
Web Services for Language Resources and Language Technology Applications

Christian Biemann*, Stefan Bordag*, Uwe Quasthoff*, Christian Wolff †

 *Leipzig University †Regensburg University
 Computer Science Institute Institute for Media, Information and Cultural Studies
 Natural Language Processing Dept. Media Computing Dept.
 Augustusplatz 10/11 Universitätsstr. 31
 04109 Leipzig, Germany 93040 Regensburg, Germany
 {biem, sbordag, quasthoff}@informatik.uni-leipzig.de christian.wolff@sprachlit.uni-regensburg.de

Abstract
In this paper we discuss the application of web service technology to the language technology (LT) and corpus processing domain.
Motivated by a host of language technology tools which are widely available but which lack common technical standards for integrat-
ing them into language technology applications we discuss the implementation of a web service-based API for web-based processing
and accessing of large linguistic data resources.

1. Introduction
Web services have been established as a new model for
web-based distributed applications (see Vinoski 2002a,
2002b; Ferris & Farrell 2003). While the basic idea of
making information services available via the world wide
web has been discussed for some time (see Schranz 1998),
the combination of a model of loosely coupled compo-
nents with XML-based standards for accessing informa-
tion and functionality on the WWW holds great promise
for easier application access and integration.

Language resources are an obvious application area
for web services, as there is a great need for standardized
and web-based access to language resources. There are
several benefits from making language resources available
through web services:

 Language data becomes available via standardized

interfaces and access mechanisms which is a great
advantage in comparison with the variety of inter-
faces and APIs currently used for accessing language
resources

 Other interfaces and APIs can be wrapped by a Web
service, thus relieving the user of the need to program
his own interfaces for each new source of information
– thus, a programming language-independent level of
functionality description may be reached.

 There is no need for an application to have large da-
tabases available locally.

 All technical details concerning data structures and
implementation of corpus management or processing
components can be encapsulated and hidden from the
user or the application accessing a corpus via a web
service.

 The same type of service (e. g. phrase lookup, tag-
ging, or corpus analysis) may be offered by different
language resource providers. Using web service reg-
istries, a client application in need of a specific lan-
guage technology web service may ultimately select
(or change) web services even during execution

 Easily available language resources might also be of
great use for the Semantic Web initiative, providing
means for to generating (local) ontologies (semi-)
automatically.

On the other hand, the language resources and the accord-
ing research may benefit as well from becoming easily
accessible over the web:

 Most importantly, due to the standardized interfaces

more compatibility amongst the various language re-
sources will be achieved. In the end, all resources of-
fering Web services might become fully compatible
to each other without having to change their internal,
years-grown structure.

 Another important aspect is the possibility of provid-
ing means for feedback, eventually generating a
Wikipedia-like effect – errors and quality control in
general of a given resource might be taken care of by
the users to a great deal.

 Due to the feedback and standardization a synergy
effect might take place, making the research in lan-
guage resources more aware of the actual user needs.

In Quasthoff 1998 and Quasthoff & Wolff 2000 we have
presented our approach to processing large text corpora
and discussed the benefits of this kind of language re-
source and language technology application becoming
available via the World Wide Web. In using a web ser-
vice-based approach towards language data processing
and access we believe that an additional step towards bet-
ter LT availability and usage may be reached.

2. Applying the Web Service Paradigm
We discuss web services in the context of a large corpus
processing project which has been available online for
several years and which offers online access to monolin-
gual text corpus information as well as text mining results.
The online resources consists of general purpose as well
as of domain-specific text corpora and at the same time
addresses the needs of human users and are used for fur-
ther processing in language technology (terminology ex-
traction and verification, information retrieval, knowledge
management).

While web-based front-ends for querying corpus in-
formation are quite straightforward and have been offered
by many corpus research groups and language resource
organizations (ELRA, LDC, the Penn TreeBank to name
just a few), the problem of integrating language resource
access in language technology applications calls for reli-

 1477

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/11536714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

able and interoperable standards beyond parsing html
code which might change any time.

