
 

 

  
Abstract—There are many virtual payment systems available to 

conduct micropayments. It is essential that the protocols satisfy the 
highest standards of correctness. This paper examines the Netpay 
Protocol [3], provide its formalization as automata model, and prove 
two important correctness properties, namely absence of deadlock 
and validity of an ecoin during the execution of the protocol. This 
paper assumes a cooperative customer and will prove that the 
protocol is executing according to its description. 

 
Keywords—Model, Verification, Micropayment.  

I. INTRODUCTION 
YSTEM verification techniques’ are nowadays applied to 
the design of many ICT systems. Correctness is 

particularly important for payments systems, such as Netpay. 
Netpay is a virtual payment protocol for small purchases, 
typically on the internet. With the increase of paid services 
and content on the internet, these online payment system 
promise the ease of using cash. There are alternatives to credit 
card based systems, which cannot be used due to their high 
cost per transaction. Mircopayment systems for online 
payments that have been proposed in recent years are Netpay 
as described in [1],[2] and [3], Millicent [4], Micro-mint [5], 
Payword [5], MiniPay [6], Micro-iKP [7] and POPCORN [8]. 

This paper models the Netpay protocol [1] using automata, 
in particular the syntax of interface automata, which 
distinguishes nicely between inputs and outputs. We will use 
this model to show two essential properties: First, that the 
different components cannot block actions of other 
components indefinitely. This is a fairness type property, 
which ensures that the protocol will progress. Second, we will 
show that electronic money called ecoins, will remain valid 
throughout, i.e. that there exists a chain of trust that links any 
ecoin to a trusted broker, even if, for the sake of anonymity, 
this chain is not stored explicitly by the protocol. The model in 
this paper covers the handling of ecoins, and omits the parts of 
the protocol that are concerned with spend redeeming ecoins. 
For the properties under consideration, it was not necessary to 
include these parts. 

The next section of this paper will introduce automata 
model that we will use for modeling and verification. Section 
III will give an overview of the Netpay protocol, while Section 
IV gives the detailed model. Section V formalizes the 
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properties and will give the invariant proof. Section VI 
concludes the paper with a discussion of future work. 

II.   INTERFACE AUTOMATA 
This paper will use a model based on interface automata to 

model the Netpay protocol. Interface automata are in 
particular suitable because they provide a clean distinction 
between input and output actions.  They are similar to 
input/output automata as defined in [9], however do not 
require that all input actions are always enabled. This paper 
will model the each player in the protocol -broker, vendor and 
customer -as an interface automaton, such that the entire 
system is defined by the composition thereof. 
 

We define interface automaton as a tuple 
, , , , ,  with the following components: 

1. A finite set of states S.  
2. Finite sets of input actions I, hidden or internal 

actions H, and output actions O. Input, hidden and 
output actions are disjoint sets.  

3. A set of initial states , a subset of S.  
4. A transition relation R, a subset of 

 where  is the set of actions. 
 

The model distinguishes between input, hidden, and output 
actions. It is assumed that output actions are controlled by the 
system whereas the input actions are controlled by the 
environment. An execution fragment is an alternating finite or 
infinite sequence of states and actions 

, , , … … with , , . An execution fragment 
starting with a start state is known as an execution. 
The final state of a finite execution is identified as reachable 
state.  

Interface automata can only be composed if the input and 
output actions match, this means that the input actions are 
disjoint, and that the output actions are disjoint, and hidden 
actions are disjoint from any action of the other automaton. 
Two interface automata , , , , ,  and 

, , , , ,  are said to be composable if 
, , , and 

. The set of shared input/output 
actions , is defined as . If 
two interface automata and  are composable their 
composition is defined as a interface automaton 

, , , , ,  with  
•  . 
•  \ , . 
•  \ , . 
•   , . 
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This means that if an input and output action is shared they 

will have to synchronize. This means also that an output action 
might be blocked in a state, if there is no corresponding 
outgoing input action. Input/output automata resolve this issue 
by requiring all input actions to be enabled in all states. 
Interface automata in contrast have the notion of an error state.  

