
Automated Analysis of AODV using UPPAAL?

Ansgar Fehnker1,4, Rob van Glabbeek1,4, Peter Höfner1,4, Annabelle McIver2,1,
Marius Portmann1,3 and Wee Lum Tan1,3

1 NICTA
2 Department of Computing, Macquarie University
3 School of ITEE, The University of Queensland

4 Computer Science and Engineering, University of New South Wales

Abstract. This paper describes an automated, formal and rigorous ana-
lysis of the Ad hoc On-Demand Distance Vector (AODV) routing pro-
tocol, a popular protocol used in wireless mesh networks.

We give a brief overview of a model of AODV implemented in the
UPPAAL model checker. It is derived from a process-algebraic model
which reflects precisely the intention of AODV and accurately captures
the protocol specification. Furthermore, we describe experiments carried
out to explore AODV’s behaviour in all network topologies up to 5 nodes.
We were able to automatically locate problematic and undesirable be-
haviours. This is in particular useful to discover protocol limitations and
to develop improved variants. This use of model checking as a diagnostic
tool complements other formal-methods-based protocol modelling and
verification techniques, such as process algebra.

1 Introduction

Route finding and maintenance are critical for the performance of networked sys-
tems, particularly when mobility can lead to highly dynamic and unpredictable
environments; such operating contexts are typical in wireless mesh networks
(WMNs). Hence correctness and good performance are strong requirements of
routing algorithms. The Ad hoc On-Demand Distance Vector (AODV) routing
protocol [11] is a widely used routing protocol designed for WMNs and mobile
ad hoc networks (MANETs). It is one of the four protocols defined in an RFC
(Request for Comments) document by the IETF MANET working group. AODV
also forms the basis of new WMN routing protocols, like the upcoming IEEE
802.11s wireless mesh network standard [7].

Usually, routing protocols are optimised to achieve key objectives such as
providing self-organising capability, overall reliability and performance in typical
network scenarios. Additionally, it is important to guarantee protocol properties
such as loop freedom for all scenarios, including non-typical, unanticipated ones.
This is particularly relevant for highly dynamic MANETs and WMNs.

The traditional approaches for the analysis of MANET and WMN routing
protocols are simulation and test-bed experiments. While these are important

? First steps towards this analysis appeared in [5].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of the South Pacific Electronic Research Repository

https://core.ac.uk/display/11534241?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

and valid methods for protocol evaluation, there are limitations: they are re-
source intensive and time-consuming. The challenges of extensive experimental
evaluation are illustrated by recent discoveries of limitations of protocols that
have been under intense scrutiny over many years. An example is [9].

We believe that formal methods in general and model checking in particular
can help in this regard. Model checking is a powerful method that can be used to
validate key correctness properties in finite representations of a formal system
model. In the case that a property is found not to hold, the model checker
produces evidence for the fault in the form of a “counter-example” summarising
the circumstances leading to it. Such diagnostic information provides important
insights into the cause and correction of these failures.

In [4], we specified the AODV routing protocol in the process algebra AWN.
The specification follows well-known programming constructs and lends itself
well for comparison with the original specification of the protocol in English.
Based on such a comparison we believe that the AWN model provides a com-
plete and accurate formal specification of the core functionality of AODV. In
developing the formal specification, we discovered a number of ambiguities in
the IETF RFC [11]. Our process algebraic formalisation captures these by sev-
eral interpretations, each with slightly different AWN code.

In this paper we follow an interpretation of the RFC, which we believe to be
the closest to the spirit of the AODV routing protocol. We show how to obtain
executable versions of this AWN specification, in the language of the UPPAAL
model checker [1,8]. By deriving the UPPAAL model from the AWN model, the
accuracy of the AWN model is transferred to the UPPAAL model.

The executable UPPAAL model is used to confirm and discover the presence
of undesirable behaviour. We check important properties against all topologies
of up to 5 nodes, which also includes dynamic topologies with one link going up
or down. This exhaustive search confirmed known and revealed new problems of
AODV, and let us quantify in how many topologies a particular error can occur.
Subsequently, the same experiments for modifications of AODV showed the pro-
posed modifications can all but eliminate certain problems for static topologies,
and significantly reduce them for dynamic topologies. The automated analysis
of routing protocols presented in this paper combined with formal reasoning in
AWN provides a powerful tool for the development and rigorous evaluation of
new protocols and variations, and improvements of existing ones.

