
Understanding

Fixed Point Theorems

Regensburger Diskussionsbeiträge zur
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Abstract

Fixed point theorems are the standard tool used to prove the existence of equilibria in mathematical

economics. This paper shows how to prove a slight generalization of Brouwer’s and Kakutani’s fixed
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theorems accessible to a broader audience.

Keywords: Fixed points, existence of equilibrium.

JEL classification: C62.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Regensburg Publication Server

https://core.ac.uk/display/11534756?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 Introduction

Fixed point theorems are the standard tool used to prove the existence of equilibria in mathematical

economics. The strategy of existence proofs is to construct a mapping whose fixed points are solutions

to the equations that characterize the equilibrium of the model considered and then apply a fixed point

theorem. Sometimes this is not a difficult task, so that existence theorems are accessible to graduate

students. The most important existence result in economics is a case in point: equipped with Brouwer’s

fixed point theorem, it is quite easy to prove the existence of a general equilibrium in a Walrasian

system of continuous excess demand functions (see, e.g., Varian 1984, pp. 195-6). The “archetypical

existence proof in game theory” (Fudenberg and Tirole, 1991, p. 29) is another good example: Nash’s

(1950) proof that every finite game has a mixed-strategy equilibrium is a straightforward application

of Kakutani’s fixed point theorem to the Cartesian product of the players’ reaction correspondences

(see, e.g., Fudenberg and Tirole, 1991, pp. 29-30). However, though the application of fixed point

theorems is sometimes simple, proofs of fixed point theorems generally are not. Yet there is one

relatively simple graphical approach to proving Brouwer’s fixed point theorem set out on the web

page www.mathpages.com. This proof builds upon the familiar technique of drawing and shifting

curves in the plane. Its main virtue is that it is, therefore, intelligible without advanced knowledge

of topology. The present paper serves two purposes. First, it extends the “curve shifting approach”

to a fixed point theorem which is slightly more general than Brouwer’s and Kakutani’s because the

continuity concept employed is weaker. Second, we clarify some considerations essential to dealing

with fixed points on the boundary of the domain of definition and to generalizing the theorem from

R2 to Rn. In the proof at www.mathpages.com, the former issue is ignored and the proof for Rn with

n > 2 is sketched only very roughly, though both issues are not easy to resolve.

Section 2 presents our simple proof of Brouwer’s fixed point theorem. Section 3 is concerned with

several extensions, such as Kakutani’s fixed point theorem. Section 4 concludes.

2 Brouwer’s fixed point theorem

Consider a mapping f : X → X, X ∈ Rn (n ≥ 1).

Assumption 1: X is compact (i.e., bounded and closed) and convex.

Remark: Denote the projections of x ∈ X and X onto the (xi, . . . , xn)-space as xi and Xi =

{xi|(x1, . . . , xi−1) ∈ Ri−1, (x1, . . . , xi−1,xi) ∈ X}, respectively (i = 2, . . . , n). Due to Assumption

1, Xi is compact (i.e., bounded and closed) and convex.

Boundedness is trivial. Since X is bounded, there are upper and lower bounds for all xi (i = 1, . . . , n).

1






y1

y2

...

yn




=




f1(x1, x2, . . . , xn)

f2(x1, x2, . . . , xn)
...

fn(x1, x2, . . . , xn)




� x1 = ψ1(x2, . . . , xn)

� x2 = ψ2(x3, . . . , xn)
...

�����
�����

�����

Figure 1: Idea behind the proof

The components xj (j = i, . . . , n) of vectors xi ∈ Xi cannot take on values xi outside of these bounds,

so Xi is bounded.

To prove that Xi is closed, consider a boundary point x′
i of Xi. We show that to x′

i corresponds a point

(x′
1, . . . , x

′
i−1,x

′
i) in X ((x′

1, . . . , x
′
i−1) ∈ Ri−1). It then follows that x′

i ∈ Xi, i.e., that Xi is closed.

Suppose, to the contrary, that no point (x1, . . . , xi−1,x′
i) ∈ Rn is in X ((x1, . . . , xi−1) ∈ Ri−1). As x′

i is

on the boundary of Xi, there are points xi ∈ Xi close to x′
i and, hence, points (x1, . . . , xi−1,xi) ∈ X.

As xi goes to x′
i, (x1, . . . , xi−1,xi) ∈ X goes to (x1, . . . , xi−1,x′

i). Since X is closed, (x1, . . . , xi−1,x′
i)

is in X, a contradiction.

