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Abstract. The theoretical investigation of sum and difference frequency generation in thin 
surface layers with rotational symmetry leads to formulas which connect the generated light 
intensities to the surface second order nonlinear susceptibility tensor. A maximum of seven 
tensor components can be determined in the case of lowest symmetry. Measurements in 
transmission should be especially useful since they allow easy variation of both polarization 
and angle of incidence. On the other hand, large signal enhancements are expected for total 
internal reflection geometries. A consistent set of Z t2) tensor components for a thin layer of 
rhodamine-6G adsorbed on fused silica is found based on data from reflection and 
transmission measurements. 

PACS" 42.65 Cq, 41 

Already in the pioneer era of nonlinear optics it was 
recognized that nonlinear interaction of light waves in 
a medium with nonvanishing )(2) will lead to a reflected 
nonlinear beam in addition to the beam generated 
along the propagation direction of the fundamentals 
[1]. This was observed in second harmonic generation 
(SHG) by reflection from the surface of piezoelectric 
crystals [2, 3]. Lateron it was found that surfaces of 
centrosymmetric materials also can produce second 
harmonic light [4-7]. In the absence of any resonances 
of the material with the fundamental or harmonic light 
frequencies this effect can be explained by magnetic 
dipole [8] ,or electric quadrupole [5] contributions to 
)(2) as well as an electric dipole contribution from the 
first monolayer of material at the surface for which 
inversion symmetry is broken [9]. 
It was recognized by Shen [10-16] that the latter effect 
could be used to probe specifically adsorbed mono- 
layers at surfaces employing an electronic resonance of 

the adsorbed molecules. The effect was demonstrated 
for several systems, e.g., rhodamine-6G at the fused 
silica/air interface [14], p-nitrobenzoic-acid at the 
interface of fused silica with air or ethanol [15] and 
silver electrodes covered with pyridine [13] and pyr- 
idazine [10]. It was shown that the shape of the 
resonance could identify the adsorbed molecules [14] 
and that polarized measurements could yield inform- 
ation about molecular orientation at the surface [14, 
15]. Unlike other techniques using electron scattering 
(LEED) or photoelectron spectroscopy (UPS, XPS) for 
this purpose, this method is applicable to dense media 
and not restricted to UHV conditions. 
All applications of the method so far involve gener- 
ation of second harmonic by reflection from thin 
surface layers. The interpretation in terms of an 
orientational distribution is usually done by first 
assuming an orientational model allowing for only one 
degree of freedom. This means, a one-parameter 
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distribution function is assumed with the other orienta- 
tional coordinate assumed either fixed [14] or ran- 
dom [15]. Within this model theoretical expressions 
for polarization ratios are calculated which, after 
comparison to the experimental result, give a value for 
the orientational parameter. 
In this paper we extract a maximum of information 
about the surface properties without making any a 
priori assumptions about the orientational distri- 
bution. Rotational invariance around the surface 
normal (which can be checked quite easily) will result 
in seven independent tensor components of the surface 
second-order susceptibility Z (2), which reduce to four in 
the case that the adsorbed molecules are non-chiral or 
a racemic mixture. In the case of degenerate photon 
energies only three tensor elements remain, which are 
the usual ones considered in surface second-harmonic 
generation. 
Solution of Maxwell's equations leads to nonlinear 
waves at the sum and difference frequencies propagat- 
ing in the directions of reflection and transmission. We 
will discuss both cases, since transmission is often more 
suitable for measurements of signal dependence from 
the angle of incidence. Furthermore, a nonlinear 
Brewster angle for which the component of the non- 
linear beam polarized in the plane of incidence van- 
ishes may exist in r e f l e c t i o n  o r  t r a n s m i s s i o n .  Finally, the 
choice of a special geometry can lead to total reflection 
of the signal beam accompanied by an enormous 
enhancement of signal strength. 
The formulas presented should allow the determina- 
tion of the surface tensor elements or at least their 
ratios from experiments done in reflection, trans- 
mission, and total reflection. These should lead to a 
consistent result for )(2) before any attempt of interpre- 
tation in terms of molecular orientation can be made. 
This theoretical method is applied to the analysis of 
SHG measurements on rhodamine-6G covered sur- 
faces of fused silica in air. 