2 Ad hoc On-Demand Distance Vector Routing Protocol

2.1 The Basic routine

AODV [11] is a widely used routing protocol designed for WMNs and MANETs.
It is a reactive routing protocol, where the route between a source and a desti-
nation node is established on an on-demand basis. A route discovery process is
initiated when a source node s has data to send to a destination node d, but has
no valid corresponding routing table entry. In this case, node s broadcasts a route

Automated Analysis of AODV using UPPAAL 3

(a)

d

b

s

a

(b)

d

b

s

a

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R
E
Q

R
R

E
Q

R
R

E
Q

(c)

d

b

s

a
R
R
E
PR

R
E
P

Fig. 1. Example network topology

request (RREQ) message in the network. The RREQ message is re-broadcast
and forwarded by other intermediate nodes in the network, until it reaches the
destination node d (or an intermediate node that has a valid route to node d).
Every node that receives the RREQ message will create a routing table entry to
establish a reverse route back to node s. In response to the RREQ message, the
destination node d (or an intermediate node that has a valid route to node d)
unicasts a route reply (RREP) message back along the previously established
reverse route. At the end of this route discovery process, an end-to-end route
between the source node s and destination node d is established. Usually, all
nodes on this route have a routing table entry to both the source node s and
destination node d. An example topology, indicating which nodes are in trans-
mission range of each other, as well as the flow of RREQ and RREP messages,
is given in Figure 1. In the event of link and route breaks, AODV uses route
error (RERR) messages to inform affected nodes. Sequence numbers are another
important aspect of AODV, and are used to indicate the freshness of routing
table entries for the purpose of preventing routing loops.

2.2 Process Algebraic Model of AODV

The process algebra AWN [4] has been developed specifically for modelling WMN
routing protocols. It is designed in a way to be easily readable and treats three
necessary features of WMNs routing protocols: data structures, local broadcast,
and conditional unicast. Data structures are used to model routing tables etc.;
local broadcast models message sending to all directly connected nodes; and con-
ditional unicast models the message sending to one particular node and chooses a
continuation process dependent on whether the message is successfully delivered.

In AWN, delivery of broadcast messages is “guaranteed”, i.e., they are re-
ceived by any neighbour that is directly connected. The abstraction to a guar-
anteed broadcast enables us to interpret a failure of message delivery (under
assumptions on the network topology) as an imperfection in the protocol, rather
than as a consequence of unreliable communication. Section 4.3, for example,
describes a simple network topology and a scenario for which AODV fails to
discover a route, even if broadcast is guaranteed. The failure is a shortcoming of
the protocol itself, and cannot be excused by unreliable communication.

Conditional unicast models an abstraction of an acknowledgment-of-receipt
mechanism that is typical for unicast communication but absent in broadcast
communication, as implemented by the link layer of relevant wireless standards

4 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

such as IEEE 802.11. The AWN model captures the bifurcation depending on
the success of the unicast, while abstracting from all implementation details.

In [4], we used AWN to model AODV according to the IETF RFC [11].
The model captures all core functionalities as well as the interface to higher
protocol layers via the injection and delivery of application layer data, and the
forwarding of data packets at intermediate nodes. Although the latter is not part
of the AODV protocol specification, it is necessary for a practical model of any
reactive routing protocol where protocol activity is triggered via the sending and
forwarding of data packets. In addition, our model contains neither ambiguities
nor contradictions, both of which are often present in specifications written in
natural languages, such as in the RFC3561 (see e.g. [4]).

The AWN model of AODV contains a main process, called AODV, for every
node of the network, which handles messages received and calls the appropriate
process to handle them. The process also handles the forwarding of any queued
data packet if a valid route to its destination is known. Four other processes
handle one particular message type each, like RREQ. The network as a whole is
modelled as a parallel composition of these processes. Special primitives allow us
to express whether two nodes are connected. Full details of the process algebra
description on which our UPPAAL model is based can be found in [4].

3 Modelling AODV in UPPAAL

UPPAAL [1,8] is an established model checker for networks of timed automata,
used in particular for protocol verification. We use UPPAAL for the following
reasons: (1) UPPAAL provides two synchronisation mechanisms—binary and
broadcast synchronisation, which translate to uni- and broadcast communica-
tion; (2) it provides common data structures, such as arrays and structs, and
a C-like programming language to define updates on these data structures; (3)
in the future, AWN (and therefore also our models) will be extended with time
and probability—UPPAAL provides mechanisms and tools for both.

Our process-algebraic model of AODV has been used to prove essential prop-
erties, such as loop freedom for popular interpretations of [11]—independent of a
particular topology. The UPPAAL model is derived from the AWN specification
that comes closest to the spirit of the AODV routing protocol.

Section 3.2 will explain the translation and the simplifying assumptions in
detail.

3.1 UPPAAL Automata

Since our models do not yet use time (or probabilities) they are simply networks
of automata with guards. The state of the system is determined, in part, by the
values of data variables that can be either shared between automata, or local. We
assume a data structure with several types, variables ranging over these types,
operators and predicates. Common Boolean and arithmetic expressions are used
to denote data values and statements about them.

Automated Analysis of AODV using UPPAAL 5

Each automaton is a graph, with locations, and edges between locations.
Every edge has a guard, optionally a synchronisation label, and an update. Syn-
chronisation occurs via so-called channels; for each channel a there is one label
a! to denote the sender, and a? to denote the receiver. Transitions without labels
are internal; all other transitions use one of two types of synchronisation.

In binary handshake synchronisation, one automaton having an edge with
a label that has the suffix ! synchronises with another automaton with an edge
having the same label that has a ?-suffix. These two transitions synchronise when
both guards are true in the current state, and only then. When the transition is
taken both locations change, and the updates will be applied to the state vari-
ables; first the updates on the !-edge, then the updates on the ?-edge. If there is
more than one possible pair, then the transition is selected non-deterministically.

