71. Diels-Alder Reactions of [2.2]Paracyclophan-1-ene and [2.2]Paracyclophane-1,9-diene with 3,6-Disubstituted 1,2,4,5-Tetrazines

by Armin de Meijere* and Burkhard König
Institut für Organische Chemie der Georg-August-Universität, Tammannstrasse 2, D-3400 Göttingen

(28.I.92)

Abstract

[2.2]Paracyclophan-1-ene (1) and [2.2]paracyclophane-1,9-diene (6) apparently act as dienophiles with inverse electron demand and smoothly react with dimethyl 1,2,4,5-tetrazine-3,6-dicarboxylate (2a) at room temperature forming dihydropyridazine adducts, which are dehydrogenated to the pyridazino-anellated [2.2]paracyclophanes $\mathbf{5 a}$ and 8a, respectively. The molecular structure of $\mathbf{5 a}$ is determined by X-ray crystal-structure analysis. Under more rigorous conditions, phenyl-substituted derivatives $5 b$ and $8 b$ are obtained from 1 and 6 , respectively, with 3,6-diphenyl-1,2,4,5-tetrazine. Compounds 1 and 6 are less reactive dienophiles than other strained cyclic olefins as shown by kinetic measurements.

Since the first synthesis of [2.2]paracyclophan-1-ene ($=$ tricyclo[8.2.2.24,7]hexadeca-$2,4,6,10,12,13,15$-heptaene; 1) and [2.2]paracyclophane-1,9-diene (= tricyclo[8.2.2.2 ${ }^{4,7}$ hexadeca-2,4,6,8,10,12,13,15-octaene; 6) in 1958 by Cram [1], various attempts were made to react these unique olefins with dienes in Diels-Alder additions. But cycloadducts never were obtained, neither by the application of high pressure [1], nor in the presence of Lewis-acid catalysts [2], nor with very reactive dienes such as tetrachlorothiophene dioxide [3], known for its inverse electron demand.

All the more surprising is our observation that 1 [1b] reacts with dimethyl 1,2,4,5-tetra-zine-3,6-dicarboxylate [4] (2a) at room temperature leading to dihydropyridazine 3a in high yield (Scheme 1). As reported for other tetrazine Diels-Alder reactions [5], the primary adduct of 1 and 2 looses N_{2} instantaneously, and a [1,3]-H shift occurs in 3a thus formed ($\rightarrow 4 \mathrm{a}$). The adduct $4 \mathbf{a}$ is easily dehydrogenated by treatment with 2,3-dichloro-5,6-dicyano-1,4benzoquinone ($=4,5$-dichloro-3,6-dioxocyclohexa-1,4-diene-1,2-dicarbonitrile DDQ) to give 5a. A crystal-structure analysis of 5a confirms the proposed constitution (see Fig.). Bond lengths and angles in 5a (see Table I) are similar to the corresponding ones in the parent pyridazine system [6], [2.2]paracyclophane [7], and dibenzo[2.2]paracyclophane-1,9-diene [8].
[2.2]Paracyclophane-1,9-diene (6) [1b] reacts with 2 equiv. of 2 a to give a mixture of the isomeric bis-adducts 7 and cisoid/transoid-9a, which yield a single product 8 a upon treatment with DDQ (Scheme 2). Due to its high symmetry, 8a is only poorly soluble in organic solvents. The mono-anellated product 10 is obtained upon reacting an excess of 6 with 2a and subsequent dehydrogenation with DDQ.

Only under more rigorous conditions, 3,6-diphenyl-1,2,4,5-tetrazine (2b) [9] cycloadds to $\mathbf{1}$ and 6 . In refluxing xylene, $\mathbf{5 b}$ and $\mathbf{8 b}$, respectively, were obtained; the extremely poor solubility of $\mathbf{8 b}$ prevented it from being characterised by NMR spectroscopy.

Scheme 1

a) CHCl_{3}, r. t., 12 h. b) CHCl_{3}, DDQ, r. t., 2 h. c) Xylene, reflux, 2 d.

