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Abstract. We consider the energy averaged two-point correlator of spectral

determinants and calculate contributions beyond the diagonal approximation using

semiclassical methods. Evaluating the contributions originating from pseudo-orbit

correlations in the same way as in [S. Heusler et al. 2007 Phys. Rev. Lett. 98,

044103] we find a discrepancy between the semiclassical and the random matrix theory

result. A complementary analysis based on a field-theoretical approach shows that the

additional terms occurring in semiclassics are cancelled in field theory by so-called

curvature effects. We give the semiclassical interpretation of the curvature effects in

terms of contributions from multiple transversals of periodic orbits around shorter

periodic orbits and discuss the consistency of our results with previous approaches.

1. Introduction

It is currently accepted that progress on the long way to rigorous grounds of the

Bohigas-Giannoni-Schmit conjecture [1], stating the emergence of universal fluctuations

in the quantum spectra of systems with classical chaotic dynamics, depends on the

understanding of correlations among the actions of classical periodic orbits. This idea

was pioneered in Berry’s seminal paper [2], showing how to incorporate the most basic

kind of action correlations into the semiclassical calculation of the spectral form factor.

Berry’s calculation, referred to as diagonal approximation, considers the contribution

from orbit pairs with exactly the same action, i.e. orbits paired with themselves or

their time-reversed counterpart in the case of time reversal symmetry. This calculation

reproduces the leading order in a short-time expansion of the form factor obtained from

random matrix theory (RMT) (or the leading order in an expansion in the inverse energy

difference of the RMT spectral correlator).

In seeking classical correlations responsible for the higher order terms Sieber and

Richter succeeded [3], invoking a subtle shift of the point of view: instead of looking for

pairs of classical orbits with correlated actions, one constructs them for a given value of

the effective Planck’s constant. The mechanism underlying the formation of correlated

orbit pairs is the exponentially close approach of classical orbits and their time reversed
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partners everywhere except in the vicinity of a self crossing, as shown in Fig. 1. This

approach, giving the next to leading order contribution to the RMT form factor in the

orthogonal case, was then generalized, leading to the semiclassical calculation of the

RMT form factor for times smaller than the Heisenberg time TH [4]. Based on the

analogy between semiclassics and field theory the form factor for times larger than TH

could be obtained semiclassically in [5], although the underlying correlations remained

unclear.

Figure 1. Sketch of the orbit correlation mechanism described in [3].

The approaches dealing with times smaller than the Heisenberg time started from

the density of states d(E), defined in terms of the spectrum {En} as

d(E) =
∞
∑

n=1

δ (E − En) , (1)

which is approximated semiclassically by the Gutzwiller trace formula [6],

dG(E) = d̄(E) +
1

π~
ℜ
∑

p

T prim
p Dp(E)eiSp(E)/~. (2)

It contains a smooth part, the mean level density d̄(E), and an oscillatory part expressed

as a sum over classical periodic orbits p possessing the classical actions Sp, the primitive

periods T prim
p and the stability amplitudes Dp(E); for their exact form see [6]. The

Gutzwiller trace formula incorporates however the drawback that it is divergent, since

it contains an infinite sum over an exponentially proliferating number of periodic orbits.

This problem of the Gutzwiller trace formula renewed the interest in the

semiclassical theory of spectral determinants. The quantum spectral determinant is

defined as

∆ (E) =
∞
∏

n=1

Ω(E, En)(E − En), (3)

where Ω(E, En) is a regularization factor without real zeros. The density of states,

considered before, is proportional to the imaginary part of the logarithmic derivative of

this determinant. The crudest semiclassical approximation for the spectral determinant

is its representation as an infinite product over the classical orbits p occurring in the

Gutzwiller trace formula. Equivalently, ∆(E) can be written as an infinite sum over
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composite orbits, so called pseudo-orbits A with overall actions and stabilities given,

respectively, by the sum and the product of the actions and stabilities of all possible

subsets of periodic orbits with nA elements [7],

∆G (E) = B(E)e−iπN̄(E)
∏

p

exp{−Dp(E)eiSp(E)/~}

= B(E)e−iπN̄(E)
∑

A

(−1)nAFA(E)eiSA(E)/~. (4)

Here, N̄(E) is the mean number of states up to energy E and B(E) a regularization

factor. This form is divergent, as it is only based on the Gutzwiller trace formula.