From this point of view, web service standards like
SOAP for encapsulating service request (simple object
access protocol, see Gudgin et al. 2002), WSDL for ser-
vice descriptions (Web Service Description Language, see
Chinnici et al. 2002), and UDDI for maintaining service
registries (Universal Description, Discovery, and Integra-
tion, see Bellwood 2002) promise to offer a solution com-
parable to what XML has done for information structur-
ing: A unified and standardized method for accessing and
integrating diverse and distributed language resources.

Figure 1 shows the typical web service scenario: A
server publishes a web service in a service registry using
WSDL / UDDI, while a prospective web service clients
looks for the required service in the registry, selects an
adequate web service host and finally uses the web service
via a SOAP service call.

Figure 1: Typical Web Service Scenario

The following resources and tools are available in the con-
text of our corpus processing infrastructure (see Quasthoff
1998, Quasthoff & Wolff 2000):

 Large text corpora from different domains (e. g. fi-

nancial services, law, engineering) and temporal
ranges as wells as in various languages like German,
English, French, Dutch, Korean etc.

 A comprehensive dictionary of inflected word forms
with a rich data structure for each entry (frequency in-
formation, semantic attributes, morphological and
syntactical information).

 A set of algorithms, able to provide information about
new or unusual words.

 Additional features extracted from text via text min-
ing tools like collocations for each entry.

 A set of tools for corpus and dictionary setup, analy-
sis, and maintenance.

All corpus analysis processes are based on standard data-
base technology (MySQL). For each corpus (or, initially,
each text collection to be processed) a database is created
automatically. On top of these corpus processing tech-
nologies a number of different LT applications has been
developed (see Böhm et al. 2002; Faulstich et al. 2002;
Quasthoff et al. 2003):

 A web site as presentation platform for corpus query-

ing, text mining results, and dictionary look-up
 services for key word extraction from arbitrary texts
 services for automatic text summarization
 tools for daily media analysis, key concept extraction

and visualization
 services for knowledge management, especially ex-

traction of concept networks from large text corpora.
 Text classification tools.

As these applications all make use of simple corpus
lookup queries a bottom-up approach for modeling web
services appears to be reasonable.

3. Modeling Web Services for LT Resources
Modeling web services for language resources requires
technological as well as linguistic features to be taken into
account. Our approach is currently restricted to the proc-
essing of large monolingual text corpora. Some of these
modeling criteria are:

 Language resource type (e. g. text, multimodal)
 Language resource domain (e. g. financial services)
 Processing phase (data preparation, data analysis,

data access)
 Dialogue model for web services (e. g. simple proce-

dure calls vs. more complex and asynchronous corpus
processing tasks)

 Description vocabulary used for a web service (i. e.
an ontology for describing language resource-based
services)

These modeling criteria serve as a starting point for identi-
fying relevant types of services in the context of our text
corpus infrastructure (for a more comprehensive overview
of modeling criteria, see Schmidt & Wolff 2003; for a
discussion of typical web service patterns see Haas & Or-
chard 2003).

4. Examples of Web Services
Starting with simple services which offer standard corpus
queries like word and phrase lookup and queries for statis-
tical information (e. g. absolute and relative word fre-
quencies) we aim to define more complex types of queries
in a bottom-up fashion (e. g. services for terminology ex-
traction from corpora or generating collocation databases
for a given corpus). The web services not only allow the
access of (static) text corpus information as either primary
information (the corpus data itself) or secondary/derived
information on individual text corpora like text mining
results (frequencies, collocations, additional categorical
information, tagging data), but make text corpus process-
ing tools available as well. The difference is actually not
visible to the user – in both cases, an offered query is used
and results are given. As the discussion of applications in
the preceding chapter shows, there are manifold applica-
tions for web services in the LT domain. In the following,
examples for four types of web services are given:

 Service requests which deliver information on single

linguistic entities (“dictionary lookup queries”),
 requests for text mining results / frequency data,
 complex (application) tasks like tagging or keyword

extraction and
 querying metadata for the underlying corpus data.

In the appendix, two small code examples for the service
description as well as for a simple service call are given.