Table 1. Selected Bond Lengths [pm] and Angles [${ }^{\circ}$]of 5a. Standard deviations in parentheses. For numbering, see Figure.

$\mathrm{C}(1)-\mathrm{C}(2)$	$141.3(5)$	$\mathrm{C}(11)-\mathrm{C}(16)$	$139.1(6)$	$\mathrm{C}(1)-\mathrm{C}(14)$	$149.9(5)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$138.9(6)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$138.6(5)$	$\mathrm{C}(3)-\mathrm{C}(4)$	$139.8(6)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$155.5(6)$	$\mathrm{O}(2)-\mathrm{C}\left(1^{*}\right)$	$145.4(5)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$138.6(7)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$137.1(5)$	$\mathrm{C}\left(4^{*}\right)-\mathrm{O}(5)$	$131.6(4)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$150.8(6)$
$\mathrm{C}\left(1^{*}\right)-\mathrm{O}(2)$	$131.1(5)$	$\mathrm{C}(3)-\mathrm{C}(8)$	$139.7(5)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$140.2(5)$
$\mathrm{O}(5)-\mathrm{C}\left(4^{\prime \prime}\right)$	$145.1(4)$	$\mathrm{C}(6)-\mathrm{C}(9)$	$150.8(5)$	$\mathrm{C}\left(1^{*}\right)-\mathrm{O}(1)$	$118.8(5)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$149.5(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$139.1(7)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$133.6(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$138.9(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$137.7(6)$		
$\mathrm{C}(7)-\mathrm{C}(8)$	$138.0(5)$	$\mathrm{C}\left(4^{*}\right)-\mathrm{O}(4)$	$117.9(5)$		
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(14)$	$118.0(3)$	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(16)$	$116.8(4)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	$117.5(4)$
$\mathrm{C}(14)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	$125.5(3)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}\left(1^{2}\right)$	$120.4(4)$	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)$	$120.6(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}\left(4^{\prime}\right)$	$116.5(3)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$119.5(4)$	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{C}(7)$	$119.9(4)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$119.8(3)$	$\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$123.8(3)$	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11) 113.4(3)$	
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(8)$	$118.0(3)$	$\mathrm{N}\left(2^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)-\mathrm{C}\left(4^{\prime}\right)$	$119.7(3)$	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(16)$	$121.2(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$120.7(4)$	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}\left(1^{\prime}\right)$	$116.5(3)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$120.7(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(9)$	$120.5(4)$	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$116.9(3)$	$\mathrm{C}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$118.7(4)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$121.1(4)$	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}\left(4^{\prime}\right)$	$126.7(3)$	$\mathrm{C}(11)-\mathrm{C}(16)-\mathrm{C}(15)$	$121.4(4)$
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{C}(10)$	$113.7(3)$	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(8)$	$119.6(4)$	$\mathrm{C}\left(1^{*}\right)-\mathrm{C}\left(1^{\prime}\right)-\mathrm{N}\left(2^{\prime}\right)$	$114.3(3)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	$120.2(4)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$119.7(4)$	$\mathrm{C}(2)-\mathrm{C}\left(4^{\prime}\right)-\mathrm{N}\left(3^{\prime}\right)$	$124.1(3)$

To assess the reactivity of 1 in comparison to other dienophiles, its reaction with $\mathbf{2 a}$ was monitored following the decrease of the $n-\pi^{*}$-absorption band of 2a at different temperatures (see Table 2). In general, the reaction of $\mathbf{2 a}$ is strongly influenced by steric factors; the second-order rate constant of $\mathbf{1}\left(30^{\circ}, 1,4\right.$-dioxane) is 18 times smaller than that of styrene [10], but 1 reacts much faster (by a factor of 140) with 2 a than 1,1 -diphenylethene [10]. The rate constants for strained cyclic olefins such as cyclopentene or norbornene are 10^{3} to 10^{4} times as high [10]. It can, thus, be concluded that the basically high reactivity of the strained

