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Abstract: This paper explores the implications of asset return predictability on long-
term portfolio choice when return forecasting variables exhibit long memory. We model long
memory using the class of fractionally integrated time series models. Important predictor
variables for U.S. data, like the dividend-price ratio and nominal and real interest rates, are
non-stationary with orders of integration around 0.8. These time series properties lead to
substantial increases of the estimated long-term risk of stocks, bonds and cash compared
to earlier estimates obtained from a stationary VAR. Long-term risk increases because the
fluctuations in the predictor variables imply that expected returns themselves become a
significant source of long-term risk. We find that results are sensitive to the specification
of the prediction equation of excess stock returns. The inclusion of the short-term nominal
interest rate among the predictor variables has the most profound impact. Jointly with the
dividend-price ratio it has significant predictive power, but contrary to the dividend-price
ratio the nominal interest rate does not induce mitigating effects through mean reversion.
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1 Introduction

A vast body of empirical research has demonstrated that expected asset returns are

time-varying: short-term interest rates are used to forecast both stock and bond

returns, valuation ratios such as the dividend yield or the price-earnings ratio appear

to predict stock returns, and bond returns are related to the yield spread.1

Historical time series data suggest that many of the return forecasting variables

display persistence. The near unit-root behavior of the predictive variables has led

to an extensive literature on the properties of predictive regressions, in which the left

side variable is a return series and the explanatory variable in the regression is a near-

integrated series.2 Inference turns out to be strongly affected when the innovations

to the predictor variable are strongly correlated with unexpected returns.

An important phenomenon in this literature is mean reversion. Mean reversion is

the empirical property that the long-run variance of returns is lower than the short-

term variance times the investment horizon.3 As a stylised fact stocks are less risky

for long-term investors. Long-term investors should on average hold more stocks in

their portfolio as a hedge against future changes in investment opportunities.

Although many studies have looked at testing for predictability and estimation

with near-integrated series, the implications of predictability are mostly considered

within a stationary vector autoregression. In this paper we study the long-run risk

properties of different asset classes in models where we allow for the possibility that

the prediction variables, and thus expected returns, are fractionally integrated of

order I(d) (0 ≤ d ≤ 1). Fractionally integrated time series models provide a flexible

and still tractable linear framework with properties in between those of the stationary

autoregressive I(0) models and I(1) unit root processes.4

Our analysis focuses on the term structure of risk introduced by Campbell and

1 A brief and incomplete survey on asset return predictability includes Campbell (1991), Campbell
and Shiller (1988, 1991), Ammer and Campbell (1993), Fama (1984), Fama and French (1988) and
Cochrane (1997, 2007). The evidence is not undisputed: Goyal and Welch (2003, 2007) show the
low out-of-sample predictability of stock returns. Continuing the debate Ang and Bekaert (2007),
for example, present new favorable evidence.

2 The econometrics of these unbalanced regressions have been studied in various settings. Stam-
baugh (1999) and Bekaert, Hodrick and Marshall (1997) derive the small sample bias for predictive
regressions when the predictor is a stationary AR(1). Lewellen (2004), Campbell and Yogo (2006)
and Torous, Valkanov and Yan (2004) consider the case of stocks and work under the assumption
that the predictor series has an autoregressive root that is local to unity. Wachter and Warusaw-
itharana (2007) provide a Bayesian treatment of the problem paying close attention to the prior
relations between parameters close to the unit root.

3 See Poterba and Summers (1988) and Fama and French (1988).
4 See Robinson (2003, ch 1) and Baillie (1996) for an introduction and survey.
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Viceira (2005) and its relation to the persistence of expected returns. Persistence

affects the term structure in different ways. Let Rt+1 be a one-period logarithmic

return, qt = Et[Rt+1] the expected log return given information up to time t and ut+1

the unexpected log return such that

Rt+1 ≡ qt + ut+1 (1)

Adding log returns for k periods gives the cumulative log returns

R
(k)
t+k ≡

k∑
j=1

Rt+j =
k∑

j=1

(qt+j−1 + ut+j) ≡ q
(k)
t+k−1 + u

(k)
t+k (2)

The term structure of risk is defined as the conditional variance of cumulative returns

scaled by the investment horizon,5

σ2
R(k) ≡ 1

k
Var

[
R

(k)
t+k − Et

[
R

(k)
t+k

]]
(3)

From the decomposition (2) we can write the term structure as the sum of three

components,

σ2
R(k) = σ2

u + 2σuq(k) + σ2
q (k), (4)

where σ2
u is the variance of the cumulative unexpected returns u

(k)
t+k (scaled by hori-

zon), σ2
q (k) the scaled variance of cumulative expected returns q

(k)
t+k−1, and σuq(k) the

scaled covariance. The first term, σ2
u, is the usual variance of unexpected returns. By

construction, since the shocks ut+1 are serially uncorrelated, σ2
u does not depend on

k. Without predictability the other two terms are zero.

Mean reversion occurs when the long-run variance is below the variance of direct

shocks. i.e. σ2
R(k) < σ2

u. A necessary condition for this is that the covariance σuq(k) is

negative, i.e., if unexpected returns ut+1 are negatively correlated with future expected

returns qt+j. The mean reversion effect will be stronger the higher the persistence in

expected returns. When expected returns are close to a random walk, even a small

shock to expected returns substantially improves the attractiveness of stocks for many

periods ahead (see section 2 for a more detailed explanation).

The variance of expected returns, σ2
q (k) is negligible for short horizons as the

shocks to expected returns are always an order of magnitude smaller than the unex-

pected returns. As the variance is always positive, this term works in the opposite

direction as the mean reversion effect. Both σuq(k) and σ2
q (k) grow in absolute value

with the horizon. As we will show in section 2, both diverge for any fractional process

5 In the sequel we write the shorthand ’returns’ in place of ’log returns’.
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with d > 0. The limit of σ2
R(k) for k →∞ only exists in the stationary autoregressive

case d = 0. For a fractional process σ2
q (k) will eventually grow fastest with the horizon

k. When there is predictability and some of the predictor variables are persistent, the

variance of expected returns will be the dominant source of risk at long horizons. It is

an empirical issue, however, which term is more important at economically relevant

horizons.

For very long horizons, the fractional model perhaps overestimates the risk due

to the divergence of σ2
R(k). Nevertheless, a stationary VAR model may seriously

underestimate the risk, since it assumes that autocorrelations decline exponentially,

and since the largest root of the system is typically underestimated in small samples.

We will study a multivariate model with three asset classes: stocks, bonds and

bills. As the predictive variables for excess returns on stocks and bonds we consider

the log dividend-price ratio, the nominal and real short-term interest rate, the yield

spread and the credit spread. Modelling persistence requires the consideration of

high-order autocorrelations, whereas the stationary first-order vector autoregressions

that are widely used in the literature solely rely on low-order autocorrelations for

estimation. Using semiparametric techniques we estimate the fractional integration

parameter for each state variable. The fractional integration controls the long-memory

or low frequency components of the time series. For the short-term dynamics we

specify a first-order VAR for the fractionally differenced data. In this way we can

separate the long-run and short-term dynamics in the state variables.

Predictability also implies that optimal investment strategies contain a speculative

demand and a hedging demand. The hedging demand depends on the covariance of

returns with the changes in future investment opportunities. Campbell and Viceira

(2002) and Campbell, Chan, and Viceira (2003), in line with other authors, assume

that both asset returns and return forecasting variables follow a first-order vector

autoregressive process.6 We derive an approximate hedging demand when the future

investment opportunities follow fractional processes.

Most existing evidence for fractional integration is available for interest rates. Shea

(1991), Crato and Rothman (1994) and Sun and Phillips (2004) report estimates of

d of around 0.8 using a variety of estimation techniques. In a bivariate analysis of

real and nominal rates Sun and Phillips (2004) find that both have the same order

of integration. Backus and Zin (1993) construct the entire term structure of interest

rates when the short-term interest rate is fractionally integrated, while Duan and

6 See also Brennan and Xia (2002), Wachter (2002) and Jurek and Viceira (2006).
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Jacobs (1996) show that a fractional I(d) process for the short rate can be derived in

an equilibrium model.

For the stock market the possibility of fractional integration was entertained by

Baillie (1996), who suggests the possibility of fractional cointegration between stock

prices and dividends. An empirical test is performed by Caporale and Gil-Alana

(2004) who find that stock prices and dividends fractionally cointegrate. The residuals

of their cointegrating regression exhibit fractional integration with d > 0.5. Koustas

and Serletis (2005) provide parametric ARFIMA estimates of d for the log dividend

yield. For a long time series starting in 1871 they report estimates around 0.45 and

are able to reject both the null of d = 0 and d = 1. Cunado, Gil-Alana and Perez de

Gracia (2005) obtain similar results for the very short sample 1994-2003.

Of particular interest is Barsky and DeLong (1993). Their proposed model for

log dividends is an I(2) process and the implied log price-dividend ratio is I(1).