An error state is a state in which one component of the 
compositions has an outgoing output action, while the other 
component does not have the matching input action.  

The model presented departs from interface automata in one 
important aspect, namely that we do accept error states, rather 
than remove them from the set of states. We alternatively 
adopt a notion of (weak) fairness for output actions. Weak 
fairness means that an action cannot be continuously enabled 
and not be taken. In the context of interface automata we 
require a modified notion. We require that an output action 
cannot be continuously enabled, while the corresponding input 
action is continuously disabled. This means that an output 
action might be temporarily blocked, but not indefinitely. This 
is a property that needs to be proven for the Netpay model.  

The model of the Netpay protocol will use a precondition 
effect style of specification, with variables, and parameterized 
actions. The state of an automaton is defined by the values 
assigned to all variables. Preconditions are used to define sets 
of states in which actions with a common label are enabled 
while the effect is used to define the successor states. The 
precondition are omitted is true. Transitions can synchronize if 
they have the same parameterized action label this means the 
state change in both automata will take place as a single 
atomic step. 

III. THE NETPAY PROTOCOL 
This section describes the Netpay protocol for micro- 

payments proposed by Dai [2]. The general structure of the 
Netpay protocol is depicted in Figure 1. The Netpay 
micropayment system comprises three different types of 
actors: customers, brokers and vendors. It is assumed that the 
broker is honest and trusted by both customers and vendors. 
The brokers’ key responsibility is to register customers, credit 
the account of vendors and debit customer account. The 
payments occur between customers and vendors.  

A key idea of Netpay is the use of cryptographic hash 
functions such as MD5 or SHA2. The description of Netpay 
refers to a number of micropayment and cryptographic 
terminologies such as:  

• One way hash function. Netpay as proposed by Dai 
[2] uses the MD5 algorithm as one way hash 

function. Electronic coins are generated and verified 
using this hash function.  

• Payword. A payword has a length of 32 digit 
hexadecimal, and is generated with the one-way hash 
function.  

• Payword Chain. A payword chain is a series of 
paywords, generated from the same seed. For 
example, a payword chain of length 10 might 
represent 10 cents.  

• E-wallet. An e-wallet is a database for storing one or 
more payword e-coins.  

• Seed. A randomly selected value used to generate 
payword chains.  

• Touchstone. In addition to the payword chains, 
vendors and broker store the touchstone. The 
touchstone is used to verify the e-coins sent by the 
customer.  

• Index. Vendors also store an index for each payword 
chain, which indicates the current spent amount of 
each payword chain.  

Let  be a set of seeds, and  be a set of paywords. A 
payword chain is then a finite series of payword from . 
Given a one way hash function h, a payword chain 

, … … ,  is created from a seed  by applying the hash 
function n + 1 times to the seed. This means , 
for i = 0,…., n. The touchstone is kept separately, to verify the 
payword chain. Given the touchstone, a payword chain 

, … , can be verified by applying the hash function to the 
elements of the payword chain, and check that it is indeed a 
chain, and that the hash of the first element is equal to the 
touchtone. 

We define the following two functions to be used by the 
model. First a function createPW: , which 
returns for a given seed s and an amount n a triplet of the 
touchstone, a payword chain and the seed. 