However, by directly imposing that the spectral determinant is real for real energies, a

semiclassical theory of the spectral determinant can be constructed. Such an approach

was developed by Keating and Berry [8] and obtained by Georgeot and Prange using

Fredholm theory [9]. Thereby an improved (resurgent) semiclassical approximation to

the quantum spectral determinant is obtained. It is given by

∆R1 (E) = 2ℜ∆G
TH/2 (E) , (5)

where ∆G
TH/2 (E) is obtained from ∆G (E) by including only pseudo-orbits with periods

smaller than TH/2. Taking the real part assures that ∆R1(E) is real for real energies.

Moreover, truncating the sum over pseudo-orbits makes ∆R1(E) convergent. In this

paper we will also consider

∆R2 (E) = 2ℜ∆G (E) , (6)

imposing only the spectral determinant to be semiclassically real.

Starting from the semiclassical approximation ∆G(E), Ref. [5] considered a

generating function containing in the numerator and in the denominator two spectral

determinants at four different energies. By taking derivatives with respect to two

energies, identifying afterwards the two energies in the numerator with the two energies

in the denominator in two different ways and adding the results of these identifications,

they obtain the full RMT form factor. The idea then pursued in Ref. [10] was to use the

representation (5) for the spectral determinant instead of ∆G(E) and to consider only

one identification of the energies. Due to complications from the finite cutoff of the sum

defining ∆R1(E), the authors of Ref. [10] used thereby ∆R2(E).

In this paper we consider the question, how to obtain semiclassically the RMT

results for the energy averaged two-point correlator of spectral determinants,

Cβ(e) = lim
d̄(E)→∞

〈∆(E + e/2d̄)∆(E − e/2d̄)〉E
〈∆(E)2〉E

, (7)

starting from the semiclassical representation ∆R2(E) and using the knowledge about

action correlations between orbits and pseudo-orbits. The index β in Eq. (7) refers to

the universality class, i.e. β = 1, 2 for the orthogonal and unitary case, respectively.

This problem was first addressed by Kettemann et al. [11] in the context of quantum
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maps using diagonal approximation. The quantity Cβ=2(e) was then reconsidered in

diagonal approximation in Ref. [10] for continuous flows applying the methods of [5]. In

both cases the calculations show perfect agreement with the universal RMT results for

the unitary case

CRMT
β=2 (e) ∝ sin πe

πe
. (8)

Here the proportionality sign indicates that we focus on the universal part of Cβ(e) and

do not consider the semiclassical calculation of the prefactor.

In the case of time reversal symmetry, however, Ref. [11] could not obtain

semiclassically the RMT result

CRMT
β=1 (e) ∝

(

cos πe

(πe)2
− sin πe

(πe)3

)

. (9)

In this paper we evaluate Cβ(e) beyond the diagonal approximation. Using

semiclassical techniques to account for action correlations and its natural extension

to pseudo-orbit correlations we first demonstrate in Sec. 2 that the pseudo-orbit

correlations, shown to cancel in the calculation of the spectral density correlator

[5], do not vanish when one considers the simplest non-rational function of spectral

determinants, i.e. Eq. (7). We show furthermore by explicit implementation of ∆R1(E)

that the problem, i.e. the apparent disagreement with RMT, is not solved with the

correct truncation of the sum over pseudo-orbits. The third section is devoted to a

corresponding field theoretical analysis of Cβ(e), showing that the additional terms we

find in our semiclassical analysis are cancelled in field theory by so-called curvature

contributions. In the fourth section we then provide a new type of correlations between

pseudo-orbits that allows us to semiclassically recover the RMT result in the unitary

and, for the first time, also in the orthogonal case. After a discussion of the consistency

of our results with previous results in the fifth section we finally conclude.