4.1. Simple Word-related Queries
getWordBaseForms base form(s) of a word
getWordLanguage language identification of a word

or sentence

UDDI business
registry

Web Service Host
offers services

Web Service Client
asks for services; uses
services

publication
WSDL/UDDI

SOAP
service call

find
UDDI

 1478

getExample retrieves an example sentence for a
given word, (sub-selection with
additional criteria like sentence
length, text type, date)

4.2. Text Mining and Frequency Data
getWordFrequency frequency of a word
getWordFrequencyClass frequency class of a word
getCollocates list of collocations for a given

word

4.3. Tagging and Information Extraction
getSentencePOSTags part-of-speech-tagging for a given

sentence
getSentenceNames extraction of proper names from a

given sentence
getTextKeywords extract keywords from a given text

4.4. Meta Data on Language and Corpora
listCorpora get a list of available corpora
getCorpusInfo information on a specific text cor-

pus (size. Date, text type(s), lan-
guage)

4.5. Web Services for Corpus Processing and
Corpus-based LT Applications

While the above lists are quite trivial as they exemplify
web services which correspond to simple database que-
ries, more complex tasks can be made accessible by web
service standards as well. Basically we view two types of
complex web services for our infrastructure:

 Data processing services which allow for the web

service-based triggering of corpus analysis (text min-
ing) processes and

 Application Services which encapsulate not simple
data requests, but more complex language processing
tasks as mentioned in ch. 2 above.

While the first type of service is addressed at researchers
who would like to employ our tools for text and corpus
analysis, the latter type is aimed at making language tech-
nology integration easier.

5. Implementation and Architectural Issues
A generic web service architecture based on SOAP as
service wrapping standard, WSDL for service description,
and the Apache Axis SOAP engine is used. Additionally a
server side component provides session management and
user authentication as different applications using web
services may have access to different types of resources
and services. All server side web service processing com-
ponents are implemented as Java classes and interfaces.
Figure 2 in the appendix gives a simplified overview of
the architecture chosen for our approach.

6. Outlook
Among the open issues the description problem for web
services: Without a standard ontology for describing lan-
guage resource-related services, the discovery and integra-

tion of such services is possible only in a case by case
fashion. We therefore propose the definition of a standard
vocabulary for describing language resource related in-
formation and service functions. Another, more technical
issue is the problem of composability of simple web ser-
vices for complex application and the related question of
session management for web services. Upcoming stan-
dards for composing web services like the Business Proc-
ess Execution Language for Web Services may of help in
this respect (see Thatte 2003).

7. References
Bellwood, T. et al. (2002): “UDDI Version 3.0”; Univer-

sal Description, Discovery and Integration (UDDI) Pro-
ject, Published Specification, July 2002, http://uddi.org/
pubs/uddiv3.htm.

Böhm, K.; Heyer, G.; Quasthoff, U.; Wolff, Ch. (2002).
„Topic Map Generation Using Text Mining.” In: J.UCS
– Journal of Universal Computer Science 8(6) (2002),
pp. 623-633.

Chinnici, R. et al. (2003). Web Services Description Lan-
guage (WSDL) Version 1.2. World Wide Web Consor-
tium Working Draft, June 2003, http://www.w3.org/
TR/wsdl12.

Faulstich, L. C.; Quasthoff, U.; Schmidt, F.; Wolff, Ch.
(2002). “Concept Extractor - Ein flexibler und domänen-
spezifischer Web Service zur Beschlagwortung von Tex-
ten.“ In: Hammwöhner, R.; Wolff, Ch.; Womser-Hacker,
Ch. (edd.) (2002). Information und Mobilität, Proc. 8. In-
ternational Symposium on Information Science, Regens-
burg, October 2002, pp. 165-180.

Ferris, Ch.; Farrell, J. (2003). “What are Web Services?”
In: Communications of the ACM 46(6) (2003), p. 31.

Gudgin, M. et al. (2002). SOAP Version 1.2 Part 1: Mes-
saging Framework. World Wide Web Consortium
Working Draft, June 2002, http://www.w3.org/TR/
soap12-part1.

Haas, H.; Orchard, D. (2003). Web Services Architecture
Usage Scenarios. World Wide Web Consortium Work-
ing Draft, May 2003, http://www.w3.org/TR/ws-arch-
scenarios/.

