduce the full
expression �8� with 1% accuracy for R1�0.29R2 in the case
of the half-Corbino disk, and for R1�0.69R2 in the case of
the quantum dot with circular edges. Analogously, the
pseudodiffusive value of the Fano factor F�1 /3 �see Figs.
8�c� and 8�d�� matches the full expression �9� with 1% accu-
racy for R1�0.43R2 and R1�0.81R2, respectively.

In other words, the half-Corbino disk, attached to one
narrow and one wide lead, represents the case in which elec-
tron transport demonstrates the pseudodiffusive character in
a surprisingly wide range of the system’s geometrical param-
eters. On the contrary, in the case of the circular quantum dot
attached to two narrow leads, both the conductance and the
shot noise show strong deviations from the pseudodiffusive

predictions, as the transport is dominated by a single mode in
a relatively wide range of parameters. The latter represents
an example of a graphene system for which our predictions
on quantum-tunneling transport �such as an approximately
quadratic decay of the conductance with R2 /R1� seem to be
particularly feasible for an experimental verification also be-
cause similar systems have already been fabricated,40 sug-
gesting that the role of mass confinement is crucial when
discussing the electronic structure of closed quantum dots in
graphene. Moreover, a recent numerical study shows that the
mass confinement leads to a strong suppression of weak
localization in such systems,41 as observed earlier in
experiment.42

Below, we extend our numerical analysis to open systems
that cannot be obtained from a strip by conformal transfor-
mation to illustrate the generic character of the quantum-
tunneling transport in undoped graphene.

V. ELECTRON TRANSPORT ACROSS
A LONG NANORIBBON

In this section, we present the results obtained from com-
puter simulations of transport across a long nanoribbon at-
tached to the semicircular �Fig. 9�a�� and rectangular �Fig.
9�b�� leads, which demonstrate a striking analogy between
these systems and the circular quantum dot studied in the
previous section.

Each of the systems in Fig. 9 is modeled by the tight-
binding Hamiltonian �43�. The simulation parameters43 are
chosen to grasp the basic features of recently fabricated
graphene nanoribbons,44 which have zigzag edges and are
insulating, as the weak staggered potential placed at the rib-
bon edge opens a band gap in the electronic spectrum.45 A
similar effect was observed in recent numerical studies of
long nanoribbons with weak edge disorder46 or irregular
edges.47

(b)(a)
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W
∞

2R
1

FIG. 7. �a� The half-Corbino disk and quantum dot with �b�
circular edges realized on a honeycomb lattice. Shadow areas mark
heavily doped graphene leads. Thick black lines indicate the mass
confinement.
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FIG. 8. �Color online� ��a� and �b�� Conductance and ��c� and
�d�� Fano factor for the half-Corbino disk �left� and circular quan-
tum dot �right�. Solid lines show the results obtained by numerical
summation of Eqs. �8� and �9� over the modes, dashed lines show
the pseudodiffusive limits �10� and �12�. Data points on left/right
panels are obtained from a computer simulation of transport
through the system of Figs. 7�a� and 7�b�.
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A. Results for an infinitely long ribbon

We utilize the four-terminal recursive Green’s function
algorithm,16 which allows us to analyze directly the electron
transport across an infinitely long nanoribbon in graphene.
Namely, we attached two extra leads �one from the top and
one from the bottom, not shown� to each of the systems in
Fig. 9 that are undoped and thus contain the evanescent
modes only. �Notice that the chemical potential for the out-
ermost edge atoms �A,B�0.43� The results are shown in Fig.
10.