In broadcast synchronisation, one automaton with a !-labelled edge synchro-
nises with a set of other automata that all have an edge with a matching ?-label.
The initiating automaton can change its location, and apply its update, if the
guard on its edge evaluates to true. It does not require a second synchronising
automaton. Automata with a matching ?-labelled edge have to synchronise if
their guard is currently true. They change their location and update the state.
The automaton with the !-edge will update the state first, followed by the other
automata in some lexicographic order. If more than one automaton can initiate
a transition on an !-edge, the choice will be made non-deterministically.

3.2 From AWN to UPPAAL

Every node in the network is modelled as a single automaton, each having its own
data structures such as a routing table and message buffer. The implementation
of the data structure defined in AWN is straightforward, since both AWN and
UPPAAL allow C-style data structures. A routing table rt for example is an
array of entries, one entry for every node. An entry is given by the data type

typedef struct

{ SQN dsn; //destination sequence number

bool flag; //validity of a routing table entry

int hops; //distance (hop count) to the destination

IP nhop; //next hop (is 0 if no route)

} rtentry;

where SQN denotes a data type for sequence numbers and IP denotes one for all
IP address. In our model, these types are mapped to integers.

The local message buffer is modelled as an array msglocal. UPPAAL will
warn if during model checking an out-of-bounds error occurs, i.e., if the array
was too small. Each message is a struct with fields msgtype which can take
values PKT, RREQ, RREP, or RERR, integer hops for the distance from the orig-
inator of the message, sequence number rreqid to identify a route request, a
destination IP dip, a destination sequence number dsn, an originator IP oip,
an originator sequence number osn, and a sender IP sip. The model contains
functions addmsg, deletemsg and nextmsg, to add a message, delete a message,
or to return the type of the next message in the buffer.

6 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

Table 1 Excerpt of AWN spec for AODV. A few cases for RREQ handling.

AODV(ip,sn,rt,rreqs,store)
def
=

1. /*depending on the message on top of the message queue, the node calls different processes*/
2. . . .
3. [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ∧ (oip, rreqid) ∈ rreqs]
4. /*silently ignore RREQ, i.e. do nothing, except update the entry for the sender*/
5. [[rt := update(rt, (sip, 0, val, 1, sip))]] . /*update the route to sip*/
6. AODV(ip,sn,rt,rreqs,store)
7. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip) ∧ (oip, rreqid) 6∈ rreqs) ∧ dip = ip]
8. /*answer the RREQ with a RREP*/
9. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update the routing table*/

10. [[rreqs := rreqs ∪ {(oip, rreqid)}]] /*update the array of already seen RREQ*/
11. [[sn := max(sn, dsn)]] /*update the sqn of ip*/
12. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to sip*/
13. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .
14. AODV(ip,sn,rt,rreqs,store)
15. + [msg = rreq(hops, rreqid, dip, dsn, oip, osn, sip)∧(oip, rreqid) 6∈ rreqs)∧ dip 6= ip∧

(dip 6∈ vD(rt) ∨ sqn(rt,dip) < dsn ∨ sqnf(rt,dip) = unk)]
16. /*forward RREQ*/
17. [[rt := update(rt, (oip, osn, val, hops + 1, sip))]] /*update routing table*/
18. [[rreqs := rreqs ∪ {(oip, rreqid)}]] /*update the array of already seen RREQ*/
19. [[rt := update(rt, (sip, 0, val, 1, sip))]] /*update the route to the sender*/
20. broadcast(rreq(hops + 1,rreqid,dip,max(sqn(rt, dip), dsn),oip,osn,ip)) .
21. AODV(ip,sn,rt,rreqs,store)
22. + [rreq(hops, rreqid, dip, dsn, oip, osn, sip) ∧ . . .]
23. . . .

Connections between nodes are determined by a connectivity graph, which is
specified by a Boolean-valued function isconnected. This graph presents one
particular topology and is not derived from our AWN specification, since the
specification is valid for all topologies. Communication is modelled as an atomic
synchronised transition between a sender, on an !-edge, with a receiver, on a
matching ?-edge. The guard of the sender depends on local data, e.g. buffer
and routing table, while the guard of the receiver is isconnected. This means
that in broadcast communication the sender will take the transition regardless of
isconnected, while disconnected nodes will not synchronise. In unicast commu-
nication the transition is blocked if the intended recipient is not connected, but
there is a matching broadcast transition that sends an error message in this case.
When the transition is taken, the sender copies its message to a global variable
msgglobal, and the receiver copies it subsequently to its local buffer msglocal.

AODV uses unicast for RREP and PKT messages, and broadcast for RERR
and RREQ messages. To model unicast, the UPPAAL model has one binary
handshake channel for every pair of nodes. For example, rrep[i][j] is used for
transitions modelling the sending of a route reply from node i to j. To model
broadcast, we use one broadcast channel for every node. For example, rreq[i]
is used for the route requests of node i. To model new packets from i to j,
generated by the user layer, the model contains a channel newpkt[i][j].

The AWN model of Table 1 is an excerpt of the AODV specification presented
in [4]—the full specification and a detailed explanation can be found there. The
excerpt presented here differs slightly from the original model:1 (1) we abstract

1 It can be shown that the model presented here behaves identical to the AWN model
in [4]; in other words, they are behavioural equivalent.

