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Abstract

Dixit and Norman (1980) showed that, under certain conditions, the world economy replicates the

equilibrium of the hypothetical integrated economy without national borders in the traditional trade

model with perfect competition. Helpman and Krugman (1985) extended their analysis to settings

with imperfectly competitive sectors. This paper derives necessary and sufficient conditions for the

existence of free trade equilibria with replication in models with perfect or imperfect competition.
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1 Introduction

Dixit and Norman (1980) gave a new impetus to the theory of international trade by showing how

to deal with standard trade models from a general equilibrium theory perspective. The crucial idea

is to first consider the world economy as a hypothetical integrated economy with no obstacles to

the movement of factors of production and then check the conditions under which the world economy

with free trade but immobile factors of production replicates the integrated equilibrium.1 In the second

central contribution to this strand of the literature, Helpman and Krugman (1985) showed how this

approach can also be exploited when one leaves the traditional theory of international trade with

perfect competition and turns to models with scale economies and imperfect competition.2

The present paper is concerned with the question of existence of free trade equilibria which replicate

the hypothetical integrated equilibrium in models with perfect or imperfect competition. Following the

Dixit-Norman approach, this question can be split into two parts: First, does an integrated equilibrium

exist? Second, is replication possible? Dixit and Norman (1980, pp. 67, 77, 81, 108) note that the

standard existence proofs apply in models with perfect competition. Helpman and Krugman (1985)

push questions of existence aside in their analysis of models with imperfect competition. We provide

necessary and sufficient conditions for the existence of an equilibrium with replication both in the

traditional perfect competition model and in models with monopolistic competition.

To do so, we make several simplifying assumptions, which are somewhat stronger than the assumptions

conventionally made in general equilibrium theory but which are quite standard in the theory of

international trade: production and utility functions are strictly quasi-concave, returns to scale are

constant, all inputs are essential, and preferences are homothetic.

To begin with, we consider a standard model with perfect competition. We show that a simple proof of

the existence of an integrated equilibrium via Brouwer’s fixed point theorem is possible, even though,

given constant returns to scale, the supply correspondences are not single-valued. The proof follows

standard trade theory by making use of input coefficients and unit cost functions and is no more

difficult than the the usual proof for exchange economies.3

1Travis (1964) is a precursor of Dixit and Norman (1980). Dixit and Norman (1980, p. 125) remark that Samuelson

(1953) already “saw through the whole problem, and we think that if he had filled out some of the asides and terse

remarks he makes, he would have developed the argument much as we have done here.”

2Harris (1984) initiated the investigation of computable general equilibrium models of this type, surveyed by Kehoe

and Kehoe (1994). Grossman and Helpman (1991) went one step further and used the Dixit-Norman (1980) methodology

to analyze endogenous growth models. Arnold (2007) generalizes their analysis to a broad class of endogenous growth

models.

3It seems not to be widely noticed how easy it is to integrate production under constant returns to scale. For instance,
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The second, more important, consequence of our simplifying assumptions is that the results derived

for the traditional trade model can be adapted to models with imperfect competition, as pioneered by

Helpman and Krugman (1985).4 Following Helpman and Krugman (1985), we assume that consumers

have Dixit-Stiglitz (1977) preferences for differentiated goods and that producers of the different

varieties are monopolistic competitors. We start with a model with given numbers of monopolists.

The proof of existence of an integrated equilibrium is straightforward: essentially, what has to be

done is replace unit cost functions with markup-pricing rules and take account of pure profits in the

income identities. Then we allow for free entry into the monopolistically competitive sectors. As the

“numbers” of varieties produced are then endogenous, the construction of the mapping whose fixed

point gives the integrated equilibrium has to be adapted.

Section 2 presents the perfectly competitive baseline model. Section 3 introduces imperfect competi-

tion. Free entry is introduced in Section 4. Section 5 concludes.

2 Perfect competition

2.1 Model

There are I consumers (distinguished by a superscript i = 1, . . . , I), J firms (distinguished by a

superscript j = 1, . . . , J), K goods (indexed k = 1, . . . ,K), and L factors of production (indexed

l = 1, . . . , L).

Let xj
kl denote the input of factor l in the production of good k in firm j and xj

k = (xj
k1, . . . , x

j
kL) ∈ R

L
+.

The production of each good k obeys a production function fk(x
j
k) : R

L
+ → R+ that is accessible to

all firms j.5

Assumption 1: For all k, fk is continuous, strictly quasi-concave, linearly homogeneous (constant-

returns-to-scale), and strictly increasing, and each factor l is essential.6

Let pk ∈ R+ denote the price of good k and w = (w1, . . . , wL) ∈ R
L
+ the vector of factor prices. Firm

j’s profit is πj =
∑K

k=1[pkfk(x
j
k) − wxj

k].

Consumers own the factors of production and shares in the firms. They use their (factor and profit)

income to buy consumption goods. Let xi = (xi
1, . . . , x

i
L) ∈ R

L
+ denote i’s factor endowments. xi is

Dixit and Norman (1980, p. 77) refer the reader to chapter 5 in Arrow and Hahn (1971), which allows for multi-valued

supply and demand correspondences. For our purposes, the material in the “first approach” in chapter 2 of Arrow and

Hahn (1971) is sufficient.

4Existence of equilibrium in models with monopolistic competition was pioneered by Negishi (1961).

5We write R
L
+ = {x|x ∈ R

L, xl ≥ 0 for all l = 1, . . . L} and R
L
++ = {x|x ∈ R

L, xl > 0 for all l = 1, . . . L}.
6I.e., fk(xj

k) = 0 if xj
kl = 0 for any l.
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exogenous for all i (x =
∑

i=1 xi ∈ R
L
++). For all i and j, let θij ∈ R+ denote consumer i’s share in

firm j (
∑I

i=1 θij = 1 for all j). i’s income is Ii = wxi + θiπ ∈ R+, where θi = (θi1, . . . , θiJ) ∈ R
J
+

and π = (π1, . . . , πJ) ∈ R
J
+. Let yi = (yi

1, . . . , y
i
K) ∈ R

K
+ denote a consumption bundle for consumer i,

where yi
k is his consumption of good k. Given a vector of commodity prices, p = (p1, . . . , pK) ∈ R

K
+ ,

his budget set is Bi = {yi|yi ∈ R
K
+ ,pyi ≤ Ii}. All consumers have identical preferences represented by

a common utility function u : R
K
+ → R, which gives i’s utility obtained from yi

k ∈ R
K
+ . u is normalized

such that u(0) = 0.

Assumption 2: u is continuous, strictly quasi-concave, homothetic, and strictly increasing.

An equilibrium prevails if firms maximize profit, consumers maximize utility, and the markets for all

goods and factors of production clear:

Definition: A price system (w,p) and an allocation ({{xj
k}K

k=1}J
j=1, {yi}I

i=1) constitute an integrated

equilibrium if

(I) {xj
k}K

k=1 maximizes profit for all j,

(II) yi maximizes utility in Bi for all i,

(III)
∑J

j=1 fk(x
j
k) =

∑I
i=1 yi

k for all k,

(IV)
∑K

k=1

∑J
j=1 xj

k =
∑I

i=1 xi.

This is a simplified Arrow-Debreu economy in which the quasi-concavity of production and utility

functions is strict, returns to scale are constant, preferences are identical and homothetic, and factor

supplies are exogenous. Later on, we will turn to the open economy version of this model by assuming

the presence of national borders which inhibit factor movements but not flows of goods.7 This model

is a good starting point for our analysis because (it seems fair to say) it is a standard trade model, it is

easy to analyze, and we can make frequent use of the results when it comes to models with imperfect

competition.

2.2 Integrated equilibrium

Because of constant returns to scale, firms j minimize the unit cost of Production for any good k.