The motivation for their model is a coherent present value explanation for both the

high volatility in stock returns and low volatility in dividend growth. Building on

these insights Bansal and Yaron (2004) show that a small but persistent long-run

predictable component helps in explaining the large equity premium.7

The rest of the paper is organized as follows. Section 2 discusses a univariate

model for stock returns to explain the structure of the model and the effects of

fractional integration. The more general multivariate model with stocks, bonds and

bills is developed in section 3. For this model we discuss the term structure of risk

and derive the global minimum variance portfolios for long-term investors. Section 4

discusses the estimation of the model. The empirical part starts in section 5 with a

description of the data. Section 6 discusses parameter estimates, while the implied

term structure of risk and the global minimum variance portfolio weights are presented

in section 7. Section 8 concludes.

2 A Motivating Example

To motivate models with fractional integration, we start with a univariate model

analysed in detail in Barberis (2000). Barberis (2000) considers an investor who can

invest in either stocks or the riskfree asset. Logarithmic excess returns on equity yt

7 Persistence in their model is measured by the first-order autoregressive parameter of expected
dividend growth, which is still assumed to be stationary, but very close to one.
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are linearly predictable using a state variable xt−1,

yt = c + βxt−1 + ut (5)

Barberis (2000) further assumes that the real riskfree rate rf is constant, so that in

his model the logarithmic real return on stocks Rt = yt + rf differs from the excess

returns by just a constant.

The state variable evolves as

xt = µ +
∞∑

j=0

θjεt−j, (6)

where the parameters β and θj are all scalars. The innovations ut and εt have variances

σ2
u and σ2

ε , respectively, and covariance σuε. Barberis (2000) further specialises the

state dynamics to the AR(1) process

xt = µ + α(xt−1 − µ) + εt, (7)

so that θj = αj.8 For typical predictor variables like dividend yield, price-earnings

ratio, T-Bill rate, credit spread, volatility and inflation the estimated AR parameter

α is always close to one and standard unit root tests usually can not reject the null

hypothesis that xt is integrated of order I(1). The other important characteristic of

the model is mean reversion. In the Barberis (2000) model a positive shock εt to

the predictive variable xt increases next period’s expected return (β > 0), but has a

direct negative effect on current stock returns (σuε < 0). Today’s bad news is partly

compensated by expected higher returns in the future. For dividends this negative

correlation is particularly strong as the correlation between shocks to the dividend

yield and unexpected returns is close to minus one.

Predictability and mean reversion have two effects on optimal portfolios. First,

investors adjust their portfolio every period to changes in expected returns. Second, as

mean reversion reduces risk at longer horizons, long-term investors hold more equity

on average than short-term investors. To obtain a quick view of the implications of

mean reversion on the asset allocation of a long-term investor Campbell and Viceira

(2005) introduce the term structure of risk σ2
R(k) defined in (3). Below we analyse

the effect of the time series properties of the state equation (6) on the term structure

of risk.

8 The same model consisting of (5) and (7) has been used in many other studies concerned
with the predictability of stock returns and its implications. See, for example, Stambaugh (1999),
Campbell and Yogo (2006), Lewellen (2004).
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Even in complicated dynamic models the term structure of risk can usually be

easily computed. Appendix A contains a detailed derivation of the term structure of

risk for a general multivariate linear time series process. For the model consisting of

the prediction equation (5) and state equation (6) the results in the appendix simplify

to

σ2
R(k) = σ2

u + 2βσuεψ1(k) + β2σ2
ε ψ2(k) (8)

where ψ1(1) = ψ2(1) = 0 and for k ≥ 2

ψ1(k) =
1

k

k−2∑

`=0

∑̀
i=0

θi

ψ2(k) =
1

k

k−2∑

`=0

(∑̀
i=0

θi

)2

(9)

The properties of the sequences ψ1(k) and ψ2(k) depend on the dynamic process for

xt, but not on any other parameters of the model. The term structure of risk is

horizon dependent due to the dependence of ψ1(k) and ψ2(k) on the horizon k. For

all relevant predictor variables α is close to one and the impulse responses θj are

all positive, so that both ψ1(k) and ψ2(k) are monotonically increasing in k. For the

AR(1) process (7), with θi = αi, the sums will converge to a constant when 0 < α < 1.

Similar to (4), equation (8) decomposes the total risk of equity in three compo-

nents. Without predictability (β = 0) the last two terms in (8) are equal to zero and

the entire term structure is flat at the level σ2
u. This is the classical situation where

portfolio choice is independent of the investment horizon.

Mean reversion may occur when βσuε is negative. The second term in (8) reflects

this effect and can generate the downward slope of the term structure of risk.

The third term measures the risk from the volatility in expected returns. Since

in the data the variance of innovations in expected returns is much smaller than the

variance of unexpected returns (β2σ2
ε ¿ σ2

u), this term is negligible for small k. It

is always positive, though, and ψ2(k) is increasing in k. When α is very close to

one, the volatility of expected returns dominates the mean reversion effect from some

large k onwards, i.e. then the positive variance effect β2ψ2(k)σ2
ε is larger than the

negative covariance effect 2βψ1(k)σuε. Thus, for α large enough, the term structure

is eventually upward sloping in k.9

9 To be precise, mean reversion reduces the long-run risk if σ2
R(∞) < σ2

R(1). To compute σ2
R(∞),

take the limits ψ1(∞) = 1/(1− α) and ψ2(∞) = 1/(1− α)2. Then long-term mean reversion holds
if 2βσuε(1− α) + β2σ2

ε < 0. Since β2σ2
ε > 0, this puts an upper limit on α.
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Typically, for large α, the term structure is initially downward sloping, reaches a

minimum and then increases again. The exact location of the turning point depends

on all parameters of the model. The closer α is to unity, the steeper the initial

downward slope of the term structure becomes. A shock to expected returns that

is expected to last longer, has more periods to compensate the immediate adverse

effect. For large k, however, we find the opposite effect: the larger α, the bigger the

limiting risk. For the random walk (α = 1) the term structure does not converge.

For α = 1 the volatility term ψ2(k) becomes quadratic in k and will cause an upward

sloping and diverging term structure of risk.

Figure 1 shows the effect of alternative assumptions on the time series process for

xt. For the stationary AR(1) model we use the parameter estimates from Barberis

(2000). For monthly data of the dividend yield the estimated AR(1) parameter is α =

0.9774. The implied term structure of risk is downward sloping and is very similar to

the results shown in Campbell and Viceira (2005).10 The long-run variance of equity

at a 15 year horizon is about half the risk of the monthly returns. Note, however, that

due to the rather large α the long-run variance increases again for very long horizons

up to the risk level of the monthly returns since σ2
R(∞) = 16.9% ≈ σ2

R(1) = 17%.

For the Barberis (2000) data the Dickey-Fuller t-statistic for a test against a unit

root is -2.48, meaning that the hypothesis α = 1 can not be rejected at reasonable

significance levels. But when xt is a random walk the term structure of risk obtains

a very different shape. In figure 1 the mean reversion is initially somewhat stronger

than in the AR(1) model. After five years, however, the term structure reaches a

minimum. From that point on the term structure obtains a very steep upward slope

and quickly diverges. After ten years the risk is already back at the initial level. A

seemingly small change to the model parameters has severe consequences for horizons

that are still important for portfolio decisions.

The difference in the results is related to the functions ψ1(k) and ψ2(k). These

are double sums of the coefficients in the MA representation of the state variable and

sensitive to the rate of decay of the θj parameters. For a stationary AR(1) the term

structure is of order O(1) in k, whereas under the random walk it is of order O(k2).

Since results for the stationary AR(1) and the random walk are so different, this

paper takes a closer look at the dynamics of the predictor variables. Even though we

can not reject the unit root hypothesis, the behavior implied by taking the random

walk model literally seems to overstate the risk of equity.

10 See their figure 1 on page 38.
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A natural candidate that is intermediate between stationary autoregressive time

series processes and a random walk is a long memory process that is integrated at

the fractional order I(d). As an example, figure 1 also shows the term structure of

risk for the pure I(d) process

(1− L)d(xt − µ) = εt, (10)

with long memory parameter d = 0.9. For this model the θj coefficients in the MA

representation (6) decline hyperbolically at the rate jd−1. Consequently, the sequences

ψ1(k) and ψ2(k) are of orders O(kd) and O(k2d), respectively, implying that the term

structure is also of order O(k2d) for large k.11 It is important to note that the term

structure of risk will be upward sloping for large k even if the time series is stationary.

The sequence ψ2(k) diverges for all d > 0, whereas the returns are stationary with a

finite variance for d < 1
2 .

In the figure the implied term structure of risk is almost identical to the AR(1)

model up to a horizon of eight years. After that point this term structure also starts

to rise, but not as steep as for the random walk model. It thus appears that the

fractional model has implications that are in between the stationary AR(1) and the

random walk model, but still sufficiently different from both.