Figure. Molecular Structure of $5 \mathrm{~d}\left(\mathrm{C}_{25.5} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \text {; incl. } 0.5 \text { toluene }\right)^{1}$). Arbitrary numbering. Monoclinic crystals, space group $C 2 / c, Z=8$; unit cell dimensions $a=1778.2(2), b=1116.3(1), c=2267.5(4) \mathrm{pm}, \beta=108.28(1)^{\circ}$,
$V=427.39(10) \mathrm{nm}^{3}, \rho_{\text {calc. }}=1.31 \mathrm{~g} \mathrm{~cm}^{-3} ; 1979$ observed reflections with $2 \theta<45^{\circ}, \mathrm{Mo}_{\alpha}, R_{\mathrm{w}}=6.4 \%$.
double bond in 1 is over-compensated by steric hindrance of the cycloaddend approach by the arene ortho- H -atoms.

The two reaction steps of diene 6 with $2 a$ occur with similar rates. The overall disappearance of 2 a was monitored as for the reaction of $\mathbf{1}$, and the individual rate constants

Table 2. Second-Order Rate Constants for the Reaction of 1 with 2a at Different Temperatures

Temp. $\left[{ }^{\circ} \mathrm{C}\right]$	$\left.k_{2}{ }^{2}\right)[1 / \mathrm{mol} \cdot \mathrm{s}]$	$\left.A_{0}{ }^{b}\right)[\mathrm{mol} / 1]$	$\left.r^{c}\right)$
20.8	$1.634 \cdot 10^{-3} \pm 1.2 \cdot 10^{-6}$	$2.3742 \cdot 10^{-3} \pm 1.4 \cdot 10^{-7}$	0.99914
30.6	$3.619 \cdot 10^{-3} \pm 1.8 \cdot 10^{-6}$	$2.3698 \cdot 10^{-3} \pm 2.4 \cdot 10^{-7}$	0.99991
40.3	$7.196 \cdot 10^{-3} \pm 4.3 \cdot 10^{-6}$	$2.2864 \cdot 10^{-3} \pm 5.5 \cdot 10^{-7}$	0.99988
50.0	$1.549 \cdot 10^{-3} \pm 2.1 \cdot 10^{-5}$	$2.2580 \cdot 10^{-3} \pm 2.5 \cdot 10^{-6}$	0.99937

[^0]${ }^{1}$) Further details of the crystal-structure investigation are deposited with the Cambridge Crystallographic Data Center or are available on request from the Fachinformationszentrum Energic Physik Mathematik GmbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-56306, the names of the authors, and the journal citation.

Scheme 2
a) CHCl_{3}, r. t., 16 h. b) CHCl_{3}, DDQ , r.t., 2 h. c) Xylene, reflux, 2 d.
were adjusted by simulation of the overall kinetics [11]. According to the best fit, the first addition of $\mathbf{2 a}$ to $\mathbf{6}$ occurs with a similar rate as that for $\mathbf{1}$, whereas the second step is slower by a factor of four.

This work was supported by the Volkswagen-Stiftung, the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, BASF AG, Hoechst AG, Bayer AG, and Degussa AG. We are indebted to Dr. M. Noltemeyer, Göttingen, for the crystal structure analysis of 5a. B. K. thanks the Studienstiftung des Deutschen Volkes for a doctoral fellowship.

Experimental Part

General. Column chromatography (CC): Merck silica gel 60 , mesh 70-230. TLC: Merck F_{254} silica gel. M.p.: electrothermal melting-point apparatus, uncorrected. UV/VIS: Varian CARY219. IR (cm^{-1}): Perkin Elmer 297 and 399. 'H-NMR: Bruker-WM-250 spectrometer; chemical shifts in δ rel, to tetramethylsilane ($=0 \mathrm{ppm}$) as internal standard or $\mathrm{CHCl}_{3}(=7.26 \mathrm{ppm}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:$ Bruker-WM-250; $\delta 77 \mathrm{ppm}$ for CDCl_{3}; assignments are supported by DEPT (distortionless enhancement by polarization transfer) measurements; + designates primary or tertiary, secondary, and quat. quaternary C-atoms. MS ($\mathrm{m} / \mathrm{z}(\%)$): Varian MAT CH7 (70 eV).
X-Ray Structure Analysis of 5a: Intensity data were measured with a Siemens-Stoe-AED2 diffractometer. The structure was solved with direct methods (SHELXTL PLUS, PC version), and was refined by full-matrix technique of F^{2} using anisotropic temperature factors for non- H -atoms and isotropic temperature factors for H -atoms. Selected bond lengths and angles are listed in Table I^{1}).

