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Abstract

This paper gives a complete characterization of the equilibria in Shleifer and Vishny’s (1997) model

of “Limits of Arbitrage”. We show that expected wealth (the arbitrageurs’ objective function) is a

possibly non-concave function of investment and that the relation between investment and prices is

not necessarily continuous or single-valued or well-defined. As a result, “anything is possible”: non-

existence or multiplicity of equilibria may arise, and sunspots may govern the equilibrium selection

in the latter case.



1 Introduction

In an ingenious paper, Shleifer and Vishny (1997)1 (henceforth: SV) argue why arbitrage may fail when

it is most profitable. Their argument is based on the idea that the amount of funds an arbitrageur

manages responds positively to the returns he generates (performance-based arbitrage, PBA). To get

an idea of the implications of PBA for the efficiency of arbitrage in bringing asset prices in line with

fundamental values, suppose the price of an already undervalued asset falls further. Then money

is withdrawn from the arbitrageurs invested in this asset, even though the widening gap between

fundamental value and the actual price level implies that arbitrage becomes even more profitable.

The SV model is a cornerstone of behavioral finance. This is because behavioral finance has identified

empirically many kinds of irrational behavior in financial markets, but there are few models which

help explain why arbitrage is limited, so that irrational behavior leads to mispricing (see, e.g., Barberis

and Thaler, 2003, pp. 1056-1057).

Using numerical examples, SV derive a number of interesting implications from their apparently simple

model. The aim of the present article is to show that the model’s simplicity is more apparent than real.

We provide a complete characterization of the equilibria in the SV model2 and find that “anything is

possible”: an equilibrium may fail to exist, or if one exists, it may not be unique. To prove the former

assertion, we have to investigate types of equilibria not considered by SV. In the latter case, sunspots

may govern the selection of an equilibrium.

We show that the equilibrium conditions in the SV model can be summarized in a two-way relationship

between (period-2) prices and (period-1) investment: prices and investment constitute an equilibrium

when (a) the price clears the market given the individuals’ demands and (b) the demands maximize

expected wealth (the relevant objective function) given prices. The non-existence and multiplicity

results are due to properties of this two-way-relationship which have not so far received appropriate

attention. (a) Due to the fact that the amount of funds arbitrageurs may lose is constrained by

the amount of funds under management, their objective function is possibly non-concave. (b) The

correspondence relating (period-2) prices to (period-1) investment is possibly discontinuous or multi-

valued or not even well-defined. This is due to a positive feedback effect: due to PBA, higher period-2

prices raise period-2 funds under control, thereby driving up period-2 prices.3

1See also Chapter 4 in Shleifer (2000).

2This follows Zwiebel’s (2002, pp. 1219-1220) call for a rigorous treatment of the insightful models in Shleifer’s (2000)

Inefficient Markets.

3While (b) the latter problem is ruled out by the parameter assumptions made by SV, (a) the non-concavity problem

can arise for parameters satisfying the SV assumptions.
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(a) Our main result is that the non-concavity problem causes an existence problem. To get an idea

why, notice that an increase in period-1 investment raises the arbitrageurs’ payoffs if the price recovers

at time 2, but decreases the amount of funds under management and, hence, wealth if the noise trader

shock worsens. A necessary condition for the existence of an equilibrium with an interior solution to

the problem of maximizing expected wealth is that these two effects balance out. Assume this is the

case for marginal variations of period-1 investment. Assume further that the prices ensuing from the

arbitrageurs’ investment decisions are such that if an arbitrageur is fully invested in period 1 and the

noise trader shock grows, then he loses all the funds under his management. This implies that expected

wealth is increasing in the arbitrageur’s investment for investment levels close to full investment,

because the wealth-reducing effect of additional investment vanishes. It follows that expected wealth

is a non-concave function of investment (flat for low investment levels and increasing for higher levels),

and full investment maximizes wealth, violating the supposition that there is an equilibrium with less-

than-full investment. (b) The fact that the relation between investment and prices is not well-behaved

does not cause an existence problem of its own. However, it opens up the possibility of multiple

equilibria, equilibrium selection via sunspots, and perverse comparative statics.

Section 2 briefly recapitulates the assumptions of the SV model. In Section 3, we define the relevant

sorts of equilibria and state the conditions they satisfy. To motivate the subsequent analysis, we present

a numerical example which leads to non-existence at the outset. The main results on existence and

uniqueness are in Section 4. Section 5 concludes.

2 Model

This section gives a brief exposition of the SV model. Consider an asset market with three types of

agents, noise traders, arbitrageurs, and investors in arbitrage funds. Time is discrete, and there are

three time periods. The supply of the asset is inelastic and normalized to unity. The asset’s fundamental

value is V (> 0). So the asset is under-valued or valued correctly, depending on whether demand is

less than or equal to V , respectively. At time 3, the asset is valued correctly.

The noise traders’ demand for the asset in period 1 is QN1 = V − S1, where 0 < S1. At time 2,

with probability q (0 < q < 1), their demand is QN2 = V − S2, where S1 < S2 < V (“noise trader

misperceptions deepen”); with probability 1 − q, on the other hand, QN2 = V , and the asset price

returns to its fundamental value.

There is a continuum of unit length of identical arbitrageurs. Their funds under management in

periods 1 and 2 are denoted F1 and F2, respectively. F1 is exogenous and satisfies 0 < F1 < S1.

Their investments in the asset at times t = 1 and t = 2 are denoted D1 and D2 respectively, where
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0 ≤ Dt ≤ Ft, t ∈ {1, 2}. Non-invested funds are stored at zero interest. Let p1 denote the period-1 price

and p2 the period-2 price in case of worsening noise trader expectations and x the gross return on F1.

If noise trader misperceptions deepen, then x = 1+ (p2/p1 − 1)D1/F1. Moreover, due to performance-

based arbitrage, period-2 assets under control of the arbitrageurs are F2 = max{F1(ax + 1 − a), 0}.
Following SV, we focus on the case a > 1. Arbitrageurs maximize final wealth, W , in period 2 and

expected final wealth, EW in period 1.

3 Equilibrium

3.1 Definition

In equilibrium,

p1 = V − S1 +D1. (1)

If noise trader expectations deepen:

p2 = V − S2 +D2 (2)

F2 = max
{
F1 + aD1

(
p2

p1
− 1

)
, 0

}
(3)

W ≡ F2 +
(
V

p2
− 1

)
D2. (4)

Equations (1)-(3) correspond to equations (3), (2), and (6), respectively, in SV (pp. 39-41).4 If, on the

other hand, noise trader expectations recover, then the period-2 price if V andW = F1+aD1(V/p1−1).