2. Semiclassical calculation

We semiclassically evaluate the correlator Cβ(e) by means of ∆R2(E). Upon substituting

Eqs. (4) and (6) into the numerator of Eq. (7), this leads to

〈

∆
(

E +
e

2d̄

)

∆
(

E − e

2d̄

)〉

E

= 2B2(E)ℜe−iπe

〈

∑

A,B

FAF ∗
B (−1)nA+nB e(i/~)(SA−SB)eiπe(τA+τB)

〉

E

, (10)

where τA,B = TA,B/TH are the periods of the pseudo-orbits A, B in units of the

Heisenberg time TH = 2π~d̄, and where we neglected highly oscillatory terms in E.

We also expanded the actions of the pseudo-orbits around E. In the present context

the application of the diagonal approximation is equivalent to taking the actions as
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uncorrelated random variables, and therefore selecting A = B. We then can write the

sum over pseudo-orbits as an exponentiated sum over orbits a. The Hannay and Ozorio

de Almeida sum rule [12] is afterwards used to replace the sum over orbits,
∑

a |Fa|2 (.),

by
∫∞

T0

dT
T

(.), where the minimal period T0 will produce an e-independent prefactor that

cancels due to the denominator in Eq. (7). We finally obtain in diagonal approximation

the first term in the squared brackets in

Cβ(e) ∝ −ℜ e−iπe

(iπe)2/β

[

1 + C̃β(e)
]

. (11)

The function C̃β(e) contains all universal effects beyond the diagonal approximation,

consisting of both orbit and pseudo-orbit correlations. In the following we compute

C̃β(e) to leading order in 1/e.

In the unitary case, the leading order in 1/e contribution to C̃β=2(e) comes from

the first pseudo-orbit correlations, namely, the “eight-shaped” diagrams, see Fig. 2 [5].

To be more precise, we include in A a pseudo-orbit of order n and in B a pseudo-orbit

Figure 2. Sketch of an “eight” diagram, an example of correlated pseudo-orbits [5].

of order n + 1 and vice versa. All orbits contained in A and B are assumed to be equal

except for the ones forming an “eight”-orbit. This orbit consists of two components: one

long orbit encountering itself at one point and two independent orbits encountering each

other near the encounter of the first component. Both components are exponentially

close to each other up to deviations in the encounter region. For the evaluation of this

contribution we follow Ref. [5]: ∆S = su is the action difference of the two components

with s, u being the difference of the stable and unstable coordinate in a Poincaré surface

of section placed in the encounter-region of duration tenc = 1
λ

ln
(

c2

|su|

)

with a classical

constant c. Furthermore the weight function counting how often the long orbit of length

T has an encounter, is given by wT (s, u) = T (T−2tenc)
2tencΩ(E)

, where Ω(E) is the volume of the

energy shell at energy E. Employing these expressions we obtain

C̃eight
β=2 (e) = − 2

∫ c

−c

dsdu

∫ ∞

2tenc

dT

T
wT (s, u) e(i/~)sue2πieT/TH



The semiclassical origin of curvature effects in universal spectral statistics 6

= − 1

πie
, (12)

where the factor 2 in the first line results from the possibility to include the two short

orbits in the A- or B-sum in Eq. (10). Using C̃eight
β=2 (e) in Eq. (11) gives a result which

is inconsistent with the RMT prediction (8).

In the orthogonal case we must consider also the contribution C̃∞
β=1(e) from the

“∞-shaped” orbit pair sketched in Fig. 1, apart from the “eight-shaped” contribution.

Furthermore, in the latter the possible time-reversal operation leaving invariant each of

the orbits must be taken into account. The calculations follow the same lines as for the

unitary case, and we obtain

C̃eight
β=1 (e) = − 4

iπe
, (13)

C̃∞
β=1(e) =

1

iπe
. (14)

Again this result contains extra terms resulting from the “eight-shaped” diagram when

compared with the corresponding RMT result (9). We note that the contribution

C̃∞
β=1(e) alone yields a result consistent with the RMT prediction.

We can conclude that, although the analysis based on the semiclassical

representation ∆R2(E) of the spectral determinant produces the same structure as

the RMT results (both are naturally ordered in powers in 1/e), the terms (12, 13)

following from semiclassical loop contributions are not consistent with RMT and spoil

the agreement found between RMT and the results in [10, 11] based on the diagonal

approximation. Moreover, using the same methods we also obtain non vanishing

contributions of higher order in 1/e [13, 14].