1. Theory 

1.1.  S y m m e t r y  C o n s i d e r a t i o n s  

Two light waves incident on a nonlinear medium will 
couple via the susceptibility X ~z~ to produce a polar- 
ization oscillating with the sum or difference of the 
ingoing light frequencies. In cartesian coordinates the 
relation between the amplitude vectors of the fields 
E(1), E(2), and the polarization P is 

p~L= Z Z!Y2Ej (1 )Ek (2 )  �9 (1) 
jk 

Here )(2) is the macroscopic susceptibility of the 
sample, and the indices i j k  refer to laboratory coordi- 
nates. For a system of noninteracting molecules ;(2) is 

the ensemble average of the molecular susceptibility fl: 

Z ( 2 ) _  ( l iul j~lk~)f luvQ. i l k -  Z (2) 
ttv~ 

The #, v, r are coordinates defined in the molecular 
frame, the liu are direction cosines, and the brackets 
indicate an average over a distribution function. If the 
components of/3 are known, the measurement of Z will 
yMd information about the distribution function. 
Otherwise, if the distribution function is known, the 
molecular tensor/3 may be obtained. An example for 
the latter case are molecular crystals where the average 
is taken over all molecules in a unit cell 
Without a foreknowledge of the/3u~Q the independent 
nonvanishing tensor components of X can be found 
using symmetry properties of the distribution function. 
In this paper we consider the case of a surface which is 
invariant under rotation around the normal. Such 
distributions are expected on surfaces between amor- 
phous, glassy, liquid, or gaseous phases. For the 
interface fused silica/air [14, 15] and fused silica/eth- 
anol [15] the rotational invariance was found to 
hold. 
The invariance condition for arbitrary rotations 
around the z-axis (defined as the surface normal) leaves 
only seven tensor components unrestricted 

X1 = Zzzz 

Z2 = Zzxx = Z~yy 

Z3 = Z:~zx = Zyzy 

Z4 = X~x~ = Zyy~ (3) 

X5 =)~zxy = - Z~rx 

2 6  = •xzy = - -  )~yzx 

)C7 = Zxy~ = - -  Z r ~  " 

And (1) takes the form 

fOo 0 0 00t Py = 0 0 Z4 )~3 -X6 -Z7 0 

Pz Z2 X2 )~1 0 0 0 0 X5 --X 

~(1)E~(2) \ 
E,(1)Ey(2) 
E~(1)E~(2) 
Er(1)E~(2) 
Ez(1)E,(2) 
E~(1)Ex(2) 
G(1)G(2) 
Ex(1)Ey(2) 
Ey(1)Ex(2) 

(4) 

A mirror plane perpendicular to the surface as an 
additional symmetry element will cause ;(5, )~6, and Z7 
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to vanish 

100 0 0 0 0 
Z (2)= 0 0 Z4 Z3 0 0 0 . 

Z2 Z2 Z1 0 0 0 0 0 

(5) 

Such a mirror plane will always exist in a rotationally 
invariant distribution if the molecules forming the 
surface have mirror symmetry themselves or form a 
racemic mixture. The occurence of )~s, X6, and Zv 
indicates chirality of the surface. (In a completely iso- 
tropic distribution of molecules only Z5 = - X 6 = X 7  
can exist, e.g., in a solution of chiral molecules.) For  the 
special case of second harmonic generation (SHG) the 
last three pairs of columns in (5) can be contracted: 

<:000 0 
Py = 0 0 X3 0 0 

Pz Z2 X2 1~1 0 0 0 

E 

EyE~ (6) 

ExE= 

E~E~ 

This so called piezoelectric contraction is frequently 
used to write Z (z~ for SHG processes. M1 experimental 
work published so far on second order nonlinear 
optical effects at surfaces dealt with SHG only. We will 
use the full notation of (4), however, since we expect 
more data to be available in future from sum and 
difference frequency mixing experiments. 