In this example, the value d = 0.9 is just an arbitrary number. In section 6 we

provide empirical estimates for the fractional order of integration of the dividend-

price ratio. We will also generalise the stylised example (5) and (6) to a model with

multiple assets, multiple predictor variables and a time-varying benchmark return as

to move to a framework that is closer to the model of Campbell, Chan and Viceira

(2003). We allow different orders of integration for all the state variables and also

more general dynamics than a pure fractional differencing model.

3 Multivariate Model

Let yt = Rt − ιrtb,t be the vector of log returns on n different assets in excess of the

logarithmic return of a benchmark asset rtb,t where ι denotes an n vector of ones.

As in Campbell and Viceira (2005) we will use the real 3-Month T-Bill rate as the

benchmark return. The state vector xt contains m predictors. The first element of xt

will be the return on the benchmark asset. Equations (5) and (6) generalise to the

11 See Appendix A for more details.

8



system

yt = c + Bxt−1 + ut (11)

xt = µ +
∞∑

j=0

Θjεt−j, (12)

where the innovations ut and εt are now vectors of length n and m with (n + m)-

dimensional covariance matrix Σ partitioned as

Σ =

(
Σuu Σuε

Σ′
uε Σεε

)
(13)

The matrices B and Θj are of order (n×m) and (m×m), respectively, and Θ0 = I.

We consider two alternative models for the dynamic behaviour of the state vari-

ables. For the first model we assume that each of the predictor variables xit is frac-

tionally integrated of order di. We describe the dynamics of the state vector with

(I − AL)∆(L)xt = εt (14)

where the diagonal matrix ∆(L) controls the order of integration,

∆(L) =




(1− L)d1

. . .

(1− L)dm




In this model, each state variable may have a different order of fractional integration

di, and state variables do not fractionally cointegrate among themselves. After ap-

plying the fractional filter ∆(L), the remaining short-term dynamics is described by

a first-order VAR process with parameter matrix A. If dmax is the highest order of

fractional integration among the state variables predicting the jth element of yt, then

the jth element of yt will be I(dmax). Expected excess returns are as persistent as

those state variables that enter the prediction equation (11).

For the fractional model (14) the moving-average representation (12) follows as

Θ0 = Im,

Θj+1 = ΘjA + ∆j+1, j ≥ 0
(15)

where
∆0 = Im,

∆j+1 =




j+d1

j+1
. . .

j+dm

j+1


 ∆j, j ≥ 0

(16)
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Note that all ∆j terms for j > 0 vanish when all di’s are equal to zero.12 In case that

all di’s are equal to zero, the model reduces to a stationary first-order VAR. When

all di’s are equal to one, the matrices ∆j are all equal to the identity Im.

For the second model we assume that the state variables are generated by a

stationary VAR(2) process,

xt = a + A1xt−1 + A2xt−2 + εt (17)

We explicitly compare the fractional model with a second-order VAR. Within a first-

order VAR the parameters can only fit the long-run dynamics of the time series. A

second-order VAR provides flexibility to fit both short-term and long-run dynamics

as far as possible within an I(0) framework. The additional flexibility allows a better

comparison with the fractionally integrated process (14). In the fractional model

the state variables are transformed by the fractional filters (1− L)di , which take out

the long-run components of the data. The remaining short-term dynamics is then

captured by the first-order VAR on the filtered data. Due to the potentially different

orders of integration the impulse responses of the two models considered so far can be

very different. The I(0) assumption underlying (17) may be too restrictive as already

indicated in the univariate example.

In the joint models for both yt and xt lagged asset returns, yt−1, predict neither

level returns nor state variables. We impose the restriction in order to facilitate

the comparison of the fractionally integrated model with existing results. From the

empirical results in Campbell and Viceira (2005) and others, this restriction is not

important.

The multivariate counterpart of the term structure of risk defined in (3) is the

((n + 1)× (n + 1)) covariance matrix,

Σ
(k)
RR =

1

k
Var


 R

(k)
t+k − Et

[
R

(k)
t+k

]

r
(k)
tb,t+k − Et

[
r
(k)
tb,t+k

]

 (18)

of the innovations of the cumulative log real returns on the benchmark asset and

the n additional assets. The diagonal elements show the annualized variance of each

of the asset classes. Appendix A provides detailed calculations to express the term

structure as a function of the covariance parameters Σ, the prediction parameters B

and the moving average coefficients Θj for the state variables.

12 Strictly speaking, (1 − L)d is invertible only for d < 0.5. The actual construction of the term
structure of risk exploits only a finite number of the impulse responses Θj .
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The construction of the term structure of risk exploits only a finite number of

the cumulative impulse responses Ξk =
∑k

j=0 Θj. The asymptotic behavior of the

term structure of risk is similar to the univariate case. In case of a stationary VAR

process, the impulse responses Θj converge to zero at an exponential rate. In that

case both the cumulative impulse responses and the term structure of risk converge

to a constant matrix. On the contrary, if the ith element of the state vector, xit, is

fractionally integrated with 0 < di ≤ 1, the (i, i)th element of the impulse responses

Θj will be of order jdi−1, and the corresponding element of the partial sums Ξj will

be of order jdi . Suppose that dmax is the largest d and that all elements of B are

non-zero. Then the term structure of risk diverges when dmax > 0.

In a model with multiple assets, covariances are at least as important as the

variances. The term structure of risk shows the potential of intertemporal risk di-

versification. Diversification across assets depends on the full covariance matrix. For

this reason we present the global minimum variance portfolio of a long-term investor.

We consider an investor who chooses a portfolio αt of the risky assets and invests

the remainder fraction of wealth 1− ι′αt in bills. Campbell and Viceira (2002, 2005)

provide the following log-linear approximation to the portfolio return,

Rp,t+1 = rtb,t+1 + α′t
(
yt+1 + 1

2σ
2
u

)− 1
2α

′
tΣuuαt, (19)

where σ2
u is the vector with the diagonal elements of Σuu. We assume that the

investor plans to hold constant proportions of his wealth in each of the asset classes

for k periods. We aggregate one-period portfolio returns assuming that the investor

rebalances to the initial weights at the end of each period. Starting from the one-

period log return (19), aggregation to the k-period return with fixed, horizon specific,

portfolio weights α
(k)
t gives

R
(k)
p,t+k = r

(k)
tb,t+k + α

(k)′
t

(
y

(k)
t+k +

k

2
σ2

u

)
− k

2
α

(k)′
t Σuuα

(k)
t (20)

The variance of the k-period returns follows as

1

k
Vart

[
R

(k)
p,t+k

]
= σ(k)2

rr + 2α
(k)′
t σ(k)

yr + α
(k)′
t Σ(k)

yy α
(k)
t , (21)

which uses the notation σ
(k)2
rr = Vart[r

(k)
tb,t+k]/k (the lower right element in the term

structure covariance matrix (18)), Σ
(k)
yy = Var[y

(k)
t+k]/k and σ

(k)
yr = Cov[y

(k)
t+k, r

(k)
tb,t+k]/k.

Mimimising (21) with respect to α
(k)
t we obtain the minimum variance portfolio for

a horizon of k periods as

α
(k)
H = −(Σ(k)

yy )−1σ(k)
yr , (22)
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The global minimum variance portfolio depends on the horizon k, but not on the state

xt. It is directly related to the term structure of risk Σ
(k)
yy and the term structure of

covariances with the benchmark asset σ
(k)
yr .

For the asymptotic behavior of the portfolio weights as k →∞ the important part

is the risk due to cumulative expected excess returns. In Appendix A these terms are

calculated as

Σ(k)
yy = O (BΨ2(k)B′) (23)

σ(k)
yr = O (BΨ2(k)h) , (24)

with h a vector that selects the element rtb,t from xt and with

Ψ2(k) =
1

k

k−2∑

`=0

Ξ`ΣεεΞ
′
`,

a function of the cumulative impulse responses Ξ`. To study the long-horizon prop-

erties of the hedging demands α
(k)
H as k → ∞ first note that the (i, j)-th element

of Ψ2(k) is O(kdi+dj), with di the fractional order of integration of xi,t. Let dmax be

the maximal order of integration among the m state variables and dr the order of

integration of the real T-Bill rate. Since rtb is one of the state variables, dr ≤ dmax.

The limiting behavior of α
(k)
H follows from the properties of Ψ2(k) and equations (23)

and (24) as,

Σ(k)
yy ∼ O(k2dmax)

σ(k)
yr ∼ O(kdr+dmax)

α
(k)
H ∼ O(kdr−dmax)

(25)

In general, when the real T-Bill does not have the highest order of integration, i.e.

dr < dmax, the hedging demand for stocks and bonds will go to zero for very long

horizons. The minimum variance portfolio at very long horizons will then consist

fully of bills. This contrasts to the usual result in Campbell and Viceira (2002) and

Brennan and Xia (2002), where it is concluded that long-term bonds are the best

asset class for long-term investors. Only in the special case that the real T-Bill rate

has an equally high order of integration as the other assets, dr = dmax, all three assets

can be important in the infinite-horizon minimum variance portfolio.

So far we assumed that all state variables have predictive power for all excess

returns. In some of our empirical models we will have exclusion restrictions on B. The

dividend-price ratio, for example, only predicts stock returns but not bond returns.