Dimethyl 9,10-Dihydro-5,8:11,14-diethenocyclododeca/djpyridazine-1,4-dicarboxylate (5a). A soln. of $100 \mathrm{mg}(0.48 \mathrm{mmol})$ of [2.2]paracyclophan-1-ene [1b] (1) and $96 \mathrm{mg}(0.48 \mathrm{mmol})$ of dimethyl $1,2,4,5$-tetrazine-3,6-dicarboxylate (2 a) in $30 \mathrm{ml} \mathrm{of}_{\mathrm{CHCl}}^{3}$ was stirred at r.t. for 12 h , the solvent evaporated, and the residue subjected to CC (50 g of silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 9: 1$): 154 mg (85%) mixture of dimethyl tetrahydro-5,8:11,14-diethenocyclododeca[d/pyridazine-1,4-dicarboxylates (3a/4a). $R_{\mathrm{f}} 0.3$. IR (KBr): $3362(s, \mathrm{NH}), 2928,1728$ (s,
$\mathrm{C}=\mathrm{O}$), $1435,1198,734 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.05\left(m, \mathrm{CH}_{2}(9), \mathrm{CH}_{2}(10)\right) ; 3.68,3.70(2 s, 2 \mathrm{MeO}) ; 3.95(s$, $1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4 \mathrm{a})$ or $\mathrm{H}-\mathrm{C}(14 \mathrm{a})) ; 4.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{C}(4 \mathrm{a})$ or $\mathrm{H}-\mathrm{C}(14 \mathrm{a})) ; 6.30-6.80(\mathrm{~m}, 8$ arom H); 8.45 (br. $s, 1 \mathrm{H}, \mathrm{NH})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 34.71,35.06(-, \mathrm{C}(9), \mathrm{C}(10)) ; 47.03,52.30,52.50(+, \mathrm{C}(1), \mathrm{C}(4 \mathfrak{a}), \mathrm{C}(14 \mathrm{a})) ; 122.87$, 124.00 (quat.); 131.17-139.49 (+); 162.71, 164.00 (quat.).

A mixture of $150 \mathrm{mg}(0.40 \mathrm{mmol})$ of 4 a and $90 \mathrm{mg}(0.40 \mathrm{mmol})$ of DDQ in 30 ml of CHCl_{3} was stirred under N_{2} for 2 h at r.t. The solvent was evaporated and the solid residue chromatographed (50 g of silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / AcOEt 9:1): 135 mg (91%) of 5a. $R_{\mathrm{f}} 0.2$. M.p. $240^{\circ} . \mathrm{IR}(\mathrm{KBr}): 1746(s, \mathrm{C}=\mathrm{O}), 1439,1267,1202,1169,1062,721$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.14\left(s, \mathrm{CH}_{2}(9), \mathrm{CH}_{2}(10)\right) ; 3.95(s, 2 \mathrm{MeO}) ; 6.57\left(A B, \delta_{A} 6.51, \delta_{B} 6.63,{ }^{3} J_{A B}=8.0,8\right.$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 34.72(-, \mathrm{C}(9), \mathrm{C}(10)$); $53.24(+, \mathrm{MeO}) ; 131.19,132.92(+) ; 132.45,140.90$, 144.53, 150.35 (quat., $\mathrm{C}(1), \mathrm{C}(4), \mathrm{C}(4 \mathrm{a}), \mathrm{C}(5), \mathrm{C}(8), \mathrm{C}(11), \mathrm{C}(14), \mathrm{C}(14 \mathrm{a})$); 164.70 (quat.). MS (70 eV): 375 (26, $\left.[M+1]^{+}\right), 374\left(100, M^{+}\right)$. Anal. calc. for $\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}(374.4)$: C $70.59, \mathrm{H} 4.81, \mathrm{~N} 7.49$; found: C 70.38, H 4.62 , N 7.43; C 70.61, H 4.72, N 7.50.