To prove that Xi is convex, consider two points x′
i,x

′′
i ∈ Xi. By assumption, there exist vectors

(x′
1, . . . , x

′
i−1), (x

′′
1, . . . , x

′′
i−1) ∈ Ri−1 such that (x′

1, . . . , x
′
i−1,x

′
i), (x′′

1, . . . , x
′′
i−1,x

′′
i ) ∈ X. Convexity of

X implies that there exists a λ (0 ≤ λ ≤ 1) such that λ(x′
1, . . . , x

′
i−1,x

′
i)+(1−λ)(x′′

1, . . . , x
′′
i−1,x

′′
i ) ∈ X.

Convexity of Xi, i.e. λx′
i+(1−λ)x′′

i ∈ Xi, follows from the fact that there exists a vector (x1, . . . , xi−1) ∈
Ri−1 such that (x1, . . . , xi−1, λx′

i + (1 − λ)x′′
i ) ∈ X, namely (x1, . . . , xi−1) = λ(x′

1, . . . , x
′
i−1) + (1 −

λ)(x′′
1, . . . , x

′′
i−1).

Remark: A property that will be used repeatedly is that the set {xi|xi+1 ∈ Xi+1 given, (xi,xi+1) ∈ Xi}
is a closed interval [xi, xi]. The fact that the set is an interval follows from the observation that Xi is

convex. The fact that the interval is closed follows from the fact that Xi is closed. For i = 1, . . . , n−1,

the bounds of this interval, xi and xi, may change when xi+1 changes (unless X is rectangular).

For i = n, we have Xn = {xn|(x1, . . . , xn−1) ∈ Rn−1, (x1, . . . , xn−1, xn) ∈ X} = {xn|x ∈ X}, and

[xn, xn] = {xn|xn ∈ Xn} is uniquely determined.

y = f(x) is the set of points in X that corresponds to x ∈ X. A fixed point (FP) is a point x ∈ X such

that x ∈ f(x). The question is what continuity conditions have to be placed on the mapping f in order

to ensure the existence of a FP. Brouwer assumes that f is a continuous function. A continuous curve

between two points in a given set is a curve in the set which connects the two points without jumps.

Since it is our aim to prove a fixed point theorem using the “curve shifting approach”, we state this

assumption directly in terms of continuous curves (rather than closedness properties of the graph or
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Figure 2: FPs ψ1(x2) of y1 = f1(x)

sequences):

Assumption 2: f(x) is single-valued. For all x′,x′′ ∈ X and for all continuous curves C ⊂ X from x′

to x′′, there exists a unique continuous curve in the graph {(yi,x)|yi = fi(x),x ∈ C} which connects

(fi(x′),x′) and (fi(x′′),x′′) (i = 1, . . . , n).

Remark: We will repeatedly use three properties of f(x) arising from Assumption 2. (1) Intermediate

values: Assume fi(x′) > yi > fi(x′′) for some yi, x′, and x′′ on a continuous curve C. Then fi(x)

crosses yi an odd number of times as x goes from x′ to x′′. (2) Continuous shifting: Consider a contin-

uous curve in the (x1, . . . , xi−1, xi+1, . . . , xn)-space. Holding xi constant, this determines a continuous

curve C. Assume C ⊂ X. Then fi(x) varies continuously as x moves along C (i = 1, . . . , n). Graph-

ically, this means that for any closed interval [xi, xi] such that x ∈ X for xi ∈ [xi, xi], the graph

{(yi,x)|yi = fi(x), xi ∈ [xi, xi], x1, . . . , xi−1, xi+1, . . . , xn given} in the (yi, xi)-plane shifts continuously

as (x1, . . . , xi−1, xi+1, . . . , xn) changes. (3) Projection: Let C be a continuous curve in X. The projec-

tion of a continuous curve in the graph {(yi,x)|yi = fi(x),x ∈ C} onto the (yi, xi)-plane is itself a

continuous curve (i = 1, . . . , n). This follows from the fact that no component of a continuous curve

must display jumps.

Remark: The idea behind our approach to finding a FP x ∈ f(x) is to consider f component-wise

(see Figure 1). We show first that for all admissible x2, the mapping y1 = f1(x1,x2) has a FP

x1 = f1(x1,x2). The set of FPs of f1(x1,x2) associated with x2 is denoted ψ1(x2). Next we turn to

the composed mapping y2 = f2(x1, x2,x3), x1 = ψ(x2,x3) and show that for all admissible x3, the
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Figure 3: CFPs shift continuously or disappear in pairs

set of FPs ψ2(x3) is non-empty. An induction argument then proves the existence of a FP for the

components i = 3, . . . , n. The difficult part of the proof is to characterize how ψi(xi+1) depends on

xi+1. Here we need the continuous shifting property stated in the previous remark. The existence of

component-wise FPs then follows quite easily from the intermediate-value property stated there.