A natural candidate to solve the discrepancy is to use ∆R1(E), Eq. (5), in the

semiclassical calculation instead of ∆R2(E). The required truncation of the sum over

pseudo-orbits can be exactly incorporated by means of the representation

Θ (TH/2 − TA) =
1

2π

∫ TH/2

0

dx

∫ ∞

−∞

dk eik(x−TA) (15)

for the step function [15]. Including Eq. (15) in the semiclassical calculation presented

above, we end up with an integral which must be solved numerically [13]. The result

clearly shows that the extra contributions coming from the “eight-shaped” diagram will

not be corrected by using the fully resurgent expression (5) for the semiclassical spectral

determinant. Furthermore we rule out that the additional terms result from replacing

in ∆R1(E) the smooth step function

Θσ (TH/2 − TA) =
1√
π

∫ ∞

(TA−TH/2)/σ

dx e−x2

, (16)

suggested in [8], by a sharp cut off. More explicitly, using a Sommerfeld expansion

we showed that the smooth cut off only adds to the result with sharp cut off terms

proportional to σn with n ∈ N. These additional terms vanish when σ is sent to zero
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at the end of the calculation, meaning that the two limits σ → 0 and the semiclassical

limit ~ → 0 commute.

Obviously, the problem requires a better insight into the meaning of the pseudo-

orbit correlations. Such an insight is gained through the comparison with a

corresponding field-theoretical approach.

3. Field-Theoretical calculation: the curvature contribution

In order to better understand the difference between the semiclassical and the RMT

results, we calculate Cβ(e) by field-theoretical methods [16]. Our approach consists

of transforming the non-perturbative field-theoretical expression for Cβ(e) into a

perturbative expansion. As we will see, the difference between the semiclassical and

the RMT results has a direct correspondence in the field theory.

We start with the non-perturbative evaluation of the integral following from field-

theoretical considerations, which is given by [14]

Cβ(e) ∝ 1

4π

∫

S

dµ (S) e−i βπe

4
TrS, (17)

with S ∈ Sp(4)/ (Sp(2) ∗ Sp(2)) in the orthogonal and S ∈ U(2)/ (U(1) ∗ U(1)) in the

unitary case. Parameterizing the latter space in terms of angles θ and φ, we obtain in

the unitary case

Cβ=2(e) ∝
1

4π

∫ 2π

0

dφ

∫ 1

−1

d cos θ e−iπe cos θ

=
sin πe

πe
(18)

In a similar way, we obtain in the orthogonal case

Cβ=1(e) ∝
cos πe

(πe)2 − sin πe

(πe)3 , (19)

in agreement with CRMT
β (e). A perturbative evaluation of the field-theoretical

expressions, in the form of a power-series in 1/e that is comparable to semiclassics, is

obtained by replacing the integration variables on the sphere by stereographic projection

variables in the complex plane. We therefore rewrite S as

S =

(

12/β 0

0 −12/β

)

T

(

12/β 0

0 −12/β

)

T−1 (20)

with

T =

(

12/β −B†

B 12/β

)

(21)

and B ∈ C in the unitary and

B =

(

B1 −B2

B∗
2 B∗

1

)

(22)
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with B1, B2 ∈ C in the orthogonal case. We used here the dagger to indicate the

Hermitian conjugate of a matrix and the power −1 for its inverse.

The effect of this parameterization is twofold: On the one hand this variable

transformation has a non-trivial Jacobian corresponding to a curved measure,

dµ (S) =
4 [dB]

(1 + B2)4/β
. (23)

with B = |B|, [dB] = dBdB∗ in the unitary and B =
√

|B1|2 + |B2|2, [dB] =

dB1dB2dB∗
1dB∗

2 in the orthogonal case. On the other hand it leads to a particular

form of the phase in the exponential

TrS =
4

β

(

1 + 2

∞
∑

k=1

(−1)k B2k

)

. (24)

In this way and for this particular parameterization of the supermanifold where

the field-theoretical calculation is defined, we can unambiguously identify two kinds

of terms in the 1/e expansion of the correlator obtained by using in the unitary case
∫∞

0
dB |B|2k e−2πie|B|2 ∝ (1/e)k+1 and the corresponding relation for B1 and B2 in the

orthogonal case. We will call these terms simply phase contributions if the factor in

front of the exponential in the last integral results from expanding the right hand side

of Eq. (24) and curvature contributions if it results from expanding the right hand side

of Eq. (23) in powers of B.

