
Reducing the Complexity in the Distributed Multiplication Protocol of Two
Polynomially Shared Values

Peter Lory
Universität Regensburg

Institut für Wirtschaftsinformatik
D-93040 Regensburg, Germany

Peter.Lory@wiwi.uni-regensburg.de

Abstract

The multiparty multiplication of two polynomially
shared values over Zq with a public prime number q is an
important module in distributed computations. The mul-
tiplication protocol of Gennaro, Rabin and Rabin (1998)
is considered as the best protocol for this purpose. It re-
quires a complexity of O(n2k log n + nk2) bit-operations
per player, where k is the bit size of the prime q and n is the
number of players. The present paper reduces this complex-
ity to O(n2k + nk2) by using Newton’s classical interpola-
tion formula. The impact of the new method on distributed
signatures is outlined.

1. Introduction

The last two decades have seen an exciting development
of techniques for secure multiparty computations. Classi-
cal theoretical results [2, 6, 10, 16] show that any multi-
party computation can be performed securely, if the number
of corrupted participants does not exceed certain bounds.
However already Gennaro, Rabin and Rabin [9] point out,
that these generic secure circuit techniques are too ineffi-
cient in the area of practical feasibility, which might render
them impractical. Thus, it is a high priority to optimize such
techniques.

The present paper focuses on the multiparty multipli-
cation of two polynomially shared values over Zq with a
public prime number q. Polynomial sharing refers to the
threshold scheme originally proposed by Shamir [14]. It is
assumed that n players share a secret α in a way that each
player Pi (1 ≤ i ≤ n) owns the function value fα(i) of
a polynomial fα with maximum degree t and α = fα(0).
Then any subset of t + 1 participants can retrieve the secret
α (for example by Lagrange’s interpolation formula) but no
subset of, at most, t participants can do so. At the beginning

of the multiplication protocol each player Pi holds as input
the function values fα(i) and fβ(i) of two polynomials fα

and fβ with maximum degree t and α = fα(0), β = fβ(0).
At the end of the protocol each player owns the function
value H(i) of a polynomial H with maximum degree t as
his share of the product αβ = H(0). It is assumed that
the distributed multiplication takes place under the so-called
“honest-but-curious” model. This means, that an adversary
is passive and only tries to deduce information but follows
the protocol honestly. In the protocols considered in this pa-
per each participant Pi does not learn any information about
the inputs of the other players except for what is revealed
by his function value H(i) (information theoretic security).
Multiplication protocols of this type are important crypto-
graphic primitives. In particular, they play a decisive role in
the shared generation of an RSA [13] modulus by a number
of participants such that none of them knows the factoriza-
tion (see [1, 4]).

A first multiplication protocol of the above type has been
presented by Ben-Or, Goldwasser and Wigderson [2]. A
considerable improvement was proposed by Gennaro, Ra-
bin and Rabin [9]. Presently, their approach is consid-
ered as the most efficient protocol (see [1, 4]). It requires
O(n2k log n+nk2) bit operations per player. Here, k is the
bit size of the prime q and n is the number of players. In the
present paper, this complexity is reduced to O(n2k + nk2).
Remarkably, the key idea for this success is the application
of a rather old technique, namely Newton’s interpolation
formula (Methodus Differentialis, 1676).

The paper is organized as follows: Section 2 presents
the the protocol of Gennaro, Rabin and Rabin [9] for the
reader’s convenience and investigates its complexity in de-
tail. Section 3 gives basic material on Newton’s scheme
of divided differences for reference in Section 4. In this
section the new protocol is presented and its complexity is
studied. In Section 5 the impact of the new technique on
distributed signatures is outlined.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Regensburg Publication Server

https://core.ac.uk/display/11535704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. The Protocol of Gennaro, Rabin and Rabin

The protocol in [9] assumes that two secrets α and β are
shared by polynomials fα(x) and fβ(x) respectively and
the players would like to compute the product αβ. Both
polynomials are of maximum degree t. Denote by fα(i)
and fβ(i) the shares of player Pi on fα(x) and fβ(x) re-
spectively. The product of these two polynomials is

fα(x)fβ(x) = γ2tx
2t + . . . γ1x + αβ

def
= fαβ(x).

