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We consider quantum decay and photofragmentation processes in open chaotic systems in the semiclassical
limit. We devise a semiclassical approach which allows us to consistently calculate quantum corrections to the
classical decay to high order in an expansion in the inverse Heisenberg time. We present results for systems
with and without time-reversal symmetry, as well as for the symplectic case, and extend recent results to
nonlocalized initial states. We further analyze related photodissociation and photoionization phenomena and
semiclassically compute cross-section correlations, including their Ehrenfest-time dependence.
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I. INTRODUCTION

Physical phenomena involving decay processes have been
addressed in many physical contexts. They play a central role
in the study of excitation relaxation in semiconductor quan-
tum dots and wires �1,2�, photoionization via highly excited
atomic �3� or molecular �4� Rydberg states, photodissociation
of molecules �5�, atoms in optically generated lattices and
cavities �6�, and optical microcavities �7�, to name a few
examples.

For an open chaotic system it is well known that the clas-
sical probability of finding a particle inside the system at a
certain time, the classical survival probability, decays expo-
nentially in time, �cl�t�=e−t/�d, where �d is the classical life or
dwell time. Numerical calculations �8�, however, revealed
that the quantum survival probability deviates from the clas-
sical one at times comparable to t����dtH, where tH
=2�� /� is the Heisenberg time, and � is the mean level
spacing. Theoretical calculations invoking supersymmetry
techniques �9,10� confirmed these findings. There it could be
shown that in the random matrix theory �RMT� limit, the
quantum decay ��t� takes the form of a universal function,
which only depends on the general symmetries of the sys-
tem, the classical lifetime, and the Heisenberg time. The first
successful semiclassical approach to deriving the RMT pre-
dictions for quantum graphs was performed in Ref. �11�, re-
producing the first-order RMT quantum corrections for net-
works with and without time-reversal symmetry.

Recently, it has been developed a semiclassical approach
for calculating the decay of an initially localized wave func-
tion inside an arbitrary chaotic system �12�. The semiclassi-
cal framework used there involves correlated trajectories
which have been shown to be a powerful tool and the key to
linking classical hyperbolic dynamics with universal quan-
tum properties �13�. These semiclassical techniques have
been recently extended and widely applied in the context of
level statistics �14–16�, where multiple sums over periodic
orbits �POs� have to be evaluated, as well as in the field of
ballistic quantum transport involving Landauer-Büttiker for-
mulas �17–23�, where trajectories start and end at the open-
ings where the chaotic conductor is attached to leads. In Ref.
�12� a unitarity problem was encountered when using these
semiclassical techniques to evaluate the contribution of pairs
of interfering trajectories starting and ending inside the sys-

tem. Therefore a new kind of diagram was considered, which
is crucial for ensuring unitarity in problems involving open
trajectories �OTs� connecting two arbitrary points in the bulk.
A similar type of trajectory appears in the semiclassical de-
scription of transport if the coupling between the chaotic
conductor and the leads is not perfect, as shown in Ref. �24�.

In this paper we generalize the approach presented in Ref.
�12� for localized initial wave functions to nonlocalized
wave functions. We outline how to systematically obtain
higher-order �in t / t�� quantum corrections to the classical
decay and present terms up to the seventh order and eighth
order, for systems with and without time-reversal symmetry,
respectively. We further calculate the survival probability for
systems with spin-orbit interaction, corresponding to the
symplectic RMT ensemble.

Closely related to quantum decay are problems of atomic
photoionization or molecular photodissociation where the
fragmentation mechanism involves photoexcitation to an in-
termediate excited resonant state �with corresponding com-
plex classical dynamics� which then subsequently decays by
sending out a particle, i.e., an electron, an atom, or an ion. In
the semiclassical limit, spectral correlation functions for the
related photoionization and photodissociation cross sections
can be expressed through the spectral form factor and the
survival probability. Earlier semiclassical treatments �25,26�
of photo-cross-sections were limited through the diagonal
approximation used which was relaxed in this context only
very recently �12�. Here we will present a detailed semiclas-
sical treatment of the brief account on photofragmentation
given in �12� and extend the results by including Ehrenfest-
time effects for cross-section correlations and by computing
higher-order contributions.

This paper is organized as follows: in Secs. II and III we
present the semiclassical approach to the quantum survival
probability, generalized to nonlocalized wave functions, by
including a time average. In Sec. IV this approach is further
extended to derive higher-order corrections for systems with
and without time-reversal symmetry as well as for the case of
spin-orbit interaction which follows the universal RMT pre-
diction for the symplectic case. In Sec. V we analyze fluc-
tuations of the survival probability through its variance. In
Secs. VI and VII we give a detailed semiclassical analysis of
the statistics of photofragmentation, including higher-order
corrections and the Ehrenfest-time dependence of the leading
quantum contributions. We conclude with an outlook in Sec.
VIII.
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II. SEMICLASSICAL APPROACH TO THE SURVIVAL
PROBABILITY

The quantum-mechanical survival probability as a mea-
sure of the decay is defined as

��t� = �
A

dr��r,t����r,t� , �1�

where ��r , t� is a wave function and A is the volume of the
system we are considering. For a closed system ��t�=1,
while for an open system this no longer holds and ��t� de-
cays in time. Expressing ��r , t� in terms of the propagator
K�r ,r� , t�,

��r,t� = �
A

dr�K�r,r�,t��0�r�� , �2�

we have

��t� = �
A

drdr�dr�K�r,r�,t�K��r,r�,t��0�r���0
��r�� , �3�

where �0�r� is the initial wave function at t=0.
In order to calculate the semiclassical expression for ��t�,

we replace the exact quantum propagator K�r ,r� , t� with the
semiclassical Van Vleck propagator �27�,

Ksc�r,r�,t� =
1

�2�i�� f/2 �
�̃�r�→r,t�

D�̃e�i/��S�̃�r,r�,t�. �4�

Here f is the dimension of the system �in the following we
will consider f =2�, S�̃�r ,r� , t�=	0

t dt�L�̃�ṙ�̃ ,r�̃ , t�� is the clas-
sical Hamilton’s principal function �with L�̃ as the Lagrang-
ian� along the path �̃ connecting r� and r in a time t, and

D�̃= 
det�−
�2S�̃�r,r�,t�

�r�r�
�
1/2e−i��/2���̃ is the Van Vleck determinant

including the Morse index ��̃.
The semiclassical survival probability is then given by

�sc�t� =
1

�2���2�
A

drdr�dr�0�r���0
��r��

	 �
�̃�r�→r,t�

�̃��r�→r,t�

D�̃D�̃�
� e�i/���S�̃−S�̃��. �5�

In the following, we introduce a local time average in the
survival probability which enables us to neglect highly oscil-
lating terms in the above double sum. We define

�̄�t� � ��sc�t��t �
1

�t
�

t−�t/2

t+�t/2

�sc�t��dt�, �6�

with �t
 t. We will later see that for a localized initial wave
packet �̄�t����t� in the semiclassical limit, recalling the re-
sult of Ref. �12�.

The phase difference in the double sum in Eq. �5� rapidly
oscillates unless the two related trajectories are correlated.
Therefore most of the contributions will disappear due to the
time average. The contributions that prevail over the average
are from pairs of correlated trajectories with action differ-
ences on the order of �, which implies that the trajectories �̃

and �̃� should be “similar”. This also implies that the initial
points of the two trajectories should be almost the same. We
can then expand trajectories �̃ �or �̃�� going from r� �or r��
to r in a time t around trajectories � �or ��� with the same
topology going from r0= �r�+r�� /2 to r in a time t. This
expansion amounts to approximating the classical prefactors
D�̃�r ,r� , t��D��r ,r0 , t� and D�̃��r ,r� , t��D���r ,r0 , t�,
while expanding the phases in the exponents up to the first
order, because the latter are more sensitive to small changes
in their argument. The expansion of the actions yields

S�̃�r,r�,t� � S��r,r0,t� − 1
2q · p�,0, �7�

S�̃��r,r�,t� � S���r,r0,t� + 1
2q · p��,0, �8�

where q=r�−r� and p�,0 �or p��,0� is the initial momentum
of the trajectory � �or ���. The semiclassical survival prob-
ability �Eq. �5�� then reads

�̄�t� =� 1

�2���2� drdr0dq�0�r0 +
q

2
��0

��r0 −
q

2
�

	 �
�,���r0→r,t�

D�D��
� e�i/���S�−S���e−�i/��p

���
0

·q�
�t

, �9�

where p���
0 = �p�,0+p��,0� /2. This can be written as

�̄�t� =� 1

�2���2� drdr0

	 �
�,���r0→r,t�

D�D��
� e�i/���S�−S����W�r0,p���

0 ��
�t

,

�10�

where

�W�r,p� =� dr��0�r +
r�

2
��0

��r −
r�

2
�e−�i/��r�·p �11�

is the Wigner transformation of �0�r�. For an initial coherent
state, the integrals over r0 and r� can easily be performed,
and the result is consistent with that of Ref. �28�.