The conductance of a nanoribbon attached perpendicu-
larly to circular leads �top panel in Fig. 10, open symbols�
approaches the asymptotic formula for the circular quantum
dot �41� with R1=W /2, R2=L /2, and �=� for W�L �solid
red line�. For instance, a 2% agreement is reached at W /L
=0.85. This is a consequence of the fact that in the absence
of propagating modes in a ribbon, most of the current flows
via the central region of the device, and the system of Fig.
9�a� becomes effectively identical to the circular quantum
dot in the pseudodiffusive limit, where the role of boundary
conditions is negligible. For the opposite quantum-tunneling
limit W�L, the corresponding formula �42� may be written
as

G � 2$��0�W/L�2−$, with $
 4W/�L , �44�

which agrees surprisingly well with the actual data shown in
Fig. 10 �see the inset in the top panel; solid red line and open
symbols, respectively�. Such an agreement can be under-
stood when looking at the current-density distribution shown
in Fig. 11. Even for an aspect ratio as small as W /L�0.5,
over 90% of the current does not leave the area of a circular
quantum dot �bounded symbolically with dashed lines�.

For the case of a nanoribbon attached perpendicularly to
rectangular leads �Fig. 9�b��, the pseudodiffusive conduc-
tance �for W�L� is given by48

Gdiff =
�0W

2L

�

arctan�W

L
� + �W

L
�ln�1 + � L

W
�2

, �45�

which is depicted in the top panel of Fig. 10 �dashed blue
line� and matches the numerical data �solid symbols� within
2% accuracy for W /L�2. An identically good agreement
with the numerics is observed for the asymptotic form of the
formula �45� Gdiff��0�W /L+1 /��, showing that the infinite
ribbon attached perpendicularly to the leads has an extra

�0 /� conductance in comparison with the rectangular geom-
etry considered in Refs. 7–10.

A brief comparison between the formula �45� and the ge-
neric form of the pseudodiffusive conductance �10� allows us

(b)

W

L L

(a)

FIG. 9. Nanoribbon attached perpendicularly to the �a� semicir-
cular and �b� rectangular leads. Each system is characterized by the
lead width W and the sample area length L. Shadow areas mark
heavily doped graphene leads.
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FIG. 10. �Color online� ��a� and �b�� Conductance and ��c� and
�d�� Fano factor obtained numerically for the system of Figs. 9�a�
and 9�b� �open and solid symbols in all panels� compared with
analytical predictions �lines�. �a� The pseudodiffusive conductances
�41� �solid red line� and �45� �dashed blue line�. Solid and dashed
lines in panels �b� and �c�: the tunneling conductances �44� and �47�
and the corresponding values of the Fano factor F�1−Gh /4e2.
�The relation depicted by the solid line in the shot noise vs conduc-
tance diagram �d�.� The pseudodiffusive limit F=1 /3 is shown by
the ��c� and �d�� black dotted line.

FIG. 11. �Color online� Current distribution in a long nanorib-
bon attached to circular �left� and rectangular �right� leads, as
shown in Figs. 9�a� and 9�b�. Each arrow represents the average
current density for a rectangle consisting of 17�17 unit cells. The
aspect ratio of both systems is W /L�0.5. Dashed lines mark sym-
bolically the edges of the corresponding quantum dot of Fig. 7�b�.
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to consider the functional �
��W /L� in an approximate
form given by

ln �� 2�ln�W

L
� + � L

W
�arctan�W

L
�� . �46�

Subsequently, an approximate form of the quantum-
tunneling conductance �13� for W�L is

G � 4��0�
−1 � 4��0e−2�W/L�2. �47�

Again, the formula �47� shows a surprisingly good approxi-
mately 10% agreement with the numerical data presented in
Fig. 10 �see the inset in the top panel; dashed blue line and
solid symbols, respectively�, suggesting that the power-law
�approximately quadratic� decay of G for large L is a generic
feature for transport across the nanoribbon unrelated to the
particular shape of the leads.49

The numerical results for the shot-noise power are pre-
sented in the bottom panel of Fig. 10. The approximative
formulas �44� and �47� are substituted in the relation F�1
−Gh / �4e2�, which produces the analytical predictions de-
picted by solid red and dashed blue lines, respectively. In
both cases, the agreement with numerical results is better
than 5% when the Fano factor F�2 /3. An additional insight
into the nature of the crossover from the Poissonian to the
pseudodiffusive regime is provided by an F versus G plot
�see the inset�. In particular, values of F are very close to
1−Gh / �4e2� even for a relatively large conductance G
�2e2 /h, which indicates that electron transport is governed
by a single valley-degenerated mode in a wide range of the
geometrical parameters �W /L�0.5 for the circular leads, and
W /L�1.5 for the rectangular leads�.

