
Neural Networks for

Two-Group Classification Problems
with Monotonicity Hints

P. Lory1, D. Gietl

Institut für Wirtschaftsinformatik,
Universität Regensburg, D-93040 Regensburg, Germany

Abstract: Neural networks are competitive tools for classification problems. In
this context, a hint is any piece of prior side information about the classification.
Common examples are monotonicity hints. The present paper focuses on learning
vector quantization neural networks and gives a simple, however effective, tech-
nique, which guarantees that the predictions of the network obey the required
monotonicity properties in a strict fashion. The method is based on a proper
modification of the Euclidean distance between input and codebook vectors.

1 Introduction

Monotonicity properties are ubiquitous in classification problems. Examples
are given by Archer and Wang (1991) in the field of marketing and by Sill and
Abu-Mostafa (19972) in the field of medical diagnosis. Probably the most
prominent example is credit scoring; see again Sill and Abu-Mostafa (19971

and 19972). Here the property of monotonicity is very evident: Assume
that applicant A has a higher salary than applicant B, all else being equal.
Then common sense dictates, that applicant A must be accepted whenever
applicant B is accepted.

The following formal definition covers this situation: A class C is called
monotonic in positive i-direction, if the following holds: If the vector
x0 = (x10, x20, . . . , xn0) is in the class C, then every vector x = (x1, x2, . . . , xn)
with the property xi > xi0 and xj = xj0 for j 6= i is in class C, too. Cor-
respondingly, a class C is called monotonic in negative i-direction, if
the following holds: If the vector x0 = (x10, x20, . . . , xn0) is in class C, then
every vector x = (x1, x2, . . . , xn) with the property xi < xi0 and xj = xj0 for
j 6= i is in class C, too.

The present paper studies the application of monotonicity properties to
neural networks of the LVQ (learning vector quantization) type (Kohonen
(1997)). LVQ networks realize supervised learning and are characterized by
an unordered set of codebook vectors (reference vectors). These codebook
vectors are placed in the input data space with the purpose to define class
regions in this space. In standard applications, the class boundaries are
piecewise linear.

1Correspondence should be addressed to P. L.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/11535706?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The LVQ network architecture consists of an input layer with n input neu-
rons (where n is the dimension of the input data space) and a competitive
layer. The competitive layer comprises m neurons, where each competitive
neuron is identified with exactly one codebook vector wi ∈ IRn. Each neu-
ron of the input layer is connected to each neuron of the competitive layer.
The n components of a codebook vector can be visualized as weights of the
connections between the n input neurons and the competitive neuron that
corresponds to the codebook vector. For details, the reader is referred to
the books of Kohonen (1997) and Zell (1994).

Let the IRn be partitioned into several classes (‘true partition’). The LVQ
net tries to to approximate this partition. For this purpose it classifies an
input vector x ∈ IRn by the following procedure: The neurons of the com-
petitive layer are partitioned into classes. The input vector x is compared
to all the codebook vectors w1,w2, . . . ,wm ∈ IRn in a parallel way. The
codebook vector wc which is closest to the input vector is the winner and
causes the corresponding neuron in the competitive layer to ‘fire’.

The classification procedure as described above needs a precise definition of
the distance between input and codebook vectors. Usually, the Euclidean
distance d(x,wj) between the input vector x and the codebook vector wj is
used. Thus, the winner wc among the codebook vectors is given by

d(x,wc) = min
j

d(x,wj) . (1)

During the training phase, codebook vectors have to be found that approx-
imate the true class partition. For that purpose, various iterative learning
algorithms have been proposed: LVQ1, LVQ2, LVQ2.1, LVQ3, OLVQ1. In
the case of LVQ1 the iteration reads

wc(t + 1) = wc(t) + α(t) [x(t)−wc] ,

if x and wc of the same class, (2)

wc(t + 1) = wc(t)− α(t) [x(t)−wc] ,

if x and wc of different classes, (3)

wi(t + 1) = wi(t) for i 6= c, (4)

where α(t) is a learning rate. For further details see again Kohonen (1997)
and Zell (1994).

2 Monotonicity

In the following, a modification of the learning vector quantization as de-
scribed in Section 1 is given that reflects the monotonicity properties in
a strict fashion. This aim is achieved by a a modification of the distance
between input and codebook vectors:

Let the codebook vector w = (w1, . . . , wn) belong to the class C, which is
monotonic in positive i-direction. Then the distance between this codebook

2



-

6

x1

x2

uw

u x

u y

ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp

@
@

@
@

@
@

@@

dmod(x,w)

dmod(y,w)

-

6

x1

x2

uwyes

u wno

ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
ppp
pp

ppppppppppppppppppppppppppppppppppppppppppppp

Figure 1: Visualization of the distance (5) in the case of monotonicity in
positive 2-direction (left) and class boundary in a simple case (right).

vector and the input vector x = (x1, . . . , xn) is defined by

dmod(x,w) :=





√√√√√
n∑

ν=1
ν 6=i

(xν − wν)2 if xi > wi ,

d(x,w) =

√√√√
n∑

ν=1

(xν − wν)2 if xi ≤ wi .

