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Abstract. We analyze a single-level quantum system placed between metallic
leads and strongly coupled to a localized vibrational mode, which models
a single-molecule junction or an STM setup. We consider a polaron model
describing the interaction between electronic and vibronic degrees of freedom
and develop and examine different truncation schemes in the equation-of-motion
method within the framework of nonequilibrium Green functions. We show that
upon applying gate or bias voltage, it is possible to observe charge-bistability
and hysteretic behavior which can be the basis of a charge-memory element. We
further perform a systematic analysis of the bistability behavior of the system for
different internal parameters such as the electron–vibron and the lead–molecule
coupling strength.
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1. Introduction

Within the field of single-molecule electronics [1]–[4], beside experimental progress with
regard to vibrational properties and their signatures in transport [5]–[9], related phenomena
such as switching, memory effects and hysteretic behavior in molecular junctions have
gained increasing importance and attention. Random and controlled switching of single
molecules [10]–[12], as well as conformational memory effects [13]–[15] have been recently
explored. Related to these effects, there is the so-called charge-memory effect, that is basically
a hysteretic behavior of the charge–voltage, respectively, current–voltage characteristics arising
from the interplay between the polaron shift and Franck–Condon blockade [16] in the presence
of electron–vibron interaction. Several works have recently addressed this interesting feature of
molecular junctions, both experimentally [17, 18] and theoretically [19]–[23].

The charge-memory effect can be explained within the framework of a simple single-level
polaron model [20], [23]–[25], where the electronic state is coupled to a vibronic mode with
frequency ω0, see the sketch in figure 1. If the energy of the unoccupied electron level without
electron–vibron interaction is ε0, the occupied (charged) state of the interacting system will
have the energy ε1 = ε0 − εp, where εp is the so-called polaron shift (called also recombination
energy). Neutral and charged (polaron) states correspond to local minima of the potential
energy surface and get metastable, if the electron–vibron interaction is strong enough. Upon
applying an external voltage, one can change the state of this bistable system, an effect that
is accompanied by hysteretic charge–voltage and current–voltage curves. In this model, it
is not necessary to include Coulomb interaction explicitly, though one can straightforwardly
incorporate charging effects.

It was alternatively suggested in [21, 22] that quantum switching between bistable states
rather results in telegraph noise at finite voltage than in a memory effect. In a recent paper [23],
considering the problem in the weak molecule-to-lead coupling limit, i.e. for the level width
0 � ω0, εp, we considered the crossover between these two pictures, if one takes into account
the timescale of the switching process. Indeed, the switching time τ between the two states
of interest should be compared with the characteristic time of the external voltage sweeping,
τs ∼ V (t)/(dV (t)/dt). For τ � τs, quantum switching can be neglected, and hysteresis can be
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Figure 1. Schematic representation of a single-level model system interacting
with a vibronic mode and coupled to left and right leads.

observed, whereas in the opposite limit, τ � τs, the averaging removes the hysteresis. In [23],
we found that at large enough electron–vibron interaction strength λ/ω0 (where λ is introduced
below in equation (1)), the switching time τ is exponentially large compared to the inverse bare
tunneling rate 1/0.

In this paper, we consider the polaron problem in another limiting case, ω0 � 0 < εp,
corresponding to the regime where the Born–Oppenheimer approximation holds true. In this
situation of intermediate molecule-to-lead coupling, we address the case of time-independent
applied voltages, considering then the stationary problem and focusing on the properties of the
two states of interest. In this paper, we consider the parameter ranges for which the fluctuations
between the two charge states of interest are negligible. It should be noted that the mean-field
solutions we consider are metastable, but they are physical in the case of very long switching
time τ . Of course, the exact equilibrium solution is a superposition of these two states. We
assume that all possible relaxation processes, with the exception of the switching between
metastable states, are much faster than τ . Within the framework of nonequilibrium Green
functions [26]–[30], we use an equation-of-motion (EOM) approach which allows for studying
the appearance of the charge-memory effect addressed at different levels of approximation,
starting with the self-consistent Hartree level. The work is partly built on and further develops
ideas introduced in [20, 24, 25] and complements the results based on a master equation
approach in [23].