That is, for all j and k, xj
k solves min

xj
k

: wxj
k s.t.: fk(x

j
k) = 1. Denote the solution to this problem as

ak(w) : R
L
+ → R

L
+ and the ensuing unit cost, wak(w), as ck(w) : R

L
+ → R+. Because of strict quasi-

concavity of fk, if a minimum exists, it is unique, so that ak(w) is single-valued. The assumption of

7This follows Dixit and Norman (1980, pp. 26-7). Their analysis is more general in two respects: they allow for

diminishing returns and weak quasi-concavity in production (cf. Dixit and Norman, 1980, pp. 31, 66).
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constant returns to scale has two further important implications. First, profit maximization implies

p = c(w), where c(w) = (c1(w), . . . , cL(w)) : R
L
+ → R

L
++, and each firm j makes zero profit: π = 0.

Second, ak(w) and ck(w) are homogeneous of degree zero and one, respectively.8

Consumer i solves maxyi u(yi) s.t.: yi ∈ Bi. Assumption 2 ensures that the resulting demand curves

are well-behaved: suppose a solution y(p, Ii) : R
K+1
+ → R

K
+ to the utility maximization problem exists;

then, strict quasi-concavity of u implies that y(p, Ii) is single-valued; continuity of u implies continuity

of y(p, Ii); and the homotheticity of u implies a unitary income elasticity everywhere, so that we can

write y(p, Ii) = d(p)Ii, where d : R
K
+ → R

K
+ is single-valued, continuous, and homogeneous of degree

minus one. The aggregate demand for goods is y = d(p)I, where I =
∑I

i=1 Ii is aggregate income.

Because of zero profit, income equals factor income: Ii = wxi and I = wx. Using p = c(w), the

aggregate demand for goods is y = d(c(w))wx. The demand for factor l by producers of good k

is
∑J

j=1 xj
kl =

∑J
j=1 akl(w)yj

k = akl(w)yk, and the total demand for factor l is
∑K

k=1

∑J
j=1 xj

kl =∑K
k=1 akl(w)yk. Using the demands for goods and factors, define the excess factor demand function

z(w) : R
L
+ → R

L by

zl(w) =
K∑

k=1

akl(w)dk(c(w))wx − xl, l = 1, . . . , L.

Theorem 2.1: An integrated equilibrium exists.

Proof: Consider the following price system (w∗,p∗) and allocation ({{xj∗
k }K

k=1}J
j=1, {yi∗}I

i=1). The

factor prices w∗ are such that z(w∗) = 0; commodity prices satisfy p∗ = c(w∗); the firms’ factor

inputs xj∗
k satisfy

∑J
j=1 xj∗

k = ak(w∗)dk(c(w∗))w∗x and xj∗
k ≥ 0 for all j and k;9 and the consumption

vectors are yi∗ = d(c(w∗))w∗xi for all i. This price system and allocation satisfy the definition of

an integrated equilibrium. The mappings c(w), ak(w), and d(p) are well-defined, single-valued, and

continuous provided that the domains of the cost minimization and utility maximization problems

are compact.10 So proving the existence of an integrated equilibrium boils down to (1) dealing with

compactness problems and (2) proving the existence of w∗ such that z(w∗) = 0.

(1) Let X̄ = {xj
k|xj

k ∈ R
L
+,xj

k ≤ 2x} and Ȳ = {yi|yi ∈ R
K
+ , yi

k ≤ 2fk(x), k = 1, . . . ,K}. X̄ and Bi ∩ Ȳ
are compact. Input vectors xj

k �∈ X̄ or consumption bundles yi �∈ Ȳ are not feasible. A price system

(w,p) and an allocation ({{xj
k}K

k=1}J
j=1, {yi}I

i=1) are an integrated equilibrium on restricted domains

if they satisfy (I)-(IV) in the definition of an integrated equilibrium when xj
k ∈ X̄ is added in (I) and

Bi is replaced with Bi ∩ Ȳ in (II). It is readily shown that a price system and an allocation are an

8These results hold true in particular when there is only one factor of production l = 1, in which case ak1(w) = ak1

is exogenous and ck(w) = w1ak1 for all k.

9Needless to say that, because of constant returns to scale, the division of
�J

j=1 xj∗
k across firms j is indeterminate.

10Notice that the firms’ supply correspondences are multi-valued, but we do not make use of them.
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equilibrium if they are an equilibrium on restricted domains (see the Appendix). This allows us to

focus on the latter, so that the domains in the optimization problems are compact and the functions

c(w), ak(w), and d(p) are well-defined.

(2) Consider the Gale-Nikaido mapping g(w) defined by

gl(w) =
wl + max{zl(w), 0}∑L

l′=1 [wl′ + max{zl′(w), 0}] , l = 1, . . . , L.

Since c(w), ak(w), and d(p) are homogeneous of degree one, zero, and minus one, respectively, z(w)

and g(w) are homogeneous of degree zero, and we can restrict the domain to the L − 1-dimensional

unit simplex ∆ = {w|w ∈ R
L
+,

∑L
l=1 wl = 1}. Clearly, g(w) ∈ R

L
+ and

∑L
l=1 gl(w) = 1 for all w, so

that g(w) : ∆ → ∆ maps the unit simplex on itself. Since g(w) is continuous, Brouwer’s theorem

implies that a fixed point w∗ exists.

The fixed point w∗ of g(w) satisfies z(w∗) = 0. To see this, notice that since, by Assumption 2,

u(yi) is strictly increasing, the budget constraint pyi ≤ Ii holds with equality for all i. Using yi =

d(p)Ii, it follows that pd(p) = 1. Using
∑L

l=1 wlakl(w) = ck(w) = pk, we can prove Walras’ law:∑L
l=1 wlzl(w) = 0 for all w (see the Appendix). The validity of this equality for w∗ implies zl(w∗) = 0

for l = 1, . . . , L (see the Appendix). ||

Remark 2.1.1: Some parts of Assumptions 1 and 2 are made solely for convenience. For example, the

proof of Theorem 2.1 goes through without modification if only a subset of the factors l are used in the

production each good k. Likewise, the homotheticity of u is inessential for our arguments. Generally,

the individuals’ demand functions yi(p, Ii) are continuous and homogeneous of degree zero, so the

same holds true for the factor excess demand functions zl(w) =
∑K

k=1 akl(w)
∑I

i=1 yi(c(w),wxi)− xl

(l = 1, . . . , L), and the analysis goes through without substantial modifications. Finally, maintaining

the assumption of constant returns to scale, one can dispense with the assumption that the quasi-

concavity of production and utility functions is strict. The mappings akl(w) and dk(p) are, then,

possibly multi-valued but certainly convex-valued, and the proof that the Gale-Nikaido mapping has

a fixed point goes via Kakutani’s theorem.

2.3 Free trade equilibrium

Suppose the world economy described in Subsection 2.1 is divided into M countries, which are distin-

guished by a superscript m (= 1, . . . ,M). Each consumer i lives in exactly one country m. The set of

consumers living in country m is denoted Im (m = 1, . . . ,M). Similarly, Jm is the set of all firms j

operating in country m (m = 1, . . . ,M), and each firm j belongs to one of these sets. There is free

international trade in goods, factors of production are immobile internationally.
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Definition: A price system (w,p) and an allocation ({{xj
k}K

k=1}J
j=1, {yi}I

i=1) constitute a free trade

equilibrium with replication if (I)-(III) in the definition of an integrated equilibrium hold and

(IV’)
∑K

k=1

∑
j∈Jm xj

k =
∑

i∈Im xi for all m.

That is, a free trade equilibrium prevails if firms maximize profit, consumers maximize utility, the

world markets for goods clear, and each country’s factor markets clear.