Automated Analysis of AODV using UPPAAL 7

Table 2 Excerpt of UPPAAL model. A few cases for RREQ handling.
1. . . .
2. aodv -> aodv {
3. guard nextmsg()==RREQ && rreqs[msglocal[0].oip][msglocal[0].rreqid];
4. sync tau[ip]?;
5. assign sipupdate(), deletemsg(); },
6. aodv -> aodv {
7. guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip][msglocal[0].rreqid]&&msglocal[0].dip==ip;
8. sync rrep[ip][oipnhop()]!;
9. assign updatert(msglocal[0].oip,msglocal[0].osn,1,msglocal[0].hops+1,msglocal[0].sip),

10. rreqs[msglocal[0].oip][msglocal[0].rreqid]=1,
11. sn=max(sn,msglocal[0].dsn),
12. sipupdate(),
13. msgglobal=createrep(0,msglocal[0].dip,sn,msglocal[0].oip,ip), deletemsg(); },
14. aodv -> aodv {
15. guard nextmsg()==RREQ&&!rreqs[msglocal[0].oip][msglocal[0].rreqid]&&msglocal[0].dip!=ip

&& (!rt[msglocal[0].dip].flag || msglocal[0].dsn>rt[msglocal[0].dip].dsn
|| rt[msglocal[0].dip].dsn==0);

16. sync rreq[ip]!;
17. assign updatert(msglocal[0].oip,msglocal[0].osn,1,msglocal[0].hops+1,msglocal[0].sip),
18. rreqs[msglocal[0].oip][msglocal[0].rreqid]=1,
19. sipupdate(),
20. msgglobal=createreq(msglocal[0].hops+1,msglocal[0].rreqid,msglocal[0].dip,

max(msglocal[0].dsn, rt[msglocal[0].dip].dsn),msglocal[0].oip,msglocal[0].osn,ip),
21. deletemsg(); },
22. . . .

from precursors, an additional data structure that is maintained by AODV (2)
the model in [4] uses 6 different processes; here processes are inlined into the body
of the main AODV process. This reduces the number of processes to one and
yields an automaton with one control location; (3) the model in [4] uses nesting of
conditions and updates, while this model has been flattened to correspond more
closely with the limitations of the UPPAAL syntax—in UPPAAL the guards are
evaluated before any update, AWN has no such restriction.

Table 1 depicts three of the cases in the AWN model for handling route re-
quests. In each, a condition is checked, the routing tables and local data are up-
dated, and it returns to the main AODV process AODV(ip, sn, rt, rreqs, store).
Table 2 shows the corresponding edges from the UPPAAL model, one edge for
every case. Like the AWN model, which goes from the process AODV to AODV, the
UPPAAL model will go from control location aodv to itself (Lines 2, 6 and 14).

Each edge evaluates a guard in Lines 3, 7 and 15 in Table 2. These line num-
bers, and the line numbers mentioned in the remainder of this section correspond
to the same line number in Table 1. Whenever the AWN specification uses set
membership ((oip, rreqid)∈ rreqs), the UPPAAL model uses a 2-dimensional
Boolean array rreqs to encode membership; whenever the AWN model uses a
flag to denote a known sequence number (sqnf(rt,dip) = unk), the UPPAAL
model compares with a distinguished value (rt[msglocal[0].dip].dsn==0).

Depending on whether a case requires no transmission, unicast, or broadcast,
the UPPAAL model synchronises on a tau, a binary, or a broadcast channel
(Lines 4, 8 and 16). The tau channel for internal transitions allows for optimi-
sations; it could have been left empty. We discuss this later in this section.

After synchronisation the state is updated. For all route request messages we
update the routing table for the sender sip (Lines 5, 12 and 19). The fact that

8 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

the message was received means that sender sip is one hop away. Except for
the first case (Lines 4) the routing table is updated (Lines 9 and 17), and the
route request is added to the set of processed route requests (Lines 10 and 18).
In case that a node receives a request, and it is the destination, it increments its
sequence number, if necessary (Line 11), before it sends a route reply.

The last two steps in the UPPAAL model that complete a transmission first
create a new message and copy it to the global variable msgglobal (Lines 13 and
20), and then delete the first element of the local message buffer. In the AWN
model, these steps are part of the communication primitives.

The full UPPAAL models a node by an automaton with one control location
and 26 edges: 19 cases for processing the different routing messages, four cases
for receiving routing messages—one case for each type—two cases for sending
data packets, and one case for handling new data packets. The case distinction
is complete, i.e at least one transition is enabled and process messages if the
buffers and queues are not empty.

Both the UPPAAL and the AWN model maintain a FIFO buffer for incoming
messages. Any newly generated message only depends on the content of messages
previously received. This implies that the timing of internal transitions that
discard incoming messages is not relevant for route discovery. The UPPAAL
model exploits this fact and assigns a higher priority to internal transitions.
To implement priorities we labelled those transitions tau. This is is an effective
measure to reduce the state space, at the expense that UPPAAL is now unable to
check liveness properties; for this paper this is not a limitation, as all properties
can be expressed as safety properties.

