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Abstract—A model-based approach for estimation and 
diagnosis of the deterioration in the metallurgical ladle 
insulation is proposed in this paper. It is based on using the 
diverse information that comes from the so called thermovision 
analysis (thermographic images), which show the temperature 
profile on the surface of the ladle.  

A group of Radial Basis Function Neural Network 
(RBFNN) models with different structures is developed and 
used for such estimation. Each model has different number of 
input parameters and a different output, in order to estimate 
the respective parameters of the insulation deterioration (the 
defect), such as its depth, width and shape.  

The created RBFNN models are a kind of diagnostic models 
because they solve the inverse problem, namely: finding the 
parameters of the defect, taking into account the available 
measured symptoms (the selected parameters from the 
thermographic images).  

The estimation results from all proposed diagnostic models 
are shown and discussed in the paper, by using simulated input-
output data sets. Respective suggestions and procedure for 
selection of the best diagnostic model are also given in the 
paper.  

Keywords - Deterioration, Diagnosis, Inverse Probllem, 
Metallurgical Ladle, RBFNN models, Infrared Thermography 

I. INTRODUCTION 

Nondestructive monitoring and estimation of different 
kinds of deterioration in the metallurgical equipment is very 
import for achieving smooth and faultless operation of the 
metallurgical processes [2, 5, 6].  

Metallurgical units, such as converters, industrial 
furnaces and ladles work continuously with extremely high 
temperatures that are needed for the metal processing. As a 
result the refractory linings (insulations) in these units 
undergo gradual deterioration and wearing with time that is 
caused mainly by thermal stress and chemical attack that 
result in loss of heat transfer capability [5, 6].  

A model-based approach [1, 3, 4] for estimation and 
diagnosis of the ladle lining damages is proposed in this 
paper. It is based on using the diverse information that comes 
from the so called thermovision analysis (thermographic 
images), which show the temperature profile on the surface 
of the ladle [5, 6].  

A group of Radial Basis Function Neural Network 
(RBFNN) models [8] have been proposed and developed in 
this paper, in order to estimate the size, as well as other 
parameters of the insulation deterioration (the defect). These 

models differ by the selected number and the list of the input 
parameters, and also by the structure of the RBFNN model, 
namely the number of the assumed RBFs. The created 
RBFNN models are considered as a kind of diagnostic 
models because they solve the inverse problem, namely: 
finding the parameters of the deterioration (the depth, width, 
shape etc.) based on the available symptoms (the selected 
parameters from the thermographic images).  

 

II. STATEMENT OF THE PROBLEM 

The high temperature molten steel, which is produced in 
a converter or electric furnace, is tapped into a metallurgical 
ladle through the furnace gate. 

The ladle is a huge container used in steelworks as a 
device to transport the molten steel to other production 
stages. The ladle walls are insulated by refractory materials 
that need to withstand the high temperatures of the molten 
metal during the casting process. These materials used for 
insulation are heat proof, but also they are thermal shock-
sensitive. Therefore the good quality and good condition of 
the ladle’s insulation at any time of the operation process are 
of utmost importance for the faultless and save operation of 
the whole metallurgical equipment [2, 5, 6].  

If the insulation deteriorates gradually and goes beyond a 
certain limit, without being changed (repaired) at the right 
time, the ladle will burst and the molten metal will gush out 
in the foundry. This is a serious failure that needs emergency 
stop of the whole metallurgical process with all the 
subsequent losses.   

A typical failure (called also defect) that can occur in the 
lining of the metallurgical ladle is a kind of a small hole with 
cylindrical, ellipsoidal or other arbitrary shape within the 
insulation. It is still invisible from the outer surface of the 
ladle, but is dangerous, because it affects the structural 
integrity of the whole equipment. Therefore getting a proper 
and timely knowledge about the current refractory thickness 
and lining condition of the unit is crucial for taking the 
proper decision: it is save to continue with the operation of 
this unit or the operation should be suspended for change 
(repair) of the insulation of the metallurgical unit [2, 3, 5].  

The temperature profile at different depths of the ladle’s 
defects, including the ladle’s surface can be obtained as a 
result of the infrared termovison analysis, in the form of 
termographic images, is shown in Fig. 1, Fig. 2 and Fig. 3. 
As seen, such temperature profile is rich with information 
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and selected portions of it could be used as reliable 
symptoms in the general diagnostic problem to properly 
estimate the refractory’s condition [2, 5, 6, 7].  
 

   
 

Figure 1. 2D and 3D images of typical ladle lining wears. 
 
 

        

Figure 2. Images with the temperature profile of the defect. 
 

  
Figure 3. Thermographic images of different spots on the outer surface of 

the metallurgical ladle. 
 