Theorem 2.2: Let (w,p) and ({{x̂j
k}K

k=1}J
j=1, {yi}I

i=1) be an integrated equilibrium. Then,

(w,p, {{xj
k}K

k=1}J
j=1, {yi}I

i=1) is a free trade equilibrium with replication if, and only if,

(V) xj
k = λj

k

∑J
j′=1 x̂j′

k for some λj
k ∈ R+ and for all j and k,

(VI)
∑M

m=1

∑
j∈Jm xj

k =
∑J

j′=1 x̂j′
k for all k,

and (IV’) holds.

Proof: Suppose (IV’), (V), and (VI) hold. Since the factor prices w are the same as in the integrated

equilibrium, the input coefficients ak(w) are identical, so (V) implies cost minimization ((I) is valid).

All firms make zero profit. According to (VI), the world supply of each good j is equal to the respective

integrated equilibrium quantity. Since factor and goods prices are the same as in the integrated equi-

librium and consumers do not obtain any positive profit income, yi maximizes utility ((II) is valid).

So the world demands are also equal to the integrated equilibrium demands, and market clearing in

the integrated equilibrium implies that the world commodities markets clear ((III) is valid). Given

that (IV’) holds by assumption, this proves the “if part” of the theorem.

As for the “only if part”, if (V) is violated for some j and k, then firm j does not minimize the cost

of producing k ((I) is violated). Given the aggregate demand for goods
∑I

i=1 yi, if (VI) does not hold

for some k, then the world market for good k does not clear ((III) is violated). Finally, a free trade

equilibrium cannot exist unless (IV’) holds, as this is part of its definition. ||

Put briefly, Theorem 2.2 says that the replication of the integrated equilibrium as a free trade equi-

librium is feasible if, and only if, it is possible to split up all world input vectors exhaustively into

non-negative portions allocated to the individual countries in such a way that each country’s factor

markets clear. Importantly for our purposes, the “if part” of Theorem 2.2 establishes an existence

result for M -country open economies: given that an integrated equilibrium exists (Theorem 2.1), the

theorem gives a set of conditions sufficient for the existence of a free trade equilibrium. Figure 1 illus-

trates the standard example with K = L = M = 2. A free trade equilibrium with replication exists if

the endowment point is located inside the parallelogram formed by the integrated equilibrium input

vectors.
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Figure 1: Perfect competition

Remark 2.2.1: The homotheticity assumption is inessential for the validity of Theorem 2.2 (cf.

Remark 2.1.1).

Remark 2.2.2 (sufficient conditions for replication): A sufficient condition for the existence

of a free trade equilibrium with replication is uniformity of the relative factor endowments across

countries: if
∑

i∈Im xi = µm
∑I

i=1 xi for some (µ1, . . . , µM ) ∈ R
M
+ , then λm

k = µm yields replication,

where λm
k =

∑
j∈Jm λj

k. If K = L = M = 2, this is the case in which the endowment point is located

on the diagonal (cf. Dixit-Norman, 1980, p. 110). The condition is trivially satisfied if L = 1.

Remark 2.2.3 (number of goods and factors of production): Conditions (IV’) and (V) for the

feasibility of replication can be rewritten as

K∑
k=1

λm
k

J∑
j′=1

x̂j′
k =

∑
i∈Im

xi.

This is a system of L equations in the K unknowns λm
k . So a free trade equilibrium with replication

is “unlikely” to exist if the number of factors of production L exceeds the number of commodities K.

For instance, if K = 1, L = 2, and M = 2, replication is feasible only if the conditions of Remark 2.2.2

is satisfied (i.e., if the endowment point is located on the diagonal, which coincides with the single

integrated equilibrium input vector). If K ≥ L, the more “dissimilar” the integrated equilibrium input
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vectors
∑J

j′=1 x̂j′
k for the different goods k and the more “similar” the countries’ endowment vectors,

the more “likely” is replication (cf. Dixit-Norman, 1980, pp. 111 ff.).

Remark 2.2.4: As the integrated equilibrium input vectors
∑J

j′=1 x̂j′
k are endogenous, Theorem 2.2

gives conditions for the feasibility of replication in terms of endogenous variables.

Remark 2.2.5 (non-traded goods): It is easy to add non-traded goods to the analysis. Letting

Kn denote the subset of non-traded goods k, all one has to do is add the condition
∑

j∈Jm fk(x
j
k) =∑

i∈Im yi
k for all k ∈ Kn to the definition of a free trade equilibrium and to the conditions in Theorem

2.2. The case L = M = 2 with two traded goods can be illustrated with a box whose length and height

are the endowments of factors 1 and 2, respectively, net of the resources needed to produce a fraction

(wxi)/(wx) of the integrated equilibrium quantities of the non-traded goods. A free trade equilibrium

with replication exists if the net factor endowments point is located inside the parallelogram spanned

by the integrated equilibrium input vectors for the two traded goods.

The standard results of traditional international trade theory are straightforward corollaries to the

analysis conducted so far.

Remark 2.2.6 (balanced trade): That trade is balanced for each country follows from zero profit

and the consumers’ budget constraints: for each country, both the aggregate value of production and

consumption expenditures are equal to aggregate factor incomes.

Remark 2.2.7 (gains from trade): Let ỹm and w̃m denote country m’s autarky consumption vector

(aggregated over all i ∈ Im) and factor price vector, respectively. From the fact that, at factor prices

in a free trade equilibrium, production is no cheaper using the autarky input coefficients ak(w̃) rather

than the input coefficients ak(w), it follows that the economy can afford its autarky consumption

bundle ỹm in a free trade equilibrium:

pỹm =
K∑

k=1

pkỹ
m
k =

K∑
k=1

wak(w)ỹm
k ≤

K∑
k=1

wak(w̃)ỹm
k = w

K∑
k=1

ak(w̃)ỹm
k = wxm.

Consequently, each inhabitant of m gains from trade if income is redistributed such that the indi-

vidual shares in aggregate income remain constant when trade is opened up (i.e., if (wxi)/(wxm) =

(w̃xi)/(w̃xm) for all i ∈ Im).

Remark 2.2.8 (comparative advantage): Let M = 2. Denote country m’s autarky price vector

as p̃m and its net import vector as zm ∈ R
K . Affordability implies p̃mzm ≥ 0. Adding up and using

z1 + z2 = 0 yields (p̃1 + p̃2)z1 ≥ 0. That is, on average country 1 is a net importer (z1
k > 0) of those

goods which are relatively expensive in autarky (p̃1
k > p̃2

k) (see Dixit and Norman, 1980, pp. 94-5).

Remark 2.2.9 (trade pattern): The homotheticity assumption (cf. Remark 2.2.1) is essential if one

wants to say more about the factor content of trade than Remark 2.2.8 does. The factor-l content of
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country m’s production is xm
l . Given homotheticity, the factor-l content of country m’s consumption

is equal to its share in world income (wxm)/(wx) times xl. So the factor-l content of country m’s net

exports is

xl

(
xm

l

xl
− wxm

wx

)
for all l. In a free trade equilibrium, this expression is positive for some l and negative for others.

Evidently, it is positive for those factors l country m is relatively richly endowed with (i.e., for which

xm
l /xl is high).

3 Imperfect competition

3.1 Model

We now introduce imperfectly competitive markets into the baseline model of Section 2, following the

Dixit-Stiglitz (1977) approach popularized in trade theory by Krugman (1979a, 1980) and Helpman

and Krugman (1985, Chapters 6 and 7). In consumer i’s consumption vector yi ∈ R
K
+ , the first N

components (yi
1, . . . , y

i
N ) are now composites of variants of N differentiated goods k ∈ {1, . . . , N} = Kd.