The paper is organized as follows: in section 2, we introduce the model and the relevant
quantities necessary to describe transport through the molecular junction. In section 3, we
outline the EOM method, used for the calculation of nonequilibrium Green functions, and
discuss different truncation schemes. In the final section 4, we present and discuss the results of
our approach.

2. Model and method

2.1. The single-level electron–vibron Hamiltonian

We consider a three-terminal device with the central part given by a single level interacting
with a vibronic mode (see figure 1). Possible experimental implementations include
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metal–molecule–metal junctions or scanning tunneling microscopy (STM) spectroscopy of a
single molecule on a conducting substrate. To describe such a system we use the standard
electron–vibron Hamiltonian

Ĥ = (ε0 + eϕ0)d
†d + ω0a†a + λ(a† + a)d†d +

∑
i,k

[
(εi,k + eϕi)c

†
i,kci,k + (Vi,kc†

i,kd + h.c.)
]
. (1)

Here the first three terms describe the central system including one electronic state with energy
ε0, one vibronic state with frequency ω0 and their mutual interaction with a coupling strength
λ. The last term in equation (1) contains the Hamiltonian of the two leads with independent-
particle states and the tunneling between the leads and the central region via the couplings Vi,k .
The index i denotes the left and right leads, while k labels the electronic states of electrons in the
leads. Below it proves far more convenient to employ the vibronic ‘position’ and ‘momentum’
operators

x = a† + a; p = a†
− a. (2)

The energy level ε0 in equation (1) can be shifted through the gate voltage VG. We choose as
reference energy ε0 = 0 for VG = 0 and assume a linear capacitive coupling, ε0 = αeV G putting
α = 1. Note that the presence of a bias voltage VB = ϕL − ϕR can also change the energy of
the electronic level via the parameter ϕ0 = ϕR + ηVB, where 0 < η < 1 describes the symmetry
of the voltage drop across the junction: η = 0 corresponds to the completely asymmetric case,
whereas η = 0.5 stands for the symmetric case. Thus in all approximations the bias and gate
voltages are taken into account twofold, through the potentials of the leads, which can be chosen,
e.g. as ϕL = VB/2, ϕR = −VB/2, and the effective energy of the level, which is correspondingly
ε̃0 = ε0 + eϕ0 = eVG + e(η − 0.5)VB. From this expression for ε̃0 it follows that in the case of
asymmetric bias-voltage drop across the junction, η = 0, the energy of the unoccupied electron
level will be centered around the electrochemical potential of the right lead and moved away
from this value through the gate voltage. This ingredient will be crucial for the effect addressed
in this paper because the additional presence of the polaron shift will then fix the energy of
the occupied (charged) state below the electrochemical potential of the right lead resulting in a
blocked charged state under appropriate parameter conditions. In the case of symmetric voltage
drop, η = 0.5, the energy of the unoccupied electron level will be centered around the zero of the
energy resulting in a different scenario for what concerns the memory effect. In this paper, we
consider the case of an asymmetric junction for which we show that the memory effect occurs
for small bias voltage in a wide range of the parameters entering the model Hamiltonian (1).
The symmetric situation can also give rise to a hysteretic behavior but only at finite bias voltages,
making this case less interesting for the memory effect addressed here.

