Special Publication No. 69

Organic Materials for Non-linear Optics

The Proceedings of a conference organised by the Applied Solid State Chemistry Group of the Dalton Division of The Royal Society of Chemistry

Oxford, 29th—30th June 1988

Edited by

R.A. Hann ICI Electronics, Runcorn

D. Bloor Queen Mary College, London

Third Harmonic Generation in Organic Dye Solutions

A. Penzkofer* and W. Leupacher

NATURWISSENSCHAFTLICHE FAKULTÄT II-PHYSIK, UNIVERSITÄT REGENSBERG, D-8400 regensburg, frg

1 INTRODUCTION

Light at the third harmonic frequency, $v_3 = 3v_L$, may be generated by the direct third-order nonlinear interaction $v_L + v_L + v_L + v_3$ due to the third-order nonlinear susceptibility $\chi_{THG}^{(3)}$, or it may be generated by cascading the second harmonic generation, $v_L + v_L + v_2$, and the frequency mixing, $v_2 + v_L + v_3$. The cascading interaction is due to the second-order nonlinear optical susceptibilities $\chi_{SHG}^{(2)}$ and $\chi_{FM}^{(2)}$. Phase-matching, $\Delta k=0$, is necessary for efficient light generation at the third harmonic frequency. Two nonlinear media in series are necessary for phase-matching both the second harmonic generation and the frequency mixing. The various generation schemes of phase-matched third harmonic light generation are summarized in Table 1.

In this paper the efficient phase-matched third harmonic generation in some organic dye solutions is studied. A picosecond Nd-phosphate glass laser is used as pump source. The third-order nonlinear susceptibilities and hyperpolarizabilities are determined. The limiting factors of the third-harmonic conversion efficiency at high pump pulse intensities are discussed. The third harmonic generation is resonantly enhanced by two-photon absorption (TPA, S_0 - S_1 absorption peak between fundamental and third harmonic frequency). The phase-matching at a certain dye concentration is achieved by the anomalous dispersion of the refractive index of the dye above the S_1 -absorption band. <u>Table 1</u> Schemes of phase-matched light generation at third harmonic frequency. TPA = two-photon absorption. IC = inversion center.

Medium	Phase-matching	Process	Resonance	Reference	
Metal vapors	puffer gas	direct	тра		
Inert gases	puffer gas	direct	-	4	
Organic dye					
solutions	solvent	direct	TPA	5-11	
vapors	puffer gas	direct	TPA	12	
Birefringent crys	tals				
with IC	birefringence	direct	-	13-15	
without IC	birefringence	direct and cascading		13,14 16,17	
without IC	birefringence	cascading ir two crystals	. -	18,19	
Liquid crystals and layered materials	reciprocal lattice vector	direct		20,21	

2 RESULTS

Determination of nonlinear susceptibilities

As long as other nonlinear optical processes and pump pulse depletion may be neglected the third harmonic energy conversion efficiency $n_E = W_3 / W_L$ is given by²²

$$n_{\rm E} = \frac{\kappa}{3^{3/2}} |\chi_{\rm THG}^{(3)}|^2 I_{\rm 0L}^2$$
(1)

with

$$\kappa = \frac{4\pi^{2}v_{3}^{2}\{\exp(-3\alpha_{L}\ell) + \exp(-\alpha_{3}\ell) - 2\exp[-(\alpha_{3}+3\alpha_{L})\ell/2]\cos(\Delta k\ell)\}}{n_{3}n_{L}^{3}c_{0}^{4}\varepsilon_{0}^{2}[(\alpha_{3}-3\alpha_{L})^{2}/4 + \Delta k^{2}]}$$
(2)

 $\alpha_{\rm L}$ and $\alpha_{\rm 3}$ are the linear absorption coefficients at $\nu_{\rm L}$ and $\nu_{\rm 3}$, respectively. n_L and n₃ are the corresponding refractive indices. ℓ is the sample length, c₀ is the vacuum light velocity, and ϵ_0 is the permittivity. The