1.2. Generated Waves 

The problem of the waves at the sum and difference 
frequencies radiated by the nonlinear polarization has 
been discussed in detail by Bloembergen and Per- 
shan [-1]. The appropriate model for the situation of 
interest is a thin parallel slab of nonlinear material 
between two linear media as shown schematically in 
Fig. 1. We will briefly review the definitions and results 
obtained with the method of [ 1 ] .  
In the general case two fundamental waves are refrac- 
ted from the linear medium I into the nonlinear 
medium where they interact to form a nonlinear source 
wave 

�9 exp [i(k] + k'2)r - iffo 1 + c%)t] 

= pYL. exp [ l ( k s r -  co3t)]. (7) 

(e' and k' refer to the fundamental beams in the 
nonlinear medium). In the case of SHG ks = 2k~ and 

n R 

rl N 
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Fig. 1. Propagation of the nonlinear generated waves in a thin 
parallel slab. The fundamental waves are incident with angle 0 I 
and generate the nonlinear source wave propagating with angle 
Os. ng, nM, and nr are the refractive indices for the generated 
waves, each written to the medium to which it applies. Four 
nonlinear waves are generated: one in reflection, one in trans- 
mission, and two propagating in the medium 

the law of refraction requires k]x = klx leading to 

nf sin 0i = ns sin 0s, (8) 

where nf and n s are the refractive indices for the 
fundamental in the linear medium I and the nonlinear 
medium, respectively. A generalized ns can be defined 
for sum and difference-frequency generation [1]. In the 
case of colinear propagation of the two fundamental 
beams in the nonlinear medium it is 

ns = (n'l o l  + nl co2)/(col + co2), (9) 

where n] and n~ are the refractive indices for the two 
fundamentals in the nonlinear medium. For  our con- 
siderations it is only important  to know that a 
nonlinear source wave characterized by ns and 0s is 
generated. The surface normal and ks span the plane of 

incidence which we define as the xz-plane. The wave- 
vectors of all generated waves will lie in this plane 
[ I ] .  

Maxwell's equations are solved for this system follow- 
ing the method outlined by Bloembergen and Pershan 
[1]. The continuity condition for the x and y compo- 
nents of the electric and the magnetic field at both 
interfaces imposes eight boundary conditions. As a 
consequence four nonlinear waves are generated 
(Fig. 1): One reflected (nR, OR), one transmitted into the 
second linear medium (nr, Or), and two propagating in 
the nonlinear medium (nM, 0M). The refractive indices 
nR, nr, and n~ refer to the generated frequency. The 
angles are related through the law of refraction by 

n T sin0r = n R sire9 R 

= n~ sin 0~t = ns sin 0s �9 (10) 

We assume that the active surface layer thickness d is 
much smaller than the wavelength of the generated 
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wave. In this case the phase shift of the waves between 
the two boundaries 

q)m =nM c o s  OMdfO3/c ~. 1, 

q)s = ns cOsOsdc~ ~ 1, 
(11) 

are small and terms like 1 - exp(icpg) can be replaced 
by --iq~M. The result for the reflected and transmitted 
waves are 

7" R 4rcidc~ (12) 
e• = e• = nR COS OR + nr cos 0 r ' 

4rcidoo3p~L/c 

8~ = --  nT COS O R -t- n R COS 0 T 

" [ c~ nMn~r s i n O M c ~  1 , 

4~idmap~L/c 

8~ = nT COSO R "1- nR COSO T 

The indices II and L denote the components of the 
generated radiation polarized parallel and perpendi- 
cular to the plane of incidence and c~ is the angle 
between ks and P (Fig. 1): This result is identical with 
the one given by [1]. 
With a few algebraic manipulations we can eliminate 
and contract the denominators yielding formulas in 
cartesian coordinates which can directly be connected 
t o  ~((2) 

T ~ T D N L .  ~T 7 T D N L  - -  ~ ' T D N L  
•  ry  , ~l l=Jx r x  T J z  r z  , (13) 

~R ~'R D N L .  ^R ~'R D N L  - -  ~'R D N L  
&=Jy r y  , ~[I = i x  r x  ~ J z  r z  , 

with 

f R =  4ztidc~ sin0r 
cnR sin(0R + Or) 

- cos0r /cos (0r -  OR) 
�9 1 , (14) 

(n~/nM) ~ sinOr/COS(Or- OR) 

f r =  4xi&o3 sinOr 
cn R sin(0R + Or) 

COS0R/COS(0~--O~) ) 
�9 1 . ( 1 5 )  

(nR/nM) 2 sin 0R/COS ( 0 r -  OR) 