The arbitrageurs’ investments maximize (expected) wealth:

D1 = arg max
D1

: EW s.t.: 0 ≤ D1 ≤ F1 and (3) (5)

D2 = arg max
D2

: W s.t.: 0 ≤ D2 ≤ F2 (6)

(cf. SV, p. 42).

Definition: An equilibrium is a tuple (p1, p2,D1,D2, F2,W ) ≥ 0 that satisfies (1)-(6).

4The only differences are that, other than SV, we do not impose D2 = F2 or F2 > 0. We need the slightly more

general formulation of the equations because, for one thing, it will turn out that equilibria with D2 �= F2 may exist and,

for another, to prove non-existence of an equilibrium we have to take into account allocations with F2 = 0.
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3.2 Preview

To motivate the subsequent analysis, we start with an example which illustrates that equilibria of the

types considered by SV may fail to exist due to the non-concavity of the arbitrageurs’ expected wealth

function.

Example 1: Let V = 1, F1 = 0.1, a = 3, S1 = 0.2, S2 = 0.7, and q = 0.1. We pose the following

question: is there an equilibrium with p2 < V and F2 > 0 and with either full (D1 = F1) or partial

(D1 < F1) investment? The answer will be in the negative. The proof that other types of equilibria

do not exist either is postponed to Section 4. p2 < V implies D2 = F2. Using the supposition F2 > 0,

(1)-(3) become

p1 = 0.8 +D1 (7)

p2 = 0.3 + F2 (8)

F2 = 0.1 + 3D1

(
p2

p1
− 1

)
. (9)

Eliminating p2 and F1 from (7)-(9) yields

p2 =
(0.4 − 3D1)(0.8 +D1)

0.8 − 2D1
. (10)

Suppose, to begin with, there is an equilibrium in which arbitrageurs are fully invested in period 1 (i.e.,

D1 = F1). From (7) and (10), p1 = 0.9 and p2 = 0.15. However, from (9), F2 = −0.15, a contradiction.5

Next, consider equilibria in which arbitrageurs hold back funds in period 1 (i.e., D1 < F1). Expected

wealth is

EW ≡ 0.9
[
0.1 + 3D1

(
1
p1

− 1
)]

+
0.1
p2

[
0.1 + 3D1

(
p2

p1
− 1

)]
. (11)

In an equilibrium with 0 < D1 < F1, EW must be constant in D1, which implies p2 = p1/(10 − 9p1).

Hence, using (7),

p2 =
0.8 +D1

2.8 − 9D1
. (12)

Solving (10) and (12) yields D1 = 0.0354 and p2 = 0.3366. From (7), p1 = 0.8354. Now consider

the expected wealth function. Given the equilibrium prices and taking the non-negativity of F2 (cf.

equation (3)) into account explicitly, (11) becomes

EW ≡ 0.9(0.1 + 0.5911D1) + 0.2971max{0.1 − 1.7912D1, 0}.

For D1 < 0.0558 (= 1/1.7912), the max-term is positive, and EW is in fact constant in D1. However,

for D1 > 0.0558, the max-term becomes zero, so that d(EW )/dD1 = 0.5320 > 0. Expected wealth

5It may be noted that SV’s (p. 46) “stability condition”, viz. that aF1 < p1 if D1 = F1, is satisfied (as 0.3 < 0.9).
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Figure 1: Case distinctions

is non-concave in D1, and each arbitrageur’s optimal choice is to be fully invested (i.e., D1 = 0.1), a

contradiction. This answers the question posed at the outset: an equilibrium with p2 < V and F2 > 0

and with either full (D1 = F1) or partial (D1 < F1) investment does not exist.6 In Section 4 we show

that no other kind of equilibrium (e.g., with p2 = V or with F2 = 0 or with D1 = 0) exists either and

that similar problems (and others as well) occur for a wide range of parameter values.

3.3 Undervaluation equilibria

We now start our systematic analysis of equilibria. To begin with, we focus on the case p2 < V . The

discussion of equilibria is postponed until Subsection 3.4. We proceed in four steps. In step 1, we

provide a convenient partition of the parameter space. Step 2 is concerned with the correspondence

between aggregate period-1 investment, D1, and the period-2 price level in the case of deepening noise

trader expectations, p2. Next, we solve the arbitrageurs’ wealth maximization problem, which yields

D1 as a function of p2 (step 3). Step 4 introduces different types of equilibria we have to distinguish

in the subsequent section on existence and uniqueness.

6One might object that the non-existence result depends on the assumption that the funds under management are

distributed symmetrically across arbitrageurs: the non-existence of an equilibrium with less-than-full investment is due

to the fact that each arbitrageur prefers to invest all the funds under his management (i.e., F1 = 0.1) when p1 = 0.8354

and p2 = 0.3366, since expected wealth is increasing in D1 for D1 > 0.0558. This raises the question of whether an

equilibrium with aggregate investment D1 = 0.0354, p1 = 0.8354 and p2 = 0.3366 prevails if the majority of arbitrageurs

hold funds no greater than 0.0558 and choose to invest nothing and the remainder of the aggregate funds is concentrated

in the hands of a few “big” and fully invested arbitrageurs. In the present example, the answer is: no. The mass of

arbitrageurs with funds no greater than 0.0558 is bounded away from unity. So the funds under management of the “big”

arbitrageurs is greater than (0.1 − 0.0558 =) 0.0442. This is more than consistent with the stipulated equilibrium prices

(i.e., with D1 = 0.0354).
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Step 1: Case distinctions

From (4) and p2 < V , we have dW/dD2 = V/p2 − 1 > 0. Hence,

D2 = F2. (13)

From (1)-(3) and (13),

p2 = max {A(D1) + F (D1)p2, V − S2} , (14)

where

A(D1) ≡ V − S2 + F1 − aD1, F (D1) ≡ aD1

V − S1 +D1
. (15)

There is a positive feedback effect: higher period-2 prices, p2, raise period-2 funds under control, F2,

thereby driving up p2. F (D1) is measure of the strength of this positive feedback effect. We have

A(D1)

>

=

<

0 ⇔ D1

<

=

>

V − S2 + F1

a
≡ D0

1 (16)

and

F (D1)

<

=

>

1 ⇔ D1

<

=

>

V − S1

a− 1
≡ D∞

1 . (17)

Notice

F1

<

>
D0

1 ⇔ a
<

>
1 +

V − S2

F1
(18)

and

F1

<

>
D∞

1 ⇔ a
<

>
1 +

V − S1

F1
. (19)

Furthermore,

D0
1

<

>
D∞

1 ⇔ a(F1 − S2 + S1)
<

>
F1 − S2 + V.