For k ∈ {N + 1, . . . ,K} = Kh, as before, yi
k denotes the consumption of a homogeneous good.

yi
k is given by yi

k = [
∫ hk

0 (zi
kh)αkdh]1/αk for k ∈ Kd, where zi

kh ∈ R+ is consumer i’s consumption

of variant h of good k, hk ∈ R++ is the exogenously given “number” of variants of good k, and

0 < αk < 1 for all k ∈ Kd. In the following section, hk is endogenized using free entry into the

differentiated goods sector. We use the continuum-of-variants formulation in order to avoid problems

of integer numbers then. Each variant h of a good k is produced from inputs xkh ∈ R
L
+ using the

same production function fk : R
L
+ → R+, which satisfies the requirements of Assumption 1.11 There

is a single, monopolistic, producer of each variant h of any good k, who chooses the price pkh of his

variant so as to maximize profit πkh (Chamberlinian monopolistic competition). Letting θi
kh ∈ R+

denote i’s share in the firm producing variant h of good k (where
∑I

i=1 θi
kh = 1 for all k ∈ Kd

and all h), i’s income is Ii = wxi +
∑J

j=1 θijπj +
∑

k∈Kd

∫ hk

0 θi
khπkhdh, and his budget set is Bi =

{[zi
10, z

i
1h1

], . . . , [zi
N0, z

i
NhN

], (yi
N+1, . . . , y

i
K), | zi

hk ∈ R+, h ∈ [0, hk], k = 1, . . . , N, yi
k ∈ R+, k = N +

1, . . . ,K,
∑

k∈Kd

∫ hk

0 pkhzi
khdh +

∑
k∈Kh pky

i
k ≤ Ii}.

Definition: A price system (w, {(pkh)h∈[0,hk]}k∈Kd , {pk}k∈Kh) and an allocation

({(xkh)h∈[0,hk]}k∈Kd , {{xj
k}k∈Kh}J

j=1, {{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh}I
i=1) constitute an integrated

equilibrium if

11As the Dixit-Stiglitz index is strictly quasi-concave, the analysis in Section 2 applies if one sticks to the assumption

of perfect competition.
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(I) pkh and xkh maximize profit for all k ∈ Kd and h, and {xj
k}k∈Kh maximizes profit for all j,

(II) {{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh} maximizes utility in Bi for all i,

(III) fk(xkh) =
∑I

i=1 zi
kh for all k ∈ Kd and h, and

∑J
j=1 fk(x

j
k) =

∑I
i=1 yi

k for all k ∈ Kh,

(IV)
∑

k∈Kd

∫ hk

0 xkhdh +
∑

k∈Kh

∑J
j=1 xj

k =
∑I

i=1 xi.

3.2 Integrated equilibrium

In this subsection, we characterize the integrated equilibrium of the model described in Subsection

3.1. To begin with, we characterize the consumers’ demands for the variants of a differentiated good

for given expenditure on this goods and the resulting pricing behavior of the firms which supply the

variants of this good.

Let Ii
k denote income spent on all the variants h of good k ∈ Kd by consumer i.

A necessary condition for utility maximization is that (zi
kh)h∈[0,hk] solves max(zi

kh)h∈[0,hk]
:

[
∫ hk

h (zi
kh)αkdh]1/αk s.t.:

∫ hk

0 pkhzi
khdh = Ii

k given Ii
k. Solving this maximization problem yields the

demand functions

zi
kh =

⎡
⎢⎢⎢⎢⎣

pkh(∫ hk

0 p
− αk

1−αk
kh′ dh′

)− 1−αk
αk

⎤
⎥⎥⎥⎥⎦

− 1
1−αk

Ii
k(∫ hk

0 p
− αk

1−αk
kh′ dh′

)− 1−αk
αk

.

The demands are homogeneous of degree one, so that the aggregate demand zkh =
∑I

i=1 zi
kh is obtained

by replacing Ii
k with Ik =

∑I
i=1 Ii

k. Profit maximization yields the constant-markup price pkh =

ck(w)/αk for all h, where ck(w) is the minimum unit cost of production. This follows from standard

concave programming arguments. Because of uniform prices of the variants h of good k and diminishing

marginal utility of each variant, the cheapest way to achieve yi
k = 1 is to choose zi

kh uniform for all

variants h ∈ [0, hk], i.e., zi
kh = h

−1/αk

k . The ensuing cost of yi
k = 1 is pk = hkpkhzi

kh = h
−(1−αk)/αk

k pkh.

Letting p = (p1, . . . , pK) ∈ R
K
+ , consumer i’s utility maximization problem, given the optimal alloca-

tion of Ii
k across the variants h of k, becomes maxyi u(yi) s.t.: yi ∈ Bi, where Bi = {yi|yi ∈ R

K
+ ,pyi ≤

Ii}. This is the same problem as in Section 2, and the solution can be expressed as yi = d(p)Ii, where

d : R
K
+ → R

K
+ is single-valued, continuous, and homogeneous of degree minus one. Aggregating over

all consumers i yields the demand function y = d(p)I. The aggregate demand for each variant h of

good k is zkh =
∑I

i=1 zi
kh =

∑I
i=1 h

−1/αk

k yi
k = h

−1/αk

k dk(p)I.

By the same reasoning as in Section 2, profit maximization entails pk = ck(w) for all k ∈ Kh and∑
k∈Kh

∑J
j=1 xj

kl =
∑

k∈Kh akl(w)yk =
∑

k∈Kh akl(w)dk(p)I. The producer of variant h of a differen-

10



tiated good k ∈ Kd demands xkhl = akl(w)zkh = akl(w)h−1/αk

k dk(p)I units of factor l, where akl(w)

is the input coefficient resulting from minimizing the unit cost of producing a variant of differenti-

ated product k. Aggregating over all variants h of k yields xkl = akl(w)h−(1−αk)/αk

k dk(p)I. Finally,

aggregating over all k yields the total demand for factor l:

∑
k∈Kd

akl(w)h
− 1−αk

αk
k dk(p)I +

∑
k∈Kh

akl(w)dk(p)I.

Producers of homogeneous commodities make zero profit: πj = 0 for all j. The producer of variant h

of differentiated product k makes profit πkh = [pkh − ck(w)]zkh = [(1 − αk)/αk]ck(w)h−1/αk

k dk(p)I.

Aggregate profit is
∑

k∈Kd

∫ hk

0 πkhdh = I
∑

k∈Kd [(1−αk)/αk]ck(w)h−(1−αk)/αk

k dk(p). From I = wx +∑
k∈Kd

∫ hk

0 πkhdh, we get aggregate income:

I =
wx

1 − ∑
k∈Kd

1−αk
αk

ck(w)h
− 1−αk

αk
k dk(p)

.

Let c̃k(w) = h
−(1−αk)/αk

k ck(w)/αk for k ∈ Kd, c̃k(w) = ck(w) for k ∈ Kh, and c̃(w) =

(c̃1(w), . . . , c̃K(w)), so that p = c̃(w). c̃(w) is continuous and homogeneous of degree one. Sub-

stituting this and the expression for aggregate income into the factor demands, we obtain the excess

factor demand function z(w) defined by

zl(w) =
∑

k∈Kd akl(w)h
− 1−αk

αk
k dk(c̃(w)) +

∑
k∈Kh akl(w)dk(c̃(w))

1 − ∑
k∈Kd(1 − αk)c̃k(w)dk(c̃(w))

wx− xl.

Theorem 3.1: An integrated equilibrium exists.