Equation �10� still involves rapidly oscillating phases, and
again most of the contributions will cancel out, unless the
trajectories in a pair are systematically correlated. The main
contribution corresponds to the diagonal approximation, i.e.,
�=��, which gives the classical survival probability. To-
gether with the sum rule �29� for open systems, this yields

�̄diag�t� = �e−t/�dr,p, �12�

where �¯r,p indicates a phase-space average,

�Fr,p =
1

�2���2� drdpF�r,p��W�r,p� , �13�

and 1 /�d is the classical escape rate at the energy E
=H�r ,p�, where H�r ,p� is the Hamiltonian of the system.
For a two-dimensional system, �d=��E� / �2wp�, with ��E�
=	dr�dp��(E−H�r� ,p��); w is the size of the opening; and
p= 
p
. For a chaotic billiard this reduces to �d=m�A / �wp�.
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For an initial state with a well-defined energy E0, we can
write �̄diag�t�=e−t/�d�E0�. In the following we will assume this
to be the case and drop the brackets of the phase-space av-
erage.

Equation �12� has two restrictions. First, we have sup-
posed that at time t the trajectories can already be considered
ergodic �they have homogeneously explored the phase
space�. This is a good assumption as long as t�1, with 
being the Lyapunov exponent. Second, we have assumed that
the ergodicity of the corresponding closed system is not af-
fected by the opening, meaning, classically the opening
should be small, �d�1, while quantum mechanically it is
very large, �d
 tH.

III. SURVIVAL PROBABILITY: LEADING-ORDER WEAK
LOCALIZATION-TYPE CONTRIBUTIONS

It was shown in Ref. �12� that the leading quantum cor-
rections to the semiclassical survival probability �Eq. �5�� for
systems with time-reversal symmetry come from orbits with
a self-encounter �Fig. 1�a��, “two-leg-loops” �2ll� �or
2-encounters� introduced in Ref. �13�, together with “one-
leg-loops” �1ll� �sketched in Figs. 1�b� and 1�c��, which to-
gether preserve unitarity.

A. Two-leg-loops

In this section we will give a detailed derivation of these
contributions to the survival probability following the phase-
space approach �15,19�. The double sum over trajectories is
replaced by the sum rule together with integrals over the
stable and unstable manifolds along reference trajectories �
weighted by the density of 2-encounters in an orbit of length
t, w2ll�u ,s , t�, giving rise to a difference in action �S�u ,s�
=us, whose absolute value is smaller than a classical value
c2. This density is given by

w2ll�u,s,t� =
�t − 2tenc�2

2�tenc
, �14�

where the encounter time is tenc=−1 ln�c2 / 
us
�.

The classical survival probability is modified by a factor
etenc/�d, since the fact that the first stretch remains inside the
cavity implies that the second will also be inside. Thus

�̄2ll�t� = e−t/�d�
−c

c

du�
−c

c

dsw2ll�u,s,t�etenc/�de�i/��us. �15�

The integration can be performed by making the changes of
variables x=us /c2 and �=c /u as in Ref. �20�. The result is

�̄2ll�t� = e−t/�d� t2

2�dtH
− 2

t

tH
� . �16�

The quadratic term corresponds to the first-order quantum
correction according to Ref. �9�, while the linear term breaks
unitarity, since it does not vanish as �d→� �when the system
is closed�. As shown in Ref. �12� another type of diagram has
to be considered in order to solve this problem.

B. One-leg-loops

The relevant diagrams correspond to trajectories with an
encounter at the beginning or at the end of the trajectory, as
shown in Figs. 1�b� and 1�c�. Clearly, the latter only exists
for initial and final points inside the cavity, since at the open-
ings the exit of one stretch of the encounter implies the exit
of the other one �with perfect coupling�.

To evaluate these two contributions we define a Poincaré
surface of section �PSS� at some time t� from the end or
beginning of the trajectory �20�. The encounter time will be
given by

tenc�t�,u� = t� +
1


ln�c/
u
� , �17�

with the restriction t��
1
 ln�c / 
s
�, while the density of such

encounters is given by

w1ll�u,s,t� = 2�
0

�1/�ln�c/
s
�

dt��
0

t−2tenc

dt2
1

�tenc�t�,u�

= 2�
0

�1/�ln�c/
s
�

dt�
t − 2tenc�t�,u�
�tenc�t�,u�

. �18�

The factor of 2 is due to the possibility of having the encoun-
ter at the beginning of the trajectory or at the end. The dif-
ference in action will be �S�us at any point of the Poincaré
surface of section. It is important to mention that this weight
function automatically includes the situation where both end
points are very close, i.e., coherent backscattering. We can
now proceed to calculate this contribution to the survival
probability in the same way as before, replacing w2ll�u ,s , t�
with w1ll�u ,s , t� in Eq. �15�. In order to evaluate the integrals,
we make the changes of variables �20�

t� = t� +
1


ln� c


u
�, u =
c

�
, s = cx� , �19�

with integration domains −1�x�1, 1���et�, and 0� t�
�

1
 ln� 1


x
 �. Here it is important to notice that the limits of t�
also include the situation where the point at which the orbits

w

FIG. 1. �Color online� Schemes of �a� “two-leg-loops” �2ll� and
��b� and �c�� “one-leg-loops” �1ll� orbit pairs. The trajectories �
�full line� and �� �dashed line� connect the points r0 with r in a time
t, and they differ by a 2-encounter in �a�. When the beginning or the
end of the trajectory is inside the encounter, we have the situation
plotted in �b�. �c� is a variation of �b� where there is no self-crossing
of either of the two trajectories.
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start is after a possible self-crossing. This means that it is not
necessary to have a true self-crossing in configuration space
in order to give a contribution of this kind.

We define �̄1ll�t�= Ie−t/�d, where

I = 2�
−c

c

du�
−c

c

ds�
0

�1/�ln�c/
s
�

dt�
t − 2tenc

�tenc
e�i/��usetenc/�d,

�20�

the integral over � can be easily done after the changes of
variables mentioned above, and I can be written as

I =
4r

�tH
�

0

1

dx cos�rx��
0

�1/�ln�1/x�

dt��t − 2t��et�/�d

= �t − 2
d

d�d
−1�4r�d

�tH
�

0

1

dx cos�rx�x−1/��d�, �21�

where r=c2 /�.
The integration over x can be performed by parts, neglect-

ing highly oscillating terms that will disappear after averag-
ing �20�, yielding

I = �t − 2
d

d�d
−1�4r�d

�tH
� sin�r�

r
+

1

�d
�

0

1

dx
sin�rx�

rx �
=

4t

�tH
�

0

r

dy
sin�y�

y
�

4t

�tH
�

0

�

dy
sin�y�

y
=

2t

tH
. �22�

Then the 1ll contribution to the decay reads

�̄1ll�t� = 2
t

tH
e−t/�d. �23�

This term exactly cancels the linear term in Eq. �16� coming
from the 2ll contribution, recovering unitarity. The leading
semiclassical correction �quadratic in time� to the classical
survival probability is therefore �12�

�̄2ll+1ll =
t2

2�dtH
e−t/�d, �24�

which is consistent with the RMT prediction �9�. It can be
interpreted as an interference-based weak localization-type
enhancement of the survival probability.

In Sec. IV we will extend this approach to include higher-
order corrections, coming from semiclassical diagrams with
multiple encounters or with one encounter involving multiple
stretches.

IV. SURVIVAL PROBABILITY: HIGHER-ORDER
CONTRIBUTIONS FOR THE GAUSSIAN UNITARY

ENSEMBLE, GAUSSIAN ORTHOGONAL ENSEMBLE,
AND GAUSSIAN SYMPLECTIC ENSEMBLE CASES

For the unitary case, the next-order contributions to ��t�
are given by the diagrams shown in Fig. 2, as indicated in
Ref. �15�. In a similar way, we can compute the next-order
corrections for systems with time-reversal symmetry. Time-
reversal symmetry, however, allows more structures, the cor-
responding diagrams include the ones sketched in Fig. 2

�multiplied by a factor of 4 for Fig. 2�a� and a factor of 3 for
Fig. 2�b� �15�� together with a structure including two copies
of the encounter in Fig. 1�a�.