, , , … , ,  
where  is the i-th application of the hash function to a 
seed value. Then a function verifyPW:  which 
returns for a touchstone and a series of paywords 

, … ,  the Boolean value true if it is a legitimate 
payword chain: 

, … ,
,…,

 

The protocol contains four basic types on transactions: 
Customer-Broker, Customer-Vendor, Vendor-Vendor and 
Vendor-Broker transactions. These are illustrated in Figure 1. 
We assume that every customer has a unique ID from a set , 
while every broker or vendor has a unique ID from the set . 
Note, that vendors and broker share the same ID space. Every 
newly created payword chain will be associated with a unique 
e-coin ID from the set . An e-coin is defined as triplet 

, , of an e-coin ID , a payword chain 
, and a vendor/broker ID . The latter 

denotes which vendor or broker holds the touchstone.  
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Fig. 1 A representation of Netpay protocol 
 

The four types of transaction can be characterized as 
follows:  

A. Customer-Broker Transaction 
The customer initiates the transaction in the Netpay 

protocol by registering and sending an integer nto a broker, 
where nis the amount of paywords requested. The Broker 
generates the payword chain of length  and assigns to that 
chain a unique e-coin ID, which together with the broker ID 
will constitute a new e-coin. The broker encrypts the e-coin 
with the customer’s public key (M2, Figure 1) and sends it to 
the customer. The customer decrypts it and stores in its e-
wallet. 

B.   Customer-Vendor Transaction  
The vendor sends the cost and its ID (which is the host/port 

number) to the customer when the customer wishes to buy 
goods. The customer compares the ID with the vendor ID of 
the e-coins in its e-wallet. If there is an e-coin with a matching 
vendor ID and the length of the payword chain is greater than 
the cost, the customer sends the e-coin (M4). If there is no e-
coin with a matching vendor ID, the customer sends any e-
coin with a sufficiently long payword chain (M4). Note, that 
the latter is just an optimization, and not require for 
correctness.  

The vendor ID contained in an e-coin refers to the vendor 
where this e-coin chain was spent last, or to the broker who 
generated the e-coin, if the e-coin has not been spent before. 
The vendor verifies e-coins by requesting the touchstone from 
this broker (M5) or vendor (M8). The response from the 
broker or vendor is encrypted by the secret key. If the 
verification is successful, the vendor sends the required 
information to the customer.  

C. Vendor-Vendor Transaction  
This transaction occurs when one vendor requests a 

touchstone and index from another vendor for a particular e-
coin ID (M8 and M9).  

D. Vendor-Broker Transaction  
To redeem spent e-coins the vendor sends the touchstone, 

customer ID, vendor ID, payword chain and payment to the 
broker for each e-coin spent with the vendor. The broker will 
verify each e-coin received from the vendor by performing 
hashes on it and will count the amount of the paywords. The 
broker will credit the corresponding amount to the vendors 
account if all paywords are valid. This paper focuses on the 
spending of e-coins, and omits redemption of e-coins from the 
model.  

The Netpay protocol specifies three kinds of e-wallets, 
depending on whether it is a client-side, server-side or cookie-
based e-wallet. In this paper we will model the protocol for a 
client side e-wallet.  

E. Properties of Netpay Protocol  
The properties of the Netpay micro-payment system are 

defined in [10] as follows:  
• Security: the aim of security is to prevent any party 

from cheating the system. For example, double 
spending of coins and creation of false coins.  

• Anonymity: the customer anonymity should be 
protected. A fundamental property of physical cash is 
that the relationship between customers and their 
purchases is untraceable. Anonymity as provided by 
Netpay can be proven by anonymous simulation 
which is introduced in [11].  

• Robustness: the protocol is tolerant of network 
bottlenecks and broker/authorizer down-time. The 
broker will be only involved in the generation of e-
coins and providing touchstone for the first set of e-
coins. If the broker is down, the protocol should be 
able to operate for customers who would like to 
spend a partially spent payword chain with a vendor.  

This paper will consider two properties that are important 
for customers that use the protocol correctly. The first is that 
any valid e-coin remains valid, even if it is partially spend. In 
particular, the protocol should guarantees that there exists for 
every e-coin a chain of trust back to the broker, even though 
the system does not store this chain explicitly, to protect 
anonymity. The second property is that the protocol does not 
block any participant in the protocol indefinitely.  