2.2. Spectral function, average charge and current

To obtain physical information from the Hamiltonian (1) we use the Green function method
within the EOM formalism. This method is an alternative to the Green function techniques
earlier applied to the considered problem in [20], [23]–[25]. We start with the retarded Green
function for two generic operators a and b which is defined as

Gr(t1, t2) = −i2 (t1 − t2) 〈{a(t1), b(t2)}〉, (3)

where 〈,〉 denotes a thermal average and {a, b} = ab + ba is the anti-commutator. For the
stationary case, the general expression (3) reduces to an object with only one time argument,

Gr(t) = −i2 (t) 〈{a(t), b}〉. (4)
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For a single-level system the retarded Green function in equation (4) is obtained by replacing
the generic operators a and b by the electronic operators. For the Hamiltonian (1), this reads

Gr(t) = −i2 (t)
〈{

d(t), d†
}〉

. (5)

From equation (5) one obtains the spectral function A(ε) of the system through the expression

A(ε) = −2ImGr(ε), (6)

where Gr(ε) is the Fourier transform of Gr(t). The spectral function is the basic ingredient
for obtaining the transport properties of the system such as average current and charge on the
molecule. The expression for the current through the molecule is given by

I =
e0L0R

0L + 0R

∫ +∞

−∞

A(ε)
[

f 0
L (ε − eϕL) − f 0

R(ε − eϕR)
] dε

2π
, (7)

where f 0
i is the equilibrium Fermi function in the i th lead. The tunneling couplings to the right

(0R) and left (0L) leads are

0i(ε) = 2π
∑

k

|Vi,k|
2δ(ε − εi,k), (8)

where the matrix elements Vi,k are assumed to be energy independent (wide-band limit). The
full level broadening is given by the sum 0 = 0L + 0R. Below 0R and 0L are assumed to be
the same.

The average charge (number of electrons), n = 〈d†d〉, is given by

n =

∫ +∞

−∞

A(ε) f (ε)
dε

2π
, (9)

where f (ε) is the distribution function of electrons inside the molecule. For the approximations
used in this paper, we employ the same distribution function as in the non-interacting case,

f (ε) =
0L f 0

L (ε − eϕL) + 0R f 0
R(ε − eϕR)

0L + 0R
, (10)

because we are focusing on the case of intermediate molecule–lead coupling. Fast tunneling
into and out of the molecule makes plausible the assumption that the electrons are in a strong
nonequilibrium situation and can then be described via equation (10) that is obtained assuming
only elastic processes. Moreover, within the first approximation that we discuss in the paper, it
is possible to obtain the distribution function (10) analytically by calculating the lesser Green
function of the problem or applying the Hartree approximation directly to the Hamiltonian
as in [20].

For a more complete explanation of the basic formulae introduced here the reader is
referred to [28]–[30].

3. EOM method

3.1. General formalism

The EOMs for nonequilibrium Green functions are obtained from the Heisenberg equation for
a Heisenberg operator a(t),

i
∂a

∂t
= [a, Ĥ ]− = aĤ − Ĥa. (11)
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Here and below all Hamiltonians are assumed to be time independent because we consider the
stationary problem, the applied voltages enter the problem only as time-independent parameters,
changing the position of the molecular energy level and the electrochemical potentials in the left
and the right leads. With equation (11) the time derivative of the Green function, equation (4),
reads

i
∂Gr(t)

∂t
= δ(t) 〈{a(t), b}〉 − i2 (t) 〈{[a, H ] (t), b}〉. (12)

After performing a Fourier transform of equation (12), we obtain

(ε + iη) 〈〈a, b〉〉 = 〈{a, b}〉 + 〈〈[a, H ] , b〉〉, (13)

where 〈〈,〉〉 indicates the Fourier transform of a given Green function. Equation (13) is the
starting point for the EOM method. By applying successively a time derivative there are new
high-order Green functions appearing. The idea of the EOM method is thereby to truncate this
iterative process at some point making the mean-field like approximation of the highest order
Green function through lower order functions, in order to obtain a closed set of equations. In
our case, we start from the Hamiltonian (1) and consider the first-order equation for the function
〈〈d, d†

〉〉 and second-order equations for the functions 〈〈xd, d†
〉〉 and 〈〈pd, d†

〉〉.