Figure 1 Third harmonic energy conversion efficiency and third-order nonlinear susceptibility for methylene blue in methanol. Solid curves are calculated for $\chi_{p}^{(3)} > 0$ (1), imaginary (2), and <0 (3).

wave-vector mismatch is given by $\Delta k = 6\pi v_L (n_3 - n_L)/c_0$. A temporal and spatial Gaussian input pulse shape is assumed [intensity $I_L = I_{0L} \exp(-t^2/t_0^2 - r^2/r_0^2)$]. An effective interaction length may be defined by

$$\iota_{eff} = \frac{\exp(-3\alpha_{L}\ell/2) + \exp(-\alpha_{3}\ell)}{[(\alpha_{3} - 3\alpha_{L})^{2}/4 + \Delta k^{2}]^{1/2}}$$
(3)

The third order susceptibility $\chi_{THG}^{(3)}$ comprises contributions from the solvent (S) and the solute (D), i.e. $\chi_{THG}^{(3)} = \chi_S^{(3)} + \chi_D^{(3)}$. $\chi_S^{(3)}$ is real since the solvent is transparent, but $\chi_D^{(3)} = \chi_D^{(3)} - i\chi_D^{(3)}$ is complex (resonance contributions). The nonlinear susceptibility $\chi_S^{(3)}$ is related to the second hyperpolarizability by

 $\chi^{(3)} = NL^{(4)} \gamma^{(3)} / \epsilon_0$ (4)

N is the number density of molecules and $L^{(4)} = (n_3^2+2) \times (n_2^2+2)^3/81$ is the Lorentz-local field correction factor. The real and imaginary parts of $\chi_1^{(3)}$ may be resolved by measuring the third harmonic energy conversion efficiency versus dye concentration.⁹ For non-phasematched third harmonic generation the cell windows and the surrounding air contribute essentially to the signal. A special experimental arrangement (sample in vacuum chamber and cell window thickness equal to an even multiple integer of the coherence length $\ell_{\rm coh} = \pi/\Delta k$) is necessary to avoid these contributions.²² Fig.1 shows the third harmonic conversion efficiency and the resulting third-order non-linear susceptibility versus concentration for the dye methylene blue in methanol.⁹ The S₁ absorption peak of methylene blue is at 650 nm and $\chi_0^{(3)}$ is mainly real.

Table 2 contains experimental results of $\chi^{(3)}$ and $\gamma^{(3)}$. The dye hyperpolarizabilities center around 10^{-59} cm⁴V⁻³ ($\simeq 10^{-34}$ esu). The solvents are far out of resonance. Their hyperpolarizabilities are approximately a factor of 1000 smaller (for discussion see Ref.9).

Efficient Phase-Matched Third Harmonic Generation

For some dyes phase-matched collinear third harmonic generation of Nd:glass laser pulses is possible at a fixed concentration C_{PM} due to the anomalous refractive index dispersion above the S_1 absorption band. High conversion efficiencies require long effective interaction lengths (small linear absorptions α_3 , see Eq.3). The l_{eff} values at C_{PM} are given in Table 2. Fig.2 shows the absorption cross-section spectrum of the dye PYC in hexafluoroisopropanol. The absorption minimum of this dye is at 375 nm and does not coincide with λ_3 =351.3 nm. Nd-silicate glass lasers may be frequency tuned near to the absorption minimum.²³

The third harmonic conversion efficiency ${\rm n}_{\rm E}$ versus pump pulse peak intensity is plotted in Fig.3 for the

Figure 2 Absorption cross-section spectrum of 0.0825 molar PYC in HFIP.

dye PYC in hexafluoroisopropanol. At high pump pulse intensities the conversion efficiency saturates. $n_{\rm E}$ -values at $I_{\rm 0L} = 2 \times 10^{11} \, \text{W/cm}^2$ are listed in Table 2.