Therefore, D0
1 < D∞

1 for S2 > S1 + F1, and

D0
1

<

>
D∞

1 ⇔ a
<

>
1 +

V − S1

F1 − S2 + S1
for S2 < S1 + F1. (20)

These inequalities can be used to divide the parameter space into four subspaces (see Figure 1). Let

Ω ≡ (V, S1, S2, a, F1) (> 0) denote the vector of model parameters.

Case 1: Let Ω1 ≡ {ω ∈ Ω| a < 1 + (V − S2)/F1}. Then, F1 < min{D0
1 ,D

∞
1 } for ω ∈ Ω1.
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Case 2: D0
1 < F1 < D∞

1 for ω ∈ Ω2 ≡ {ω ∈ Ω| 1 + (V − S2)/F1 < a < 1 + (V − S1)/F1}.7
Case 3: D0

1 < D∞
1 < F1 for ω ∈ Ω3, where

Ω3 ≡
{
ω ∈ Ω

∣∣∣∣V < S1 + F1, 1 +
V − S1

F1
< a < 1 +

V − S1

F1 − S2 + S1

}

∪
{
ω ∈ Ω

∣∣∣∣V > S1 + F1, S2 < S1 + F1, 1 +
V − S1

F1
< a < 1 +

V − S1

F1 − S2 + S1

}

∪
{
ω ∈ Ω

∣∣∣∣V > S1 + F1, S2 > S1 + F1, a > 1 +
V − S1

F1

}
.

Case 4: D∞
1 < D0

1 < F1 for ω ∈ Ω4, where

Ω4 ≡
{
ω ∈ Ω

∣∣∣∣V < S1 + F1, a > 1 +
V − S1

F1 − S2 + S1

}

∪
{
ω ∈ Ω

∣∣∣∣V > S1 + F1, S2 < S1 + F1, a > 1 +
V − S1

F1 − S2 + S1

}
.

Step 2: The correspondence between D1 and p2

Let p2(D1) : R
+\D∞

1 → R be given by

p2(D1) ≡ A(D1)
1 − F (D1)

=
(V − S2 − aD1 + F1)(V − S1 +D1)

V − S1 − (a− 1)D1
. (21)

Let P2 = {p2| p2 > 0, p2 solves (14)}. Taking into account the relation between D0
1 and D∞

1 , on the

one hand, and A(D1) and F (D1), on the other hand, in (16) and (17), it can be seen from Figure 2

that

P2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max{p2(D1), V − S2}; for D1 < min{D0
1 ,D

∞
1 }

V − S2; for D0
1 ≤ D1 < D∞

1

∅; for D∞
1 < D1 < D0

1⎧⎨
⎩

{p2(D1), V − S2}; if p2(D1) ≥ V − S2

∅; if p2(D1) < V − S2

; for D1 > max{D0
1,D

∞
1 }

. (22)

For the four cases distinguished above, we obtain for D1 ∈ [0, F1] from (22) (see Figure 3):

Case 1:

P2 = max{p2(D1), V − S2}.

Case 2:

P2 =

⎧⎨
⎩

max{p2(D1), V − S2}; for D1 ∈ [0,D0
1)

V − S2; for D1 ∈ [D0
1 , F1]

.

7Notice that Ω1∪Ω2 is the set of parameters which satisfy SV’s (p. 46) stability condition, which states that aF1 < p1

if arbitrageurs are fully invested (i.e., D1 = F1).
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Case 3:

P2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{p2(D1), V − S2}; for D1 ∈ [0,D0
1)

V − S2; for D1 ∈ [D0
1 ,D

∞
1 )⎧⎨

⎩
{p2(D1), V − S2}; if p2(D1) ≥ V − S2

∅; if p2(D1) < V − S2

; for D1 ∈ (D∞
1 , F1]

.

Case 4:

P2 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max{p2(D1), V − S2}; for D1 ∈ [0,D∞
1 )

∅; for D1 ∈ (D∞
1 ,D

0
1 ]⎧⎨

⎩
{p2(D1), V − S2}; if p2(D1) ≥ V − S2

∅; if p2(D1) < V − S2

; for D1 ∈ (D0
1 , F1]

.

Notice that p2(0) = V − S2 + F1 > V − S2. Furthermore, notice that if D1 < D∞
1 , (21) implies

p2(D1)
>

<
V − S2 ⇔ a

<

>

F1

D1

(
1 +

V − S2

S2 − S1 +D1

)
. (23)

Hence,

p2(F1)
>

<
V − S2 ⇔ a

<

>
1 +

V − S2

S2 − S1 + F1
. (24)
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In case(s) 1 (and 2), we have F1 < D∞
1 . So the inequalities in (24) subdivide the parameter set Ω1

into two subsets Ω11 and Ω12 (see Figure 1).

Case 1.1: For ω ∈ Ω11 ≡ {ω ∈ Ω| a < 1 + (V − S2)/(S2 − S1 + F1)}, we have p2(F1) > V − S2. Since

the term on the far right-hand side of (23) is decreasing in D1, (23) then implies that p2(D1) > V −S2

for all D1 ∈ [0, F1].8

Case 1.2: For ω ∈ Ω12 ≡ {ω ∈ Ω|ω ∈ Ω1, a > 1 + (V −S2)/(S2 −S1 +F1)}, we have p2(F1) < V −S2.

In cases 3 and 4, the inequalities in (23) are reversed.

The upshot of step 2 is that the correspondence relating the period-2 asset price to aggregate period-1

investment, D1, is not necessarily continuous or single-valued or defined over the entire interval [0, F1].

Step 3: Maximization of expected wealth

Expected wealth as of period 1 is

EW = (1 − q)
[
F1 + aD1

(
V

p1
− 1

)]
+ q

V

p2
max

{
F1 + aD1

(
p2

p1
− 1

)
, 0

}
≡ EW (D1). (25)

Arbitrageurs maximize EW (D1) in D1, given p1 and p2. An increase in D1 has two effects on expected

wealth. For one thing, it raises the return in case of a return to fundamental valuation in period 2

(see the term in square brackets in (25)). For another, it reduces the amount of funds under control

at time 2 if p2 < p1, F2, which yield a certain rate of return V/p2 − 1 > 0 (see the max-expression

in (25)). The latter effect vanishes when the first term in the max operator becomes zero, i.e. when

D1 > D̄1, where

D̄1 ≡ F1

a
(
1 − p2

p1

) . (26)

For D1 < D̄1, differentiating (25) yields

EW ′ = aV

(
1
p1

− 1 − q

V
− q

p2

) >

=

<

0 ⇔ p2

>

=

<

q
1
p1

− 1−q
V

. (27)

For D1 > D̄1, EW ′ = aV (1− q)(1/p1 −1/V ) > 0. Importantly, if D̄1 < F1 and EW ′ ≤ 0 for D1 < D̄1,

then expected wealth is a non-concave function of period-1 investment (see Figure 4).