When B is subject to exclusion restrictions, the elements in Σ
(k)
yy and σ

(k)
yr can be of

12



different orders. Let ds and db be the orders of integration of expected excess stock

returns and expected excess bond returns, respectively. Depending on B and dmax,

the orders db and ds may be larger or smaller than dr. An interesting case is a model

in which the variables that predict excess returns on stocks are more persistent than

the ones that predict excess bond returns and where the latter are even less persistent

than the real T-Bill, leading to the inequality db < dr < ds. The configuration affects

the limiting behavior of α
(k)
H , since now

Σ(k)
yy ∼

(
O(k2ds) O(kds+db)

O(kds+db) O(k2db)

)

σ(k)
yr ∼

(
O(kds+dr)

O(kdr+db)

) (26)

and consequently

α
(k)
H ∼

(
O(kdr−ds)

O(kdr−db)

)
(27)

Stocks remain unattractive and will have negligible weight at long horizons, but the

weight of bonds will increase at rate kdr−db . It depends on the sign of the long-

run correlation between bonds and T-Bills whether the weight will be positive or

negative. The asymptotic properties may not be visible at economically relevant

horizons though, since the divergence will be very slow if the differences between the

orders of integration are small. For example, if the difference ds − dr = 0.1, it takes

more than 14,000 periods to change the portfolio weight by a factor of 2.6.

4 Estimation

Estimation proceeds in two stages. First, we estimate the fractional orders of inte-

gration di of each of the components xit of the predictor variables separately using

semiparametric techniques. Using the estimated di we construct the fractional differ-

ences

wt = ∆(L)xt (28)

and estimate the parameters of the first-order VAR model

(I − AL)wt = εt (29)

in a second stage.
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Various semiparametric estimators for the long memory parameter d have been

suggested: among them, the seminal log periodogram estimator of Geweke and Porter-

Hudak (1983), the Gaussian semiparametric estimator (GSP) introduced in Künsch

(1987) and intensively studied in Robinson and Henry (1999), and the exact Whittle

likelihood estimator (EW) proposed by Shimotsu and Phillips (2005). These esti-

mators are derived in the frequency domain and are based on the behavior of the

spectral density function at frequencies close to the origin. These estimators mini-

mize some distance between the periodogram and the spectral density function, or

approximations thereof, at low frequencies represented by the first J Fourier frequen-

cies λj = 2πj/T , j = 1, 2, . . . , J .

There is only limited guidance from asymptotic theory as to which estimator to ap-

ply since the data in the current analysis may not conform to the required conditions.

Violations could be caused by conditional heteroskedasticity or by extra additive

noise. For example, only the GSP estimator was shown to have an asymptotic distri-

bution that is robust to conditional heteroskedasticity (Robinson and Henry (1999)).

On the other hand, the EW estimator avoids a well-known theoretical drawback of

the GSP estimator given by the dependence of the asymptotic distribution on the un-

derlying degree of long memory.13 Neither the GSP, nor the EW estimator, is robust

against an additive perturbation of a long memory process by white noise. Sun and

Phillips (2004) show that this problem is relevant for the time series of real interest

rates.

Due to the limitations of asymptotic theory we conducted a small Monte Carlo

study on the performance of the estimators mentioned.14 We considered data gener-

ating mechanisms that exhibit exclusively short memory or exclusively long memory

or both. All those processes were generated with homoskedastic and GARCH(1,1)

errors and additionally polluted by additive noise. We applied the GSP estimator to

levels as well as first differences and the EW estimator. The GSP estimator based on

first differences exhibits a large positive bias if applied to stationary AR(1) processes

with nonnegative autoregression parameter. For the processes we considered there is

no noticeable difference in performance between the GSP estimator for level data and

the EW estimator.

We therefore proceed as follows. We always use the GSP estimator. If the un-

13 The asymptotic theory for the EW estimator requires the mean of the series to be known.
Shimotsu (2004) provides a modification of the EW estimator that works with unknown mean.

14 The tables of the Monte Carlo are not reported here, but are available at the website of the
second author.
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derlying data generating mechanism is expected to be nonstationary, we apply the

GSP estimator to first differences. If the underlying data generating mechanism may

be stationary, we compare the estimates for levels and first differences and use the

former if the latter is smaller. In this way we avoid being hit by the positive bias of

the GSP estimator based on differences in case of stationary AR processes.

The choice of J , also called bandwidth selection, is important. If the number of

Fourier frequencies J is chosen too large and the underlying data generating mech-

anism exhibits short memory, e.g. stationary AR-components, then semiparametric

long memory estimators are known to be biased. On the other hand, if J is cho-

sen too small, the estimation variance is larger than necessary. In order to obtain

asymptotically valid inference, J has to grow with sample size at an appropriate rate.

Henry and Robinson (1996) derive automatic bandwidth selectors for estimating ho-

moskedastic ARFIMA processes by means of the GSP estimator. In our Monte Carlo

study we found that the simple rule of selecting J = T 0.5 performs better than various

automatic bandwidth selectors since the latter selected too many frequencies even in

the presence of short memory. In the empirical analysis we report three values for J ,

each being the smallest integer larger than Tα, α = 0.45, 0.50, 0.55.

Conditional on the semiparametric estimates of di we use the filter ∆(L) in (28) to

construct wt. Since the fractional filter has an infinite AR representation, in practice

it has to be truncated. In order to reduce the error due to truncation, we extend the

vector of state variables xt by about two years of presample observations and use the

estimated fractional differences

ŵt =
t+7∑
j=0

∆jxt−j

The first-order VAR model (14) for the fractional differences is then estimated by

OLS. The stationary VAR(2) model (17) for the levels xt is estimated by OLS as

well.

For the unrestricted estimation of B in the prediction equations (11) we also use

OLS. The limiting analysis of the portfolio weights (see (??) and (27)) has shown that

the implications can differ substantially depending on which predictors are included in

the equation for excess returns. As there is also considerable uncertainty about which

variables have predictive power for stocks returns, and since regression analysis might

overstate the evidence for predictability, we investigate the impact of model selection.

Given the sample size, imposing zero restrictions on B can enhance efficiency. For

this we use the method of Sequential Elimination of Regressors (SER) suggested by
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Brüggemann and Lütkepohl (2001).15 In each step of this iterative procedure the

parameter with the smallest t-value in absolute value is eliminated if it is smaller

than a threshold. This threshold is chosen such that this procedure is equivalent to

parameter selection using the Schwarz model selection criterion, see Brüggemann and

Lütkepohl (2001) for details. If restrictions are imposed on the prediction equations

or the VAR system, FIML is used.16

Note that the OLS estimates and t-statistics have in general non-standard distri-

butions that depend on the degrees of long memory of the regressors and the error,

respectively. Although we will report t-statistics in the empirical tables, these have

to be interpreted with care.17

5 Data

In the empirical application we consider the real excess returns on stocks (ys) and

bonds (yb) over the real 3-month T-Bill rate (rtb). Other predictive variables are the

log nominal T-Bill rate (rnom), the log dividend-price ratio (dp), the credit spread (cr),

and the yield spread (spr). We examine quarterly US data for the period 1952:Q1 –

2004:Q2. Details on data sources and data construction are in Appendix B.

The return forecasting variables have been widely used in the empirical litera-

ture.18 The dividend-price ratio is an indicator of fundamental value (similar vari-

ables are price-earnings, dividend yield or consumption-wealth ratio). The credit

spread is a business cycle indicator. Both are often used as predictors of excess stock

returns. At least since Fama (1984) the yield spread is the traditional predictor of

excess bond returns. Both the nominal interest rate as well as inflation are factors in

term structure models, and thus serve as predictors of both real and nominal interest

rates.

Table 1 shows summary statistics. Except for the log dividend-price ratio, the

sample statistics are quarterly percentages. The important stylised facts are the high

historical equity premium and the low bond premium. In terms of Sharpe ratios

15 These calculations were conducted in JMulti, version 4.2. All other results were calculated in
Ox, version 4.1 using the PcFiml package, version 1.01, and the Arfima package, version 1.04.

16 Note that the prediction equations (11) represent fractional cointegration relations. To our
knowledge there are no results in the literature on how the potential correlation between the noises
of state variables and excess return variables biases OLS or FIML estimates in the presence of
fractional cointegration.

17 See Section 6 in Robinson and Marinucci (2001) for more details.
18 See Avramov (2002), Cremers (2002) and Goyal and Welch (2007) for extensive references of

variables commonly used for predicting stock returns.
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stocks are much more attractive than bonds, and hence will dominate the speculative

part of a mean-variance portfolio.

Figure 2 shows the autocorrelation functions of the five predictor series. The

patterns for the nominal interest rate and the dividend-price ratio are typical for a

long-memory process. Autocorrelations are large and decline very slowly. The real

interest rate series looks somewhat less persistent: the autocorrelations decline faster

and become even negative. The credit spread looks similar to the nominal interest

rate, except that the first-order autocorrelation is much lower. The yield spread shows

the least signs of persistence; its autocorrelations quickly decline as one would expect

for a process with small d.