IV. DESCRIPTION OF NETPAY PROTOCOL USING IA 
This section gives a detailed description of the Netpay 

protocol as interface automata. We use one automaton each 
for customers, vendors, and brokers. The overall system is 
described by the composition of all the above automata.  

In the following we use the following conventions: 
Constants will be written with capital letters, local variable are 
written with a capital initial letter, and parameters and free 
variables with lower case letters only. Sets will be denoted 
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mostly by calligraphic letters. We assume that sets for IDs and 
paywords have a distinguished "undefined" element.  

A. IA for Customer  
The automaton  modeling a customer 

automaton is shown in Table I. Every customer has a unique 
identifier , which is a parameter of the automaton. The 
customer will have an e-wallet, which is a partial function 

, which associates an e-coin ID with a 
payword chain and a vendor/broker ID. The e-wallet is 
initially empty. There are three possible control locations in 
the cus-tomer automaton which are ,  and 

. In addition the automaton has local variable 
 to store the ID of the vendor who received the ecoin, or 

the ID of the broker who was asked to supply an ecoin.  
We will now describe the automaton’s actions. The model 

assumes the customer is already registered and has started 
using the protocol. In order to buy e-coins the customer has an 
output action Send , ,  where  is the customer 
ID and  the amount requested, and  the ID of the 
broker. The customer automaton will now be in 

 state, and the broker ID stored in variable .  
If the automaton is in location , input action 

SendEcoin , ,  models the sending of  
from customer  to broker . The effect of this input 
action adds the ecoin to the  and changes the status 
from  to .  

Buying goods from a vendor is also done in two steps. The 
first is modeled by action 
SendPaywords , , . The precondition is that 
the customer has an ecoin in the ewallet. The length or size of 
an ecoin | |is defined as the length of the payword chain. 
The parameter  is a new ecoin, which includes the 
first  paywords of the payword chain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE I 
CUSTOMER AUTOMATON 

 

This new ecoin is computed by the function 
,  which maps an e-coin 

, 1, . . . , ,  to , 1, . . . , , ) if . 
The amount  is chosen in this model non-deterministically; 
we omitted the part of the protocols that checks if the funds 
are sufficient from the protocol. In the context of this paper we 
are interested only if the ecoin remains valid.  

The effect of this action is that we change to status 
, store the vendor ID in , and store the ecoin 

selected from the ewallet in , and the new ecoin, i.e. 
the remaining paywords that were not sent to the vendor, in 

. The function , ,  is defined 
to map , 1, . . . , ,  to 

, 1, . . . , ,  if .  
In status  the customer waits for confirmation. 

The reply from the vendor is modeled by input action 
SendInformationBought , . It is enabled if the 
parameter , which will be the replying vendor ID, is equal 

 

 ,   
, , , 

  
,   

 ,   
 ,   

                   

               

,
| | . .

,  

                  
 

, ,

State:  

Input Actions:  

SendEcoin , ,  
Pre:  
Effect:  

SendInformationBought ,  
Pre:  
Effect:   
             \

   
Output Actions:  

Send , ,  
Pre:  
Effect:   

 
SendPaywords , ,  
Pre:  

Effect:   

World Academy of Science, Engineering and Technology 72 2012

1110



 

 

to the stored ID, the vendor the e-coin was sent to. It will 
replace the old ecoin in the ewallet with the new ecoin.  

B. IA for Brokers  

The behavior of the broker will be modeled by an 
automaton . The broker ID  is from the 
same set  as the vendor IDs. This is because to vendors a 
broker behaves like a vendor.  

 
TABLE II 

BROKER AUTOMATON 

 
 
 
 
 

 

The broker keeps information on generated e-coins in a 
database . An entry , , , ,  
captures the e-coin ID , the customer ID , the 
touchstone , the seed , and the amount . Other local 
variables are , , , , , and , 
which are used to store intermediate results, when generating 
an ecoin, or replying to a request to send the touchstone for an 
ecoin.  