III. PROPOSED METHOD 

Estimation of the thickness of the insulation and lining 
condition based on some available thermographic 
measurements is important part of the proper decision 
making in the condition based maintenance of metallurgical 
units. Here the most essential problem is to properly estimate 
the residual inner thickness of the insulation, shown as Z1 in 
Fig. 1. Other parameters, such as Z2, Z3 and Z4 in Fig. 1 are 
also important for more detailed estimation of the insulation 
defect [6, 7]. 

From a diagnostic viewpoint, the residual thickness of the 
insulation as well as the other parameters of the defect could 
be represented as solution of the following inverse problem:  

        ( )( ) ( )( ) .4,3,2,11
===

− irfrfZ DIi θθ                        (1) 

Here, r is the radius and θ(r) is the respective temperature 
of the spot on the outer surface of the metallurgical ladle.  

In this paper, it is proposed to create the inverse model 
from (1) in the form of a RBFNN model with different 
structures, involving different preselected number of input 
parameters. Obviously, the set and the list of the input 
parameters remains a challenging task that is partially solved 
in this paper in a heuristic way.  It is well known that the 
RBFNN are universal approximators (subject to a proper 
tuning) [1, 7, 8] and this is the main reason for choosing the 
RBFNN as diagnostic models in this paper. 

   

IV. BASICS OF THE RBFNN 

Among the various possible types of models that can be 
generated from the available set of Input-Output data, the 
Radial Basis Function Neural Network (RBNN) models are 
developed and applied in this paper. 

The general structure of a RBFNN model with K inputs, 
one Output and N RBFs can be illustrated as in Fig. 4. 

 

 
Figure 4.  Basic structure of a Radial Basis Function Neural Network 

(RBFNN) model. 
 

In the one-dimensional case (K=1), the Radial Basis 
Function (RBF) coincides with the well known Gaussian 
Function, as shown in Fig. 5.  
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Figure 5. Graphical illustration of three one-dimensional RBFs.  
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Here c denotes the Center (location) of the RBF and � 
denotes the Width (spread) of the RBF. 

The number N of the RBFs is usually selected in an 
experimental way, or is a result of solving some optimization 
problem.  

The tuning parameters for each RBF ( ), 1, 2,...,iF i N=x  

are contained into the following set of two K -dimensional 
vectors:{ , },i i i 1,2,...,N=C � , where T

1 2[ , ,..., ]i i i iKc c c=C are 

Center (Location) Vectors and T
1 2[ , ,..., ]i i i i Kσ σ σ=� are the 

Width Vectors. 
The Connection Weights between the RBFs and the 

model output 
my form the 1N + - dimensional vector 

T
0 1 2[ , , .... ]Nw w w w=w . Thus the complete RBFNN model 

with N neurons and K  inputs will be defined by a total 
number of 2( ) ( )N K N 1× + +  tuning parameters.  

Assumption: Quite often, for simplicity it is assumed 
that all the width vectors , 1,2,...,i i N=� are fixed in 

advance, that is they are not part of the identification 
procedure. Of course, this makes the Identification result 
worse, but simplify the whole computational procedure. 

Then the simplified identification problem can be stated 
as follows: find the connection weights vector 

T
0 1 2[ , , .... ]Nw w w w=w and the N RBF centre vectors 

, 1, 2,...,i i N=C  ( N K N 1× + + parameters in total) that 

minimize the prediction error RMSE (the Rooted Mean 
Square Error) between the real measured output y and the 

modelled (predicted) output my : 

2

1

1
( )

M
i

i m
i

RMSE y y
M =

= −�                       (3) 

In general, the learning algorithms for the RBFNN 
consist of two separate or sometimes combined procedures: 
(1) positioning of the RBF centers , 1,2,...,i i N=C  and (2) 

Estimation of the connection weights T
0 1 2[ , , .... ]Nw w w w=w . 

The first procedure is actually a non-linear optimization 
problem that can be solved by use of some unsupervised 
(competitive, self-organizing) iterative learning algorithm. 
The second procedure is a typical supervised learning 
problem that is relatively easily solved by a non-iterative 
linear least squares technique [8]. 

 

V. EXPERIMENTAL RESULTS WITH DIFFERENT 

STRUCTURES OF RBFNN DIAGNOSTIC MODELS 

As mentioned in Section III, several different structures 
of RBFNN models with various combinations of the input-
output variables have been developed and investigated in this 
paper. Each of these models represents one selected subset of 
3 or 4 inputs and one output from the complete structure of 
the Diagnostic Model that consists of 7 possible inputs and 4 
possible outputs, as shown in Fig. 6.  

 
Figure 6. The complete structure of the RBFNN diagnostic model with 7 

possible inputs and 4 possible outputs. 
 