Proof: Suppose there is a w∗ such that z(w∗) = 0. Let p∗kh = ck(w∗)/αk for all h ∈ [0, hk]

and all k ∈ Kd and p∗k = ck(w∗) for k ∈ Kh. Let x∗
kh = ak(w∗)z∗kh for all h ∈ [0, hk] and

all k ∈ Kd, where z∗kh =
∑I

i=1 h
−1/αk

k dk(c̃(w∗))I∗ and I∗ is obtained by evaluating the equa-

tion for I at w = w∗ and p = d(c̃(w∗)). Let xj∗
k satisfy

∑J
j=1 xj∗

k = ak(w∗)dk(c̃(w∗))I∗ and

xj∗
k ≥ 0 for all j and k ∈ Kh. Finally, for all i, let zi∗

kh = h
−1/αk

k dk(c̃(w∗))Ii∗ for all h ∈ [0, hk]

and all k ∈ Kd, where Ii∗ = w∗xi +
∑

k∈Kd

∫ hk

0 θi
khπ∗

khdh and π∗
kh = [p∗kh − ck(w∗)]z∗kh, and let

yi∗
k = dk(p)Ii∗ for k ∈ Kh. The price system (w∗, {(p∗kh)h∈[0,hk]}k∈Kd , {p∗k}k∈Kh) and the alloca-

tion ({(x∗
kh)h∈[0,hk]}k∈Kd , {{xj∗

k }k∈Kh}J
j=1, {{(zi∗

kh)h∈[0,hk]}k∈Kd , {yi∗
k }k∈Kh}I

i=1) are an integrated equi-

librium. So, as in the proof of Theorem 2.1, all we have to do is (1) deal with compactness problems

and (2) prove the existence of w∗ such that z(w∗) = 0.

(1) The maximization of [
∫ hk

0 (zi
kh)αkdh]1/αk given Ii

k and of monopoly profit given the resulting demand

functions and ck(w) is conducted via concave programming, which does not presuppose compactness
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of the domain. Let X̄ be defined as in Subsection 2.2. Let X̄k = {xkh|xkh ∈ R
L
+,xkh ≤ 2x/hk} for all

k ∈ Kd, and redefine Ȳ = {yi|yi ∈ R
K
+ , yi

k ≤ 2h1/αk

k fk(x), k ∈ Kd, yi
k ≤ 2fk(x), k ∈ Kh}. X̄ , X̄k, and

Bi ∩ Ȳ are compact. Input vectors xj
k �∈ X̄ or xkh �∈ X̄k are not feasible in an integrated equilibrium

with symmetry with respect to the variants h of given differentiated goods k (i.e., with hkxkh ≤ x

for all k ∈ Kd). Similarly, consumption bundles yi �∈ Ȳ are not feasible in a symmetric equilibrium

(since yi
k = h

1/αk

k zi
kh ≤ h

1/αk

k fk(x) for k ∈ Kd). A price system and an allocation are an integrated

equilibrium on restricted domains if they satisfy (I)-(IV) in the definition of an integrated equilibrium

when xkh ∈ X̄k and xj
k ∈ X̄ are added in (I) and Bi is replaced with Bi∩Ȳ in (II). The same arguments

as used in the proof of Theorem 2.1 establish that a price system and an allocation are an equilibrium

if they are an equilibrium on restricted domains.

(2) Define the Gale-Nikaido mapping g(w) as in the Proof of Theorem 2.1. Since c̃(w), ak(w), and d(p)

are homogeneous of degree one, zero, and minus one, respectively, z(w) and g(w) are homogeneous

of degree zero, and we can let g : ∆ → ∆. By Brouwer’s theorem, there exists a fixed point w∗. From

pyi = Ii and yi = d(p)Ii, we have pd(p) = 1. As above, it follows that
∑L

l=1 wlzl(w) = 0 for all w

(see the Appendix). The validity of this equality for the fixed point w∗ of the Gale-Nikaido mapping

establishes zl(w∗) = 0. ||

3.3 Free trade equilibrium

Suppose the world economy is divided, in the same way as in Subsection 2.3, into M countries engaged

in free trade with each other. For each differentiated good k, let Hm
k denote the set of all variants h

with a monopolist located in country m, where ∪M
m=1Hm

k = [0, hk] for all k ∈ Kd. Assume that the

monopolist for variant h ∈ Hm
k of k has to produce in his home country m.12

Definition: A price system (w, {(pkh)h∈[0,hk]}k∈Kd , {pk}k∈Kh) and an allocation

({(xkh)h∈[0,hk]}k∈Kd , {{xj
k}k∈Kh}J

j=1, {{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh}I
i=1) constitute a free trade

equilibrium with replication if (I)-(III) in the definition of an integrated equilibrium hold and

(IV’)
∑

k∈Kd

∫
h∈Hm

k
xkhdh +

∑
k∈Kh

∑
j∈Jm xj

k =
∑

i∈Im xi for all m.

Theorem 3.2: Let (w, {(pkh)h∈[0,hk]}k∈Kd , {pk}k∈Kh) and ({(xkh)h∈[0,hk]}k∈Kd , {{x̂j
k}k∈Kh}J

j=1,

{{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh}I
i=1) be an integrated equilibrium. Then, (w, {(pkh)h∈[0,hk]}k∈Kd ,

{pk}k∈Kh) and ({(xkh)h∈[0,hk]}k∈Kd , {{xj
k}k∈Kh}J

j=1, {{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh}I
i=1) is a free trade

equilibrium with replication if, and only if,

(V) xj
k = λj

k

∑J
j′=1 x̂j′

k for some λj
k ∈ R+ and for all j and k,

12Giving up this assumption enlarges the set of endowments compatible with replication of the integrated equilibrium.
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(VI)
∑M

m=1

∑
j∈Jm xj

k =
∑J

j′=1 x̂j′
k for all k,

and (IV’) holds.

Proof: Suppose (IV’), (V), and (VI) hold. Since the factor prices w are the same as in the integrated

equilibrium, the input coefficients ak(w) are identical, so (V) implies cost minimization ((I) is valid).

According to (VI), the world supply of each good j is equal to the respective integrated equilibrium

quantity. Since income is the same as in the integrated equilibrium, yi maximizes utility ((II) is valid).

So the world demands are also equal to the integrated equilibrium demands, and market clearing in

the integrated equilibrium implies that the world commodities markets clear ((III) is valid). Given

that (IV’) holds by assumption, this proves the “if part” of the theorem.

As for the “only if part”, if (V) is violated for some j and k, then firm j does not minimize the cost of

producing k ((I) is violated). Given the aggregate demand for goods
∑I

i=1 yi, if (VI) is invalid for some

k, then the world market for good k does not clear ((III) is violated). Finally, a free trade equilibrium

cannot exist unless (IV’) holds, as this is part of its definition. ||

Remark 3.2.1 (balanced trade): That trade is balanced for each country follows from zero profit

and the consumers’ budget constraints: both the aggregate value of production and consumption

expenditures are equal to aggregate factor incomes.

Remark 3.2.2: Let N = L = M = 2 and K = 3; that is, two countries trade three goods, one

of which is a differentiated Dixit-Stiglitz commodity. Given the assumption that the suppliers of the

differentiated variants of the Dixit-Stiglitz good have to produce in their respective home countries,

the necessary and sufficient condition for the existence of a free trade equilibrium with replication

is that, in the box whose length and height are the endowments of factors 1 and 2, respectively,

net of the resources needed to produce the integrated equilibrium quantities of the variants with a

domestic monopolist, the net factor endowment point is located inside the parallelogram spanned by

the integrated equilibrium input vectors for the two homogeneous commodities (cf. Remark 2.2.5).

Remark 3.2.3 (failure of replication): Let N = K = L = 1; that is, there are no homogeneous

commodities and one differentiated good which is produced using a single factor of production. Then,

replication is not generally feasible. Factor market clearing requires that the “number” of variants

produced hm
1 if proportional to the supply of the single factor of production xm

1 in each country m:

hm
1 a11z1 = xm

1 . Hence, a necessary condition for replication is that country m’s share in the total

“number” of variants is equal to its share in the world factor supply: hm
1 /h1 = xm

1 /x1 for all m.