Step 4: Types of equilibria

Having characterized how in the different cases we have to distinguish (step 1) period-1 investment,

D1, determines the period-2 price level, p2, (step 2) and how p2 affects the choice of D1 (step 3),

8Evidently, the case a = 1 can be treated analogously to case 1.1.
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we are now in a position to put the pieces together and characterize the equilibria of the model. Let

ψ(D1) : [0, F1] → R be given by

ψ(D1) ≡ q
1

V −S1+D1
− 1−q

V

. (28)

ψ(D1) is continuous and increasing and satisfies 0 < ψ(D1) < V − S1 + F1 (< V ) for all D1 ∈ [0, F1].

From (1), (27), and (28), we have

EW ′
>

=

<

0 ⇔ p2

>

=

<

ψ(D1) (29)

for D1 < D̄1.9 The following four types of equilibria comprise an exhaustive list of equilibria with

p2 < V :

Partial-investment equilibrium (PIE): 0 < D1 < F1, p2 ∈ P2, p2 = ψ(D1), p2 < V , and F1 ≤ D̄1.

No-investment equilibrium (NIE): D1 = 0, p2 = p2(0), p2 ≤ ψ(0), and EW (0) ≥ EW (F1) if F1 > D̄1.

Full-investment equilibrium 1 (FIE1): D1 = F1, p2 ∈ P2, p2 ≥ ψ(F1), and p2 < V .

Full-investment equilibrium 2 (FIE2): D1 = F1, p2 ∈ P2, p2 ≤ ψ(F1), D̄1 < F1, and EW (F1) ≥
EW (0).

3.4 Early recovery

So far we have focused on the case p2 < V . Clearly, p2 cannot exceed V in equilibrium, as this requires

D2 = S2 > 0, and arbitrageurs would do better by decreasing D2. We now turn to “early recovery

equilibria (EREs)” with p2 = V .10 p2 = V implies that no capital gains are possible in period 2, so

9We have to distinguish carefully the aggregate investment in the asset and an individual arbitrageur’s investment,

which both equal D1. The aggregate D1 determines the prices p2 (via (21) and (22)) and ψ(D1) (via (28)). Equation

(29) says that if, for instance, p2 > ψ(D1), then EW ′ > 0 for each individual D1 < D̄1.

10An implicit assumption of the model is that the rate of return required by investors is zero. It may be noted in

passing that there is not a solvency problem for the arbitrageurs then. If the price recovers at time 2 (because noise
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D1 = F1 (i.e., arbitrageurs are fully invested) and, using (3) and (1),

F2 = F1 + aF1

(
V

V − S1 + F1
− 1

)
> 0. (30)

Moreover, p2 = V and (2) imply D2 = S2, which requires F2 ≥ S2. Using (15) and (30), this condition

becomes

A(F1) + F (F1)V ≥ V. (31)

From Figure 2, we can infer the following.

Case 1: For ω ∈ Ω1, (31) is satisfied if, and only if, p2(F1) ≥ V .

Case 2: For ω ∈ Ω2, (31) is violated.

Cases 3 and 4: In these cases, (31) holds true if, and only if, p2(F1) ≤ V .

4 Existence and uniqueness

This section analyzes the existence, uniqueness, and comparative-statics properties of the equilibrium.

4.1 Existence

In this subsection, we characterize the necessary and sufficient conditions for the existence of an

equilibrium. It turns out that ω ∈ Ω1 is sufficient for the existence of an equilibrium, while non-

existence may arise in all other parameter subspaces.

Theorem 1: For ω ∈ Ω11, an equilibrium exists.

Proof: Suppose there is a D∗
1 (0 < D∗

1 < F1) such that p2(D∗
1) = ψ(D∗

1). We assert that there is a PIE

with D1 = D∗
1 and p2 = p2(D∗

1).

Since p2(D1) > V −S2 (in case 1.1) and ψ(D1) < V for all D1 ∈ [0, F1], we have V −S2 < p2(D∗
1) < V .

To show that a PIE prevails, we have to show that F1 ≤ D̄1. In case 1, if a PIE prevails, we have

D1 < D∞
1 and, from (27), p2 < p1. Using (1), (26), and (21), it follows that F1 > D̄1 if, and only if,

S2 − S1 − (F1 −D1) +D1 > 0 and

a > 1 +
V − S2 + (F1 −D1)

S2 − S1 − (F1 −D1) +D1
. (32)

Suppose, contrary to what we want to prove, that F1 > D̄1, so that (32) holds and both the numerator

and the denominator in the fraction on the right-hand side are positive. Then the fraction is no less

trader pessimism disappears or an ERE prevails), then the return on investment is positive, so that arbitrageurs can pay

F1 to their investors. If not, then investors withdraw F1 − F2 in period 2. The amount of remaining claims against the

arbitrageurs in period 3 is F1 − (F1 − F2) = F2. Since the rate of return on funds under management between periods 2

and 3 is V/p2 − 1 (> 0) in equilibrium except in an ERE, W > F2.
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than (V − S2)/(S2 − S1 + F1), which is obtained by subtracting F1 −D1 (≥ 0) in the numerator and

adding 2(F1 −D1) (≥ 0) in the denominator. So the supposition made contradicts the case distinction

made (viz., a < 1+(V −S2)/(S2−S1 +F1) in case 1.1), and a PIE exists. Since p2(D1) (in case 1) and

ψ(D1) are both continuous on [0, F1], in order for there not to be an intersection, D∗
1 , we must have

either p2(0) ≤ ψ(0) or p2(F1) ≥ ψ(F1). In the former case, there is a NIE. p2 < V − S2 is satisfied,

and p2 < V follows from p2(0) ≤ ψ(0) < V . F1 < D̄1 follows from the same reasoning as above. In the

latter case, there is a FIE1. Equation (21) ensures p2 = p2(F1) < V . Q.E.D.

Example 2: Consider the example presented by SV (p. 44): V = 1, F1 = 0.2, a = 1.2, S1 = 0.3, and

S2 = 0.4. As a = 1.2 < 4 = 1 + (V − S2)/F1 and a = 1.2 < 3 = (V − S2)/(S2 − S1 + F1), we have

ω ∈ Ω11, so that min{D0
1 ,D

∞
1 } = min{0.6667, 3.5} > 0.2 = F1. From (21) and (28),

p2(D1) =
(0.8 − 1.2D1)(0.7 +D1)

0.7 − 0.2D1

ψ(D1) =
q(0.7 +D1)

1 − (1 − q)(0.7 +D1)
.