It is obvious that in order to construct plausible and 
reliable diagnostic models (1) we need a large input-output 
data set obtained by real cases (experiments). However this 
is a very costly and time consuming process and moreover, it 
is usually not permitted during real operations of the ladle. In 
order to avoid all these constrains, we have used in this paper 
professional software that simulates the metallurgical unit 
(the ladle) by using first principle models. Thus we were able 
to generate various cases of defects with different output 
parameters Z1, Z2, Z3 and Z4, according to the notations in 
Fig.6.  

As a result, we have produced two input-output data sets, 
namely, training data set and test data set, each of them 
consisting of 69 data.   

Model A: The first selected structure for a diagnostic 
model was a RBFNN model with 3 inputs: θmax, Rmax and R∞ 
and one output: Z1. The estimation results in the form of 
RMSE error for both the training and the test data sets are 
given in the following Table I. As seen from this table, three 
RBFNN models have been generated, with different number 
of RBFs, namely 6, 11 and 16. In addition, the RBFNN 
model with 6 RBFs has been generated two times, with 
different widths of the RBFs. The second model, noted as 
(new) in Table I has bigger RBF widths, respectively bigger 
overlapping between the neighboring RBFs. As seen from 
the RMSE results in the Table I, this model is a better one.  

The worse estimation (prediction) of the Test Data set in 
the case of 16 RBFs could be explained with the overfitting 
phenomenon (too close approximation of the training data, 
which are slightly different from the test data).   

TABLE I.  RBFNN MODELS FOR ESTIMATION OF Z1 

 
MODEL STRUCTURE 

Rooted Mean Square 
Error (RMSE) 

No. of 
inputs 

No. of 
RBFs 

Training 
Data Set 

Test Data 
Set 

3 6 0.01800 0.04317 
3 6 (new) 0.01146 0.01499 
3 11 0.01358 0.02695 
3 16 0.00921 0.06646 
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The following Fig. 7 and Fig. 8 illustrate the estimation 
of the residual thickness Z1 and the respective estimation 
error for each of the 69 data included in the test data set. 
These results are given for the RBFNN model with 16 
RBFs.    
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Figure 7.  Estimation of the residual thickness Z1 of the insulation, obtained 

by the RBFNN model with 3 Inputs and 16 RBFs.  
 

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

 
Figure 8. The estimation error of Z1 for each data from the training data set 

with 69 data.  
 

Model B: The second selected structure of the 
diagnostic model is in the form of a RBFNN model with 
another group of 3 inputs: ri, θi, dθi/dri and the same output: 
Z1.  Two models have been created - with 5 and 10 RBFs. 
The estimation results are shown in a similar manner in 
Table II. Here the new point is that another training set, 
consisting of 76 training data has been used for creating the 
models.   

TABLE II.  RBFNN MODELS FOR ESTIMATION OF Z1 

 
MODEL STRUCTURE 

Rooted Mean Square 
Error (RMSE) 

No. of 
inputs 

No. of 
RBFs 

Training 
Data Set 

Test Data 
Set 

3 5 0.03086 0.05210 
3 10 0.03027 0.04855 

 
       Illustration of the estimation and the estimation error is 
given in the following Fig. 9 and Fig. 10 respectively. These 
results are also for estimation based on the training data set 
only.  
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Figure 9. Estimation of the residual thickness Z1 of the insulation, obtained 

by the RBFNN model with 3 inputs and 10 RBFs.  
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Figure 10. The estimation error of Z1 for each data from the training data 

set with 76 data.  

Model C: The third selected structure for the diagnostic 
model was a RBFNN model with 4 inputs: θmax, Rmax, θfon, 
R∞ and the same one output: Z1. Here one only model has 
been generated, namely with 16 RBFs. The estimation 
results for the training and test data sets are shown in Table 
III.  

TABLE III.  RBFNN MODEL FOR ESTIMATION OF Z1 

 
MODEL STRUCTURE 

Rooted Mean Square 
Error (RMSE) 

No. of 
inputs 

No. of 
RBFs 

Training 
Data Set 

Test Data 
Set 

4 16 0.00934 0.02043 
 

       Illustration of the estimation and the estimation error 
based on the training data set are given in Fig. 11 and 
Fig.12 respectively.  
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Figure 11. Estimation of the residual thickness Z1 of the insulation, 

obtained by the RBFNN model with 4 inputs and 16 RBFs. 
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Figure 12. The estimation error of Z1 for each data from the training data 

set with 69 data.  

       As for the estimation and the estimation error, based on 
the test data set for the model from Table III with 4 inputs 
and 16 RBFs, these are given in the next Fig. 13 and Fig.14.   
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Figure 13. Estimation of the residual thickness Z1 of the insulation, 

obtained by the RBFNN model with 4 Inputs and 16 RBFs, based on the 
test data set. 
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Figure 14. The estimation error of Z1 for each data from the test data set 

with 69 data.   