Remark 3.2.3 (North-South trade): Consider the model with N = K = L = 1 when replication

is not feasible (cf. the previous remark).13 From the demand curves for the variants of a differentiated

13This model is similar to Krugman (1979b, Section II). The differences are that in Krugman (1979b), markets are
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good, z1h/z1h′ = (p1h/p1h′)−1/(1−α1) for any h, h′. Let country m produce hm different variants h,

and let country m′ produce hm′
different variants h′. Then, from the factor market clearing conditions

hma11z1h = xm
1 and hm′

a11z1h′ = xm′
1 ,

wm
1

wm′
1

=

⎛
⎝ hm

xm
1

hm′

xm′
1

⎞
⎠

1−α1

.

That is, the single factor of production gets a higher reward in country m than in m′ if the “number”

of variants per unit of factor supply is higher in m than in m′.

4 Free entry

4.1 Model

In the previous section, we considered the hk’s (k ∈ Kd) as exogenous, now we endogenize them.14

Assume that to run a firm producing variant h of k a producer has to incur an upfront fixed cost.

Specifically, he has to produce f̄k(x̄kh) = 1 using inputs x̄kh ∈ R
L
+, where f̄k : R

L
+ → R+ satisfies

Assumption 1. There is free entry into the firm sector. Let h = (h1, . . . , hN ) ∈ R
N
+ denote the vector

of the numbers of firms in the differentiated goods sectors k ∈ Kd.

Definition: A price system (w, {(pkh)h∈[0,hk]}k∈Kd , {pk}k∈Kh), an allocation

({(xkh)h∈[0,hk]}k∈Kd , {{xj
k}k∈Kh}J

j=1, {{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh}I
i=1), and a vector of firm

numbers h constitute an integrated equilibrium if

(I) pkh and xkh maximize profit for all k ∈ Kd and all h, the maximum profit is equal to the cost of

entry, and {xj
k}k∈Kh maximizes profit for all j,

(II) {{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh} maximizes utility in Bi for all i,

(III) fk(xkh) =
∑I

i=1 zi
kh for all k ∈ Kd and h, and

∑J
j=1 fk(x

j
k) =

∑I
i=1 yi

k for all k ∈ Kh,

(IV)
∑

k∈Kd

∫ hk

0 (xkh + x̄kh)dh +
∑

k∈Kh

∑J
j=1 xj

k =
∑I

i=1 xi.

4.2 Integrated equilibrium

The demand functions for the variants of the differentiated goods derived in the previous section

are unchanged, the monopolistic competitors charge the constant-markup price pkh = ck(w)/αk for

competitive and the North can produce all known goods, while the South can produce only a subset of the goods.

14Cf. Dixit and Norman (1980, Section 9.3) and Helpman and Krugman (1985, Part III).
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all k ∈ Kd and all h, the minimum expenditure needed to get yi
k = 1 is pk = h

−(1−αk)/αk

k pkh =

h
−(1−αk)/αk

k ck(w)/αk, utility maximization yields y = d(p)I, and profit gross of the fixed cost is

πkh = [(1 − αk)/αk]ck(w)h−1/αk

k dk(p)I.

Let c̄k(w) : R
L
+ → R+ denote the minimum cost of producing f̄k(x̄kh) = 1 and āk(w) : R

L
+ → R

L
+ the

associated input vector. The demand for factor l is

∑
k∈Kd

[
akl(w)h

− 1−αk
αk

k dk(p)I + hkākl(w)

]
+

∑
k∈Kh

akl(w)dk(p)I.

Free entry implies that there are no pure profits: I = wx. Define c̃k(w,h) = h
−(1−αk)/αk

k ck(w)/αk for

k ∈ Kd, c̃k(w,h) = ck(w) for k ∈ Kh, and c̃(w,h) = (c̃1(w,h), . . . , c̃K(w,h)), so that p = c̃(w,h).

The excess factor demand function z(w,h) is given by

zl(w,h) =
∑

k∈Kd

[
akl(w)h

− 1−αk
αk

k dk(c̃(w,h))wx + hkākl(w)
]

+
∑

k∈Kh

akl(w)dk(c̃(w,h))wx − xl, l = 1, . . . , L.

Free entry into the firm sector implies πkh = c̄k(w) for all h and for all k ∈ Kd. Using the equation for

πkh, the definition of c̃k(w,h) for k ∈ Kd, and p = c̃(w,h), the free entry condition can be rewritten

as hk = vk(w,h), where

vk(w,h) = (1 − αk)
c̃k(w,h)dk(c̃(w,h))wx

c̄k(w)
, k = 1, . . . , N.

Theorem 4.1: An integrated equilibrium exists.

Proof: A price system (w∗, {(pkh)h∈[0,hk]}k∈Kd , {p∗k}k∈Kh), an allocation

({(x∗
kh)h∈[0,hk]}k∈Kd , {{xj∗

k }k∈Kh}J
j=1, {{(zi∗

kh)h∈[0,hk]}k∈Kd , {yi∗
k }k∈Kh}I

i=1), and a vector of firm

numbers h∗ are an integrated equilibrium if z(w∗) = 0, p∗kh = ck(w∗)/αk for all h ∈ [0, hk] and

all k ∈ Kd, p∗k = ck(w∗) for k ∈ Kh, I∗ = w∗x∗, z∗kh =
∑I

i=1 h
−1/αk

k dk(c̃(w∗))I∗, x∗
kh = ak(w∗)z∗kh

for all h ∈ [0, hk ] and all k ∈ Kd,
∑J

j=1 xj∗
k = ak(w∗)dk(c̃(w∗))I∗, xj∗

k ≥ 0 for all j and k ∈ Kh,

Ii∗ = w∗xi, zi∗
kh = h

−1/αk

k dk(c̃(w∗))Ii∗ for all h ∈ [0, hk] and all k ∈ Kd, yi∗
k = dk(p∗)Ii∗ for k ∈ Kh,

and h∗
k = vk(w∗,h∗) for all k ∈ Kd.

(1) Restricting the domains of the cost minimization and utility maximization problems as in the

proof of Theorem 3.1 gives rise to well-defined solutions.

(2) Let h̄k denote the number of variants of k developed that obtains if factors are used for no other

purpose: h̄k = f̄k(x/h̄k). Evidently, h̄k is uniquely determined. Let g be defined by

gl(w,h) =
wl + max{zl(w,h), 0}∑L

l′=1[wl′ + max{zl′(w,h), 0}] , l = 1, . . . , L

gL+k(w,h) = min
{
h̄k, vk(w,h)

}
, k = 1, . . . , N.
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As g is homogeneous of degree zero in w, we can assume w ∈ ∆. Let Θ = ×k∈Kd[0, h̄k], and consider

the mapping g : ∆ × Θ → ∆ × Θ. The presence of the term h
−(1−αk)/αk

k in zl(w,h) and of c̄(w) in

the denominator of the expression for vk(w,h) suggests two possible discontinuities of g. However,

substituting for h
−(1−αk)/αk

k from pk = h
−(1−αk)/αk

k ck(w)/αk and p = c̃(w,h) into zl(w,h) shows

that the demand for factor l for the production of the differentiated variants of a good k ∈ Kd is

αkakl(w)pkdk(p)/ck(w) < αkakl(w)I/ck(w). Moreover, ck(w) > 0 and c̄k(w) > 0, because all factors

are essential in any productive activity and not all factor prices can simultaneously be equal to zero

(since w ∈ ∆). So g is continuous, Brouwer’s theorem applies, and a fixed point (w∗,h∗) exists.