Brouwer’s fixed point theorem: Given Assumptions 1 and 2, the mapping f : X → X has a FP.

Lemma 1: (i) For all x2 ∈ X2, the set of FPs ψ1(x2) of the mapping f1(x1,x2) : [x1, x1] → [x1, x1] is

non-empty. (ii) For all x′
2,x

′′
2 ∈ X2 and for all continuous curves C2 ⊂ X2 from x′

2 to x′′
2, there exists

a continuous curve in the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} which connects a point in (ψ1(x′
2),x

′
2)

and a point in (ψ1(x′′
2),x

′′
2).

Proof: As mentioned in the second remark below Assumption 1, for a given x2, [x1, x1] is a closed

interval. Consider the mapping f1(x1,x2) : [x1, x1] → [x1, x1]. We distinguish interior FPs x1 =

f1(x1,x2) with x1 < x1 < x1 and corner FPs x1 = f1(x1,x2) with x1 = x1 or x1 = x1. Interior and

corner FPs for the other components xi of x are defined analogously.

(1) To begin with, we assume that f1(x1,x2) > x1 and f1(x1,x2) < x1, so that there are no corner

FPs.

(1.i) Consider the continuous curve {(x1,x2)|x1 ∈ [x1, x1],x2 given} ⊂ X. By Assumption 2, there is a

unique continuous curve in the graph {(y1, x1,x2)|y1 = f1(x1,x2), x1 ∈ [x1, x1],x2 given}, and by the

projection property, the projection of this curve onto the (y1, x1)-plane is also a continuous curve. By

the intermediate value property, this curve intersects the 45-degree line in the (y1, x1)-plane at least

once. So ψ1(x2) is non-empty. If f1(x1,x2) = x1 and the slope of f1(x1,x2) is unity, there is a FPs

interval (FPI) and ψ1(x2) is vertical. A single FP can be regarded as a degenerated FPI of length

zero. A FP is either a crossing FP (CFP) with f1(x1,x2) changing from one side of the 45-degree

line to the other or a tangential FP (TFP) with f1(x1,x2) staying on the same side of the 45-degree

line. Crossing fixed points intervals (CFPIs) and tangential fixed points intervals (TFPIs) are defined

analogously (the four possible sorts of FPs are illustrated in Figure 2 with filled circles for CFPs and
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Figure 4: CFPIs shift continuously or disappear in pairs

unfilled circles for TFPs). Counting a CFPI as one CFP, it follows from the fact that f1(x1,x2) > x1

and f1(x1,x2) < x1 and from the intermediate value property that for all x2, the number of CFPIs is

odd.

(1.ii) Consider a continuous curve C2 that connects x′
2 and x′′

2. By the continuous shifting property,

small changes in x2 lead to small shifts of the graph {(y1, x1,x2)|y1 = f1(x1,x2), x1 ∈ [x1, x1],x2 given}
in the (y1, x1)-plane. This alters the location of the FPs ψ1(x2) of y1 = f1(x1,x2) (see Figure 3, where

it is assumed that only component i of x2 varies, a simplification which is not necessary for the validity

of the arguments put forward).

(1.ii.a) Suppose for a moment that there are no FPIs. CFPs move slightly along the 45-degree line as

y1 = f1(x1,x2) shifts slightly, so ψ1(x2) does not jump and CFPs do not disappear (see the left panel

of Figure 3). There is only one way for CFPs to vanish: two CFPs collapse into one TFP (see the

right panel of Figure 3). Conversely, there is only one way for new CFPs to emerge as x2 changes: a

TFP splits into two CFPs. So as x2 changes, CFPs move continuously, or they disappear and appear

in pairs.

(1.ii.b) Next, we allow for FPIs. As mentioned above, ψ1(x2) is vertical at a FPI. Three new possibilities

arise of how ψ1(x2) can respond to changes in x2. One possibility is that a CFP turns into a CFPI,

which in turn gives way to a CFP (see the upper left panel of Figure 4). ψ1(x2) does not jump or

end in this case. Second, two CFPIs can collapse into one TFPI (see the upper right panel of Figure

4). In this case, CFPIs disappear in pairs. Conversely, pairs of CFPIs appear when a TFPI splits.