As ψ(0) = 0.7q/(0.3 + 0.7q) < 0.7 < 0.8 = p2(0), there is not a NIE. As shown by SV (p. 44), there is

PIE for q > 0.3590 and a FIE1 for q < 0.3590.

Theorem 2: There exist parameters ω ∈ Ω12, ω ∈ Ω2, ω ∈ Ω3, and ω ∈ Ω4 such that an equilibrium

fails to exist.

Proof: Numerical examples suffice to prove the theorem.11

Example 1: Recall the example introduced in Subsection 3.2: V = 1, F1 = 0.1, a = 3, S1 = 0.2,

S2 = 0.7, and q = 0.1. As a = 3 < 4 = 1+(V −S2)/F1 and a = 3 > 1.5 = (V −S2)/(S2 −S1 +F1), we

have ω ∈ Ω12 (min{D0
1 ,D

∞
1 } = min{0.1333, 0.4} > 0.1 = F1). The example is constructed such that

an equilibrium fails to exist due to the non-concavity of the arbitrageurs’ expected wealth function

(cf. step 3 in Subsection 3.3). The functions p2(D1) and ψ(D1) defined in (21) and (28) are given by

the right-hand sides of (10) and (12), respectively. As shown in Subsection 3.2, a PIE does not exist

(since D̄1 = 0.0558 < 0.1 = F1).12 Moreover, as p2(0) = 0.4 > 0.2857 = ψ(0), a NIE does not exist. As

V −S2 = 0.3 < 0.4737 = ψ(F1), a FIE1 does not exist. In a FIE2, p1 = 0.9, p2 = p2(F1) = V −S2 = 0.3,

and D̄1 = 0.05 < 0.1 = F1.13 From (25), EW (F1) = 0.12 < 0.1233 = EW (0), so a FIE2 does not exist.

An ERE does not exist either, since p2(F1) = 0.15 < 1 = V , so that (31) is violated (alternatively,

this can be deduced from the fact that F2 = 0.1333 < 0.7 = S2 for p1 = 0.9, p2 = 1).

11Notice that, as Ω12 ⊂ Ω1, the non-existence result applies to parameters not ruled by SV’s stability condition.

12And this holds true for any distribution of F1 across arbitrageurs as well.

13Notice that different price levels, p1 and p2, yield different values for D̄1 (cf. (26)).
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Example 3: Let V = 1, F1 = 0.2, a = 4.25, S1 = 0.3, S2 = 0.4, and q = 0.3. ω ∈ Ω2 as 1 + (V −
S2)/F1 = 4 < a = 4 < 4.5 = 1 + (V − S2)/F1. From (21) and (28),

p2(D1) =
(0.8 − 4.25D1)(0.7 +D1)

0.7 − 3.25D1

ψ(D1) =
2.1 + 3D1

5.1 − 7D1
.

In a PIE, D1 = 0.1524, p1 = 0.8524, and p2 = 0.6341. Then, however, D̄1 = 0.1837 < 0.2 = F1, so a

PIE does not exist. As p2(0) = 0.8 > 0.4118 = ψ(0), a NIE does not exist. As V −S2 = 0.6 < 0.7297 =

ψ(F1), a FIE1 does not exist. As EW (F1) = 0.2061 < 0.24 = EW (0) when D1 = F1 (so that p1 = 0.9

and p2 = 0.9), a FIE2 does not exist. As pointed out in Subsection 3.4, (31) is violated in case 2, so

that an ERE does not exist either (F2 = 0.2944 < 0.4 = S2 for p1 = 0.9, p2 = 1).14

Example 4: Let V = 1, F1 = 0.2, a = 6, S1 = 0.3, S2 = 0.4, and q = 0.4. Since V = 1 > 0.7 = S1+F1,

S2 = 0.4 < 0.5 = S1 +F1, and a = 6 < 8 = 1+(V −S1)/(F1 −S2 +S1), we have ω ∈ Ω3. This example

highlights the importance of the discontinuity in the mapping from investment levels, D1, to period-2

prices, p2. Equations (21) and (28) become

p2(D1) =
(0.8 − 6D1)(0.7 +D1)

0.7 − 5D1

ψ(D1) =
2.8 + 4D1

5.8 − 6D1
.

Since p2(0) = 0.8 > 0.4828, there is not a NIE. p2(D1) = ψ(D1) for D1 = 0.1206, which implies

p1 = 0.8206 and p2 = 0.6466. That this is not a PIE follows from the fact that D̄1 = 0.1572 <

0.2 = F1. For D1 ∈ (0.14, 0.2), we have p2(D1) > 1. This implies that there is not a PIE in this

interval (since p2(D1) > 1 > ψ(D1)) and that there is not a FIE1 either (since p2(F1) > 1 = V ). As

EW (F1) = 0.20 < 0.2533 = EW (0) when D1 = F1, a FIE2 does not exist. Finally, the condition for

the existence of an ERE in case 3 is violated: p2(F1) = 1.2 > 1 = V (F2 = 0.3333 < 0.4 = S2 for

p1 = 0.9, p2 = 1).

Example 5: Let V = 1, F1 = 0.2, a = 6, S1 = 0.3, S2 = 0.35, and q = 0.4. ω ∈ Ω4 because

V = 1 > 0.5 = S1 +F1, S2 = 0.35 < 0.5 = S1 +F1, and a = 6 > 5.3333 = 1+(V −S1)/(F1 −S2 +S1).

Equation (21) becomes

p2(D1) =
(0.85 − 6D1)(0.7 +D1)

0.7 − 5D1

14In this example an equilibrium exists for different distributions of F1 across arbitrageurs. Suppose 90% of the

arbitrageurs have funds 0.18, and 10% “big” arbitrageurs have 0.38 (notice that 0.9 · 0.18 + 0.1 · 0.38 = 0.2 = F1).

Suppose the former invest 0.1271 and the latter 0.38, so that D1 = 0.1524 (= 0.9 · 0.1271 + 0.1 · 0.38). This yields

p1 = 0.8524, p2 = 0.6341, and D̄1 = 0.1837. An equilibrium prevails because any investment between 0 and 0.18 yields

the same level of expected wealth for the former arbitrageurs and being fully invested is the optimal choice for “big”

arbitrageurs.
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The equation for ψ(D1) (equation (28)) reads as in Example 4. Since p2(0) = 0.85 > 0.4828, there

is not a NIE. p2(D1) = ψ(D1) if, and only if, D1 = 0.1451, p1 = 0.8451, and p2 = 0.6858. As

D̄1 = 0.1768 < 0.2 = F1, this is not an equilibrium. As shown in Subsection 3.3 (step 2), both p2(D1)

and V −S2 are potential equilibrium price levels for D1 ∈ (D∞
1 , F1]. However, p2(F1) = 1.05 (> 1 = V )

contradicts the definition of a FIE1. For p2 = V − S2 = 0.65 and D1 = F1 = 0.2, we have p1 = 0.9,

D̄1 = 0.12 < 0.2 = F1, but EW (F1) = 0.20 < 0.2431 = EW (0), so that a FIE2 does not exist either.