6 Parameter Estimates

The estimation results concern three different aspects of the model: estimates of the

fractional integration parameter d of the predictor variables; the short-term dynamics

of the predictor variables; and the prediction equations for excess returns on stocks

and bonds.

6.1 Long Memory

Table 2 reports Gaussian semiparametric estimates of d for each state variable with

11, 15, and 20 Fourier frequencies, respectively. The time series of log real returns

and nominal returns of T-Bills and the log dividend-price ratio were differenced once

prior to estimation since these series are widely believed to be nonstationary. Since

interest rate spreads are expected to be stationary the log credit and log yield spread

are estimated in levels. For both the nominal and real T-Bill rate and the dividend-

price ratio series the estimates of d indicate nonstationarity even though for each

series the estimates vary with the choice of J . Comparing the three columns one can

clearly see the influence of the number of Fourier frequencies. In the sequel we will

select the estimates for J = 15. The term structure and portfolio implications remain

qualitatively unchanged, however, if we would select the estimates corresponding to

J = 20 Fourier frequencies.

For both the nominal and the real T-Bill rates we find d = 0.8. These estimates

are in line with results in the literature. Sun and Phillips (2004) apply their newly

developed bivariate semiparametric estimator to real interest rates and inflation and

conclude that the nominal as well as the real interest rate have about the same order

17



of integration which lies between 0.75 and 1. Earlier estimates, e.g. in Shea (1991)

and Crato and Rothman (1994), are also often around this value.

The highest value of d is obtained for the dividend-price ratio. The point estimates

of d are around 0.9 and not significantly different from d = 1. If we use very few

frequencies, they are sometimes even above one. Estimates for the credit spread are

found to be around 0.5 and thus at the borderline of stationarity. For the yield spread

all estimates are within the stationarity region. Except for the dividend-price ratio

the benchmark estimates are significantly different from both zero and one.

6.2 Predictability

Table 3 reports regression estimates for the prediction equations (11) for excess returns

on stocks and bonds. Results for this part of the model are very similar to the general

findings in the literature.19 When all five predictor variables are included in the

regression for future equity returns, the dividend-price ratio, the credit spread and

the short-term nominal interest rate exhibit a t-statistic above two in absolute value.

These three factors are also selected by the Schwarz criterion for model selection.

Selecting only variables with t-statistics larger than three in absolute value, the two

most important variables are the dividend-price ratio and the nominal interest rate.

Both have been shown to be needed together in Ang and Bekaert (2007) and Torous,

Valkanov and Yan (2004).

For comparison, because it is such a widely used specification, we also report

the univariate model with the dividend-price ratio as the single predictor. It fits

much worse than the model with the nominal rate and credit spread. Both the R2

of the equation and the t-statistic of the parameters are much lower than in the

multivariate prediction model. Interestingly, and important later on, the coefficient

of the dividend-price ratio is only half the magnitude of the dp coefficient in models

where the nominal interest rate is included as well.20 A similarly much poorer fit

is obtained when only the nominal interest rate is included. Again we see that the

parameter estimate in the univariate prediction model is much smaller than it is in

the multivariate regression.

The predictable component of bond returns is related to the term spread. This

is the only predictor in the multivariate regression with a t-statistic above two. The

19 See for example Campbell and Viceira (2005) and Campbell, Chan an Viceira (2003).
20 See also tables 2 and 3 in Ang and Bekaert (2007). For their quarterly post-1952 samples for

four different countries they report that the dividend-price parameter increases when the nominal
rate is added to the predictive regression.
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coefficient on the yield spread implies that high values of the spread predict a down-

ward move in the long-term bond yield, which is the typical result in empirical term

structure models. The yield spread is also the only selected by the SER procedure

based on the Schwarz criterion.

The Schwarz based specification is our benchmark model for the term structure

of risk. The real T-Bill return does not appear in both prediction equations. It is

still an important state variable, however, since it is the return on one of the asset

classes that is available to the investor.

6.3 Short-term dynamics

Using the estimates d̂i for each of the state variables we have constructed the frac-

tionally filtered data
∑t+7

j=0 ∆̂jxt−j. The filter removes most of the autocorrelations

from the time series of rtb, rnom and dp. Table 4 contains the results for the first-order

VAR for the filtered data. The upper panel provides an estimate of the unrestricted

parameter matrix A. After filtering out the persistence with a high value of d, the

diagonal elements for rtb, rnom and dp in A are all small. For the yield spread the

diagonal element is much larger, but still far from unity. Interest rate dynamics are

complicated, since all five state variables exhibit large t-statistics in the equation for

the real T-Bill rate.21 The credit spread looks significant in four of the five equations,

the exception being the dividend-price ratio equation. The dividend-price ratio is

almost a pure univariate process without any interaction with the other predictor

variables. The estimated process for dp is thus very close to the stylised model used

in the motivating example in section 2.

The lower panel presents a more parsimonious model based on model selection

using the Schwarz criterion. This is the benchmark model for the implications.

Table 5 reports the residual covariance structure for the benchmark model of excess

returns and state variables. In the residual covariance matrix the most important

number is the large negative correlation of −0.96 between news in the dividend-

price ratio and unexpected stock returns. This is the main driver of mean reversion

patterns in the term structure of equity risk. In contrast, whereas the nominal short-

term interest rate is an important predictor of stock returns, the innovations to the

interest rate have a very low correlation with unexpected returns. This means that

the nominal interest rate does not create a mean reversion effect in equity returns.

21 Due to the two-step estimation procedure the estimates of A may in general not show standard√
T -asymptotics. Therefore, the t-statistics in Table 4 have to interpreted with care.
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We only report the covariance matrix for the benchmark model. The covari-

ance estimates are only minimally different for models with different specifications

for either the prediction equations for excess returns (different B’s) or models with

different state variable dynamics (different A or stationary VAR). The main features

are always the same.22 We do not report and discuss parameter estimates for the

stationary VAR(2) model. The estimation results are very similar to results reported

in other studies. We will only discuss the implications of the VAR(2) in comparison

to the fractional model.

7 Implications

We start our discussion of the implications for the term structure of risk with the

multivariate model resulting from the model selection. In table 3 this corresponds

to the results labeled Schwarz for the prediction equations for stocks and bonds.

We combine these prediction equations with two different assumptions about the

dynamics of the state variables. The first model is the fractionally integrated system;

the other the unrestricted second-order stationary VAR. Figure 3 shows the term

structure of risk for the three asset classes under the alternative assumptions.

Most striking are the results for stocks. For horizons up to two years, the fractional

model and the stationary VAR are almost identical and both imply mean reversion.

After the two year horizon the term structure for the stationary VAR continues its

downward slope towards a long-run annual risk of 8% at a 15 year horizon similar to

the results in Campbell and Viceira (2005). The fractional model, however, has very

different implications beyond the minimum at the two-year horizon. The term struc-

ture rises steeply towards levels far above the initial volatility level. Since the only

difference between the fractional model and the stationary VAR is in the dynamics

of the state variables, the steep upward slope is evidently related to the long-memory

properties of the model. The results are robust to minor changes in the dynamics

of the state variables. The same patterns arises if we use the fully unrestricted A

matrix instead of the restricted A from the model selection. It also does not matter if

we use the estimates of d with m = 20 periodogram frequencies (see third column of

table 2). The results are also not due to the higher value of d for the dividend-price

ratio relative to the two interest rates. We considered a model in which we lowered

the long-memory parameter for the dividend-price ratio to 0.8, the same as the two

22 When we report results for the term structure or portfolios for a particular model, we always
use the complete set of estimates for that model.
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interest rates, and obtained essentially the same figures.

For the other two asset classes we don’t see a similar steep increase. In the

fractional model the risk of bills continuously increases relative to long-term bonds.

The real returns of bonds become equally risky as the long-run returns on rolling over

short-term bills. For bonds the term structures implied by the stationary VAR and

the fractional model remain very similar up to the six year horizon.

As the results show such a much more extreme term structure for stock returns

than the univariate example in section 2 (see figure 1), we investigated in more detail

what causes the steep term structure and the exceptionally large long-run risk of

equity. Contrary to the robustness with respect to changes in A and d, the implied

term structures appear very sensitive to the specification of the prediction equation.

Most important is the interaction between the dividend-price ratio and the nominal

interest rate. First consider a model with only the dividend-price ratio (see the

column labeled DivP in table 3). This is the multivariate model that is most closely

related to the univariate model in section 2. Parameters A and d are the same as in

the benchmark model.23 The top panel of figure 4 shows the term structure for this

model. The steep increase for equity risk has disappeared. Mean reversion is now

equally strong in the fractional model as in a stationary VAR. This is due to two

effects. First, the coefficient of the dividend-price ratio in the prediction equation

(bs,dp) is much smaller in this model. As a result there is considerably less volatility

due to time-varying expected returns at the cost of somewhat less mean reversion.