By Walras’ law (wz(w,h) = 0), we have zl(w∗,h∗) = 0 for all l = 1, . . . , L. Furthermore, h∗
k =

min
{
h̄k, vk(w∗,h∗)

}
for k ∈ Kd. Suppose h∗

k = h̄k for some k ∈ Kd. Since f̄k(x̄kh) is strictly increasing

in each factor of production l, this requires that the entire factor endowments x are used to develop

variants of k, which contradicts factor market clearing. So h∗
k < h̄k for all k, and h∗

k = vk(w∗,h∗),

which implies that the free entry conditions are satisfied. This proves that the allocation described at

the beginning of this proof is an integrated equilibrium. ||

Remark 4.1.1 (Cobb-Douglas example): If the utility function is Cobb-Douglas, then

c̃k(w,h)dk(c̃(w,h)) (= pkdk(p)) is a constant, and the free entry condition gives hk in reduced form

as a function of w alone. hk can be substituted into the factor excess demand functions, and existence

of an integrated equilibrium can be proved by considering the factor excess demands alone.

Remark 4.1.2: As in Section 2, the assumption that all factors l are essential in the production of

each good k can easily be weakened substantially. Suppose that at least one factor of production l

which is essential in the development of the variants of any good k is also essential in the production

of k or in the development or production of some other good k′ �= k. Then, h∗
k = h̄k implies excess

demand for l. This contradiction implies that the free entry condition is satisfied.

4.3 Free trade equilibrium

Definition: A price system (w, {(pkh)h∈[0,hk]}k∈Kd , {pk}k∈Kh), an allocation

({{(xkh)h∈[0,hk]}k∈Kd , {xj
k}k∈Kh}J

j=1, {{(zi
kh)h∈[0,hk], {yi

k}k∈Kh}k∈Kd}I
i=1), and a collection of sets

{{Hm
k }M

m=1}k∈Kd constitute a free trade equilibrium with replication if (I)-(III) in the definition of

an integrated equilibrium hold and

(IV’)
∑

k∈Kd

∫
h∈Hm

k
(xkh + x̄kh)dh +

∑
k∈Kh

∑
j∈Jm xj

k =
∑

i∈Im xi for all m, and

(V) ∪M
m=1Hm

k = [0, hk] for all k ∈ Kd.
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Theorem 4.2: Let (w, {(pkh)h∈[0,hk]}k∈Kd , {pk}k∈Kh), ({(xkh)h∈[0,hk]}k∈Kd , {{x̂j
k}k∈Kh}J

j=1,

{{(zi
kh)h∈[0,hk]}k∈Kd , {yi

k}k∈Kh}I
i=1) and h be an integrated equilibrium. Then,

(w, {(pkh)h∈[0,hk]}k∈Kd , {pk}k∈Kh), ({(xkh)h∈[0,hk]}k∈Kd , {{xj
k}k∈Kh}J

j=1, {{(zi
kh)h∈[0,hk],

{yi
k}k∈Kh}k∈Kd}I

i=1, and {{Hm
k }M

m=1}k∈Kd are a free trade equilibrium with replication if, and

only if,

(VI) xj
k = λj

k

∑J
j′=1 x̂j′

k for some λj
k ∈ R+ and for all j and k,

(VII)
∑M

m=1

∑
j∈Jm xj

k =
∑J

j′=1 x̂j′
k for all k,

and (IV’) and (V) hold.

Proof: Suppose (IV’), (V), (VI), and (VII) hold. Since the factor prices w are the same as in the

integrated equilibrium, the input coefficients ak(w) are identical, so (VI) implies cost minimization.

Since the prices are the same, producers of the homogeneous goods make zero profit. Since, moreover,

the quantities produced of the variants of the differentiated goods ({(xkh)h∈[0,hk]}k∈Kd are also the

same, producers in the differentiated goods sectors maximize profit, and the free entry conditions are

satisfied ((I) is valid). According to (VII), the world supply of each homogeneous good j is equal to

the respective integrated equilibrium quantity. Since factor and goods prices are the same as in the

integrated equilibrium, yi maximizes utility ((II) is valid). So the world demands are also equal to the

integrated equilibrium demands, and market clearing in the integrated equilibrium implies that the

world commodities markets clear ((III) is valid). Given that (IV’) and (V) hold by assumption, this

proves the “if part” of the theorem.

If (VI) is violated for some j and k, then firm j does not minimize the cost of producing k ((I) is

violated). Given the aggregate demand for goods
∑I

i=1 yi, if (VII) is invalid for some k, then the world

market for good k does not clear ((III) is violated). Finally, (IV’) and (V) must not be violated, since

they are part of the definition of a free trade equilibrium with replication. ||

The 2x2x2 example with one differentiated good (N = 1) and one homogeneous good can be illustrated

by a figure similar to Figure 1. Think of the input vector for good 1 as giving the factor inputs in

both the development and the production of the variants of the differentiated good. Let a measure

hm
1 of the variants be produced in m. Then the demand for factor l by producers of variants of the

differentiated good located in country m is hm
1 a1l(w)h−1/α1

1 d1(p)+ hm
1 ā1l(w). Linearity in hm

1 implies

that the national input vectors are linearly dependent, so that the feasibility of replication can be

checked graphically be the same reasoning as in Subsection 2.3.

Remark 4.2.1 (trade pattern): As emphasized by Helpman and Krugman (1985, pp. 2 ff. and

Section 7.3), in a free trade equilibrium with replication, there is both interindustry trade (by the
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same arguments as in Remark 2.2.9, the factor-l content of country m’s net exports is positive for

those factors l country m is relatively richly endowed with, and vice versa) and intraindustry trade

(countries export some variants of the differentiated goods and import others). A similar remark

applies to the model of Section 3.

Remark 4.2.2 (multinational firms): Helpman and Krugman (1985, Chapter 12) point out that the

set of endowments consistent with replication grows if it is possible to develop and produce variants of

the differentiated products in different countries. In the example with K = L = M = 2 and N = 1, the

input vector for good 1 is split up into two separate input vectors for the development and production

of variants of good 1, respectively, and the parallelogram in Figure 1 is replaced by a hexagon that

includes the parallelogram.

Remark 4.2.3 (Krugman model): Krugman (1979a) considers the model with N = K = L = 1. In

an integrated equilibrium, prices and profits are p1h = w1a11/α and π1h = [(1 − α1)/α1]w1a11z1. The

free entry condition π1h = w1ā11 yields z1 = [α1/(1 − α1)]ā11/a11. Together with the factor market

clearing condition h1(a11z1 + ā11), it follows that

h1 = (1 − α1)
x1

ā11
.

Other than in the case of hm
1 exogenous (cf. Remark 3.2.3), there is a free trade equilibrium

that replicates this integrated equilibrium. The number of variants produced in country m is

h1 = (1 − α1)xm
1 /ā11. The value of exports is (1 − Im/I)p1hz1hhm

1 , the value of imports is

(Im/I)
∑M

m′=1 hm′
1 p1hz1h. Trade is balanced if hm

1 /
∑

m′=1
m′ �=m

hm′
1 = Im/I. The validity of this condi-

tion follows from the definition of income: Im = w1x
m
1 and I = w1x1 = w1

∑M
m′=1 xm′

1 . There are

gains from trade. Inserting zi
1h = Ii/(h1p1h), p1h = w1/α1, and Ii = w1x

i
1 into the utility function

u = [
∫ h1

0 zα1
1hdh]1/α1 gives u = h

(1−α1)/α1

1 α1x
i
1. u rises due to the increase in the “number” of available

varieties.