4 Experiments

Our automated analysis of AODV considers 3 properties that relate to “route
discovery” for all topologies up to 5 nodes, with up to one topology change, and
scenarios with two new data packets.

4.1 Scenarios and Topologies

The experiments consider scenarios with two initial data packets in networks
with up to 5 nodes. Initially all routing tables and buffers are empty. The origi-
nator and the destination of the data packets are identified as nodes A, B, or C.
The new data packets may arrive as depicted in Figure 2. In the first scenario
a packet from A to B is followed by a packet from A to C; in the second a
packet from B to A by a packet from C to A; in the third a packet from A
to B by a packet from B to C; and in the final scenario a packet from B to
C by a packet from A to B. The originator of the first new packet initiates a
route discovery process first, the originator of the second non-deterministically
after the first. The different scenarios are implemented by a simple automaton,
tester. Since the different topologies cover all possible permutations, these four

Automated Analysis of AODV using UPPAAL 9

A B C

newpkt[A][B]

newpkt[A][C]

A B C

newpkt[B][A]

newpkt[C][A]

A B C

newpkt[A][B]

newpkt[B][C]

A B C

newpkt[B][C]

newpkt[A][B]

Fig. 2. Sequence charts illustrating four scenarios for initiating two route requests.

scenarios cover all scenarios for injecting two new packets with either different
originators or different destinations.

Additional to the nodes A, B and C, we add up to two nodes that may
relay messages, but do not create data packets themselves. We consider only
topologies in which nodes A, B and C are connected, either directly, or indirectly.
This ensures that the route discovery is at least theoretically possible. If it fails,
then it won’t be because the nodes are not connected, but due to failure of the
protocol.

We consider three classes of topologies. The first class are static topologies.
Given the constraints that node A, B and C are connected, and that there are at
most 5 nodes, this gives 444 topologies, after topologies that are identical up to
symmetries are removed. The second class considers pairs of topologies from the
first class, in which the second topology can be obtained by adding a new link.
This models a dynamic topology in which a link is added. There are 1978 such
pairs. The third class considers the same pairs, but now moves from the second
topology to the first. This models a link break. Note that after deletion, nodes
A, B and C are still connected. In our UPPAAL model a change of topology
is modelled by another automaton. It may add or remove a link exactly once,
non-deterministically, after the first route request arrives at the destination.

4.2 Properties

This paper considers three desirable properties of any routing protocol such as
AODV. The first property is that once all routing messages have been processed
a route from the originator to the destination has been found. In UPPAAL
syntax this safety property can be expressed as:

A[]((tester.final && emptybuffers()) imply

(node(OIP).rt[DIP].nhop!=0))
(1)

The CTL formula A[]φ is satisfied if φ holds on all states along all paths. The
variable node(OIP).rt models the routing table of the originator node OIP, and
the field node(OIP).rt[DIP].nhop represents the next hop for destination DIP.
All initiated requests will have been made, iff automaton tester is in location
final, the message buffers are empty iff function emptybuffers returns true,
and the originator OIP has a route to node DIP iff node(OIP).rt[DIP].nhop!=0.

The second property is related, namely that once all messages are processed,
then no sub-optimal route has been found. Here, sub-optimal means that the

10 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

number of hops is greater than the shortest path. In case that the topology
changes, we take the greater distance. In UPPAAL this can be expressed as

A[]((tester.final && emptybuffers()) imply

(node(OIP).rt[DIP].hops<=distance[OIP][DIP]))
(2)

Here, the array distance encodes the distance matrix. Note, that this fails if the
route at the end is sub-optimal. It does not fail if at the end, either an optimal,
or no route has been found. If the first two properties are satisfied, it means that
it is guaranteed that an optimal route will be found when all messages have been
processed. Note that it is known that AODV does not guarantee that optimal
routes will be found. Nevertheless, an implementation or modification of AODV
can be said to perform better if this property fails for fewer topologies.

The third property is even stronger than the second, namely that no sub-
optimal routes will be found at all. It does not hold if a better optimal route
replaces a sub-optimal route that was found first.

A[](node(OIP).rt[DIP].hops<=distance[OIP][DIP]) (3)

If the third property holds, then the second must hold as well. In the experiments
we will check all three properties for both originator-destination pairs at once.

4.3 Modifications

The basic UPPAAL model is based on the process algebraic AWN model, which
reflects a common interpretation of the RFC with all ambiguities resolved. It
is known that AODV does not guarantee that optimal routes will be found, or
even any routes at all [5,9].2 Our experiments quantify how many topologies
are affected by these problems, and also what impact slight modifications of the
protocol have. We will refer to the basic model as model 1, and discuss three
proposed variants of AODV.

Forwarding all route replies. It is a known problem that nodes drop route
reply messages under certain conditions.3 During our experiments we found this
problem even in the smallest topology, a static linear topology with only three
nodes, and only two links: node A is connected to node B and B to node C.
Both node B and C initiate a route request to A. For this topology and scenario,
UPPAAL finds a counterexample for Property (1), i.e., it is possible that no route
will been found when all messages have been processed.