As in the previous example, the fact that p2(F1) = 1.05 > 1 = V rules out an ERE.

This proves Theorem 2. Q.E.D.

Remark: The discontinuity of the relation between D1 and p2 alone is not sufficient to obtain a non-

existence result. To see this, suppose the condition F1 ≤ D̄1 is satisfied for any prices, p1 and p2, which

potentially occur in equilibrium. In cases 1 and 2, max{p2(D1), V − S2} ≥ ψ(D1) for all D1 ∈ [0, F1],

or max{p2(D1), V − S2} ≤ ψ(D1) for all D1 ∈ [0, F1], or max{p2(D1), V − S2} = ψ(D1) for some

D1 ∈ (0, F1), so that a NIE or a FIE1 or a PIE, respectively, exists. Replacing [0, F1] with [0,D∞
1 ),

the same argument holds true for case 3 (recall that p2 = V − S2 for D1 ∈ [D0
1,D

∞
1 )). In case 4, if

ψ(F1) ≤ V −S2, then there is a FIE 1 with p1 = V −S1 +F1 and p2 = V −S2. If ψ(F1) > V −S2, then

ψ(D∗
1) = V −S2 for some D∗

1 ∈ (D0
1 , F1), and there is a PIE with p1 = V −S1 +D∗

1 and p2 = V −S2.

4.2 Uniqueness

In this subsection, we show that an equilibrium, if one exists, is not necessarily unique.

Theorem 3: There exist parameter values such that the equilibrium is not unique.

Proof: Again it suffices to construct an example.

Example 6: Let V = 1, F1 = 0.2, a = 10, S1 = 0.4, S2 = 0.6, and q = 0.8 (so that ω ∈ Ω3).

There are, then, three equilibria. First, there is a PIE with D1 = 0.0289 (< 0.06 = D0
1), p1 = 0.6289,

p2 = 0.5755, and D̄1 = 0.2356 (> 0.2 = F1). Second, as p2(F1) = 0.9333 and ψ(F1) = 0.7619, there is

a FIE1 with p1 = 0.8 and p2 = 0.9333. For p2 = V − S2 = 0.4 and D1 = F1 = 0.2, we have p1 = 0.8,

D̄1 = 0.04 < 0.2 = F1, but EW (F1) = 0.14 < 0.44 = EW (0), so that a FIE2 does not exist. Third,

since p2(F1) ≤ V , there is an ERE with p1 = 0.8, p2 = 1, F2 = 0.7, and D2 = 0.6.

Example 7: As another example, let V = 1, F1 = 0.2, a = 35, S1 = 0.4, S2 = 0.5, and q = 0.8 (so

that ω ∈ Ω4). As p2(D1) > ψ(D1) for all D1 ∈ [0,D∞
1 ), there is not a NIE or a PIE with D1 < D∞

1 .

p2(D1) = ψ(D1) for D1 = 0.0392. This, however, implies D̄1 = 0.0691 < 0.2 = F1, so a PIE does not

prevail. As 1 = V > p2(F1) = 0.8129 > 0.7619 = ψ(F1), there is a FIE1 with p1 = 0.8 and p2 = 0.8129.

Interestingly, suppose D1 = F1, such that p1 = 0.8, and p2 = V − S2 = 0.5. Then, D̄1 = 0.0152 and

EW (F1) = 0.39 > 0.36 = EW (0), so that a FIE2 prevails. Finally, as p2(F1) = 0.8129 ≤ 1 = V , there
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is also an ERE (with F2 = 1.95 > 0.5 = S2). So as in Example 6, three equilibria exist, but here all

three equilibria entail that arbitrageurs are fully invested. Q.E.D.15

4.3 Sunspots

A sunspot equilibrium is an equilibrium such that at least two different period-2 price levels, p2,

possibly occur, with given non-zero probabilities. Multiplicity of equilibria naturally gives rise to

sunspot equilibria.

Theorem 4: There exist parameter values such that sunspot equilibria exist.

Proof: As usual, an example suffices to prove the theorem. Reconsider Example 7. Let p21 = 0.8129,

p22 = 0.5, and p23 = 1. These are the equilibrium price levels, p2, in the FIE1, the FIE2, and the ERE,

respectively. Furthermore, let p1 = 0.8. Suppose (conditional on worsening noise trader expectations)

arbitrageurs expect the period-2 price p2i to prevail with probability πi, where
∑3

i=1 πi = 1 and πi ≥ 0

for all i ∈ {1, 2, 3}, with strict inequality for at least two i ∈ {1, 2, 3}. Analogously to (25), expected

wealth as of period 1 is

EW (D1) =
3∑

i=1

πi

(
0.2

[
0.2 + 35D1

(
1

0.8
− 1

)]
+ 0.8

1
p2i

max
{

0.2 + 35D1

( p2i

0.8
− 1

)
, 0

})
. (33)

As D1 = 0.2 maximizes expected wealth for each i ∈ {1, 2, 3}, it also maximizes (33). In period 2,

arbitrageurs choose D2 = F2 = 0.3129, D2 = F2 = 0, or D2 = S2 = 0.5, depending on whether p21,

p22, or p23 is realized. Q.E.D.

4.4 Comparative statics

This subsection shows that, as one would expect, the fact that the functions which determine the

equilibrium are non-well-behaved possible gives rise to perverse comparative statics properties. For

the sake of brevity, we restrict attention to the impact of changes in the period-2 noise trader shock,

S2, on the period-2 price, p2 (cf. SV, Proposition 2 and 4, pp. 44, 46).

Theorem 5: dp2/dS2 < 0 for ω ∈ Ω1∪Ω2. There exist parameters ω ∈ Ω3∪Ω4 such that dp2/dS2 > 0.