The broker automaton models two possible exchanges of 
messages; the first when a customer requests a new ecoin, and 
the second when a vendor asks to get the touchstone that 
belongs to a given ecoin.  

The first action of the broker automaton models a request to 
generate e-coins. Input action Send , ,  has a 
parameter , the ID of the requesting customer,  the 
amount requested, and the ID of the broker itself. The input  
action is enabled when the status is , and it will change 
to . This action will also store the ID of 
the requesting customer in . Finally it will compute a new 
ecoin ID, and a triplet of a touchstone, payword chain and a 
seed. The function selects a new value from either or , 
i.e. it will select a new seed and ecoin ID. This input action 
will be followed by the output action 
SendEcoin , , , , . It models the 
sending of a new ecoin, with ID , payword chain  
and vendor/broker ID  to customer . This action is 
enabled if the status is . The status will 
change to  and the necessary information on the ecoin 
will be stored in the broker database .  

The request by a vendor for a touchstone is modeled by 
input action GetTouchStone , , . It has as 
parameters the ID  of the ecoin that needs to be verified, 
the ID  of the vendor making the request, and ID of the 
broker itself. This action is enabled if the status is  and if 
an ecoin with ID  exists in the broker database . 
This action will change the status to , and store the 
ecoin ID  and the touchstone  from the broker database, 
and also store the ID of the requesting vendor .  

The reply to the touchstone request is modeled by output 
action SendTouchStone , 1, , , , which 
models sending the ecoin ID , the index 1, the touchstone 

, from the broker  to the vendor . The index 
has constant value 1, because this reply is sent by the broker, 
when the ecoin is still fresh. The action is enabled if the status 
is , and it change the status to .  

C. IA for Vendor  
The automaton  modeling a vendor 

automaton is shown in Table III and Table IV. Since there will 
be many vendors, we use the vendor ID . Each vendor will 
maintain a vendor database , a partial 
function from a ecoin ID to a touchstone. Recall that the 
touchstone of an ecoin with  paywords, is obtained by 
applying the one-way-hash function 1 times to the seed. 
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        ,  fi   

               
              , ,  
              ,  
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             ,  

State:  

  , , ,
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Input Actions:  

Send , ,  
Pre:  
Effect:   

 
GetTouchStone , ,  
Pre:   

Effect:   

Output Actions:  

SendEcoin , , , ,  
Pre:  
Effect:   

SendTouchStone , 1, , ,  
Pre:  
Effect:   
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TABLE III 
VENDOR AUTOMATON (INPUT ACTIONS) 

 
 

TABLE IV 
VENDOR AUTOMATON (OUTPUT ACTIONS) 

 
 
The status of the vendor can be either  

, , ,  or . 
Furthermore the vendor uses local variables 

, , ,  and  to store information 
about the customers and vendors/broker it communicates with, 
and the ecoins that need to be verified.  

The vendor performs two major tasks: verifying e-coins 
received from customers and providing the touchstone to a 
requesting vendor. Verification of ecoins has to consider two 
cases: that the touchstone for the ecoin is with the vendor, or 
that the touchstone is with another vendor/broker. 

The first task will be initiated upon receipt of the input 
action SendPaywords , , , , . This 
action models the sending of an ecoin 

, , from customer  to the vendor . 
This action is enabled if the status is .  

If the location of the touchstone  is not equal to the 
vendor ID  it will change its status to and store the 
customer ID  and the ecoin ID , the payword chain 

, and the touchstone location . 
If the location of the touchstone  is equal to the vendor 

ID , it will use the stored touchstone to 
verify the payword chain. If the payword chain can be 
verified, i.e. , is true, 
then the status changes to . The effect stores the 
customer ID , and the ecoin ID , the payword chain 

, and the touchstone location .  
Recall that the customer sends a prefix of a longer payword 

chain, and that the last payword of that prefix, will be the 
touchstone for the remaining payword chain, which is still 
with the customer. Note, that this differs from the description 
by Dai [2]. In that paper indices in combination with the 
original touchstone are used to mark the last payword that has 
been spent. For the scope of this paper both approaches are 
equal, however adding indices would add complexity.  