Fig. 3 depicts a message sequence chart of the relevant part of the counterex-
ample. Initially, both B and C initiate a route request for A. We refer to the first
request as BA-request, and to the second as CA-request. First, node B sends the
BA-request to A and C (Step 1 in Fig. 3), then node C its CA-request to B (Step

2 AODV proposes to repeat the route discovery process if the first discovery process
fails. However, this solution does not solve the problems entirely (see [4]).

3 This problem has already been raised on the MANET mailing list in Oct 2004
(http://www.ietf.org/mail-archive/web/manet/current/msg05702.html).

http://www.ietf.org/mail-archive/web/manet/current/msg05702.html

Automated Analysis of AODV using UPPAAL 11

A B C

1

2

3

4

5

6

7

8

9

10

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv

aodv aodv aodv

rreq[B]
BA

rreq[B]
BA

rreq[C]
CA

rreq[B] rreq[B]
CA CA

rreq[C]
BA

rrep[A][B]
BA

rrep[A][B]
CA

Fig. 3. Message sequence chart illustrating failed route discovery. Wide vertical lines
mean that local states do not change in this transition. The superscripts indicate the
corresponding originator and destination of the route discovery process.

2). Node B forwards the CA-request (Step 3), node C the BA-request (Step 4).
Node C will correctly ignore the CA-request that it received from B, since it is
the originator (Step 5). Similarly, B will ignore the BA-request (Step 6). Node
A will then reply to the BA-request (Step 7), and node B will update its routing
table (Step 8) to include a route to A. Node A will also reply to the CA-request
(Step 9), but B will ignore this message (Step 10), since it does not contain new
information for B. Node A’s reply to the CA-request will not arrive at C.

The discarding of the RREP message happens according to the RFC spec-
ification of AODV [11]. It states that an intermediate node only forwards the
RREP message if it is not the originator node and it uses the RREP to update
its route entry to the destination. In this case, node B is not the originator, but
it also did not use the route reply to update its route. It already had an optimal
route, as a result of the BA-request. This type of problem can arise whenever
one node has to relay multiple route requests for the same destination.

A possible solution would be to forward every reply received by a node. Our
model 2 implements this change. Obviously, this increases the number of control
messages generated during route discovery. However, this is compensated by the
reduced need to repeat sending the route request in case no route has been found,
the solution proposed by AODV.4 In the experiment section we will see that this
modification effectively addresses the problem.

Replying to improving requests. Counterexamples found by UPPAAL show
that a source for sub-optimal routes is the property of AODV to only reply to the
first route request. All subsequent requests with the same request ID (rreqid)

4 Moreover, a repeated route request need not be any more successful than the first.

12 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

will be ignored (Line 3 of Tables 1 and 2), even if the subsequent requests arrived
via a shorter route. Model 3 modifies the rule for the handling of route requests.
It will not only reply to the first request, but also to a subsequent request (with
the same request ID) with an improved hop count.

Recovering from failed replies. Analysis of UPPAAL’s counterexamples
show that a main reason for failed route discovery is that a node marks a request
as having been replied to, even if the node detected the reply failed due to the
link being broken in the time between the received request and the sent reply.
The node will ignore other requests with the same request ID that may arrive
later. Model 4 introduces two changes: it does not mark a request as seen if the
reply fails, and it replies to other requests in the same route discovery process.

This change should be considered with care, since it changes the rules with
respect to sequence numbers. These numbers are an essential part of AODV be-
ing loop free, and there is currently no guarantee that this change will not violate
some essential invariants of the proof [4]. We included the results nevertheless,
as they show that there is still significant potential to improve AODV.

4.4 Experimental Results

The experimental results tell for how many topologies UPPAAL could show
the absence of counterexamples, and thus allow quantification of the impact of
improvements. However, the analysis uses a non-deterministic model, rather than
a probabilistic model. For each topology it is reported whether a counterexample
exists, but not how likely it is to occur. Neither can we assume that the topologies
themselves are randomly distributed. Depending on the application only certain
types of topologies might occur in practice. Nevertheless, it is fair to assume that
a modification that leads to fewer topologies with counterexamples constitutes
an improvement w.r.t. the considered property.

Table 3 presents the results of the experiments. Most relevant for all classes of
topologies are Property (1), a route is found, Property (2), no sub-optimal route
is found in the end, and the combination of these, i.e., an optimal route is found.

The results demonstrate that the problem of ignoring route replies as de-
scribed in Figure 3 occurs even for about 50% of all static topologies. Model 1
satisfies Property (2) only for half of all static topologies. The proposed modifi-
cation solves this problem entirely for static topologies. The other modifications
further improve the quality of the routes; in 99.1% of static topologies Prop-
erty (2) holds, i.e., the route was in the end always optimal. The slight drop in
Property (3) is explained by the fact that in a few cases, where no route was
found at all for model 1, a sub-optimal route was found in the other models.

The results for static topologies are roughly repeated if we consider topologies
in which a link is added. There were a few surprising instances though, in which
adding a link was instrumental in finding a sub-optimal route.