In general, an encounter region contains an arbitrary num-
ber of l�2 stretches of the trajectory, which are mutually
linearizable, and one speaks of an l-encounter. In order to
calculate higher-order corrections, we consider trajectory
pairs with encounters described by the vector v, whose ele-
ments vl list the number of l-encounters in the trajectory pair.
The total number of encounters is then V=�vl, while the
number of links, i.e., of parts of the orbit connecting the
encounter stretches, is L+1 with L=�lvl as in Ref. �19�.

In order to analyze the possible configurations of trajec-
tories, we consider the periodic orbit formed by joining the
ends of the open orbit. We can generate the open trajectories
by cutting this closed orbit along each of its links and mov-
ing the ends of the cut to the required positions. Note that for
systems with time-reversal symmetry, we must choose either
the partner orbit or its time reversal so that the link, which is
cut, is traversed in the same direction by both orbits. The
contribution can then be separated into three cases: A, where
the start and end points are outside of the encounters �2ll�; B,
where either the start or end point is inside an encounter
�1ll�; and C, where both the start and end points are inside
encounters �0ll�.

A. Case A

This contribution can be written as

�̄v,A�t� = N�v�� dsduwv,A�u,s,t�e−�t

	�exp��
�=1

V

�l� − 1��tenc
� ��e�i/��us, �25�

where N�v� is the number of trajectory structures, i.e., the
number of trajectories of different topologies, corresponding
to each vector v �15�, �=1 /�d, and � labels the V encoun-
ters, each being an l�-encounter. We have included the cor-
rection to the survival probability of the trajectories due to
the proximity of encounter stretches during the encounters.
In terms of an integral the weight is given by

γ γ�

ro r� �

γ�
γro

r

�

�

(b)(a)

FIG. 2. �Color online� Scheme of orbit pairs that do not require
time-reversal symmetry that give higher-order corrections: �a� a
single 3-encounter; �b� a double 2-encounter. The trajectories � �full
line� and �� �dashed line� connect the points r0 with r in a time t,
and they differ by the way they are connected in the encounter
regions.

GUTIÉRREZ et al. PHYSICAL REVIEW E 79, 046212 �2009�

046212-4



wv,A�u,s,t� =

�
0

t−tenc

dtL¯�
0

t−tenc−tL¯−t2

dt1

�L−V�
�

tenc
�

, �26�

where tenc is the total time that the trajectory spends in the
encounters tenc=��=1

V l�tenc
� . Each of the links must have posi-

tive duration and this restriction is included in the limits of
integration. The weight is simply an L-fold integral over dif-
ferent link times ti, with i=1, . . . ,L, while the last link time
is fixed by the total trajectory time

t = �
i=1

L+1

ti + �
�=1

V

l�tenc
� . �27�

When we perform the integrals the weight function becomes

wv,A�u,s,t� =
�t − �

�

l�tenc
� �L

L ! �L−V�
�

tenc
�

. �28�

To calculate the semiclassical contribution we will rewrite
Eq. �25� as

�̄v,A�t� = N�v�� dsduzv,A�u,s,t�e−�te�i/��us, �29�

where zv,A�u ,s , t� is an augmented weight including the term
from the survival probability correction of the encounters

zv,A�u,s,t� = wv,A�u,s,t�exp��
�

�l� − 1��tenc
� �

�
�t − �

�

l�tenc
� �L�

�

�1 + �l� − 1��tenc
� �

L ! �L−V�
�

tenc
�

,

�30�

where we have expanded in the second line the exponent to
first order in the encounter times. We can now use the fact
that the semiclassical contribution comes from terms where
the encounter times in the numerator cancel those in the de-
nominator exactly �15�. Keeping only those terms, we then
obtain a factor of �2���L−V from the integrals over s and u
and obtain the result for trajectories described by the vector
v of interest. This implies that for obtaining contributions to
the survival probability of the order �n, we have to consider
diagrams with n=L−V.

Consider for example a trajectory with a 3-encounter with
two long legs, sketched in Fig. 2�a�. The encounter has a
duration given by

tenc �
1


ln

c2

maxj
sj
 	 maxj
uj

, �31�

where j=1,2 and uj and sj are the differences between the
unstable and stable coordinates of the trajectory on PSS
placed in the encounter region, respectively.

The density of this type of encounter, with an action dif-
ference �S=u ·s, is

w�3�1,A�u,s,t� =
�t − 3tenc�3

6�2tenc
, �32�

where we use the notation �l�vl to indicate that the trajectory
has vl l-encounters. We can calculate the contribution of such
orbits by replacing the sum over the partner trajectory ��
with an integral over the stable and unstable coordinates
�u ,s� with the density w�3�1,A�u ,s , t�, modifying the classical
survival probability entering the sum rule by a factor of
e2�tenc. In the case of time-reversal symmetry there are four
possible structures in this case �19�, and the final result is

�̄�3�1,A�t� = 4e−t/�d�−
3t2

2tH
2 +

t3

3�dtH
2 � . �33�

For a double 2-encounter shown in Fig. 2�b�, we define two
encounter times: tenc

1 � 1
 ln c2


u1s1
 and tenc
2 � 1

 ln c2


u2s2
 .
The density of such a double encounter is given by

w�2�2,A�u,s,t� =
�t − 2tenc�4

24�2tenc
1 tenc

2 , �34�

with tenc= tenc
1 + tenc

2 . In this case the number of possible struc-
tures for systems with time-reversal symmetry is 5. The con-
tribution of such orbits to the survival probability is

�̄�2�2,A�t� = 5e−t/�d�2
t2

tH
2 −

2t3

3�dtH
2 +

t4

24�d
2tH

2 � . �35�

The total contribution of structures with L−V=2 of 2ll’s is
then

�̄2,A�t� = e−t/�d�4
t2

tH
2 −

2t3

�dtH
2 +

5t4

24�d
2tH

2 � . �36�

B. Case B

Now we have to consider the corresponding one-leg-loops
for the previous diagrams. This contribution can be written
as

�̄v,B�t� = N�v�� dsduzv,B�u,s,t�e−�te�i/��usdt . �37�

Here one encounter overlaps with the start or end of the
trajectory. We have therefore one link fewer �L in total� and
an extra integral over the position of the encounter relative to
the starting point. Starting with a closed periodic orbit �and
dividing by the overcounting factor of L�, we can cut each of
the L links in turn and move the encounter on either side of
the cut to either the start or the end. In total we obtain l��
copies of the same 1ll involving the encounter ��, and an
additional factor of 2 appears due to the possibilities of hav-
ing the encounter at the beginning or at the end of the tra-
jectory. The augmented weight can then be expressed as a
sum over the different possibilities, each of which involves
an integral over the distance from the PSS to the initial or
final point, t��,
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zv,B�u,s,t� = 2 �
��=1

V

l��� dt��

�t − �
�

l�tenc
� �L−1

L ! �L−V�
�

tenc
�

	exp��
�=1

V

�l� − 1��tenc
� � . �38�

Because of the integrals over the position of the encounter at
the start or end of the trajectory, the semiclassical contribu-
tion is calculated differently, using integrals of the type we
encountered in Eq. �21�. However, it is easy to see in Eq.
�21� that after a suitable change of variables, the integral
over t� can be effectively replaced by a tenc. This change of
variables can be done for each �u�� ,s�� , t���, giving again a

factor of tenc
�� for each integral over t��, so that the augmented

weight can be written as

zv,B�u,s,t� �

2��
�

l�tenc
� ��t − �

�

l�tenc
� �L−1

L ! �L−V�
�

tenc
�

	�
�

�1 + �l� − 1��tenc
� � , �39�

and treated as before.
For a single 3-encounter, Eq. �39� corresponds to

z�3�1,B�u,s,t� =
�t − 3tenc�2

�2 e2�tenc. �40�

Multiplying by the number of possible structures, the result-
ing contribution for systems with time-reversal symmetry
�37� is

�̄�3�1,B�t� = 4e−t/�d� t2

tH
2 � . �41�

For the double 2-encounter the corresponding augmented
weight of such pairs for systems with time-reversal symme-
try is given by

z�2�2,B�u,s,t� =
1

3

�t − 2tenc�3

�2tenc
1 e�tenc, �42�

yielding

�̄�2�2,B�t� = 5e−t/�d� t3

3tH
2 �d

− 2
t2

tH
2 � . �43�

The total contribution of 1ll’s for L−V=2 for systems with
time-reversal symmetry is given by

�̄2,B�t� = e−t/�d� 5t3

3tH
2 �d

− 6
t2

tH
2 � . �44�

C. Case C

This contribution can be written as

�̄v,C�t� =� dsduzv,C�u,s,t�e−�te�i/��us. �45�

Now that we have one encounter overlapping with the
start of the trajectory, and a second �different� encounter at
the end of the trajectory, we have several additional compli-
cations. First, there is again one link fewer �L−1 in total� and
now we have two extra integrals over the position of the start
and end encounters relative to the start and end points. Also
the number of such structures is different. Starting with a
closed periodic orbit, we can cut each of the L links in turn
and move the encounters on either side of the cut to both the
start and the end, as long as the link joins two different
encounters. We therefore need to count the number of ways
that this is possible for the different sizes of encounters that
are linked. We record these numbers in a matrix N�v�, where
the elements N�,��v� record the number of links �divided by
L� linking encounter � with encounter �. In this case it is
convenient to include N�,��v� in the augmented weight func-
tion. The augmented weight, including these possibilities,
can then be expressed as the following sum over the 0ll
encounters:

zv,C�u,s,t� = �
��,��

N��,���v�� dt��dt��

	exp��
�=1

V

�l� − 1��tenc
� � �t − �

�

l�tenc
� �L−2

�L − 2� ! �L−V�
�

tenc
�

.