The factors f can be regarded as nonlinear Fresnel 
factors describing the refraction of the nonlinear wave 
associated with pNL into the media "R" and "T". The 
corresponding linear Fresnel formulas for the funda- 
mental beams incident in the xz plane give the field d in 
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Fig. 2. Definition of experimental parameters. The plane of 
incidence is X Z ,  Z is the surface normal. The incoming beam has 
angle of incidence 0~ and angle of polarization ~ with respect to 
the plane of incidence. The outgoing beams are generated in the 
direction OR (reflection) and ,9 r (transmission) and analysed for 
their s and p polarized components 

the nonlinear medium in terms of the incident field e 

~=fie~ i = x , y , z  (16) 

2 sin0v f= sin(01 + Or) 

cos0v/cos(0v-0~) \ 
COSOI ] , 

/ 

(,/nv) cos0dcos(O~- 0,)/ 
where 0~ and Ov are the angle of incidence and 
refraction for each beam related by 

n, sin0t = nv sin0v. (17) 

In the case of SHG, nv = ns and Ov = Os. The same will 
be true when the two incident beams in sum frequency 
generation have at least approximately the same ratio 
ndn U. 
In an experiment we characterize the ingoing beams by 
their angle of incidence 0v angle of polarization with 
respect to the plane of incidence 7, and the intensity I. 
These are related with simple geometrical consider- 
ations to the cartesian components which are sub- 
sequently connected t o  Z (2). For colinear incident 
beams and the tensor symmetry of (4) the result is 
(Fig.2) 

P x  NL = ~ 1 1 2  sin 01 [COS O I COS y 1 COS ~;2 

+ sin71 cosy2Zxrz fir f2~ 

+ c0s71 s iny2z=yft j2y] ,  (18) 

P ~ Z = ~ s i n 0 ,  

�9 [sin71 cosy2)~f l r f2~ 

+ sinT2 cosy1 z=xft~f2y 

-cos0/cosT~ cos72 

�9 (X~rz f~f2~ + Xxzyf l z f2x) -] ,  (19) 
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pNL = ~ [gz~x(ftxf2~ c~ 0I cos 7 x cos Y2 

+flyf2y sin71 sinT2) 

+ sin2 0x c0s71 cos72zzz~fa~f2~ 

+ cos S t Zzxy 

�9 (f~xf2ycos~ siny2-f~yfz~sinT~ cosy2)]. (20) 

In the case of SHG these reduce to 

N L  Px = I .  sin 0z [cos 0x cos 272f~ f ~ ) ~  

+ 2 siny cos y L L ) ~ , j ,  (18a) 

N L  Py = I .  sin 0I [2 sin7 cos 7 fyf~ L,x~ 

- 2 cos01 cos27 fxf~ Zxyj, (1%) 

NL (fx 2 COSZ 7 COS2 St + s sin 27) P~ = I .  [Z~"  

+ z~=f 2 cos 2 y sin 2 0~]. (20a) 

The measured quantity is the intensity of the generated 
light polarized parallel (p) or perpendicular (s) to the 
plane of incidence: 

Is = ~ NL 2 
[fYPY ] ' (21) 

I ~ N L  ~ N L 2  ,=IZPx +LP, I, 
where the nonlinear Fresnel factors f are taken from 
(14, 15) for reflection and transmission, respectively. 

1.3�9 The Projection Model as Limiting Case 

A simple projection model to describe surface second- 
harmonic generation is obtained when refraction at the 
boundaries to the surface layer is ignored and pNL is 
calculated from ;( and the cartesian components of the 
ingoing light fields. The field amplitudes es and ep are 
found by projection of pNL onto the appropriate 
polarization vectors. The result is 

is ~ p N L  2 A y  

(22) 
Ip ~ ]cos  O R pffL _ s i n  O R pNL]2,  

and the components of pNL are given by (18-20) with 
all Fresnel factors set to unity. 
Setting all refractive indices equal in the formulas of the 
preceeding section yields the same result, with the 
exception of an overall factor (cos0) -2. This factor 
causes divergence of the signal for horizontal incidence 
corresponding to infinite phase-matched propagation 
of the source wave and the second-harmonic wave 
through the nonlinear layer. Of course, the linear 
Fresnel factors will prevent such catastrophic 
behaviour. 
Therefore, the projection model describes most of the 
qualitative features of the second-harmonic generation 
process well, whereas for quantitative evaluation all 
factors should be taken into account. 