It is easy to see (cf. [9]) that

αβ = λ1fαβ(1) + . . . + λ2t+1fαβ(2t + 1)

with known non-zero constants λi. Let h1(x), . . . ,
h2t+1(x) be polynomials of maximum degree t which sat-
isfy that hi(0) = fαβ(i) for 1 ≤ i ≤ 2t + 1. Define

H(x)
def
=

2t+1∑

i=1

λihi(x) ,

then this function is a polynomial of maximum degree t
with the property

H(0) = λ1fαβ(1) + . . . + λ2t+1fαβ(2t + 1) = αβ .

Clearly, H(j) =
∑2t+1

i=1 λihi(j). Thus, if each of the play-
ers Pi (1 ≤ i ≤ 2t + 1) shares his share fαβ(i) with the
other participants using a polynomial hi(x) with the prop-
erties as defined above, then the product αβ is shared by
the polynomial H(x) of maximum degree t. These ideas
are the basis of the protocol given in Figure 1.

Please note, that the protocol implicitly assumes that the
number n of players obeys n ≥ 2t + 1.

For the investigation of the complexity the basic assump-
tion is made, that the bit-complexity of a multiplication of
a k-bit-integer and an l-bit-integer is O(kl). This is a rea-
sonable estimate for realistic values (e.g. k = l = 1024).
Step 1 of the protocol of Figure 1 requires n evaluations of
the polynomial hi(x) of degree t. If Horner’s scheme (c.f.
Stoer and Bulirsch [15]) is used for this purpose, one eval-
uation requires t multiplications of a k-bit integer and an
integer with at most log n + 1 bits. In step 2 of the protocol
each player has to compute 2t + 1 multiplications of two
k-bit numbers. Taking into account that t < 2t + 1 ≤ n, a
complexity of O(n2k log n+nk2) bit-operations per player
follows. This is consistent with the corresponding proposi-
tions in Algesheimer, Camenish and Shoup [1] and Cata-
lano [4].

3. Newton’s Scheme of Divided Differences

Newton’s interpolation formula on the basis of the con-
cept of divided differences is described in many textbooks

Input of player Pi: The values fα(i) and fβ(i).

1. Player Pi (1 ≤ i ≤ 2t + 1) computes fα(i)fβ(i)
and shares this value by choosing a random poly-
nomial hi(x) of maximum degree t, such that

hi(0) = fα(i)fβ(i) .

He gives player Pj (1 ≤ j ≤ n) the value hi(j).

2. Each player Pj (1 ≤ j ≤ n) computes his share
of αβ via a random polynomial H , i.e. the value
H(j), by locally computing the linear combination

H(j) =
2t+1∑

i=1

λihi(j) .

on numerical analysis. For later reference, this section
presents the basic facts following the notation in Stoer and
Bulirsch [15].

Let the support abscissas xi and corresponding support
ordinates fi (0 ≤ i ≤ m) be given. The divided differences
are defined recursively by

fi0,i1,...,il

def
=

fi1,i2,...,il
− fi0,i1,...,il−1

xil
− xi0

(1)

and can be arranged in a tableau, the so-called divided-
difference scheme (see Figure 2).

l = 0 l = 1 l = 2 . . . l = m

x0 f0

f0,1

x1 f1 f0,1,2

f1,2
. . .

x2 f2

... f0,1,2,...,m

...
...

...
... fm−2,m−1,m

fm−1,m

xm fm



Clearly, the entries in column l = 1 are of the form

f0,1 =
f1 − f0

x1 − x0
, f1,2 =

f2 − f1

x2 − x1
, . . . ,

those in column l = 2

f0,1,2 =
f1,2 − f0,1

x2 − x0
, f1,2,3 =

f2,3 − f1,2

x3 − x1
, . . . ,

Instead of building the divided-difference scheme column
by column, the most convenient way of computation is to
start with the upper left corner and add successive ascending
diagonal rows.