�46�

Again we can expand the exponent to first order in the en-
counter times and write the augmented weight function as

zv,C�u,s,t� � ��
�,�

N�,��v�tenc
� tenc

� ��t − �
�

l�tenc
� �L−2

	

�
�

�1 + �l� − 1��tenc
� �

�L − 2� ! �L−V�
�

tenc
�

, �47�

and treat it as before.
For a single 3-encounter there cannot be such a contribu-

tion. For a double 2-encounter the augmented weight func-
tion is given by

z�2�2,C�u,s,t� = 2e�tenc
�t − 2tenc�2

�2 . �48�

This gives the following contribution to survival probability
�45�:

�̄�2�2,C�t� = e−t/�d�2t2

tH
2 � . �49�

D. Unitary case

We can easily calculate the contribution for each vector v
for each of the three cases, as long as we know the numbers
of possible trajectory structures. For cases A and B, these
numbers can be found in Ref. �15� and are repeated in the
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first four columns of Table I. For case C we will go up to the
sixth-order correction, L−V=6, and for this we have at most
three different types of l-encounters. It is useful to rewrite
the sum over � and � as a sum over the components of the
vector v. N�,��v� records the number of ways of cutting
links that connect encounter � and �, in the periodic orbit
structures described by v. However we can see that the im-
portant quantities are the sizes of the encounter � and �.
Instead we record in Nk,l�v� the number of links that join an
encounter of size k to an encounter of size l. If we number
the encounters from 1 to V in order of their size, then we
only need to know the numbers Nl1,l2

�v�, Nl1,lV
�v�, and

NlV−1,lV
�v�, as the maximal number of different sized encoun-

ters is 3. Moreover Nk,l is symmetric; therefore we include in
Table I both Nk,l and Nl,k together. Using a program to count
and classify the possible permutation matrices, we obtain the
remaining columns in Table I for systems without time-
reversal symmetry. Note that Nl1,l2

�v�, Nl1,lV
�v�, and

NlV−1,lV
�v� might describe the same encounter combinations.

In this case we record their numbers in the leftmost column.
Table I allows us to obtain the following results for the

quantum corrections to the classical decay for the unitary
case:

�̄2�t� =
e−t/�d

tH
2 � t4

24�d
2� , �50�

�̄4�t� =
e−t/�d

tH
4 � t6

90�d
2 −

t7

180�d
3 +

t8

1920�d
4� , �51�

�̄6�t� =
e−t/�d

tH
6 � t8

224�d
2 −

89t9

22680�d
3 +

31t10

30240�d
4 −

t11

10080�d
5

+
t12

322 560�d
6� . �52�

These results enable us to calculate the decay up to eighth
order in t, giving as the final result

�̄GUE�t� = e−t/�d�1 +
t4

24�d
2tH

2 +
t6

90�d
2tH

4 −
t7

180�d
3tH

4

+ � 1

1920�d
4tH

4 +
1

224�d
2tH

6 �t8 + ¯� . �53�

E. Orthogonal case

Similarly, we can find all possible permutation matrices
and obtain Table II �see Appendix A� for systems with time-
reversal symmetry. This gives us the following result up to
seventh order in t:

�̄GOE�t� = e−t/�d�1 +
t2

2�dtH
−

t3

3�dtH
2 + � 5

24�d
2tH

2 +
1

3�dtH
3 �t4

− � 11

30�d
2tH

3 +
2

5�dtH
4 �t5 + � 41

720�d
3tH

3 +
7

12�d
2tH

4

+
8

15�dtH
5 �t6 − � 29

168�d
3tH

4 +
14

15�d
2tH

5 +
16

21�dtH
6 �t7

+ ¯� . �54�

The predictions for the decay using supersymmetry tech-
niques can be found in Ref. �10�, where the integrals appear-
ing there can be expanded in powers of t / tH, following the
steps indicated in Ref. �30�. The results of these expansions
agree with Eqs. �53� and �54�.

F. Spin-orbit interaction and the symplectic case

Along with the cases with and without time-reversal sym-
metry, there has recently been interest in a semiclassical
treatment corresponding to the symplectic RMT ensemble in
different contexts, such as in spectral statistics �15� and in
the quantum transmission through mesoscopic conductors in
the Landauer-Büttiker approach �31,32�. There the symplec-
tic case is obtained by including in the Hamiltonian a clas-
sically weak spin-orbit interaction.

In the following we study the effect of spin-orbit interac-
tion on the survival probability. The spin-orbit interaction is
accounted for by replacing the Hamiltonian for the orbital

dynamics, Ĥ0 considered up to now, with

Ĥ = Ĥ0 + ŝ · C�x̂,p̂� , �55�

with C�x̂ , p̂� characterizing the coupling of the translational
degrees of freedom to the spin operator ŝ.

For weak spin-orbit interaction, the semiclassical propa-
gator is similar to Eq. �4�, where the classical trajectories are

TABLE I. The numbers of trajectory pairs and the numbers
linking certain encounters for systems without time-reversal
symmetry.

v L V N�v� Nl1,l2
�v� Nl1,lV

�v� NlV−1,lV
�v�

�2�2 4 2 1 1

�3�1 3 1 1

�2�4 8 4 21 21

�2�2�3�1 7 3 49 12 32

�2�1�4�1 6 2 24 16

�3�2 6 2 12 8

�5�1 5 1 8

�2�6 12 6 1485 1485

�2�4�3�1 11 5 5445 2664 2592

�2�3�4�1 10 4 3240 984 1920

�2�2�3�2 10 4 4440 464 2624 960

�2�2�5�1 9 3 1728 228 1080

�2�1�3�1�4�1 9 3 2952 552 760 1080

�3�3 9 3 464 380

�2�1�6�1 8 2 720 360

�3�1�5�1 8 2 608 360

�4�2 8 2 276 180

�7�1 7 1 180
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the same as for the case without interaction �33�. The only
modification appears in the prefactor D� that contains now
the additional factor B��x� ,p� , t�, which is the spin-s repre-
sentation of the spin-1/2 propagator matrix b��x� ,p� , t�, de-
fined as the solution of �33�

d

dt
b��x�,p�,t� +

i

2
� · C„X�t�,P�t�…b��x�,p�,t� = 0, �56�

with the initial condition b��x� ,p� ,0�=1 and the vector �
containing the Pauli matrices. This propagator can now be
used in the derivation of a modified formula for the survival
probability in the case of spin-orbit interaction. After replac-
ing the initial state 
�0 introduced in Eq. �2� with 
�0
�
�0 � s0 containing additionally the initial spin state 
s0,
we obtain the matrix element �s0
B�B�

†
s0 as an additional
factor inside the double sum in Eq. �9�. We are interested in
the average behavior of this quantity. Therefore, we analyze

1
�2s+1�Tr�B�B�

†�, with Tr denoting the trace in the spin space.
This quantity was already considered in Ref. �32�, where by
assuming the mixing property of the combined spin and or-
bital dynamics, i.e., full spin relaxation, it was shown that we
can effectively write

1

�2s + 1�
Tr�B�B�

†� = � �− 1�2s

2s + 1
�L−V

, �57�

with L and V defined as before. It is important to notice that
the contribution from spin-orbit interaction depends, apart
from on the spin quantum number s, only on the difference
L−V. Equation �57� can now be inserted as prefactor into the
expressions in Appendix A for the Gaussian orthogonal en-
semble �GOE� case after choosing in each term the correct
value of L−V. For s=1 /2 this yields

�̄GSE�t� = e−t/�d�1 −
t2

4�dtH
−

t3

12�dtH
2 + � 5

96�d
2tH

2 −
1

24�dtH
3 �t4

+ � 11

240�d
2tH

3 −
1

40�dtH
4 �t5 − � 41

5760�d
3tH

3 −
7

192�d
2tH

4

+
1

60�dtH
5 �t6 − � 29

2688�d
3tH

4 −
7

240�d
2tH

5 +
1

84�dtH
6 �t7� .