Heyer, G.; Quasthoff, U.; Wolff, Ch. (2002). “Knowledge
Extraction from Text: Using Filters on Collocation
Sets.” In: Proc. LREC-2002. Third International Con-
ference on Language Resources and Evaluation. Las
Palmas, May 2002, Vol. III, pp. 241-246.

Quasthoff, U. 1998. “Tools for Automatic Lexicon Main-
tenance: Acquisition, Error Correction, and the Genera-
tion of Missing Values.“ In: Proc. First International
Conference on Language Resources & Evaluation
[LREC], Granada, May 1998, Vol. II, pp. 853-856.

Quasthoff, U.; Wolff, Ch. (2000). “An Infrastructure for
Corpus-Based Monolingual Dictionaries.” In: Proc.
LREC-2000. Second International Conference on Lan-
guage Resources and Evaluation. Athens, May/June
2000, Vol. I, pp. 241-246.

Quasthoff, U.; Richter, M.; Wolff, Ch. (2003). „Medi-
enanalyse und Visualisierung: Auswertung von Online-
Pressetexten durch Text Mining.“ In: LDV-Forum
18(1,2) (2003), pp. 452-459.

Schmidt, F.; Wolff, Ch. (2003). “Linguistic Knowledge
Services – Developing Web Services in Language
Technology”. In: Böhme, Th.; Heyer, G.; Unger, H.
(eds.) (2003). Innovative Internet Community Systems.

 1479

HTTP Server (Apache)

SOAP Engine (Apache Axis)

User Handler (Rights Management)

Database Access Layer Complex Service Complex Service

de en

...

Web Service Host
(service application logic)

SOAP request from user

persistence layer (corpus databases)

Proc. Third International Workshop IICS 2003, Leip-
zig, June 2003. Berlin et al: Springer, 229-238 [= Lec-
ture Notes in Computer Science, Bd. 2877].

Schranz, M. W. (1998). World Wide Web Service Engi-
neering. Object-Oriented Hypermedia Publishing.
Ph.D. Thesis, Vienna University of Technology.

Thatte, S. et al. (2003). Business Process Execution Lan-
guage for Web Services Version 1.1. Specification, second

public draft release, May 2003, http://www-106.ibm.com/
developerworks/library/ws-bpel/.

Vinoski, St. (2002a). “Web Services Interaction Models,
Part 1: Current Practice.” In: IEEE Internet Computing
6(3) (2002), pp. 89-91.

Vinoski, St. (2002b). “Putting the ‘Web’ into Web Ser-
vices. Web Services Interaction Models, Part 2.” In:
IEEE Internet Computing 6(4) (2002), pp. 90-92.

8. Appendices
8.1. Sample WSDL Service Description – Stemming Service
<definitions name="urn:LdbApi" targetNamespace="urn:LdbApi">
<types>
 <xsd:complexType name="BaseFormResult">
 <xsd:all>
 <xsd:element name="baseforms" type="tns:StringArray"/>
 </xsd:all>
 </xsd:complexType>
</types>
<message name="GetBaseFormResponse">
 <part name="result" type="tns:BaseFormResult"/>
</message>
<portType name="LdbApiPort">
 <operation name="getWordBaseforms">
 <input message="tns:GetBaseFormRequest"/>
 <output message="tns:GetBaseFormResponse"/>
 </operation>
</portType>
<binding name="LdbApiBinding" type="tns:LdbApiPort">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="getWordBaseforms"/>
</binding>
</definitions>

8.2. Sample SOAP Web Service Code – Stemming Request
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope soapenv:encodingStyle=
 http://schemas.xmlsoap.org/soap/encoding/ xmlns: (...)>
 <soapenv:Body>
 <ns1:getWordFrequencyClass xmlns:ns1="urn:LdbApi">
 <request href="#id0"/>
 </ns1:getWordFrequencyClass>
 <multiRef id="id0" soapenc:root="0" xmlns:ns2="urn:LdbApi"
 xsi:type="ns2:WordWithOptionalLanguage">
 <word xsi:type="xsd:string">Häuser</word>
 <language xsi:type="xsd:language" xsi:nil="true"/>
 </multiRef>
 </soapenv:Body>
</soapenv:Envelope>

8.3. Architectural Overview

Figure 2: Simplified Overview of Language Technology Service Architecture

 1480