Second, the nominal interest rate and the credit spread are no longer included. Since

the shocks to these two predictors are only weakly correlated with unexpected stock

returns, they did not contribute to any form of mean reversion effect in the benchmark

model. So setting their prediction coefficients in B equal to zero reduces the volatility

of expected returns. Of the two excluded predictors the nominal interest rate has the

higher d and the larger volatility. Therefore the short-term interest rate is the main

driver of the incredibly steep term structure of equity in figure 3.

Thus, the steeply increasing term structure at horizons beyond two years is not

due to the dividend-price ratio, even though it is the time series with the highest

point estimate of d. Theoretically the term structure will still be increasing in the

long run, but this is only visible when we would plot the term structure of risk over

an horizon of 40 years or more.

The steep increase also disappears if the dividend-price ratio is replaced by the

23 The residual covariance matrix Σ has been re-estimated, since residuals of the prediction equa-
tion for equity returns are slightly different due to the further restrictions on B.
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nominal interest rate as the only prediction variable in the stock prediction equation

(column RNom in table 3). Leaving the rest of the model as in the benchmark model

(except again a minor change due to re-estimating Σ), the lower panel of figure 4

shows a term structure for stocks that is much flatter and without any form of mean

reversion. The explanation is that without the dividend-price ratio the predictive

power of the model has almost disappeared. Even the coefficient on rnom in B is

much lower than in the benchmark model. To obtain interesting patterns in the term

structure, predictability is required. When B is close to zero, however, as in this

model, the term structure for stocks will obtain the same rate of increase as the real

T-Bill, since the real stock return is the excess return plus the real T-Bill return,

which is still persistent.

We conclude that the results in the benchmark model are caused by the interaction

between the dividend-price ratio and the nominal T-Bill rate. When each of them

is included on its own, the term structure is either mean-reverting or relatively flat.

When both are included the term structure is initially mean-reverting, but rapidly

rises beyond the two-year horizon. Our results are thus complementary to Ang and

Bekaert (2007). They conclude, after careful econometric testing, that dividend yield

and the nominal interest rate jointly produce significant predictability over short hori-

zons. Our results show that models in which both possibly non-stationary predictors

are considered jointly lead to very different implications about the long-term risk of

equity.

Equally important for portfolio implications are the correlations. For the bench-

mark model figure 5 shows all pairwise correlations between the real returns at differ-

ent horizons. The most striking difference between the implications of the fractional

and stationary models is in the correlations between real returns on long-term bonds

and on 3-month T-Bills. Starting above 0.3, the correlation structure resulting from

the fractional model drops to as low as zero within the first year but subsequently

grows to more than 0.7 at the 15-year horizon and will eventually converge to one.

This implies limited diversification possibilities between bonds and bills. The expla-

nation for the large long-run correlation comes from the structure of the prediction

equation for excess bond returns. The only important predictor is the yield spread.

Since the yield spread has a low d, the long-term fluctuations of real bond returns,

i.e. excess returns plus the real T-Bill, are dominated by the real T-Bill rate. The

real T-Bill rate is thus a common factor in both. This level factor determines the

term structure of interest rates for long-horizon decisions. The pattern generated by
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the stationary VAR estimates is completely opposite, however, falling from the same

0.3 to -0.5 at long horizons. In the stationary VAR the yield spread remains much

more important for long-run movements in the term structure. A stationary VAR

allows more diversification benefits than the long-memory model.

The correlation between real returns on stocks and on 3-month T-Bills is affected

by long memory as well. Differences are less important here, as at least the different

models agree on the sign and the order of magnitude.

Having discussed the covariance properties of the asset returns the implications

for the minimum variance portfolio are straightforward. Figure 6 shows the weights

of stocks, bonds and bills as a function of the investment horizon. Stocks have a small

weight at all horizons. Despite their mean reversion at shorter horizons, they have

by far the largest volatility. The main difference between the long-memory model

and the stationary VAR(2) is in the weights for bonds and bills. In both models the

long-term volatility of bonds is larger than that of bills with the difference getting

smaller at longer horizons. In the long-memory model bonds and bills are strongly

positively correlated and for this reason bills dominate bonds at long horizons. In the

stationary model the long-term correlation between bonds and bill is negative, and

therefore the weight of bonds increases with the horizon.

In the figure we have plotted the portfolio weights up to a horizon of fifteen years.

From the theoretical results in (27) we know the limiting behavior as k →∞. In the

benchmark model B is restricted such that db < dr < ds and thus the weight of stocks

will go to zero, while the weight of bonds will increase without bound. Due to the

positive correlation between bonds and bills, and the higher volatility of bonds, the

weight of bonds will become more and more negative the longer the horizon, while the

weight of bills will be more than 100%. Imposing short-sell constraints the minimum

variance portfolio will be 100% in bills as it already is at the fifteen year horizon.

This is opposite from the results in Campbell and Viceira (2002) who show that long-

term bonds are the preferred asset class for long-horizon risk-averse investors. That

conclusion thus depends on the time series properties of interest rates.

For both sets of minimum variance portfolios, implied by either the fractional

or the VAR(2) model, we compute the volatility (21) under both assumptions on

the dynamics of the state variables. This leads to four different estimates of the

risk (two portfolios each under two dynamic models). Figure 7 shows the results.

The risks displayed by solid lines are computed under the fractional dynamics of the

state variables whereas dotted lines represent the risks under stationary dynamics.
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The figure highlights that the difference between the two models is due to the risk

implied by the state variable dynamics and thus the risk model. For the overall risk

assessment of a position the choice of the risk model is much more important than the

actual composition of the minimum variance portfolio. Since both portfolios agree

that stocks are a minor proportion of the minimum variance portfolio, the strong

rise of equity risk, which was so dominant in figure 3, does not show up in figure 7.

Since the portfolio weight of bills is above 80% in any portfolio setup, the risk of the

minimum variance portfolio by and large mimics the term structure of risk for real

returns on T-Bills in figure 3.

8 Conclusion

Expected returns on stocks and bonds depend on predictor variables that exhibit long

memory. For commonly used predictors as the dividend-price ratio and nominal as

well as real interest rates our estimates of the order of integration of these predictors

are around d = 0.8. This fractional integration has a number of implications for

long-term portfolio management. First, with persistent predictors the volatility of

expected returns becomes an important source of risk relative to models where ex-

pected returns are constant or subject to stationary fluctuations. This source of risk

becomes relatively more important the longer the investment horizon. As a result

the estimated total risk of all asset classes is much higher at long horizons in a model

with fractionally integrated predictors.

Second, the persistence in interest rates leads to a strong positive correlation of the

cumulative returns of long-term bonds and short-term bills. This strong correlation

for long horizons is independent of predictability of excess returns as long as the

real return of T-Bills exhibits long memory. Long-term bonds and short-term bills

become close substitutes in the minimum variance portfolio of a long-term investor.

With stationary time series for interest rates a risk-averse long-term investor will

invest a large fraction of his wealth in long-term bonds. In the model with fractional

integration, the minimum variance portfolio is close to 100% in bills.

Third, introducing persistence can lead to even stronger mean reversion in eq-

uity returns at short to medium horizons. Mean reversion is related to the negative

covariance between the unexpected returns and future expected returns. The more

persistent the predictor variable, the stronger the effect of a shock on future expected

returns.
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Fourth, in particular we find that the combination of the dividend-price ratio and

the nominal short-term interest rate leads to much higher risk estimates for stocks

compared to a stationary VAR. In models without the nominal rate we observe the

usual mean reversion with a downward sloping term structure of risk.

Our results show that the term structure of risk also depends very heavily on the

estimates for the prediction model of the excess returns of stocks and bonds. While

OLS estimation of the prediction equations for stock and bond returns is simple, it can

possibly be improved upon in terms of efficiency by alternative estimators, including

system estimators such as Kim and Phillips (2001) or Chen and Hurvich (2003).

Furthermore, selecting reliably relevant regressors remains an open and important

issue since estimators and the corresponding t-statistics do in general have no standard

asymptotics when some regressors are nonstationary and fractionally cointegrated.

The resulting parameter uncertainty is not taken into account by the term structures

and global minimum variance portfolios. In principle a full Bayesian approach could

do this.