Third, a CFPI can split into several FPIs (see the lower panel of Figure 4). In this case, two things are

important. For one thing, the number of emerging CFPIs is odd. This is because f1(x1,x2) changes
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Figure 5: The graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} contains a continuous curve

from one side of the 45-degree line to the other. TFPIs may obtain in addition, but these are inessential

to the subsequent analysis. For another, the new CFPIs are connected to the splitting CFPI without

jumps. Conversely, an odd number of CFPIs and several TFPIs can collapse into one CFPI. So we

can generalize the statement made in paragraph (1.ii.a) about CFPs to CFPIs: as x2 changes, CFPIs

move continuously, or they disappear and appear in pairs.

We can now describe the shape of the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} that obtains when x2 goes

along the continuous curve C2 (Figure 5 illustrates the case where only one component i of x2 varies).

The simplest case is that for all x2, all FPs are CFPs. In this case, {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2}
consists of continuous curves that connect points in (ψ1(x′

2),x
′
2) and points in (ψ1(x′′

2),x
′′
2) (see the

upper left panel of Figure 5). If, by contrast, there are also TFPs, then the graph {(x1,x2)|x1 =

ψ1(x2),x2 ∈ C2} contains backward-bending portions (see the upper right panel of Figure 5), and

two new possibilities arise. First, curves in the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} that start at x′
2

or x′′
2 may return to x′

2 or x′′
2, respectively (see the lower left panel of Figure 5). Second, curves in

the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} may form closed loops (see the lower right panel of Figure

5). Evidently, continuous curves in {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} from a point in (ψ1(x′
2),x

′
2) to a

point in (ψ1(x′′
2),x

′′
2) represent an odd number of CFPIs for all x2, whereas curves in {(x1,x2)|x1 =

ψ1(x2),x2 ∈ C2} which start at and return to x′
2 or x′′

2 or form closed loops represent an even number

of CFPIs for all x2. Suppose there is no continuous curve in {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} from a

point in (ψ1(x′
2),x

′
2) to a point in (ψ1(x′′

2),x
′′
2). Then the number of CFPIs must be even for all x2. But

this contradicts the fact that for all x2, there is an odd number of CFPIs. So the supposition that the
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Figure 6: The number of RFPIs is odd

set of continuous curves in {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} is empty must be wrong. This completes

the proof of Lemma 1 for the case of no corner FPs. Changes in x2 lead to continuous variations in

x1 and x1. But this is inessential as long as only interior FPs can occur.

(2) Next we allow for f1(x1,x2) = x1 or f1(x1,x2) = x1, i.e. for corner FPs (CoFPs). A corner FPI

(CoFPI) prevails when f1(x1,x2) = x1 and f1(x1,x2) = x1 for x1 slightly greater than x1 or when

f1(x1,x2) = x1 and f1(x1,x2) = x1 for x1 slightly less than x1. As before, a CoFP can be regarded

as a degenerated CoFPI of length zero. We say that a FP or a FPI at x1 is robust (i.e., a RCoFP or a

RCoFPI, respectively) if f1(x1,x2) first goes to the area below the 45-degree line as x1 rises. Similarly

a FP at x1 is a RCoFP or a RCoFPI if f1(x1,x2) first goes to the area above the 45-degree line as x1

falls. A FP or FPI at x1 is called fragile (i.e., a FCoFP or a FCoFPI, respectively) if f1(x1,x2) first

goes to the area above the 45-degree line as x1 rises. Similarly a FP or FPI at x1 is called fragile if

f1(x1,x2) first goes to the area below the 45-degree line as x1 falls.

(2.i) Trivially, if there is a CoFP, ψ1(x2) is non-empty. Denote CFPIs and RCoFPIs as robust FPIs

(RFPIs). Then the number of RFPs is odd (see Figure 6). To see this, notice that if both x1 and x1 (left

panel of Figure 6) or neither of the two (middle panel of Figure 6) are RCoFPIs, f1(x1,x2) changes

from one side of the 45-degree line to the other an odd number of times. So, by the intermediate

value property, the number of CFPIs is odd. If there is exactly one RCoFPI (right panel of Figure 6),

f1(x1,x2) changes from one side of the 45-degree line to the other an even number of times, and the

number of CFPIs is even (see Figure 4). In both cases, the number of RFPIs is odd.