3.2. EOM method for the single-level electron–vibron Hamiltonian

The EOM method for Hamiltonian (1) generates the expressions

(ε + iη)
〈〈

d, d†
〉〉

= 1 + ε̃0

〈〈
d, d†

〉〉
+ λ

〈〈
xd, d†

〉〉
+

∑
i,k

V ∗

i,k

〈〈
ci,k, d†

〉〉
, (14)

(ε + iη − εi,k)
〈〈

ci,k, d†
〉〉

= Vi,k

〈〈
d, d†

〉〉
. (15)

The equation for 〈〈ci,k, d†
〉〉 is closed (including only the function 〈〈d, d†

〉〉). By substituting
equation (15) into (14) and introducing the self-energy 6 of the leads through

6 =

∑
i,k

|Vi,k|
2

ε + iη − εi,k
, (16)

we obtain eventually

(ε + iη − ε̃0 − 6)
〈〈

d, d†
〉〉

= 1 + λ
〈〈

xd, d†
〉〉

. (17)

The last term, describing the interaction between electron and vibron, has to be truncated at this
level or found from higher order equations and then truncated at a higher level of approximation.
The lead self-energy will be used below in the wide-band approximation 6(ε) = −i0.

3.3. Self-consistent Hartree approximation

The simplest way to close equation (17) is to perform the truncation by approximating〈〈
xd, d†

〉〉
≈ 〈x〉

〈〈
d, d†

〉〉
. (18)

Then we obtain immediately for the Green function

Gr
H(ε) =

〈〈
d, d†

〉〉
=

1

ε − ε̃0 − λ 〈x〉 + i0
. (19)
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Here the quantity 〈x〉 remains to be calculated. To this end we compute, respectively, the time
derivatives of the x-operator,

i
∂x

∂t
= [x, H ] = ω0 p (20)

and the p-operator,

i
∂p

∂t
= ω0x + 2λd†d. (21)

Upon combining equations (20) and (21), we get

−
∂2x

∂t2
= ω2

0x + 2λω0d†d. (22)

In the stationary case addressed, equation (22) yields a direct connection between the ‘position’
of the vibron and the particle number in the dot:

〈x〉 = −2
λ

ω0

〈
d†d

〉
= −2

λ

ω0
n. (23)

In view of equation (19), we finally obtain for the spectral function (6) the following self-
consistent expression:

A(ε) =
20(

ε − ε̃0 + 2(λ2/ω0)n
)2

+ 02
. (24)

This result is equivalent to the one obtained earlier in [20, 24, 25] using alternative approaches.
The same spectral function can be found if one takes the self-energy in Hartree approximation.

3.4. Second approximation

In the first approximation above, the self-consistent Hartree treatment, fluctuations of the
particle number n and the vibron coordinate x are completely neglected. In order to go one
step further and estimate possible corrections, we start from the generated equations for the
second-order Green functions, 〈〈xd, d†

〉〉 and 〈〈pd, d†
〉〉,

(ε + iη − ε̃0)
〈〈

xd, d†
〉〉

= 〈x〉 + ω0

〈〈
pd, d†

〉〉
+ λ

〈〈
x2d, d†

〉〉
+

∑
i,k

V ∗

i,k

〈〈
xci,k, d†

〉〉
, (25)

(ε + iη − ε̃0)
〈〈

pd, d†
〉〉

= ω0

〈〈
xd, d†

〉〉
+ λ

〈〈
pxd, d†

〉〉
+

∑
i,k

V ∗

i,k

〈〈
pci,k, d†

〉〉
. (26)

The second approximation that we consider here is based on the factorization〈〈
x2d, d†

〉〉
≈ 〈x〉

〈〈
xd, d†

〉〉
,〈〈

pxd, d†
〉〉

≈ 〈x〉
〈〈

pd, d†
〉〉

+ 2
〈〈

d, d†
〉〉

,〈〈
xci,k, d†

〉〉
≈ 〈x〉

〈〈
ci,k, d†

〉〉
,〈〈

pci,k, d†
〉〉

≈ 0.