Limitation Of Conversion Efficiency

At high pump pulse intensities the two-photon absorption dynamics (two-photon absorption, excited-state absorption, amplified spontaneous emission, refractive index changes) and the self-phase modulation reduce the third harmonic conversion efficiency.¹¹ Some dependences of the conversion efficiency on material parameters are summarized in Table 3.^{1,2,11}

Dye		Solvent	C [mol/dm³]	^l eff [µm]	x ⁽³⁾ [m ² v ⁻²]	$ \gamma_{\rm THG}^{(3)} $ [cm ⁴ v ⁻³]	a) ⁿ E
Rhodamine	6G	ME	0.3 b)	2.8	8×10 ⁻²²	1.4×10 ⁻⁵⁹	
Fuchsin		ME	0.25 ^{b)}	7.9	5.1×10 ⁻²²	1.2×10 ⁻⁵⁹	
Methylene	blue	ME	0.37 ^{c)}	13	3.2×10 ⁻²²	4×10 ⁻⁶⁰	
Safranine	т	HFIP	0.33 ^{c)}	48	1.7×10 ⁻²²	3.3×10 ⁻⁶⁰	1×10 ⁻⁴
РҮС		HFIP	0.0825 ^{c)}	113	2×10 ⁻²²	1.7×10 ⁻⁵⁹	2×10 ⁻⁴
HMICI		HF1P	0.08 ^{c)}	160	2.48×10 ⁻²²	2×10 ⁻⁵⁹	4×10 ⁻⁴
-		ME	24.73 ^{b)}	2.7	2.4×10 ⁻²³	6×10 ⁻⁶³	1×10 ⁻⁷
-		HFIP	9.46 ^{b)}	5.1	1.4×10 ⁻²³	1×10 ⁻⁶²	1.3×10 ⁻⁷

Table 2 Dye and solvent parameters and THG results

a: $I_{0L} = 2 \times 10^{11} \text{ W/cm}^2$. b: not phase-matchable. c: phase-matched concentration C_{PM} . ME = methanol. HFIP = hexafluoroisopropanol. PYC = 1,3,1',3'-tetramethyl-2,2'-dioxopyrimido-6,6'-carbocyarine hydrogen sulphate. HMICI = 1,3,3,1',3',3'-hexamethylindocarbocyanine iodide. $\chi^{(3)}(esu) = (9 \times 10^8/4\pi)\chi^{(3)}(SI)$. $\gamma^{(3)}(esu) = 8.088 \times 10^{24} \gamma^{(3)}(SI)$.

3 CONCLUSIONS

The highest conversion efficiency obtained was 4×10^{-4} . Efficiencies n_E up to the percent region are expected for dyes with extremely low α_3 values and moderate excited state absorption cross-sections.

REFERENCES

- 1. J.F. Reintges, 'Nonlinear Optical Parametric Processes in Liquids', Academic Press, Orlando, 1984.
- 2. J.F. Reintges, in 'Laser Handbook', edited by M. Bass and M.L. Stitch, North-Holland, Amsterdam, 1985, Vol.5, Chapter 1.
- 3. C.R. Vidal in 'Tunable Lasers', edited by F.L. Mollenauer and J.C. White, Springer, Berlin, 1987, p. 57.
- 4. A.H. Kung, J.F. Young and S.E. Harris, <u>Appl. Phys. Lett.</u>, 1973, 22, 301.

Figure 3 Third harmonic energy conversion efficiency of 0.0825 molar PYC in HFIP. Sample length 0.1 mm.