Proof: Consider a full-investment equilibrium with p2 = p2(F1). Differentiating (21) and evaluating

the derivative at D1 = F1 yields

dp2

dS2
= − V − S1 + F1

V − S1 − (a− 1)F1
. (34)

15It may be noted that SV (p. 46) presume that if their stability condition is violated, then the only period-2 equilibrium

price level is V −S2. As the stability condition is violated in cases 3 and 4, Examples 6 and 7 show that other equilibria

may emerge as well.
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In cases 1 and 2 (where F1 < D∞
1 ), the denominator on the right-hand side of (34) is positive, so

that dp2/dS2 < −1. Moreover, in cases 1 and 2, a PIE satisfies p2 = max{p2(D1), V − S2} = ψ(D1),

where p2(D1) and ψ(D1) are given by (21) and (28), respectively. As an increase in S2 decreases

max{p2(D1), V − S2} and leaves (28) unaffected, p2 falls. This proves dp2/dS2 < 0 in cases 1 and

2. In cases 3 and 4, the denominator in (34) is negative, so that dp2/dS2 > 0 in a full-investment

equilibrium with p2 = p2(F1). Q.E.D.

Contrary to what one might expect, the comparative statics are not necessarily perverse for PIEs with

D1 > D∞
1 . To see this, assume in case 4, ψ(D1) intersects p2(D1) from above for D1 ∈ (D∞

1 , F1). An

increase in S2 shifts p2(D1) upward, such that p2 falls.

Example 8: Let V = 1, F1 = 0.2, a = 10, S1 = 0.4, S2 = 0.5, and q = 0.8 (ω ∈ Ω4). There is

a PIE with D1 = 0.0868 (> 0.0667 = D∞
1 ), p1 = 0.6868, p2 = p2(D1) = 0.6370, and D̄1 = 0.2754

(> 0.2 = F1). If S2 rises to 0.51, the period-2 price falls to p2 = 0.6304 (D1 = 0.0807, p1 = 0.6807,

D̄1 = 0.2705).

5 Conclusion

A thorough analysis of equilibria in SV’s seminal model of limits of arbitrage that “anything is possi-

ble”: non-existence, multiplicity, and sunspot equilibria. Thus, given limits of arbitrage, non-rational

behavior in the stock market may give rise, not only to mispricing, but also to non-well-behaved

demand and supply correspondences which possibly lead to more fundamental allocation problems.
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Constantinides, Milton Harris, and René Stulz (Eds.), Handbook of the Economics of Finance,

Elsevier, 1051-1121.

Shleifer, Andrei (2000), Inefficient Markets, Oxford University Press.

Shleifer, Andrei and Robert W. Vishny (1997), “The Limits of Arbitrage”, Journal of Finance 52,

35-55.

Zwiebel, Jeffrey (2002), “Review of Shleifer’s Inefficient Markets”, Journal of Economic Literature

40, 1215-1220.

17



Appendix

Proof of (23)

p2(D1)
>

<
V − S2

V − S2 + F1 − aD1

V − S1 − (a− 1)D1︸ ︷︷ ︸
>0

(V − S1 +D1)
>

<
V − S2

(V − S2 + F1 − aD1)(V − S1 +D1)
>

<
(V − S2)[V − S1 − (a− 1)D1]

F1(V − S1 +D1)
>

<
aD1 (S2 − S1 +D1)︸ ︷︷ ︸

>0

a
<

>

F1

D1

(
1 +

V − S2

S2 − S1 +D1

)
.

Proof of (31)

F1 + aF1

(
V

V − S1 + F1
− 1

)
≥ S2

V − S2 + F1 − aF1︸ ︷︷ ︸
≡A(F1)

+
aF1

V − S1 + F1︸ ︷︷ ︸
≡F (F1)

V ≥ V

A(F1) + F (F1)V ≥ V.
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Proof of (32)

F1

>

<
D̄1 ≡ F1

a

(
1 − p2

p1

)
︸ ︷︷ ︸

>0

a

(
1 − p2

p1

)
>

<
1

a

[
1 − V − S2 − aD1 + F1

V − S1 − (a− 1)D1

]
>

<
1

a
S2 − S1 − (F1 −D1)
V − S1 − (a− 1)D1︸ ︷︷ ︸

>0

>

<
1

a[S2 − S1 − (F1 −D1)]
>

<
V − S1 − (a− 1)D1

a [S2 − S1 − (F1 −D1) +D1]︸ ︷︷ ︸
>0

>

<
V − S1 +D1

a
>

<

V − S1 +D1

S2 − S1 − (F1 −D1) +D1

a
>

<
1 +

V − S2 + (F1 −D1)
S2 − S1 − (F1 −D1) +D1

.
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Maple output for the examples

Example 1

> V:=1; S_1:=0.2;a:=3;F_1:=0.1;S_2:=0.7;q:=0.1;

V := 1

S 1 := 0.2

a := 3

F 1 := 0.1

S 2 := 0.7

q := 0.1

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 0.4000000000

> D0=(V-S_2+F_1)/a;

D0 = 0.1333333333

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 2 :=
(0.4 − 3D 1 ) (0.8 + D 1 )

0.8 − 2D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.1

1
0.8 + D 1

− 0.9

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=0.1..0.5,discont =

> true,labels=[D_1,‘‘]);
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0.1

0.2

0.3

0.4

0.5

0 0.02 0.04 0.06 0.08 0.1
D_1

> solve(p_2=psi,D_1);

−0.8000000000, 0.3349907290, 0.03537964136
> D_1star:=.3537964136e-1; p_1star=V-S_1+D_1star;

> p_2star=eval(psi,D_1=D_1star);

D 1star := 0.03537964136

p 1star = 0.8353796414

p 2star = 0.3366317250

> bard1:=F_1/(a*(1-.3366317250/.8353796414));

bard1 := 0.05583178823

Example 2

> V:=1; S_1:=0.3;a:=1.2;F_1:=0.2;S_2:=0.4;q:=0.5;

V := 1

S 1 := 0.3

a := 1.2

F 1 := 0.2

S 2 := 0.4
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q := 0.5

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 3.500000000

> D0=(V-S_2+F_1)/a;

D0 = 0.6666666667
> p_1:=V-S_1+D_1;

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 1 := 0.7 + D 1

p 2 :=
(0.8 − 1.2D 1 ) (0.7 + D 1 )

0.7 − 0.2D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.5

1
0.7 + D 1

− 0.5

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=0.5..V,discont =

> true,labels=[D_1,‘‘]);
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D_1

> solve(p_2=psi,D_1);

−0.7000000000, 1.625718035, 0.1742819648

> D_1star:=.1742819648; p1=V-S_1+D_1star; p2=eval(psi,D_1=D_1star);
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D 1star := 0.1742819648

p1 = 0.8742819648

p2 = 0.7766438285

> bard1:=F_1/(a*(1-.7766438285/.8742819648));

bard1 := 1.492384701

Example 3

> V:=1; S_1:=0.3;a:=4.25;F_1:=0.2;S_2:=0.4;q:=0.3;