(2.ii) Consider a continuous curve C2 in X2 from x′
2 to x′′

2. By the continuous shifting property, small

changes in x2 move the graph {(y1, x1,x2)|y1 = f1(x1,x2), x1 ∈ [x1, x1],x2 given} in the (y1, x1)-plane

by small amounts, thereby altering the location of the FPs. Moreover, changes in x2 possibly alter

x1 and x1, which is essential when dealing with CoFPs. This opens up new possibilities for CFPs

to disappear and appear. To see this, it suffices to consider FPs at x1. FPs at x1 can be handled

symmetrically.

(2.ii.a) Suppose first that as x2 changes, x1 is constant (see Figure 7). There are three new possibilities
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Figure 7: RFPs shift continuously or disappear in pairs when f1(x1,x2) shifts

for CFPs to disappear and appear. First, a CFP turns into a RCoFP (see the upper left panel of Figure

7). This case arises if the slope of f1(x1,x2) is less than one at x1 when the CFP disappears. Conversely,

a CFP can appear when a RCoFP vanishes. Second, a CFP turns into a RCoFPI, which turns into

a RCoFP (see the upper right and the lower left panels of Figure 7). This case arises if the slope of

f1(x1,x2) is equal to one at x1 and f1(x1,x2) goes to below the 45-degree line when the CFP vanishes.

There may (lower left panel of Figure 7) or may not be (upper right panel of Figure 7) a FCoFP before

the CFP vanishes. Conversely, a RCoFPI can turn into a RCoFP, which then turns into a CFP. Third,

a CFP and a RCoFP can jointly give way for a FCoFPI (see the lower right panel of Figure 7). This

case arises if the slope of f1(x1,x2) is equal to one at x1 and f1(x1,x2) goes to above the 45-degree line

when the CFP disappears. Conversely, a CFP and a RCoFP can appear jointly. Evidently, a RCoFP

cannot appear if the slope of f1(x1,x2) is greater than one at x1.

(2.ii.b) Next, we allow for changes in x1 (see Figure 8). This gives rise to three further possibilities

for CFPs to disappear and appear, which are analogous to the three possibilities described in the

preceding paragraph (2.ii.a). First, a CFP turns into a RCoFP (see the upper left panel of Figure

8) if the slope of f1(x1,x2) is less than one at x1 when the CFP disappears. Conversely, a CFP can

appear when a RCoFP vanishes. Second, a CFP turns into a RCoFPI, which turns into a RCoFP

(see the upper right and the lower left panels of Figure 8). This case arises if the slope of f1(x1,x2) is

equal to one at x1 and f1(x1,x2) goes to below the 45-degree line when the CFP vanishes. There may

(lower left panel of Figure 8) or may not be (upper right panel of Figure 8) a FCoFP before the CFP

vanishes. Conversely, a RCoFPI can turn into a RCoFP, which then turns into a CFP. Third, a CFP

and a RCoFP can jointly give way for a FCoFPI (see the lower right panel of Figure 8). This case
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Figure 8: RFPs shift continuously or disappear in pairs when f1(x1,x2) and x1 shift

arises if the slope of f1(x1,x2) is equal to one at x1 and f1(x1,x2) goes to above the 45-degree line

when the CFP disappears. Conversely, a CFP and a RCoFP can appear jointly. Evidently, a RCoFP

cannot appear if the slope of f1(x1,x2) is greater than one at x1.

It follows that the statement made in paragraph (1.ii.b) about how CFPIs move or disappear and

appear extends to the case with CoFPs as follows: as x2 changes, RFPIs move continuously, or they

disappear and appear in pairs. From here on, the analysis of the case without CoFPs applies. The

graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} consists of continuous curves from points in (ψ1(x′
2),x

′
2) to

points in (ψ1(x′′
2),x

′′
2), curves that start at x′

2 or x′′
2 and return to x′

2 or x′′
2, respectively, and closed

loops. Continuous curves from a point in (ψ1(x′
2),x

′
2) to a point in (ψ1(x′′

2),x
′′
2) represent an odd

number of RFPIs for all x2. The other two kinds of curves represent an even number of RFPIs for all

x2. If there was no continuous curve in {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} from a point in (ψ1(x′
2),x

′
2)

to a point in (ψ1(x′′
2),x

′′
2), then the number of RFPIs would be even for all x2. This contradicts the

fact that for all x2, there is an odd number of RFPIs. This completes the proof of Lemma 1. � � �

Remark: Lemma 1 (i) establishes the Theorem for the case n = 1.

Remark: We have not established that there is a unique continuous curve in {(x1,x2)|x1 = ψ1(x2),x2 ∈
C2}. Counterexamples can be easily constructed.