The results are, as expected, not quite as positive if a link gets removed. For
the baseline model it is only guaranteed for one quarter of all topologies that a
route will be found. Relaying all route replies, and not marking requests if the

Automated Analysis of AODV using UPPAAL 13

Property (1) Property (2) Property (3) Property (1) & (2) all properties

st
a
ti

c

model 1 52.7% 93.2% 50.7% 50.0% 13.5%
model 2 100.0% 93.2% 47.5% 93.2% 47.5%
model 3 100.0% 99.1% 47.5% 99.1% 47.5%
model 4 100.0% 99.1% 47.5% 99.1% 47.5%

Property (1) Property (2) Property (3) Property (1) & (2) all properties

a
d
d

li
n
k model 1 57.5% 90.8% 49.1% 53.3% 18.1%

model 2 100.0% 90.6% 46.2% 90.6% 46.2%
model 3 100.0% 97.8% 46.2% 97.8% 46.2%
model 4 100.0% 96.3% 46.2% 96.3% 46.2%

Property (1) Property (2) Property (3) Property (1) & (2) all properties

re
m

o
v
e

li
n
k

model 1 26.7% 90.5% 59.7% 26.2% 6.0%
model 2 53.0% 89.4% 57.1% 51.2% 28.9%
model 3 53.0% 93.1% 57.1% 52.8% 28.9%
model 4 75.4% 94.0% 54.0% 73.8% 41.0%

Table 3. Model checking result for the four models and three classes of topologies. It
gives the percentage of topologies for which there exists no counterexample.

reply fails, improves this result. For three quarters of all topologies in which a
link was removed it was shown that an optimal route will be found.

The main reason of the failures that remain is that a route reply might get
lost because of some intermediate link break on the path back to the destination.
A possible solution to this problem could be to maintain a set of back-up routes,
or to implement different error responses. However, this requires a significant
change and fundamentally changes the characteristics of AODV.

For the experiments we used an Intel Core2 CPU 2.13GHz processor with
2GB internal memory, running Ubuntu 11.04. We used UPPAAL 4.0.13. Of each
of the models described in this section, we checked 17600 instances, altogether
70400 instances. As indication of the state space and runtimes, we checked an
invariant on all instances of model 4 for a topology in which a link is removed.
These instances have larger state spaces than others, since these scenario have
also to trigger the transitions for error handling. The models have an average
of 9400 states, the largest model has 475000 states, and the median is 2700.
Exploring these state spaces took on average 1.73 seconds user time, at most 81
seconds, and the median was 0.57. These run times show that an automated,
systematic and rigorous analysis of reasonable rich routing protocols is feasible.

5 Related Work

Other researchers have used formal specification and analysis techniques to inves-
tigate the correctness and performance of AODV; we survey the sample related
to model checking.

Bhargavan et al. [2] were amongst the first to use model checking on a draft of
AODV, demonstrating the feasibility and value of automated verification of rout-
ing protocols. Their investigations using the SPIN model checker revealed that in
some circumstances routes containing loops can be created. The proposed vari-
ation which guarantees loop freedom were not included in the current standard.

14 Fehnker, van Glabbeek, Höfner, McIver, Portmann & Tan

Musuvathi et al. [10] introduced the CMC model checker primarily to search
for coding errors in implementations of protocols written in C. They use AODV
as an example and, as well as discovering a number of errors, they also found a
problem with the specification itself which has since been corrected.

Chiyangwa and Kwiatkowska [3] use the timing features of UPPAAL to study
the relationship between the timing parameters and the performance of route
discovery. They established a dependence between the lifetime of a route and the
size of the network, although their study only considered only the initiate of a
single route discovery process, and a static linear topology. In [5], we confirmed
some of the problems they discovered, and show their independence of time.

Other researchers have used model checking to analyse other routing proto-
cols. Wibling et al. [13] for example used SPIN and UPPAAL to verify aspects of
the LUNAR protocol, which is also used in ad hoc routing for wireless networks.
In particular the timing feature of UPPAAL was used to check upper and lower
bounds on route finding and packet delivery times. The scenarios considered
included a limited number of topology changes where problems were suspected.

De Renesse and Aghvami [12] used SPIN to study the WARP protocol. To
reduce the overhead on model checking, various simplifications were imposed on
a five-node network, including a single source and destination and limitations on
the degree that the network can change.

Fehnker et al. have used the model checker UPPAAL to analyse a TDMA
time synchronisation protocol [6]. Similarly to our approach they considered all
topologies in a certain class, but did not cover dynamic topologies.

Our approach is in line with these related works. However, it is unique in the
sense that our UPPAAL model complements our process-algebraic specification
of AODV. As mentioned before, these two approaches to formal protocol mod-
elling, specification and evaluation, if used together, can provide a powerful tool
for the development and rigorous evaluation of new protocols and variations,
and improvements of existing ones. Currently, our UPPAAL model is derived by
hand directly from the AWN specification, but an automatic translation from
AWN in the style of Musuvathi et al. [10] is possible, and remains as future work.

6 Conclusions and Outlook

The aim of this ongoing work is to complement by model checking a process alge-
braic description of WMN routing protocols in general, and AODV in particular.
The used description of AODV described in [4] is amongst the first detailed for-
mal models. Having the ability of automatically deriving an UPPAAL model
from an AWN specification and thus model checking formal specifications allows
the confirmation and detailed diagnostics of suspected errors. The availability
of an executable model becomes especially useful in the evaluation of proposed
improvements to AODV, as we have shown.