It is easy to see (c.f. [15]) that the polynomial

P (x) := f0 + f0,1(x − x0) + . . . +
f0,1,...,m(x − x0)(x − x1) . . . (x − xm−1)

with the entries of the uppermost descending diagonal row
in the divided-difference scheme as its coefficients is the
interpolating polynomial of maximum degree m that inter-
polates the given support abscissas and support ordinates:

P (xi) = fi i = 0, 1, . . . , m .

4. The New Protocol and its Complexity

4.1 The new protocol

The key for reducing the complexity in the multiplication
protocol of Gennaro, Rabin and Rabin [9] is the observation
that in Step 1 of the protocol in Figure 1 each of the play-
ers Pi (1 ≤ i ≤ 2t + 1) chooses a random polynomial of
maximum degree t

hi(x) = atx
t + at−1x

t−1 + . . . + a1x + a0

with a0 = fα(i)fβ(i) and then has to evaluate this polyno-
mial at n different points. The present paper suggests that
instead of choosing the coefficients aj (1 ≤ j ≤ t), each
of the players Pi (1 ≤ i ≤ 2t + 1) randomly picks t sup-
port ordinates fj for the t abscissas xj = j (1 ≤ j ≤ t).
Together with the condition

hi(0) = fα(i)fβ(i)

this implicitly defines the unique interpolation poynomial
hi(x) of maximum degree t. Then player Pi has to evaluate
this polynomial for xj = j (t+1 ≤ j ≤ n). Using Newton’s
scheme of divided differences these computations can be
performed very efficiently. The details are given in Figure
3 with fj = hi(j) (0 ≤ j ≤ n). For readability reasons the
index i is omitted.

A few remarks are in place:

1. As in [9] the support abscissas for the interpolating
polynomial hi(x) are chosen as xj = j for 0 ≤ j ≤ n .

2. Instead of calculating the diveded differences as de-
fined in Equation (1), the numbers

fi0,i1,...,il
· (xil

− xi0) = fi1,i1,...,il
− fi0,i1,...,il−1 .

are computed. This modification is the reason for the
factors l! in column l of the scheme of Figure 3 and
avoids superfluous arithmetic operations.

3. The zeros in the columns l = t+1, t+2, . . . , n of Fig-
ure 3 are not computed. Instead, they are prescribed
and force the interpolating polynomial to be of max-
imum degree t. As a consequence, all the entries in
column l = t are identical.

4. The first t + 1 ascending diagonal rows are computed
from left to right starting from the prescribed support
ordinate f0 = hi(0) = fα(i)fβ(i) and the randomly
chosen support ordinates f1 = hi(1), . . . , ft = hi(t).
The following diagonal rows are computed from right
to left starting from the entries in column l = t (which
are identical to the already computed value at the top
of this column) and ending in the computed support
ordinates

ft+1 = hi(t + 1), . . . , fn = hi(n) .

These ideas are the basis of the new protocol given in
Figure 4, where all operations take place in Zq with a public
prime number q (see Section 1).

A few comments are in place:

1. Step 1(a) of the protocol in Figure 4 calculates the up-
per left corner in Newton’s diveded difference scheme
of Figure 3.

2. Step 1(b) of this protocol calculates the following t as-
cending diagonal rows from left to right. Here, the
index k is running downwards for storage efficiency
reasons.

3. Step 1(c) of this protocol calculates the following n−t
ascending diagonal rows from right to left.

Apart from technical details in the calculations, the pro-
tocol of Gennaro, Rabin and Rabin [9] (cf. Figure 1) and
the new protocol of Figure 4 differ in only one respect: In
the protocol of Gennaro, Rabin and Rabin each player Pi

randomly chooses a polynomial hi(x) of maximum degree
t by choosing its coefficients of x1, x2, . . . , xt. In the new
protocol the same player Pi randomly chooses t support or-
dinates for this polynomial:

f1 = hi(1), . . . , ft = hi(t) .



l = 0 l = 1 l = 2 . . . l = t l = t + 1 . . . l = n

0 f0

f0,1

1 f1 2! · f0,1,2

f1,2
. . .