If the ecoin cannot be verified by the vendor itself, i.e. if 
!  and the status is , it will request the 

\ ,
,   

Output Actions:  

GetTouchStone , ,  
Pre:  
Effect:   
 

SendInformationBought ,  
Pre:  
Effect:   
 

SendTouchStone , , ,  
Pre:  
Effect:  
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State:  
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Input Actions:  

SendPaywords , , , ,  
Pre:  
Effect: !  

SendTouchStone , , ,  
Pre:  
Effect: ,  

 
GetTouchStone , ,  
Pre:  

Effect:  
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touchstone from the vendor/broker. This means any vendor 
can request a touchstone or reply to such a request.  

First, consider that the vendor requests a touchstone. This 
request is modeled by output action 
GetTouchStone , , . The parameters of this 
action are the ecoin ID, the ID of the vendor/broker that has 
the touchstone, and the ID of the vendor itself. The effect is 
that the vendor will change its status to . The 
received reply is modeled by input action 
SendTouchStone , , , , which will in its effect 
verify the payword chain with respect to the received 
touchstone, and change its status to . If the status is 

 a vendor can inform the customer of the success-
ful transaction which is modeled by output action 
SendInformationBought , . This action will update 
the vendor database, by removing the touchstone and 
replacing it by the last payword of the stored payword chain. 

A vendor who receives a touchstone request will do the 
following. An incoming request is modeled by input action 
GetTouchStone , , , which is similar to the 
input action with the same name for the broker in Table II. 
The response to the request is modeled by output action 
SendTouchStone , , , , after which the 
vendor is back to status . This action is also similar to 
output action with the same name for the broker in Table II  

In the next section we will look at the correctness of this 
protocol, assuming a cooperative customer and vendor. In this 
case the protocol should ensure that for every ecoin there 
exists a chain of trust back to the issuing broker. 

V. CORRECTNESS OF NETPAY PROTOCOL  

Given the model of the Netpay protocol in section IV, we 
prove the correctness of this in this section. The assumption is 
that we have cooperative customers and vendors who adhere 
to the protocol. In that case we require that an ecoin remain 
valid, and will be correctly verified as a valid ecoin. We will 
in particular show that for any ecoin there exists a chain of 
touchstones back to the vendors who issued the ecoin. We will 
show existence of such a chain, even though it cannot be 
reconstructed from locally available information.  

Furthermore we want the protocol to be responsive without 
any deadlocks. In particular it should be the case that if an 
output action satisfies the precondition locally, it cannot be 
blocked indefinitely. This is of course based on the premise 
that all executions are fair, i.e. that all participants execute 
their enabled actions eventually.  

A. Chain of Trust  
The correctness proof will rely on invariants, i.e. properties 

that can be shown to hold in every state, regardless of state 
changes. The overall property we prove is that for any ecoin 
there exists vendor with a touchstone , that the ecoin is valid 
with respect to that touchstone, and that there exists a broker 
and a positive integer  such that  is the touchstone 
stored by the broker. The proof is broken into three parts:  

1) If a customer receives a new ecoin from a broker, that 
broker will have a corresponding touchstone.  

2) If a customer keeps the remainder of an ecoin after 

payment to a vendor, then that vendor will have a 
corresponding touchstone.  

3) For any touchstone that a vendor keeps, there exists a 
corresponding touchstone at a broker.  

The proof for the overall property follows from this. The 
following will describe each property in detail.  

 
Lemma 1: Let , ,  of a customer 

, and let  be the ID of a broker 
. Then there exists an entry ,  in the 

database  of , such that 
,  holds.  