�58�

This result is again consistent with RMT-type results for the
symplectic ensemble �9�. The second, negative term in Eq.
�58� reflects weak-antilocalization effects in the quantum
decay.

V. VARIANCE OF THE DECAY

In Sec. II we introduced a local time average, in order to
select from the trajectories contributing to the double sum in
Eq. �5� those that start from the same point. In order to com-
pare deviations of ��t� from the time-averaged �̄�t�, we con-
sider on the level of the diagonal approximation, the variance
of �̄�t�, averaged again over a time window:

��̄2�t� = ����t� − �̄�t��2�t. �59�

Substituting Eq. �4� into Eq. �59�, we can write the variance
as

��̄2�t� =
1

�2���4�� �
i=1

6

dri�0�r1��0
��r2��0�r4��0

��r5�

	 �
�̃1�r1→r3,t�

�̃2�r2→r3,t�

�
�̃3�r4→r6,t�

�̃4�r5→r6,t�

Ãe�i/���S�
�t

, �60�

where Ã=D�̃1
D�̃2

� D�̃3
D�̃4

� and �S=S�̃1
−S�̃2

+S�̃3
−S�̃4

. Here
the configurations r1�r2 and r4�r5 have already been
taken into account in �̄�t�2 and therefore have to be ignored
in Eq. �60�. Due to the average most of the contributions to
Eq. �60� will cancel out, so for surviving the average the
configuration of the points ri must be such that the phase
difference �S tends to zero. Apart from the configurations
that contribute to �̄�t�, the leading contribution comes from
r1�r5 and r2�r4, which requires r3�r6. We expand the
trajectories �̃1 and �̃4 around trajectories �1 and �4 going
from q1= �r1+r5� /2 to q3= �r3+r6� /2 and trajectories �̃2 and
�̃3 around trajectories �2 and �3 going from q2= �r2+r4� /2 to
q3. We can perform the integrals over r1−r5 and r2−r4 and
write the variance in terms of the Wigner function of the
initial state. Thus

��̄2�t� =
1

�2���4�� �
i=1

4

dqi�W�q1,p�1�4

0 �

	 �W�q2,p�2�3

0 � �
�1,�4�q1→q3,t�
�2,�3�q2→q3,t�

Ãei�S/��
�t

, �61�

with

p�1�4

0 =
�p�1,0 + p�4,0�

2
, p�2�3

0 =
�p�2,0 + p�3,0�

2
, �62�

and

�S = S�1
− S�2

+ S�3
− S�4

+ �S . �63�

Here

�S = �p�1,f − p�2,f − p�3,f + p�4,f� · �r3 − r6�/2, �64�

where p�i,f
stands for the final momentum of trajectory �i.

We consider here only the contribution from the diagonal
terms �1=�4 and �2=�3, which leads to

��̄2�t�diag =
1

�2���4�� �
i=1

4

dqi �
�1�q1→q3,t�
�2�q2→q3,t�


D�1

2
D�2


2

	e�i/���Sd�W�q1,p�1,0��W�q2,p�2,0��
�t

. �65�

Here �Sd= �p�1,f −p�2,f� · �r3−r6�. Upon applying the sum
rule �34� this can be written as
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��̄2�t�diag =
1

�2���2A
�� dk
�e−t/�deikp2

r,p
2�
�t

. �66�

For a Gaussian initial state, the integrals can easily be per-
formed, and for t�1 we obtain

��̄2�t�diag � e−2t/�d
�2���

Ap0
→ 0, �67�

where � denotes the spatial width of the initial state and p0 is
the magnitude of its mean initial momentum. Here a few
remarks are due:

�i� The result in Eq. �67� should be considered as an esti-
mate of the leading-order � contribution to the variance as it
is based on the diagonal approximation. The fact that it is not
strictly zero in the limit �d→� �closed system� makes us
believe that there are further contributions, canceling this
term for the closed system.

�ii� Equation �67� describes “mesoscopic” fluctuations of
the survival probability which turn out to be nonuniversal as
��̄2�t�diag scales with the width � of the initial state �35�.

�iii� Expression �67� may explain decay fluctuations
which have been found from numerical calculations of the
quantum decay–based wave-packet propagation �12�.

�iv� Furthermore, for a localized wave packet ��̄2�t�→0
as �→0, and we have �̄�t����t�, recalling the result in Ref.
�12�.

�v� The variance in Eq. �67� can alternatively be written as
��̄2�t�diag�e−2t/�d /M, where M is the number of eigenstates
of the closed system necessary to expand the initial wave
function.

VI. STATISTICS OF PHOTOFRAGMENTATION
CROSS SECTIONS

Typical examples of quantum decay processes are mo-
lecular photodissociation �4,5� and atomic photoionization
�3,36�, where the molecule �or atom� absorbs one or several
photons such that the system is �highly� excited to an inter-
mediate configuration coupled to the continuum, which sub-
sequently allows for decay, i.e., dissociation or ionization of
the system.

If this decay is sufficiently slow, a large portion of the
complex, presumably chaotic phase space of the excited sys-
tem can be explored and the statistics of such processes are
assumed to show universal behavior, as described by the
RMT approach developed in Refs. �37,38�. In these “indirect
processes” the effective Hamiltonian of the excited molecule
or atom can be written as H− i� /2, where H is the Hamil-
tonian that represents the part of the Hamiltonian containing
the “binding” potential and � is a matrix describing the cou-
pling of the system to N external open channels, which are
the possible states of the dissociated molecule �or remaining
ion�.

Semiclassical approaches to the autocorrelation function
of photodissociation cross sections were still limited to the
diagonal approximation used in Refs. �25,26�, which how-
ever adequately describes the Lorentzian profile arising from
the leading order in 1 /N approximation of the correlation

function. In Ref. �12� the leading off-diagonal quantum cor-
rections for systems with time-reversal symmetry were
briefly presented. The purpose of this section is to develop a
semiclassical approach for quantum corrections to the
photofragmentation cross section for systems with and with-
out time-reversal symmetry, including higher-order correc-
tions and finite Ehrenfest-time effects. We follow the dia-
grammatic approach in Ref. �25� and introduce 2ll and 1ll
contributions in order to calculate the quantum corrections.
We will see that the form factor of the cross-section autocor-
relation function can be written semiclassically as the sum of
the survival probability based on open trajectories in the ex-
cited system �and weighted by a factor which accounts for
the symmetry� and the spectral form factor related to peri-
odic orbits that remain trapped inside the system.

We consider the disintegration of a molecule from its
ground state 
g via photoexcitation through an intermediate
excited electronic surface. The photodissociation cross sec-
tion of the molecule, in the dipole approximation, is given by
�5�

��E� = Im Tr�ÂG−�E�� = Im� dr� dr�A�r,r��G−�r�,r,E� ,

�68�

where G−�E� is the retarded Green’s function of the mol-

ecule, Â is a projection operator, given by

Â = �
���
, 
� = D
g , �69�

where D=d · ê is the projection of the electric dipole operator
of the molecule, d, on the polarization axis ê of the absorbed
light, and �=E /c��0.

The two-point correlator of the cross section is defined as

C��� �
���E + ��/2���E − ��/2� − ���E�2

���E�2 , �70�

where �¯ denotes a local average in energy around E and
���E� is the mean cross section. In the semiclassical limit
���E�� �̄�E�, where

�̄�E� �
�

�2���2� drdpAW�r,p��„E − H�r,p�… , �71�

with

AW�r,p� =� dr��r + r�/2
Â
r − r�/2e−i�r�·p/��, �72�

the Weyl representation of the operator Â.
In the following, we consider the Fourier transform of

C���, the cross-section form factor,

Z�t� �
tH

2�
�

−�

�

d�ei�tC��� . �73�

As C���=C�−�� then Z�t� is real and even. We consider Z�t�
for t�0 and calculate C��� from C���= 2

tH
	0

�Z�t�cos��t�dt.
In order to calculate the semiclassical expression for this

quantity, we replace the exact Green’s function with its semi-
classical counterpart �27�, given by
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Gsc�r�,r,E� =
2�

�2�i��3/2 �
�̃�r→r�,E�

D̃�̃e�i/��S̃�̃�r,r�,E�, �74�

for a two-dimensional system, where D̃�̃= 

�2S̃�̃

�E2 det

�−
�2S�̃

�r�r�
�
1/2exp�−i �

2 ��̃�, and ��̃ is the Morse index plus addi-

tional phases �see Ref. �27�� and S̃�̃�r ,r� ,E�=	r�
r p�̃ ·dq�̃ is

the action integral along the trajectory �̃ connecting the
points r� and r with fixed energy E.