The key point is that we find agreement between the field-theoretical and the

semiclassical results (12-14), by evaluating Eq. (17) and ignoring the terms originating

from the curvature of the measure, i.e. replacing (1 +B2)−4/β in Eq. (23) by a constant

[13, 14]. Clearly, what we are missing in the semiclassical calculation are the analogs

of the terms that can be derived from the curvature. This means that a new kind of

pseudo-orbit correlation is lacking which corresponds to the curvature effects. Moreover,

one has to show that this new correlation is consistent with existing semiclassical results

showing agreement with RMT.

It is important to notice that curvature effects did not appear in the case of the

spectral generating function in Ref. [5] because in the corresponding field-theoretical

analysis the curvature factor had to be taken there to the r-th power with the Replica-

index r and was thus vanishing in the Replica-limit r → 0. In practice, this observation

can be extended to any measure of the fluctuations which is expressed as an homogeneous

rational function of spectral determinants.

4. Semiclassical interpretation of curvature effects

In this section we present the missing pseudo-orbit correlations which provide the

curvature effects in the integration over the curved manifold in the field-theoretical

approach and thereby consistency with RMT. The essential step is to lift the constraint

that one of the short periodic orbits does not surround the other one more than once.
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This assumption is implicit in the calculation of the “eight-shaped” diagrams in Ref. [5]

when one assumes that both short orbits have periods larger than the encounter time.

To be precise, we consider as components of a pseudo-orbit two periodic orbits

(dashed and full line in Fig. 3) which include several transversals around a common

short periodic orbit and differ in the number of repetitions by one. We then pair the

short periodic orbit and the orbit surrounding it (k−1) times with the orbit surrounding

it k times. This situation occurs in the case, when the encounter time tenc is longer than

the shortest of the periodic orbits, i.e. when the encounter overlaps.

Figure 3. Sketch of a pair of pseudo-orbits A, B correlated in a way that one of

the orbits (dashed-dotted) has a period smaller than the encounter time. The two

long orbits (dashed and full line) differ in the number of transversals around the short

periodic orbit by one.

For the evaluation of this contribution, we again need the action difference between

the two orbits, obtained as ∆S = su [17] up to a negligible correction and the weight

function as a function of s, u that is given by wT,Tp
(s, u) = TTp

2Ω(E)tenc
expressed through

the periods of the two short periodic orbits, T and Tp. Using these results and applying

the sum rule with respect to T and Tp, we find for C̃β=2(e) the additional “curvature”

contribution

C̃curv
β=2 (e) = − 4

∫ c

−c

dsdu

∫ ∞

tenc

dT

T

∫ tenc

0

dTp

Tp
e(i/~)sue2πie(T+Tp)/THwT,Tp

(s, u)

=
1

iπe
, (25)

thus precisely canceling the undesired term (12) coming from the “eight-shaped”

diagram, and allowing for the full explanation of the RMT result (8) in purely

semiclassical terms.

In the orthogonal case, one obtains in a similar way

C̃curv
β=1 (e) =

4

iπe
, (26)
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canceling again the extra term (13) and yielding the universal RMT result (9).