Proof: The claim of Lemma 1 is an invariant, and can be 
proven by induction on the length of execution. The base case 
of induction is to prove that invariant is true in the initial state. 
Initially,  is empty, hence the invariant is true.  

Next we have to show that the invariant remains true under 
all possible actions. We assume that the invariant is true in a 
predecessor state of an action and show that it will be true in 
the successor state.  
The customer has only two actions that modify the ewallet: 
SendEcoin , ,  and 
SendInformationBought , .  

• SendEcoin , ,  
This action is enabled if the status is , 
which mean this action was preceded by output 
action Send , , . Both of these actions 
synchronize with corresponding actions of the broker. 
The combined action Send , ,  will have as 
effect that the broker stored a valid ecoin and its 
touchstone in its local variables 

, , , i.e. 
,  holds by construction. 

This step will be succeeded by a combined action  
SendEcoin , , , , .  
On the customer side it will store the ecoin 

, ,  in the ewallet, and on the broker 
side ,  in database .  

• SendInformationBought ,  
This input action of a customer synchronizes with a 
corresponding vendor action. It is enabled if the 
status is , which means that this action 
was preceded by action 
SendPaywords , , . This action 
created a new ecoin that replaced the broker ID with 
a vendor ID. This means that the assumption of 
Lemma 1, namely that the touchstone location is a 
broker ID, no longer applies, and thus that the 
invariant holds.  

All other actions of the other automata do not change the 
ewallet or broker database, and thus have no effect on the 
invariant of Lemma 1.  

The second invariant shows that if an e-coin is in an ewallet 
and the touchstone location is said to be at a vendor, then the 
vendor has the touchstone.  
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Lemma 2: Let , ,  of a customer 
, and let  be the ID of a vendor 

. Then there exists an entry ,  in the 
database  of , such that 

,  holds.  
Proof: This lemma defines as the pervious lemma as an 
invariant. The claim is true in the initial state, as  is 
initially empty.  

The customer has only two actions that modify the ewallet 
SendEcoin , ,  and 
SendInformationBought , .  

• SendEcoin , ,  
This action will add an ecoin , ,  in 
which  is a broker ID. Hence, the premise of 
Lemma 2 is false, which makes the invariant true.  

• SendInformationBought ,  
This input action of a customer synchronizes with a 
corresponding vendor action. It is enabled if the 
status is , which means that this action 
was preceded by action 
SendPaywords , , . The effect of 
the combined action 
SendPaywords , ,  is that the 
vendor stores the first  paywords in the vendors 
local variable , and the remainder in the 
customers variable . For clarification we 
denote the first as  and the latter as 

.  When customer and vendor successively 
synchronize on action 
SendInformationBought ,  the vendor 
stores the last payword of 

 
chain as 

touchstone in the , and all successive 
paywords, 

 
, as part of the new ecoin in the 

ewallet of the customer. Since both derive from a 
valid payword chain, we have that  

,  holds.  

All other actions of the other automata do not change the 
ewallet or vendor database, and thus have no effect on the 
invariant of Lemma 2.  

Lemma 3: Let ,  of a vendor 
, then there exists a broker  and 

an  such that for the broker database holds 
.  

Proof: This invariant states that a touchstone kept by a vendor 
is a predecessor in the payword chain. The claim is true in the 
initial state, as the vendor database is still empty.  

The only action that changes the vendor database is 
SendInformationBought , . This action is enabled 
if the status is . There are two possible predecessor 
actions that set the status to . The first is 
SendTouchStone , , , , which retrieves a 
touchstone  either from another broker or vendor, and this 
touchstone is used in the condition 

, . This means that all paywords in 

the payword chain  and the received touchstone, 
belong to the same payword chain. If  was obtained from a 
broker, the invariant holds trivially, if it was obtained from 
another vendor it holds because by assumption the old 
touchstone was a successor of a broker touchstone in a 
payword chain.  