2 f2

... t! · f0,1,...,t

...
... 0

...
... 2! · ft−2,t−1,t t! · f1,2,...,t+1

. . .

ft−1,t
...

... 0

t ft 2! · ft−1,t,t+1

...
...

ft,t+1

... 0

t + 1 ft+1

... t! · fn−t,n−t+1,...,n

...
...

...
... 2! · fn−2,n−1,n

fn−1,n

n fn

This difference does not affect the randomness of the chosen
polynomial hi(x). Therefore, the proof of Theorem 3 in
[9] applies to the new protocol as well and the following
theorem follows:

Theorem 1 The protocol of Figure 4 is a secure multipli-
cation protocol in the presence of a passive adversary com-
putationally unbounded.

4.2 Complexity of the new protocol

Step 1(b) of the new protocol (Figure 4) needs t(t+1)/2
additions of two k-bit numbers, where k is the bit size of the
prime q. Step 1(c) of the same protocol requires (n−t)t ad-
ditions, where n is the number of players and t + 1 is the
threshold. Clearly, the complexity for the addition of two k-
bit numbers is O(k). Since t < 2t+1 ≤ n, a complexity of
O(n2k) bit-operations per player for step 1 of the new pro-
tocol follows. Step 2 requires O(nk2) bit-operations (see
Section 2). So the following theorem is proven:

Theorem 2 The multiplication protocol of Figure 4 re-
quires O(n2k + nk2) bit-operations per player.

This result has to be compared with the complexity of
O(n2k log n + nk2) for the multiplication protocol of Gen-
naro, Rabin and Rabin [9].

5. Impact on Distributed Signatures

Algesheimer, Camenisch and Shoup [1] and Catalano [4]
have pointed out the attractiveness of modularity in the con-
struction of protocols for distributed computations. Sim-
ple protocols can be combined to address more complicated
tasks.

Let n players want to jointly share a random secret in Zq

with a public prime number q. For this purpose, each player
chooses a random value ri ∈ Zq and shares this value ac-
cording to the polynomial sharing sheme [14] as described
in Section 1. Then each player sends the obtained shares to
the remaining players involved in the protocol. At this point
each player sums up (modulo q) all the received values and
sets the obtained value as his share of the jointly chosen ran-
dom value. Please note, that no trusted dealer is involved in
this process.

Let n players want to distributively generate a shared
RSA modulus N being the product of two primes or of two
safe primes without the need for a trusted dealer. This re-
quires the execution of rather complicated protocols: Re-
duction of a shared integer modulo a shared p, distributed
versions of the square and multiply algorithm and of the
Miller-Rabin primality test [11, 12] (cf. Algesheimer, Ca-
menisch and Shoup [1] and Catalano [4]). All these pro-
tocols call for the distributive multiplication module to a
high extent. Consequently, they significantly benefit from



Input of player Pi: The values fα(i) and fβ(i).

1. Player Pi (1 ≤ i ≤ 2t + 1) computes fα(i)fβ(i)
and shares this value by randomly choosing t sup-
port ordinates f1, f2, . . . , ft and executing the fol-
lowing steps:

(a)
g0 := fα(i)fβ(i) .

(b) For j = 1, 2, . . . , t :
gj := fj ,
for k = j − 1, j − 2, . . . , 0 :

gk := gk+1 − gk .

(c) For j = t + 1, t + 2, . . . , n :
for k = 0, 1, . . . , t − 1 :

gk+1 := gk+1 + gk .
fj := gt .

He gives player Pj (1 ≤ j ≤ n) the value

f
(i)
j := fj .

2. This step is identical to Step 2 in the protocol of
Gennaro, Rabin and Rabin (Figure 1) with

hi(j) = f
(i)
j .

the reduction of complexity as described in Section 4 of the
present paper, in particular when the number n of players is
large.