(5)

If the class C is monotonic in negative i-direction, the following changes
have to be made in the definition: > to < and ≤ to ≥.

The left part of Figure 1 exemplifies the modified distance (5) in the two-
dimensional case (n = 2). Of course, the class boundary is no longer piece-
wise linear under this definition. The right part of Figure 1 shows this in a
very simple case. Here the class Cyes is assumed to be monotonic in positive
2-direction, whereas Cno is monotonic in negative 2-direction. Both classes
are represented by single codebook vectors wyes and wno, respectively. The
class boundary for this simple example is composed of three elements: 1) the
parallel to the x2-axis, which has the same distance to wyes and wno; 2) the
parabola, which is parallel to the x1-axis and has wyes as its focus; 3) the
corresponding parabola with the focus wno. In the general case, the class
boundary is composed of analogous elements.

3



The following theorem covers the situation of two-group classification.

Theorem. Let the input data space be partitioned into two classes Cyes and
Cno, and let these classes be monotonic in positive i-direction and in nega-
tive i-direction, respectively. If the distance dmod is used between the input
vectors and the codebook vectors, then the class partition Ĉyes, Ĉno given by
the neural network of LVQ type satisfies the monotonicity properties strictly.

Proof: Let the input vector x0 = (x10, x20, . . . , xn0) be of the class Ĉyes.
Then it has a minimal distance dmod to one of the codebook vectors of this
class (if compared to the distances to the other codebook vectors). Defini-
tion (5) implies that this distance cannot increase if xi0 is increased (and
the other components are fixed). Similarly, the distances between x0 and

the codebook vectors of the class Ĉno cannot decrease if xi0 is increased.
Hence, any vector x with xi > xi0 and xj = xj0 for j 6= i is in the class Ĉyes.
Consequently, the neural network reflects the monotonicity property of Cyes

correctly. The classes Cno and Ĉno, respectively, are treated analogously. 2

Remark (Several simultaneous directions of monotonicity). For ease of
presentation, the above definitions and the theorem have been given for
monotonicity properties in only one direction. However, the proposed tech-
nique can be generalized immediately in the following way: For each code-
book vector, a point set is defined which extends to infinity in all the di-
rections of monotonicity of the corresponding class. The modified distance
dmod between an input vector and this codebook vector is defined as the
point set distance between the input vector and the point set defined above.
This rule can easily be translated into formulas. For example, let the class
C be monotonic in positive i-direction and in negative j-direction simul-
taneously. Then, the adequate definition for the distance between a code-
book vector w = (w1, . . . , wn) representing this class and the input vector
x = (x1, . . . , xn) is

dmod(x,w) =





√√√√
∑
ν 6=i
ν 6=j

(xν − wν)2 if xi > wi and xj < wj,

√∑

ν 6=i

(xν − wν)2 if xi > wi and xj ≥ wj,

√∑

ν 6=j

(xν − wν)2 if xi ≤ wi and xj < wj,

d(x,w) =

√∑
(xν − wν)2 if xi ≤ wi and xj ≥ wj.

The extension of the above theorem to these cases is straightforward.

4



Three versions of the algorithm are suggested: Version 1 uses dmod only
during the application phase of the LVQ network. In more detail: The
network is trained using any (e.g. the Euclidean) distance. Then an input
vector x is classified by determining the winning codebook vector wc in (1)
with d = dmod. Thus, the modified distance is used only for class assignment.
Note that this is sufficient for the proof of the above theorem. Version 2 uses
dmod during the training phase and the application phase of the network. In
more detail: Each training vector requires the determination of the winning
codebook vector wc in (1). The distance dmod is used in this process and
during the application phase (see Version 1). Version 3 is an extension of
Version 2 insofar as in (2) and (3) of the LVQ1 learning algorithm only
those components of wc are updated that have not been omitted in the
computation of the modified distance between x and wc. The extension to
LVQ2, LVQ2.1, LVQ3 and OLVQ1 is straightforward.

3 Experimental Results

The techniques of Section 2 have been tested in Gietl (1999) on the basis of
real life credit data. These are described and analyzed by classical statistical
methods in Fahrmeir et al. (1996). The datebase consists of 1000 applicant
case histories (700 good and 300 bad ones). Each customer is characterized
by n = 20 features. The task is to predict whether or not an applicant will
default. The MATLAB Neural Network Toolbox was used in the computa-
tions (see Demuth and Beale (1997)). Some functions had to be modified
due to the techniques described in Section 2.