The semiclassical cross-section form factor expressed in
Eq. �73� is then given by

Zsc�t� =
tH

8��3�̄2Re�� �
i=1

4

driA�r1,r2�A��r3,r4�

	 �
�̃�r1→r2,E�

�̃��r3→r4,E�

D̃�̃D̃�̃�
� e�i/���S̃�̃−S̃�̃����t − t̄����� ,

�75�

where t̄���= �t�̃+ t�̃�� /2.
The term containing the action difference is a rapidly os-

cillating function, so due to the energy average most of the
contributions will cancel out. Only trajectories with similar
actions will give some contribution, which imposes condi-
tions on the possible configuration of the points ri. There are
two possible configurations, as depicted in Fig. 3, following
the analysis in Ref. �25�: �a� open trajectory �OT� contribu-
tions �which we will denote by Z1�t�� where r1�r3 and r2
�r4, or additionally in case of time-reversal symmetry, r1
�r4 and r2�r3 �this gives a factor of 2, taking into account
that in case of time-reversal symmetry the eigenfunctions of

Ĥ can be constructed to be real�; and �b� periodic orbit �PO�
contributions �Z2�t��, with r1�r2 and r3�r4 and both tra-
jectories surrounding a periodic orbit.

A. Open trajectory contributions

Let us consider the contributions of OTs. For this purpose
we expand the contributions from trajectories �̃ and �̃� along
trajectories � and �� connecting q= �r1+r3� /2 and Q= �r2
+r4� /2. Thus

Z1�t� =
�tH

8��3�̄2Re�� dQdQ�dqdq� �
�,���q→Q,E�

D̃�D̃��
�

	��t − t̄����A�q + q�/2,Q + Q�/2�

	A��q − q�/2,Q − Q�/2�e�i/���S̃���� , �76�

where �S̃���= S̃�− S̃��− �q� ·p���
o −Q� ·p���

f �, and p���
o and

p���
f are the averaged initial and final momenta of the two

trajectories, respectively. Furthermore, q�=r1−r2, Q�=r2
−r4, and �=1 �or �=2� in the absence �or presence� of time-
reversal symmetry.

The diagonal approximation corresponds to �=��. To
evaluate these terms we invoke the sum rule from Ref. �34�,
which allows us to write the integrals in Eq. �76� as
e−t/�d�E�
	dq	dpAW�q ,p��(E−H�q ,p�)
2, which in view of
Eq. �71� then gives

Z1,diag�t� = �e−t/�d. �77�

As before, we can calculate the 2ll contribution to Z1�t�
for �=2. The double sum is replaced by the sum rule and an
integral counting the encounters along �. The classical sur-
vival probability is modified again by a factor etenc/�d. We
assume that the stability amplitudes of the two trajectories
are the same, so the calculation of the integral over qi and pi
can be performed as for the diagonal approximation. Then,

Z1,2ll�t� = 2� dudse�i/��suw2ll�u,s,t�e−�t−tenc�/�d

= 2e−t/�d� t2

2�dtH
− 2

t

tH
� . �78�

As shown before in the semiclassical evaluation of double
sums over OTs connecting points inside a system, 1ll dia-
grams have to be considered. The result for the integrals in
this case is

Z1,1ll�t� = 4
t

tH
e−t/�d, �79�

canceling the linear contribution in Eq. �78�.
We note that this contribution can be written as Z1�t�

=2�̄�t�, where �̄�t� is the mean survival probability of the
state ��r�, i.e., ��t�=	Adr
��r , t�
2. Here the area of integra-
tion A entering in the decay corresponds to the area confined
by the binding potential.

Higher-order corrections can be calculated as in Sec. IV,
and we can simply write the OT contribution as

Z1 = ��̄�t� , �80�

where �̄�t� is given by Eq. �53� for the unitary case and by
Eq. �54� for the orthogonal case.

B. Periodic orbit contributions

Let us now consider the contributions of diagrams such as
Fig. 3�b�. We first calculate the contribution of periodic or-

~

~

~

~

(a) (b)

FIG. 3. �Color online� Scheme of configurations giving some
contribution to Z�t�. �a� Open trajectory �OT� configurations
counted in Z1�t�. �b� Configuration with �̃ and �̃� surrounding a
periodic orbit �PO�, contributing to Z2�t�.

GUTIÉRREZ et al. PHYSICAL REVIEW E 79, 046212 �2009�

046212-10



bits to the cross section, following a similar procedure as for
deriving the semiclassical trace formula, namely, by employ-
ing the semiclassical Green’s function in the definition of �
and expanding the actions around periodic orbits as shown in
Ref. �26�,

�PO�E� =
1

�
Re �

j

D̃je
�i/��S̃j�E��

0

Tpj

dtAW�q j,p j� , �81�

where the sum is over trapped periodic orbits j, S̃j�E�
=� jp ·dq is the action integral along the periodic orbit, and
Tpj refers to the period of the primitive periodic orbit. D̃j
=e−i�̃j�/2 /�
Tr Mj −2
 is the stability amplitude of the PO to-
gether with the Maslov index �̃ j, and Mj is the monodromy
matrix describing the linearization around the PO. Almost all
the long trajectories are equally distributed in phase space if
the system is ergodic. Therefore we approximate the time
integral by a corresponding phase-space average, i.e.,
	0

TpjdtAW�q j ,p j��Tpj	drdpAW�r ,p��(E−H�r ,p�) /��E�,
and obtain

�PO�E� �
2���E�

tH
Re �

j

TpjD̃je
�i/��S̃j�E�. �82�

We recognize here the form of the oscillatory part of the
density of states. After substituting one finds that the contri-

bution of periodic orbits to the cross-section form factor
Z2�t� corresponds to the spectral form factor of the open
system. Substituting Eq. �82� into Eq. �70� we have

Z2�t� =
1

tH
Re��

j,j�

TpjTpj�D̃jD̃j�
� e�i/���S̃j−S̃j����t − T̄jj��� ,

�83�

where T̄jj�= �Tj +Tj�� /2. The expression given in Eq. �83� has
been calculated as an expansion in t / tH in Ref. �30� up to
eighth order for the unitary case and up to seventh order for
the orthogonal case. In this context, 1lls do not play a role,
since both stretches must have a minimum time in order to
surround a PO.

Summing up the semiclassical contributions to Z1�t�, de-
cay rate �80�, and Z2�t�, i.e., the spectral form factor Kopen�t�
of the open system, we can in general write

Z�t� = Kopen�t� + ���t� . �84�

Equation �84� is consistent with the result presented in Ref.
�39� for t
 tH, obtained by invoking supersymmetry tech-
niques.

For the orthogonal case this is, up to seventh order in t / tH,

ZGOE�t� = e−t/�d�2 + 2
t

tH
+ �N − 2�

t2

tH
2 + �N

3
+ 2� t3

tH
3 + �5N2

12
−

5N

3
+

8

3
� t4

tH
4 + �−

19N2

60
+

53N

15
+ 4� t5

tH
5

+ �41N3

360
−

N2

4
−

101N

15
−

32

5
� t6

tH
6 + �−

583N3

2520
+

103N2

60
+

1324N

105
+

32

3
� t7

tH
7 � , �85�

with N= tH /�d. For the unitary case the result reads, up to eighth order in t / tH,

ZGUE�t� = e−t/�d�1 +
t

tH
+ �N2

24
−

N

6
� t4

tH
4 +

N2

24

t5

tH
5 + �N2

90
−

N

15
� t6

tH
6 + �−

N3

180
+

N2

20
� t7

tH
7 + � N4

1920
−

7N3

720
+

N2

224
−

N

28
� t8

tH
8 � .