B. Influence of armchair edges in a finite ribbon

So far, we have analyzed the transport across an infinitely
long zigzag nanoribbon attached perpendicularly to the
leads. To find out how the results change for the realistic case
of a long but finite nanoribbon, we consider now the system
of Fig. 9 with a central �undoped� region of finite width W�.
The system is terminated from the top and the bottom by
armchair boundaries, which mix valley degrees of freedom,7

so the fourfold �spin and valley� degeneracy of transmission
eigenvalues Tj is expected to be replaced by the twofold
�spin only� degeneracy. To trace the effect of armchair
boundaries in a quantitative manner, we define the mode-
participation ratio

Pm =
�� j

Tj�2

� j
Tj

2
=

2

1 − F

G

��0
, �48�

where we assume spin-only degeneracy in summations. In
particular, for the quantum-tunneling limit W�L, the mode-
participation ratio is Pm�2 if the lowest mode, which gov-
erns the electronic transport, has an approximate valley de-
generacy. Otherwise, in this limit Pm�1.

The numerical values of the mode-participation ratio �48�
are presented in Fig. 12. We took W=80a �providing 30
propagating modes for ��=# /2�, L=150�3a �so W /L�0.3�,

and vary W�. The remaining parameters are identical as in
the case of an infinite ribbon studied before. The data points
in Fig. 12 illustrate a smooth crossover from the transport
dominated by a single mode with spin-only degeneracy
�W��W�L�, to the situation with full fourfold degeneracy
�W�L�W��. The details of the evolution depends on
whether the width W� corresponds to the metallic �W� /a
=3k+1� or to one of the two insulating armchair boundary
conditions �W� /a=3k ,3k+2�. In all cases, the valley degen-
eracy is approximately restored �Pm�2, marked with thin
black line� for W��2L, when the role of armchair edges
becomes negligible, as the current is flowing predominantly
via the central area of the system �see the current distribution
shown in Fig. 11, right panel�.

C. Implications for the experiment

For the sake of completeness, we analyze now the trans-
port through a graphene billiard attached to two different
leads, one narrow and semicircular, and the other wide and
rectangular, as shown in Fig. 13. As before, mass confine-
ment �thick black lines� is applied for the edges not con-
nected to the leads �shadow areas�. The system shown in the
left panel of Fig. 13 can be exactly mapped onto a strip
�see Fig. 2� by the conformal transformation �37� with the
condition �l�+2L−W� / �l�−2L+W�=e��L/W, where l�

�4L2−W2. This implies the functional

��W/L� = � l� + 2L − W

l� − 2L + W
��/��

, �49�

where ��=2�−2 arcsin�l� / �2L�� is the angle with which
edges intersect each other in the poles of conformal transfor-
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FIG. 12. �Color online� Mode-participation ratio for transport
through the system of Fig. 9 with W /L�0.3 and finite width of the
undoped region W�. Three curves on each panel correspond to
W� /a=3k �squares�, 3k+1 �circles�, and 3k+2 �triangles�, with k
integer. Top: circular leads; bottom: rectangular leads. Lines are
drawn as a guide for the eyes only.
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mation �see Fig. 1�c�, with �=��. The pseudodiffusive �10�
and the quantum-tunneling conductance now take on the
forms

Gdiff =
�0��

ln��l� + 2L − W�/�l� − 2L + W��
, �50�

with ��→2� for W /L→1, and

G � 4��0� l� − 2L + W

l� + 2L − W
��/��

� ��0
W

L
, �51�

where the last asymptotic expression refers to the limit
W /L→0, for which the system behaves effectively like the
half-Corbino disk with the inner radius R1=W /2 and the
outer radius R2=2L. As a consequence, the pseudodiffusive
conductance �50� reproduces the values obtained from the
exact expression50 with 1% accuracy for W /L�0.82.