The subsequent distributive generation of shares of the
private exponent is much less computationally involved
than distributively generating the modulus N . In particular,
Boneh and Franklin [3] and Catalano, Gennaro and Halevi
[5] present efficient protocols to accomplish this. One of
the main applications of these results is the construction of
threshold variants of signature schemes. In such a scheme
n parties hold a t-out-of-n sharing of the secret key. Only
when at least t + 1 of them cooperate they can sign a given
message. The reader is referred to [5], where two such sig-
nature schemes are constructed. The first is an appropriate
variant of the signature scheme of Gennaro, Halevi and Ra-
bin [8]; the second relies on the signature scheme of Cramer
and Shoup [7].

References

[1] J. Algesheimer, J. Camenisch, and V. Shoup. Efficient com-
putation modulo a shared secret with application to the gen-
eration of shared safe-prime products. In Advances in Cryp-
tology – CRYPTO 2002, Lecture Notes in Computer Science
2442:417–432, Springer, Berlin, 2002.
Full version: http://eprint.iacr.org/2002/029.

[2] M. Ben-Or, S. Goldwasser, and A. Wigderson. Complete-
ness theorems for non-cryptographic fault-tolerant distributed
computation. In Proceedings of 20th Annual Symposium on
Theory of Computing (STOC’88), 1–10, ACM Press, 1988.

[3] D. Boneh and M. Franklin. Efficient generation of shared
RSA keys. In Advances in Cryptology – CRYPTO 1997, Lec-
ture Notes in Computer Science 1294:425–439, Springer,
Berlin, 1997.

[4] D. Catalano. Efficient distributed computation modulo a
shared secret. In D. Catalano, R. Cramer, I. Damgård, G. Di
Crescenco, D. Pointcheval, and T. Takagi (eds.) Contempo-
rary Cryptology, Advanced Courses in Mathematics, CRM
Barcelona, 1–39, Birkhäuser, Basel, 2005.

[5] D. Catalano, R. Gennaro, and S. Halevi. Computing inverses
over a shared secret modulus. In Advances on Cryptology
– EUROCRYPT 2000, Lecture Notes in Computer Science
1807:190–206, Springer, Berlin, 2000.

[6] D. Chaum, C. Crépeau, and I. Damgård. Multiparty uncondi-
tionally secure protocols. In Proceedings of 20th Annual Sym-
posium on Theory of Computing (STOC’88), 11–19, ACM
Press, 1988.

[7] R. Cramer and V. Shoup. Signature schemes based on the
Strong RSA Assumption. ACM Transactions on Information
and System Security (ACM TISSEC), 3(3):161-185, 2000.

[8] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign
signatures without the random oracle. In Advances in Cryp-
tology – EUROCRYPT 1999, Lecture Notes in Computer Sci-
ence 1592:123–139, Springer, Berlin, 1999.

[9] R. Gennaro, M. O. Rabin, and T. Rabin. Simplified VSS
and fast-track multiparty computations with applications to
threshold cryptography. In Proceedings of the 17th ACM Sym-
posium on Principles of Distributed Computing (PODC’98),
1998.

[10] O. Goldreich, S. Micali, and A. Wigderson. How to play
any mental game. In Proceedings of 19th Annual Symposium
on Theory of Computing (STOC’87), 218–229, ACM Press,
1987.

[11] G. L. Miller. Riemann’s hypothesis and tests for primality.
Journal of Computers and System Sciences, 13:30–317, 1976.

[12] M. O. Rabin. Probabilistic algorithms for testing primality.
Journal of Number Theory, 12:128–138, 1980.

[13] R. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public key cryptosystems. Commu-
nications of the ACM, 21(2):120–126, 1978.

[14] A. Shamir. How to share a secret. Communications of the
ACM, 22(11):612–613, 1979.

[15] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis,
Springer, Berlin, 2002.

[16] A. C. Yao. How to generate and exchange secrets. In Pro-
ceedings of 27th IEEE Symposium on Foundations of Com-
puter Science (FOCS’86), 162–167, IEEE Computer Society,
1986.