Lemma 2: Suppose it holds true that for all x′
2,x

′′
2 ∈ X2 and for all continuous curves C2 ⊂ X2 from

x′
2 to x′′

2, there exists a continuous curve in the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} which connects

a point in (ψ1(x′
2),x

′
2) and a point in (ψ1(x′′

2),x
′′
2). Then: (i) For all x3 ∈ X3, the set of FPs ψ2(x3)
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of the composed mapping F2 : [x2, x2] → [x2, x2] with

y2 = f2(x), x1 = ψ1(x2),

is non-empty. (ii) For all x′
3,x

′′
3 ∈ X3 and for all continuous curves C3 ⊂ X3 from x′

3 to x′′
3, there

exists a continuous curve in the graph {(x2,x3)|x2 = ψ2(x3),x3 ∈ C3} which connects a point in

(ψ2(x′
3),x

′
3) and a point in (ψ2(x′′

3),x
′′
3).

Proof: (i) Hold x3 constant. [x2, x2] is a closed interval. {(x2,x3)|x2 ∈ [x2, x2],x3 given} ≡ C2 is

a continuous curve in X2. The lemma hypothesizes that there is a continuous curve in the graph

{(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} = {x|x1 = ψ1(x2), x2 ∈ [x2, x2],x3 given} ⊂ X. So by Assump-

tion 2, there is a unique continuous curve in the graph {(y2,x)|y2 = f2(x), x1 = ψ1(x2), x2 ∈
[x2, x2],x3 given}. By the projection property, the projection of this graph onto the (y2, x2)-plane

is a continuous curve. By the same reasoning as in Lemma 1 (i), it follows that the set of FPs

ψ2(x3) of the composed mapping y2 = f2(x), x1 = ψ1(x2) is non-empty. (ii) Hold x2 fixed, and

consider a continuous curve C3 from x′
3 to x′′

3. C2 = {(x2,x3)|x2 given,x3 ∈ C3} is a continuous

curve in X2. The lemma hypothesizes that there is a continuous curve in the graph {(x1,x2)|x1 =

ψ1(x2), x2 given,x3 ∈ C3} ⊂ X. By the continuous shifting property, as x3 and, hence, (ψ1(x2,x3),x3)

change, the graph {(y2,x)|y2 = f2(x), x1 = ψ1(x2,x3), x2 ∈ [x2, x2],x3 given} in the (y2, x2)-plane

shifts continuously. By the same reasoning as in Lemma 1 (ii), it follows that there is a continuous

curve in {(x2,x3)|x2 = ψ2(x3),x3 ∈ C3}. � � �

Remark: Lemma 2 (i) establishes the Theorem for the case n = 2.

Lemma 3: Suppose it holds true for all j = 1, . . . , i − 1 that for all x′
j+1,x

′′
j+1 ∈ Xj+1 and for all

continuous curves Cj+1 ⊂ Xj+1 from x′
j+1 to x′′

j+1, there exists a continuous curves in the graph

{(xj ,xj+1)|xj = ψj(xj+1),xj+1 ∈ Cj+1} which connects a point in (ψj(x′
j+1),x

′
j+1) and a point in

(ψj(x′′
j+1),x

′′
j+1). Then: (i) For all xi+1 in Xi+1, the set of FPs ψi(xi+1) of the composed mapping

Fi : [xi, xi] → [xi, xi] with

yi = fi(x), xj = ψj(xj+1) for j = 1, . . . , i − 1,

is non-empty. (ii) For all x′
i+1,x

′′
i+1 ∈ Xi+1 and for all continuous curves Ci+1 from x′

i+1 to x′′
i+1,

there exists a continuous curve in the graph {(xi,xi+1)|xi = ψi(xi+1),xi+1 ∈ Ci+1} which connects a

point in (ψi(x′
i+1),x

′
i+1) and a point in (ψi(x′′

i+1),x
′′
i+1).