Another striking feature of the pseudodiffusive regime
W�2L, which coincides with findings presented earlier in
this section, is related to the fact that poles of the conformal
transformation �37� approach the circular lead tip for W /L
→2. This is why the current is flowing mainly through the
central area of the system and the two billiards shown in Fig.
13 become equivalent in such a limit. The earlier findings for
the circular quantum dot and the long nanoribbon attached
perpendicularly to the leads allow us to expect that the con-
ductance of the nanoribbonlike system shown in the right
panel of Fig. 13 will not deviate significantly from the
expression50 also in the tunneling limit W�L. The numerical
results presented in Fig. 14 confirm such an expectation, as
the conductance obtained by a computer simulation for the
nanoribbonlike system51 match again the analytical predic-
tions for the system with circular edges in surprisingly wide
range of the parameters. Namely, 10% agreement is reached
for W /L�0.4, whereas for W /L�0.8 the deviation drops
below 2%.

We predict that the pseudodiffusive conductance �50� re-
mains unchanged for a wide class of irregular graphene bil-
liards of shapes fitting between the two limiting cases shown
in Fig. 13. Moreover, an approximate agreement should be
observed even for the tunneling conductance �51�. We be-
lieve that such an extra flexibility in device setups will fa-
cilitate experiments with better agreement with the theory as
achieved so far for rectangular samples.9,10 In particular, the
setup consisting of the narrow semicircular lead on one side
and the straight graphene-lead interface on the other side,
eliminates the difficulty of manufacturing the two parallel

interfaces: one of the main problems that have limited the
number of experimental samples, suitable for both ballistic
conductance and shot-noise measurements, to just a few so
far.

VI. CONCLUSIONS

In conclusion, we have identified a type of quantum-
tunneling effect, which appears in transport through the
Corbino disk and quantum billiards in undoped graphene
provided that at least one of the leads �or billiard openings� is
much narrower than the distance between openings L, which
defines the length scale of the sample. In such a tunneling
limit, the conductance G shows a slow power-law decay with
L characterized by a geometry-dependent exponent. The
Fano factor F exhibits a crossover from the pseudodiffusive
�F=1 /3� to Poissonian �F=1� shot noise, with a relation G
��1−F��se2 /h in a surprisingly wide range of L. This is
because electron transport in the tunneling limit is effectively
governed by a single mode, having the full spin, valley, and
symplectic degeneracy �s=8� in the absence of boundaries
�Corbino geometry�, spin and valley degeneracy �s=4� if the
boundary conditions do not scatter carriers between the val-
leys, or the spin-only degeneracy �s=2� otherwise. In par-
ticular, for the case of a ribbon, which contains either
infinite-mass or armchair boundaries, the valley degeneracy
is restored when armchair endings are shifted away from the
area where the main current flows. We would like to stress
that the relation between G and F allows an experimental
verification of the degeneracy s without referring to any geo-
metrical parameters.

We have explored the idea of Katsnelson and Guinea15

that transmission eigenvalues could be obtained analytically
for any undoped graphene flake of a geometry linked via
conformal transformation to a strip, for which the solution is