(27)

The corresponding set of equations reads

(ε + iη − ε̃0 − 6)
〈〈

d, d†
〉〉

= 1 + λ
〈〈

xd, d†
〉〉

,

(ε + iη − ε̃0 − λ 〈x〉)
〈〈

xd, d†
〉〉

= 〈x〉 + ω0

〈〈
pd, d†

〉〉
+ 〈x〉 6

〈〈
d, d†

〉〉
,

(ε + iη − ε̃0 − λ 〈x〉)
〈〈

pd, d†
〉〉

= ω0

〈〈
xd, d†

〉〉
+ 2λ

〈〈
d, d†

〉〉
,

(28)
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from which we obtain the second approximation for the Green function,[
Gr(ε)

]−1
=

[
Gr

H(ε)
]−1

−

(
λ 〈x〉 +

λ2

ω0

)
�

1 − �
, (29)

where we introduced 1 = ε + iη − ε̃0, � =
ω2

0
1−λ〈x〉

, and Gr
H is given by the Green function

obtained in the Hartree approximation, equation (19). After inserting the expression (23) for
the level population 〈x〉, equation (29) reads[

Gr(ε)
]−1

=
[
Gr

H(ε)
]−1

− (1 − 2n)
λ2

ω0

�

1 − �
. (30)

We then calculate the spectral function (6) and the average number of electrons (9). The
self-consistent calculation is performed following the chain Gr(ε) → A(ε) → n → Gr(ε).

Before entering into the discussion of the calculated quantities, we consider the structure
of the Green functions obtained in the two different approximations:

• In the limit where � → 0 the second approximation reduces to the first one. Although
the EOM method is not a systematic expansion, it tells us that the second approximation
consistently extends the first one and reproduces it in a limiting case.

• The second term on the right-hand side of equation (30) represents an additional shift with
respect to equation (19). In the case of very small frequencies ω0, equation (30) reduces to
[Gr

H(ε)]−1
− (1 − 2n)λ2 ω0

1(1−λ〈x〉)
, involving the first term of a series expansion in ω0.

4. Results, discussion and conclusions

Starting from the expressions derived above within the first (self-consistent Hartree) and second
approximation, we have performed numerical simulations for the average population and current
in the molecular junction as a function of gate and bias voltage for the different parameters λ,
0 and T entering the model Hamiltonian. Furthermore, we compare the two approximations.
The underlying nonlinear equations give rise to bistability in the level population thereby
enabling memory effects and affecting the current. Below we analyze in detail the parameter
ranges and conditions for memory effects to occur. We focus here on the case of an asymmetric
junction, η = 0, while keeping the coupling to the leads symmetric, 0L = 0R = 0, to reduce the
parameter space.

First, we investigate the gate-voltage dependence of the level population. In figure 2, it is
clearly seen that bistability takes place only at larger values of the electron–vibron coupling λ.
The critical values at which bistability occurs and disappears depend on the coupling 0 to the
leads and on temperature T ; we discuss this parameter dependence below. Note that at large
values of λ the level population of the stable states is close to 0 and 1; thus these two memory
states are well distinguishable in charge.

A comparison between the left and right panels of figure 2, representing the two different
levels of approximations in the EOM method, shows that the self-consistent Hartree treatment
underestimates the parameter range where bistability occurs: the critical value of λ for the
occurrence of bistable behavior is close to 3ω0 (see left panel). At this value a bistable regime
has already developed for the second approximation. This can be partially understood taking
into account the additional term appearing in the Green function for the second approximation,
equation (30). This term increases the polaron shift thereby enhancing the bistable behavior in
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Figure 2. Bistable behavior of the level population n in the self-consistent
Hartree approximation (left) and second approximation (right) as a function of
gate voltage for different electron–vibron interaction strength λ = 3ω0 (black),
λ = 4ω0 (red), λ = 5ω0 (green), the other parameters are 0 = 5ω0, T = 0.25ω0,
η = 0 and VB = 0.