1.4�9 Nonlinear Brewster Angle 

The intensity of the p-polarized signal is, according to 
(21), given by 

I R = const- IcOS0TPx NL- sin0TPNLI2, 
(23) 

lpT---- const �9 ]COs OR PNx L + sin OR p~L[ 2 . 

In case that pNZ and pNL are of same order of 
magnitude an angle 0T will exist for which I R vanishes�9 
If pNL and pNL have opposite sign and similar absolute 
magnitude, extinction of the signal will occur in 
transmission for a defined angle of incidence. Measure- 
ment of this Brewster angle [1] will directly give the 
ratio Pz/P~ which could be helpful in determining the 
relative sign of various components of the ;(2) tensor�9 
This latter effect has been used as null method by Heinz 
et al. [15]�9 

1.5. Total Internal Reflection 

In the case nR > nr total reflection of the generated sum 
frequency beam can occur if the angle of incidence is 
chosen so as to make 

sin0T= n~ sin0 R = n~ sin0x > 1. (24) 
n T n T 

The situation is completely analogous to the linear 
ease. As pointed out [1], all formulas remain valid with 
some of the trigonometric functions assuming complex 
values: 

sin0T > 1, 

cos0 r =i(sin2 0r - 1) ~/2 , 
(25) 

sin(0T + OR) = sin 0T COS OR + sin OR cos 0T, 

COS(0T-- OR) = COS0T COS0R + sin0R sin0T. 

Through COS0T the z-component of k T will become 
imaginary, and eT describes an evanescent wave. 
However, in opposition to the linear case, where the 
sum of transmitted and reflected energy is always 
constant, in the case of nonlinear total reflection the 
signal can be considerably enhanced�9 This is exempli- 
fied in Fig. 3, where the SHG signal is simulated for a 
model surface with the fundamental approaching the 
surface from the side with lower refractive index 
(Fig. 3a) and higher refractive index (Fig. 3b), respec- 
tively�9 As soon as the angle of incidence reaches the 
critical value for total internal reflection the second- 
harmonic intensity increases about two orders of 
magnitude and becomes far larger than the combined 
intensities for transmitted and reflected SHG light for 
any angle of incidence in the other configuration of 
Fig. 3a. (note that the vertical scale is in the same units 
for both plots)�9 
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Fig. 3a and b, Simulation of SHG 
by surface reflection (R) and 
transmission (T) as a function of 
angle of incidence. (a) The 
fundamental beam approaches the 
boundary from the low index side 
(air). (b)The fundamental beam 
approaches the boundary from 
the high index side (fused silica). 
Note the strong enhancement of 
the signal as total internal 
reflection sets in 

As a consequence of the total reflection the wave e~ will 
exhibit a phase shift with respect to e~. When the 
ingoing waves are all linearly polarized this phase shift 
is given by 

( s i n 0 r P ~ -  c o s 0 r P ~  
tl = arg(evR/e~)= arg \ ~ j .  (26) 

A phase shift of re/2 is found when 

P~ _ cos0 ,  (1 n~ _~ (27) 
Px sin O R \ n~ sin 2 O R j "  

This condition could be used to determine relative 
signs of tensor components of X (2) in a way similar to 
the Brewster angle condition. 

1.6. The Problem of  ns and nM 

One major difficulty in using (14, 15) for quantitative 
evaluations of experiments is the question of choosing 
correct values for ns and riM, the refractive indices for 
the fundamentals and the sum or difference frequency 
in the surface layer. The refractive index nM appears 
solely as a multiplicative factor in the nonlinear 
Fresnel factor j~. The corresponding component of the 
polarization P~ contains X~x and X~. Since these two 
tensor components do not appear in Px and Py, n~t 
assumes the role of a scaling factor for these two tensor 
components. Defining an effective Z(2): 

z ~ = O ~ = J n ~ ,  z=2n~,,  z . . . .  Z~z) (28) elf 

will eliminate nM completely. This means, using (18-20) 
with nM set to unity will give ~ofe.~(2) No such simple 
contraction_schemeexists-to eliminate_ns and.0s in  the 
linear Fresnel factors. W e  are therefore left with the 
problem of finding ns a n d - i f  we want to interprete Z (z) 
in terms of an orientational model - also nM. 
The surface layers are too thin and the concentration of 
the dye molecules is too low to allow a direct measure- 

ment of the refractive indices by linear reflection 
studies [17]. However, n s can be measured via the 
dependence of the nonlinear signal strength in trans- 
mission as a function of the angle of incidence. For s- 
polarized ingoing light and p-polarized detection the 
shape of this function does not depend on the magni- 
tude of the susceptibility tensor elements 