W

L
L

⇐⇒

FIG. 13. These two graphene billiards both have the same con-
ductance and shot noise in the pseudodiffusive regime W�2L.
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FIG. 14. �Color online� Conductance and shot noise of the two
systems shown in Fig. 13. Main panel: the exact �solid line� and the
pseudodiffusive �dashed line� values of conductance for a billiard
with circular edges and the results of computer simulation for a
nanoribbonlike billiard �datapoints�. Inset: shot noise vs conduc-
tance diagram for a nanoribbonlike billiard. Solid and dashed lines
mark the asymptotic values for the tunneling and the pseudodiffu-
sive limit, respectively.
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known due to Tworzydło et al.7 In the pseudodiffusive limit,
we show that the eigenvalue distribution is affected by an
arbitrary conformal transformation only via a multiplicative
prefactor, and the value F=1 /3 is unchanged for any closed
setup provided that G�e2 /h. We test the approach for the
Corbino disk, by comparing transmission probabilities ob-
tained by a conformal mapping, and within the mode-
matching analysis for angular momentum eigenstates. To
analyze a crossover from the tunneling to the pseudodiffu-
sive limit in a confined system, we focus on two particular
billiards �a section of the Corbino disk and the quantum dot
with circular edges� confined by a mass. The results of our
numerical simulation of transport through a lattice consisting
of approximately 105 carbon atoms match the expressions for
G and F obtained by conformal mapping. Moreover, we gen-
eralize the approach to obtain an approximate formula for G
�which reproduces either the pseudodiffusive values or the
tunneling-limit exponent resulting from the simulation� in
the case of an infinite ribbon attached perpendicularly to the
leads: an open billiard, not linked to the strip via conformal
transformation.
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APPENDIX A: CONFORMAL MAPPING FOR A GENERIC
SETUP WITH CIRCULAR CONTACTS

We consider here a generic setup, containing two circular,
but not coaxial interfaces splitting undoped and heavily
doped graphene interfaces, as depicted schematically in Fig.
15. In the first case, an infinite graphene plane is probed by
the leads of radii r1 and r2 �thick solid lines� misplaced by
the distance d+�r1+r2 �we further suppose r1�r2� and
heavily doped. In the second case, a disklike sample area is

limited by the inner lead of radius r1 �dashed circle� and the
outer lead of radius r2 misplaced by d−�r2−r1 �and for d−
→0 the perfect Corbino geometry is restored�. In both situ-
ations, conformal mapping onto the Corbino disk is provided
by the Möbius transformation,

z =
w − %

w + %
, �A1�

where z belongs to the disk area �with the edges radii R1 and
R2, R1� 	z	�R2� and w belongs to the sample area of Fig.
15. The real parameter % is adjusted such that

d� = �r2
2 + %2� �r1

2 + %2, �A2�

which leads to the useful relation

d+d− = r2
2 − r1

2. �A3�

�Notice that we are using one form of z�w� to describe the
two distinct situations, in each of which only one of the
displacements d+ ,d−� is a physical parameter.�

The explicit form of the functional �
�R2 /R1�1/2 follows
from the condition that the transformation �A1� always maps
the first contact �of radius r1� onto the inner edge of the disk,
whereas the second contact is mapped onto the outer edge.
For the two situations studied here

��r1,r2,d�� = � x1 + y1

x1 − y1

x2� y2

x2� y2
�1/2

, �A4�

where we define the variables x
=d++s
d−+2r
, y

=��d++s
d−�2− �2r
�2 �with s

2
−3, 
=1,2�. The re-
maining one of the parameters d+ ,d−� not listed explicitly as
an argument of � is determined by Eq. �A3�.

In particular, for the case of two identical circular leads
probing a large graphene plane �see Fig. 4�a�� r1=r2
r, d−
=0, and the functional

��r,d+� =
d+ + 2r + �d+

2 − 4r2

d+ + 2r − �d+
2 − 4r2

�
d+

r
, �A5�

where the approximation refers to the r�d+ limit. Defining
l
d+, we obtain Eq. �19� of the main text. Similarly, taking
the limit r2 ,d+→� such that l�
d+−r1−r2=const, we find
from Eq. �A4� that ���2l� /r�1/2 for r
r1� l�, which leads
to Eq. �20� for the conductance.

APPENDIX B: MODE MATCHING FOR
THE CORBINO DISK

Here, we derive the transmission and reflection ampli-
tudes for scattering eigenstates of the Hamiltonian �21� for
the Corbino setup, as shown in Fig. 1�a�. Without loss of
generality, we suppose electron doping in the leads E�U�,
but an arbitrary doping in the sample area $
sgn�E−U0�
=�1.