Appendix A Term Structure of Risk

Below we derive the term structure of risk as the covariance matrix of the innovations

of the cumulative log real returns. The covariance is constructed from the covariance

matrix of cumulative excess returns, the variance of the cumulative real T-Bill rate

and the covariances between excess returns and the real T-Bill rate. Starting point is

the joint dynamic process for excess returns and state variables defined in (11) and

(12). We repeat those below omitting the constant terms

yt = Bxt−1 + ut (A1)

xt =
∞∑

j=0

Θjεt−j (A2)

Substituting (A2) into the prediction equation (A1) we obtain the implied process

for excess returns as

yt = B

∞∑
j=0

Θjεt−j−1 + ut (A3)

Define

zt =

(
yt

xt

)
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and combine (A2) and (A3) to obtain the joint process

zt =
∞∑

j=0

Cjνt−j (A4)

where the innovations

νt =

(
ut

εt

)

have ((n + m)× (n + m)) covariance matrix (13)

Σ =

(
Σuu Σuε

Σ′
uε Σεε

)
,

and the coefficient matrices Cj are given by

C0 = In+m,

Cj =

(
0n×n BΘj−1

0m×n Θj

)
for j > 0

(A5)

For future reference we also define the cumulative impulse responses

Dj =

j∑
i=0

Ci

Ξj =

j∑
i=0

Θi

We are interested in the covariance properties of the cumulative process

Z
(k)
t+k =

k∑

`=1

zt+` (A6)

for various fixed values of k. The `-period ahead forecast of zt is given by

Et[zt+`] =
∞∑

i=`

Ciνt+`−i =
∞∑
i=0

Ci+`νt−i (A7)

implying that the `-period innovation can be written as

zt+` − Et[zt+`] =
`−1∑
i=0

Ciνt+`−i =
∑̀
i=1

C`−iνt+i (A8)
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Consequently, we obtain the innovation in the k-period cumulative process as

Z
(k)
t+k − Et

[
Z

(k)
t+k

]
=

k∑

`=1

(zt+` − Et[zt+`])

=
k∑

`=1

∑̀
i=1

C`−iνt+i

=
k∑

`=1

(
k−∑̀
i=0

Ci

)
νt+`

=
k∑

`=1

Dk−`νt+` (A9)

From (A9) we finally obtain the scaled k-period covariance matrix

V (k) =
1

k

k∑

`=1

Dk−`ΣD′
k−`

=
1

k

k−1∑

`=0

D`ΣD′
` (A10)

The (n × n) top-left block of V (k) contains the term structure of risk Σ
(k)
yy of excess

returns, while the first element of the lower right block contains the variance σ
(k)2
r of

the real T-Bill rate. The (n ×m) top-right block contains the covariances σ
(k)
yr with

the real T-Bill. We can write these matrices explicitly by using the partitioning of

the Ci matrices in (A5) and Σ in (13). Since D0 = C0 = Im+n and also Ξ0 = Im, we

have

D0ΣD′
0 =

(
Σuu ΣuεΞ

′
0

Ξ0Σ
′
uε Ξ0ΣεεΞ

′
0

)
(A11)

For j > 0 we find

Dj = C0 +

j∑
i=1

Cj =

(
In BΞj−1

0m×n Ξj

)
(A12)

and thus

DjΣD′
j =

(
In BΞj−1

0m×n Ξj

)(
Σuu Σuε

Σ′
uε Σεε

)(
In 0n×m

Ξ′j−1B
′ Ξ′j

)

=

(
Σuu + BΞj−1Σ

′
uε + ΣuεΞ

′
j−1B

′ + BΞj−1ΣεεΞ
′
j−1B

′ ΣuεΞ
′
j + BΞj−1ΣεεΞ

′
j

ΞjΣ
′
uε + ΞjΣεεΞ

′
j−1B

′ ΞjΣεεΞ
′
j

)

(A13)
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Summing the terms DjΣD′
j and scaling by k we finally obtain

Σ(k)
yy = Σuu + ΣuεΨ1(k)′B′ + BΨ1(k)Σ′

uε + BΨ2(k)B′

σ(k)
yr = ΣuεΨ3(k)′h + BΨ4(k)′h (A14)

σ(k)2
rr =

k + 1

k
h′Ψ2(k + 1)h

where Ψi(1) = 0 (i = 1, . . . , 4) and for k > 1

Ψ1(k) =
1

k

k−2∑

`=0

Ξ`

Ψ2(k) =
1

k

k−2∑

`=0

Ξ`ΣεεΞ
′
`

Ψ3(k) = Ψ1(k) +
1

k
Ξk−1

Ψ4(k) = Ψ2(k) +
1

k

k−2∑

`=0

Θ`+1ΣεεΞ
′
`,

The elements in Σ
(k)
yy contain the term structure of excess returns relative to the

benchmark real T-Bill rate. To obtain the term structure of real returns we add the

real T-Bill back and use

Σ
(k)
RR = σ(k)2

rr

(
ιι′ ι

ι′ 1

)
+

(
Σ

(k)
yy + σ

(k)
yr ι′ + ισ

(k)′
yr σ

(k)
yr

σ
(k)′
yr 0

)
(A15)

The diagonal elements of σ
(k)
RR are shown in the term structure graphs.

For the univariate analysis with a constant benchmark return rt = rf in section 2,

σ
(k)2
rr and σ

(k)
yr are obviously zero, and the expressions for Ψ1(k) and Ψ2(k) simplify to

ψ1(k) =
1

k

k−2∑

`=0

ξ` k ≥ 2 (A16)

ψ2(k) =
1

k

k−2∑

`=0

ξ2
` (A17)

ξ` =
∑̀
i=0

θi (A18)

with ψ1(1) = ψ2(1) = 0. For ease of interpretation the definition of the univariate

ψ2(k) differs slightly from its multivariate counterpart Ψ2(k) by not including σ2
ε .

To study the order of convergence of ψ1(k) and ψ2(k) we use the fact that if

fk =
k∑

j=1

ja
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and

gk =
fk

ka+1

then for a > −1,

gk =
k∑

j=1

(
j

k

)a
1

k
→

∫ 1

0

xadx =
1

a + 1
(A19)

Therefore, fk ∼ O(ka+1) if a > −1.

Applying the result to the orders of the impulse responses starting from θj ∼
O(jd−1), we have

ξk ∼ O(kd),

ψ1(k) ∼ O(kd),

ψ2(k) ∼ O(k2d),

k∑
j=1

θ2
j ∼ O(k2d−1),

(A20)

Cumulative impulse responses and the term structure sequences ψ1(k) and ψ2(k) do

not converge for any d > 0. On the other hand, the sum of squared impulse responses

converges to a constant for d ≤ 1
2 . We thus have that for 0 < d < 1

2 the unconditional

variance of a series exists, but the term structure of risk diverges.

Appendix B Data sources and timing

Raw data are obtained from different sources:

Nominal return of 3-month T-Bills is from the FRED database of the St. Louis

Fed (http://research.stlouisfed.org/fred2/), series DTB3. The quar-

terly data are extracted from the daily data as the interest rate at the last

trading day of the quarter. The interest rate for period t + 1 is known at the

end of period t and denoted as shortint t.

10-year constant maturity yield is also from FRED, series DGS10, last day of

the quarter, denoted as longint t.

Corporate Bond Yield is from FRED, series BAA, extracted from the monthly

data as the last month of the quarter, denoted as corp baat.

Consumer Price Index is taken from FRED, series CPIAUCNS, not seasonally

adjusted. Quarterly data are obtained from the monthly series and denoted as

cpi t.
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Stock price index is the S&P 500, obtained from Yahoo!Finance. Data are the

closing prices at the end of each quarter, denoted as sp500 t.

Dividends are from the monthly ”Irrational Exuberance” data of Robert Shiller

(www.econ.yale.edu/∼shiller/). They have been converted to quarterly div-

idends on the S&P 500 as the dividend payed until the end of period t, denoted

dividend t.

To obtain the data for the model estimation we have performed the following trans-

formations.

Nominal T-Bill is defined as

rnom,t = 100× ln(1 + shortintt/400), (B1)

and is denoted in percent per quarter.

Excess bond returns are constructed from the long-term interest rate. We use the

log-linear approximation described in Campbell, Lo, and MacKinlay (1997, ch

10) and construct the 10-year excess bond return series as

yb,t+1 = 1
4 Yt+1 −Dt(Yt+1 − Yt)− rnom,t (B2)

where the log bond yield is defined as

Yt = 100× ln(1 + longint t/100),

and the approximate bond duration is given by

Dt =
1− (1 + longint t/100)−10

1− (1 + longint/100t)
−1

We approximate the yield on a 9 year and 3 quarters bond with the yield on a

10-year bond.

Excess stock returns use the S&P 500 prices and dividends as

ys,t+1 = ln

(
sp500 t+1 + dividend t+1

sp500 t

)
− rnom,t (B3)

Real T-Bill rate is the nominal rate minus a quarter of the annual inflation,

rtb,t = rnom,t−1 − 1
4

(
ln cpi t − ln cpi t−4)

)
(B4)

This is the ex-post real return computed at the end of period t using the nominal

return that is already known at the end of the previous period.
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Dividend-price ratio is defined in logarithmic form as the annual dividend divided

by the latest price as

dpt = ln

(
dividend t + dividend t−1 + dividend t−2 + dividend t−3

sp500 t

)
(B5)

Credit spread is the difference in yield between corporate bonds and 10-year gov-

ernment bonds

crt = 1
4 ln

(
1 + longintt/100

1 + corp baat/100

)
(B6)

Yield spread is the difference between the yield on 10-year government bonds and

the 3-month nominal T-Bill rate

sprt = 1
4 ln

(
1 + longint t/100

1 + shortint t/100

)
(B7)
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Künsch, H. (1987), Statistical Aspects of Self-Similar Processes, in Y. V. Prohorov and
V. V. Sazonov, (eds.), Proceedings of the First World Congress of the Bernoulli Society,
VNU Science Press, 67–74.