Issp(0 ) = const.  [fy2frf ,]2,  (29) 

where f '  is the Fresnel factor for the refraction of the 
generated beam through the back surface of the glass 
substrate. The explicit form of (29) is 

Iss~(O) 
(sin 0i) 1 o (cos 0i) 4(cos 0r) 2 (30) 

= const "[sin (Os + Oi) sin (OR + 0 r) cos (OR -- 0 r)] 4" 

Due to (10) ns is the only unknown in (30). It is 
reasonable to assume that ns is between the refractive 
indices for the fundamental in air and in silica glass. 
For ns= 1.01 the maximum of Iss p lies at 0I =82  ~ 
[With ns = 1.0 exactly, the curve Issp(0) diverges for 
0 = 9 0  ~ due to the cos -z behaviour mentioned in 
Sect. 1.3.] With increasing ns, i.e., with increasing glass 
character of the surface layer, the maximum shifts to 
smaller values of 0~, reaching 0m,~--62 ~ when 
ns = ngla~. A fit of (30) to the experimental curve will 
consequently yield a value for ns. Taking 
( n  s -  1)/(nglass-- 1) as the glass character of the surface 
layer, nM can be estimated from n r assuming that the 
glass character is frequency independent. 

2. Experiment: Rhodamine 6G on Fused Silica 

We apply the above given theory to the analysis of data 
obtained by second-harmonic generation from thin 
surface layers of rhodamine 6G on fused silica. This 
system was first studied by Shen and his coworkers 
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Fig. 4. Experimental arrangement for the 
determination of I~p(O). The fused silica 
plate is rotated around the spot where 
the laser beam hits the surface with angle 
of incidence & A microprocessor 
controlled translation stage moves the 
detection system to compensate for the 
walkoff d of the second-harmonic beam 

[14]. They proposed a surface model containing only 
one orientational parameter, namely the angle fi 
between the molecular dipole axis and the surface 
normal. The molecular out-of-plane axis was restricted 
to lie in the surface plane. With the further assumption 
that fl=** is the only nonvanishing molecular tensor 
element, and using the projection model with an angle 
of incidence of 45 ~ , this leads to the prediction 

I p p = ( 2  < c ~  2 
' ( 3 1 )  

where Ipp and Iss are the second-harmonic intensities 
with the incident light polarized p and s, respectively. 
From a measurement of this polarization ratio the 
average orientation angle (fl> can be obtained assum- 
ing that the distribution is sufficiently sharp to allow 
the substitutions 

<cos"fl> = : cos" <fl>. (32) 

The restrictions of this model are obvious, and it is 
quite possible that the measured polarization ratio is 
the result of a completely different arrangement of the 
molecules in the surface layer. In fact, the model 
introduces the restriction 

2Z~== - Z z =  (33) 

and a measurement of these macroscopic quantities 
could serve as a test. In our opinion all three indepen- 
dent tensor elements Z=~, Z~ ,  and Z~x~ = Z ~  should be 
determined before any assumptions about molecular 
tensor elements or orientation models are made. 
Use of the projection model implicitely assumes 
n s = n ~ t = l . O ,  i.e., the surface layer is regarded as 
belonging to the medium air. Initially we believed this 
to be a reasonable guess, but measurement of the curve 
I~sp(O) according to (30) lead to a different conclusion. 
The experimental arrangement for this measurement is 
shown in Fig. 4. The axis of rotation of the glass 
substrate is carefully adjusted to lie exactly in the spot 
where the laser hits the surface. The beam walkoff d of 
the second-harmonic beam was compensated with a 
microprocessor controlled stepping motor system 
which moved the detection system synchroneously 

I 

! 