The radial component � j�r� of the eigenstate � j �22� cor-
responding to the total angular momentum j �j half-odd
integer� and energy E can be divided into three regions. For
r�R2 �the outer lead�, � j 
� j

I, with

d−

d+

r 1

r
2

r
1

FIG. 15. Generic circular contacts �thick lines� of radii r1 and
r2�r1 misplaced by a distance d+�r1+r2 or d−�r2−r1 �dashed
line depicts the inner contact interface for the latter case�. White
dots mark poles of the transformation �A1�; thin lines are perpen-
dicular to each of the interfaces �and mapped onto the radiant lines
by the transformation�.
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� j
I = �Hj−1/2

�2� �Kr�
iHj+1/2

�2� �Kr�
� + rj�Hj−1/2

�1� �Kr�
iHj+1/2

�1� �Kr�
� , �B1�

where K= 	E−U�	 /vF with U�→−�,52 and rj the reflection
coefficient. Next, for R1�r�R2 �the disk area�, � j 
� j

II,
with

� j
II = aj� Hj−1/2

�2� �kr�
i$Hj+1/2

�2� �kr�
� + bj� Hj−1/2

�1� �kr�
i$Hj+1/2

�1� �kr�
� , �B2�

where k= 	E−U0	 /vF. Finally, for r�R1 �the inner lead�,
� j 
� j

III, with

� j
III = tj�Hj−1/2

�2� �Kr�
iHj+1/2

�2� �Kr�
� . �B3�

Solving the matching conditions � j
I�R2�=� j

II�R2� and � j
II�R1�

=� j
III�R1�, we find

aj =� 2

�KR2
e−i&2�$D j

− + iD j
+�−1�Hj−1/2

�1� ��1� + i$Hj+1/2
�1� ��1�� ,

�B4�

bj = − aj

Hj−1/2
�2� ��1� + i$Hj+1/2

�2� ��1�
Hj−1/2

�1� ��1� + i$Hj+1/2
�1� ��1�

, �B5�

where �
=kR
 �with 
=1,2�, &2=KR2−�j /2, and we have
defined

D j
� = Im�Hj−1/2

�1� ��1�Hj�1/2
�2� ��2�� Hj+1/2

�1� ��1�Hj�1/2
�2� ��2��

= − Jj−1/2��1�Y j�1/2��2� + Y j−1/2��1�Jj�1/2��2�

� Jj+1/2��1�Y j�1/2��2�� Y j+1/2��1�Jj�1/2��2� , �B6�

with J�����Y����� as the Bessel functions of the first �second�
kind. The reflection and transmission amplitudes are

rj�E� = e−2i&2�$D j
− + iD j

+�−1

�Hj−1/2
�2� ��2��Hj−1/2

�1� ��1� + i$Hj+1/2
�1� ��1��

− Hj−1/2
�1� ��2��Hj−1/2

�2� ��1� + i$Hj+1/2
�2� ��1�� − $D j

− − iD j
+� ,

�B7�

and

tj�E� =
4$eiK�R1−R2�

�k�R1R2�$D j
− + iD j

+�
. �B8�

Defining Tj 
	tj�E�	2, we obtain Eq. �24� of the main text.
Notice that Tj depends solely on �0=E−U0, as tj�E� is af-
fected by ��=E−U� only via a phase factor. It is also insen-
sitive to the doping sign $=�1, which corresponds to the
particle-hole symmetry.

For the undoped-disk limit �k→0�, Eq. �B6� leads to the
asymptotic form

$D j
− + iD j

+ �
2$

�k�R1R2
��R1

R2
� j

+ �R2

R1
� j� . �B9�

Substituting the above formula into Eq. �B8�, we obtain Tj
= 	tj�E→U0�	2 as given by Eq. �16� of the main text. Hence,
the correspondence between the mode matching for angular
momentum eigenstates and the conformal mapping tech-
nique for the disk in undoped graphene is established.
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