The other possible predecessor is input action 
SendPaywords , , , , ,  
which will check the condition 

,  if the touchstone 
is in the vendors own database. This means that we can use the 
assumption that the old touchstone was a successor of a broker 
touchstone to show that the new touchstone is so as well.  
 
Theorem 1: Let , ,  of a customer 

, then there exists a broker  and 
an  such that for the broker database holds 

, where  is the first 
element of the payword chain.  
Proof: This follows from Lemma 1 to 3.  

B. Non-Blocking Behavior  
The automata that model of the Netpay protocol only use 

input and output actions, and no internal hidden action. For 
every action two automata have to synchronize. An action can 
take place if the precondition of the input and output action are 
satisfied. If the precondition of the output action is satisfied, 
but the precondition of the corresponding input action is not, 
then the output action is blocked. This means that one 
automaton can prevent another automaton from producing 
output.  

In the I/O automata framework it is required that all input 
actions are always enabled, i.e. output action can never be 
blocked. In the interface automata framework states in which 
actions are blocked are identified and removed from the 
model. Neither of these two solution seemed appropriate for 
this case; output may be blocked, if for example the other 
automaton is processing another ecoin. This is acceptable as 
long as this output action is not blocked indefinitely. If the 
output action is enabled then at some point in the future the 
corresponding input action should be enabled as well. In the 
context of Netpay this means for example that a broker might 
block a customer for some time, while it processes a different 
ecoin request, but that the broker will eventually return to 
status , where it accepts the request.  

To prove the non-blocking behavior we have to assume that 
the Netpay automaton model is (weak) fair, namely that if an 
action cannot be enabled indefinitely, i.e. the precondition of 
both input and output action are satisfied, then the action will 
eventually be taken. Given that assumption we can show that 
if an output action is indefinitely enabled, then the 
corresponding input action will be enabled eventually.  

Key to this is the observation that all automata will return to 
the status . Most communication between two automata 
are models as a pair of actions. These pairs are: 

• Shared actions Send , ,  and 
SendEcoin , , , , ; the 
request for an ecoin by a customer, and the reply by a 
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broker.  
• Shared actions GetTouchStone , ,  and 

GetTouchStone , , ; the request on a 
touchstone from broker/vendor and the reply.  

• Shared actions 
SendPaywords , ,  and 
SendInformationBought , ; the sending 
of an ecoin to a vendor, and the confirmation.  

For the first two pairs we have that after taking the first 
action, the only action that both participating automata can 
take is the second, and the second action is enabled. This 
means it won’t be blocked and the automata can return 
to  . The third pair is slightly more involved. If the 
touchstone is held by the vendor, then the only action that is 
possible next is SendInformationBought , , and 
that action is enabled. If the touchstone is with another vendor 
or broker, it has to execute action 
GetTouchStone , ,  and 
GetTouchStone , , . Since these are not 
blocking, the requesting vendor will reach status 

 eventually, which means that 
SendInformationBought ,  is enabled. This shows 
that for either of these series of actions, the automata will get 
back to a status that accepts new requests. 

V.  CONCLUSION AND FUTURE RESEARCH 
In this paper, we have modeled and analyzed some 

properties of Netpay protocol using IA. We have verified two 
important properties:  

• There is no deadlock in the model.  
• If the protocol is executing according to its 

specification, the ecoins remains valid.  
The verification done in this paper for ecoin validity is on 

the assumption that the customer and vendor is cooperative. 
We are currently working on verifying whether the ecoins 
remain valid when a customer or vendor is not cooperative. As 
mentioned in the paper, there are different e-wallets for the 
Netpay protocol, we will model and verify Netpay protocol 
with different e-wallets. The work of this paper has not 
addressed anonymity and robustness properties. These are two 
important properties of the Netpay protocol which is part of 
our future work. 
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