V := 1

S 1 := 0.3

a := 4.25

F 1 := 0.2

S 2 := 0.4

q := 0.3

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 0.2153846154

> D0=(V-S_2+F_1)/a;

D0 = 0.1882352941

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 2 :=
(0.8 − 4.25D 1 ) (0.7 + D 1 )

0.7 − 3.25D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.3

1
0.7 + D 1

− 0.7

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=-0.1..1.1,discont =

> true,labels=[D_1,‘‘]);
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D_1

> solve(p_2=psi,D_1);

−0.7000000000, 0.4366571407, 0.1524184896
> D_1star:=.1524184896; p_1star=V-S_1+D_1star;

> p_2star=eval(psi,D_1=D_1star);

D 1star := 0.1524184896

p 1star = 0.8524184896

p 2star = 0.6340715895

> bard1:=F_1/(a*(1-.6340715895/.8524184896));

bard1 := 0.1837159641

Example 4

> V:=1; S_1:=0.3;a:=6;F_1:=0.2;S_2:=0.4;q:=0.4;

V := 1

S 1 := 0.3

a := 6

F 1 := 0.2

S 2 := 0.4
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q := 0.4

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 0.1400000000

> D0=(V-S_2+F_1)/a;

D0 = 0.1333333333

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 2 :=
(0.8 − 6D 1 ) (0.7 + D 1 )

0.7 − 5D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.4

1
0.7 + D 1

− 0.6

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=-0.1..1.3,discont =

> true,labels=[D_1,‘‘]);
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D_1

> solve(p_2=psi,D_1);

−0.7000000000, 0.4238593785, 0.1205850660
> D_1star:=.1205850660; p_1star=V-S_1+D_1star;

> p_2star=eval(psi,D_1=D_1star);

D 1star := 0.1205850660
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p 1star = 0.8205850660

p 2star = 0.6465767720

> bard1:=F_1/(a*(1-.6465767720/.8205850660));

bard1 := 0.1571927114

Example 5

> V:=1; S_1:=0.3;a:=6;F_1:=0.2;S_2:=0.35;q:=0.4;

V := 1

S 1 := 0.3

a := 6

F 1 := 0.2

S 2 := 0.35

q := 0.4

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 0.1400000000

> D0=(V-S_2+F_1)/a;

D0 = 0.1416666667

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 2 :=
(0.85 − 6D 1 ) (0.7 + D 1 )

0.7 − 5D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.4

1
0.7 + D 1

− 0.6

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=-0.1..1.3,discont =

> true,labels=[D_1,‘‘]);
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D_1

> solve(p_2=psi,D_1);

−0.7000000000, 0.4076297028, 0.1451480750
> D_1star:=.1451480750; p_1star=V-S_1+D_1star;

> p_2star=eval(psi,D_1=D_1star);

D 1star := 0.1451480750

p 1star = 0.8451480750

p 2star = 0.6858421172

> bard1:=F_1/(a*(1-.6858421172/.8451480750));

bard1 := 0.1768396040

Example 6

> V:=1; S_1:=0.4;a:=10;F_1:=0.2;S_2:=0.6;q:=0.8;

V := 1

S 1 := 0.4

a := 10

F 1 := 0.2

S 2 := 0.6
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q := 0.8

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 0.06666666667

> D0=(V-S_2+F_1)/a;

D0 = 0.06000000000

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 2 :=
(0.6 − 10D 1 ) (0.6 + D 1 )

0.6 − 9D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.8

1
0.6 + D 1

− 0.2

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=-0.1..1.3,discont =

> true,labels=[D_1,‘‘]);
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D_1

> solve(p_2=psi,D_1);

−0.6000000000, 0.8311234224, 0.02887657760
> D_1star:=.2887657760e-1; p_1star=V-S_1+D_1star;

> p_2star=eval(psi,D_1=D_1star);

D 1star := 0.02887657760

11



p 1star = 0.6288765776

p 2star = 0.5754827918

> bard1:=F_1/(a*(1-.5754827918/.6288765776));

bard1 := 0.2355617114

Example 7

> V:=1; S_1:=0.4;a:=35;F_1:=0.2;S_2:=0.5;q:=0.8;

V := 1

S 1 := 0.4

a := 35

F 1 := 0.2

S 2 := 0.5

q := 0.8

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 0.01764705882

> D0=(V-S_2+F_1)/a;

D0 = 0.02000000000

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 2 :=
(0.7 − 35D 1 ) (0.6 + D 1 )

0.6 − 34D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.8

1
0.6 + D 1

− 0.2

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=-0.1..1.3,discont =

> true,labels=[D_1,‘‘]);
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D_1

> solve(p_2=psi,D_1);

−0.6000000000, 0.4950391816, 0.03924653270
> D_1star:=.3924653270e-1; p_1star=V-S_1+D_1star;

> p_2star=eval(psi,D_1=D_1star);

D 1star := 0.03924653270

p 1star = 0.6392465327

p 2star = 0.5863633774

> bard1:=F_1/(a*(1-.5863633774/.6392465327));

bard1 := 0.06907374023

> EW_1:=(1-q)*(F_1+a*F_1*(V/(V-S_1+F_1)-1));

EW 1 := 0.3900000000

> EW_0:=(1-q)*F_1+q*(V/(V-S_2))*F_1;

EW 0 := 0.3600000000

Example 8

> V:=1; S_1:=0.4;a:=10;F_1:=0.2;S_2:=0.5;q:=0.8;

V := 1
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S 1 := 0.4

a := 10

F 1 := 0.2

S 2 := 0.5

q := 0.8

> Dinfty:=(V-S_1)/(a-1);

Dinfty := 0.06666666667

> D0=(V-S_2+F_1)/a;

D0 = 0.07000000000

> p_2:=(V-S_2+F_1-a*D_1)*(V-S_1+D_1)/(V-S_1-(a-1)*D_1);

p 2 :=
(0.7 − 10D 1 ) (0.6 + D 1 )

0.6 − 9D 1
> psi:=q/(1/(V-S_1+D_1)-(1-q)/V);

ψ :=
0.8

1
0.6 + D 1

− 0.2

> plot([p_2,psi,V-S_2],D_1=0..F_1,y=-0.1..1.3,discont =

> true,labels=[D_1,‘‘]);
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D_1
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> solve(p_2=psi,D_1);

−0.6000000000, 0.7831738072, 0.08682619283
> D_1star:=.8682619283e-1; p_1star=V-S_1+D_1star;

> p_2star=eval(psi,D_1=D_1star);

D 1star := 0.08682619283

p 1star = 0.6868261928

p 2star = 0.6369566573

> bard1:=F_1/(a*(1-.6369566573/.6868261928));

bard1 := 0.2754492040
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