Figure 3. Level population n in the self-consistent Hartree approximation (left)
and the second approximation (right) as a function of normalized bias voltage
for different electron–vibron interaction strength λ = 3ω0 (black), λ = 4ω0 (red),
λ = 5ω0 (green), the other parameters are 0 = 5ω0, T = 0.25ω0, η = 0 and
VG =

λ2

ω0
.

the second approximation. Figure 3 shows the bias-voltage dependence of the level population.
In this case, a qualitative difference arises between electrostatically symmetric (η = 0.5)
and asymmetric (η = 0) junctions. For asymmetric junctions both states are stable at zero
voltage, and both charge states are easily accessible. As we showed recently [23], asymmetric
junctions are thus favorable, since they exhibit memory effects and hysteretic behavior at zero
bias, enabling controlled switching upon ramping the bias voltage. For symmetric junctions,
hysteresis is expected only at finite bias voltage (nonequilibrium bistability [20]), and hence
only a single stable state exists at zero bias. Furthermore, at finite voltage the level is only
partially occupied by tunneling electrons. These two features render the symmetric system less
suited for a memory setup.
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Figure 4. Current normalized to I0 = 0e/4 versus bias voltage for the self-
consistent Hartree approximation (left) and the second approximation (right)
for different electron–vibron interaction strength λ = 3ω0 (black), λ = 4ω0 (red),
λ = 5ω0 (green), for the same parameters as in figure 3.

Figure 5. ‘Phase diagram’ depicting the boundaries between parameter regimes
of bistable memory (below the threshold lines) and single-valued states (above
threshold). Left panel: 0 − T parameter plane at different electron–vibron
interaction strength λ = 3ω0 (black), λ = 4ω0 (red), λ = 5ω0 (green); right panel:
λ − 0 parameter plane for T = 0.25ω0.

We further display in figure 4 the current–voltage characteristics, which reflects the
switching behavior of the system. The characteristic feature is a current jump at the bias voltage
value where recharging sets in. This behavior can be used to test the state of the system and as
readout.

Finally, we depict in figure 5 ‘phase diagrams’ showing the boundaries between the
parameter regions where bistable memory states (below the boundaries in the two panels of
figure 5) and single-valued states exist. The left panel of figure 5 shows the 0 − T parameter
plane. The curve separating single-valued and bistable states can be roughly approximated by
the condition 0 + T = c(λ), where c(λ) is extracted to be c(λ) ≈ λ1.7. This means that either
thermal or quantum tunneling broadening suppresses the hysteresis. The disappearance of
the memory effect at high temperature is due to enhanced electron tunneling into the higher
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energy state. We note that in the analysis of the temperature dependence the effect of vibronic
coordinate fluctuations is neglected that can be relevant close to the threshold between single-
valued and bistable regime. The right panel in figure 5, displaying the λ2

− 0 parameter plane,
shows on the one hand that bistable behavior requires, for growing 0, increasing electron–
vibron coupling λ. The boundary between the two regimes is approximately a straight line in the
λ2

− 0 plane. Hence, the condition for finding the memory effect is given by 0 6 0.63λ2/ω0.
This clearly shows that for the appearance of the memory effect at low temperature, the two
energy scales to be compared are the level broadening 0 and the polaron shift λ2/ω0. A further
important conclusion is that the memory effect is suppressed for large coupling to the leads.
Since, on the other hand, larger coupling favors fast information writing and reading and also
can additionally suppress effects from quantum tunneling between states, the problem arises to
find optimal parameters for utilizing the memory effect. This will be the subject of future work.

To conclude, we considered a charge-memory effect and switching phenomena within a
single-level polaron model of a molecular junction in the framework of the EOM approach to
the nonequilibrium Green function theory at different levels of approximation. Electrostatically
symmetric and asymmetric junctions show qualitatively different bistability behavior. In the
latter case, controlled switching of the molecule is achieved by applying finite voltage pulses.
We showed that bistability takes place for sufficiently large electron–vibron coupling for a wide
range of further parameters such as molecule–lead coupling and temperature and performed a
systematic analysis of this parameter dependence by computing phase diagrams for the memory
effect. We focused on the investigation of bistability for stationary states, leaving the problem
of time-dependent fluctuations and fluctuation-induced switching as an open question to be
investigated in future research.
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