I'0 io 3'o 4'0 5'o do 7'0 go 90 
Angle of Incidence - 

Fig. 5. Second harmonic signal strength as function of tlre angle of 
incidence in transmission through a fused silica window covered 
with rhodamine 6G. Open circles: experimental points: Full 
lines: best fit to (30) with ns= 1.3286. Broken line: theoretical 
curve for ns = 1.01. (For ns = 1.0 the curve is dominated by the 
cos-2 artifact discussed in Sect. 1.3) 

with the rotating fused silica plate in such a way that 
the second-harmonic beam always hit the photomulti- 
plier at the same spot. This was important since the 
sensitivity of the photomultiplier tube varied consider- 
ably from spot to spot. The measured intensities as a 
function of the angle of incidence are shown in Fig. 5 
(open circles). The full line shows the best fit to (30) 
obtained with the refractive index n s =  1.3286. The 
values for ns  which lead to twice the sum of squares 
yield the confidence interval ns=1.33_+0.06. The 
theoretical curve calculated with ns = 1.01 and normal- 
ized to the same maximum is given as the dotted line. 
We are therefore forced to abandon the hypothesis of 
n s = n~,. and rather have to assume an approximate 
75% of glass character for the surface layer. Carrying 
this argument over to the second harmonic frequency 
we arrive at the values listed in Table 1 for the 
refractive indices appropriate to our experiments. 
The three tensor components should be accessible 
through measurements of the s and p polarized signal 
intensities Is and Ip for various angles of incidence 0x 
and polarization 7. From (18-21) these are found to be 

Is = ]a~ sin(27)X,,x=] z , 
(34) 

Ip -- [COS 2 7(a2 Zxxz + aa Z=xx + a4 Zz=) 

+ s inZyasz=x , , [  2 . 
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Table 1. Refi-active indices of the glass plate and the surface layer 
for the fundamental beam (n, ns) and the second harmonic beam 
(nr, n~). Values are given for the two fundamental wavelengths 
660 and 695 nm used in our experiments 

660 nm 695 nm 

n 1 1.4566 1.4550 
n s 1.3286 1.3276 
n r 1.4810 1.4775 
n~ 1.3463 1.3438 

The coefficients az are constant for a fixed angle of 
incidence 

al = sin0,fyfzj~, 

a2 = sin(2O~)fj~f~, 

a3 = cos z O,f~ ~ ,  (35) 

a4 = sinZO~f~ J~, 

We found it easiest to measure relative intensities for 
different polarizations keeping the angle of incidence 
fixed. Varying the angle of incidence always requires 
readjustment of the beams. 
With the incident light polarized p (y = 0), s(y = 90 ~ and 
intermediate (~ = 45 ~ we obtain four intensities 

11 = I~(45 ~ = la~ )~xxz[ 2 , 

I 2 = I p ( 0  ~ 

= [a2 7,x~z + a3 ) ~  + a , ) ~ [ 2 ,  (36) 

13 = Iv(90 ~ = [as Zzx~[ z, 

I4 = Ip(45 ~ 
1 2 

=xla2x~,  + (a3 + as))~x + a4z=~[ �9 

Measurements of Ip alone cannot yield all three tensor 
elements since Z ~  and X~z~ always appear in the same 
linear combination. This leads to the relation 

I3 = (2V~4_ ~/~2) 2 (37) 

which was used to check the consistency of our data. 
A straightforward analysis of the data could proceed 
via the following steps: 
1) calculate the coefficients a~ for the particular choice 
of 0z and refractive indices. 

2) Z ~ =  l//-~/al . 
The sign is taken to be positive since the absolute sign 
is not accessible from intensity measurements. 

3) Z~x~= +_l/~3/as. 
The sign of Z ~  can be positive or negative with respect 
to Z ~ .  

B. Dick et aI, 

1 ( + ~ _ a 2 z x x z _ a 3 Z z x x ) "  4) Zz~= a~ 

This will give four solutions for )f~= depending on the 

choice of sign for Z~xx and ~/~2. 
5) Alternatively, 14 leads to four different solutions: 

1 
Z=~ = - -  [ + 21/~4- a2z~;z-  (a3 + as)x~x:,] �9 

a,,  

6) The solution appearing in both sets is the correct 
result. 
Although this method worked in principle, the results 
obtained for various angles of incidence did not agree 
well in the case of rhodamine 6G. The reason is that 11 
is small and the scatter of data is a considerable source 
of error for this intensity. Furthermore, the hierarchi- 
cal structure of the analysis leads to accumulation of 
all errors in Zzz~. A third problem is that the detection 
system has not strictly the same sensitivity for s and p 
polarized signals. We, therefore, developed a method 
of data analysis which: 

i) equally distributes the error due to scatter of 
data, 
ii) allows the inclusion of a larger number of data 

points obtained in different geometries and with 
different angles of incidence, 
iii) does not require s polarized signal intensities. 
For this purpose we define the following intensity 
ratios for a fixed angle of incidence: 