Proof: (i) Hold xi+1 constant. [xi, xi] is a closed interval. {(xi,xi+1)|xi ∈ [xi, xi],xi+1 given} ≡ Ci

is a continuous curve in Xi. The lemma hypothesizes that there is a continuous curve in the graph

{(xi−1,xi)|xi−1 = ψi−1(xi),xi ∈ Ci} = {xi−1|xi−1 = ψi−1(xi), xi ∈ [xi, xi],xi+1 given} ≡ Ci−1 ⊂
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Xi−1. Applying the hypothesis of the lemma repeatedly, we find that there exist continuous curves

in the graph {(xi−2,xi−1)|xi−2 = ψi−2(xi−1),xi−1 ∈ Ci−1} = {xi−2|xj = ψj(xj+1) (j = i − 2, i −
1), xi ∈ [xi, xi],xi+1 given} ≡ Ci−2 ⊂ Xi−2 and a fortiori in {x|xj = ψj(xj+1) (j = 1, . . . , i − 1), xi ∈
[xi, xi],xi+1 given} ⊂ X. From Assumption 2, it then follows that there is a unique continuous curve

in the graph {(yi,x)|yi = fi(x), xj = ψj(xj+1) (j = 1, . . . , i − 1), xi ∈ [xi, xi],xi+1 given}. By the

projection property, the projection of this graph onto the (yi, xi)-plane is a continuous curve. By the

same reasoning as in Lemma 1 (i), it follows that the set of FPs ψi(xi+1) of the composed mapping yi =

fi(x), xj = ψj(xj+1) (j = 1, . . . , i−1) is non-empty. (ii) Hold xi fixed, and consider a continuous curve

Ci+1 from x′
i+1 to x′′

i+1. {(xi,xi+1)|xi given,xi+1 ∈ Ci+1} ≡ Ci is a continuous curve in Xi. From the

hypothesis of the lemma, it follows that there exist continuous curves in the graph {(xi−1,xi)|xi−1 =

ψi−1(xi), xi ∈ Ci} = {xi−1|xi−1 = ψi−1(xi), xi given,xi+1 ∈ Ci+1} ≡ Ci−1 ⊂ Xi−1, in the graph

{(xi−2,xi−1)|xi−2 = ψi−2(xi−1), xi−1 ∈ Ci−1} = {xi−2|xj = ψj(xj+1) (j = i− 2, i− 1), xi given,xi+1 ∈
Ci+1} ≡ Ci−2 ⊂ Xi−2, and a fortiori in {x|xj = ψj(xj+1) (j = 1, . . . , i − 1), xi given,xi+1 ∈ Ci+1} ⊂
X. By the continuous shifting property, as xi+1 and, hence, (x1, . . . , xi−1,xi+1) change, the graph

{(yi,x)|yi = fi(x), xj = ψj(xj+1) (j = 1, . . . , i − 1), xi ∈ [xi, xi],xi+1 given} in the (yi, xi)-plane shifts

continuously. By the same reasoning as in Lemma 1 (ii), it thus follows that there is a continuous

curve in {(xi,xi+1)|xi = ψi(xi+1),xi+1 ∈ Ci+1}. � � �

Proof of Brouwer’s fixed point theorem: Lemma 1 proves that there exists a continuous curve ψ1(x2)

of FPs of y1 = f1(x). Lemma 2 then proves the existence of a continuous curve ψ2(x3) of FPs of

the composed mapping y2 = f2(x), x1 = ψ1(x2). Finally, Lemma 3 yields the Theorem by induction:

Lemma 3 (ii) proves that for all i = 3, . . . , n−1, there exists a continuous curve ψi(xi+1) of FPs of the

composed mapping yi = fi(x), xj = ψj(xj+1) (j = 1, . . . , i−1). And Lemma 3 (i) proves the existence

of a FP of yn = fn(x), xj = ψj(xj+1) (j = 1, . . . , n − 1), which maps [xn, xn] onto itself. � � �

3 Extensions

We now turn from functions to multi-valued mappings y = f(x). In terms of continuous curves, the

crucial continuity requirement we impose throughout this section is:

Assumption 2’: For all x′,x′′ ∈ X and for all continuous curves C ⊂ X from x′ to x′′, there exists

a continuous curve in the graph {(yi,x)|yi = fi(x),x ∈ C} which connects a point in (fi(x′),x′) and

a point in (fi(x′′),x′′) (i = 1, . . . , n).

In contrast to Section 2, we do not assume that f is single-valued. Before dealing with Kakutani’s

fixed point theorem, we prove a somewhat weaker theorem:
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Figure 9: CFP of a multi-valued mapping

Assumption 3: fi(x) (i = 1, . . . , n) is single-valued except where a vertical portion “convexifies” the

graph.

Theorem: Given Assumptions 1, 2’, and 3, the mapping f : X → X has a FP.