�86�

Returning to the autocorrelation function by taking the
inverse Fourier transform, we obtain for the GOE case

CGOE��� = 4� 1

N

1

1 + �2 +
1

N2

1 − �2

�1 + �2�2

+
�N − 2�

N3

1 − 3�2

�1 + �2�3 + ¯� , �87�

where �=��d. The first contribution corresponds to the well-
known Lorentzian-shaped autocorrelation function in the re-
gime of Ericson fluctuations, first studied by Ericson �40� in
the context of nuclear cross sections in the continuum region
�also experimentally observed �41��, and later for systems

with few degrees of freedom, for which the corresponding
classical scattering reflects irregular dynamics �“chaotic scat-
tering”� �42�. In the context of atomic photoionization, the
Lorentzian behavior has been numerically studied �43,44�.
The first and the second terms in Eq. �87� were derived in
�25,26�, while the third term �partly of same order 1 /N2 as
the second one� and higher-order quantum corrections to
C��� can be semiclassically assigned to off-diagonal loop
contributions.

While the Lorentzian behavior was experimentally con-
firmed, e.g., in atomic photoionization �3�, to date we are not
aware of any photofragmentation experiment observing the
quantum corrections mentioned before, though they should
be in reach of next-generation measurements.

For the unitary case the autocorrelation function reads
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CGUE��� = 2� 1

N

1

1 + �2 +
1

N2

1 − �2

�1 + �2�2

+
�N − 4�

N4

�1 − 10�2 + 5�4�
�1 + �2�5 + ¯� . �88�

Equations �87� and �88� are consistent with RMT results for
indirect processes performed in Ref. �38� and with their ex-
pansion in powers of t / tH conjectured in Ref. �45�. In Sec.
VII we extend our approach beyond the RMT limit.

VII. EHRENFEST-TIME EFFECTS IN
PHOTOFRAGMENTATION STATISTICS

The Ehrenfest time �E �46� separates the short-time quan-
tum dynamics, where quantum wave packets follow the cor-
responding classical one, from a long-time regime of delo-
calized waves, where the dynamics is dominated by wave
interference. Effects of this additional time scale have been
recently considered for stationary processes involving time
integration, among others, in Refs. �18,20–22,47,48�. In
Refs. �16,49� it was pointed out that �E signatures should be
even more noticeable in the time domain. In Ref. �12� the �E
dependence of the leading quantum correction to the survival
probability was calculated and provided an explanation for
significant deviations of numerical quantum results in the
semiclassical regime from the RMT limit. This motivates us
to extend our study to �E effects in the statistics of photodis-
sociation cross sections.

We follow the approach introduced in Ref. �16�, for the
spectral form factor, to calculate the Ehrenfest-time depen-
dence of the respective leading quantum corrections. How-
ever we distinguish, as in Ref. �22�, between the Ehrenfest
time of the closed system,

�E
c � −1 ln�L/B� , �89�

where L is the typical system size and B is the de Broglie
wavelength, and the open system Ehrenfest time,

�E
o � −1 ln�w2/�LB�� , �90�

related to the width w of the opening �here w corresponds to
the number of fragmentation channels times the de Broglie
wavelength�.

Let us consider the first �off-diagonal� quantum correction
to the correlation function C��� coming from open trajecto-
ries:

C�E

1,2ll��� =
2

tH
Re �

0

�

Z1,2ll�t�e−i�tdt . �91�

As pointed out in Ref. �12� the densities should be multiplied
by a Heaviside function ensuring that the contribution exists
only for times larger than the encounter time. Only trajecto-
ries that are closer than a distance w to themselves will have
an enhanced survival probability, as explained before Eq.
�15�, because they escape in a correlated manner �22�. Cor-
related trajectories should come closer to themselves than a
distance c2 in phase space related to the opening. That is, we
place the PSS only in the region were the stretches are closer

than a distance w in configuration space; see Fig. 4. More-
over, on the right-hand side of the encounter, the stretches
should separate at least a distance L in order to close them-
selves. This is because the two almost parallel momenta at
the encounter have to grow until they are in exactly opposite
directions, which requires that the stretches are no longer
linearizable along each other and therefore should be sepa-
rated by a distance comparable to the system size. The dura-
tion of the trajectory should then be at least 2tenc+2tWL,
where

tWL = −1 ln�L/w� �92�

is the time it takes for the stretches to be separated by a
distance L when they are initially separated by a distance w.
The weight function is slightly modified by this minimal
time and by ensuring that the time is long enough in order to
have such an encounter. Thus

w2ll�u,s,t� =
�t − 2�tenc + tWL��2

2�tenc
��t − 2tenc − 2tWL� , �93�

and the classical survival probability is enhanced, as in Eq.
�15�, by a factor etenc/�d. In Appendix B the evaluation of
expression �91� can be found, together with the calculation
for the 1ll case. The total contribution can then be written as

C�E

1,2ll+1ll��� =
4

N2e−�E
c /�d Re� �1 − i��3

�1 + �2�3e−2i��E
e� , �94�

where �=��d, N= tH /�d, and 2�E
e =�E

c +�E
o . Taking the Fourier

transform this corresponds to a dependence in Z1�t� as

Z�E

1,2ll+1ll�t� = e−t/�de�E
o /�d

�t − 2�E
e �2

�dtH
��t − 2�E

e � , �95�

consistent with �12� for the decay. Here we see two compet-
ing effects. On one hand if the Ehrenfest time is too large,
loops cannot be formed, ��t−2�E

e �=0, and there are no quan-
tum contributions. On the other hand, if the time is long
enough so that the loops can occur, i.e., if t�2�E

e , the prob-

ability of staying is enhanced by a factor of e�E
o /�d compared

to generic orbits, revealing the enhanced classical survival
probability due to the encounter. In the energy domain, the
autocorrelation function C��� �Eq. �94�� shows an exponen-
tial suppression of quantum effects depending on the Ehren-
fest time of the closed system, similar to the exponential
suppression of weak localization in transport in mesoscopic
systems �18,21,22,47,48�, while additionally oscillations in �
with a period given by �E

e are expected.

FIG. 4. �Color online� Sketch of the 2ll for the semiclassical
approximation with finite Ehrenfest times.
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Let us consider now the Ehrenfest-time dependence of the
first quantum correction to C2���. A calculation of the
Ehrenfest-time dependence of the spectral form factor of
closed systems was performed in Ref. �16�. We follow here a
similar approach, taking into account now the opening of the
system, and the two different Ehrenfest time scales. In this
situation the stretches are required to be separated by a dis-
tance L also on the left- and right-hand sides of the encoun-
ter. Therefore the minimal time for the orbits is 2tenc+4tWL.

The first quantum correction to the spectral form factor
results from orbits sketched in Fig. 5 �13� denoted in the
following by �2�1. The corrected weight function is then
given by

w�2�1
�u,s,t� =

t�t − 2tenc − 4tWL�
2�tenc

��t − 2tenc − 4tWL� .

�96�

The contribution to the autocorrelation function, after shift-
ing the time integration by 2tenc, can be written as

C�E

2,�2�1
��� =

4

tH
3 Re �

4tWL

�

e−�1+i��d�t/�d�t − 4tWL�I�2�1
��,t�dt ,

�97�

with

I�2�1
��,t� =

1

��
�

0

c

du�
0

c

dse�i/��us �t + 2tenc�2

tenc
e−�1+2i��d�tenc/�d.

�98�

The integrals can be performed as before, yielding

C�E

2,�2�1
��� =

8e��E
o−2�E

c �/�d

N3 Re�e−2i��E
c� 1 − 2i�

�1 + i��4 −
4i��E

c

�1 + i��3

−
2�E

c2�1 + 2i��
�d

2�1 + i��2 �� , �99�

where �=��d again. Taking the Fourier transform, the result
for the spectral form factor of the open system is

Z�E

2,�2�1
�t� = e−t/�de�E

o /�d��t − 2�E
c ��− 2

t2

tH
2 �1 +

�E
c

�d
� +

t3

�dtH
2 � .

�100�

If �d→� and the system is closed, Eq. �100� is consistent
with Ref. �16�. Similarly as for Eq. �95� the step function
ensures that only trajectories longer than 2�E

c give a contri-
bution, which are larger than 2�E

e since the orbits have to

close themselves. For those orbits the contribution is en-

hanced by e�E
o /�d, again showing the enhanced survival prob-

ability for periodic orbits with a self-encounter. As in Eq.
�94�, Eq. �99� shows that the quantum corrections in the
cross-section autocorrelation function are exponentially sup-
pressed due to the minimal time that self-encounters require.
In the case of periodic orbits, the suppression is stronger
�since �E

c ��E
o�.