We could thus identify the semiclassical analog of the field theoretical curvature

contributions. As in the field-theoretical case the splitting between the two diagrams

analyzed in the semiclassical calculation in Sections 2 and 4 is completely arbitrary;

the final result, the sum of the two is however always the same. This can be taken

into account by considering as reference orbits in the calculation of the weight function

always the two short orbits as we did above Eq. (25) and by allowing for an arbitrary

length of one of the two periodic orbits as long as the other one is longer than the

duration of the encounter. This yields

C̃eight
β=2 (e) + C̃curv

β=2 (e) = − 2

∫ c

−c

dsdu

∫ ∞

0

dT

T

∫ ∞

0

dTp

Tp
e(i/~)sue2πie(T+Tp)/THwT,Tp

(s, u)

+ 2

∫ c

−c

dsdu

∫ tenc

0

dT

T

∫ tenc

0

dTp

Tp

e(i/~)sue2πie(T+Tp)/THwT,Tp
(s, u)

= 0, (27)

i.e. the sum of the two contributions calculated in the sections 2 and 4. The splitting

of the two contributions in our semiclassical calculation showed however the one-

to-one correspondence to the corresponding field theoretical contributions after the

stereographic projection.

We want to emphasize here the different behavior of an “eight” orbit and the “∞”

orbit pair in Fig. 1: for an “eight” orbit with overlapping encounters, one of the short

orbits winds around the other and thus yields another nontrivial contribution, that is not

yet contained in the diagonal terms. In the case of an “∞” orbit pair with overlapping

encounters, however, the orbit and its partner transverse the whole orbit in the same

direction, which is already contained in the diagonal contribution.

By this calculation we demonstrated that overlapping encounter regions, never

considered before in evaluations of energy-averaged quantities neglecting the Ehrenfest-

time dependence [18], can lead to non-vanishing contributions even for vanishing

Ehrenfest-time. One question, however, has to be addressed at this point: When are

effects of encounter overlap important and when can they be neglected? This point will

be answered in the following section.

5. Consistency with former results

Also in former semiclassical calculations to reproduce RMT-results diagrams involving

orbits surrounding a short periodic orbit occurred. Here we discuss the consistency of

our results with those approaches.

5.1. Approaches involving orbits (but no pseudo-orbits)

In this case an overlap of encounters can only happen for different encounters, that

means, it is not possible that the ends of one encounter come close to each other,
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Figure 4. Encounter overlap for different encounters

because otherwise there exist only disconnected partner orbits. One simple example for

a possible diagram, where a longer orbit surrounds a short periodic orbit is shown in

the Fig. 4.

In this case, however, a calculation similar to that for the spectral form factor for

finite Ehrenfest-time [18] shows that the resulting contribution contains, for an arbitrary

time of the surrounded periodic orbit Tp, just the configurations of two independent

encounters of two orbital parts and one encounter of three parts. Such configurations

were already taken into account in [4]. In particular, this means that we do not find

a different result by also taking into account a configuration where a periodic orbit is

surrounded by a longer one many times.

5.2. Approaches involving pseudo-orbits

In Ref. [5], the contribution from “eight-shaped” orbits vanishes also, but for a different

reason: the contributions arising from different possibilities to include the “eight-

shaped” orbit in the pseudo-orbit sums cancel (giving agreement with RMT). However,

this method is not applicable in general, as was shown in this paper. Still this will not

pose a problem for measures of the spectral fluctuations based on the density of states,

since they involve homogeneous rational functions of spectral determinants.

6. Conclusions

We have shown that the semiclassical approach from Ref. [5] applied to the two-point

correlator of spectral determinants (and we believe this also holds for any measure

involving only products of spectral determinants) produces spurious terms coming

from pseudo-orbit correlations, spoiling agreement with the universal RMT results.

We argued that the appearance of extra terms in the correlator is not solved by the

strict use of the resurgent spectral determinant, and that a new additional mechanism

is required. This contribution consists of pseudo-orbit correlations represented by

encounter diagrams with overlapping encounters. We have shown that these effects

are the semiclassical analogue of the curvature contributions in the field theoretical

approach, thus providing a semiclassical interpretation of the latter.
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Our results can be extended in various directions: First, concerning the study of

action correlations between orbits it would be interesting to further analyze the new

diagram type with an overlapping encounter identified in this paper: Are there other

quantities apart from the product of two spectral determinants, where this correlation

is essential to reproduce the RMT-results or do similar correlations lead to further

undiscovered contributions? Second, as the correlator of two spectral determinants can

be used to describe certain features of localization [19], it would be interesting to use

the field theoretical calculation presented in Ref. [19] as a guideline for a semiclassical

approach to localization.
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