Proof: By the same reasoning as in Lemma 1 (i), for all x2 ∈ X2, the set of FPs ψ1(x2) of the mapping

f1(x1,x2) : [x1, x1] → [x1, x1] is non-empty, and FPs can be of the same four varieties as above. Lemma

1 (ii) also remains valid: for all x′
2,x

′′
2 ∈ X2 and for all continuous curves C2 ⊂ X2 which connect x′

2

and x′′
2, there exists a continuous curve in the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} which connects

a point in (ψ1(x′
2),x

′
2) and a point in (ψ1(x′′

2),x
′′
2). The proof given in Section 2 has to be modified in

only one respect: as x2 takes on a value where f1(x1,x2) is multi-valued for a FP ψ1(x2) ∈ [x1, x1],

the FP turns into a FPI. But, as illustrated in Figures 9 and 10, it remains true that ψ1(x2) does not

simply end, but proceeds forward at CFPs and bends backward at TFPs. Lemmas 2 and 3 go through

without modification. � � �

Kakutani’s theorem is obtained by replacing Assumption 3 with:

Assumption 3’: fi(x) is convex-valued for all x (i = 1, . . . , n).

Remark: Kakutani’s theorem assumes upper hemi-continuity and 3’. Upper hemi-continuity is more

general than Assumption 2’ because it does not rule out jumps. But upper hemi-continuity and As-

sumption 3’ together do rule out jumps and thus imply the validity of Assumption 2’.

Kakutani’s fixed point theorem: Given Assumptions 1, 2’, and 3’, the mapping f : X → X has a

FP.

Proof: This is a direct corollary of the previous theorem. Consider a mapping y = f(x) which satisfies
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Figure 10: TFP of a multi-valued mapping

Assumptions 1, 2’, and 3’. It is possible to eliminate points from {(yi,x)|yi = fi(x),x ∈ X} (i =

1, . . . , n) in such a way that the resulting graph satisfies Assumptions 2’ and 3. By virtue of the

previous theorem, the mapping thus obtained has a FP. Since its graph is a subset of the graph

{(y,x)|y = f(x),x ∈ X}, a FP of this mapping is a FP of y = f(x). � � �

It is possible to generalize Kakutani’s theorem by dispensing with the convexity requirement in As-

sumption 3’ altogether:

Theorem: Given Assumptions 1 and 2’, the mapping f : X → X has a FP.

Proof: Assumption 2’ assures the existence of a continuous curve in the graph {(yi,x)|yi = fi(x),x ∈
C} which connects a point in (fi(x′),x′) and a point in (fi(x′′),x′′) (i = 1, . . . , n) for all x′,x′′ ∈ X

and for all continuous curves C ⊂ X from x′ to x′′.

(1) Assume to begin with that there is exactly one such curve. Lemma 1 (i) is obtained by the

same reasoning as above. The graph {(y1, x1,x2)|y1 = f1(x1,x2), x1 ∈ [x1, x1],x2 given} can now have

backward-bending portions, but this is inessential for the argument. Lemma 1 (ii) also remains valid:

for all x′
2,x

′′
2 ∈ X2 and for all continuous curves C2 ⊂ X2 which connect x′

2 and x′′
2, there exists a

continuous curve in the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} which connects a point in (ψ1(x′
2),x

′
2)

and a point in (ψ1(x′′
2),x

′′
2). The proof of the first theorem in the present section has to be modified

in two respects. First, for x1-values where y1 = f1(x1,x2) is multi-valued, all points (y1, x1) change

as x2 changes. Second, starting at x′, it might be necessary to go back and forth on C ⊂ X in order

to arrive at x′′. Both considerations are inessential for the argument. So it remains true that for all

x′
2,x

′′
2 ∈ X2 and for all continuous curves C2 ⊂ X2 which connect x′

2 and x′′
2, there exists a continuous

curve in the graph {(x1,x2)|x1 = ψ1(x2),x2 ∈ C2} which connects a point in (ψ1(x′
2),x

′
2) and a point
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in (ψ1(x′′
2),x

′′
2). (2) By the same reasoning as in the proof of Kakutani’s fixed point theorem, the same

holds true if the there are more than one continuous curves in the graph {(yi,x)|yi = fi(x),x ∈ C}.
Lemmas 2 and 3 go through without modification. � � �

4 Summary

Fixed point theorems play a central role in existence proofs in mathematical economics. This paper

provides a way of understanding fixed point theorems by means of the familiar methodology of draw-

ing and shifting curves in the plane. Because a number of case distinctions have to be made, the

argument put forward is quite long. However, its main benefit is that it is intelligible without any

advanced knowledge of topology. So it makes the proofs of the standard fixed point theorems used in

mathematical economics accessible to a broader audience.
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