VIII. CONCLUSIONS AND OUTLOOK

We have presented a detailed semiclassical analysis of the
quantum survival probability and of photofragmentation
cross-section statistics, including higher-order corrections.
We have demonstrated how interference contributions asso-
ciated with certain trajectory pairs provide the key to under-
standing and deducing quantum corrections to the leading
classical features in chaotic decay. We have seen in the case
of the survival probability that the initial semiclassical treat-
ment introduced in Ref. �12� for localized wave packets can
be extended to nonlocalized ones by assuming a local time
average, which allows us to treat in the arising double sums
of trajectories only those pairs that are correlated. Apart from
the standard off-diagonal contributions, it proves necessary
to include further, so-called one-leg-loop, diagrams in order
to recover unitary, expressed via the normalization of the
wave function when the system is closed. Trajectories with
multiple encounters of several stretches lead to higher-order
corrections for systems with and without time-reversal sym-
metry, for which again it is necessary to take into account the
corresponding one-leg-loops as well as diagrams where both
the initial and final points are inside encounter regions
�which are not the same�. Taking into account all the differ-
ent allowed structures, depending on the general symmetries
of the problem, we can reproduce RMT-type results pre-
sented in Ref. �10�, where the survival probability was cal-
culated using supersymmetry techniques. Moreover, our ap-
proach can be further extended to also include systems with
spin-orbit interaction, which corresponds to the symplectic
RMT ensemble. We have also considered mesoscopic sur-
vival probability fluctuations through their variance and
could explicitly show that they are nonuniversal, that is, that
the variance depends on the spatial width of the initial �co-
herent� state.

In the second part of the paper, we presented in detail an
application of this approach to a different field, namely, pho-
todissociation and photoionization processes. We considered
correlations in frequency of photofragmentation cross sec-
tions. Its Fourier transform, the corresponding photofrag-
mentation form factor, can be semiclassically expressed as
the sum of �twice� the survival probability, related to open
trajectories, and the spectral form factor of the open system,
related to the set of periodic orbits that are trapped in the
open system. We have semiclassically computed the photof-
ragmentation form factor to high order in t / tH and moreover
considered Ehrenfest-time effects.

According to previous numerical results �12� there are
clear indications of the importance of Ehrenfest-time effects
in decay processes, leading to a shift in time of the quantum

FIG. 5. �Color online� Sketch of a periodic orbit with a self-
crossing for a finite �E.
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corrections. In the context of photofragmentation, we have
shown here that quantum corrections of the photodissocia-
tion form factor are also distinctly shifted in time �with a
stronger shift for periodic orbit contributions�. This time shift
translates into an exponential suppression of quantum effects
in the cross-section correlator, if the Ehrenfest time is com-
parable to the typical lifetime of the intermediate atomic or
molecular resonant states in the fragmentation process. Our
semiclassical results also predict a frequency modulation of
the correlator with period given by the Ehrenfest time; see
Eq. �99�. This characteristic modulation may be accessible in
experiments as a signature of the Ehrenfest time.

The semiclassical approach developed here to treat decay
processes can be extended to address other quantities where
semiclassics so far was limited by the diagonal approxima-
tion. One example is the problem of the Loschmidt echo or
fidelity, where a semiclassical treatment along similar lines
as the one presented here allows one to calculate quantum
corrections to the fidelity decay �50�.

The present approach is still limited to times smaller than
the Heisenberg time. An extension to longer times beyond tH
remains as a challenging open problem of semiclassics for
open quantum systems.
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APPENDIX A: HIGHER-ORDER CONTRIBUTIONS TO
THE DECAY RATE IN THE ORTHOGONAL CASE

Table II allows us to obtain the following semiclassical
corrections to �cl=e−t/�d for the orthogonal case:

�̄1�t� =
e−t/�d

tH
� t2

2�d
� , �A1�

�̄2�t� =
e−t/�d

tH
2 �−

t3

3�d
+

5t4

24�d
2� , �A2�

�̄3�t� =
e−t/�d

tH
3 � t4

3�d
−

11t5

30�d
2 +

41t6

720�d
3� , �A3�

�̄4�t� =
e−t/�d

tH
4 �−

2t5

5�d
+

7t6

12�d
2 −

29t7

168�d
3 +

509t8

40320�d
4� ,

�A4�

�̄5�t� =
e−t/�d

tH
5 � 8t6

15�d
−

14t7

15�d
2 +

31t8

80�d
3 −

271t9

5040�d
4 +

2743t10

1209600�d
5� ,

�A5�

�̄6�t� =
e−t/�d

tH
6 �−

16t7

21�d
+

5099t8

3360�d
2 −

4469t9

5670�d
3 +

437t10

2800�d
4

−
28001t11

2217600�d
5 +

55459t12

159667200�d
6� . �A6�

APPENDIX B: EHRENFEST-TIME DEPENDENCE OF THE
LEADING QUANTUM CORRECTION TO THE

CROSS-SECTION CORRELATION C(�)

Substituting expressions �92� and �93� into Eq. �91� and
shifting the time integral by 2tenc+2tWL, we have for the 2ll
correction to the photo-cross-section correlation

C�E

1,2ll��� =
4

tH
2 Re �

0

�

t2e−�1+i��d��t+2tWL�/�dI2ll���dt , �B1�

with

I2ll��� =
1

��
�

0

c

du�
0

c

ds
e�i/��us

tenc
etenc/�de−2�1+i��d�tenc/�d.

�B2�

Upon changes of variables, x=us /c2 and �=c /u, we obtain

TABLE II. The numbers of trajectory pairs and the numbers
linking certain encounters for systems with time-reversal symmetry.

v L V N�v� Nl1,l2
�v� Nl1,lV

�v� NlV−1,lV
�v�

�2�1 2 1 1

�2�2 4 2 5 4

�3�1 3 1 4

�2�3 6 3 41 36

�2�1�3�1 5 2 60 40

�4�1 4 1 20

�2�4 8 4 509 468

�2�2�3�1 7 3 1092 228 672

�2�1�4�1 6 2 504 296

�3�2 6 2 228 148

�5�1 5 1 148

�2�5 10 5 8229 7720

�2�3�3�1 9 4 23160 8220 12256

�2�2�4�1 8 3 12256 1884 7480

�2�1�3�2 8 3 10960 5024 3740

�2�1�5�1 7 2 5236 2696

�3�1�4�1 7 2 4396 2696

�6�1 6 1 1348

�2�6 12 6 166377 158148

�2�4�3�1 11 5 579876 266040 265056

�2�3�4�1 10 4 331320 93456 186160

�2�2�3�2 10 4 443400 41792 249216 93080

�2�2�5�1 9 3 167544 19872 98712

�2�1�3�1�4�1 9 3 280368 49576 66240 98712

�3�3 9 3 41792 33120

�2�1�6�1 8 2 65808 30208

�3�1�5�1 8 2 52992 30208

�4�2 8 2 24788 15104

�7�1 7 1 15104
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I2ll��� =
r

�
�

0

1

dx cos�rx�x�1+2i��d�/��d�, �B3�

where r=c2 /�, and the integral over � has already been per-
formed. We compute the remaining integral by partial inte-
gration, neglecting highly oscillating terms in the limit �
→0 while keeping �E

o /�d �Eq. �89�� and �E
c /�d �Eq. �90��

finite. We find

I2ll��� = −
�1 + 2i��d�

2�d
e�E

o /�de−2�1+i��d��E
o /�d, �B4�

with Ehrenfest time �E
o =−1 ln�c2 /��. Then Eq. �B1� gives

C�E

1,2ll��� = − �2�d

tH
�2

e−�E
c /�d Re� 1 + 2i��d

�1 + i��d�3e−2i��E
e� .

�B5�

Here we used that from the definitions of �E
o and tWL follows

�E
o +2tWL=�E

c , and we introduced �E
e = ��E

c +�E
o� /2.

A corresponding calculation can be performed for the 1ll
case, where

C�E

1,1ll��� =
16

tH
2 Re �

0

�

te−�1+i��d��t+2tWL�/�dI1ll���dt , �B6�

with

I1ll���

=
1

��
�

0

c

du�
0

c

ds�
0

−1 ln�c/
s
�
dt�

e�i/��us

tenc
etenc/�de−2�1+i��d�tenc/�d,

�B7�

and tenc= t�+−1 ln�c / 
u
�. With the changes of variables x
=us /c2 and �=c /u and t�= t�+−1 ln�c / 
u
�, we obtain

I1ll��� = −
r�d

��1 + 2i��d��0

1

dx cos�rx�x�1/�d��1+2i��d�.

�B8�

The integral can be evaluated as before, neglecting higher-
order terms. Together with C�E

1,2ll��� from Eq. �B5� we find

C�E

1,2ll+1ll��� = 4
�d

2

tH
2 e−�E

c /�d Re� �1 − i��d�3

�1 + ���d�2�3e−2i��E
e� ,

�B9�

which corresponds to Eq. �94�.
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