Tetramethyl 5,8:13,16-Diethenocyclododeca[1,2-d:7,8-d'Jdipyridazine-1,4,9,12-tetracarboxylate(8a): A soln. of 352 mg (1.72 mmol) of [2.2]paracyclophane-1,6-diene [1b] (6) and $1.03 \mathrm{~g}(5.18 \mathrm{mmol})$ of 2 a in 40 ml of CHCl ${ }_{3}$ was stirred for 16 h at r.t. The mixture was evaporated and the solid residue subjected to $\mathrm{CC}(80 \mathrm{~g}$ of silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 8: 2$): 751 mg (80%) mixture of tetramethyl tetrahydro-5,8:13,16-diethenocyclododeca[1,2-d:7,8-d']dipyridazine-1,4,9,12-tetracarboxylates (7a/9a). $R_{\mathrm{f}} 0.15$. IR (KBr): 3360, 2955, 1713, 1437, 1337, 1198, 1169. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.60-4.15(\mathrm{~m}, 4 \mathrm{MeO}) ; 4.50,4.61,4.65(3 \mathrm{~s}, 2 \mathrm{H}) ; 6.30-7.10(\mathrm{~m}, 8 \mathrm{H}) ; 8.45,8.50,8.55$ ($3 s, 2 \mathrm{H}, \mathrm{NH}$). MS (70 eV): $544\left(100, M^{+}\right)$. HR-MS: $544.1575\left(\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~N}_{4}\right.$, calc. 544.1594).

A mixture of $200 \mathrm{mg}(0.37 \mathrm{mmol})$ of 9 a and $170 \mathrm{mg}(0.75 \mathrm{mmol})$ of DDQ in 40 ml of CHCl_{3} was stirred for 1 h at r.t. The white precipitate was collected by filtration and washed once with $50-\mathrm{ml}$ portions each of dil. aq. NaOH soln., $\mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \mathrm{CHCl}_{3}$, and pentane and dried in vacuo: $120 \mathrm{mg}(61 \%)$ of $8 \mathrm{a} . \mathrm{M} . \mathrm{p} .240^{\circ}$ (dec.). $\mathrm{IR}(\mathrm{KBr})$: $1741(s, \mathrm{C}=\mathrm{O}), 1438,1203,1172 . \mathrm{MS}(70 \mathrm{eV}): 541\left(38,[M+1]^{+}\right), 540\left(100, M^{+}\right), 482\left(14,\left[M+1-\mathrm{CO}_{2} \mathrm{Me}\right]^{+}\right), 423$ (39, $\left.\left[M+1-2 \mathrm{CO}_{2} \mathrm{Me}\right]^{+}\right), 365\left(22,\left[M+1-3 \mathrm{CO}_{2} \mathrm{Me}\right]^{+}\right)$. HR-MS: $540.1272\left(\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{~N}_{4}\right.$, calc. 540.1281).