Model D: The forth selected structure of the diagnostic 
model is in the form of RBFNN with the same set of 4 
inputs: θmax, Rmax, θfon, R∞ but with a different output: Z3. 
The same training and data sets (with 69 data each) have 
been used here, as in the previous Model C. 
       The estimation results for the training and test data sets 
are shown in Table IV.    

TABLE IV.  RBFNN MODEL FOR ESTIMATION OF Z3 

 
MODEL STRUCTURE 

Rooted Mean Square 
Error (RMSE) 

No. of 
inputs 

No. of 
RBFs 

Training 
Data Set 

Test Data 
Set 

4 16 0.00778 0.02223 
 

Graphical representations of the estimation results for the 
training data set are shown in Fig. 15 and Fig. 16.  
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Figure 15. Estimation of the output Z3, obtained by the RBFNN model with 

4 inputs and 16 RBFs, based on the training data set.  
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Figure 16. The estimation error of Z3 for each data from the training data 

set with 69 data.  

     Graphical representations of the estimation results for the 
test data set are shown in the following Fig. 17 and Fig. 18. 
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Figure 17. Estimation of the output parameter Z3 for each data from the test 

data set with 69 data.  
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Figure 18. The estimation error of Z3 for each data from the training data 

set with 69 data. 

Model E: The fifth selected structure of the diagnostic 
model is in the form of RBFNN with the same set of 4 
inputs, as in Models C and Model D, namely: θmax, Rmax, 
θfon, R∞ , but with another output: Z4.  Here again 16 RBFs 
have been used to create this model.  
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The estimation results for the training and test data sets 
are shown in Table V.    

TABLE V.  RBFNN MODEL FOR ESTIMATION OF Z4 

 
MODEL STRUCTURE 

Rooted Mean Square 
Error (RMSE) 

No. of 
inputs 

No. of 
RBFs 

Training 
Data Set 

Test Data 
Set 

4 16 0.03575 0.06442 
 

Finally, graphical representations of the estimation 
results from this model, based on the training data set with 
69 data are shown in Fig. 19 and Fig. 20.  
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Figure 19. Estimation of the output parameter Z4 for each data from the 

training data set with 69 data.  
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Figure 20. The estimation error of Z4 for each data from the training data 

set with 69 data. 
 

      All above 5 structures of RBFNN diagnostic models 
referred to as Model A, Model B, Model C, Model D and 
Model E, which have been generated and tested, represent 
only a small number of all input-output combinations from 
the complete structure of 7 inputs and 4 outputs, as given in 
Fig. 6. In fact only 3 sets of inputs (consisting of 3 and 4 
parameters) have been tested and the number of tested 
outputs was also 3, namely Z1, Z3 and Z4. Therefore, any 
analysis and conclusion about “which structure of the model 
is the best one” would be premature and not reliable. 
However, creating the complete number of diagnostic 
models with all combinations of inputs and outputs is a huge 
and not practical time consuming task, going beyond the 
goal and scope of this paper.  
      Based on the above generated 5 types of models, we can 
make the following approximate conclusions that could be 
used for a practical implementation of a reasonably good 
diagnostic system.     
      The Model A with three inputs and one output Z1 that has 
6 (new) RBFs, as shown in Table I, seems to be the best one 
for predicting the output Z1, since it has the least prediction 

error RMSE = 0.01499. However this model, with the set of 
3 inputs: θmax, Rmax and R∞  is not the best for prediction of 
another output, such as the output Z3.  
      Therefore, based on the above experimental results, we 
conclude that another input set of 4 parameters, namely: θmax, 
Rmax, θfon and R∞ (being used in Model C and Model D) is a 
better choice to create a diagnostic model, since it leads to 
better prediction results on the test data set for both outputs: 
Z1 and Z3. This is seen from Table III and Table IV, where 
the prediction error for both outputs is similar one, namely: 
RMSE = 0.02043 for the output Z1 (Model C) and 
RMSE=0.02223 for the output Z3 (Model D). 

VI. CONCLUSIONS AND FUTURE WORK 

In this paper, it’s proposed the usage of RBFNN as a type 
of diagnostic models, being able to solve the inverse problem 
(1), in order to predict the parameters Z1, Z2, Z3 or Z4 of the 
ladle insulation. Since there are at least 7 input parameters 
that can be taken into account in this diagnostic problem, we 
have tried to select a RBFNN model with the best possible 
combination of input parameters that can make a reliable 
prediction of the output parameters.  

By using a relatively small and incomplete list of 
combinations, our conclusion is that models with 4 inputs 
could be implemented as a part of a practical diagnostic 
system for plausible prediction of the outputs Z1 and Z3.  
      It is clear that the accuracy the RBFNN models depends 
on the optimal choice of their structural parameters, such as 
the number of RBFs, their locations and widths in the input 
space. Therefore, our future work is aimed at optimizing the 
RRFNN models and creating a systematic approach for 
selection of the most suitable diagnostic models.  
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