The datebase was randomly subdivided into a training set of 400 exam-
ples (200/200 good/bad) and a test set of 200 examples (100/100). The
k-hold-out method (or modified U-method) was used in order to guarantee
valid results (see e.g. Poddig (1994)). For that purpose the training set
was randomly partitioned into five disjunct portions of equal size. The
relation good/bad = 1 was maintained in each of these portions. The ex-
amples of four of these portions were used for direct training, whereas the
fifth portion served as cross validation set (k = 80). The portions were ex-
changed in a rotating manner. So each of the five portions acted as cross
validation set exactly once. The parameters m (number of competitive neu-
rons) and Nls (number of learning steps) were determined by maximizing
the average of the five classification rates. Here m ∈ {2, 4, 6, . . . , 20} and
Nls ∈ {1000, 2000, . . . , 5000}. The learning rate decreased linearly from 0.1
to 0.0. The following features were assumed to be monotonic: running ac-
count, running time of the loan, savings account, number of years at current
job. Versions 2 and 3 were inferior and are omitted in the following. The
computed maxima were m = 12, Nls = 3000 in the nonmonotonic case and
m = 6, Nls = 1000 in the monotonic case. In all computations, a ratio of
1 : 1 for the number of ‘good’ neurons to the number of ‘bad’ neurons in the
competitive layer was maintained.

5



The performance of the method was examined on the test set (which was not
involved in the training process). Both the classification rates of a combined
network and of a master network have been determined. In the combined
network, the five networks that arise during the k-hold-out method form a
majority decision. The master network is trained with the optimal values for
m and Nls found by the k-hold-out method. However, it uses the complete
training set (see Poddig (1994)). For the combined network, the classifi-
cation rate increased from 73.0 % (without monotonicity) to 74.0 % (with
monotonicity). In the case of the master network the corresponding rates
are 71.5 % and 74.0 %. These improvements are surprisingly low. Possibly,
credit screening data reflect the monotonicity already almost perfectly. This
is supported by the fact, that comparable studies (Sill and Abu-Mostafa
(19971, 19972)) on the basis of multi-layer networks report a similarly low
improvement (1.6%). Whether for datasets from other fields of application
greater improvements can be observed, remains an open question at present.

References

ARCHER, N.P. and WANG, S. (1991): Fuzzy Set Representation of Neural Net-
work Classification Boundaries. IEEE Transactions on Systems, Man and Cyber-
netics, 21, 735-742.

DEMUTH, H. and BEALE, M. (1997): MATLAB Neural Network Toolbox User’s
Guide. The MathWorks, Inc., Natick, MA.

FAHRMEIR, L., HÄUSSLER, W. and TUTZ, G.: Diskriminanzanalyse, in: FAHR-
MEIR, L., HAMERLE, A. and TUTZ, G. (Eds.) (1996): Multivariate statistische
Verfahren. Walter de Gruyter, Berlin, 357-435.

GIETL, D. (1999): Kreditwürdigkeitsprüfung auf der Basis künstlicher neuronaler
Netze vom LVQ-Typ. Diploma thesis, Institut für Wirtschaftsinformatik, Univer-
sität Regensburg.

KOHONEN, T. (1997): Self-Organizing Maps. Springer, Berlin.

PODDIG, T.: Mittelfristige Zinsprognosen mittels KNN und ökonometrischen
Verfahren, in: REHKUGLER, H. and ZIMMERMANN, H.G. (Eds.) (1994):
Neuronale Netze in der Ökonomie. Franz Vahlen, München, 491–545.

SILL, J. and ABU-MOSTAFA, Y.S.: Monotonicity Hints for Credit Screening, in:
AMARI, S.-I., XU, L., CHAN, L.-W., KING, I. and LEUNG, K.-S. (Eds.) (19971):
Progress in Neural Information Processing. Proceedings of the 1996 International
Conference on Neural Information Processing ICONIP’96, Hong Kong, 24-27 Sept.
1996, Springer, Singapore, 123-127.

SILL, J. and ABU-MOSTAFA, Y.S.: Monotonicity Hints, in: MOZER, M.C.,
JORDAN, M.I. and PETSCHE, T. (Eds.) (19972): Advances in Neural Informa-
tion Processing Systems 9. Proceedings of the 1996 Conference, Denver, 2-5 Dec.
1996, MIT Press, London, 634-640.

ZELL, A. (1994): Simulation neuronaler Netze. Addison-Wesley, Bonn.

6