Dimethyl 5,8:11,14-Diethenocyclododeca[d]pyridazine-1,4-dicarboxylate (10): A soln. of 300 mg (1.47 $\mathrm{mmol})$ of 6 and $97 \mathrm{mg}(0.49 \mathrm{mmol})$ of 2 a in $30 \mathrm{ml} \mathrm{of} \mathrm{CHCl}_{3}$ was stirred for 12 h at r.t. $\mathrm{CC}\left(50 \mathrm{~g}\right.$ of silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ AcOEt 9:1) gave Fr. I ($R_{\mathrm{f}} 0.95 ; 220 \mathrm{mg}$ of 6), Fr. II ($R_{\mathrm{f}} 0.3 ; 110 \mathrm{mg}(59 \%)$ of dimethyl dihydro-5,8:11,14-diethenocyclododeca[d]pyridazine-1,4-dicarboxylate), and Fr. III ($R_{\mathrm{f}} 0.05 ; 55 \mathrm{mg}(7 \%)$ of cisoid/transoid-9a). Fr. II was treated with $80 \mathrm{mg}(0.35 \mathrm{mmol})$ of DDQ in 20 ml of CHCl_{3} for 1 h at r.t. The solvent was evaporated and the residue subjected to $\mathrm{CC}\left(50 \mathrm{~g}\right.$ of silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 9: 1$): 80 mg (74%) of $10 . R_{\mathrm{f}} 0.25 . \mathrm{M} . \mathrm{p} .230^{\circ}$ (dec.). $\operatorname{IR}(\mathrm{KBr}): 1745(s, \mathrm{C}=0), 1268,1169,720 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.95(s, 2 \mathrm{MeO}) ; 6.64\left(A B, \delta_{A} 6.60, \delta_{B}\right.$ $\left.6.68,{ }^{3} J_{A B}=8.0,8 \mathrm{H}\right) ; 7.30(s, \mathrm{H}-\mathrm{C}(9), \mathrm{H}-\mathrm{C}(10)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 53.36(+, \mathrm{MeO}), 130.38,131.45$ (+); 132.33 (quat.); 137.21 (+, C(9), C(10)); 139.52, 143.79, 150.28 (quat.); 164.75 (quat.). MS (70 eV): 373 (24, $\left.[M+1]^{+}\right), 372\left(100, M^{+}\right)$.

9,10-Dihydro-1,4-diphenyl-5,8:11,14-diethenocyclododeca[d]pyridazine (5b): For $2 \mathrm{~h}, 200 \mathrm{mg}$ (0.97 mmol) of 1 and $227 \mathrm{mg}(0.97 \mathrm{mmol})$ of 3,6-diphenyl-1,2,4,5-tetrazine (2 b) were heated in 5 ml of xylene at 140°. The precipitate was filtered and chromatographed (50 g of silica gel, CHCl_{3}): $323 \mathrm{mg}(80 \%)$ of $\mathbf{5 b} . R_{\mathrm{f}} 0.1$. M.p. 210° (dec.). IR (KBr): $2937,1439,1364,1180,1124,783,758,725,700,623 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 3.07(s$, $\left.\mathrm{CH}_{2}(9), \mathrm{CH}_{2}(10)\right) ; 6.55\left(A B, \delta_{A} 6.52, \delta_{B} 6.58,{ }^{3} J_{A B}=8.0,8\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 34.77(-, \mathrm{C}(9)$, $\mathrm{C}(10)$); $128.10,128.83,130.22,132.42,133.14(+) ; 131.56,135.25,137.21,140.30,155.70$ (quat.). $\mathrm{MS}(70 \mathrm{eV}$): $411\left(35,[M+1]^{+}\right), 410\left(100, M^{+}\right)$.

1,4,9,12-Tetraphenyl-5,8:13,16-diethenocyclododeca[1,2-d:7,8-d']dipyridazine (8b). For $2 \mathrm{~d}, 100 \mathrm{mg}$ (0.49 $\mathrm{mmol})$ of 6 and $459 \mathrm{mg}(1.96 \mathrm{mmol})$ of $\mathbf{2 b}$ were refluxed in 10 ml of xylene. The precipitate was filtered off and washed with $50-\mathrm{ml}$ portions each of CHCl_{3} and pentane: $92 \mathrm{mg}(33 \%)$ of $\mathbf{8 b}$. M. p. 230° (dec.). MS (70 eV): 612 ($100, M^{+}$).

Kinetic Measurements: The progress of the reaction $1+2$ a was followed by the decrease of the $n-\pi^{*}$-absorption band of 2a at $524 \mathrm{~nm}\left(\varepsilon_{524}=512\right)$ in a thermostated UV spectrometer. Equal amounts of prethermostated $2.5 \cdot 10^{-3} \mathrm{~m}$ solns. ${ }^{2}$) of the reactants in 1,4-dioxane (UVASOL ${ }^{\circledR}$) were mixed, and the reaction was followed for 12 h , corresponding to 70% conversion. During this time, 660 extinction values were recorded. Activation energies E_{a} and preexponential factors A were calculated by linear regression [12].