Lewellen, J. (2004), Predicting Returns with Financial Ratios, Journal of Financial
Economics, 74, 209–235.

Poterba, J.M. and L.H. Summers (1988), Mean Reversion in Stock Prices, Journal of
Financial Economics, 22, 27–59.

Robinson, P.M. (2003), Time Series with Long Memory, Oxford University Press.
Robinson, P.M. and d. Marinucci (2001), Narrow-Band Analysis of Nonstationary

Processes, Annals of Statistics, 29, 942–986.
Robinson, P.M. and M. Henry (1999), Long and Short Memory Conditional Het-

eroskedasticity in Estimating the Memory Parameter of Levels, Econometric Theory,
15, 299–336.

Shea, G.S. (1991), Uncertainty and Implied Variance Bounds in Long-Memory Models of
the Interest Rate Term Structure, Empirical Economics, 16, 287–312.

Shimotsu, K. (2004), Exact Local Whittle Estimation of Fractional Integration with Un-
known Mean and Time Trend, Working paper, Queens University, Kingston.

Shimotsu, K. and P.C.B. Phillips (2005), Exact Local Whittle Estimation of Fractional
Integration, American Statistician, 33, 1890–1933.

Stambaugh, R.F. (1999), Predictive Regressions, Journal of Financial Economics, 54,
375–421.

Sun, Y. and P.C.B. Philips (2004), Understanding the Fisher Equation, Journal of
Applied Econometrics, 19, 869–886.

Torous, W., R. Valkanov, and S. Yan (2004), On Predicting Stock Returns with
Nearly Integrated Explanatory Variables, Journal of Business, 77, 937–966.

Wachter, J. (2002), Optimal Consumption and Portfolio Allocation under Mean-Reverting
Returns: An Exact Solution for Complete Markets, Journal of Financial and Quanti-
tative Analysis, 37, 63–91.

Wachter, J. and M. Warusawitharana (2007), Predictable returns and Asset Alloca-
tion: Should a Skeptical Investor Time the Market?, NBER Working Paper 13165.

33



Table 1: Descriptive statistics, 1952 Q1 – 2004 Q2

avg std. min max skew kurt

Excess log stock returns 1.44 7.91 -30.76 18.97 -0.92 4.83
Excess log bond returns 0.18 3.91 -13.86 13.61 0.35 4.47
Log real return of 3-month T-Bills 0.33 0.50 -1.39 1.91 -0.07 3.92
Log nominal return of 3-month T-Bills 1.26 0.70 0.16 3.52 0.96 4.17
Log dividend-price ratio -3.45 0.40 -4.49 -2.77 -0.83 3.38
Log credit spread 0.39 0.17 0.09 0.17 0.50 2.77
Log yield spread 0.35 0.28 -0.45 1.00 0.08 2.73

Notes: All variables are quarterly. The log returns and log spreads are given in percentages.
”Skew” and ”Kurt” are the scaled skewness and kurtosis of the time series.

Table 2: Gaussian semiparametric estimates of d

Number of frequencies (J)

pre-filter 12 15 20

Log real return of 3-month T-Bills diff 0.677 0.796 0.727
Log nominal return of 3-month T-Bills diff 0.733 0.800 0.848
Log dividend-price ratio diff 1.081 0.877 0.924
Log credit spread diff 0.201 0.261 0.316

level 0.474 0.525 0.553
Log yield spread diff 0.026 0.308 0.438

level 0.147 0.320 0.455

(Standard error) (0.144) (0.129) (0.112)

Notes: Results are obtained using the Gaussian semiparametric estimator (GSP) in Robinson
and Henry (1999). The number of frequencies J is determined by the smallest integer larger
than Tα, α ∈ {0.45, 0.50, 0.55}. Prior to estimation all series are differenced once before. The
d values are reported for the level series and are obtained by adding one. These results are
indicated by diff in the second column. If the estimated d is less than 0.5, the value of d is
re-estimated directly on the levels, without first differencing. These results are indicated by
level. Standard errors are reported from the series of first differences. Numbers in boldface are
the estimates that are used in the further analysis.
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Table 3: Prediction equations for excess log stock and bond returns

Unrestricted Schwarz DivP RNom

Stocks Bonds Stocks Bonds Stocks Stocks

constant 0.222 -0.033 0.207 -0.009 0.102 0.021
(0.060) (0.030) (0.054) (0.004) (0.048) (0.016)

rtb,t 1.849 0.909
(1.180) (0.585)

rnom,t -3.378 -0.622 -3.033 -1.812
(1.010) (0.501) (0.835) (0.786)

dpt 0.060 -0.006 0.055 0.025
(0.017) (0.008) (0.015) (0.014)

crt 9.546 -2.684 9.133
(4.187) (2.078) (3.438)

sprt -0.679 3.887 3.087
(2.418) (1.200) (0.945)

R2 0.089 0.081 0.077 0.049 0.016 0.024

Notes: The unrestricted system is estimated by OLS. The restricted systems are estimated
using FIML using the restricted specification for the excess bond returns. Standard errors in
parenthesis. Regressors are a constant (c), the log real T-Bill rate (rtb,t), the log nominal
T-Bill rate (rnom,t), the dividend-price ratio (dpt), the credit spread (crt) and the yield
spread (sprt).
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Table 4: Fractional VAR(1) model

Unrestricted parameter estimates

rtb,t rnom,t dpt crt sprt R2

rtb,t+1 0.200 1.132 -0.005 0.608 0.459 0.565
(0.047) (0.085) (0.001) (0.169) (0.087)

rnom,t+1 -0.136 -0.240 -0.002 -0.816 -0.210 0.075
(0.066) (0.119) (0.002) (0.237) (0.122)

dpt+1 1.342 3.124 0.175 -7.924 -1.040 0.056
(2.338) (4.218) (0.070) (8.378) (4.329)

crt+1 -0.007 0.045 0.002 0.334 0.054 0.139
(0.023) (0.041) (0.001) (0.082) (0.042)

sprt+1 0.109 0.370 0.000 0.785 0.776 0.340
(0.047) (0.085) (0.001) (0.168) (0.087)

Restricted parameter estimates

rtb,t rnom,t dpt crt sprt R2

rtb,t+1 0.185 1.101 -0.005 0.506 0.409 0.564
(0.043) (0.077) (0.001) (0.158) (0.079)

rnom,t+1 -0.515 0.038
(0.190)

dpt+1 0.195 0.031
(0.067)

crt+1 0.002 0.290 0.126
(0.000) (0.065)

sprt+1 0.232 0.635 0.682 0.319
(0.039) (0.143) (0.042)

Notes: Standard errors in parenthesis. All variables are fractionally differenced
using the filter (16). Orders of fractional differentiation correspond to the
boldface entries in table 2. The R2 is based on the fractional differences. The
restricted estimates have been obtained from a specification search based on the
Schwarz criterium. The unrestricted estimates are obtained by OLS regressions;
the restricted estimates are based on FIML.
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Table 5: Residual correlations and standard deviations

ys,t yb,t rtb,t rnom,t dpt crt sprt

ys,t 7.706 0.130 0.260 -0.107 -0.963 -0.034 -0.023
yb,t 3.812 0.281 -0.641 -0.148 0.707 -0.002
rtb,t 0.160 -0.307 -0.294 0.157 0.156
rnom,t 0.224 0.113 -0.428 -0.748
dpt 7.910 0.044 0.023
crt 0.077 -0.056
sprt 0.159

Notes: The table reports the standard deviations of the shocks to all series
in the system. Residuals for excess bond and stock returns are from the
benchmark model in table 3. Residuals for the predictor variables are from the
restricted model in table 4. The standard deviations on the diagonal are given
as percent per quarter.

Figure 1: Stocks returns and dividends
The figure plots the term structure of risk σ2

y(k) for excess stock returns using the dividend yield
as a predictor. Parameter values are from the left-hand panel in table II on page 240 of Barberis
(2000): β = 0.5118, α = 0.9774, σ2

u = 0.0017, σ2
ε = 3.0E-6, σuε = −3.41E-5. The monthly results

have been annualised in the figure by multiplying with
√

12. These parameter values produce the
solid line labeled AR1. The ”random walk” line is obtained by setting α = 1. The dashed line uses
the fractional model (1− L)dxt = εt with d = 0.9.
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Figure 2: Autocorrelations
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Figure 3: Term structure of risk: benchmark model
The figure plots the term structure of risk for real returns on stocks, bonds and T-Bills. Parameter
estimates are based on the prediction estimates labeled Schwarz in table 3.
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Figure 4: Term structure of risk: restricted models
The figure plots the term structure of risk for real returns on stocks, bonds and T-Bills. Parameter
estimates for the top graph are based on the prediction estimates with only the dividend-price ratio
(labeled DivP in table 3). The bottom graph are the prediction estimates with only the nominal
interest rate (NomR in table 3).
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Figure 5: Term structure of correlations
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Figure 6: Minimum variance portfolio weights
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Figure 7: Minimum variance portfolio risk
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