5 Conclusion

Dixit and Norman (1980) showed that, under certain conditions, the world economy replicates the

equilibrium of the hypothetical integrated economy without national borders in the traditional trade

model with perfect competition. Helpman and Krugman (1985) extended their analysis to settings

with imperfectly competitive sectors. This paper derives necessary and sufficient conditions for the

existence of free trade equilibria with replication in models with perfect or imperfect competition.
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Appendix

A.1 Theorem 2.1

Proof that an allocation and a price system are an integrated equilibrium if they are an inte-

grated equilibrium on restricted domains: Let (w∗,p∗, {{xj∗
k }K

k=1}J
j=1, {yi∗}I

i=1) be an integrated

equilibrium on restricted domains. To prove the assertion that (ŵ, p̂, {{x̂j
k}K

k=1}J
j=1, {ŷi}I

i=1) =

(w∗,p∗, {{xj∗
k }K

k=1}J
J=1, {yi∗}I

i=1) is an integrated equilibrium, we have to show (1) that there is no

xj
k ∈ R

L
+ such that xj

k �∈ X̄ , fk(x
j
k) ≥ 1, and w∗xj

k < w∗xj∗
k and (2) that for all i there is no yi ∈ R

K
+

such that yi �∈ Ȳ, yi ∈ Bi, and u(yi) > u(yi∗).

(1) Suppose to the contrary w∗xj
k < w∗xj∗

k for some xj
k ∈ R

L
+ not contained in X̄ such that fk(x

j
k) ≥ 1.

Then w∗x̃j
k < w∗xj∗

k and, because of quasi-concavity, fk(x̃
j
k) ≥ 1 for all x̃j

k on the line segment joining

xj∗
k and xj

k. This holds true in particular for points on the segment close to xj∗
k , i.e., in X̄ . This

contradicts the fact that xj∗
k minimizes unit cost on the domain X̄ .

(2) Suppose there exists a yi ∈ R
K
+ such that yi �∈ Ȳ, yi ∈ Bi, and u(yi) > u(yi∗). Since both yi and

yi∗ are in Bi, ỹi ∈ Bi for all ỹi on the line segment joining yi and yi∗. u(ỹi) > u(yi∗) because of strict

quasi-concavity of u. Finally, points ỹi sufficiently close to yi∗ satisfy ỹi ∈ Ȳ. Hence, u(ỹi) > u(yi∗)

for some ỹi ∈ Bi ∩ Ȳ , a contradiction.15 ||
15The converse, “only if”, proposition is trivial. If (ŵ, p̂, {{x̂j

k}K
k=1}J

j=1, {ŷi}I
i=1) is an integrated equilibrium, then

(w∗,p∗, {{xj∗
k }K

k=1}J
j=1, {yi∗}I

i=1) = (ŵ, p̂, {{x̂j
k}K

k=1}J
j=1, {ŷi}I

i=1) is an integrated equilibrium on restricted domains.

From the factor market clearing conditions (III), x̂j
k ≤ x < 2x and, hence, x̂j

k ∈ X̄ for all j and k. Similarly, ŷi ∈ Ȳ
for all i. That is, the solutions to the producers’ cost minimization problem and to the consumers’ utility maximization

problem on the unrestricted domains lie in the restricted domains. Obviously, they are also optimal on the restricted

domains.
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Proof that
∑L

l=1 wlzl(w) = 0 for all w:

L∑
l=1

wlzl(w) =
L∑

l=1

wl

K∑
k=1

akl(w)dk(c(w))wx − wx

= wx

[
K∑

k=1

dk(c(w))
L∑

l=1

wlakl(w) − 1

]

= wx

[
K∑

k=1

pkdk(p) − 1

]

= wx [pd(p) − 1]

= 0. ||

Proof that the fixed point of g(w) is an integrated equilibrium:

L∑
l=1

w∗
l zl(w∗) =

L∑
l=1

gl(w∗)zl(w∗)

=
∑L

l=1 w∗
l zl(w∗) +

∑L
l=1 max{zl(w∗), 0}zl(w∗)∑L

l′=1[w
∗
l′ + z+

l′ (w
∗)]

=
max{zl(w∗)2, 0}∑L
l′=1[w

∗
l′ + z+

l′ (w
∗)]

= 0.

This implies zl(w∗) = 0 for l = 1, . . . , L. ||
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A.2 Theorem 3.1

Proof that
∑L

l=1 wlzl(w) = 0 for all w: Using
∑L

l=1 wlakl(w) = ck(w) for all k, h
−(1−αk)/αk

k ck(w)/αk =

c̃k(w) = pk for k ∈ Kd, ck(w) = pk for k ∈ Kh, c̃(w) = p, and pd(p) = 1, we get

L∑
l=1

wlzl(w) =
L∑

l=1

wl

∑
k∈Kd akl(w)h

− 1−αk
αk

k dk(c̃(w)) +
∑

k∈Kh akl(w)dk(c̃(w))
1 − ∑

k∈Kd(1 − αk)c̃k(w)dk(c̃(w))
wx− wx

= wx

⎡
⎢⎣

∑
k∈Kd h

− 1−αk
αk

k dk(c̃(w))
∑L

l=1 wlakl(w) +
∑

k∈Kh dk(c̃(w))
∑L

l=1 wlakl(w)
1 − ∑

k∈Kd(1 − αk)c̃k(w)dk(c̃(w))
− 1

⎤
⎥⎦

= wx

⎡
⎢⎣

∑
k∈Kd h

− 1−αk
αk

k dk(c̃(w))ck(w) +
∑

k∈Kh dk(c̃(w))ck(w)
1 − ∑

k∈Kd(1 − αk)c̃k(w)dk(c̃(w))
− 1

⎤
⎥⎦

= wx
[∑

k∈Kd αkdk(p)pk +
∑

k∈Kh dk(p)pk

1 − ∑
k∈Kd(1 − αk)pkdk(p)

− 1
]

= wx

[∑K
k=1 dk(p)pk − ∑

k∈Kd(1 − αk)dk(p)pk

1 − ∑
k∈Kd(1 − αk)pkdk(p)

− 1

]

= wx
[
pd(p) − ∑

k∈Kd(1 − αk)dk(p)pk

1 − ∑
k∈Kd(1 − αk)pkdk(p)

− 1
]

= wx
[
1 − ∑

k∈Kd(1 − αk)pkdk(p)
1 − ∑

k∈Kd(1 − αk)pkdk(p)
− 1

]
= 0.
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A.3 Theorem 4.1

Using the definitions of ck(w) and c̄k(w), h
−(1−αk)/αk

k ck(w) = αkpk for k ∈ Kd, pk = ck(w) for k ∈ Kh,

the free entry condition hk c̄k(w) = (1 − αk)pkdk(p)wx for all k ∈ Kd, and pd(p) = 1, we obtain:

L∑
l=1

wlzl(w) =
∑
k∈Kd

[
h
− 1−αk

αk
k dk(p)wx

L∑
l=1

wlakl(w) + hk

L∑
l=1

wlākl(w)

]

+
∑

k∈Kh

dk(p)wx
L∑

l=1

wlakl(w) −
L∑

l=1

wlxl

= wx
∑
k∈Kd

h
− 1−αk

αk
k dk(p)ck(w) +

∑
k∈Kd

hk c̄k(w) + wx
∑

k∈Kh

dk(p)ck(w) − wx

= wx
∑
k∈Kd

dk(p)αkpk +
∑
k∈Kd

(1 − αk)pkdk(p)wx + wx
∑

k∈Kh

dk(p)pk − wx

= wx

⎡
⎣ ∑

k∈Kd

αkdk(p)pk +
∑

k∈Kd

(1 − αk)pkdk +
∑

k∈Kh

dk(p)pk − 1

⎤
⎦

= wx

⎡
⎣ ∑

k∈Kd

dk(p)pk +
∑

k∈Kh

dk(p)pk − 1

⎤
⎦

= wx

[
K∑

k=1

dk(p)pk − 1

]

= wx [pd(p) − 1]

= 0.
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