- 5. P.P. Bey, J.F. Guiliani and H. Rabin, <u>IEEE J. Quant. Electron.</u>, 1971, QE-7, 86.
- 6. R.K. Chang and L.K. Galbraith, Phys. Rev., 1968, 171, 993.
- 7. J.C. Diels and F.P. Schäfer, Appl. Phys., 1974, 5, 197.
- L.I. Al'Perovich, T.B. Baveav and V.V. Shabalov, <u>Sov. J. Appl.</u> Spectrosc., 1977, 26, 196.
- 9. W. Leupacher and A. Penzkofer, Appl. Phys., 1985, B36, 25.
- W. Leupacher, A. Penzkofer, B. Runde and K.H. Drexhage, <u>Appl.</u> Phys., 1987, B44, 133.
- 11. A. Penzkofer and W. Leupacher, Opt. Quant. Electron., 1988, 20, 222.
- V.F. Lukinykh, S.A. Myslivets, A.K. Popov, and V.V. Slabko, Appl. Phys., 1985, B38, 143.
- 13. P.D. Maker and R.W. Terhune, Phys. Rev., 1965, 137A, 801.
- 14. S.A. Akhmanov, L.B. Meisner, S.T. Parinov, S.M. Saltiel and V.G. Tunkin, Sov. Phys. JETP, 1977, 46, 898.
- A. Penzkofer, F. Ossig and P. Qiu, <u>Appl. Phys. B</u>, to be published.
- 16. C.C. Wang and E.L. Baardsen, Appl. Phys. Lett., 1969, 15, 396.
- 17. P. Qiu and A. Penzkofer, Appl. Phys., 1988, B45, 225.

Table 3 Limitation dependences of third harmonic generation¹¹

 $\eta_{\rm E} \propto |\chi_{\rm THG}^{(3)}|^2 I_{\rm OL}^2 \alpha_{\rm L}^{-2}$ Linear absorption, α_{T} $n_{\rm E} \propto |\chi_{\rm THG}^{(3)}|^2 I_{\rm OL}^2 \alpha_3^{-2}$ Linear absorption, a_2 TPA of $2v_{\rm L}$, $\sigma_{\rm I.I.}^{(2)}$ $\eta_{\rm E} \propto |\chi_{\rm THG}^{(3)}|^2 (\sigma_{\rm LL}^{(2)})^{-2}$ Excited state absorption, σ_{ex} without ground state depletion $(\alpha_{ex} = N_{ex} \sigma_{ex} \sigma_{ex} \sigma_{LL}^{(2)} I_{0L}^{2})$ $\eta_{\rm E}^{\alpha} |\chi_{\rm THG}^{(3)}|^2 (\sigma_{\rm ex} \sigma_{\rm LL}^{(2)} I_{\rm OL})^{-2}$ with ground state depletion $\eta_{E^{\alpha}}|\chi_{THG}^{(3)}|^{2}I_{0L}^{2}\sigma_{ex}^{-2}$ $(\alpha_{ex} = N_{D}\sigma_{ex})$ Refractive index dispersion $\eta_{\rm E}^{\alpha} |\chi_{\rm THG}^{(3)}|^2 I_{\rm OL}^2 D^{-2}$ $(D = \partial n_3 / \partial v - \partial n_1 / \partial v)$ Refractive index change due to Change of C excited state population, Δn Nonlinear refractive index, n₂ Change of C

18. R. Piston, Laser Focus, 1978, 14/7, 66.

19. D. Eimerl, IEEE J. Quant. Electron., 1987, QE-23, 575.

J.W. Shelton and Y.R. Shen, <u>Phys. Rev. Lett.</u>, 1971, <u>26</u>, 538.
N. Bloembergen and A.J. Sievers, <u>Appl. Phys. Lett.</u>, 1970, <u>17</u>, 483.

22. M. Thalhammer and A. Penzkofer, Appl. Phys., 1983, B32, 137.

23. H. Schillinger and A. Penzkofer, Opt. Commun., to be publ.

24. R.W. Minck, R.W. Terhune and C.C. Wang, <u>Appl. Opt.</u>, 1966, <u>5</u>, 1595.

210 *