[^1]Arrhenius activation energy $E_{\mathrm{a}}=60.5(\pm 4.7) \mathrm{kJ} \cdot \mathrm{mol}^{-1}$, preexponential factor $A=7.7 \cdot 10^{7}\left(\pm 8 \cdot 10^{6}\right) \mathrm{s}^{-1}$, correlation coefficient of the Arrhenius plot $r=0.9995$, activation enthalpy $\Delta H^{*}=58.1(\pm 4.7) \mathrm{kJ} \cdot \mathrm{mol}^{-1}$, and activation entropy $\Delta S^{4}=-97.9(\pm 0.9) \mathrm{J} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$.

The progress of the reaction of a stoichiometric mixture of 6 and 2a in 1,4-dioxane was followed at 28° over a period of $60 \mathrm{~h}(56 \%$ conversion) as described above. Fitting of the experimental data to the kinetic model for two consecutive reactions was performed by simulation [11], to give $k_{2}^{1}=3.07 \cdot 10^{-3}\left(\pm 0.17 \cdot 10^{-3}\right) 1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$ and $k_{2}^{2}=7.33 \cdot 10^{-4}\left(\pm 0.28 \cdot 10^{-4}\right) 1 \cdot \mathrm{~mol}^{-1} \cdot \mathrm{~s}^{-1}$.

REFERENCES

[1] a) D. J. Cram, K. C. Dewhirst, J. Am. Chem. Soc. 1958, 80, 3115; b) improved preparation of 1 and 6 , M. Stöbbe, O. Reiser, R. Näder, A. de Meijere, Chem. Ber. 1987, 120, 1667.
[2] a) H. Hopf, M. Psiorz, Chem. Ber. 1986, 119, 1836; b) M. Psiorz, Dissertation, Universităt Braunschweig, 1983.
[3] M. S. Raasch, J. Org. Chem. 1980, 45, 856.
[4] a) T. Curtius, A. Darupsky, E. Müller, Chem. Ber. 1908, 41, 3140; b) T. Curtius, ibid. 1907, 40, 1184; c) T. Curtius, C.Lang, J. Prakt. Chem. 1888, 38, 532; d) E. C. Taylor, W. A. Ehrhard, J. Am. Chem. Soc. 1960, 82, 3138.
[5] S. Hünig, A. Höhn, K. Beck, Chem. Ber. 1984, 117, 517.
[6] a) A. Almenningen, G. Bjornsen, T. Ottersen, Acta Chem. Scand., Ser. A 1977, 31, 63; b) P. D. Cradwick, J. Chem. Soc., Perkin Trans. 2 1976, 1386.
[7] H. Hope, J. Bernstein, K. N. Trueblood, Acta Crystallogr., Sect. B 1972, $28,1723$.
[8] H. N. C. Wong, C. W. Chan, T. C. Mak, Acta Crystallogr., Sect. C 1986, 42, 703.
[9] L.-F. Tietze, T. Eicher, 'Reaktionen und Synthesen', Thieme, Stuttgart, 1981.
[10] a) J. Sauer, A. Meier, Tetrahedron Lett. 1990, 31, 6855; b) J. Sauer, F. Thalhammer, U. Wallfahrer, ibid. 1990, 31, 6851.
[11] G. v. Kiedrowski, Kinetics Simulation Program SIMFIT, Georg-August-Universität, Göttingen, 1990.
[12] B. Knieriem, Program KINET, Georg-August-Universität, Göttingen, 1990.

[^0]: ${ }^{\text {a }}$) Second-order rate constant k_{2}.
 ${ }^{\text {b }}$) Inverse y value, corresponding to the concentration at $t=0$.
 ${ }^{\text {c }}$) Correlation coefficient.

[^1]: ${ }^{2}$) The linear correlation between extinction and concentration was verified for this concentration range.