We have sketched possible modifications of AODV, which have been evalu-
ated by formal and rigorous analysis by means of model checking. An analysis
of these modifications by means of process algebra is part of future work. We

Automated Analysis of AODV using UPPAAL 15

have set up an environment where we can test a whole bunch of different topolo-
gies in a systematic manner. This will allow us to do a fast comparison between
standard AODV and proposed variations in contexts known to be problematic.

References

1. Behrmann, G., David, A., Larsen, K.: A Tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems,
LNCS, vol. 3185, pp. 200–236. Springer (2004), http://dx.doi.org/10.1007/

978-3-540-30080-9_7

2. Bhargavan, K., Obradovic, D., Gunter, C.A.: Formal verification of standards for
distance vector routing protocols. J. ACM 49(4), 538–576 (2002), http://dx.doi.
org/10.1145/581771.581775

3. Chiyangwa, S., Kwiatkowska, M.: A timing analysis of AODV. In: Formal Methods
for Open Object-based Distributed Systems (FMOODS’05). LNCS, vol. 3535, pp.
306–321. Springer (2005), http://dx.doi.org/10.1007/11494881_20

4. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A., Portmann, M., Tan, W.L.:
A process algebra for wireless mesh networks used for modelling, verifying and
analysing AODV. Tech. rep., NICTA (to appear), draft available at http://www.

nicta.com.au/__data/assets/pdf_file/0006/29292/MeshTR2011.pdf

5. Fehnker, A., van Glabbeek, R.J., Höfner, P., McIver, A.K., Portmann, M., Tan,
W.L.: Modelling and analysis of AODV in UPPAAL. In: 1st International Work-
shop on Rigorous Protocol Engineering (2011), (in press)

6. Fehnker, A., van Hoesel, L., A, M.: Modelling and verification of the lmac protocol
for wireless sensor networks. In: Integrated Formal Methods, IFM 2007. LNCS,
vol. 4591. Springer (2007), http://dx.doi.org/10.1007/978-3-540-73210-5_14

7. Hiertz, G.R., Denteneer, D., Max, S., Taori, R., Cardona, J., Berlemann, L., Walke,
B.: IEEE 802.11s: the WLAN mesh standard. IEEE Wireless Communications
17(1), 104–111 (2010), http://dx.doi.org/10.1109/MWC.2010.5416357

8. Larsen, K.G., Pettersson, P., Wang Yi: UPPAAL in a nutshell. International
Journal of Software Tools for Technology Transfer 1(1-2), 134–152 (1997), http:
//dx.doi.org/10.1007/s100090050010

9. Miskovic, S., Knightly, E.W.: Routing primitives for wireless mesh networks:
Design, analysis and experiments. In: IEEE INFOCOM. pp. 2793–2801 (2010),
http://dx.doi.org/10.1109/INFCOM.2010.5462111

10. Musuvathi, M., Park, D.Y.W., Chou, A., Engler, D.R., Dill, D.L.: CMC: a prag-
matic approach to model checking real code. In: Operating Systems Design and Im-
plementation (OSDI’02) (2002), http://www.usenix.org/events/osdi02/tech/

musuvathi.html

11. Perkins, C., Belding-Royer, E., Das, S.: Ad hoc on-demand distance vector (AODV)
routing. RFC 3561 (2003), http://www.ietf.org/rfc/rfc3561.txt

12. de Renesse, R., Aghvami, A.: Formal verification of ad hoc routing protocols using
SPIN model checker. In: Proceedings of IEEE MELECON’04. pp. 1177 – 1182.
IEEE (2004), http://dx.doi.org/10.1109/MELCON.2004.1348275

13. Wibling, O., Parrow, J., Pears, A.N.: Automatized verification of ad hoc rout-
ing protocols. In: Formal Techniques for Networked and Distributed Systems –
FORTE. LNCS, vol. 3235, pp. 343–358. Springer (2004), http://dx.doi.org/10.
1007/978-3-540-30232-2_22

http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1145/581771.581775
http://dx.doi.org/10.1145/581771.581775
http://dx.doi.org/10.1007/11494881_20
http://www.nicta.com.au/__data/assets/pdf_file/0006/29292/MeshTR2011.pdf
http://www.nicta.com.au/__data/assets/pdf_file/0006/29292/MeshTR2011.pdf
http://dx.doi.org/10.1007/978-3-540-73210-5_14
http://dx.doi.org/10.1109/MWC.2010.5416357
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1007/s100090050010
http://dx.doi.org/10.1109/INFCOM.2010.5462111
http://www.usenix.org/events/osdi02/tech/musuvathi.html
http://www.usenix.org/events/osdi02/tech/musuvathi.html
http://www.ietf.org/rfc/rfc3561.txt
http://dx.doi.org/10.1109/MELCON.2004.1348275
http://dx.doi.org/10.1007/978-3-540-30232-2_22
http://dx.doi.org/10.1007/978-3-540-30232-2_22

	Automated Analysis of AODV using UPPAAL