['1 =I1/I3 = 101 ~x~,l -~ , 

Iz= I2/I3 = 102)~ + 03 + 84)~=~12 , (38) 

f 4 = I4/I  3 = �88 + 03 + 1 + 042~z~l 2 , 

where 8i and )~ are the appropriate quantities normal- 
ized to as and X,,~. Labelling the intensities with a 
further index i counting experiments with different 
angle of incidence or geometry, the best choice for )~x~ 
and )(~z~ is found by minimizing the quantity 

N 
S=  E X (f~,~_f2xp)2. (39) 

i=1 k 

Experimental intensities from six transmission and one 
reflection measurements were used for the fit. The 
minimum was found numerically with a Newton 
algorithm calculating derivatives via finite differences. 
Convergence is archieved within 5 to 7 cycles, and the 
result is the same for a large selection of starting points. 
The parameters a~ were calculated with the set of 
refractive indices in column 2 of Table 1 corresponding 
to the fundamental wavelength of 695 nm. The best fit 
is obtained with 

)~,~ =0.692; )~x~ = -0 .158 .  (40) 

The average rms deviation is 0.059 corresponding to 
6% of the larger signals. Table 2 gives the experimental 



Geometry 01 Experimental Calculated 

Reflection 

r~_ h r~ h r, 

T 30 ~ 0.304 0.565 0.388 0.658 0.044 
T 35 ~ 0.338 0.615 0.411 0.674 0.043 
T 40 ~ 0.433 0.700 0.440 0.692 0.042 
T 45 ~ 0.483 0.717 0.474 0.713 0.041 
T 50 ~ 0.610 0.820 0.515 0.738 0.040 
T 60 ~ 0.640 0.860 0.628 0.803 0.036 
R 45 ~ 1.350 1.150 1.410 1.196 0.020 

T: Transmission, R: Reflection 

3. Conclusions 

values Ii and the calculated values obtained with the 
best fit. The calculated values of r 1 show that these 
intensities should indeed be small. Experimentally they 
were found to be about one order of magnitude weaker 
than I4. Figure 6 shows a simulation of Ip(O, 7) for 
reflection and transmission with the parameters of the 
best fit. They predict that for the system rhodamine-6G 
on fused silica no Brewster angle situation exists. 
To investigate the influence of the choice of refractive 
indices on the result of the fit, the procedure was 
repeated with several values for the refractive indices in 
the range 1.0<ns< 1.457 and 1.0<nM< 1.481 corre- 
sponding to the two linear media air and fused silica 
glass. In each case the optimization converged almost 
to the same sum of squares. Of course, the values found 
for )~=z and ) ~ ,  are different in each case. The ratio 
Z=JZ~z  is in the range between 3.3 and 4.5 and never 
agrees with (33). This suggests that the orientational 
model proposed by Heinz et al. [-14] needs to be 
refined. 

~o ~ ~...__.--~ 

A method has been developed to determine the Second- 
order nonlinear optical susceptibility tensor Z (2) of a 
thin surface layer by sum or difference frequency 
generation experiments. It has been applied to the 
adsorbate system rhodamine 6G on fused silica in air. 
Data from second-harmonic generation obtained in 
reflection and transmission have been used in the 
analysis. The relative magnitude of the three indepen- 
dent tensor components Z .. . .  Z=~, and Z~z have been 
found by a least squares fit. Since the surface suscepti- 
bility is dominated by the resonant contributions of the 

0 

~ J  

Table 2. Intensity ratios Iz and r 4 for several angles of incidence 
in reflection and transmission from fused silica covered with 
rhodamine 6G. The measured values are compared to the 
calculated ones for the best fit 
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Transmission 

0 

Fig. 6. Simulation of Ip(,9,7) for reflection and transmission 
experiments. The parameters of the best fit have been used: 
ns= 1.3276, n~t= 1.3438, X=z~= 0.692, Zzx,= 1.0, Xxxz= -0 .158  

adsorbed dye molecules, these relative tensor compo- 
nents can be compared to orientational models of the 
adsorbate system. 
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